US 20230222089A1

a2y Patent Application Publication o) Pub. No.: US 2023/0222089 A1

a9y United States

Bhogle et al.

43) Pub. Date: Jul. 13, 2023

(54) CROSS-PLATFORM COMMUNICATION FOR
FACILITATION OF DATA SHARING

(71) Applicant: ServiceNow, Inc., Santa Clara, CA
(US)

(72) Inventors: Deepti Bhogle, San Diego, CA (US);
Joshua Timothy Nerius, Chicago, IL.
(US); Pierce Edward Courtney, San
Diego, CA (US); Denis George
Angleton, LLa Mesa, CA (US); Jacob
Samuel Burman, Carlsbad, CA (US)

(21) Appl. No.: 18/124,149

(22) Filed: Mar. 21, 2023
Related U.S. Application Data

(63) Continuation of application No. 17/383,763, filed on
Jul. 23, 2021, now Pat. No. 11,640,369.

(60) Provisional application No. 63/184,307, filed on May
5, 2021.

Publication Classification

(51) Int. CL

GOGF 16/27 (2006.01)

GOGF 16/25 (2006.01)

GOGF 16/22 (2006.01)
(52) US.CL

CPC ... GOGF 16/27 (2019.01); GOGF 16/258

(2019.01); GOG6F 16/22 (2019.01)

(57) ABSTRACT

Persistent storage may contain: (i) a database table contain-
ing entries, (ii) a definition of a communication endpoint of
a remote system, and (iii) outbound flow processing. One or
more processors may be configured to: detect a state change
associated with a local entry in the database table; read, from
the database table, a set of data representing the local entry;
transform, using the outbound flow processing, the set of
data into a format receivable by the remote system; create,
for the set of data, a correlation record that contains a local
correlation identifier, wherein the correlation record speci-
fies the local entry; transmit, to the remote system, the set of
data as transformed and the local correlation identifier;
receive, from the remote system and for the set of data, a
remote correlation identifier; add, to the correlation record,
the remote correlation identifier; and write, to a correlation
table, the correlation record.

100
A\

110
102\
104\
MEMORY
PROCESSOR o | ————__ 104A
| FIRMWARE |__/10 "
o N T
——————7 %
| APPLICATIONS (]
106\ | APPLICATIONS T
NETWORK [ 1 108\
INTERFACE
¢——— INPUT/ OUTPUT UNIT




US 2023/0222089 A1l

Jul. 13,2023 Sheet 1 of 17

Patent Application Publication

| "Old

LINN 1NdLNO [ LNdNI fF—¢

/ I9VAYILNI
801 ® WAOMLIN
\\1Lr SNOILYOIddY | 90}
ogV\!Lr aEIE) I
avoL I._IIIH.I.....H...PN
AT JUVMANI |
V0l - >Imo|s_ml_al - ¢— ¥0SS3II0Ud
-




Patent Application Publication  Jul. 13,2023 Sheet 2 of 17 US 2023/0222089 A1

SERVER CLUSTER
200

202

204

206

FIG. 2



US 2023/0222089 A1l

Jul. 13,2023 Sheet 3 of 17

Patent Application Publication

0ve

SHIYOMLIN
anoTd anand

€ Ol

| JONVLSNI
| TYNOILVLNDINOD

e o e - ————

| JONVLSNI
| T¥YNOILY.LNdINOD

[ -

I
d e L=

|
NIt

(143

— — — —— — — —

JONVLSNI “
TYNOILVLNCINOD |

WHO04L1V1d LNJWIDVNVIN
MYOMLIN FLOWTY

- ————— — —

- —o— — o— — o—— s,

— e — — — — — — —

— — — — —— o— o— o———" w—y

0¢ SINIHOVIN
TYNLAIA

v —— — — — —— To———— ooy

€ WAIOMLIN Q3OVNVIN

00




¥ Old

US 2023/0222089 A1l

oo Lo g T |
| 430NV Ve avot !
” -——— —_——— ———— —————
2 " w 1 gy !
- »  JONVISNI ! Avmalvo NdA | _
3 | TWNOILVINAWOD, "~~~ ~~~~ Iy 43N ILON3Y
m |||||||
- g00¢ ¥ILNIJ VLV
S
o
o Nnouwvord®® 7 S e
> 3svavivd
=
o [ %Y [ SO
T T 1 T T T T T T T “
CELZ e D A
g _ >
S (uFONvIva Qv | vror TIVMAEH L
S TTTRTTTT O TTTTTTT
= (1 1r o\ b
=
=] ———L-—-- —_———— ) e e
5 _ 443 S 1< 2
g »  JONVISNI __Tv__ AVMILVO NdA |~
) | TYNOILYLNGNOD
& 00€ YHOMLIN AI9DVNYI
= V00¥ ¥3LN3D V1V
L
=
[~



US 2023/0222089 A1l

Jul. 13,2023 Sheet 5 of 17

Patent Application Publication

( TR
| 706 | “ 005 |
| 1sn 1 8awd |
| dsvL D orT Ty
fl...l..l...l_ //.....\

\

VS 'Ol

00€ YHOMLIN
Q39VNVIN

SW3LI
NOILVANDIINOD
a3¥3IN0ISIa

L
<

|, || 7ZiEsuanuas

JONVLISNI TVNOLLY.LNdWOD

b
>

SANVIWINOD

SISNOJSIN \\\\\ﬂ

ANV S390¥d

s o o i oy

_ ZISWaLl I
NOLLYYNOIINOD _

oreway |
NOLLYHNOIINOD _

— e — —— — o— — —— ——

goswal !
NOLLYYNOIINOD _

— e — ——— — — — —

goswau !
NOLLVYNSIANOD _

voswau !
NOLLVYNSIANOD _




Patent Application Publication  Jul. 13,2023 Sheet 6 of 17 US 2023/0222089 A1

520
[ POPULATE TASK LIST <«
Y
SCANNING PHASE: & 922

PROBE IP ADDRESSES FOR DEVICES AND DETERMINE OPERATING SYSTEMS

'

CLASSIFICATION PHASE:
PROBE FOR OPERATING SYSTEM VERSION OF DISCOVERED DEVICES

'

IDENTIFICATION PHASE:
PROBE FOR CONFIGURATION OF DISCOVERED DEVICES

'

EXPLORATION PHASE:
PROBE FOR OPERATIONAL STATE AND SERVICES OF DISCOVERED DEVICES

'

FURTHER EDITING OF CONFIGURATION ITEMS IN CMDB

s )

MY

o )

;/;/;/\_‘t/;/;/

S

FIG. 5B



Patent Application Publication  Jul. 13,2023 Sheet 7 of 17

COMPUTATIONAL THIRD-PARTY
INSTANCE DATA PLATFORM
322 602
COMPUTATIONAL THIRD-PARTY
INSTANCE DATA PLATFORM
322 612
COMPUTATIONAL THIRD-PARTY
INSTANCE DATA PLATFORM
322 622

FIG. 6

US 2023/0222089 A1l



US 2023/0222089 A1l

Jul. 13,2023 Sheet 8 of 17

Patent Application Publication

L Ol

07Z s37avl .

3svavLva 0Z S¥I9ONIL
90L V0L SMO4
SMOT14 NNOSNI ANNOALNO

[
NOILYOIdID3dS
W3LSAS 10N

0. NOLLINIZ3A ONAS SS300¥d




US 2023/0222089 A1l

Jul. 13,2023 Sheet 9 of 17

Patent Application Publication

018

V8 Ol

— 908 ONISS3O0¥d

<— WIISAS
JLONY Ol

Tso._n_ annogLno

S31vadn

S3alvadn

808 31aVL
NOILV13¥400

&

208 3N3aND

i

ﬁ 0FZ ST314avL

aNnodgLno

\,

708 SQu003Y
IONAS ANNOLLNO

y,

08 W3LSAS V001

— asvaviva




US 2023/0222089 A1l

Jul. 13,2023 Sheet 10 of 17

Patent Application Publication

018
W3LSAS
JLOWZY WON4

d8 "Old

208 319VL
NOLLY13¥H09D
wE\é%
" v 1S3y ”| anano annogni [—>{ 818 INISSI00Ad ,| Ols3navl
— _ _ _ MO14 ANNOGNI _ — asvaviva
>\wE<E=
918 SQ¥0OY
ONAS ANNOENI
008 INTLSAS V201




US 2023/0222089 A1l

Jul. 13,2023 Sheet 11 of 17

Patent Application Publication

6 Old

A 4

INLOV WO LI 1dINYX3 2gud W3190¥d z 9
ALV WOD'}I1dINYX3 1g9¥d WI190¥d ! g
3LVLS W3LSAS ILOWIY | ANINIIVO0T | 318V IV90T o @ov a
a ZM¢D<_4__mmmm _m_oo NOLLY 13800 V201
006 379V NOILYTINH09
WO ZI1dNVX3
INLOV WO ZI1dNYX3 ZONI IN3QIONI 9 Z
ALV WO ZI1dNYX3 LONI IN3QIONI g L
3LVLS WILSAS JLONTY | AMINTTVO0T1 | F1aviivool | a zomﬁww%o (@) a
210NN NOLLY 134300 Y301
308 379V NOILYTINN0D

WOJ'131dNVX3




US 2023/0222089 A1l

Jul. 13,2023 Sheet 12 of 17

Patent Application Publication

Vol "Old

02017

A

1 e

]

A

8001~

018 NALSAS
10N

|

(s=aioy) .
INIWOATTMONNIV i’
(5=a10¥ ‘1=ai191)
A¥INT 03SS300¥d
(5=qioy ‘1=a107)
__y | Q¥0O3Y NOILYTINYO0I
9101 V901 $S309V
ke LONI:AMLNG
7101 D LIN3QIONI :318vL
(5=qi0¥‘1=a107)
ayoo3y
e o
A v 2oL NOILYTINN0D
$=aioy R YO0 LM
ININOATTMONAIY
(1=a121)
AY¥IN3 038S300¥d
(1=a197
5001~ a¥023Y NOILY1I¥N0)D
Y207 3LVIND
ke LONI :AMLNT
vooL—" [ :m_a_oz" 37avl
» 908 ONISSID0Ud 808 31GvL
0001 MO14 ANNOGLNO NOLLY13¥¥0)

|

200} 31avl
3asvaviva

|




US 2023/0222089 A1l

Jul. 13,2023 Sheet 13 of 17

Patent Application Publication

(z=aioy)

g0l 'Ol

8901~

A

9901

LNIWNOATTMONMIY

¥90L—
(z=q124 ‘9=a101)

(@3SS320¥d SY)

CONI:AYINT
LIN3AIONI -318vL

(9=a12¥ ‘2=q191)
QY0934 NOILY 1309 TVI01SST00V

2901~

AYINT 3LONFY
ONILISTULTY Vivd

(z=a10¥)

Y

(9=a10¥'2=q107)

ayoo3y
— e
0901~ NOILY13¥N09
Y001 LM
(@3ss300¥d SV)
250, —" ZONI :AYLN3

A

9501

LINIWOAITMONIIV

]

(9=a191)

QY¥0I3Y NOILVTINYO0D

(9=a10¥ ‘2=0127)

Tv301 3LV

471 Rl

018 WALSAS
EIX0/E}

|

AY1INZT FLONWY
ONILISTAdIY VLIVA

f

0501

,
»

h 4

h 4

LIN3AIONI :31avL

808 319vVL

818 ONISS300Ud
MO714 ANNOENI

NOLLYIIH0D

|

|

200} 31avl
3svaviva

|




US 2023/0222089 A1l

Jul. 13,2023 Sheet 14 of 17

Patent Application Publication

L1 "Old

SIN3IWHOVLLY SS300¥d A YAT)

nn-r ¢ AQV3Y SINJWHOVLLY

2= < SINIWHOVLLY d31S3IND3Y

EINERENEN)

AYLNT

HLIM SINJWHOVLLY
MEIRENVELEDLIAR

T nd SINIWHOVLLY

Q3LNVYM LSINDIY
SINJFWHOVLLY -
G31NVM AdLLNEA 011

(3218 ‘3dAL-LNILNOD ‘HSVH INVYNI T ‘A3N)
o [ VLVAVLIW INTFWHOVLLY
018 N3LSAS »
310NN 00LL

k™
»

41| R

SINIWHOVLLY

HLIM @3L1VIDO0SSV SI
AY1N3T LVHL ININY3AL3A

|

008
IW3LSAS V00T

|




Patent Application Publication  Jul. 13,2023 Sheet 15 of 17  US 2023/0222089 A1l

O
>
=
Ll
-
(7]
>
(7]
Ll
-
o
=
Ll
o
-
[ |
O O
c ¢ 0]
. > > \
w w [ |
[ =
= =
b o o
= Q (&)
w O
= B S
2 < <
(7] = =
@ =
< <
S > >
9 a a
~— —




Patent Application Publication  Jul. 13,2023 Sheet 16 of 17  US 2023/0222089 A1l

DETECT A STATE CHANGE ASSOCIATED WITH A LOCAL ENTRY IN A DATABASE
TABLE, WHEREIN PERSISTENT STORAGE CONTAINS: (1) THE DATABASE TABLE, (i)
A DEFINITION OF A COMMUNICATION ENDPOINT OF A REMOTE SYSTEM, AND (lll)
OUTBOUND FLOW PROCESSING THROUGH WHICH ENTRIES OF THE DATABASE
TABLE CAN BE SYNCHRONIZED WITH THE REMOTE SYSTEM

<1300

C?EAD, FROM THE DATABASE TABLE, A SET OF DATA REPRESENTING THE LOCAL ) 1302
ENTRY

TRANSFORM, USING THE OUTBOUND FLOW PROCESSING, THE SET OF DATA INTO | —1304
A FORMAT RECEIVABLE BY THE REMOTE SYSTEM

CREATE, FOR THE SET OF DATA, A CORRELATION RECORD THAT CONTAINS A 1306
LOCAL CORRELATION IDENTIFIER, WHEREIN THE CORRELATION RECORD “«
SPECIFIES THE LOCAL ENTRY

TRANSMIT, TO THE REMOTE SYSTEM, THE SET OF DATA AS TRANSFORMED AND ) — 1308
THE LOCAL CORRELATION IDENTIFIER

RECEIVE, FROM THE REMOTE SYSTEM AND FOR THE SET OF DATA, AREMOTE ) 1310
CORRELATION IDENTIFIER ASSIGNED BY THE REMOTE SYSTEM

1312
(ADD, TO THE CORRELATION RECORD, THE REMOTE CORRELATION IDENTIFIER) il

1314
( WRITE, TO A CORRELATION TABLE, THE CORRELATION RECORD J il

FIG. 13




Patent Application Publication  Jul. 13,2023 Sheet 17 of 17  US 2023/0222089 A1l

[RECEIVE, FROM A REMOTE SYSTEM AND BY WAY OF AN INBOUND API, A SET OF\

DATA WITH AN REMOTE CORRELATION IDENTIFIER ASSIGNED BY THE REMOTE

SYSTEM, WHEREIN PERSISTENT STORAGE CONTAINS: (I) A DATABASE TABLE | (1400
CONTAINING ENTRIES, (Il) DEFINITIONS OF THE INBOUND API, AND (lll) INBOUND

FLOW PROCESSING THROUGH WHICH THE ENTRIES CAN BE SYNCHRONIZED WITH

THE REMOTE SYSTEM
. J

TRANSFORM, USING THE INBOUND FLOW PROCESSING, THE SET OF DATA INTO A | — 1402
FORMAT STORABLE IN THE DATABASE TABLE

CREATE, FOR THE SET OF DATA, A CORRELATION RECORD THAT CONTAINS A
LOCAL CORRELATION IDENTIFIER AND THE REMOTE CORRELATION IDENTIFIER, | 4—1404
WHEREIN THE CORRELATION RECORD SPECIFIES A LOCAL ENTRY IN THE
DATABASE TABLE

14
( WRITE, TO THE CORRELATION TABLE, THE CORRELATION RECORD ) 41408

WRITE, TO THE DATABASE TABLE AND AS THE LOCAL ENTRY, THE SET OF DATA ) «— 1408
AS TRANSFORMED

FIG. 14



US 2023/0222089 Al

CROSS-PLATFORM COMMUNICATION FOR
FACILITATION OF DATA SHARING

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of and claims
priority to U.S. patent application Ser. No. 17/383,763, filed
Jul. 23, 2021, which is hereby incorporated by reference in
its entirety.

