US 20150227742A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2015/0227742 Al

Pereira 43) Pub. Date: Aug. 13, 2015
(54) SYSTEMS AND METHODS FOR SCANNING (52) US.CL
PACKED PROGRAMS IN RESPONSE TO CPC .ot GO6F 21/56 (2013.01)
DETECTING SUSPICIOUS BEHAVIORS
57 ABSTRACT
(71) Applicant: Symantec Corporation, Mountain View, A computer-implemented method for scanning packed pro-
CA (US)
grams in response to detecting suspicious behaviors may
. . include (1) executing a packed program that may include (i)
(72) - Inventor: Shane Percira, Newbury Park, CA (US) malicious code that has been obfuscated within the packed
(73) Assignee: Symantec Corporation, Mountain View, program and (ii) unpacking code that deobfuscates and
CA (US) executes the malicious code when the packed program is
executed, (2) monitoring, while the packed program is
(21) Appl. No.: 14/178,727 executing, how the packed program behaves, (3) detecting,
while monitoring how the packed program behaves, a suspi-
(22) Filed: Feb. 12, 2014 cious behavior of the malicious code that indicates that the
unpacking code has deobfuscated and executed the malicious
Publication Classification code, and (4) performing a security operation on the packed
program in response to detecting the suspicious behavior of
(51) Int.ClL the malicious code. Various other methods, systems, and
GOG6F 21/56 (2006.01) computer-readable media are also disclosed.

System

100

Modules
102

Executing Module
104

Monitoring Module
106

Detecting Module
108

Security Module
110

Database
120

Suspicious Behaviors
122

Targeted Memory
124

Malware Signatures
126

Patent Application Publication

Aug. 13,2015 Sheet1 of 6

US 2015/0227742 Al

System
100

Modules
102

Executing Module
104

Monitoring Module
106

Detecting Module
108

Security Module
110

Database
120

Suspicious Behaviors
122

Targeted Memory
124

Malware Signatures

126

FIG. 1

Patent Application Publication Aug. 13, 2015 Sheet2 of 6 US 2015/0227742 A1

Computing System
202

Packed Program
204

Unpacking Code I

Database
120

206

Obfuscated Program
208

Malicious Code
210

Executing Module

I‘_ 104
: I

Monitoring Module

106
Detecting Module Memory
108 212

'

Security Module
112

FIG. 2

Patent Application Publication Aug. 13, 2015 Sheet 3 of 6 US 2015/0227742 A1

300

\

D

Execute a packed program that includes (1) malicious code that has been obfuscated
within the packed program and (2) unpacking code that deobfuscates and executes the
malicious code when the packed program is executed
302

Monitor, while the packed program is executing, how the packed program behaves
304

Detect a suspicious behavior of the malicious code that indicates that the unpacking
code has deobfuscated and executed the malicious code
306

Perform a security operation on the packed program in response to detecting the
suspicious behavior of the malicious code
308

@

FIG. 3

US 2015/0227742 Al

Aug. 13,2015 Sheet 4 of 6

Patent Application Publication

v "Old

0¥
uonoesg eyeq

207
uonoag spod)

[\]%7
uonoes ereq

80C
weiboid pereasniqoO

(V57
uonoesg eyeq

902
2po9) Bupoedun

[U%7
uonoag 8pod

90¢
2po9 Bunpoedun

80¥
uoloeg apod

Pov
uonoas ereq

207
uolsg 3poH

/

Z1¥ AMowspy paxoedun

/

901 Aowsy payoed

N

00¥ Aowsay

\

(¥4
2apog snoljep

US 2015/0227742 Al

Aug. 13,2015 Sheet 5 of 6

Patent Application Publication

S OI4

Alowsyy wa)sAg

oct
TTo aseqeleq
aolne(abeinlg
dnyjoeg VA
82I1na(] 8beio)g
Aewd 375 $7C
A A 221A8Q 991A8(g
nduj Aeidsig
A A
h 4 A 4
0gs s ZLS
aoeuau| aoeuaU| ladepy aJnjonJysesyu|
abeio)g indu) Aeidsig uopEdIUNWIWOYD
A F § \
h 4 \ 4
A A A r § A A v
y y \ 4 y y
—— 20l
somantl 0% 373 seInpopy R
LONEDIUNWWOoN Jajjoiued O/ Ja|jo5u0D) Alowsp — 10888901
916

X

0Ls

waysAg bunndwon

US 2015/0227742 Al

Aug. 13,2015 Sheet 6 of 6

Patent Application Publication

(NJ069

2031A8Q

{17063

aolne(

G69
Aeny sbeloig
sbijeu|

089
ouged NvS

NJ0Z9 |,
sommeq |

)

o

[
MoZe |,
aomeq |

A\ 4
G¥9
JEVVETS

[Z]
BETNETS

{NJ039

ao1n8(J

A

A

(17099

a01n8(Qg

A

09
uslo

069
YiompeN

029
walo

001
WalsAg

019
sl

AN

009
2IN1091LIY HIOMIBN

US 2015/0227742 Al

SYSTEMS AND METHODS FOR SCANNING
PACKED PROGRAMS IN RESPONSE TO
DETECTING SUSPICIOUS BEHAVIORS

BACKGROUND

[0001] Because many existing antivirus technologies
detect malicious programs (“malware”) by detecting or iden-
tifying unique digital signatures associated with known-ma-
licious programs, malware authors have attempted to prolif-
erate malware by generating thousands or potentially
millions of unique variations of the same malicious program.
Often, malware authors create a unique variation of a mali-
cious program by packing (e.g., compressing, encrypting,
and/or otherwise obfuscating) the malicious program within a
new program (referred to as a “packed program”). When the
packed program is executed, additional code within the
packed program may unpack (e.g., decompress and/or
decrypt) and then execute the obfuscated malicious program.

[0002] Unfortunately, this packing process may enable a
malicious program to evade detection by existing antivirus
technologies since existing antivirus technologies may be
unable to identify packed programs within which the mali-
cious program has been obfuscated until security system ven-
dors update their signature databases to include digital signa-
tures for each unique packed program. Accordingly, the
instant disclosure identifies a need for additional and
improved systems and methods for detecting malicious pro-
grams obfuscated within packed programs.

SUMMARY

[0003] As will be described in greater detail below, the
instant disclosure generally relates to systems and methods
for scanning packed programs in response to detecting sus-
picious behaviors. In one example, a computer-implemented
method for performing such a task may include (1) executing
a packed program that includes (i) malicious code that has
been obfuscated within the packed program and (ii) unpack-
ing code that deobfuscates and executes the malicious code
when the packed program is executed, (2) monitoring, while
the packed program is executing, how the packed program
behaves, (3) detecting, while monitoring how the packed
program behaves, a suspicious behavior of the malicious code
that indicates that the unpacking code has deobfuscated and
executed the malicious code, and (4) performing a security
operation on the packed program in response to detecting the
suspicious behavior of the malicious code.

[0004] In some embodiments, the step of performing the
security operation on the packed program may include scan-
ning, while the packed program is executing, at least a portion
of memory of the packed program for at least one malware
signature. In addition, the computer-implemented method for
scanning packed programs in response to detecting suspi-
cious behaviors may further include receiving scanning cri-
teria that specifies at least one suspicious behavior that will
trigger scanning of memory ofthe packed program for at least
one malware signature.

