a9 United States
a2y Patent Application Publication

Cropper et al.

US 20170220377A1

10) Pub. No.: US 2017/0220377 A1l
43) Pub. Date: Aug. 3, 2017

(54)

(71)

(72)

@
(22)

(63)

MANAGEMENT OF A VIRTUAL MACHINE

IN A VIRTUALIZED COMPUTING

ENVIRONMENT BASED ON A

CONCURRENCY LIMIT

Applicant: International Business Machines D
Corporation, Armonk, NY (US)

Inventors: Joseph W. Cropper, Rochester, MN (2

(US); Jeffrey W. Tenner, Rochester,

MN (US); Christine I. Wang, Austin,

TX (US)
Appl. No.: 15/493,346 (57
Filed: Apr. 21, 2017

Related U.S. Application Data

continuation of application No. 14/945,248, filed on
Nov. 18, 2015, now Pat. No. 9,684,533.

Publication Classification

Int. Cl1.

GO6F 9/455 (2006.01)

GO6F 9/48 (2006.01)

U.S. CL

CPC GO6F 9/45558 (2013.01); GOGF 9/4881

(2013.01); GOGF 2009/45591 (2013.01); GO6F
2009/4557 (2013.01)

ABSTRACT

One or more concurrency limits may be checked in connec-
tion with the performance of a virtual machine management
operation such as a virtual machine deploy, resize or migra-
tion operation to enable the virtual machine management

Continuation of application No. 15/065,612, filed on operation to be scheduled on a host for which no concur-

Mar. 9, 2016, now Pat. No. 9,678,786, which is a rency

200

limits have been met.

.

Virtualization Management Console 202

Framework APl 204

Security 206 Scheduler 208 | | Monitoring 210 | | Policies 212

Images 214 Flavors 216 Projects 218 Quotas 220
Messaging 222 DBMS 224
Compute Storage Network
Virtualization Virtualization Virtualization
Drivers 226 Drivers 228 Drivers 230

234

236

Aug. 3,2017 Sheet 1 of 8 US 2017/0220377 Al

Patent Application Publication

10

o
0

54C

54N

54B

FIG. 1

Aug. 3,2017 Sheet 2 of 8 US 2017/0220377 Al

Patent Application Publication

ol | z

BIVAYOG PUE SIBMPIRH
iy i3

womtabouey

YAy &Y &Y &Y/

SPROPLIOAL

Patent Application Publication Aug. 3,2017 Sheet 3 of 8 US 2017/0220377 A1

Virtualized Computing Environment 100

Virtualization 102ﬁ
Manager
Controller Pool 108
140
Pool 108
Host 106
Host 106

Processor Node 104

FIG. 3A Processor Node 104

Processor 110 |000O| Processor 11

Memory 112 [OOO| Memory 112

/0 114 Networking 116 | [4

Network
134

B ¥ ¥

=T J Storage Storage St]
Storage Storage
Systemgm = Fabric 138 | °°“ | Fabric 138 = systemg@ |
Host 106
Virtual Machine 120 Virtual Machine 120
Job/App Job/App Job/App Job/App
132 999 132 132 |99° 132
Middleware 130 Middleware 130
Q00
Operating System 128 Operating System 128
VP 122 |ocoo| VP122 VP 122 |ocoo| VP 122
VMem 124 VIO 126 VMem 124 VIO 126
Hypervisor/'VMM 118

FIG. 3B

Patent Application Publication

Aug. 3,2017

Sheet 4 of 8

US 2017/0220377 Al

200
L‘ Virtualization Management Console 202
Framework APl 204
Security 206 Scheduler 208 | | Monitoring 210 | | Policies 212
Images 214 Flavors 216 Projects 218 Quotas 220
Messaging 222 DBMS 224
Compute Storage Network

Virtualization Virtualization Virtualization
Drivers 226 Drivers 228 Drivers 230

232

236

Patent Application Publication Aug. 3,2017 Sheet 5 of 8 US 2017/0220377 A1

26\0 Deploy Virtual
Machine

262

Log active operation

264 : ,
Receive required

resources and other
canfiguration settings

266 : 290 Migrate Virtual
. Machine

Place virtual machine

292
268 o Log active operation
‘.| Create virtual machine
294 l
270 | Place virtual machine
N Add adapters
296
272 - Perform migration
Add storage
298 Y
.- Clear active operation
274 .
. | Copy image to boot
volume
27\6 Obtain system
| configuration information FIG 6
278
Boot virtual machine
Y
280
~ | Clear active operation

FIG.5

Patent Application Publication Aug. 3,2017 Sheet 6 of 8 US 2017/0220377 A1

300
‘.4 Place Virtual Machine

Y

Determine pools of
hosts, storage and
fabrics that meet virtual
machine requirements x

320~

302

Modify requirements

304 Y

Filter hosts based upon
concurrency limits

Y

306 Determine candidate

__| combinations of hosts,

storage and fabrics
from pools

318~\ yes

Y

At least one no Other
combination > configuration
found? settings possible?