[0002] U.S. patent application Ser. No. 17/383,763 claims
priority to U.S. provisional patent application No. 63/184,
307, filed May 5, 2021, which is hereby incorporated by
reference in its entirety.

BACKGROUND

[0003] As the usage of cloud-based, multi-application
platforms continues to grow, so does the impetus to share
data of various types across these platforms. For example, an
enterprise may use a remote network management platform
to host a number of software applications that facilitate
enterprise operations. Some of these applications, however,
can benefit from being integrated with third-party providers
of specialized solutions. These third-party solutions may be
hosted in different cloud-based platforms.

[0004] Thus, a challenge when carrying out such integra-
tions is to be able synchronize the data used by these
applications between the remote network management plat-
form and one or more other cloud-based platforms where
each of these platforms may use different internal represen-
tations of this data. Currently, such integrations are custom-
ized point solutions developed on an ad-hoc basis. As a
consequence, these conventional solutions struggle with
inter-platform communication, data representation, and data
correctness problems. Further, solutions developed for an
application used by one pair of platforms cannot be easily
leveraged or repurposed for other applications on a further
pair of platforms.

SUMMARY

[0005] The embodiments herein address these and poten-
tially other technical problems by providing a comprehen-
sive software infrastructure for inter-platform communica-
tion. In particular, when it is desirable for an application on
a remote network management platform to transmit data to
another platform, procedures can be put in place on the
remote network management platform to identify the appli-
cation, one or more triggers that cause the transmission, the
data to transmit (e.g., entries in a database table), and the
interface on the other platform that can receive the data.
When the trigger(s) occur, the remote network management
platform queues the identified data for transmission and then
transmits it by way of the interface. Likewise, when it is
desirable for an application on the remote network manage-
ment platform to receive data from another platform, pro-
cedures can be put in place on the remote network manage-
ment platform to receive the data into a queue, identify the
application from the queued data, and store the received data
in an appropriate location (e.g., entries in a database table)
of the remote network management platform.

[0006] Advantageously, these techniques can be used to
enable a unified approach for inter-platform data synchro-
nization. Further, the disclosed procedures can be securely

Jul. 13,2023

integrated into application-specific workflows or more gen-
eral workflows that take place on the remote network
management platform.

[0007] Accordingly, a first example embodiment may
involve persistent storage containing: (i) a database table
containing entries, (ii) a definition of a communication
endpoint of a remote system, and (iii) outbound flow pro-
cessing through which the entries can be synchronized with
the remote system. The first example embodiment may also
include one or more processors configured to: detect a state
change associated with a local entry in the database table;
read, from the database table, a set of data representing the
local entry; transform, using the outbound flow processing,
the set of data into a format receivable by the remote system;
create, for the set of data, a correlation record that contains
a local correlation identifier assigned by the system, wherein
the correlation record specifies the local entry; transmit, to
the remote system, the set of data as transformed and the
local correlation identifier; receive, from the remote system
and for the set of data, a remote correlation identifier
assigned by the remote system; add, to the correlation
record, the remote correlation identifier; and write, to a
correlation table, the correlation record.

[0008] A second example embodiment may involve
detecting a state change associated with a local entry in a
database table, wherein persistent storage contains: (i) the
database table, (ii) a definition of a communication endpoint
of a remote system, and (iii) outbound flow processing
through which the entries of the database table can be
synchronized with the remote system. The second example
embodiment may also involve reading, from the database
table, a set of data representing the local entry. The second
example embodiment may also involve transforming, using
the outbound flow processing, the set of data into a format
receivable by the remote system. The second example
embodiment may also involve creating, for the set of data,
a correlation record that contains a local correlation identi-
fier assigned by the system, wherein the correlation record
specifies the local entry. The second example embodiment
may also involve transmitting, to the remote system, the set
of data as transformed and the local correlation identifier.
The second example embodiment may also involve receiv-
ing, from the remote system and for the set of data, a remote
correlation identifier assigned by the remote system. The
second example embodiment may also involve adding, to
the correlation record, the remote correlation identifier. The
second example embodiment may also involve writing, to a
correlation table, the correlation record.

[0009] A third example embodiment may involve persis-
tent storage containing: (i) a database table containing
entries, (i1) definitions of an inbound application program-
ming interface (API), and (iii) inbound flow processing
through which the entries can be synchronized with a remote
system. One or more processors may be configured to:
receive, from the remote system and by way of the inbound
API, a set of data with an remote correlation identifier
assigned by the remote system; transform, using the inbound
flow processing, the set of data into a format storable in the
database table; create, for the set of data, a correlation record
that contains a local correlation identifier and the remote
correlation identifier, wherein the correlation record speci-
fies a local entry in the database table; write, to the corre-
lation table, the correlation record; and write, to the database
table and as the local entry, the set of data as transformed.



US 2023/0222089 Al

[0010] A fourth example embodiment may involve receiv-
ing, from a remote system and by way of an inbound API,
a set of data with an remote correlation identifier assigned by
the remote system, wherein persistent storage contains: (i) a
database table containing entries, (ii) definitions of the
inbound API, and (iii) inbound flow processing through
which the entries can be synchronized with the remote
system. The fourth example embodiment may also involve
transforming, using the inbound flow processing, the set of
data into a format storable in the database table. The fourth
example embodiment may also involve creating, for the set
of data, a correlation record that contains a local correlation
identifier and the remote correlation identifier, wherein the
correlation record specifies a local entry in the database
table. The fourth example embodiment may also involve
writing, to the correlation table, the correlation record. The
fourth example embodiment may also involve writing, to the
database table and as the local entry, the set of data as
transformed.

[0011] In a fifth example embodiment, an article of manu-
facture may include a non-transitory computer-readable
medium, having stored thereon program instructions that,
upon execution by a computing system, cause the computing
system to perform operations in accordance with the first,
second, third, and/or fourth example embodiment.

[0012] In a sixth example embodiment, a computing sys-
tem may include at least one processor, as well as memory
and program instructions. The program instructions may be
stored in the memory, and upon execution by the at least one
processor, cause the computing system to perform opera-
tions in accordance with the first, second, third, and/or fourth
example embodiment.

[0013] In a seventh example embodiment, a system may
include various means for carrying out each of the opera-
tions of the first, second, third, and/or fourth example
embodiment.

[0014] These, as well as other embodiments, aspects,
advantages, and alternatives, will become apparent to those
of ordinary skill in the art by reading the following detailed
description, with reference where appropriate to the accom-
panying drawings. Further, this summary and other descrip-
tions and figures provided herein are intended to illustrate
embodiments by way of example only and, as such, that
numerous variations are possible. For instance, structural
elements and process steps can be rearranged, combined,
distributed, eliminated, or otherwise changed, while remain-
ing within the scope of the embodiments as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] FIG. 1 illustrates a schematic drawing of a com-
puting device, in accordance with example embodiments.
[0016] FIG. 2 illustrates a schematic drawing of a server
device cluster, in accordance with example embodiments.
[0017] FIG. 3 depicts a remote network management
architecture, in accordance with example embodiments.
[0018] FIG. 4 depicts a communication environment
involving a remote network management architecture, in
accordance with example embodiments.

[0019] FIG. 5A depicts another communication environ-
ment involving a remote network management architecture,
in accordance with example embodiments.

[0020] FIG. 5B is a flow chart, in accordance with
example embodiments.

Jul. 13,2023

[0021] FIG. 6 depicts a number of multi-platform integra-
tion scenarios, in accordance with example embodiments.
[0022] FIG. 7 depicts a process sync definition, in accor-
dance with example embodiments.

[0023] FIG. 8A depicts software components that facilitate
outbound processing for synchronization, in accordance
with example embodiments.

[0024] FIG. 8B depicts software components that facilitate
inbound processing for synchronization, in accordance with
example embodiments.

[0025] FIG. 9 depicts correlation tables, in accordance
with example embodiments.

[0026] FIG. 10A is a message flow diagram for outbound
synchronization, in accordance with example embodiments.
[0027] FIG. 10B is a message flow diagram for inbound
synchronization, in accordance with example embodiments.
[0028] FIG. 11 is a message flow diagram for securely
providing attachments, in accordance with example embodi-
ments.

[0029] FIG. 12 depicts domain separation, in accordance
with example embodiments.

[0030] FIG. 13 is a flow chart, in accordance with example
embodiments.

[0031] FIG. 14 is a flow chart, in accordance with example
embodiments.

DETAILED DESCRIPTION

[0032] Example methods, devices, and systems are
described herein. It should be understood that the words
“example” and “exemplary” are used herein to mean “serv-
ing as an example, instance, or illustration.” Any embodi-
ment or feature described herein as being an “example” or
“exemplary” is not necessarily to be construed as preferred
or advantageous over other embodiments or features unless
stated as such. Thus, other embodiments can be utilized and
other changes can be made without departing from the scope
of the subject matter presented herein.

[0033] Accordingly, the example embodiments described
herein are not meant to be limiting. It will be readily
understood that the aspects of the present disclosure, as
generally described herein, and illustrated in the figures, can
be arranged, substituted, combined, separated, and designed
in a wide variety of different configurations. For example,
the separation of features into “client” and “server” compo-
nents may occur in a number of ways.

[0034] Further, unless context suggests otherwise, the
features illustrated in each of the figures may be used in
combination with one another. Thus, the figures should be
generally viewed as component aspects of one or more
overall embodiments, with the understanding that not all
illustrated features are necessary for each embodiment.
[0035] Additionally, any enumeration of elements, blocks,
or steps in this specification or the claims is for purposes of
clarity. Thus, such enumeration should not be interpreted to
require or imply that these elements, blocks, or steps adhere
to a particular arrangement or are carried out in a particular
order.

1. Introduction

[0036] A large enterprise is a complex entity with many
interrelated operations. Some of these are found across the
enterprise, such as human resources (HR), supply chain,
information technology (IT), and finance. However, each



US 2023/0222089 Al

enterprise also has its own unique operations that provide
essential capabilities and/or create competitive advantages.
[0037] To support widely-implemented operations, enter-
prises typically use off-the-shelf software applications, such
as customer relationship management (CRM) and human
capital management (HCM) packages. However, they may
also need custom software applications to meet their own
unique requirements. A large enterprise often has dozens or
hundreds of these custom software applications. Nonethe-
less, the advantages provided by the embodiments herein are
not limited to large enterprises and may be applicable to an
enterprise, or any other type of organization, of any size.
[0038] Many such software applications are developed by
individual departments within the enterprise. These range
from simple spreadsheets to custom-built software tools and
databases. But the proliferation of siloed custom software
applications has numerous disadvantages. It negatively
impacts an enterprise’s ability to run and grow its opera-
tions, innovate, and meet regulatory requirements. The
enterprise may find it difficult to integrate, streamline, and
enhance its operations due to lack of a single system that
unifies its subsystems and data.

[0039] To efficiently create custom applications, enter-
prises would benefit from a remotely-hosted application
platform that eliminates unnecessary development complex-
ity. The goal of such a platform would be to reduce time-
consuming, repetitive application development tasks so that
software engineers and individuals in other roles can focus
on developing unique, high-value features.

[0040] In order to achieve this goal, the concept of Appli-
cation Platform as a Service (aPaaS) is introduced, to
intelligently automate workflows throughout the enterprise.
An aPaaS$ system is hosted remotely from the enterprise, but
may access data, applications, and services within the enter-
prise by way of secure connections. Such an aPaaS system
may have a number of advantageous capabilities and char-
acteristics. These advantages and characteristics may be able
to improve the enterprise’s operations and workflows for I'T,
HR, CRM, customer service, application development, and
security.

[0041] The aPaaS system may support development and
execution of model-view-controller (MVC) applications.
MVC applications divide their functionality into three inter-
connected parts (model, view, and controller) in order to
isolate representations of information from the manner in
which the information is presented to the user, thereby
allowing for efficient code reuse and parallel development.
These applications may be web-based, and offer create, read,
update, and delete (CRUD) capabilities. This allows new
applications to be built on a common application infrastruc-
ture.

[0042] The aPaaS system may support standardized appli-
cation components, such as a standardized set of widgets for
graphical user interface (GUI) development. In this way,
applications built using the aPaaS system have a common
look and feel. Other software components and modules may
be standardized as well. In some cases, this look and feel can
be branded or skinned with an enterprise’s custom logos
and/or color schemes.

