US 20230040512A1

a2y Patent Application Publication o) Pub. No.: US 2023/0040512 Al

a9y United States

ARPUTHARAJ et al. (43) Pub. Date: Feb. 9, 2023
(54) SYSTEMS AND METHODS FOR UNIVERSAL (52) US. CL
AUTO-SCALING CPC GOG6F 9/5083 (2013.01); GO6F 11/3433

(71) Applicant: JPMORGAN CHASE BANK, N.A.,
New York, NY (US)

(72) Inventors: Sudhan ARPUTHARAJ, New York,
NY (US); Srinu DASARI, Fuless, TX
(US)

(21) Appl. No.: 17/817,109

(22) Filed: Aug. 3, 2022

Related U.S. Application Data

(60) Provisional application No. 63/229,423, filed on Aug.

4, 2021.

Publication Classification

(2013.01); GOGF 2209/5022 (2013.01); GO6F
2209/501 (2013.01)

(57) ABSTRACT

Systems and methods for universal auto-scaling are dis-
closed. In one embodiment, a method may include: (1)
monitoring, by an auto-scale computer program executed by
a computer processor, a utilization level at each of a plurality
of data layers in a data pod, wherein each data layer
comprises at least one node; (2) comparing, by the auto-
scale computer program, each of the utilization levels to a
threshold; (3) identifying, by the auto-scale computer pro-
gram, that one of the thresholds is met or exceeded; and (4)

(51) Int. CL deploying, by the auto-scale computer program, an addi-
GO6F 9/50 (2006.01) tional node to the data layer with the met or exceeded
GOG6F 11/34 (2006.01) utilization level.

Data Producers
(130)

Load Balancer
{135)

Y l
- N)
Data Ingestion Layer Data ingestion Layer
{112,) {1125)

LN

Data messaging layer
(1144)

Auto-Scale
Computer Program
(150)

Data enrichment Layer

\/

Data messaging layer
(114,)

Data enrichment Layer

{1164) (1165)
Terminal
(160}
Data connect layer Data connect layer
(1184) (1187)
Pod Pod
_ (110,) J (110:) J

\ 100

Data Stores
{140)

US 2023/0040512 A1

Feb. 9,2023 Sheet 1 of 3

Patent Application Publication

T 34N5I4

(ov1)

$3401S eiRQ

00T /

{0971)
leulwa]

| —)

\\4/

(%0TT) N

Pod

(e81T1)
J9Ae| 1oaUU0Y BlR(Q

{c911)
JaAeT udaWIYdLIUB eleQ

{(¢v11)

J9Ae| BuiBessaw ejeq _/

(‘zTT)
Jahe uonsadu) eleq

J

4 (*01T)

pod

(*s11)
JoaAe| Pauuod elRQ

(*o11)
Jahke Jawyduua eleq

{("y11)

S JoAe| SuiSessaw e1eq

{0sT)
wesdoud seindwon

3|edg-0Iny

(fe1T)
Jake uonsadu eleq

&

(ge1)

Jadue|eg peo

'\

{og1)

$Ja0NpoJd eleqg

Patent Application Publication Feb. 9,2023 Sheet 2 of 3 US 2023/0040512 A1

Auto-scale computer program monitors utilization at
each layer in pod Lt
(205)

Is
utilization level above
a threshold?

(210)

NO

YES

Auto-scale computer program deploys node
to layer <
(215)

Is
utilization level below
a threshold?

(220)

NO

YES

Auto-scale computer program removes node from layer
(225)

FIGURE 2

Patent Application Publication Feb. 9,2023 Sheet 3 of 3 US 2023/0040512 A1

Computing Device 300

Memory(ies) 310

Processor(s) Data Software Programs 315
305 Repository
320

i]

!

Network Interface Connector 340

Wired Interface 342 Wireless Interface 344

FIGURE 3

US 2023/0040512 Al

SYSTEMS AND METHODS FOR UNIVERSAL
AUTO-SCALING

RELATED APPLICATIONS

[0001] This application claims priority to, and the benefit
of, U.S. Provisional Patent Application Ser. No. 63/229,423
filed Aug. 4, 2021, the disclosure of which is hereby
incorporated, by reference, in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0002] Embodiments are generally directed to systems and
methods for universal auto-scaling.