308

yes 322 ¥ no

310 y
no)/ More than one Return
combination error

found?

v yes

.| Score each combination

FIG. 7

Y

Select highest scored
combination

312 ¥
% Return selected
combination

Patent Application Publication

\

330
\ v(Filter hosts)

332 ~

> For each host

next

Y

Aug. 3,2017

done

334

Determine count of active
operations

336

A

Determine counts of sub-
operations for all active
operations, querying
components for sub-operation
counts as needed

338

Determine concurrency limits
for all of sub-operations,
querying components as

needed

Sheet 7 of 8

no

342 ~

340ﬁ

> For each host

next

Are any concurrency limits
for sub-operations related
to requested operation
met by active operations?

yes

Y

y

Filter out host

US 2017/0220377 Al

FIG. 8

346 ~

done

Return filtered Iist)

of hosts

390 Active Operation
Monitor

392

\

:

| of active operations

394

396

Determine number

and sub-operations
for each host

A J

Identify hosts
already meeting
concurrency limit

A J

| Wait for next polling

interval

FIG. 10

Patent Application Publication Aug. 3,2017 Sheet 8 of 8 US 2017/0220377 A1

SQO Deploy Virtual
. Machine to Host
FIG. 9 362

L.og active operation

364
] Determine count of active
operations
366ﬁ |
Determine counts of sub-
operations for all active
operations, querying
components for sub-operation
counts as needed
368 . ' —
378 .__| Determine concurrency limits
I for all of sub-operations,
Wait for next polling querying components as
interval needed
A
376~ yes 370~ ‘
: " no Are any concurrency limits
?
<Contmue waiting’ e met by active operations?
no es
380~ | 372 VY
Place virtual machine 1 Complete deployment
on alternate host on host
382~ 374 '
Complete deployment o : .
on alternate host » Clear active operation

Done

US 2017/0220377 Al

MANAGEMENT OF A VIRTUAL MACHINE
IN A VIRTUALIZED COMPUTING
ENVIRONMENT BASED ON A
CONCURRENCY LIMIT

BACKGROUND

[0001] The invention is generally related to computers and
computer software, and in particular, to logically-partitioned
and virtualized computing environments.

[0002] Computing technology has advanced at a remark-
able pace, with each subsequent generation of computing
system increasing in performance, functionality, and storage
capacity, often at reduced cost. In addition, workload allo-
cation of computing and other hardware resources is often
employed to maximize the utilization of hardware resources
such as processors, memories, networks, storage devices,
etc., and thereby reduce the overall costs necessary for
supporting a desired workload capacity. Optimizing work-
load allocation can also have a positive impact on power
costs and environmental concerns due to a reduction in the
amount of hardware resources required to support a given
workload.

[0003] Many computer or data processing systems employ
virtualization, also referred to as logical partitioning, which
enables one or more individual physical computers to each
run several operating environments, or operating systems, at
once in a virtualized computing environment. In some
instances, for example, a single physical computer, which
may also be referred to as a host, can run a plurality of
operating systems in a corresponding plurality of virtual
machines (VMs), also referred to as logical partitions
(LPARs). Each operating system resides in its own virtual
machine, with each virtual machine allocated a part of a
physical processor, an entire physical processor, or multiple
physical processors from the computer. Additionally, a por-
tion of the computer’s memory may be allocated to each
virtual machine. An underlying partition manager, often
referred to as a hypervisor or virtual machine monitor
(VMM), manages and controls the virtual machines. The
hypervisor is typically a part of the system firmware and
manages the allocation of resources to the operating systems
and virtual machines. As such, one physical computer may
run one or more virtual machines and thus virtualize the
underlying hardware resources used by the applications,
operating systems, and other program code configured to
operate in those virtual machines.

[0004] Virtualization is increasingly used in data centers
and cloud computing applications, which may provide for
cost efficiencies through elastic computing, whereby hard-
ware resources from multiple hosts are provisioned and
de-provisioned based on workload changes. In such appli-
cations, individual workloads may change over time, and as
such virtualization may be employed to effectively multiplex
hardware resources over multiple workloads to provide an
overall greater resource utilization. In order to balance costs,
an assumption may be made that not all workloads will run
with maximum resource requirements at the same time, so
fewer hardware resources than the sum of all maximum
resource requirements for workloads may be allocated for a
given set of workflows, resulting in the hardware resources
being overcommitted. As one example, a cloud provider
may allocate more virtual processors (CPUs) across multiple
virtual machines on a particular host computer under the

Aug. 3, 2017

assumption that some of the virtual machines will only run
at off-peak hours when other virtual machines are shut down
or otherwise deactivated.