[0005] In one example, the step of monitoring how the
packed program behaves may include monitoring how the
packed program behaves for the specified suspicious behav-
ior, the step of detecting the suspicious behavior may include
detecting the specified suspicious behavior, and the step of
performing the security operation on the packed program

Aug. 13,2015

may include scanning, in response to detecting the specified
suspicious behavior, the memory of the packed program for
the malware signature.

[0006] Insome examples, the scanning criteria may further
specify a portion of the memory of the packed program that
should be scanned in response to detecting the specified sus-
picious behavior, and the step of scanning the memory of the
packed program for the malware signature may include scan-
ning the specified portion of the memory of the packed pro-
gram for the malware signature.

[0007] In some embodiments, the scanning criteria may
further specify at least one malware signature with which to
scan the memory of the packed program in response to detect-
ing the specified suspicious behavior, and the step of scanning
the memory of the packed program for the malware signature
may include scanning the memory of the packed program for
the specified malware signature.

[0008] Inoneexample, the step of detecting the suspicious
behavior of the malicious code may include (1) detecting an
attempt, by the malicious code, to create a run registry key, (2)
detecting an attempt, by the malicious code, to create a
generic load point, (3) detecting an attempt, by the malicious
code, to inject the malicious code into another process, and/or
(4) detecting an attempt, by the malicious code, to modify
security settings.

[0009] A system for implementing the above-described
method may include (1) an executing module, stored in
memory, that executes a packed program that may include (i)
malicious code that has been obfuscated within the packed
program and (ii) unpacking code that deobfuscates and
executes the malicious code when the packed program is
executed, (2) a monitoring module, stored in memory, that
monitors how the packed program behaves while the packed
program is executing, (3) a detecting module, stored in
memory, that detects, while the packed program is monitored,
a suspicious behavior of the malicious code that indicates that
the unpacking code has deobfuscated and executed the mali-
cious code, (4) a security module, stored in memory, that
performs a security operation on the packed program in
response to detecting the suspicious behavior of the malicious
code, and (5) at least one processor that executes the execut-
ing module, the monitoring module, the detecting module,
and the security module.

[0010] Insome examples, the above-described method may
be encoded as computer-readable instructions on a non-tran-
sitory computer-readable medium. For example, a computer-
readable medium may include one or more computer-execut-
able instructions that, when executed by at least one processor
of'a computing device, may cause the computing device to (1)
execute a packed program that may include (i) malicious code
that has been obfuscated within the packed program and (ii)
unpacking code that deobfuscates and executes the malicious
code when the packed program is executed, (2) monitor,
while the packed program is executing, how the packed pro-
gram behaves, (3) detect, while monitoring how the packed
program behaves, a suspicious behavior of the malicious code
that indicates that the unpacking code has deobfuscated and
executed the malicious code, and (4) perform a security
operation on the packed program in response to detecting the
suspicious behavior of the malicious code.

[0011] Features from any of the above-mentioned embodi-
ments may be used in combination with one another in accor-
dance with the general principles described herein. These and
other embodiments, features, and advantages will be more

US 2015/0227742 Al

fully understood upon reading the following detailed descrip-
tion in conjunction with the accompanying drawings and
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The accompanying drawings illustrate a number of
exemplary embodiments and are a part of the specification.
Together with the following description, these drawings dem-
onstrate and explain various principles of the instant disclo-
sure.

[0013] FIG. 1 is a block diagram of an exemplary system
for scanning packed programs in response to detecting sus-
picious behaviors.

[0014] FIG.2isablockdiagram of an additional exemplary
system for scanning packed programs in response to detect-
ing suspicious behaviors.

[0015] FIG.3 is a flow diagram of an exemplary method for
scanning packed programs in response to detecting suspi-
cious behaviors.

[0016] FIG. 4 is a block diagram of exemplary memory of
various programs.

[0017] FIG. 5 is a block diagram of an exemplary comput-
ing system capable of implementing one or more of the
embodiments described and/or illustrated herein.

[0018] FIG. 6 is a block diagram of an exemplary comput-
ing network capable of implementing one or more of the
embodiments described and/or illustrated herein.

[0019] Throughout the drawings, identical reference char-
acters and descriptions indicate similar, but not necessarily
identical, elements. While the exemplary embodiments
described herein are susceptible to various modifications and
alternative forms, specific embodiments have been shown by
way of example in the drawings and will be described in detail
herein. However, the exemplary embodiments described
herein are not intended to be limited to the particular forms
disclosed. Rather, the instant disclosure covers all modifica-
tions, equivalents, and alternatives falling within the scope of
the appended claims.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

[0020] The present disclosure is generally directed to sys-
tems and methods for scanning packed programs in response
to detecting suspicious behaviors. As will be explained in
greater detail below, by monitoring an executing packed pro-
gram for suspicious behaviors, the systems and methods
described herein may enable a program obfuscated within the
packed program to be unpacked and scanned for malware.
Furthermore, in some examples, by enabling obfuscated pro-
grams contained within packed programs to be unpacked and
scanned for malware, these systems and methods may reduce
the number of malware signatures that must be created and
used to detect malware variants. For example, the systems and
methods described herein may detect a packed program that
includes an obfuscated malicious program by scanning the
packed program using a digital signature of the malicious
program instead of a digital signature of the packed program.
Embodiments of the instant disclosure may also provide vari-
ous other advantages and features, as discussed in greater
detail below.

[0021] The following will provide, with reference to FIGS.
1-2, detailed descriptions of exemplary systems for scanning
packed programs in response to detecting suspicious behav-

Aug. 13,2015

iors. Detailed descriptions of corresponding computer-imple-
mented methods will also be provided in connection with
FIGS. 3 and 4. In addition, detailed descriptions of an exem-
plary computing system and network architecture capable of
implementing one or more of the embodiments described
herein will be provided in connection with FIGS. 5 and 6,
respectively.

[0022] FIG. 1 is a block diagram of an exemplary system
100 for scanning packed programs in response to detecting
suspicious behaviors. As illustrated in this figure, exemplary
system 100 may include one or more modules 102 for per-
forming one or more tasks. For example, and as will be
explained in greater detail below, exemplary system 100 may
include an executing module 104 that executes a packed
program that may include (i) malicious code that has been
obfuscated within the packed program and (ii) unpacking
code that deobfuscates and executes the malicious code when
the packed program is executed. Exemplary system 100 may
also include a monitoring module 106 that monitors, while
the packed program is executing, how the packed program
behaves.

[0023] Inaddition, and as will be described in greater detail
below, exemplary system 100 may include a detecting mod-
ule 108 that detects a suspicious behavior of the malicious
code that indicates that the unpacking code has deobfuscated
and executed the malicious code. Exemplary system 100 may
also include a security module 110 that performs a security
operation on the packed program in response to detecting the
suspicious behavior of the malicious code. Although illus-
trated as separate elements, one or more of modules 102 in
FIG. 1 may represent portions of a single module or applica-
tion.