2. Description of the Related Art

[0003] In widely distributed data ingestion systems,
increases in data loads is common due to debugging or
additional devices in a data center or an office. These loads
crate creates spikes that can impact the Service Level
Agreement (SLA) of data transfer rates.

SUMMARY OF THE INVENTION

[0004] Systems and methods for universal auto-scaling are
disclosed. In one embodiment, a method for universal auto-
scaling may include: (1) monitoring, by an auto-scale com-
puter program executed by a computer processor, a utiliza-
tion level at each of a plurality of data layers in a data,
wherein each data layer comprises at least one node; (2)
comparing, by the auto-scale computer program, each of the
utilization levels to a threshold; (3) identifying, by the
auto-scale computer program, that one of the thresholds is
met or exceeded; and (4) deploying, by the auto-scale
computer program, an additional node to the data layer with
the met or exceeded utilization level.

[0005] In one embodiment, the plurality of data layers
may include a data ingestion layer, a data messaging layer,
a data enrichment layer, and/or a data connect layer.
[0006] In one embodiment, each node may include a
virtual machine.

[0007] In one embodiment, the utilization levels may
include a central processing unit utilization level, a memory
utilization level, and/or a network utilization level.

[0008] In one embodiment, at least one of the thresholds
is set by a user. In another embodiment, at least one of the
thresholds is set based on a trained machine learning engine.
The trained machine learning engine may predict the thresh-
old being met or exceeded before the threshold is met or
exceeded.

[0009] According to another embodiment, a method for
universal auto-scaling may include: (1) monitoring, by an
auto-scale computer program executed by a computer pro-
cessor, a utilization level at each of a plurality of data layers
in a data, wherein each data layer comprises a plurality of
nodes; (2) comparing, by the auto-scale computer program,
each of the utilization levels to a lower threshold; (3)
identifying, by the auto-scale computer program, that one of
the lower thresholds is met or exceeded; and (4) removing,
by the auto-scale computer program, one of the plurality of
nodes in the data layer with the met or exceeded low
utilization level.

Feb. 9, 2023

[0010] In one embodiment, the plurality of data layers
may include a data ingestion layer, a data messaging layer,
a data enrichment layer, and/or a data connect layer.
[0011] In one embodiment, each node may include a
virtual machine.

[0012] In one embodiment, the utilization levels may
include a central processing unit utilization level, a memory
utilization level, and/or a network utilization level.

[0013] In one embodiment, at least one of the lower
thresholds is set by a user. In another embodiment, at least
one of the lower thresholds is set based on a trained machine
learning engine. The trained machine learning engine may
predict the lower threshold being met or exceeded before the
lower threshold is met or exceeded.

[0014] According to another embodiment, a system may
include a plurality of data producers producing data, a pod
comprising a plurality of data layers that receives the data
from the plurality of data producers, a data store that
receives data from the pod, and an auto-scale computer
program executed by an electronic device in communication
with the plurality of data layers that monitors a utilization
level at each of the plurality of data layers in a data,
compares each of the utilization levels to a threshold,
identifies that one of the thresholds is met or exceeded, and
adds a new node to the data layer with the met or exceeded
utilization level.

[0015] In one embodiment, the plurality of data layers
may include a data ingestion layer, a data messaging layer,
a data enrichment layer, and/or a data connect layer.
[0016] In one embodiment, each node may include a
virtual machine.

[0017] In one embodiment, the utilization levels may
include a central processing unit utilization level, a memory
utilization level, and/or a network utilization level.

[0018] In one embodiment, at least one of the thresholds
is set by a user. In another embodiment, at least one of the
thresholds is set based on a trained machine learning engine.
The trained machine learning engine may predict the thresh-
old being met or exceeded before the threshold is met or
exceeded.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] In order to facilitate a fuller understanding of the
present invention, reference is now made to the attached
drawings. The drawings should not be construed as limiting
the present invention but are intended only to illustrate
different aspects and embodiments.

[0020] FIG. 1 illustrates a system for universal auto-
scaling according to one embodiment.