[0005] Some data centers and cloud computing applica-
tions may also support the virtualization of other types of
hardware resources, such as storage devices and networks,
which may enable virtual machines to access virtual net-
works and/or storage devices, and with the particulars of the
underlying hardware supporting such virtual entities man-
aged in a manner that is effectively hidden from the virtual
machines. The allocation of such hardware resources to
virtual machines may also impact performance and effi-
ciency, as overloading networks and/or storage devices can
lead to slow response times, and in some instances, to an
inability of a virtual machine to connect to an underlying
hardware resource.

[0006] Virtualized computing environments may also uti-
lize various technologies that may be used to improve
performance and/or reliability. For example, high availabil-
ity techniques may be employed to handle fault situations,
e.g., to automatically restart a virtual machine if the virtual
machine is detected to have gone down, to rebuild a virtual
machine on a new host if an original host unexpectedly
crashes or loses power. In addition, load balancing may be
employed to dynamically migrate virtual machines to dif-
ferent hosts, e.g., whenever one host is overloaded and
excess capacity is available on another host. Furthermore,
energy efficiency is often a concern in many data centers,
and as a result, it may be desirable in some instances to
consolidate virtual machines on fewer numbers of hosts to
enable unused hosts to be powered down.

SUMMARY

[0007] According to an embodiment of the present inven-
tion, a virtualized computing environment may be managed
by monitoring active virtual machine management opera-
tions on a first host among a plurality of hosts in the
virtualized computing environment, where each active vir-
tual machine management operation includes a plurality of
sub-operations with associated concurrency limits, receiving
a request to perform a virtual machine management opera-
tion, in response to receiving the request, determining
whether any of the concurrency limits associated with the
sub-operations for the requested virtual machine manage-
ment operation has been met based at least in part on the
monitored active virtual machine management operations on
the first host, and initiating performance of the requested
virtual machine management operation on a second host
among the plurality of hosts in response to determining that
at least one concurrency limit associated with at least one
sub-operation for the requested virtual machine manage-
ment operation has been met.

[0008] These and other advantages and features, which
characterize the invention, are set forth in the claims
annexed hereto and forming a further part hereof. However,
for a better understanding of the invention, and of the
advantages and objectives attained through its use, reference
should be made to the Drawings, and to the accompanying
descriptive matter, in which there is described exemplary
embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 depicts an example cloud computing envi-
ronment consistent with the invention.

US 2017/0220377 Al

[0010] FIG. 2 depicts abstraction model layers according
to an example embodiment consistent with the invention.
[0011] FIGS. 3A and 3B are block diagrams of an example
hardware (FIG. 3A) and software (FIG. 3B) environment
suitable for implementing a virtualized computing environ-
ment consistent with the invention.

[0012] FIG. 4 is a block diagram of example software
components in a cloud computing framework for use in
performing virtualization management in the virtualized
computing environment of FIGS. 3A-3B.

[0013] FIG. 5 is a flowchart illustrating a sequence of
operations for deploying a virtual machine in the virtualized
computing environment of FIGS. 3A-3B.

[0014] FIG. 6 is a flowchart illustrating a sequence of
operations for migrating a virtual machine in the virtualized
computing environment of FIGS. 3A-3B.

[0015] FIG. 7 is a flowchart illustrating a sequence of
operations for placing a virtual machine in the virtualized
computing environment of FIGS. 3A-3B.

[0016] FIG. 8 is a flowchart illustrating a sequence of
operations for filtering hosts in the virtualized computing
environment of FIGS. 3A-3B.

[0017] FIG. 9 is a flowchart illustrating a sequence of
operations for deploying a virtual machine to a particular
host in the virtualized computing environment of FIGS.
3A-3B.

[0018] FIG. 10 is a flowchart illustrating a sequence of
operations for monitoring active operations in the virtualized
computing environment of FIGS. 3A-3B.

DETAILED DESCRIPTION

[0019] It is understood in advance that although this
disclosure includes a detailed description on cloud comput-
ing, implementation of the teachings recited herein are not
limited to a cloud computing environment. Rather, embodi-
ments of the invention are capable of being implemented in
conjunction with any other type of computing environment
now known or later developed.

[0020] Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.
[0021]

[0022] On-demand self-service: a cloud consumer can
unilaterally provision computing capabilities, such as server
time and network storage, as needed automatically without
requiring human interaction with the service’s provider.
[0023] Broad network access: capabilities are available
over a network and accessed through standard mechanisms
that promote use by heterogeneous thin or thick client
platforms (e.g., mobile phones, laptops, and PDAs).
[0024] Resource pooling: the provider’s computing
resources are pooled to serve multiple consumers using a
multi-tenant model, with different physical and virtual
resources dynamically assigned and reassigned according to
demand. There is a sense of location independence in that
the consumer generally has no control or knowledge over

Characteristics are as follows:

Aug. 3, 2017

the exact location of the provided resources but may be able
to specity location at a higher level of abstraction (e.g.,
country, state, or datacenter).

[0025] Rapid elasticity: capabilities can be rapidly and
elastically provisioned, in some cases automatically, to
quickly scale out and rapidly released to quickly scale in. To
the consumer, the capabilities available for provisioning
often appear to be unlimited and can be purchased in any
quantity at any time.