[0024] In certain embodiments, one or more of modules
102 in FIG. 1 may represent one or more software applica-
tions or programs that, when executed by a computing device,
may cause the computing device to perform one or more
tasks. For example, and as will be described in greater detail
below, one or more of modules 102 may represent software
modules stored and configured to run on one or more com-
puting devices, such as computing system 202 in FIG. 2,
computing system 510 in FIG. 5, and/or portions of exem-
plary network architecture 600 in FIG. 6. One or more of
modules 102 in FIG. 1 may also represent all or portions of
one or more special-purpose computers configured to per-
form one or more tasks.

[0025] Asillustrated in FIG. 1, exemplary system 100 may
also include one or more databases, such as database 120. In
one example, database 120 may store information about one
ormore suspicious behaviors (e.g., suspicious behaviors 122)
that may trigger the systems described herein to perform
security actions (e.g., malware scans) on packed programs,
information about memory targeted for scanning (e.g., tar-
geted memory 124), and/or information about one or more
malware signatures (e.g., malware signatures 126) that may
be used to scan packed programs for malware.

[0026] Database 120 may represent portions of a single
database or computing device or a plurality of databases or
computing devices. For example, database 120 may represent
a portion of computing system 202 in FIG. 2, computing
system 510 in FIG. 5, and/or portions of exemplary network
architecture 600 in FIG. 6. Alternatively, database 120in FIG.
1 may represent one or more physically separate devices
capable of being accessed by a computing device, such as

US 2015/0227742 Al

computing system 202 in FIG. 2, computing system 510 in
FIG. 5, and/or portions of exemplary network architecture
600 in FIG. 6.

[0027] Exemplary system 100 in FIG. 1 may be imple-
mented in a variety of ways. For example, all or a portion of
exemplary system 100 may represent portions of exemplary
computing system 202 in FIG. 2. In one embodiment, one or
more of modules 102 from FIG. 1 may, when executed by at
least one processor of computing system 202, enable com-
puting system 202 to scan packed programs for malware in
response to detecting suspicious behaviors. For example, and
as will be described in greater detail below, one or more of
modules 102 may cause computing system 202 to (1) execute
a packed program 204 that includes (i) malicious code 210
that has been obfuscated within packed program 204 and (ii)
unpacking code 206 that deobfuscates and executes obfus-
cated program 208 and/or malicious code 210 when packed
program 204 is executed, (2) monitor, while packed program
204 is executing, how packed program 204 behaves, (3)
detect, while monitoring how packed program 204 behaves, a
suspicious behavior of malicious code 210 that indicates that
unpacking code 206 has deobfuscated and executed mali-
cious code 210, and (4) perform a security operation on
packed program 204 (e.g., by scanning memory 212 of
packed program 204 for at least one malware signature) in
response to detecting the suspicious behavior of malicious
code 210.

[0028] Computing system 202 generally represents any
type or form of computing system capable of reading com-
puter-executable instructions. Examples of computing sys-
tem 202 include, without limitation, laptops, tablets, desk-
tops, servers, cellular phones, Personal Digital Assistants
(PDAs), multimedia players, embedded systems, wearable
devices (e.g., smart watches, smart glasses, etc.), gaming
consoles, combinations of one or more of the same, exem-
plary computing system 510 in FIG. 5, or any other suitable
computing system.

[0029] FIG. 3 is a flow diagram of an exemplary computer-
implemented method 300 for scanning packed programs in
response to detecting suspicious behaviors. The steps shown
in FIG. 3 may be performed by any suitable computer-execut-
able code and/or computing system. In some embodiments,
the steps shown in FIG. 3 may be performed by one or more
of'the components of system 100 in FIG. 1, computing system
202 in FIG. 2, computing system 510 in FIG. 5, and/or por-
tions of exemplary network architecture 600 in FIG. 6.
[0030] As illustrated in FIG. 3, at step 302 one or more of
the systems described herein may execute a packed program
that includes (1) malicious code that has been obfuscated
within the packed program and (2) unpacking code that deob-
fuscates and executes the malicious code when the packed
program is executed. For example, executing module 104
may, as part of computing system 202 in FIG. 2, execute
packed program 204 that includes malicious code 210 that has
been obfuscated within packed program 204 and unpacking
code 206 that deobfuscates and executes malicious code 210
when packed program 204 is executed.

[0031] As used herein, the phrase “program” generally
refers to any file that includes code (i.e., instructions) that
may be executed by a computing device (e.g., an executable
or a binary). A program may be formatted according to any
suitable executable file format. For example, a program may
be formatted according to a Portable Executable (PE) file
format. The phrase “program” may also refer to any program

Aug. 13,2015

capable of being executed by a WINDOWS operating system,
a LINUX operating system, a MAC operating system, a
UNIX operating system, and/or any other operating system.
[0032] In some examples, a program may include a code
section and a data section that are loaded into memory when
the program is executed. Memory 400 in FIG. 4 illustrates an
exemplary runtime memory state of an exemplary program
that has not been obfuscated within a packed program. As
shown, the runtime memory state of an exemplary program
that has not been obfuscated within a packed program may
include the program’s code section (e.g., code section 402)
and the program’s data section (e.g., data section 404). In the
examples used herein, memory 400 may represent at least a
portion of the memory of obfuscated program 208.

[0033] Insome instances, a program may be packed (e.g.,
compressed, encrypted, and/or otherwise obfuscated) within
another program (referred to as a “packed program™). For
example, packed program 204 in FIG. 2 may represent a
packed program within which obfuscated program 208 has
been packed. In some examples, a program may be packed
one or more times (e.g., a packed program within which a
program has been packed may also be packed within another
packed program).

[0034] In some examples, the phrase “packed program”
may refer to any program created by a packer. The term
“packer,” as used herein, generally refers to any type or form
of'tool used to obfuscate programs. Examples of packers that
may be used to obfuscate programs include, without limita-
tion, compressors (e.g., ULTIMATE PACKER FOR
EXECUTABLES (UPX), ASPACK, and UPACK) that com-
press files, crypters (e.g., POLYCRYPT PE) that encrypt files,
protectors (e.g., ARMADILLO and THEMIDA) that both
compress and encrypt files, bundlers (such as PEBUNDLE
and MOLEBOX) that bundle multiple executable and data
files into a single bundled executable file, and the like.
[0035] Insome examples, a packed program may include a
code section and a data section that are loaded into memory
when the packed program is executed. In some examples, the
obfuscated program packed within a packed program may be
stored within the packed program’s data section. Packed
memory 406 in FIG. 4 illustrates an exemplary runtime
memory state of a packed program when the packed program
is first loaded into memory and before any unpacking code of
the packed program is executed. In this state, as shown in F1G.
4,the memory of the packed program may include the packed
program’s code section (e.g., code section 408) and the
packed program’s data section (e.g., data section 410) that
may include a program (e.g., obfuscated program 208) in an
obfuscated state.