[0043] The aPaaS system may support the ability to con-
figure the behavior of applications using metadata. This
allows application behaviors to be rapidly adapted to meet
specific needs. Such an approach reduces development time
and increases flexibility. Further, the aPaaS system may

Jul. 13,2023

support GUI tools that facilitate metadata creation and
management, thus reducing errors in the metadata.

[0044] The aPaaS system may support clearly-defined
interfaces between applications, so that software developers
can avoid unwanted inter-application dependencies. Thus,
the aPaaS system may implement a service layer in which
persistent state information and other data are stored.

[0045] The aPaaS system may support a rich set of inte-
gration features so that the applications thereon can interact
with legacy applications and third-party applications. For
instance, the aPaaS system may support a custom employee-
onboarding system that integrates with legacy HR, IT, and
accounting systems.

[0046] The aPaaS system may support enterprise-grade
security. Furthermore, since the aPaaS system may be
remotely hosted, it should also utilize security procedures
when it interacts with systems in the enterprise or third-party
networks and services hosted outside of the enterprise. For
example, the aPaaS system may be configured to share data
amongst the enterprise and other parties to detect and
identify common security threats.

[0047] Other features, functionality, and advantages of an
aPaaS system may exist. This description is for purpose of
example and is not intended to be limiting.

[0048] As an example of the aPaaS development process,
a software developer may be tasked to create a new appli-
cation using the aPaaS system. First, the developer may
define the data model, which specifies the types of data that
the application uses and the relationships therebetween.
Then, via a GUI of the aPaaS system, the developer enters
(e.g., uploads) the data model. The aPaaS system automati-
cally creates all of the corresponding database tables, fields,
and relationships, which can then be accessed via an object-
oriented services layer.

[0049] In addition, the aPaaS system can also build a
fully-functional MVC application with client-side interfaces
and server-side CRUD logic. This generated application
may serve as the basis of further development for the user.
Advantageously, the developer does not have to spend a
large amount of time on basic application functionality.
Further, since the application may be web-based, it can be
accessed from any Internet-enabled client device. Alterna-
tively or additionally, a local copy of the application may be
able to be accessed, for instance, when Internet service is not
available.

[0050] The aPaaS system may also support a rich set of
pre-defined functionality that can be added to applications.
These features include support for searching, email, tem-
plating, workflow design, reporting, analytics, social media,
scripting, mobile-friendly output, and customized GUIs.

[0051] Such an aPaaS system may represent a GUI in
various ways. For example, a server device of the aPaaS
system may generate a representation of a GUI using a
combination of HTML and JAVASCRIPT®. The
JAVASCRIPT® may include client-side executable code,
server-side executable code, or both. The server device may
transmit or otherwise provide this representation to a client
device for the client device to display on a screen according
to its locally-defined look and feel. Alternatively, a repre-
sentation of a GUI may take other forms, such as an
intermediate form (e.g., JAVA® byte-code) that a client
device can use to directly generate graphical output there-
from. Other possibilities exist.



US 2023/0222089 Al

[0052] Further, user interaction with GUI elements, such
as buttons, menus, tabs, sliders, checkboxes, toggles, etc.
may be referred to as “selection”, “activation”, or “actua-
tion” thereof. These terms may be used regardless of
whether the GUI elements are interacted with by way of
keyboard, pointing device, touchscreen, or another mecha-
nism.

[0053] An aPaaS architecture is particularly powerful
when integrated with an enterprise’s network and used to
manage such a network. The following embodiments
describe architectural and functional aspects of example
aPaaS systems, as well as the features and advantages
thereof.

1I. Example Computing Devices and Cloud-Based
Computing Environments

[0054] FIG. 1 is a simplified block diagram exemplifying
a computing device 100, illustrating some of the compo-
nents that could be included in a computing device arranged
to operate in accordance with the embodiments herein.
Computing device 100 could be a client device (e.g., a
device actively operated by a user), a server device (e.g., a
device that provides computational services to client
devices), or some other type of computational platform.
Some server devices may operate as client devices from time
to time in order to perform particular operations, and some
client devices may incorporate server features.

[0055] In this example, computing device 100 includes
processor 102, memory 104, network interface 106, and
input/output unit 108, all of which may be coupled by
system bus 110 or a similar mechanism. In some embodi-
ments, computing device 100 may include other components
and/or peripheral devices (e.g., detachable storage, printers,
and so on).

[0056] Processor 102 may be one or more of any type of
computer processing element, such as a central processing
unit (CPU), a co-processor (e.g., a mathematics, graphics, or
encryption co-processor), a digital signal processor (DSP), a
network processor, and/or a form of integrated circuit or
controller that performs processor operations. In some cases,
processor 102 may be one or more single-core processors. In
other cases, processor 102 may be one or more multi-core
processors with multiple independent processing units. Pro-
cessor 102 may also include register memory for temporar-
ily storing instructions being executed and related data, as
well as cache memory for temporarily storing recently-used
instructions and data.

[0057] Memory 104 may be any form of computer-usable
memory, including but not limited to random access memory
(RAM), read-only memory (ROM), and non-volatile
memory (e.g., flash memory, hard disk drives, solid state
drives, compact discs (CDs), digital video discs (DVDs),
and/or tape storage). Thus, memory 104 represents both
main memory units, as well as long-term storage. Other
types of memory may include biological memory.

[0058] Memory 104 may store program instructions and/
or data on which program instructions may operate. By way
of example, memory 104 may store these program instruc-
tions on a non-transitory, computer-readable medium, such
that the instructions are executable by processor 102 to carry
out any of the methods, processes, or operations disclosed in
this specification or the accompanying drawings.

[0059] As shown in FIG. 1, memory 104 may include
firmware 104A, kernel 104B, and/or applications 104C.

Jul. 13,2023

Firmware 104A may be program code used to boot or
otherwise initiate some or all of computing device 100.
Kernel 104B may be an operating system, including mod-
ules for memory management, scheduling, and management
of processes, input/output, and communication. Kernel
104B may also include device drivers that allow the oper-
ating system to communicate with the hardware modules
(e.g., memory units, networking interfaces, ports, and buses)
of computing device 100. Applications 104C may be one or
more user-space software programs, such as web browsers
or email clients, as well as any software libraries used by
these programs. Memory 104 may also store data used by
these and other programs and applications.

[0060] Network interface 106 may take the form of one or
more wireline interfaces, such as Ethernet (e.g., Fast Ether-
net, Gigabit Ethernet, and so on). Network interface 106
may also support communication over one or more non-
Ethernet media, such as coaxial cables or power lines, or
over wide-area media, such as Synchronous Optical Net-
working (SONET) or digital subscriber line (DSL) technolo-
gies. Network interface 106 may additionally take the form
of one or more wireless interfaces, such as IEEE 802.11
(Wifi), BLUETOOTH®, global positioning system (GPS),
or a wide-area wireless interface. However, other forms of
physical layer interfaces and other types of standard or
proprietary communication protocols may be used over
network interface 106. Furthermore, network interface 106
may comprise multiple physical interfaces. For instance,
some embodiments of computing device 100 may include
Ethernet, BLUETOOTH®, and Wifi interfaces.

[0061] Input/output unit 108 may facilitate user and
peripheral device interaction with computing device 100.
Input/output unit 108 may include one or more types of input
devices, such as a keyboard, a mouse, a touch screen, and so
on. Similarly, input/output unit 108 may include one or more
types of output devices, such as a screen, monitor, printer,
and/or one or more light emitting diodes (LEDs). Addition-
ally or alternatively, computing device 100 may communi-
cate with other devices using a universal serial bus (USB) or
high-definition multimedia interface (HDMI) port interface,
for example.

[0062] In some embodiments, one or more computing
devices like computing device 100 may be deployed to
support an aPaaS architecture. The exact physical location,
connectivity, and configuration of these computing devices
may be unknown and/or unimportant to client devices.
Accordingly, the computing devices may be referred to as
“cloud-based” devices that may be housed at various remote
data center locations.

[0063] FIG. 2 depicts a cloud-based server cluster 200 in
accordance with example embodiments. In FIG. 2, opera-
tions of a computing device (e.g., computing device 100)
may be distributed between server devices 202, data storage
204, and routers 206, all of which may be connected by local
cluster network 208. The number of server devices 202, data
storages 204, and routers 206 in server cluster 200 may
depend on the computing task(s) and/or applications
assigned to server cluster 200.

[0064] For example, server devices 202 can be configured
to perform various computing tasks of computing device
100. Thus, computing tasks can be distributed among one or
more of server devices 202. To the extent that these com-
puting tasks can be performed in parallel, such a distribution
of tasks may reduce the total time to complete these tasks



US 2023/0222089 Al

and return a result. For purposes of simplicity, both server
cluster 200 and individual server devices 202 may be
referred to as a “server device.” This nomenclature should
be understood to imply that one or more distinct server
devices, data storage devices, and cluster routers may be
involved in server device operations.

[0065] Data storage 204 may be data storage arrays that
include drive array controllers configured to manage read
and write access to groups of hard disk drives and/or solid
state drives. The drive array controllers, alone or in con-
junction with server devices 202, may also be configured to
manage backup or redundant copies of the data stored in data
storage 204 to protect against drive failures or other types of
failures that prevent one or more of server devices 202 from
accessing units of data storage 204. Other types of memory
aside from drives may be used.

[0066] Routers 206 may include networking equipment
configured to provide internal and external communications
for server cluster 200. For example, routers 206 may include
one or more packet-switching and/or routing devices (in-
cluding switches and/or gateways) configured to provide (i)
network communications between server devices 202 and
data storage 204 via local cluster network 208, and/or (ii)
network communications between server cluster 200 and
other devices via communication link 210 to network 212.

[0067] Additionally, the configuration of routers 206 can
be based at least in part on the data communication require-
ments of server devices 202 and data storage 204, the
latency and throughput of the local cluster network 208, the
latency, throughput, and cost of communication link 210,
and/or other factors that may contribute to the cost, speed,
fault-tolerance, resiliency, efficiency, and/or other design
goals of the system architecture.

[0068] As a possible example, data storage 204 may
include any form of database, such as a structured query
language (SQL) database. Various types of data structures
may store the information in such a database, including but
not limited to tables, arrays, lists, trees, and tuples. Further-
more, any databases in data storage 204 may be monolithic
or distributed across multiple physical devices.

[0069] Server devices 202 may be configured to transmit
data to and receive data from data storage 204. This trans-
mission and retrieval may take the form of SQL queries or
other types of database queries, and the output of such
queries, respectively. Additional text, images, video, and/or
audio may be included as well. Furthermore, server devices
202 may organize the received data into web page or web
application representations. Such a representation may take
the form of a markup language, such as the hypertext
markup language (HTML), the extensible markup language
(XML), or some other standardized or proprietary format.
Moreover, server devices 202 may have the capability of
executing various types of computerized scripting lan-
guages, such as but not limited to Perl, Python, PHP
Hypertext Preprocessor (PHP), Active Server Pages (ASP),
JAVASCRIPT®, and so on. Computer program code written
in these languages may facilitate the providing of web pages
to client devices, as well as client device interaction with the
web pages. Alternatively or additionally, JAVA® may be
used to facilitate generation of web pages and/or to provide
web application functionality.

Jul. 13,2023

III. Example Remote Network Management
Architecture

[0070] FIG. 3 depicts a remote network management
architecture, in accordance with example embodiments. This
architecture includes three main components—managed
network 300, remote network management platform 320,
and public cloud networks 340—all connected by way of
Internet 350.

[0071] A. Managed Networks

[0072] Managed network 300 may be, for example, an
enterprise network used by an entity for computing and
communications tasks, as well as storage of data. Thus,
managed network 300 may include client devices 302,
server devices 304, routers 306, virtual machines 308,
firewall 310, and/or proxy servers 312. Client devices 302
may be embodied by computing device 100, server devices
304 may be embodied by computing device 100 or server
cluster 200, and routers 306 may be any type of router,
switch, or gateway.

[0073] Virtual machines 308 may be embodied by one or
more of computing device 100 or server cluster 200. In
general, a virtual machine is an emulation of a computing
system, and mimics the functionality (e.g., processor,
memory, and communication resources) of a physical com-
puter. One physical computing system, such as server cluster
200, may support up to thousands of individual virtual
machines. In some embodiments, virtual machines 308 may
be managed by a centralized server device or application
that facilitates allocation of physical computing resources to
individual virtual machines, as well as performance and
error reporting. Enterprises often employ virtual machines in
order to allocate computing resources in an efficient, as
needed fashion. Providers of virtualized computing systems
include VMWARE® and MICROSOFT®.

[0074] Firewall 310 may be one or more specialized
routers or server devices that protect managed network 300
from unauthorized attempts to access the devices, applica-
tions, and services therein, while allowing authorized com-
munication that is initiated from managed network 300.
Firewall 310 may also provide intrusion detection, web
filtering, virus scanning, application-layer gateways, and
other applications or services. In some embodiments not
shown in FIG. 3, managed network 300 may include one or
more virtual private network (VPN) gateways with which it
communicates with remote network management platform
320 (see below).

[0075] Managed network 300 may also include one or
more proxy servers 312. An embodiment of proxy servers
312 may be a server application that facilitates communi-
cation and movement of data between managed network
300, remote network management platform 320, and public
cloud networks 340. In particular, proxy servers 312 may be
able to establish and maintain secure communication ses-
sions with one or more computational instances of remote
network management platform 320. By way of such a
session, remote network management platform 320 may be
able to discover and manage aspects of the architecture and
configuration of managed network 300 and its components.
Possibly with the assistance of proxy servers 312, remote
network management platform 320 may also be able to
discover and manage aspects of public cloud networks 340
that are used by managed network 300.

[0076] Firewalls, such as firewall 310, typically deny all
communication sessions that are incoming by way of Inter-



US 2023/0222089 Al

net 350, unless such a session was ultimately initiated from
behind the firewall (i.e., from a device on managed network
300) or the firewall has been explicitly configured to support
the session. By placing proxy servers 312 behind firewall
310 (e.g., within managed network 300 and protected by
firewall 310), proxy servers 312 may be able to initiate these
communication sessions through firewall 310. Thus, firewall
310 might not have to be specifically configured to support
incoming sessions from remote network management plat-
form 320, thereby avoiding potential security risks to man-
aged network 300.

[0077] In some cases, managed network 300 may consist
of a few devices and a small number of networks. In other
deployments, managed network 300 may span multiple
physical locations and include hundreds of networks and
hundreds of thousands of devices. Thus, the architecture
depicted in FIG. 3 is capable of scaling up or down by orders
of magnitude.