[0026] Measured service: cloud systems automatically
control and optimize resource use by leveraging a metering
capability at some level of abstraction appropriate to the
type of service (e.g., storage, processing, bandwidth, and
active user accounts). Resource usage can be monitored,
controlled, and reported providing transparency for both the
provider and consumer of the utilized service.

[0027] Service Models are as follows:

[0028] Software as a Service (SaaS): the capability pro-
vided to the consumer is to use the provider’s applications
running on a cloud infrastructure. The applications are
accessible from various client devices through a thin client
interface such as a web browser (e.g., web-based e-mail).
The consumer does not manage or control the underlying
cloud infrastructure including network, servers, operating
systems, storage, or even individual application capabilities,
with the possible exception of limited user-specific applica-
tion configuration settings.

[0029] Platform as a Service (PaaS): the capability pro-
vided to the consumer is to deploy onto the cloud infra-
structure consumer-created or acquired applications created
using programming languages and tools supported by the
provider. The consumer does not manage or control the
underlying cloud infrastructure including networks, servers,
operating systems, or storage, but has control over the
deployed applications and possibly application hosting envi-
ronment configurations.

[0030] Infrastructure as a Service (laaS): the capability
provided to the consumer is to provision processing, storage,
networks, and other fundamental computing resources
where the consumer is able to deploy and run arbitrary
software, which can include operating systems and applica-
tions. The consumer does not manage or control the under-
lying cloud infrastructure but has control over operating
systems, storage, deployed applications, and possibly lim-
ited control of select networking components (e.g., host
firewalls).

[0031] Deployment Models are as follows:

[0032] Private cloud: the cloud infrastructure is operated
solely for an organization. It may be managed by the
organization or a third party and may exist on-premises or
off-premises.

[0033] Community cloud: the cloud infrastructure is
shared by several organizations and supports a specific
community that has shared concerns (e.g., mission, security
requirements, policy, and compliance considerations). It
may be managed by the organizations or a third party and
may exist on-premises or off-premises.

[0034] Public cloud: the cloud infrastructure is made
available to the general public or a large industry group and
is owned by an organization selling cloud services.

[0035] Hybrid cloud: the cloud infrastructure is a compo-
sition of two or more clouds (private, community, or public)
that remain unique entities but are bound together by stan-

US 2017/0220377 Al

dardized or proprietary technology that enables data and
application portability (e.g., cloud bursting for load-balanc-
ing between clouds).

[0036] A cloud computing environment is service oriented
with a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure comprising a network of interconnected
nodes.

[0037] Referring now to the Drawings, wherein like num-
bers denote like parts throughout the several views, FIG. 1
depicts an illustrative cloud computing environment 50
suitable for use in embodiments consistent with the inven-
tion. As shown, cloud computing environment 50 comprises
one or more cloud computing nodes 10 with which local
computing devices used by cloud consumers, such as, for
example, personal digital assistant (PDA) or cellular tele-
phone 54A, desktop computer 54B, laptop computer 54C,
and/or automobile computer system 54N may communicate.
Nodes 10 may communicate with one another. They may be
grouped (not shown) physically or virtually, in one or more
networks, such as Private, Community, Public, or Hybrid
clouds as described hereinabove, or a combination thereof.
This allows cloud computing environment 50 to offer infra-
structure, platforms and/or software as services for which a
cloud consumer does not need to maintain resources on a
local computing device. It is understood that the types of
computing devices 54A-N shown in FIG. 1 are intended to
be illustrative only and that computing nodes 10 and cloud
computing environment 50 can communicate with any type
of computerized device over any type of network and/or
network addressable connection (e.g., using a web browser).
[0038] Referring now to FIG. 2, a set of functional
abstraction layers provided by cloud computing environ-
ment 50 (FIG. 1) is shown. It should be understood in
advance that the components, layers, and functions shown in
FIG. 2 are intended to be illustrative only and embodiments
of the invention are not limited thereto. As depicted, the
following layers and corresponding functions are provided:
[0039] Hardware and software layer 60 includes hardware
and software components. Examples of hardware compo-
nents include: mainframes 61; RISC (Reduced Instruction
Set Computer) architecture based servers 62; servers 63;
blade servers 64; storage devices 65; and networks and
networking components 66. In some embodiments, software
components include network application server software 67
and database software 68.

[0040] Virtualization layer 70 provides an abstraction
layer from which the following examples of virtual entities
may be provided: virtual servers 71; virtual storage 72;
virtual networks 73, including virtual private networks;
virtual applications and operating systems 74; and virtual
clients 75.

[0041] Inone example, management layer 80 may provide
the functions described below. Resource provisioning 81
provides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment. Metering and Pricing 82
provide cost tracking as resources are utilized within the
cloud computing environment, and billing or invoicing for
consumption of these resources. In one example, these
resources may comprise application software licenses. Secu-
rity provides identity verification for cloud consumers and
tasks, as well as protection for data and other resources. User
portal 83 provides access to the cloud computing environ-

Aug. 3, 2017

ment for consumers and system administrators. Service level
management 84 provides cloud computing resource alloca-
tion and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 85 provide pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement is
anticipated in accordance with an SLA.