[0036] At runtime, the code of a packed program (e.g.,
unpacking code) may unpack (e.g., decompress, decrypt,
and/or otherwise deobfuscate) the program obfuscated within
the packed program. The unpacking code of a packed pro-
gram may unpack an obfuscated program such that the obfus-
cated program exist within the memory of the packed pro-
gram in an unobfuscated and executable state. Unpacked
memory 412 in FIG. 4 illustrates an exemplary runtime
memory state of a packed program after the unpacking code
of'the packed program has unpacked the program obfuscated
within the packed program. In this state, as shown in FIG. 4,
the memory of the packed program may include the obfus-
cated program’s code section (e.g., code section 402) in an
unobfuscated state and the obfuscated program’s data section
(e.g., data section 404) in an unobfuscated state. In the

US 2015/0227742 Al

examples used herein, packed memory 406 and unpacked
memory 412 may represent runtime states of memory 212.
[0037] Returning to FIG. 3, the systems described herein
may perform step 302 in any suitable manner. In one example,
executing module 104 may execute a packed program by
allowing the packed program to be executed. For example,
executing module 104 may allow a user to execute the packed
program. Additionally or alternatively, executing module 104
may execute a packed program as part of performing a mal-
ware scan on the packed program.

[0038] At step 304, one or more of the systems described
herein may monitor, while the packed program is executing,
how the packed program behaves. For example, monitoring
module 106 may, as part of computing system 202 in FIG. 2,
monitor how packed program 204 behaves while packed pro-
gram 204 is executing.

[0039] The systems described herein may perform step 304
in any suitable manner. In one example, monitoring module
106 may monitor how an executing packed program behaves
by monitoring the processes that make up the executing
packed program. As used herein, the term “process” may refer
to any program in execution (e.g., an instantiation and/or
running copy of a program expressed by an executable file).
In some examples, a process may include multiple processes,
threads, and/or subprocesses.

[0040] In general, monitoring module 106 may monitor
how an executing packed program behaves for certain suspi-
cious behaviors that may indicate that the unpacking code of
the packed program has deobfuscated and executed at least a
portion of the malicious code obfuscated within the packed
program. For example, monitoring module 106 may monitor
how packed program 204 behaves for any or all of the suspi-
cious behaviors contained within suspicious behaviors 122
that may indicate that unpacking code 206 has deobfuscated
and executed at least a portion of obfuscated program 208
(e.g., malicious code 210).

[0041] The phrase “suspicious behavior,” as used herein,
generally refers to any occurrence of one or more actions that
are performed by a program that may indicate that the pro-
gram is a packed program and/or that the unpacking code of
the packed program has deobfuscated and executed at least a
portion of the malicious code obfuscated within the packed
program. In at least one example, the phrase “suspicious
behavior” may refer to any specific, substantial, and/or com-
plex behavior that indicates that the unpacking code of a
packed program has deobfuscated and executed at least a
portion of the malicious code obfuscated within the packed
program.

[0042] In certain examples, the systems and methods
described herein may identify suspicious behaviors by ana-
lyzing of the behaviors of known malicious and/or known
benign programs. In some examples, the phrase “suspicious
behavior” may represent one or more actions that are known
to be performed by at least one known malicious program
when the known malicious program is first executed and/or
one or more action that are known to not be performed by a
significant number of known benign programs when the
known benign programs are first executed.

[0043] Examples of suspicious behaviors may include,
without limitation, the creation of a run registry key (e.g., a
RUN and RUNONCE registry key), the creation of a generic
load point (e.g., a configuration and/or program responsible
for initiating a packed program or malicious code, such as a
Browser Helper Object (BHO)), the injection of malicious

Aug. 13,2015

code into another process (e.g., a process injection), and/or
the modification of security settings. Additional examples of
suspicious behaviors may include, without limitation, file
creations, file downloads, network communications, and/or
process creations. As used herein, the phrase “process injec-
tion” may refer to any method for one process to introduce
executable instructions into another process to execute.
Examples of process injection may include injecting a
dynamic-link library into a running process and hooking a
function call within another process.

[0044] Returning to step 304 in FIG. 3, in some examples,
the systems and methods described herein may utilize scan-
ning criteria that specifies suspicious behaviors that will trig-
ger scanning of a packed program’s memory for at least one
malware signature, and monitoring module 106 may monitor
how a packed program behaves for the suspicious behaviors
included within the scanning criteria. In at least one example,
suspicious behaviors 122 in FIG. 1 may represent a portion
the scanning criteria utilized by the systems and methods
described herein.

[0045] At step 306, one or more of the systems described
herein may detect a suspicious behavior of the malicious code
that indicates that the unpacking code has deobfuscated and
executed the malicious code. For example, detecting module
108 may, as part of computing system 202 in FIG. 2, detecta
suspicious behavior of malicious code 210 that indicates that
unpacking code 206 has deobfuscated and executed mali-
cious code 210.

[0046] The systems described herein may perform step 306
in any suitable manner. For example, detecting module 108
may detect (1) an attempt, by deobfuscated and executing
malicious code, to create a run registry key, (2) an attempt, by
deobfuscated and executing malicious code, to create a
generic load point, (3) an attempt, by deobfuscated and
executing malicious code, to inject malicious code into
another process, (4) an attempt, by deobfuscated and execut-
ing malicious code, to modify security settings, and/or (5) any
other suspicious behavior of deobfuscated and executing
malicious code.

[0047] At step 308, one or more of the systems described
herein may perform a security operation on the packed pro-
gram in response to detecting the suspicious behavior of the
malicious code. For example, security module 110 may, as
part of computing system 202 in FIG. 2, perform a security
operation on packed program 204 in response to detecting the
suspicious behavior of malicious code 210.

[0048] The systems described herein may perform step 308
in any suitable manner. In one example, security module 110
may perform a security action on a packed program by scan-
ning at least a portion of the packed program’s memory for at
least one malware signature to determine whether the packed
program includes an obfuscated malicious program. For
example, security module 110 may perform a security action
on packed program 204 by scanning all or a portion of
memory 212 (e.g., all or a portion of unpacked memory 412).
As used herein, the phrase “memory of a packed program”
generally refers to any memory allocated to and/or accessible
by a packed program and/or an obfuscated malicious program
included within a packed program. In some examples, the
memory of a packed program may include, without limita-
tion, the memory image of a packed program and/or any
memory dynamically allocated to a packed program.

[0049] In some examples, security module 110 may scan
the memory of a packed program based at least in part on

US 2015/0227742 Al

scanning criteria associated with a detected suspicious behav-
ior. For example, as mentioned above, the systems and meth-
ods described herein may utilize scanning criteria that speci-
fies at least one suspicious behavior that will trigger the
scanning of a packed program’s memory for at least one
malware signature, a portion of the packed program’s
memory that should be scanned in response to detecting the
specified suspicious behavior, and/or at least one malware
signature with which to scan the packed program’s memory
in response to detecting the specified suspicious behavior. As
such, in some examples, security module 110 may scan, in
response to the detection of a suspicious behavior specified by
scanning criteria, at least the portion of the memory of the
packed program associated with the specified suspicious
behavior for at least the malware signatures associated with
the specified suspicious behavior.

[0050] In at least one example, security module 110 may
scan, in response to the detection of a suspicious behavior
specified by scanning criteria, only the portion of the memory
of the packed program associated with the specified suspi-
cious behavior for only the malware signatures associated
with the specified suspicious behavior. By reducing the
amount of memory that is scanned for malware signatures
and/or the number of malware signatures used to scan for
malware, the systems and methods described herein may
reduce scanning times and/or scanning loads.

[0051] In at least one example, suspicious behaviors 122,
targeted memory 124, and malware signatures 126 in FIG. 1
may represent at least a portion of the scanning criteria uti-
lized by the systems and methods described herein.