[0078] Furthermore, depending on the size, architecture,
and connectivity of managed network 300, a varying num-
ber of proxy servers 312 may be deployed therein. For
example, each one of proxy servers 312 may be responsible
for communicating with remote network management plat-
form 320 regarding a portion of managed network 300.
Alternatively or additionally, sets of two or more proxy
servers may be assigned to such a portion of managed
network 300 for purposes of load balancing, redundancy,
and/or high availability.

[0079] B. Remote Network Management Platforms
[0080] Remote network management platform 320 is a
hosted environment that provides aPaaS services to users,
particularly to the operator of managed network 300. These
services may take the form of web-based portals, for
example, using the aforementioned web-based technologies.
Thus, a user can securely access remote network manage-
ment platform 320 from, for example, client devices 302, or
potentially from a client device outside of managed network
300. By way of the web-based portals, users may design,
test, and deploy applications, generate reports, view analyt-
ics, and perform other tasks. Remote network management
platform 320 may also be referred to as a multi-application
platform.

[0081] As shown in FIG. 3, remote network management
platform 320 includes four computational instances 322,
324, 326, and 328. Each of these computational instances
may represent one or more server nodes operating dedicated
copies of the aPaaS software and/or one or more database
nodes. The arrangement of server and database nodes on
physical server devices and/or virtual machines can be
flexible and may vary based on enterprise needs. In combi-
nation, these nodes may provide a set of web portals,
services, and applications (e.g., a wholly-functioning aPaaS
system) available to a particular enterprise. In some cases, a
single enterprise may use multiple computational instances.
[0082] For example, managed network 300 may be an
enterprise customer of remote network management plat-
form 320, and may use computational instances 322, 324,
and 326. The reason for providing multiple computational
instances to one customer is that the customer may wish to
independently develop, test, and deploy its applications and
services. Thus, computational instance 322 may be dedi-
cated to application development related to managed net-
work 300, computational instance 324 may be dedicated to
testing these applications, and computational instance 326

Jul. 13,2023

may be dedicated to the live operation of tested applications
and services. A computational instance may also be referred
to as a hosted instance, a remote instance, a customer
instance, or by some other designation. Any application
deployed onto a computational instance may be a scoped
application, in that its access to databases within the com-
putational instance can be restricted to certain elements
therein (e.g., one or more particular database tables or
particular rows within one or more database tables).
[0083] For purposes of clarity, the disclosure herein refers
to the arrangement of application nodes, database nodes,
aPaaS software executing thereon, and underlying hardware
as a “computational instance.” Note that users may collo-
quially refer to the graphical user interfaces provided
thereby as “instances.” But unless it is defined otherwise
herein, a “computational instance” is a computing system
disposed within remote network management platform 320.
[0084] The multi-instance architecture of remote network
management platform 320 is in contrast to conventional
multi-tenant architectures, over which multi-instance archi-
tectures exhibit several advantages. In multi-tenant archi-
tectures, data from different customers (e.g., enterprises) are
comingled in a single database. While these customers’ data
are separate from one another, the separation is enforced by
the software that operates the single database. As a conse-
quence, a security breach in this system may affect all
customers’ data, creating additional risk, especially for
entities subject to governmental, healthcare, and/or financial
regulation. Furthermore, any database operations that affect
one customer will likely affect all customers sharing that
database. Thus, if there is an outage due to hardware or
software errors, this outage affects all such customers.
Likewise, if the database is to be upgraded to meet the needs
of one customer, it will be unavailable to all customers
during the upgrade process. Often, such maintenance win-
dows will be long, due to the size of the shared database.
[0085] In contrast, the multi-instance architecture pro-
vides each customer with its own database in a dedicated
computing instance. This prevents comingling of customer
data, and allows each instance to be independently managed.
For example, when one customer’s instance experiences an
outage due to errors or an upgrade, other computational
instances are not impacted. Maintenance down time is
limited because the database only contains one customer’s
data. Further, the simpler design of the multi-instance archi-
tecture allows redundant copies of each customer database
and instance to be deployed in a geographically diverse
fashion. This facilitates high availability, where the live
version of the customer’s instance can be moved when faults
are detected or maintenance is being performed.

[0086] In some embodiments, remote network manage-
ment platform 320 may include one or more central
instances, controlled by the entity that operates this plat-
form. Like a computational instance, a central instance may
include some number of application and database nodes
disposed upon some number of physical server devices or
virtual machines. Such a central instance may serve as a
repository for specific configurations of computational
instances as well as data that can be shared amongst at least
some of the computational instances. For instance, defini-
tions of common security threats that could occur on the
computational instances, software packages that are com-
monly discovered on the computational instances, and/or an
application store for applications that can be deployed to the



US 2023/0222089 Al

computational instances may reside in a central instance.
Computational instances may communicate with central
instances by way of well-defined interfaces in order to
obtain this data.

[0087] In order to support multiple computational
instances in an efficient fashion, remote network manage-
ment platform 320 may implement a plurality of these
instances on a single hardware platform. For example, when
the aPaaS system is implemented on a server cluster such as
server cluster 200, it may operate virtual machines that
dedicate varying amounts of computational, storage, and
communication resources to instances. But full virtualiza-
tion of server cluster 200 might not be necessary, and other
mechanisms may be used to separate instances. In some
examples, each instance may have a dedicated account and
one or more dedicated databases on server cluster 200.
Alternatively, a computational instance such as computa-
tional instance 322 may span multiple physical devices.
[0088] In some cases, a single server cluster of remote
network management platform 320 may support multiple
independent enterprises. Furthermore, as described below,
remote network management platform 320 may include
multiple server clusters deployed in geographically diverse
data centers in order to facilitate load balancing, redundancy,
and/or high availability.

[0089] C. Public Cloud Networks

[0090] Public cloud networks 340 may be remote server
devices (e.g., a plurality of server clusters such as server
cluster 200) that can be used for outsourced computation,
data storage, communication, and service hosting opera-
tions. These servers may be virtualized (i.e., the servers may
be virtual machines). Examples of public cloud networks
340 may include AMAZON WEB SERVICES® and
MICROSOFT® AZURE®. Like remote network manage-
ment platform 320, multiple server clusters supporting pub-
lic cloud networks 340 may be deployed at geographically
diverse locations for purposes of load balancing, redun-
dancy, and/or high availability.

[0091] Managed network 300 may use one or more of
public cloud networks 340 to deploy applications and ser-
vices to its clients and customers. For instance, if managed
network 300 provides online music streaming services,
public cloud networks 340 may store the music files and
provide web interface and streaming capabilities. In this
way, the enterprise of managed network 300 does not have
to build and maintain its own servers for these operations.
[0092] Remote network management platform 320 may
include modules that integrate with public cloud networks
340 to expose virtual machines and managed services
therein to managed network 300. The modules may allow
users to request virtual resources, discover allocated
resources, and provide flexible reporting for public cloud
networks 340. In order to establish this functionality, a user
from managed network 300 might first establish an account
with public cloud networks 340, and request a set of
associated resources. Then, the user may enter the account
information into the appropriate modules of remote network
management platform 320. These modules may then auto-
matically discover the manageable resources in the account,
and also provide reports related to usage, performance, and
billing.

[0093] D. Communication Support and Other Operations
[0094] Internet 350 may represent a portion of the global
Internet. However, Internet 350 may alternatively represent

Jul. 13,2023

a different type of network, such as a private wide-area or
local-area packet-switched network.

[0095] FIG. 4 further illustrates the communication envi-
ronment between managed network 300 and computational
instance 322, and introduces additional features and alter-
native embodiments. In FIG. 4, computational instance 322
is replicated, in whole or in part, across data centers 400A
and 400B. These data centers may be geographically distant
from one another, perhaps in different cities or different
countries. Each data center includes support equipment that
facilitates communication with managed network 300, as
well as remote users.

[0096] In data center 400A, network traffic to and from
external devices flows either through VPN gateway 402A or
firewall 404A. VPN gateway 402A may be peered with VPN
gateway 412 of managed network 300 by way of a security
protocol such as Internet Protocol Security (IPSEC) or
Transport Layer Security (TLS). Firewall 404A may be
configured to allow access from authorized users, such as
user 414 and remote user 416, and to deny access to
unauthorized users. By way of firewall 404A, these users
may access computational instance 322, and possibly other
computational instances. Load balancer 406A may be used
to distribute traffic amongst one or more physical or virtual
server devices that host computational instance 322. Load
balancer 406A may simplify user access by hiding the
internal configuration of data center 400A, (e.g., computa-
tional instance 322) from client devices. For instance, if
computational instance 322 includes multiple physical or
virtual computing devices that share access to multiple
databases, load balancer 406 A may distribute network traffic
and processing tasks across these computing devices and
databases so that no one computing device or database is
significantly busier than the others. In some embodiments,
computational instance 322 may include VPN gateway
402A, firewall 404A, and load balancer 406A.

[0097] Data center 400B may include its own versions of
the components in data center 400A. Thus, VPN gateway
402B, firewall 404B, and load balancer 406B may perform
the same or similar operations as VPN gateway 402A,
firewall 404 A, and load balancer 406A, respectively. Fur-
ther, by way of real-time or near-real-time database repli-
cation and/or other operations, computational instance 322
may exist simultaneously in data centers 400A and 400B.
[0098] Data centers 400A and 400B as shown in FIG. 4
may facilitate redundancy and high availability. In the
configuration of FIG. 4, data center 400A is active and data
center 4008 is passive. Thus, data center 400A is serving all
traffic to and from managed network 300, while the version
of computational instance 322 in data center 400B is being
updated in near-real-time. Other configurations, such as one
in which both data centers are active, may be supported.
[0099] Should data center 400A fail in some fashion or
otherwise become unavailable to users, data center 400B can
take over as the active data center. For example, domain
name system (DNS) servers that associate a domain name of
computational instance 322 with one or more Internet Pro-
tocol (IP) addresses of data center 400A may re-associate the
domain name with one or more IP addresses of data center
400B. After this re-association completes (which may take
less than one second or several seconds), users may access
computational instance 322 by way of data center 400B.
[0100] FIG. 4 also illustrates a possible configuration of
managed network 300. As noted above, proxy servers 312



US 2023/0222089 Al

and user 414 may access computational instance 322
through firewall 310. Proxy servers 312 may also access
configuration items 410. In FIG. 4, configuration items 410
may refer to any or all of client devices 302, server devices
304, routers 306, and virtual machines 308, any applications
or services executing thereon, as well as relationships
between devices, applications, and services. Thus, the term
“configuration items” may be shorthand for any physical or
virtual device, or any application or service remotely dis-
coverable or managed by computational instance 322, or
relationships between discovered devices, applications, and
services. Configuration items may be represented in a con-
figuration management database (CMDB) of computational
instance 322.

[0101] As noted above, VPN gateway 412 may provide a
dedicated VPN to VPN gateway 402A. Such a VPN may be
helpful when there is a significant amount of traffic between
managed network 300 and computational instance 322, or
security policies otherwise suggest or require use of a VPN
between these sites. In some embodiments, any device in
managed network 300 and/or computational instance 322
that directly communicates via the VPN is assigned a public
IP address. Other devices in managed network 300 and/or
computational instance 322 may be assigned private IP
addresses (e.g., IP addresses selected from the 10.0.0.0-10.
255.255.255 or 192.168.0.0-192.168.255.255 ranges, repre-
sented in shorthand as subnets 10.0.0.0/8 and 192.168.0.0/
16, respectively).

IV. Example Device, Application, and Service
Discovery

[0102] In order for remote network management platform
320 to administer the devices, applications, and services of
managed network 300, remote network management plat-
form 320 may first determine what devices are present in
managed network 300, the configurations and operational
statuses of these devices, and the applications and services
provided by the devices, as well as the relationships between
discovered devices, applications, and services. As noted
above, each device, application, service, and relationship
may be referred to as a configuration item. The process of
defining configuration items within managed network 300 is
referred to as discovery, and may be facilitated at least in
part by proxy servers 312.

[0103] For purposes of the embodiments herein, an “appli-
cation” may refer to one or more processes, threads, pro-
grams, client modules, server modules, or any other soft-
ware that executes on a device or group of devices. A
“service” may refer to a high-level capability provided by
multiple applications executing on one or more devices
working in conjunction with one another. For example, a
high-level web service may involve multiple web applica-
tion server threads executing on one device and accessing
information from a database application that executes on
another device.

[0104] FIG. 5A provides a logical depiction of how con-
figuration items can be discovered, as well as how informa-
tion related to discovered configuration items can be stored.
For sake of simplicity, remote network management plat-
form 320, public cloud networks 340, and Internet 350 are
not shown.

[0105] InFIG.5A, CMDB 500 and task list 502 are stored
within computational instance 322. Computational instance
322 may transmit discovery commands to proxy servers

Jul. 13,2023

312. In response, proxy servers 312 may transmit probes to
various devices, applications, and services in managed net-
work 300. These devices, applications, and services may
transmit responses to proxy servers 312, and proxy servers
312 may then provide information regarding discovered
configuration items to CMDB 500 for storage therein. Con-
figuration items stored in CMDB 500 represent the envi-
ronment of managed network 300.

[0106] Task list 502 represents a list of activities that
proxy servers 312 are to perform on behalf of computational
instance 322. As discovery takes place, task list 502 is
populated. Proxy servers 312 repeatedly query task list 502,
obtain the next task therein, and perform this task until task
list 502 is empty or another stopping condition has been
reached.

[0107] To facilitate discovery, proxy servers 312 may be
configured with information regarding one or more subnets
in managed network 300 that are reachable by way of proxy
servers 312. For instance, proxy servers 312 may be given
the IP address range 192.168.0/24 as a subnet. Then, com-
putational instance 322 may store this information in CMDB
500 and place tasks in task list 502 for discovery of devices
at each of these addresses.

[0108] FIG. 5A also depicts devices, applications, and
services in managed network 300 as configuration items
504, 506, 508, 510, and 512. As noted above, these con-
figuration items represent a set of physical and/or virtual
devices (e.g., client devices, server devices, routers, or
virtual machines), applications executing thereon (e.g., web
servers, email servers, databases, or storage arrays), rela-
tionships therebetween, as well as services that involve
multiple individual configuration items.