[0021] FIG. 2 depicts a method for universal auto-scaling
according to one embodiment.

[0022] FIG. 3 depicts an exemplary computing system for
implementing aspects of the present disclosure.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

[0023] Embodiments generally relate to systems and
methods for universal auto-scaling.

[0024] Embodiments are directed to a service for manag-
ing massive volumes of machine data traffic, such as events,
logs, metrics, alerts, reference data, etc., reliably and effi-
ciently. Embodiments provide a unified collection strategy,

US 2023/0040512 Al

streamlined data enrichment, and a data pipeline approach
that supports any data format and any ingestion protocol.
[0025] The service may include multiple data layers,
including data ingestion, data messaging, data transforma-
tion, and data connect. These data layers may exist in a
single unit, such as a “pod,” and may provide resiliency. A
pod may have a specific function or purpose based on a
logical grouping of functions, services, etc. Each data layer
may also have several functions and may work in a highly
available and scalable mode. A data center may be provided
with one or more pods depending on the nature of the data
center.

[0026] The service may be distributed across multiple
zones and data centers to receive data from any device or
system.

[0027] Embodiments may provide the following: opti-
mized resource utilization, minimized resource waste, the
ability to automatically scale up or down any of the data
layers hosted on VSI Linux server (Virtual Server Infra-
structure) through automated software defined system.
[0028] Embodiments may further respond to cyber,
hijacks or malware attacks by rebuilding the pods in any
datacenter to ensure business as usual. Similarly, embodi-
ments may rebuild pods in response to outages and other
events (natural and man-made). For example, the entire
server (VSI Linux host) may be re-created, and application
components may be reinstalled and configured to bring to
desired state.

[0029] Embodiments may rebuild portions of or the entire
pod and data layers in a new datacenter in case of datacenter
disruption due to, for example, natural calamities or acci-
dental outages. The auto scale program leverages Repave
capability to get the pod to a good known state using
software defined configurations and avoid business interrup-
tion and efficient recovery rebuild system.

[0030] Embodiments may provide a global solution with
composable components in elastic/auto manner to handle
high volumes/loads.

[0031] Embodiments may include a self-service capability
for restricted users with the ability to self-service the entire
recovery system of pods while enabling speed, reusability,
resiliency and enhanced reporting (e.g., full audit trails and
execution history). This may be partially or fully automated.
[0032] Embodiments may be further based on decisions on
cyber events and organic growth criteria.

[0033] Embodiments may further store usage, addition,
and removal history, as well as details for tracking and
auditing purposes.

[0034] FIG. 1 depicts an exemplary illustration of a sys-
tem for universal auto-scaling is provided. System 100 may
include a plurality of pods (e.g., pod 110,, pod 110, etc.).
Although only two pods 110 are depicted in FIG. 1, it should
be noted that additional pods 110 may be included as is
necessary and/or desired.

[0035] Each pod 110 may include a plurality of data
layers, such as data ingestion layer 112 (e.g., 112,, 112,),
data messaging layer 114 (e.g., 114, 114,), data enrichment
layer 116 (e.g., 116, 116,), and data connect layer 118 (e.g.,
118,, 118,). For example, data ingestion layer 112 may
include a Producer Proxy Agent (PPA) layer and an inges-
tion API. Data messaging layer 114 may include a data
messaging service layer that may provide data replication
across pods 110. Data enrichment layer 116 may include a
structural query language feature on streaming data to

Feb. 9, 2023

reduce the programming effort, such as KSQL. And data
connect layer 118 may be supported by a declarative data
integration framework, such as Kafka Connect.

[0036] Other data layers, such as a data transformation
layer (not shown), may be provided as is necessary and/or
desired.

[0037] Each data layer may be provided with one or more
nodes, such as virtual machines or similar, that may execute
the functions and services of each data layer. The nodes may
be horizontally scalable in a dynamic manner.

[0038] Pods 110 may receive data from data producers 130
via load balancer 135. Data producers 130 may include any
producer of data, including any data agent or data source that
sends data. Data producers 130 may send raw data or
derived products. For example, data may be sent by push or
pull approaches. Load balancer 135 may be any suitable type
of load balancer, including geographic load balancers.