[0052] In addition to or as an alternative to scanning the
memory of a packed program, security module 110 may
perform additional security actions on the packed program.
For example, in response to a positive malware scan, security
module 110 may classify the packed program as malicious,
terminate execution of the packed program, prevent the
packed program from being subsequently executed, quaran-
tine the packed program, delete the packed program, notify a
user who is attempting to execute the packed program that the
packed program is malicious, and/or perform any other reme-
diation action on the packed program. Additionally or alter-
natively, security module 110 may update information about
known malicious and/or known benign packed programs. For
example, security module 110 may generate a malware sig-
nature for detecting the packed program without executing
the packed program. Upon completion of step 308, exemplary
method 300 in FIG. 3 may terminate.

[0053] As explained above, by monitoring an executing
packed program for suspicious behaviors, the systems and
methods described herein may enable a program obfuscated
within the packed program to be unpacked and scanned for
malware. Furthermore, in some examples, by enabling obfus-
cated programs contained within packed programs to be
unpacked and scanned for malware, these systems and meth-
ods may reduce the number of malware signatures that must
be created and used to detect malware variants. For example,
the systems and methods described herein may detect a
packed program that includes an obfuscated malicious pro-
gram by scanning the packed program using a digital signa-
ture of the malicious program instead of a digital signature of
the packed program.

[0054] In another example, the systems and methods
described herein may detect and remediate malicious packed
programs by (1) allowing the packed program to be executed,

Aug. 13,2015

(2) monitoring the executing packed program for suspicious
behaviors that may indicate that unpacking code of the
packed program has deobfuscated and executed malicious
code packed within the packed program, (3) detecting such a
suspicious behavior, (4) suspending execution of the packed
program, (5) scanning the memory of the packed program for
one or more malware signatures, (6) determining that the
packed program matches at least one malware signature, and
(7) performing a remediation action on the packed program
(e.g., quarantining the packed program) in response to deter-
mining that the packed program matches at least one malware
signature.

[0055] FIG. 5 is a block diagram of an exemplary comput-
ing system 510 capable of implementing one or more of the
embodiments described and/or illustrated herein. For
example, all or a portion of computing system 510 may per-
form and/or be a means for performing, either alone or in
combination with other elements, one or more of the steps
described herein (such as one or more of the steps illustrated
in FIG. 3). All or a portion of computing system 510 may also
perform and/or be a means for performing any other steps,
methods, or processes described and/or illustrated herein.
[0056] Computing system 510 broadly represents any
single or multi-processor computing device or system
capable of executing computer-readable instructions.
Examples of computing system 510 include, without limita-
tion, workstations, laptops, client-side terminals, servers, dis-
tributed computing systems, handheld devices, or any other
computing system or device. In its most basic configuration,
computing system 510 may include at least one processor 514
and a system memory 516.

[0057] Processor 514 generally represents any type or form
of physical processing unit (e.g., a hardware-implemented
central processing unit) capable of processing data or inter-
preting and executing instructions. In certain embodiments,
processor 514 may receive instructions from a software appli-
cation or module. These instructions may cause processor
514 to perform the functions of one or more of the exemplary
embodiments described and/or illustrated herein.

[0058] System memory 516 generally represents any type
or form of volatile or non-volatile storage device or medium
capable of storing data and/or other computer-readable
instructions. Examples of system memory 516 include, with-
out limitation, Random Access Memory (RAM), Read Only
Memory (ROM), flash memory, or any other suitable memory
device. Although not required, in certain embodiments com-
puting system 510 may include both a volatile memory unit
(such as, for example, system memory 516) and a non-vola-
tile storage device (such as, for example, primary storage
device 532, as described in detail below). In one example, one
or more of modules 102 from FIG. 1 may be loaded into
system memory 516.

[0059] In certain embodiments, exemplary computing sys-
tem 510 may also include one or more components or ele-
ments in addition to processor 514 and system memory 516.
For example, as illustrated in FIG. 5, computing system 510
may include a memory controller 518, an Input/Output (I/O)
controller 520, and a communication interface 522, each of
which may be interconnected via a communication infra-
structure 512. Communication infrastructure 512 generally
represents any type or form of infrastructure capable of facili-
tating communication between one or more components of a
computing device. Examples of communication infrastruc-
ture 512 include, without limitation, a communication bus

US 2015/0227742 Al

(such as an Industry Standard Architecture (ISA), Peripheral
Component Interconnect (PCI), PCI Express (PCle), or simi-
lar bus) and a network.

[0060] Memory controller 518 generally represents any
type or form of device capable of handling memory or data or
controlling communication between one or more compo-
nents of computing system 510. For example, in certain
embodiments memory controller 518 may control communi-
cation between processor 514, system memory 516, and /O
controller 520 via communication infrastructure 512.

[0061] 1/O controller 520 generally represents any type or
form of module capable of coordinating and/or controlling
the input and output functions of a computing device. For
example, in certain embodiments /O controller 520 may
control or facilitate transfer of data between one or more
elements of computing system 510, such as processor 514,
system memory 516, communication interface 522, display
adapter 526, input interface 530, and storage interface 534.
[0062] Communication interface 522 broadly represents
any type or form of communication device or adapter capable
of facilitating communication between exemplary computing
system 510 and one or more additional devices. For example,
in certain embodiments communication interface 522 may
facilitate communication between computing system 510 and
a private or public network including additional computing
systems. Examples of communication interface 522 include,
without limitation, a wired network interface (such as a net-
work interface card), a wireless network interface (such as a
wireless network interface card), a modem, and any other
suitable interface. In at least one embodiment, communica-
tion interface 522 may provide a direct connection to aremote
server via a direct link to a network, such as the Internet.
Communication interface 522 may also indirectly provide
such a connection through, for example, a local area network
(such as an Ethernet network), a personal area network, a
telephone or cable network, a cellular telephone connection,
a satellite data connection, or any other suitable connection.
[0063] In certain embodiments, communication interface
522 may also represent a host adapter configured to facilitate
communication between computing system 510 and one or
more additional network or storage devices via an external
bus or communications channel. Examples of host adapters
include, without limitation, Small Computer System Inter-
face (SCSI) host adapters, Universal Serial Bus (USB) host
adapters, Institute of Electrical and Electronics Engineers
(IEEE) 1394 host adapters, Advanced Technology Attach-
ment (ATA), Parallel ATA (PATA), Serial ATA (SATA), and
External SATA (eSATA) host adapters, Fibre Channel inter-
face adapters, Ethernet adapters, or the like. Communication
interface 522 may also allow computing system 510 to
engage in distributed or remote computing. For example,
communication interface 522 may receive instructions from a
remote device or send instructions to a remote device for
execution.

[0064] Asillustrated in FIG. 5, computing system 510 may
also include at least one display device 524 coupled to com-
munication infrastructure 512 via a display adapter 526. Dis-
play device 524 generally represents any type or form of
device capable of visually displaying information forwarded
by display adapter 526. Similarly, display adapter 526 gener-
ally represents any type or form of device configured to for-
ward graphics, text, and other data from communication
infrastructure 512 (or from a frame buffer, as known in the art)
for display on display device 524.