[0109] Placing the tasks in task list 502 may trigger or
otherwise cause proxy servers 312 to begin discovery.
Alternatively or additionally, discovery may be manually
triggered or automatically triggered based on triggering
events (e.g., discovery may automatically begin once per
day at a particular time).

[0110] In general, discovery may proceed in four logical
phases: scanning, classification, identification, and explora-
tion. Each phase of discovery involves various types of
probe messages being transmitted by proxy servers 312 to
one or more devices in managed network 300. The responses
to these probes may be received and processed by proxy
servers 312, and representations thereof may be transmitted
to CMDB 500. Thus, each phase can result in more con-
figuration items being discovered and stored in CMDB 500.

[0111] In the scanning phase, proxy servers 312 may probe
each IP address in the specified range of IP addresses for
open Transmission Control Protocol (TCP) and/or User
Datagram Protocol (UDP) ports to determine the general
type of device. The presence of such open ports at an IP
address may indicate that a particular application is operat-
ing on the device that is assigned the IP address, which in
turn may identify the operating system used by the device.
For example, if TCP port 135 is open, then the device is
likely executing a WINDOWS® operating system. Simi-
larly, if TCP port 22 is open, then the device is likely
executing a UNIX® operating system, such as LINUX®. If
UDP port 161 is open, then the device may be able to be
further identified through the Simple Network Management
Protocol (SNMP). Other possibilities exist. Once the pres-



US 2023/0222089 Al

ence of a device at a particular IP address and its open ports
have been discovered, these configuration items are saved in
CMDB 500.

[0112] In the classification phase, proxy servers 312 may
further probe each discovered device to determine the ver-
sion of its operating system. The probes used for a particular
device are based on information gathered about the devices
during the scanning phase. For example, if a device is found
with TCP port 22 open, a set of UNIX®-specific probes may
be used. Likewise, if a device is found with TCP port 135
open, a set of WINDOWS®-specific probes may be used.
For either case, an appropriate set of tasks may be placed in
task list 502 for proxy servers 312 to carry out. These tasks
may result in proxy servers 312 logging on, or otherwise
accessing information from the particular device. For
instance, if TCP port 22 is open, proxy servers 312 may be
instructed to initiate a Secure Shell (SSH) connection to the
particular device and obtain information about the operating
system thereon from particular locations in the file system.
Based on this information, the operating system may be
determined. As an example, a UNIX® device with TCP port
22 open may be classified as AIX®, HPUX, LINUX®,
MACOS®, or SOLARIS®. This classification information
may be stored as one or more configuration items in CMDB
500.

[0113] In the identification phase, proxy servers 312 may
determine specific details about a classified device. The
probes used during this phase may be based on information
gathered about the particular devices during the classifica-
tion phase. For example, if a device was classified as
LINUX®, a set of LINUX®-specific probes may be used.
Likewise, if a device was classified as WINDOWS® 2012,
as a set of WINDOWS®-2012-specific probes may be used.
As was the case for the classification phase, an appropriate
set of tasks may be placed in task list 502 for proxy servers
312 to carry out. These tasks may result in proxy servers 312
reading information from the particular device, such as basic
input/output system (BIOS) information, serial numbers,
network interface information, media access control address
(es) assigned to these network interface(s), IP address(es)
used by the particular device and so on. This identification
information may be stored as one or more configuration
items in CMDB 500.

[0114] In the exploration phase, proxy servers 312 may
determine further details about the operational state of a
classified device. The probes used during this phase may be
based on information gathered about the particular devices
during the classification phase and/or the identification
phase. Again, an appropriate set of tasks may be placed in
task list 502 for proxy servers 312 to carry out. These tasks
may result in proxy servers 312 reading additional informa-
tion from the particular device, such as processor informa-
tion, memory information, lists of running processes (appli-
cations), and so on. Once more, the discovered information
may be stored as one or more configuration items in CMDB
500.

[0115] Running discovery on a network device, such as a
router, may utilize SNMP. Instead of or in addition to
determining a list of running processes or other application-
related information, discovery may determine additional
subnets known to the router and the operational state of the
router’s network interfaces (e.g., active, inactive, queue
length, number of packets dropped, etc.). The IP addresses

Jul. 13,2023

of the additional subnets may be candidates for further
discovery procedures. Thus, discovery may progress itera-
tively or recursively.

[0116] Once discovery completes, a snapshot representa-
tion of each discovered device, application, and service is
available in CMDB 500. For example, after discovery,
operating system version, hardware configuration, and net-
work configuration details for client devices, server devices,
and routers in managed network 300, as well as applications
executing thereon, may be stored. This collected information
may be presented to a user in various ways to allow the user
to view the hardware composition and operational status of
devices, as well as the characteristics of services that span
multiple devices and applications.

[0117] Furthermore, CMDB 500 may include entries
regarding dependencies and relationships between configu-
ration items. More specifically, an application that is execut-
ing on a particular server device, as well as the services that
rely on this application, may be represented as such in
CMDB 500. For example, suppose that a database applica-
tion is executing on a server device, and that this database
application is used by a new employee onboarding service as
well as a payroll service. Thus, if the server device is taken
out of operation for maintenance, it is clear that the
employee onboarding service and payroll service will be
impacted. Likewise, the dependencies and relationships
between configuration items may be able to represent the
services impacted when a particular router fails.

[0118] In general, dependencies and relationships between
configuration items may be displayed on a web-based inter-
face and represented in a hierarchical fashion. Thus, adding,
changing, or removing such dependencies and relationships
may be accomplished by way of this interface.

[0119] Furthermore, users from managed network 300
may develop workflows that allow certain coordinated
activities to take place across multiple discovered devices.
For instance, an IT workflow might allow the user to change
the common administrator password to all discovered
LINUX® devices in a single operation.

[0120] In order for discovery to take place in the manner
described above, proxy servers 312, CMDB 500, and/or one
or more credential stores may be configured with credentials
for one or more of the devices to be discovered. Credentials
may include any type of information needed in order to
access the devices. These may include userid/password
pairs, certificates, and so on. In some embodiments, these
credentials may be stored in encrypted fields of CMDB 500.
Proxy servers 312 may contain the decryption key for the
credentials so that proxy servers 312 can use these creden-
tials to log on to or otherwise access devices being discov-
ered.

[0121] The discovery process is depicted as a flow chart in
FIG. 5B. At block 520, the task list in the computational
instance is populated, for instance, with a range of IP
addresses. At block 522, the scanning phase takes place.
Thus, the proxy servers probe the IP addresses for devices
using these IP addresses, and attempt to determine the
operating systems that are executing on these devices. At
block 524, the classification phase takes place. The proxy
servers attempt to determine the operating system version of
the discovered devices. At block 526, the identification
phase takes place. The proxy servers attempt to determine
the hardware and/or software configuration of the discov-
ered devices. At block 528, the exploration phase takes



US 2023/0222089 Al

place. The proxy servers attempt to determine the opera-
tional state and applications executing on the discovered
devices. At block 530, further editing of the configuration
items representing the discovered devices and applications
may take place. This editing may be automated and/or
manual in nature.

[0122] The blocks represented in FIG. 5B are examples.
Discovery may be a highly configurable procedure that can
have more or fewer phases, and the operations of each phase
may vary. In some cases, one or more phases may be
customized, or may otherwise deviate from the exemplary
descriptions above.

[0123] In this manner, a remote network management
platform may discover and inventory the hardware, soft-
ware, and services deployed on and provided by the man-
aged network. As noted above, this data may be stored in a
CMDB of the associated computational instance as configu-
ration items. For example, individual hardware components
(e.g., computing devices, virtual servers, databases, routers,
etc.) may be represented as hardware configuration items,
while the applications installed and/or executing thereon
may be represented as software configuration items.
[0124] The relationship between a software configuration
item installed or executing on a hardware configuration item
may take various forms, such as “is hosted on”, “runs on”,
or “depends on”. Thus, a database application installed on a
server device may have the relationship “is hosted on” with
the server device to indicate that the database application is
hosted on the server device. In some embodiments, the
server device may have a reciprocal relationship of “used
by” with the database application to indicate that the server
device is used by the database application. These relation-
ships may be automatically found using the discovery pro-
cedures described above, though it is possible to manually
set relationships as well.

[0125] The relationship between a service and one or more
software configuration items may also take various forms.
As an example, a web service may include a web server
software configuration item and a database application soft-
ware configuration item, each installed on different hard-
ware configuration items. The web service may have a
“depends on” relationship with both of these software con-
figuration items, while the software configuration items have
a “used by” reciprocal relationship with the web service.
Services might not be able to be fully determined by
discovery procedures, and instead may rely on service
mapping (e.g., probing configuration files and/or carrying
out network traffic analysis to determine service level rela-
tionships between configuration items) and possibly some
extent of manual configuration.

[0126] Regardless of how relationship information is
obtained, it can be valuable for the operation of a managed
network. Notably, IT personnel can quickly determine where
certain software applications are deployed, and what con-
figuration items make up a service. This allows for rapid
pinpointing of root causes of service outages or degradation.
For example, if two different services are suffering from
slow response times, the CMDB can be queried (perhaps
among other activities) to determine that the root cause is a
database application that is used by both services having
high processor utilization. Thus, IT personnel can address
the database application rather than waste time considering
the health and performance of other configuration items that
make up the services.

Jul. 13,2023

V. Data Sharing between Multiple Platforms or
Computational Instances

[0127] As noted, a remote network management platform,
such as remote network management platform 320, may
include some number of computational instances, such as
computational instance 322. Each computational instance
may support a number of applications on behalf of an
enterprise. Further, each application may store its data,
configuration, and/or state in one or more databases.
[0128] From time to time, it may be advantageous to
synchronize, or otherwise share, at least some of this data
with remote applications operating on other computational
instances or other platforms. As one example, an HR appli-
cation on the enterprise’s computational instance may store
local copies of employee personnel records. However, the
enterprise may outsource certain HR tasks (e.g., payroll,
insurance) to a third-party HR service that needs to locally
store its own accurate copy of this data. As another example,
an incident management (i.e., trouble ticket) application on
the enterprise’s computational instance may store local
copies of incidents opened by customers of the enterprise.
Nonetheless, the enterprise may share relevant parts of this
data with certain customers. In a further example, the
enterprise may offer an employee purchasing program that
allows its employees to purchase mobile phones and/or
mobile phone services at a discount from a certain telecom-
munications provider. The enterprise’s computational
instance may store local copies of the pending and com-
pleted purchases. This data may be synchronized with the
provider, and the provider may store a version of the data on
its own cloud-based platform. These are just illustrative
examples, and other uses may exist.

[0129] To enable this functionality, data may be trans-
ferred from the remote network management platform to
another platform, received by the remote network manage-
ment platform from the other platform, transmitted bi-
directionally, and/or synchronized between the platforms.
These types of communication are depicted in FIG. 6.
[0130] In this figure, arrangement 600 involves computa-
tional instance 322 (i.e., disposed within a remote network
management platform) transmitting copies of its data to
third-party platform 602. Arrangement 610 involves com-
putational instance 322 receiving copies of data from third-
party platform 612. Arrangement 620 involves computa-
tional instance 322 transmitting copies of its data to and
receiving copies of data from third-party platform 622. In
some embodiments, arrangement 620 may involve compu-
tational instance 322 synchronizing corresponding copies of
data for one or more applications with third-party platform
622, so that this data is largely identical in terms of content
if not form.

[0131] In some cases, a third-party platform could be
another computational instance, possibly disposed within
the same or a different remote network management plat-
form as computational instance 322. For example, both
computational instances may be used by the same enterprise,
and the transactions between these computational instances
may be data backup, data restore, or data synchronization. In
other cases, a third-party platform may be physically or
topologically remote from computational instance 322. The
third-party platform may operate in a different fashion from
computational instance 322 and may essentially be a “black
box” to computational instance 322, accessible only by way
of well-defined interfaces. In all of these cases, the commu-



US 2023/0222089 Al

nication may be referred to as “inter-platform” or “between
platforms” even when the communication involves only
computational instances of the same platform.

[0132] Described herein are inbound and outbound inter-
faces for a computational instance that can be used for
synchronization and possibly other purposes. Also disclosed
is the internal processing of data that is communicated to
and/or from another platform. This processing can be inte-
grated into application-specific or multi-application work-
flows in a consistent and logical fashion by using a standard
framework with common functionality.

[0133] A. Process Sync Definition

[0134] In order for communication between platforms to
take place, an endpoint should be explicitly configured on
both platforms. For purposes of this disclosure, these end-
points are referred to as process sync definitions. Such a
process sync definition is a parent structure that associates
relevant configuration data defining how one platform that
can communicate with a remote system.

[0135] FIG. 7 depicts an example process sync definition
700. It bundles further definitions, particularly remote sys-
tem specification 702, outbound flows 704, inbound flows
706, triggers 708, and database tables 710. Process sync
definition 700 may exist in a configuration file or as entries
within a database for example.

[0136] In some cases, one or more of remote system
specification 702, outbound flows 704, inbound flows 706,
triggers 708, and database tables 710 may be references to
data structures, executable code, or other information
defined elsewhere in the computational instance. For
example outbound flows 704 may include a reference to a
flow defined outside of process sync definition 700, and
database tables 710 may be defined in a database that is
logically distinct from process sync definition 700.

[0137] Remote system specification 702 identifies a
remote system to which the computational instance that
contains process sync definition 700 is to communicate. As
noted, this may be a different computational instance on the
same remote network management platform, a different
remote network management platform, or another type of
remote computing system. Particularly, remote system
specification 702 may include parameters and/or metadata
that facilitates inter-system communication. In some cases,
these parameters and metadata may define one or more IP
addresses, domain names, TCP or UDP port numbers, uni-
form resource locators (URLs), and/or representational state
transfer (REST) interfaces of a remote system.

[0138] Outbound flows 704 may be optional references to
one or more workflows or subflows that process data that the
computational instance is to send to the remote system
identified by remote system specification 702. Inbound
flows 706 may be optional references to one or more
workflows or subflows that process data that the computa-
tional instance has received from the remote system identi-
fied by remote system specification 702.

[0139] Here, a workflow is program logic (e.g., software
code) representing a specific sequence or series of tasks that,
when performed, seek to accomplish one or more goals. In
some cases, workflows may be represented or thought of as
a state machine having two or more states connected by
various transitions therebetween. Transitions from state to
state may be triggered by or based on user input, automated
input, information being stored in a database, the value of
information in a database changing, or by way of other

Jul. 13,2023

mechanisms. Workflows may be used by a computational
instance to carry out automated processes, processes that
guide a user through a series of interactions, or some
combination thereof.