[0039] Data from pods 110 may be stored in data stores
140.
[0040] In one embodiment, one or more auto-scale com-

puter programs 150 may be provided to detect increases in
data loads. For example, auto-scale computer program 150
may be provided for each pod 110; in another embodiment,
auto-scale computer program 150 may be provided for each
data layer (e.g., 112, 114, 116, 116) or for a plurality of data
layers in each pod 110. Auto-scale computer program 150
may monitor each data layer, such as CPU usage, memory
usage, network utilization, application behavior, connec-
tions, events, log files, etc. and may compare that data to one
or more thresholds, such as an upper threshold (i.e., for
adding a node) or a lower threshold (i.e., for removing a
node). Auto-scale computer program 150 may add addi-
tional nodes to any data layer as necessary. Embodiments
may use an algorithm, machine learning, etc. to determine
the conditions for adding or removing nodes.

[0041] In embodiments, the triggers and/or thresholds for
adding or removing nodes may be based on customizable
thresholds, machine learning, etc. In one embodiment, a user
may set the triggers and/or thresholds via terminal 160. In
another embodiment, a trained machine learning model may
analyze usage data (e.g., CPU usage, memory usage, net-
work usage, etc.) from each pod 110 and may determine
whether to add or remove nodes from any of the data layers.
The trained machine learning model may further predict
spikes and may proactively add nodes to prevent spikes
rather than respond to spikes.

[0042] In one embodiment, a buffer (not shown) may be
provided to facilitate the addition or removal of nodes. The
buffer may be used by any data layer as needed.

[0043] Referring to FIG. 2, a method for universal auto-
scaling is provided according to an embodiment.

[0044] In step 205, an auto-scale computer program may
monitor utilization level at each data layer of a pod. Example
data layers may include a data ingestion layer, a data
messaging layer, a data enrichment layer, and a data connect
layer. Each data layer may include one or more nodes, such
as virtual machines.

[0045] Examples of data that may be monitored may
include CPU usage, memory usage, network utilization,
application behavior, a number of connections, events, etc.
In one embodiment, the auto-scale computer program may
receive and review log files from the data layers.

[0046] In step 210, the auto-scale computer program may
compare the utilization level to a threshold. If the utilization

US 2023/0040512 Al

level meets or exceeds the threshold, in step 215, the
auto-scale computer program may deploy a node including
one or more virtual machines to the data layer with the high
utilization level. If it is not the auto-scale computer program
may continue to monitor utilization levels in step 210.

[0047] In one embodiment, the threshold may be config-
ured by the user; in another embodiment, the threshold may
be determined based on historical data using, for example, a
trained machine learning algorithm. The trained machine
learning algorithm may predict when the threshold will be
met or exceeded and may proactively deploy nodes as is
necessary and/or desired.

[0048] In one embodiment, the auto-scale computer pro-
gram may also monitor utilization levels to determine if the
utilization level is below a lower threshold. If it is, the
auto-scale computer program may remove a node.

[0049] In one embodiment, a minimum number of nodes
may be required for each data layer.

[0050] In step 220, after adding a node, the auto-scale
computer program may continue to monitor utilization lev-
els, and when the utilization level falls below a lower
threshold may, in step 225, remove the additional node from
the data layer.

[0051] FIG. 3 depicts an exemplary computing system for
implementing aspects of the present disclosure. FIG. 3
depicts exemplary computing device 300. Computing device
300 may represent the system components described herein.
Computing device 300 may include processor 305 that may
be coupled to memory 310. Memory 310 may include
volatile memory. Processor 305 may execute computer-
executable program code stored in memory 310, such as
software programs 315. Software programs 315 may include
one or more of the logical steps disclosed herein as a
programmatic instruction, which may be executed by pro-
cessor 305. Memory 310 may also include data repository
320, which may be nonvolatile memory for data persistence.
Processor 305 and memory 310 may be coupled by bus 330.
Bus 330 may also be coupled to one or more network
interface connectors 340, such as wired network interface
342 or wireless network interface 344. Computing device
300 may also have user interface components, such as a
screen for displaying graphical user interfaces and receiving
input from the user, a mouse, a keyboard and/or other
input/output components (not shown).