Aug. 13,2015

[0065] As illustrated in FIG. 5, exemplary computing sys-
tem 510 may also include at least one input device 528
coupled to communication infrastructure 512 via an input
interface 530. Input device 528 generally represents any type
or form of input device capable of providing input, either
computer or human generated, to exemplary computing sys-
tem 510. Examples of input device 528 include, without
limitation, a keyboard, a pointing device, a speech recogni-
tion device, or any other input device.

[0066] As illustrated in FIG. 5, exemplary computing sys-
tem 510 may also include a primary storage device 532 and a
backup storage device 533 coupled to communication infra-
structure 512 via a storage interface 534. Storage devices 532
and 533 generally represent any type or form of storage
device or medium capable of storing data and/or other com-
puter-readable instructions. For example, storage devices 532
and 533 may be a magnetic disk drive (e.g., a so-called hard
drive), a solid state drive, a floppy disk drive, a magnetic tape
drive, an optical disk drive, a flash drive, or the like. Storage
interface 534 generally represents any type or form of inter-
face or device for transferring data between storage devices
532 and 533 and other components of computing system 510.
In one example, database 120 from FIG. 1 may be stored in
primary storage device 532.

[0067] In certain embodiments, storage devices 532 and
533 may be configured to read from and/or write to a remov-
able storage unit configured to store computer software, data,
or other computer-readable information. Examples of suit-
able removable storage units include, without limitation, a
floppy disk, a magnetic tape, an optical disk, a flash memory
device, or the like. Storage devices 532 and 533 may also
include other similar structures or devices for allowing com-
puter software, data, or other computer-readable instructions
to be loaded into computing system 510. For example, storage
devices 532 and 533 may be configured to read and write
software, data, or other computer-readable information. Stor-
age devices 532 and 533 may also be a part of computing
system 510 or may be a separate device accessed through
other interface systems.

[0068] Many other devices or subsystems may be con-
nected to computing system 510. Conversely, all of the com-
ponents and devices illustrated in FIG. 5 need not be present
to practice the embodiments described and/or illustrated
herein. The devices and subsystems referenced above may
also be interconnected in different ways from that shown in
FIG. 5. Computing system 510 may also employ any number
of software, firmware, and/or hardware configurations. For
example, one or more of the exemplary embodiments dis-
closed herein may be encoded as a computer program (also
referred to as computer software, software applications, com-
puter-readable instructions, or computer control logic) on a
computer-readable medium. The phrase “computer-readable
medium,” as used herein, generally refers to any form of
device, carrier, or medium capable of storing or carrying
computer-readable instructions. Examples of computer-read-
able media include, without limitation, transmission-type
media, such as carrier waves, and non-transitory-type media,
such as magnetic-storage media (e.g., hard disk drives, tape
drives, and floppy disks), optical-storage media (e.g., Com-
pact Disks (CDs), Digital Video Disks (DVDs), and BLU-
RAY disks), electronic-storage media (e.g., solid-state drives
and flash media), and other distribution systems.

[0069] The computer-readable medium containing the
computer program may be loaded into computing system

US 2015/0227742 Al

510. All or a portion of the computer program stored on the
computer-readable medium may then be stored in system
memory 516 and/or various portions of storage devices 532
and 533. When executed by processor 514, a computer pro-
gram loaded into computing system 510 may cause processor
514 to perform and/or be a means for performing the func-
tions of one or more ofthe exemplary embodiments described
and/or illustrated herein. Additionally or alternatively, one or
more of the exemplary embodiments described and/or illus-
trated herein may be implemented in firmware and/or hard-
ware. For example, computing system 510 may be configured
as an Application Specific Integrated Circuit (ASIC) adapted
to implement one or more of the exemplary embodiments
disclosed herein.

[0070] FIG. 6 is a block diagram of an exemplary network
architecture 600 in which client systems 610, 620, and 630
and servers 640 and 645 may be coupled to a network 650. As
detailed above, all or a portion of network architecture 600
may perform and/or be a means for performing, either alone
or in combination with other elements, one or more of the
steps disclosed herein (such as one or more of the steps
illustrated in FIG. 3). All or a portion of network architecture
600 may also be used to perform and/or be a means for
performing other steps and features set forth in the instant
disclosure.

[0071] Client systems 610, 620, and 630 generally repre-
sent any type or form of computing device or system, such as
exemplary computing system 510 in FIG. 5. Similarly, serv-
ers 640 and 645 generally represent computing devices or
systems, such as application servers or database servers, con-
figured to provide various database services and/or run cer-
tain software applications. Network 650 generally represents
any telecommunication or computer network including, for
example, an intranet, a WAN, a LAN, a PAN; or the Internet.
In one example, client systems 610, 620, and/or 630 and/or
servers 640 and/or 645 may include all or a portion of system
100 from FIG. 1.

[0072] Asillustrated in FIG. 6, one or more storage devices
660(1)-(N) may be directly attached to server 640. Similarly,
one or more storage devices 670(1)-(N) may be directly
attached to server 645. Storage devices 660(1)-(N) and stor-
age devices 670(1)-(N) generally represent any type or form
of storage device or medium capable of storing data and/or
other computer-readable instructions. In certain embodi-
ments, storage devices 660(1)-(N) and storage devices 670
(1)-(N) may represent Network-Attached Storage (NAS)
devices configured to communicate with servers 640 and 645
using various protocols, such as Network File System (NFS),
Server Message Block (SMB), or Common Internet File Sys-
tem (CIFS).

[0073] Servers 640 and 645 may also be connected to a
Storage Area Network (SAN) fabric 680. SAN fabric 680
generally represents any type or form of computer network or
architecture capable of facilitating communication between a
plurality of storage devices. SAN fabric 680 may facilitate
communication between servers 640 and 645 and a plurality
of storage devices 690(1)-(N) and/or an intelligent storage
array 695. SAN fabric 680 may also facilitate, via network
650 and servers 640 and 645, communication between client
systems 610, 620, and 630 and storage devices 690(1)-(N)
and/or intelligent storage array 695 in such a manner that
devices 690(1)-(N) and array 695 appear as locally attached
devices to client systems 610, 620, and 630. As with storage
devices 660(1)-(N) and storage devices 670(1)-(N), storage

Aug. 13,2015

devices 690(1)-(N) and intelligent storage array 695 gener-
ally represent any type or form of storage device or medium
capable of storing data and/or other computer-readable
instructions.

[0074] In certain embodiments, and with reference to
exemplary computing system 510 of FIG. 5, a communica-
tion interface, such as communication interface 522 in FI1G. 5,
may be used to provide connectivity between each client
system 610, 620, and 630 and network 650. Client systems
610, 620, and 630 may be able to access information on server
640 or 645 using, for example, a web browser or other client
software. Such software may allow client systems 610, 620,
and 630 to access data hosted by server 640, server 645,
storage devices 660(1)-(N), storage devices 670(1)-(N), stor-
age devices 690(1)-(N), or intelligent storage array 695.
Although FIG. 6 depicts the use of a network (such as the
Internet) for exchanging data, the embodiments described
and/or illustrated herein are not limited to the Internet or any
particular network-based environment.