[0140] Subflows may be parts or subsets of workflows that
are defined separately from the workflows themselves. Simi-
lar to subroutines in programming, subflows may carry out
operations that are common to more than one workflow or
get repeated in some fashion. Thus, the same subflow may
be used by several different workflows, or just be a particular
part of one workflow.

[0141] Triggers 708 specify one or more events occurring
on the computational instance that cause data to be trans-
mitted to the remote system identified by remote system
specification 702. These events may be changes in state of
one or more entries of database tables 710, association of
attachments with any such entry, other database changes,
application state changes, system state changes, and so on.
In some cases, triggers 708 may capture all fields of a
database entry or some subset of these fields.

[0142] Database tables 710, as noted above, may include
references to one or more tables in a database implemented
externally to process sync definition 700. In some cases,
these references may be to specific entries within such
tables. Where non-relational databases are used, these ref-
erences may be to locations within a file or other data
structure stored in such a database.

[0143] Insome embodiments, a process event (not shown)
may be associated with an outbound flow and/or an inbound
flow. Such a process event ties the end-to-end synchroniza-
tion logic together. In the outbound direction, a process
event is associated with a trigger and is used to convey the
“contextual meaning” of the synchronization process being
defined. In the inbound direction, the process event is used
to define the logic to ingest incoming data from the remote
system.

[0144] B. Outbound Processing

[0145] FIG. 8A depicts how the components of remote
system specification 702 can be used to synchronize infor-
mation from a computational instance to a remote system.
Here, the computational instance is referred to as local
system 800 and the operations of FIG. 8A are from the
perspective of local system 800.

[0146] In particular, based on triggers 708, one or more
entries from database tables 710 may be selected for syn-
chronization with remote system 810. For example, triggers
708 may be facilitated by a database listener module (not
shown) that is configured to monitor the state of certain
database tables and/or entries, and identify when these tables
or entries change or take on certain values. Alternatively or
additionally, triggers 708 may include one or more modules
that monitor the state of local system 800 and/or any
applications thereon, and identify when these items change
or take on certain values. When one of triggers 708 fire (i.e.,
due to a detected change), data from specific entries in
database tables 710 (which need not be entries that changed)
may be placed into outbound queue 802. For instance,
triggers 708 may have associated logic that reads these
entries from database tables 710 and writes copies to out-
bound queue 802.

[0147] Outbound queue 802 may be a data structure that
can hold an ordered sequence of zero or more messages.
Outbound queue 802 may also be associated with logic that
facilitates the writing to, reading from, and management of



US 2023/0222089 Al

this data structure. Such a queue can facilitate asynchronous
communication between applications, processes, and/or
threads. Communication facilitated by message queues is
deemed to be asynchronous because a message may be
stored in a queue for some period of time between when the
message is written to the queue and the message is read from
the queue.

[0148] While queues typically order the messages therein
in a first-in-first-out (FIFO) fashion, non-FIFO orderings
may be supported. This allows certain messages within a
queue to have priority over others in terms of when they will
be read. But many of the synchronization operations
described herein preserve the ordering of messages in
queues so that when a database entry on local system 800 is
changed multiple times, these changes will be presented to
remote system 810 in the same order of occurrence. This
allows remote system 810 to maintain an accurate represen-
tation of the entry.

[0149] A scheduled job may be configured to process
messages in outbound queue 802. This job may be arranged
to execute for m seconds before pausing execution for n
seconds. Thus, the scheduled job could have a duty cycle of
m seconds every m+n seconds. Possible examples of these
values may be m=300 and n=30, m=180 and n=10, and so
on. When executing, the scheduled job reads one or more
messages from outbound queue 802 (e.g., the next messages
in FIFO order), identifies the outbound flow to apply to each
message, and then causes outbound flow processing 806 to
execute the identified outbound flows on the messages.
Execution of each outbound flow may be synchronous with
operation of the scheduled job, and last for a maximum oft
seconds. Example values oft may be 10, 30, 60, and so on.

[0150] Outbound sync records 804 contain metadata and/
or status representing the operations of outbound queue 802.
This may include indications of successes, errors, and/or
retries when executing outbound flow processing 806 on
messages of outbound queue 802 or when transmitting
messages to remote system 810.

[0151] Outbound flow processing 806 executes zero or
more or outbound flows 704 on messages read from out-
bound queue 802. These outbound flows may be different
per message, and metadata associated with each message
may identify the outbound flow to be executed. Outbound
flow processing 806 may reformat, modify, or otherwise
transform data within the messages for transmission to
remote system 810. For example, in some embodiments,
entries in database tables 710 may be transformed into a
structured data format, such as XML or JAVASCRIPT®
Object Notation (JSON), for transmission to a REST inter-
face on remote system 810. But other possibilities exist.

[0152] As noted, outbound flow processing 806 may also
update outbound sync records 804 to indicate successes,
errors, and/or retries related to messages. Further, outbound
flow processing 806 may create records, update records,
and/or look up records in correlation table 808. More detail
regarding the use of correlation table 808 is given below.

[0153]

[0154] FIG. 8B depicts how the components of remote
system specification 702 can be used to synchronize infor-
mation from a remote system to a computation instance.
Again, the computational instance is referred to as local
system 800 and the operations of FIG. 8B are from the
perspective of local system 800.

C. Inbound Processing

Jul. 13,2023

[0155] Data is received from remote system 810 by way of
REST API 812. REST API 812 may be a URL-based
interface that allows remote system 810 to write data to local
system 800 in a secure and authorized fashion. For example,
remote system 810 may use the REST POST command to
write to a queue URL (e.g., www.examplel.com/queue).
Data written to this URL causes local system 800 to authen-
ticate the request, validate the data, and write the data to
inbound queue 814. Several other URLs may be part of this
interface, each of which will be described below. Other types
of non-REST interfaces may be supported.

[0156] Like outbound queue 802, inbound queue 814 may
be a data structure that can hold an ordered sequence of zero
or more messages. Inbound queue 814 may also be associ-
ated with logic that facilitates the writing to, reading from,
and management of this data structure. FIFO and non-FIFO
orderings of messages may be supported.

[0157] Also like outbound queue 802, a scheduled job
may be configured to process messages in inbound queue
814. This job may be arranged to execute for m seconds
before pausing execution for n seconds. Thus, the scheduled
job could have a duty cycle of m seconds every m+n
seconds. Possible examples of these values may be m=300
and n=30, m=180 and n=10, and so on. When executing, the
job reads one or more messages from inbound queue 814
(e.g., the next messages in FIFO order), identifies the
inbound flow to apply to each message, and then causes
inbound flow processing 818 to execute the identified
inbound flows on the messages. Execution of each inbound
flow may be synchronous with operation of the scheduled
job, and last for a maximum oft seconds. Example values of
t may be 10, 30, 60, and so on. Notably, the values for m, n,
and t can be different for outbound queue 802 and inbound
queue 814.

[0158] Inbound sync records 816 contain metadata and/or
status representing the operations of inbound queue 814.
This may include indications of successes, errors, and/or
retries when executing inbound flow processing 818 on
messages of inbound queue 814 or when writing entries
derived from these message to database tables 710.

[0159] Inbound flow processing 818 executes zero or more
of'inbound flows 706 on messages read from inbound queue
814. These inbound flows may be different per message, and
metadata associated with each message may identify the
inbound flow to be executed. Inbound flow processing 818
may reformat, modify, or otherwise transform data within
the messages for storage in database tables 710. For
example, in some embodiments, messages that were
received from remote system 810 in a structured data format,
such as XML or JSON, are transformed to entries in data-
base tables 710. Notably, inbound flow processing 818 may
write to the same or different database tables and entries as
outbound flow processing 806.

[0160] As noted, inbound flow processing 818 may also
update inbound sync records 816 to indicate successes,
errors, and/or retries related to messages. Further, inbound
flow processing 818 may create records, update records,
and/or look up records in correlation table 808. More detail
regarding the use of correlation table 808 is given below.
[0161] D. Correlation Tables and Correlation Procedures
[0162] FIG. 9 depicts two example correlation tables.
Correlation table 808 was briefly discussed in the context of
FIGS. 8A and 8B, and is stored on or accessible to local
system 800. Correlation table 808 is used when local system



US 2023/0222089 Al

800 synchronizes with remote system 810. Correlation table
900 is stored on or accessible to remote system 810.
[0163] These correlation tables contain records of asso-
ciations between entries in database tables 710 of local
system 800 and entries in database tables of remote system
810. They facilitate the synchronization of these entries
between local system 800 and remote system 810, even
when the entries are in different formats. In FIG. 9, corre-
lation table 808 and correlation table 900 are arranged
similarly (in terms the data contained therein), but in some
embodiments they may have different arrangements.
[0164] Correlation table 808 contains mappings between a
local correlation identifier (LCID), remote correlation iden-
tifier (RCID), local table, local entry, and remote system.
These mappings may also have associated states, such as
“active” for mappings that are operational or “inactive” for
mappings that are not operational.

[0165] The LCID field contains a value (e.g., numeric,
alphanumeric, or otherwise) that uniquely identifies the
record on local system 800. The RCID field contains a value
(e.g., numeric, alphanumeric, or otherwise) that uniquely
identifies the record on remote system 810. Local system
800 may assign the LCID while remote system 810 may
assign the RCID. Thus, local system 800 might always know
the LCID for a record, but might not know the RCID for the
record until remote system 810 informs local system 800 of
the RCID. The local table field identifies one of database
tables 710, and the local entry field identifies an entry within
this database table. The remote system field identifies remote
system 810.

[0166] As an example, the first record in correlation table
808 can be interpreted as follows. Entry INC1 of database
table Incident has a LCID of 1 and an RCID of 5. The RCID
was assigned by the remote system, example2.com. The
state of this association is active. Likewise, the second
record in correlation table 808 can be interpreted as follows.
Entry INC2 of database table Incident has a LCID of 2 and
an RCID of 6. The RCID was assigned by the remote
system, example2.com.

[0167] As noted, correlation table 900 is stored or is
otherwise accessible to remote system 810 (named
example2.com in this case). Thus, correlation table 900
might not be visible to local system 800. Further, the context
of “local” and “remote” is reversed in correlation table 900
(when compared to correlation table 808) because the con-
tent of this table is with respect to remote system 810.
Therefore, the LCIDs in correlation table 900 are local with
respect to remote system 810, and map to the RCIDs in
correlation table 808. Similarly, the RCIDs in correlation
table 900 are remote with respect to remote system 810, and
map to the LCIDs in correlation table 808.

[0168] FIG. 9 shows correlated records as they might
appear in different correlation tables. As indicated by the
arrows, the record for local entry INC1 in correlation table
808 relates to the record for local entry PRBI1 in correlation
table 900. Likewise, the record for local entry INC2 in
correlation table 808 relates to the record for local entry
PRB2 in correlation table 900. These correlated records refer
to and/or contain the same or similar underlying data and
may refer to the same event, but are stored in different
formats by local system 800 and remote system 810.
[0169] In various embodiments, correlation tables may
contain more or fewer entries, and each entry may contain
more or less information. The structure of the correlation

Jul. 13,2023

tables shown in FIG. 9 supports the same local entry being
synchronized with multiple remote systems. In such cases,
each remote system may be assigned its own process sync
definition, remote system specification, outbound flows,
inbound flows, triggers, and so on. The next subsection
illustrates how correlation tables can be populated.

[0170] E. Use of Correlation Tables during Outbound
Synchronization

[0171] FIG. 10A is a message flow diagram 1000 depict-
ing a possible embodiment for use of a correlation table
using outbound synchronization on local system 800. In this
figure, it is assumed that local system 800 is configured to
synchronize an entry from database table 1002 with remote
system 810. It is further assumed that local system 800 is
also configured to use correlation table 808 and outbound
flow processing 806 as part of this process.

[0172] Atstep 1004, entry INC1 from database table 1002
(the Incident table) is provided to outbound flow processing
806. Outbound flow processing 806 may read the entry
directly from database table 1002 or by way of outbound
queue 802. Outbound queue 802 is not shown in FIG. 10A
for sake of simplicity, but may be present nonetheless.
[0173] At step 1006, outbound flow processing 806 cre-
ates a local correlation record and assigns an LCID of 1 to
the record. This record is assumed to be that of the first entry
in correlation table 808 as shown in FIG. 9. Outbound flow
processing 806 also carries out any pre-configured transfor-
mation of the entry as discussed above.

[0174] At step 1008, the processed entry is transmitted to
remote system 810. Also transmitted is metadata indicating
that the LCID of 1 has been assigned by local system 800.
This informs remote system 810 of this LCID so that remote
system 800 can construct an entry for its correlation table.
[0175] At step 1010, remote system 810 transmits an
acknowledgment in response to receiving the entry. This
acknowledgment is transmitted to local system 800 and may
be received by outbound flow processing 806. The acknowl-
edgment may contain an indication that remote system 810
has assigned correlation identifier of 5 for this entry. From
the perspective of remote system 810, this is an LCID but
from the perspective of local system 800, this is an RCID.
[0176] At step 1012, outbound flow processing writes the
local correlation record with an LCID of 1 and an RCID of
5 to correlation table 808. In some embodiments, outbound
flow processing may write a partial local correlation record
to correlation table 808 between steps 1006 and 1008, and
then update this record at step 1012.

[0177] Once a record in correlation table 808 is estab-
lished, it can be used in further outbound (and inbound)
processing. For example, at some point after step 1012, steps
1014, 1016, 1018, and 1020 might take place.

[0178] Atstep 1014, entry INC1 from database table 1002
is again provided to outbound flow processing 806 (e.g.,
perhaps because the content of the entry has changed).
Outbound flow processing 806 may read the entry directly
from database table 1002 or by way of outbound queue 802.
[0179] At step 1016, outbound flow processing 806
accesses the local correlation record to determine the LCID
and the RCID. Notably, the local correlation record does not
need to be created at this point because it already exists.
Outbound flow processing 806 also carries out any pre-
configured transformation of the entry as discussed above.
[0180] At step 1018, the processed entry is transmitted to
remote system 810. Also transmitted is metadata indicating



US 2023/0222089 Al

that the LCID of 1 has been assigned by local system 800
and that the RCID of 5 has been assigned by remote system
810. As noted above, from the perspective of remote system
810, this RCID of 5 is an LCID. Nonetheless, the LCID and
RCID are provided to remote system 810 so that it can
identify the entry in its correlation table.