[0052] Although several embodiments have been dis-
closed, it should be recognized that these embodiments are
not exclusive to each other, and features from one embodi-
ment may be used with others.

[0053] Hereinafter, general aspects of implementation of
the systems and methods of embodiments will be described.

[0054] Embodiments of the system or portions of the
system may be in the form of a “processing machine,” such
as a general-purpose computer, for example. As used herein,
the term “processing machine” is to be understood to include
at least one processor that uses at least one memory. The at
least one memory stores a set of instructions. The instruc-
tions may be either permanently or temporarily stored in the
memory or memories of the processing machine. The pro-
cessor executes the instructions that are stored in the
memory or memories in order to process data. The set of
instructions may include various instructions that perform a
particular task or tasks, such as those tasks described above.

Feb. 9, 2023

Such a set of instructions for performing a particular task
may be characterized as a program, software program, or
simply software.

[0055] In one embodiment, the processing machine may
be a specialized processor.

[0056] In one embodiment, the processing machine may
be a cloud-based processing machine, a physical processing
machine, or combinations thereof.

[0057] As noted above, the processing machine executes
the instructions that are stored in the memory or memories
to process data. This processing of data may be in response
to commands by a user or users of the processing machine,
in response to previous processing, in response to a request
by another processing machine and/or any other input, for
example.

[0058] As noted above, the processing machine used to
implement embodiments may be a general-purpose com-
puter. However, the processing machine described above
may also utilize any of a wide variety of other technologies
including a special purpose computer, a computer system
including, for example, a microcomputer, mini-computer or
mainframe, a programmed microprocessor, a micro-control-
ler, a peripheral integrated circuit element, a CSIC (Cus-
tomer Specific Integrated Circuit) or ASIC (Application
Specific Integrated Circuit) or other integrated circuit, a
logic circuit, a digital signal processor, a programmable
logic device such as a FPGA (Field-Programmable Gate
Array), PLD (Programmable Logic Device), PLA (Program-
mable Logic Array), or PAL (Programmable Array Logic),
or any other device or arrangement of devices that is capable
of implementing the steps of the processes disclosed herein.

[0059] The processing machine used to implement
embodiments may utilize a suitable operating system.

[0060] Itis appreciated that in order to practice the method
of the embodiments as described above, it is not necessary
that the processors and/or the memories of the processing
machine be physically located in the same geographical
place. That is, each of the processors and the memories used
by the processing machine may be located in geographically
distinct locations and connected so as to communicate in any
suitable manner. Additionally, it is appreciated that each of
the processor and/or the memory may be composed of
different physical pieces of equipment. Accordingly, it is not
necessary that the processor be one single piece of equip-
ment in one location and that the memory be another single
piece of equipment in another location. That is, it is con-
templated that the processor may be two pieces of equip-
ment in two different physical locations. The two distinct
pieces of equipment may be connected in any suitable
manner. Additionally, the memory may include two or more
portions of memory in two or more physical locations.

[0061] To explain further, processing, as described above,
is performed by various components and various memories.
However, it is appreciated that the processing performed by
two distinct components as described above, in accordance
with a further embodiment, may be performed by a single
component. Further, the processing performed by one dis-
tinct component as described above may be performed by
two distinct components.

[0062] In a similar manner, the memory storage performed
by two distinct memory portions as described above, in
accordance with a further embodiment, may be performed
by a single memory portion. Further, the memory storage

US 2023/0040512 Al

performed by one distinct memory portion as described
above may be performed by two memory portions.

[0063] Further, various technologies may be used to pro-
vide communication between the various processors and/or
memories, as well as to allow the processors and/or the
memories to communicate with any other entity; i.e., so as
to obtain further instructions or to access and use remote
memory stores, for example. Such technologies used to
provide such communication might include a network, the
Internet, Intranet, Extranet, a LAN, an Ethernet, wireless
communication via cell tower or satellite, or any client
server system that provides communication, for example.
Such communications technologies may use any suitable
protocol such as TCP/IP, UDP, or OSI, for example.
[0064] As described above, a set of instructions may be
used in the processing of embodiments. The set of instruc-
tions may be in the form of a program or software. The
software may be in the form of system software or appli-
cation software, for example. The software might also be in
the form of a collection of separate programs, a program
module within a larger program, or a portion of a program
module, for example. The software used might also include
modular programming in the form of object-oriented pro-
gramming. The software tells the processing machine what
to do with the data being processed.