[0075] Inatleast one embodiment, all or a portion of one or
more of the exemplary embodiments disclosed herein may be
encoded as a computer program and loaded onto and executed
by server 640, server 645, storage devices 660(1)-(N), storage
devices 670(1)-(N), storage devices 690(1)-(N), intelligent
storage array 695, or any combination thereof. All or a portion
of one or more of the exemplary embodiments disclosed
herein may also be encoded as a computer program, stored in
server 640, run by server 645, and distributed to client sys-
tems 610, 620, and 630 over network 650.

[0076] As detailed above, computing system 510 and/or
one or more components of network architecture 600 may
perform and/or be a means for performing, either alone or in
combination with other elements, one or more steps of an
exemplary method for scanning packed programs in response
to detecting suspicious behaviors.

[0077] While the foregoing disclosure sets forth various
embodiments using specific block diagrams, flowcharts, and
examples, each block diagram component, flowchart step,
operation, and/or component described and/or illustrated
herein may be implemented, individually and/or collectively,
using a wide range of hardware, software, or firmware (or any
combination thereof) configurations. In addition, any disclo-
sure of components contained within other components
should be considered exemplary in nature since many other
architectures can be implemented to achieve the same func-
tionality.

[0078] In some examples, all or a portion of exemplary
system 100 in FIG. 1 may represent portions of a cloud-
computing or network-based environment. Cloud-computing
environments may provide various services and applications
via the Internet. These cloud-based services (e.g., software as
a service, platform as a service, infrastructure as a service,
etc.) may be accessible through a web browser or other
remote interface. Various functions described herein may be
provided through a remote desktop environment or any other
cloud-based computing environment.

[0079] In various embodiments, all or a portion of exem-
plary system 100 in FIG. 1 may facilitate multi-tenancy
within a cloud-based computing environment. In other words,
the software modules described herein may configure a com-
puting system (e.g., a server) to facilitate multi-tenancy for
one or more of the functions described herein. For example,
one or more of the software modules described herein may
program a server to enable two or more clients (e.g., custom-

US 2015/0227742 Al

ers) to share an application that is running on the server. A
server programmed in this manner may share an application,
operating system, processing system, and/or storage system
among multiple customers (i.e., tenants). One or more of the
modules described herein may also partition data and/or con-
figuration information of a multi-tenant application for each
customer such that one customer cannot access data and/or
configuration information of another customer.

[0080] According to various embodiments, all or a portion
of exemplary system 100 in FIG. 1 may be implemented
within a virtual environment. For example, the modules and/
or data described herein may reside and/or execute within a
virtual machine. As used herein, the phrase “virtual machine”
generally refers to any operating system environment that is
abstracted from computing hardware by a virtual machine
manager (e.g., a hypervisor). Additionally or alternatively,
the modules and/or data described herein may reside and/or
execute within a virtualization layer. As used herein, the
phrase “virtualization layer” generally refers to any data layer
and/or application layer that overlays and/or is abstracted
from an operating system environment. A virtualization layer
may be managed by a software virtualization solution (e.g., a
file system filter) that presents the virtualization layer as
though it were part of an underlying base operating system.
For example, a software virtualization solution may redirect
calls that are initially directed to locations within a base file
system and/or registry to locations within a virtualization
layer.

[0081] In some examples, all or a portion of exemplary
system 100 in FIG. 1 may represent portions of a mobile
computing environment. Mobile computing environments
may be implemented by a wide range of mobile computing
devices, including mobile phones, tablet computers, e-book
readers, personal digital assistants, wearable computing
devices (e.g., computing devices with a head-mounted dis-
play, smartwatches, etc.), and the like. In some examples,
mobile computing environments may have one or more dis-
tinct features, including, for example, reliance on battery
power, presenting only one foreground application at any
given time, remote management features, touchscreen fea-
tures, location and movement data (e.g., provided by Global
Positioning Systems, gyroscopes, accelerometers, etc.),
restricted platforms that restrict modifications to system-level
configurations and/or that limit the ability of third-party soft-
ware to inspect the behavior of other applications, controls to
restrict the installation of applications (e.g., to only originate
from approved application stores), etc. Various functions
described herein may be provided for a mobile computing
environment and/or may interact with a mobile computing
environment.

[0082] Inaddition, all or a portion of exemplary system 100
in FIG. 1 may represent portions of; interact with, consume
data produced by, and/or produce data consumed by one or
more systems for information management. As used herein,
the phrase “information management” may refer to the pro-
tection, organization, and/or storage of data. Examples of
systems for information management may include, without
limitation, storage systems, backup systems, archival sys-
tems, replication systems, high availability systems, data
search systems, virtualization systems, and the like.

[0083] Insomeembodiments, all or a portion of exemplary
system 100 in FIG. 1 may represent portions of, produce data
protected by, and/or communicate with one or more systems
for information security. As used herein, the phrase “infor-

Aug. 13,2015

mation security” may refer to the control of access to pro-
tected data. Examples of systems for information security
may include, without limitation, systems providing managed
security services, data loss prevention systems, identity
authentication systems, access control systems, encryption
systems, policy compliance systems, intrusion detection and
prevention systems, electronic discovery systems, and the
like.

[0084] According to some examples, all or a portion of
exemplary system 100 in FIG. 1 may represent portions of,
communicate with, and/or receive protection from one or
more systems for endpoint security. As used herein, the
phrase “endpoint security” may refer to the protection of
endpoint systems from unauthorized and/or illegitimate use,
access, and/or control. Examples of systems for endpoint
protection may include, without limitation, anti-malware sys-
tems, user authentication systems, encryption systems, pri-
vacy systems, spam-filtering services, and the like.

[0085] The process parameters and sequence of steps
described and/or illustrated herein are given by way of
example only and can be varied as desired. For example,
while the steps illustrated and/or described herein may be
shown or discussed in a particular order, these steps do not
necessarily need to be performed in the order illustrated or
discussed. The various exemplary methods described and/or
illustrated herein may also omit one or more of the steps
described or illustrated herein or include additional steps in
addition to those disclosed.

[0086] While various embodiments have been described
and/or illustrated herein in the context of fully functional
computing systems, one or more of these exemplary embodi-
ments may be distributed as a program product in a variety of
forms, regardless of the particular type of computer-readable
media used to actually carry out the distribution. The embodi-
ments disclosed herein may also be implemented using soft-
ware modules that perform certain tasks. These software
modules may include script, batch, or other executable files
that may be stored on a computer-readable storage medium or
in a computing system. In some embodiments, these software
modules may configure a computing system to perform one
or more of the exemplary embodiments disclosed herein.
[0087] In addition, one or more of the modules described
herein may transform data, physical devices, and/or represen-
tations of physical devices from one form to another. For
example, one or more of the modules recited herein may
receive a packed program that includes obfuscated malicious
code to be transformed, transform the packed program into
memory of the packed program that includes the malicious
code in an unobfuscated state, output a result of the transfor-
mation to a system for detecting, analyzing, and/or classify-
ing malware, use the result of the transformation to scan the
memory of the packed program for one or more malware
signatures, and store the result of the transformation to a
storage system for storing information about malicious pro-
grams and/or code. Additionally or alternatively, one or more
of the modules recited herein may transform a processor,
volatile memory, non-volatile memory, and/or any other por-
tion of a physical computing device from one form to another
by executing on the computing device, storing data on the
computing device, and/or otherwise interacting with the com-
puting device.