[0042] Workloads layer 90 provides examples of function-
ality for which the cloud computing environment may be
utilized. Examples of workloads and functions which may
be provided from this layer include: mapping and navigation
91; software development and lifecycle management 92;
virtual classroom education delivery 93; data analytics pro-
cessing 94; transaction processing 95; and mobile desktop
96.

[0043] FIGS. 3A-3B illustrate the principal hardware and
software components in a virtualized computing environ-
ment or apparatus 100 consistent with the invention, and
suitable for implementation in a cloud computing environ-
ment such as environment 50, as well as in other cloud
and/or non-cloud computing environments. As shown in
FIG. 3A, apparatus 100 may include a multi-node data
processing system 102 where the physical hardware is
distributed among a plurality of physical processor nodes
104 disposed in a plurality of hosts or computer systems
106, with the hosts 106 disposed in one or more pools 108.
Each processor node 104 includes one or more processors
110, one or more memory devices 112, and in some embodi-
ments, additional hardware such as input/output (I/O) hard-
ware 114 (e.g., one or more input/output (I/0) adapters)
and/or networking hardware 116. Appropriate networking
functionality (not shown) may also be used to provide data
communication between the various processor nodes 104
and hosts 106, as well as other external systems.

[0044] Apparatus 100 may be implemented using any of a
number of different architectures suitable for implementing
avirtualized environment. For example, in one embodiment,
apparatus 100 may include one or more of a Power 770, 780
or 795 system available from International Business
Machines Corporation, the configuration of which will be
apparent to one of ordinary skill in the art having the benefit
of'the instant disclosure. It will be appreciated, however, that
other architectures suitable for executing virtualized envi-
ronments may be used in other embodiments of the inven-
tion, so the invention is not limited to the particular archi-
tecture disclosed herein.

[0045] Each processor 110 may be implemented as a
single or multi-threaded processor and/or as a single or
multi-core processor, while each memory 112 may be con-
sidered to include one or more levels of memory devices,
e.g., a DRAM-based main storage, as well as one or more
levels of data, instruction and/or combination caches, with
certain caches either serving individual processors or mul-
tiple processors as is well known in the art. In addition, the
memory of apparatus 100 may be considered to include
memory storage physically located elsewhere in apparatus
100, e.g., any cache memory in a processor, as well as any
storage capacity used as a virtual memory, e.g., as stored on
a mass storage device or on another computer coupled to
apparatus 100.

[0046] Apparatus 100 operates under the control of one or
more kernels, hypervisors, operating systems, etc., and
executes or otherwise relies upon various computer software
applications, components, programs, objects, modules, data

US 2017/0220377 Al

structures, etc., as will be described in greater detail below.
Moreover, various applications, components, programs,
objects, modules, etc. may also execute on one or more
processors in another computer coupled to apparatus 100 via
network, e.g., in a distributed or client-server computing
environment, whereby the processing required to implement
the functions of a computer program may be allocated to
multiple computers over a network.

[0047] For example, FIG. 3B illustrates various software
components 118-132 that may be resident within a host 106
in apparatus 100. A hypervisor or virtual machine monitor
(VMM) 118 may host one or more virtual machines (VMs)
120 and may allocate to each virtual machine 120 a portion
of the physical hardware resources of host 106 (e.g., pro-
cessor, memory and/or 1O resources associated with one or
more processor nodes 104), represented here by one or more
virtual processors (VPs) 122, a virtual memory (VMem) 124
and virtual input/output (VIO) resources 126. Each virtual
machine 120 may in turn host an operating system 128 and
optionally middleware 130, as well as one or more jobs
and/or applications 132. It will be appreciated that each
virtual machine 120, which may also be referred to as a
logical partition, virtual server or virtual computer, may
operate in a manner that emulates a separate physical
computer, and as such, may host practically any software
components capable of being hosted by a computer.
[0048] Additional hardware and/or software components
may also be resident in apparatus 100, e.g., mass storage
hardware, external input/output devices such as printers or
displays, and management hardware and/or software, e.g., a
hardware management console (HMC) through which the
hardware and/or software configuration of the apparatus
may be managed by an administrator. Further, in the illus-
trated embodiments, connectivity to one or more external
networks 134 may also be supported, as may connectivity to
one or more storage systems 136 through one or more
storage fabrics 138. Virtualized environments may be imple-
mented in an innumerable number of manners, and may
include an innumerable number of hardware and/or software
variations, and as such, the invention is not limited to the
particular implementation disclosed herein.

[0049] It will be appreciated that the present invention
may be a system, a method, and/or a computer program
product. The computer program product may include a
computer readable storage medium (or media) having com-
puter readable program instructions thereon for causing one
or more processors to carry out aspects of the present
invention.