[0065] Further, it is appreciated that the instructions or set
of instructions used in the implementation and operation of
embodiments may be in a suitable form such that the
processing machine may read the instructions. For example,
the instructions that form a program may be in the form of
a suitable programming language, which is converted to
machine language or object code to allow the processor or
processors to read the instructions. That is, written lines of
programming code or source code, in a particular program-
ming language, are converted to machine language using a
compiler, assembler or interpreter. The machine language is
binary coded machine instructions that are specific to a
particular type of processing machine, i.e., to a particular
type of computer, for example. The computer understands
the machine language.

[0066] Any suitable programming language may be used
in accordance with the various embodiments. Also, the
instructions and/or data used in the practice of embodiments
may utilize any compression or encryption technique or
algorithm, as may be desired. An encryption module might
be used to encrypt data. Further, files or other data may be
decrypted using a suitable decryption module, for example.
[0067] As described above, the embodiments may illus-
tratively be embodied in the form of a processing machine,
including a computer or computer system, for example, that
includes at least one memory. It is to be appreciated that the
set of instructions, i.e., the software for example, that
enables the computer operating system to perform the opera-
tions described above may be contained on any of a wide
variety of media or medium, as desired. Further, the data that
is processed by the set of instructions might also be con-
tained on any of a wide variety of media or medium. That is,
the particular medium, i.e., the memory in the processing
machine, utilized to hold the set of instructions and/or the
data used in embodiments may take on any of a variety of
physical forms or transmissions, for example. Illustratively,
the medium may be in the form of a compact disc, a DVD,
an integrated circuit, a hard disk, a floppy disk, an optical
disc, a magnetic tape, a RAM, a ROM, a PROM, an

Feb. 9, 2023

EPROM, a wire, a cable, a fiber, a communications channel,
a satellite transmission, a memory card, a SIM card, or other
remote transmission, as well as any other medium or source
of data that may be read by the processors.

[0068] Further, the memory or memories used in the
processing machine that implements embodiments may be
in any of a wide variety of forms to allow the memory to
hold instructions, data, or other information, as is desired.
Thus, the memory might be in the form of a database to hold
data. The database might use any desired arrangement of
files such as a flat file arrangement or a relational database
arrangement, for example.

[0069] In the systems and methods, a variety of “user
interfaces” may be utilized to allow a user to interface with
the processing machine or machines that are used to imple-
ment embodiments. As used herein, a user interface includes
any hardware, software, or combination of hardware and
software used by the processing machine that allows a user
to interact with the processing machine. A user interface may
be in the form of a dialogue screen for example. A user
interface may also include any of a mouse, touch screen,
keyboard, keypad, voice reader, voice recognizer, dialogue
screen, menu box, list, checkbox, toggle switch, a pushbut-
ton or any other device that allows a user to receive
information regarding the operation of the processing
machine as it processes a set of instructions and/or provides
the processing machine with information. Accordingly, the
user interface is any device that provides communication
between a user and a processing machine. The information
provided by the user to the processing machine through the
user interface may be in the form of a command, a selection
of data, or some other input, for example.

[0070] As discussed above, a user interface is utilized by
the processing machine that performs a set of instructions
such that the processing machine processes data for a user.
The user interface is typically used by the processing
machine for interacting with a user either to convey infor-
mation or receive information from the user. However, it
should be appreciated that in accordance with some embodi-
ments of the system and method, it is not necessary that a
human user actually interact with a user interface used by the
processing machine. Rather, it is also contemplated that the
user interface might interact, i.e., convey and receive infor-
mation, with another processing machine, rather than a
human user. Accordingly, the other processing machine
might be characterized as a user. Further, it is contemplated
that a user interface utilized in the system and method may
interact partially with another processing machine or pro-
cessing machines, while also interacting partially with a
human user.