[0181] At step 1020, remote system 810 transmits an
acknowledgment to local system 800, which is received by
outbound flow processing 806. The RCID in the acknowl-
edgment may match that of the associated local correlation
record in correlation table 808. If it does not (e.g., the RCID
has a value of 10 in the acknowledgment), outbound flow
processing 806 may create a new local correlation record in
correlation table 808 (e.g., with an L.CID of 1 and an RCID
of 10).

[0182] Advantageously, the correlation record for syn-
chronizing entry INC1 with remote system 810 is created
just once and then may be reused multiple times throughout
the lifecycle of entry INC1.

[0183] F. Use of Correlation Tables during Inbound Syn-
chronization
[0184] FIG. 10B is a message tlow diagram 1050 depict-

ing a possible embodiment for use of a correlation table
using inbound synchronization on local system 800. In this
figure, it is assumed that local system 800 is configured to
synchronize an entry from database table 1002 with remote
system 810. It is further assumed that local system 800 is
also configured to use correlation table 808 and inbound
flow processing 818 as part of this process.

[0185] At step 1052, inbound flow processing 818
receives data representing a remote entry from remote
system 810. In some cases, this entry is received by way of
REST API 812 and temporarily stored in inbound queue 814
before it is available to inbound flow processing 818 (not
shown for sake of convenience). It is assumed that this entry
has an LCID of 6 as assigned by remote system 810.
[0186] At step 1054, inbound flow processing 818 creates
a local correlation record with an LCID of 2 and an RCID
of 6. Here, the LCID is generated by inbound flow process-
ing 818 while the RCID was received as the LCID of remote
system 810. This record is assumed to be that of the second
entry in correlation table 808 as shown in FIG. 9.

[0187] At step 1056 and in response to receiving the data,
inbound flow processing 818 transmits an acknowledgment
with an RCID of 2 to remote system 810. This acknowl-
edgment serves to provide remote system 810 with the LCID
assigned by local system 800. From the perspective of
remote system 810, this LCID is an RCID, and therefore it
is designated as such.

[0188] At step 1058, inbound flow processing 818 writes
the remote entry as processed to database table 1002. Here
it is assumed that this is the Incident table, and the entry is
INC2. This entry may already exist in the table or may be
added to the table as a new entry.

[0189] At step 1060, inbound flow processing writes the
local correlation record with an LCID of 2 and an RCD of
6 to correlation table 808. In some cases, step 1060 may
occur before step 1058. The information that identifies the
database table and entry may be derived by inbound flow
processing from content of the remote entry. When initial
data representing a remote entry is received, the inbound
flow to execute is selected by (among other things, per the
system configuration) the process event of the inbound data.
Usually, each particular inbound flow is configured to write

Jul. 13,2023

to a particular table (in this case, the Incident table). In this
way, different process events may be mapped to different
tables on the inbound side. In the case of initial data, the
entry INC2 does not already exist. Rather the inbound flow
creates it.

[0190] Once a record in correlation table 808 is estab-
lished, it can be used in further inbound (and outbound)
processing. For example, at some point after step 1060, steps
1062, 1064, 1066, and 1068 might take place.

[0191] At step 1062, inbound flow processing 818 again
receives data representing the entry associated with the
LCID of 2 and RCID of 6. This data may have been read
from inbound queue 814, for example.

[0192] At step 1064, inbound flow processing 818 iden-
tifies the associated correlation record in correlation table
808. Since this record exists, a new record does not need to
be created.

[0193] At step 1066 and in response to receiving the data,
inbound flow processing 818 transmits an acknowledgement
to remote system 810. This acknowledgment serves to
provide remote system 810 with the LCID assigned by local
system 800. In this case, it affirms that local system 800 is
still using the LCID of 2 (which is an RCID of 2 from the
perspective of remote system 810).

[0194] At step 1068 and based on the information in the
record, inbound flow processing 818 writes the remote entry
as processed to database table 1002.

[0195] Advantageously, the correlation record for syn-
chronizing entry INC2 with remote system 810 is created
just once and then may be reused multiple times throughout
the lifecycle of entry INC2.

[0196] The embodiments of FIGS. 10A and 10B are for
purposes of example. Other message flows could be used to
accomplish the same or similar goals. While processing
related to just one database entry is shown in FIGS. 10A and
10B, these embodiments may support the processing of
multiple entries across one or more database tables.

[0197] G. Attachment Processing

[0198] Each entry in a database (e.g., entry INC1 of the
incidents table) may be associated with one or more attach-
ments. These attachments may be text files, image files,
sound files, video files, executable files, crashdump files, log
files, or any other type of computer file that is deemed to be
useful context for the entry. For example, if the entry is an
IT incident, a log file that provides a series of error messages
from one or more applications may be attached to the
incident.

[0199] When attachments are associated with or disasso-
ciated from an entry, triggers 708 may detect these changes
and ultimately cause outbound flow processing 806 to be
carried on the entry and/or its attachments. Since these
attachments could be larger than their associated database
entries (e.g., in the megabytes whereas database entries
might be a few hundred bytes), it is desirable to be able to
transfer attachments from a local system to a remote system
only as needed. In particular, it is advantageous for the local
system and the remote system to have interfaces through
which the remote system can securely request and receive
only the desired attachments.

[0200] FIG. 11 is a message flow diagram 1100 depicting
such a transaction. This message flow is shown as taking
place between local system 800 and remote system 810, but
may also involve triggers, inbound and outbound queues,



US 2023/0222089 Al

correlation tables, and inbound and outbound flow process-
ing modules as described above.

[0201] At step 1102, local system 800 determines that a
database entry is associated with one or more attachments.
In response, local system 800 may generate or otherwise
identify attachment metadata.

[0202] At step 1104, local system transmits, to remote
system 810, attachment metadata. This may include, for
each attachment, one or more of a cryptographic key, a
filename of the attachment, a cryptographic hash value
calculated over the attachment (e.g., using SHA-1 or SHA-
2), a content-type of the attachment (e.g., text/plain or
image/jpeg), and a file size (e.g., in bytes) of the attachment.
The cryptographic key(s) may be, for example a random
array of 128 bits or 256 bits and separately generated for
each attachment or set of attachments. Thus, in some cases,
one cryptographic key may be used for multiple attach-
ments. In other cases, each attachment may have its own
cryptographic key.

[0203] At step 1106, remote system 810 identifies, from
the attachment metadata, the wanted attachments. This may
be none of the attachments, all of the attachments, or some
subset of the attachments.

[0204] At step 1108, remote system 810 requests the
wanted attachments from local system 800. This may
involve remote system 810 providing one or more crypto-
graphic keys and associated filenames to local system 800.
Notably, unless the proper associations between crypto-
graphic keys and filenames are provided, local system 800
may deny the request. Further the key may be a time-bound,
temporary shared secret and thus expire after some period
(e.g., 5 minutes, 30 minutes). This provides a degree of
security that prevents systems without knowledge of the
keys and/or filenames from obtaining the attachments.
[0205] Inresponse and at step 1110, local system 800 may
stage the requested attachments to be transmitted with or
without the entry. This staging may involve these attach-
ments being queued for outbound flow processing, for
example.

[0206] At step 1112, local system 800 may transmit the
requested attachments to a REST API or other established
interface on remote system 810. Remote system 810 may
passively receive, or otherwise receive, these attachments.
[0207] At step 1114, local system 800 may transmit a
message to remote system 810 that all of the requested
attachments have been provided and are ready for process-
ing. At step 1116 and in response to receiving this message,
remote system 810 may process these attachments. This
processing may involve storing the attachments in a data-
base or filesystem and associating them with the entry.
[0208] H. Error Handling

[0209] Error handling for the synchronization techniques
described above may include one or more aspects of the
following functionality. In particular, there are two main
types of errors that synchronization procedures may expe-
rience: communication errors between a local system and a
remote system, and processing errors within a local system
or a remote system.

[0210] Communication errors may include a remote sys-
tem being unreachable or errors experienced when trans-
mitting data to a remote system. Communication errors are
handled by the system that is carrying out the outbound
processing. When such a communication error occurs, the
transmissions are retried a configurable number of times

Jul. 13,2023

(e.g., 2, 3, 5). If the errors are experienced for each of these
retries, the local system flags outbound communication to
the remote system as being in an error state. The local
system may then continue to retry after pausing for a period
of time. This behavior reflects the understanding that com-
munication errors occur from time to time and are often
self-correcting.

[0211] Processing errors occur during inbound or out-
bound flow processing, and represent a more serious prob-
lem. Specifically, that data from a local or remote entry
cannot be properly processed. When a processing error
occurs in the inbound or outbound direction, processing in
that direction is placed in an error state. Further, a subflow
may be triggered that carries out an automated assessment to
determine a root cause, and/or notifies an administrator of
the problem. In some embodiments, an administrator has to
manually clear the error state before communication in the
direction that experienced the error can be resumed. In some
cases, queued entries can be individually configured to retry
on error or be skipped when errors occur.

[0212] 1. Establishing an Inter-Platform Communication
Endpoint
[0213] Before communication occurs between a local sys-

tem and a remote system, the local system may need to be
configured to support the communication. A similar con-
figuration procedure may take place on the remote system.
This configuration can be carried out in three phases.
[0214] The first phase involves an administrator of the
local system creating a local inbound API user (e.g., a
userid) with a role that can receive inbound data from the
remote system. This userid may have attached to it specific
permissions and/or capabilities so that it can receive syn-
chronization data by way of a REST API, for example, and
write this data to an inbound queue. Then, the administrator
may configure the remote system specification in the process
sync definition (see FIG. 7). As noted, the remote system
specification may include one or more IP addresses, domain
names, TCP or UDP port numbers, URLs, and/or REST
interfaces of the remote system. The REST interfaces may
be endpoints accessible by way of GET or POST methods.
Then, the administrator may provide the credentials of the
local inbound API user and a unique local system identifier
(sys_id) of the local system with an administrator of the
remote system. The administrator may also receive creden-
tials of a remote inbound API user of the remote system as
well as a unique remote system identifier of the remote
system from the administrator of the remote system.
[0215] The second phase may involve configuring, on the
local system, the remote inbound API user as an endpoint of
the remote system with which the local system can com-
municate. Also, the administrator of the local system may
include the remote system identifier in the remote system
specification.

[0216] The third phase may involve testing the ability of
the local system to communicate with the remote system by
way of the remote system specification (and, in particular,
using the remote inbound API user). Once this testing has
succeeded, the outbound and inbound flow processing asso-
ciated with the remote system can be activated.

[0217] J. Domain Separation

[0218] A computational instance may support multiple
domains and enforce separation between them. For example,
the entity that operates a computational instance (e.g., local
system 800) may allow two other entities (e.g., abc.com and



US 2023/0222089 Al

xyz.com) to both use the applications of the computational
instance in an outsourced manner. In these cases, domain
separation allows transactions between these entities and a
third party (e.g., remote system 810) to be per-domain for
purposes of integrity and security.

[0219] This architecture is shown in FIG. 12. Local system
800 hosts services for domain abc.com and domain xyz.
com. Both of these domains may synchronize their database
entries with remote system 810.

[0220] As a concrete example, local system 800 may
provide purchasing application services to domain abc.com
and domain xyz.com. These purchasing services may facili-
tate the purchasing of mobile phone services for employees
of'domain abc.com and domain xyz.com. Thus, local system
800 may include database tables indicating the current
equipment and service agreement of each relevant
employee. Further, remote system 810 may be the mobile
phone service provider and therefore also contain represen-
tation of the entries in these tables.

[0221] Clearly, it is desirable to keep the equipment and
service agreement data synchronized between local system
800 and remote system 810. But this should be done in a
manner that does not allow information to “leak” between
domain abc.com and domain Xyz.com.

[0222] In order to facilitate these integrity and security
concerns a number of the feature described above occur on
a per-domain basis. To that point, synchronization configu-
ration data stored in files or database tables, triggers, out-
bound queues, inbound queues, outbound flow processing,
and inbound flow processing are domain-separated. This
means that each of these items may be stored in separate
domain-specific tables or be executed in a domain-specific
context. Further, each domain may have its own unique
system identifier that can be used to disambiguate commu-
nication between the local system and remote system.
[0223] As an example of the latter, each of domain abc.
com and domain Xyz.com may be associated with a unique
sys_domain value that is included in or associated with all
relevant files and database entries. For outbound queues,
messages are stored with the same sys_domain value as the
associated database entry. For inbound queues, messages are
stored with the same sys_domain as the local inbound API
user invoked by the remote system. Likewise, outbound
flows and inbound flows are executed in the same sys_
domain as each individual queued message.

[0224] In some embodiments, the local system may sup-
port a hierarchy of domains, (e.g., with abc.com being a
parent domain and one.abc.com and two.abc.com being
child domains of abc.com). In these cases, the configurations
for the child domains may be in the same domain as the
configurations for the parent domain. In a child domain,
inbound and outbound flows may be chosen from the child
domain, from its parent domain, or from a global domain. In
a parent domain, runtime changes to database entries in a
child domain can be captured and processed in the parent
domain.

V1. Example Operations

[0225] FIG. 13 is a flow chart illustrating an example
embodiment. The process illustrated by FIG. 13 may be
carried out by a computing device, such as computing device
100, and/or a cluster of computing devices, such as server
cluster 200. However, the process can be carried out by other
types of devices or device subsystems. For example, the

Jul. 13,2023

process could be carried out by a computational instance of
a remote network management platform.

[0226] The embodiments of FIG. 13 may be simplified by
the removal of any one or more of the features shown
therein. Further, these embodiments may be combined with
features, aspects, and/or implementations of any of the
previous figures or otherwise described herein.

[0227] Block 1300 may involve detecting a state change
associated with a local entry in a database table, wherein
persistent storage contains: (i) the database table, (ii) a
definition of a communication endpoint of a remote system,
and (iii) outbound flow processing through which entries of
the database table can be synchronized with the remote
system.

[0228] Block 1302 may involve reading, from the data-
base table, a set of data representing the local entry.
[0229] Block 1304 may involve transforming, using the
outbound flow processing, the set of data into a format
receivable by the remote system.

[0230] Block 1306 may involve creating, for the set of
data, a correlation record that contains a local correlation
identifier, wherein the correlation record specifies the local
entry.