[0050] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-

Aug. 3, 2017

cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0051] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0052] Computer readable program instructions for carry-
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Java, Smalltalk,
C++ or the like, and conventional procedural programming
languages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

[0053] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0054] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-

US 2017/0220377 Al

cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0055] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0056] The flowchart and block diagrams in the drawings
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.
[0057] In addition, computer readable program instruc-
tions, of which one or more may collectively be referred to
herein as “program code,” may be identified herein based
upon the application within which such instructions are
implemented in a specific embodiment of the invention.
However, it should be appreciated that any particular pro-
gram nomenclature that follows is used merely for conve-
nience, and thus the invention should not be limited to use
solely in any specific application identified and/or implied
by such nomenclature. Furthermore, given the typically
endless number of manners in which computer programs
may be organized into routines, procedures, methods, mod-
ules, objects, and the like, as well as the various manners in
which program functionality may be allocated among vari-
ous software layers that are resident within a typical com-
puter (e.g., operating systems, libraries, API’s, applications,
applets, etc.), it should be appreciated that the invention is
not limited to the specific organization and allocation of
program functionality described herein.

[0058] Those skilled in the art will recognize that the
example environment illustrated in FIGS. 1, 2, 3A and 3B is

Aug. 3, 2017

not intended to limit the present invention. Indeed, those
skilled in the art will recognize that other alternative hard-
ware and/or software environments may be used without
departing from the scope of the invention.

Management of a Virtual Machine in a Virtualized
Computing Environment Based on a Concurrency
Limit
[0059] Rapid deployment, resizing, and migration of vir-
tual machines is desirable in many virtualized computing
environments, and particularly in cloud computing environ-
ments where it is desirable to meet the demands of numerous
customers and to do so in a cost-effective manner. Deploy-
ment, resizing and migration of a virtual machine may be
considered for the purposes of this disclosure to be types of
virtual machine management operations, i.e., operations that
are used to manage the configuration and/or operating
environment of one or more virtual machines resident within
a virtualized computing environment. Virtual machine
deployment generally refers to the creation and initialization
of a virtual machine into an operating state on a host. Virtual
machine resizing generally refers to altering the resource
allocation of a virtual machine that has already been
deployed, e.g., to add or remove processor resources,
memory resources, 10 resources, storage resources, etc.
Virtual machine migration generally refers to transferring a
virtual machine from one host to another host such that the
virtual machine thereafter runs on the other host. Other types
of virtual machine management operations may include
operations such as virtual machine delete operations that
remove a virtual machine from a virtualized computing
environment, virtual machine capture operations that create
an image or snapshot of the state of a virtual machine at a
particular point in time, virtual machine attach volume
operations that attach a new storage volume to a virtual
machine, virtual machine remote restart operations that
restart virtual machines, and virtual machine suspend opera-
tions that effectively pause the operation of an active virtual
machine. It will be appreciated that the aforementioned list
of virtual machine management operations is not exclusive,
and other types of virtual machine management operations
will be appreciated by those of ordinary skill in the art

having the benefit of the instant disclosure.

[0060] The throughput (e.g., in terms of operations/hour)
of performing these types of virtual machine management
operations may be enhanced through support for performing
multiple operations in parallel. However, many virtual
machine management operations perform a number of dif-
ferent tasks, referred to herein as sub-operations, that
involve various components within a virtualized computing
environment (e.g., various components, entities or layers
within a cloud and/or virtualization stack, which are collec-
tively referred to herein as components), and for which
limits may exist that limit the number of concurrent man-
agement-related activities or tasks that can be handled by
those components. These limits, which are referred to herein
as concurrency limits, can result in the formation of bottle-
necks that limit throughput of the higher order virtual
machine management operations. A deployment operation,
for example, may include sub-operations such as creating a
virtual machine, attaching an image to the virtual machine,
creating a boot volume for the virtual machine, zoning a
switch in a network or storage subsystem, etc., and each of
these sub-operations may be associated with concurrency

US 2017/0220377 Al

limits representing the maximum number of concurrent
sub-operations that may be handled by any involved com-
ponents (e.g., limits on the number of hosts that can be
connected to a storage volume or fabric switch at one time,
limits on the number of concurrent activities that can be
handled by a hypervisor, storage device, or switch, limits on
the number of concurrent activities that can be handled by a
virtualization or network library, etc.)