[0071] It will be readily understood by those persons
skilled in the art that embodiments are susceptible to broad
utility and application. Many embodiments and adaptations
of'the present invention other than those herein described, as
well as many variations, modifications and equivalent
arrangements, will be apparent from or reasonably sug-
gested by the foregoing description thereof, without depart-
ing from the substance or scope.

[0072] Accordingly, while the embodiments of the present
invention have been described here in detail in relation to its
exemplary embodiments, it is to be understood that this
disclosure is only illustrative and exemplary of the present
invention and is made to provide an enabling disclosure of
the invention. Accordingly, the foregoing disclosure is not

US 2023/0040512 Al

intended to be construed or to limit the present invention or
otherwise to exclude any other such embodiments, adapta-
tions, variations, modifications or equivalent arrangements.

What is claimed is:

1. A method for universal auto-scaling, comprising:

monitoring, by an auto-scale computer program executed

by a computer processor, a utilization level at each of
a plurality of data layers in a data, wherein each data
layer comprises at least one node;

comparing, by the auto-scale computer program, each of

the utilization levels to a threshold;

identifying, by the auto-scale computer program, that one

of the thresholds is met or exceeded; and

deploying, by the auto-scale computer program, an addi-

tional node to the data layer with the met or exceeded
utilization level.

2. The method of claim 1, wherein the plurality of data
layers comprises a data ingestion layer, a data messaging
layer, a data enrichment layer, and/or a data connect layer.

3. The method of claim 1, wherein each node comprises
a virtual machine.

4. The method of claim 1, wherein the utilization levels
comprise a central processing unit utilization level, a
memory utilization level, and/or a network utilization level.

5. The method of claim 1, wherein at least one of the
thresholds is set by a user.

6. The method of claim 1, wherein at least one of the
thresholds is set based on a trained machine learning engine.

7. The method of claim 6, wherein the trained machine
learning engine predicts the threshold being met or exceeded
before the threshold is met or exceeded.

8. A method for universal auto-scaling, comprising:

monitoring, by an auto-scale computer program executed

by a computer processor, a utilization level at each of
a plurality of data layers in a data, wherein each data
layer comprises a plurality of nodes;

comparing, by the auto-scale computer program, each of

the utilization levels to a lower threshold;
identifying, by the auto-scale computer program, that one
of the lower thresholds is met or exceeded; and

removing, by the auto-scale computer program, one of the
plurality of nodes in the data layer with the met or
exceeded low utilization level.

Feb. 9, 2023

9. The method of claim 8, wherein the plurality of data
layers comprises a data ingestion layer, a data messaging
layer, a data enrichment layer, and/or a data connect layer.

10. The method of claim 8, wherein each node comprises
a virtual machine.

11. The method of claim 8, wherein the utilization levels
comprise a central processing unit utilization level, a
memory utilization level, and/or a network utilization level.

12. The method of claim 8, wherein at least one of the
lower thresholds is set by a user.

13. The method of claim 8, wherein at least one of the
lower thresholds is set based on a trained machine learning
engine.

14. The method of claim 13, wherein the trained machine
learning engine predicts the lower threshold being met or
exceeded before the lower threshold is met or exceeded.

15. A system, comprising:

a plurality of data producers producing data;

a pod comprising a plurality of data layers that receives

the data from the plurality of data producers;

a data store that receives data from the pod; and

an auto-scale computer program executed by an electronic

device in communication with the plurality of data
layers that monitors a utilization level at each of the
plurality of data layers in a data, compares each of the
utilization levels to a threshold, identifies that one of
the thresholds is met or exceeded, and adds a new node
to the data layer with the met or exceeded utilization
level.

16. The system of claim 15, wherein the plurality of data
layers comprises a data ingestion layer, a data messaging
layer, a data enrichment layer, and/or a data connect layer.

17. The system of claim 15, wherein each node comprises
a virtual machine.

18. The system of claim 15, wherein the utilization levels
comprise a central processing unit utilization level, a
memory utilization level, and/or a network utilization level.

19. The system of claim 15, wherein at least one of the
thresholds is set by a user.

20. The system of claim 15, wherein at least one of the
thresholds is set based on a trained machine learning engine.

#* #* #* #* #*