[0231] Block 1308 may involve transmitting, to the
remote system, the set of data as transformed and the local
correlation identifier. If an associated remote correlation
identifier is present or known, it may be included in this
transmission as well.

[0232] Block 1310 may involve receiving, from the
remote system and for the set of data, a remote correlation
identifier assigned by the remote system.

[0233] Block 1312 may involve adding, to the correlation
record, the remote correlation identifier.

[0234] Block 1314 may involve writing, to a correlation
table, the correlation record.

[0235] As noted previously, the local correlation identifier
(LCID) and the remote correlation identifier (RCID) are
relative to whether the system in question is the local system
or the remote system. Put another way, a value for an LCID
on the local system will be an RCID on the remote system,
and a value for an RCID on the local system will be an LCID
on the remote system.

[0236] In some embodiments, reading the set of data
representing the local entry comprises placing the set of data
read from the database table into an outbound queue,
wherein transforming the set of data comprises the outbound
flow processing reading the set of data from the outbound
queue, wherein the outbound queue operates in a first-in-
first-out manner, and wherein a scheduled job processes
contents of the outbound queue with a duty cycle of m
seconds every m+n seconds.

[0237] Some embodiments may involve: detecting a fur-
ther state change associated with the local entry in the
database table; reading, from the database table, a further set
of data representing the local entry; transforming the further
set of data into the format receivable by the remote system;
reading, from the correlation table, the correlation record;
and possibly based on the correlation record, transmitting, to
the remote system, the further set of data as transformed
with at least one of the local correlation identifier or the
remote correlation identifier.

[0238] Some embodiments may involve: receiving, from
the remote system, a second remote correlation identifier for
the further set of data; and writing, to the correlation table,



US 2023/0222089 Al

a second correlation record containing the local correlation
identifier and the second remote correlation identifier.
[0239] In some embodiments, the persistent storage also
contains definitions of an inbound API and inbound flow
processing through which the entries can be synchronized
with the remote system. These embodiments may involve:
receiving, from the remote system and by way of the
inbound API, an additional set of data with an additional
remote correlation identifier assigned by the remote system;
transforming, using the inbound flow processing, the addi-
tional set of data into a format storable in the database table;
creating, for the additional set of data, an additional corre-
lation record that contains an additional local correlation
identifier and the additional remote correlation identifier,
wherein the additional correlation record specifies an addi-
tional local entry in the database table; writing, to the
correlation table, the additional correlation record; and writ-
ing, to the database table and as the additional local entry,
the additional set of data as transformed.

[0240] These embodiments may also involve: receiving,
from the remote system and by way of the inbound API, a
second additional set of data with the additional remote
correlation identifier; transforming, using the inbound flow
processing, the second additional set of data into the format
storable in the database table; reading, from the correlation
table, the additional correlation record; and possibly based
on the additional correlation record, writing, to the database
table and as the additional local entry, the second additional
set of data.

[0241] In some embodiments, receiving the additional set
of data comprises placing the additional set of data into an
inbound queue, wherein transforming the additional set of
data comprises the inbound flow processing reading the
additional set of data from the inbound queue, wherein the
inbound queue operates in a first-in-first-out manner, and
wherein a scheduled job processes contents of the inbound
queue with a duty cycle of m seconds every m+n seconds.
[0242] In some embodiments, the local entry is associated
with an attachment stored as a file. These embodiments may
involve: possibly based on the local entry being associated
with the attachment, transmitting, to the remote system,
metadata for the attachment, wherein the metadata includes
at least a filename of the attachment and a key; receiving,
from the remote system, a request for the attachment and the
key; and possibly based on receiving the request for the
attachment and the key, transmitting, to the remote system,
the attachment.

[0243] In some embodiments, the definition of the com-
munication endpoint of the remote system includes one or
more of: an IP address of the remote system, a domain name
of the remote system, a REST interface of the remote
system, or an inbound API user of the remote system. In
these embodiments, transmitting the set of data as trans-
formed and the local correlation identifier may involve
transmitting the set of data and credentials of the inbound
APT user.

[0244] In some embodiments, the local entry is associated
with a domain, wherein the outbound flow processing is
configured to operate on the entries associated with the
domain, and wherein transmitting the set of data as trans-
formed comprises transmitting an indication of the domain
with the set of data as transformed.

[0245] In some embodiments, errors due to transforming
the set of data into the format receivable by the remote

Jul. 13,2023

system are flagged for manual review, wherein errors due to
transmitting the set of data are flagged for one or more
automatic retries.

[0246] In some embodiments, the state change is a change
to the local entry.

[0247] FIG. 14 is a flow chart illustrating an example
embodiment. The process illustrated by FIG. 14 may be
carried out by a computing device, such as computing device
100, and/or a cluster of computing devices, such as server
cluster 200. However, the process can be carried out by other
types of devices or device subsystems. For example, the
process could be carried out by a computational instance of
a remote network management platform.

[0248] The embodiments of FIG. 14 may be simplified by
the removal of any one or more of the features shown
therein. Further, these embodiments may be combined with
features, aspects, and/or implementations of any of the
previous figures or otherwise described herein. Notably, the
features of FIG. 14 may be combined with any feature
described in the context of FIG. 13, for instance.

[0249] Block 1400 may involve receiving, from a remote
system and by way of an inbound API, a set of data with a
remote correlation identifier assigned by the remote system,
wherein persistent storage contains: (i) a database table
containing entries, (ii) definitions of the inbound API, and
(iii) inbound flow processing through which the entries can
be synchronized with the remote system. In some cases, a
local correlation identifier may be received as well.

[0250] Block 1402 may involve transforming, using the
inbound flow processing, the set of data into a format
storable in the database table.

[0251] Block 1404 may involve creating, for the set of
data, a correlation record that contains a local correlation
identifier and the remote correlation identifier, wherein the
correlation record specifies a local entry in the database
table.

[0252] Block 1406 may involve writing, to the correlation
table, the correlation record.

[0253] Block 1408 may involve writing, to the database
table and as the local entry, the set of data as transformed.

VII. Closing

[0254] The present disclosure is not to be limited in terms
of the particular embodiments described in this application,
which are intended as illustrations of various aspects. Many
modifications and variations can be made without departing
from its scope, as will be apparent to those skilled in the art.
Functionally equivalent methods and apparatuses within the
scope of the disclosure, in addition to those described herein,
will be apparent to those skilled in the art from the foregoing
descriptions. Such modifications and variations are intended
to fall within the scope of the appended claims.

[0255] The above detailed description describes various
features and operations of the disclosed systems, devices,
and methods with reference to the accompanying figures.
The example embodiments described herein and in the
figures are not meant to be limiting. Other embodiments can
be utilized, and other changes can be made, without depart-
ing from the scope of the subject matter presented herein. It
will be readily understood that the aspects of the present
disclosure, as generally described herein, and illustrated in
the figures, can be arranged, substituted, combined, sepa-
rated, and designed in a wide variety of different configu-
rations.



US 2023/0222089 Al

[0256] With respect to any or all of the message flow
diagrams, scenarios, and flow charts in the figures and as
discussed herein, each step, block, and/or communication
can represent a processing of information and/or a transmis-
sion of information in accordance with example embodi-
ments. Alternative embodiments are included within the
scope of these example embodiments. In these alternative
embodiments, for example, operations described as steps,
blocks, transmissions, communications, requests, responses,
and/or messages can be executed out of order from that
shown or discussed, including substantially concurrently or
in reverse order, depending on the functionality involved.
Further, more or fewer blocks and/or operations can be used
with any of the message flow diagrams, scenarios, and flow
charts discussed herein, and these message flow diagrams,
scenarios, and flow charts can be combined with one
another, in part or in whole.

[0257] A step or block that represents a processing of
information can correspond to circuitry that can be config-
ured to perform the specific logical functions of a herein-
described method or technique. Alternatively or addition-
ally, a step or block that represents a processing of
information can correspond to a module, a segment, or a
portion of program code (including related data). The pro-
gram code can include one or more instructions executable
by a processor for implementing specific logical operations
or actions in the method or technique. The program code
and/or related data can be stored on any type of computer
readable medium such as a storage device including RAM,
a disk drive, a solid-state drive, or another storage medium.

[0258] The computer readable medium can also include
non-transitory computer readable media such as computer
readable media that store data for short periods of time like
register memory and processor cache. The computer read-
able media can further include non-transitory computer
readable media that store program code and/or data for
longer periods of time. Thus, the computer readable media
may include secondary or persistent long-term storage, like
ROM, optical or magnetic disks, solid-state drives, or com-
pact disc read only memory (CD-ROM), for example. The
computer readable media can also be any other volatile or
non-volatile storage systems. A computer readable medium
can be considered a computer readable storage medium, for
example, or a tangible storage device.

[0259] Moreover, a step or block that represents one or
more information transmissions can correspond to informa-
tion transmissions between software and/or hardware mod-
ules in the same physical device. However, other informa-
tion transmissions can be between software modules and/or
hardware modules in different physical devices.

[0260] The particular arrangements shown in the figures
should not be viewed as limiting. It should be understood
that other embodiments could include more or less of each
element shown in a given figure. Further, some of the
illustrated elements can be combined or omitted. Yet further,
an example embodiment can include elements that are not
illustrated in the figures.

[0261] While various aspects and embodiments have been
disclosed herein, other aspects and embodiments will be
apparent to those skilled in the art. The various aspects and
embodiments disclosed herein are for purpose of illustration
and are not intended to be limiting, with the true scope being
indicated by the following claims.

Jul. 13,2023

What is claimed is:

1. A method comprising:

detecting a state change associated with a local entry in a

database structure;

creating, for a set of data representing the local entry, a

correlation record that contains a local correlation
identifier, wherein the correlation record specifies the
local entry;

transmitting, to a remote system, the set of data and the

local correlation identifier;
receiving, from the remote system, a remote correlation
identifier assigned by the remote system; and

writing, to a correlation structure, the correlation record
with the local correlation identifier and the remote
correlation identifier.

2. The method of claim 1, wherein the database structure
is a database table or the correlation structure is a correlation
table of a database.

3. The method of claim 1, further comprising:

prior to transmitting the set of data, transforming the set

of data into a format receivable by the remote system.

4. The method of claim 3, further comprising placing the
set of data into an outbound queue, wherein transforming the
set of data comprises reading the set of data from the
outbound queue.

5. The method of claim 4, wherein a scheduled job
processes contents of the outbound queue with a duty cycle
of m seconds every m+n seconds.

6. The method of claim 3, wherein errors due to trans-
forming the set of data into the format receivable by the
remote system are flagged for manual review, and wherein
errors due to transmitting the set of data are flagged for one
or more automatic retries.

7. The method of claim 1, further comprising:

detecting a further state change associated with the local

entry in the database structure;

reading, from the correlation structure, the correlation

record; and

transmitting, to the remote system, a further set of data

with at least one of the local correlation identifier or the
remote correlation identifier.
8. The method of claim 7, further comprising:
receiving, from the remote system, a second remote
correlation identifier for the further set of data; and

writing, to the correlation structure, a second correlation
record containing the local correlation identifier and the
second remote correlation identifier.

9. The method of claim 1, further comprising:

receiving, from the remote system, an additional set of

data with an additional remote correlation identifier
assigned by the remote system;

creating, for the additional set of data, an additional

correlation record that contains an additional local
correlation identifier and the additional remote corre-
lation identifier;

writing, to the correlation structure, the additional corre-

lation record; and

writing, to the database structure, the additional set of

data.

10. The method of claim 9, further comprising:

prior to writing the additional set of data, transforming the

additional set of data into a format storable in the
database structure.



US 2023/0222089 Al

11. The method of claim 10, further comprising:

placing the additional set of data into an inbound queue,

wherein transforming the additional set of data com-
prises reading the additional set of data from the
inbound queue.

12. The method of claim 1, wherein the local entry is
associated with an attachment stored as a file, the method
further comprising:

based on the local entry being associated with the attach-

ment, transmitting, to the remote system, metadata for
the attachment, wherein the metadata includes a file-
name of the attachment and a key;

receiving, from the remote system, a request for the

attachment and the key; and

based on receiving the request for the attachment and the

key, transmitting, to the remote system, the attachment.

13. The method of claim 1, wherein the local entry is
associated with a domain, and wherein transmitting the set
of data comprises transmitting an indication of the domain
with the set of data.

14. A method comprising:

receiving, from a remote system and by way of an

inbound application programming interface (API), a set
of data with a remote correlation identifier assigned by
the remote system;

creating, for the set of data, a correlation record that

contains a local correlation identifier assigned locally
and the remote correlation identifier;

writing, to a correlation structure, the correlation record;

and

writing, to a database structure, the set of data.

15. The method of claim 14, further comprising:

prior to writing the set of data, transforming the set of data

into a format storable in the database structure.

16. The method of claim 15, further comprising:

placing the set of data into an inbound queue, wherein

transforming the set of data comprises reading the set
of data from the inbound queue.

17. The method of claim 14, further comprising:

receiving, from the remote system, an additional set of

data with an additional remote correlation identifier
assigned by the remote system;

Jul. 13,2023

creating, for the additional set of data, an additional
correlation record that contains an additional local
correlation identifier and the additional remote corre-
lation identifier;

writing, to the correlation structure, the additional corre-

lation record; and

writing, to the database structure, the additional set of

data.

18. The method of claim 14, further comprising:

receiving, from the remote system, an additional set of

data with the remote correlation identifier;

based on the remote correlation identifier, reading the

correlation record to determine the local correlation
identifier; and

based on the local correlation identifier, writing, to the

database structure, the additional set of data.

19. A non-transitory computer-readable medium storing
program instructions that, when executed by one or more
processors of a computing system, cause the computing
system to perform operations comprising:

receiving, from a remote system and by way of an

inbound application programming interface (API), a set
of data with a remote correlation identifier assigned by
the remote system;

creating, for the set of data, a correlation record that

contains a local correlation identifier assigned locally
and the remote correlation identifier;

writing, to a correlation structure, the correlation record;

and

writing, to a database structure, the set of data.

20. The non-transitory computer-readable medium of
claim 19, wherein the operations further comprise:

receiving, from the remote system, an additional set of

data with the remote correlation identifier;

based on the remote correlation identifier, reading the

correlation record to determine the local correlation
identifier; and

based on the local correlation identifier, writing, to the

database structure, the additional set of data.

#* #* #* #* #*