[0061] As an example, as a part of deploying, migrating,
or resizing a virtual machine, placement policies may be
used to decide on which host a virtual machine should be
placed. The placement logic used in some virtualized com-
puting environments, for example, may use metrics such as
availability of required processor (CPU), memory, and stor-
age resources to determine a set of hosts that are considered
to be candidates to host the virtual machine. The placement
logic may also consider properties of the host such as
architecture (e.g., x86 or Power), the storage accessible from
the host, the network the host is on and other attributes. In
addition, administrators may be permitted to define place-
ment policies, e.g., to spread virtual machines evenly across
hosts to balance workload or to pack as many virtual
machines as possible onto a host before placing virtual
machines on other hosts to conserve energy. When many
deploy, resize or migration operations are performed con-
currently, however, the sub-operations incorporated into
such operations may exceed the limits of concurrent activi-
ties of a chosen host’s hypervisor, the storage subsystem, or
other aspects of the virtualization and cloud management
stack for the chosen host. Further, with a packing placement
policy, a greater risk of meeting concurrency limits generally
exists since by design the intent is to pack virtual machines
onto one host in order to fill up that host before moving to
the next.

[0062] When concurrency limits of a cloud and/or virtu-
alization stack are met (i.e., when the concurrency limits are
reached and/or exceeded), some virtualized computing envi-
ronments may make no attempt to limit virtual machine
management operations and/or any of their associated sub-
operations and simply return any error returned by an
involved component in the virtualized computing environ-
ment (e.g., a timeout error). In other environments, requests
for operations or sub-operations may initially be placed in a
queue and handled in a first-in, first-out manner, and if any
requests sit in the queue too long, a timeout error may be
returned. When an operation times out or otherwise fails due
to an error, manual intervention by an administrator may be
required, or the operation may be cancelled, resulting in lack
of availability or performance of a customer workload.

[0063] In some embodiments consistent with the inven-
tion, on the other hand, concurrency limits may be checked
in association with performing virtual machine management
operations to enable such operations to be handled by hosts
for which concurrency limits have not been met. In some
embodiments, for example, metrics collection and filters
may be incorporated into a placement engine to monitor
concurrent virtual machine management operations such as
deploys, resizes, and migrations relative to concurrency
limits within virtualization and/or cloud management stacks
(e.g., concurrency limits of hypervisors, storage systems,
etc.) and filter out hosts for which their concurrency limits
have been met, such that a requested virtual machine man-
agement operation may be performed on another host with-
out waiting. Furthermore, in some embodiments, a host may

Aug. 3, 2017

be selected without regard to concurrency limits, and if any
concurrency limits are met for a particular operation, the
operation may be delayed for one or more polling cycles to
check if concurrency limits are still met, and if so, to
reschedule the operation on another host.

[0064] In one embodiment, for example, the herein-de-
scribed functionality may be implemented within placement
or scheduler logic in a cloud or virtualized computing
environment, e.g., within a virtualization manager such as is
discussed below in connection with FIG. 4, to filter hosts
using knowledge of the concurrency limits for the cloud
and/or virtualization stack components. Concurrency limits
that may be considered include, but are not limited to
concurrency limits such as a hypervisor concurrency limit
such as where a hypervisor can support a maximum of X
concurrent virtual machine creation operations, a storage
system concurrency limit such as where a storage system
can support a maximum of X concurrent create volume
operations, a network concurrency limit such as where a
Fibre Channel fabric switch can support a maximum of X
concurrent zoning operations, a virtualization library con-
currency limit such as where a virtualization library can
support a maximum of X concurrent virtual machine live
migrations, etc.

[0065] In the aforementioned embodiment, during a vir-
tual machine management operation (e.g. a deploy, resize, or
migration), the virtualization manager may maintain a count
of the number of active virtual machine management opera-
tions on one or more hosts. Further, in some embodiments,
if virtual machine management operations may be initiated
out-of-band from the virtualization manager (e.g. if users
can initiate virtual machine deployments externally from a
virtualization manager), the virtualization manager may
query any relevant components to determine how many
activities are currently active. The virtualization manager
may then add filters to its host selection logic to exclude
hosts having components where the concurrency limits are
already met. For example, for a deployment operation, if all
of the storage systems to which a particular host has access
have reached their limits for the number of concurrent create
volume operations, that host may be excluded from consid-
eration for the deployment, such that the placement or
scheduler logic will select another host that can perform the
deployment without conflict and/or waiting.

[0066] In addition, and particularly where a packing
policy is implemented, it may also be desirable to enable a
virtual machine management operation to be temporarily
delayed in order to wait for a component associated with a
desired host to become available. For example, a configu-
rable option may be provided to handle a busy host by
waiting for some specified time and/or for some number of
attempts before moving the operation to another host. If
concurrent activities on a component initially determined to
have met a concurrency limit thereafter fall below the
concurrency limit within that time and/or during those
attempts, the delayed operation may be released and initi-
ated on the host. Otherwise, if the concurrency limit is still
met, the virtualization manager may repeat a placement or
scheduling operation with a filter that excludes the host as a
target so that the virtual machine is placed on some other
host.