[0088] The preceding description has been provided to
enable others skilled in the art to best utilize various aspects of
the exemplary embodiments disclosed herein. This exem-

US 2015/0227742 Al

plary description is not intended to be exhaustive or to be
limited to any precise form disclosed. Many modifications
and variations are possible without departing from the spirit
and scope of the instant disclosure. The embodiments dis-
closed herein should be considered in all respects illustrative
and not restrictive. Reference should be made to the appended
claims and their equivalents in determining the scope of the
instant disclosure.

[0089] Unless otherwise noted, the terms “connected to”
and “coupled to” (and their derivatives), as used in the speci-
fication and claims, are to be construed as permitting both
direct and indirect (i.e., via other elements or components)
connection. In addition, the terms “a” or “an,” as used in the
specification and claims, are to be construed as meaning “at
least one of.” Finally, for ease of use, the terms “including”
and “having” (and their derivatives), as used in the specifica-
tion and claims, are interchangeable with and have the same
meaning as the word “comprising.”

What is claimed is:

1. A computer-implemented method for scanning packed
programs in response to detecting suspicious behaviors, at
least a portion of the method being performed by a computing
device comprising at least one processor, the method com-
prising:

executing a packed program that comprises:

malicious code that has been obfuscated within the
packed program;
unpacking code that deobfuscates and executes the mali-
cious code when the packed program is executed;
monitoring, while the packed program is executing, how
the packed program behaves;
detecting, while monitoring how the packed program
behaves, a suspicious behavior of the malicious code
that indicates that the unpacking code has deobfuscated
and executed the malicious code;

performing a security operation on the packed program in

response to detecting the suspicious behavior of the
malicious code.

2. The method of claim 1, wherein performing the security
operation on the packed program comprises scanning, while
the packed program is executing, at least a portion of memory
of the packed program for at least one malware signature.

3. The method of claim 1, further comprising receiving
scanning criteria that specifies at least one suspicious behav-
ior that will trigger scanning of memory of the packed pro-
gram for at least one malware signature, wherein:

monitoring how the packed program behaves comprises

monitoring how the packed program behaves for the
specified suspicious behavior;

detecting the suspicious behavior comprises detecting the

specified suspicious behavior;

performing the security operation on the packed program

comprises scanning, in response to detecting the speci-
fied suspicious behavior, the memory of the packed pro-
gram for the malware signature.

4. The method of claim 3, wherein:

the scanning criteria further specifies a portion of the

memory of the packed program that should be scanned
in response to detecting the specified suspicious behav-
ior;

scanning the memory of the packed program for the mal-

ware signature comprises scanning the specified portion
of the memory of the packed program for the malware
signature.

Aug. 13,2015

5. The method of claim 3, wherein:

the scanning criteria further specifies at least one malware
signature with which to scan the memory of the packed
program in response to detecting the specified suspi-
cious behavior;

scanning the memory of the packed program for the mal-
ware signature comprises scanning the memory of the
packed program for the specified malware signature.

6. The method of claim 1, wherein detecting the suspicious
behavior of the malicious code comprises detecting an
attempt, by the malicious code, to create a run registry key.

7. The method of claim 1, wherein detecting the suspicious
behavior of the malicious code comprises detecting an
attempt, by the malicious code, to create a generic load point.

8. The method of claim 1, wherein detecting the suspicious
behavior of the malicious code comprises detecting an
attempt, by the malicious code, to inject the malicious code
into another process.

9. The method of claim 1, wherein detecting the suspicious
behavior of the malicious code comprises detecting an
attempt, by the malicious code, to modify security settings.

10. A system for scanning packed programs in response to
detecting suspicious behaviors, the system comprising:

an executing module, stored in memory, that executes a
packed program that comprises:
malicious code that has been obfuscated within the

packed program;
unpacking code that deobfuscates and executes the mali-
cious code when the packed program is executed;
amonitoring module, stored in memory, that monitors how
the packed program behaves while the packed program
is executing;

a detecting module, stored in memory, that detects, while
the packed program is monitored, a suspicious behavior
of the malicious code that indicates that the unpacking
code has deobfuscated and executed the malicious code;

a security module, stored in memory, that performs a secu-
rity operation on the packed program in response to
detecting the suspicious behavior of the malicious code;

at least one processor that executes the executing module,
the monitoring module, the detecting module, and the
security module.

11. The system of claim 10, wherein the security module
performs the security operation on the packed program by
scanning, while the packed program is executing, at least a
portion of memory of the packed program for at least one
malware signature.

12. The system of claim 10, further comprising a receiving
module, stored in memory, that receives scanning criteria that
specifies at least one suspicious behavior that will trigger
scanning of memory of the packed program for at least one
malware signature, wherein:

the monitoring module monitors how the packed program
behaves by monitoring how the packed program behaves
for the specified suspicious behavior;

the detecting module detects the suspicious behavior by
detecting the specified suspicious behavior;

the security module performs the security operation on the
packed program by scanning, in response to detecting
the specified suspicious behavior, the memory of the
packed program for the malware signature.

US 2015/0227742 Al

13. The system of claim 12, wherein:

the scanning criteria further specifies a portion of the
memory of the packed program that should be scanned
in response to detecting the specified suspicious behav-
ior;

the security module scans the memory of the packed pro-

gram for the malware signature by scanning the speci-
fied portion of the memory ofthe packed program for the
malware signature.

14. The system of claim 12, wherein:

the scanning criteria further specifies at least one malware

signature with which to scan the memory of the packed
program in response to detecting the specified suspi-
cious behavior;

the security module scans the memory of the packed pro-

gram for the malware signature by scanning the memory
of the packed program for the specified malware signa-
ture.

15. The system of claim 10, wherein the detecting module
detects the suspicious behavior of the malicious code by
detecting an attempt, by the malicious code, to create a run
registry key.

16. The system of claim 10, wherein the detecting module
detects the suspicious behavior of the malicious code by
detecting an attempt, by the malicious code, to create a
generic load point.

17. The system of claim 10, wherein the detecting module
detects the suspicious behavior of the malicious code by
detecting an attempt, by the malicious code, to inject the
malicious code into another process.

10

Aug. 13,2015

18. The system of claim 10, wherein the detecting module
detects the suspicious behavior of the malicious code by
detecting an attempt, by the malicious code, to modify secu-
rity settings.

19. A non-transitory computer-readable medium compris-
ing one or more computer-executable instructions that, when
executed by at least one processor of a computing device,
cause the computing device to:

execute a packed program that comprises:

malicious code that has been obfuscated within the
packed program;
unpacking code that deobfuscates and executes the mali-
cious code when the packed program is executed;
monitor, while the packed program is executing, how the
packed program behaves;

detect, while monitoring how the packed program behaves,

a suspicious behavior of the malicious code that indi-
cates that the unpacking code has deobfuscated and
executed the malicious code;

perform a security operation on the packed program in

response to detecting the suspicious behavior of the
malicious code.

20. The non-transitory computer-readable medium of
claim 19, wherein the one or more computer-executable
instructions cause the computing device to perform the secu-
rity operation on the packed program by causing the comput-
ing device to scan, while the packed program is executing, at
least a portion of memory of the packed program for at least
one malware signature.

#* #* #* #* #*