[0067] In some embodiments consistent with the inven-
tion, active virtual machine management operations may be
monitored on one or more hosts in a virtualized computing

US 2017/0220377 Al

environment. The active virtual machine management
operations may each have multiple sub-operations, and each
sub-operation may be associated with one or more concur-
rency limits. Each concurrency limit represent a limit on the
number of concurrent activities that can be handled by an
associated component in a virtualized or cloud computing
environment, and as such, a particular sub-operation may
have one or more associated concurrency limits based upon
which components are involved with the performance of the
sub-operation, as well as which concurrency limits exist for
each of the involved components. As will become more
apparent below, the monitoring of virtual machine manage-
ment operations may be performed on demand, e.g., upon
receipt of a request to perform a virtual machine manage-
ment operation, or may be performed substantially continu-
ously, e.g., using a background thread or process. Moreover,
the monitoring may be performed individually for one or
more hosts, or may be performed for an entire virtualized or
cloud computing environment, and as such, monitoring
functionality may be resident on particular hosts, distributed
among multiple hosts, and/or performed via a component
separate from any particular host.

[0068] In addition, in some embodiments consistent with
the invention, and in response to receiving a request to
perform a virtual machine management operation, a deter-
mination may be made as to whether any of the concurrency
limits associated with the sub-operations for a requested
virtual machine management operation has been met on one
or more hosts based at least in part on the monitored active
virtual machine management operations for the one or more
hosts. Then, in response to determining that at least one
concurrency limit associated with at least one sub-operation
for the requested virtual machine management operation has
been met, performance of the requested virtual machine
management operation may be initiated on a different host,
thereby avoiding any delay or error that might otherwise
occur as a result of scheduling the virtual machine manage-
ment operation on a host for which one or more concurrency
limits has been met.

[0069] Concurrency limits may be determined in different
manners in different embodiments, and may be determined
in different manners for different components in a virtual-
ized or cloud computing environment. For example, some
concurrency limits may be determined from configuration
values set by a cloud management software administrator. In
addition, some concurrency limits may statically defined
and/or hard-coded, and may be determined from values set
by documented limits or other specifications.

[0070] Further, some concurrency limits may be deter-
mined by querying a component, e.g., through an API for the
component. Likewise, in some embodiments, components
may also be queried to retrieve a count of active sub-
operations or other activities for that component, or a count
of the number of additional sub-operations or activities that
could be handled by that component based upon the current
status of the component. Also, in some embodiments, a
determination of whether a concurrency limit has been met
may be made within a component, such that a query to the
component may return a simple busy/available response
based upon the concurrency limits and current activities of
the component.

[0071] Now turning to FIG. 4, virtual machine manage-
ment operations may be implemented within a cloud com-
puting framework such as framework 200. Framework 200

Aug. 3, 2017

may be based in some embodiments on the OpenStack
architecture, and may include a virtualization management
console 202 that interfaces with the framework through a
framework API 204. Framework 200 may be considered to
implement at least a portion of a computer-implemented
virtualization or cloud manager, and may include a man-
agement service layer includes a security service 206, a
scheduler service 208, and monitoring service 210, which
respectively provide security, virtual machine scheduling/
placement and event monitoring functionality. Additional
management functionality manages various persisted enti-
ties in the framework, including policies 212, images 214,
flavors 216, projects 218 and quotas 220. Policies 212 may
include policies related to virtualization management.
Images 214 refer to disk or server images for virtual
machines, including images used for templates, as well as
images used for backups. Flavors 216 refer to virtual hard-
ware templates that define various configuration settings for
virtual machines, e.g., sizes for virtual memory, disk, virtual
CPUs, etc. Projects 218 refer to tenants, or groups of users,
and quotas 220 refer to operational limits established for
different projects.

[0072] A middleware layer may include a messaging ser-
vice 222, e.g., an AMQP (Advanced Message Queuing
Protocol) message broker, and a database service (DBMS)
224. In addition, virtualization drivers, e.g., compute virtu-
alization drivers 226, storage virtualization drivers 228, and
network virtualization drivers 230 respectively interface
with physical compute resources 232, physical storage
resources 234 and physical network resources 236.

[0073] Elements of framework 200 may be implemented,
for example, in a virtualization manager controller 140 (FIG.
3A), with other elements implemented within one or more
hosts, e.g., within one or more virtual machines resident on
one or more hosts. In other embodiments, however, various
elements of framework 200 may be implemented in other
hardware, whether external or internal to a virtualized com-
puting environment.

[0074] Framework 200 may be configured to receive
requests from users such as administrators or customers for
various types of virtual machine management operations,
and in response thereto, to initiate performance of those
operations within a virtualized or cloud computing environ-
ment. As noted above, virtual machine management opera-
tions may include one or more sub-operations, and each
sub-operation may include one or more associated concur-
rency limits that are in turn associated with one or more
components to which the sub-operations are directed. In the
illustrated embodiment, these operations may be effectively
tracked by logging the start and completion of each opera-
tion such that the number of active operations may be
determined at a given time. In other embodiments, however,
other mechanisms may be employed to determine whether
any relevant concurrency limits are met that might preclude
performance of a virtual machine management operation on
a particular host, so the invention is not limited to the
particular tracking mechanism described hereinafter.

[0075] As noted above, various types of virtual machine
management operations may be supported, and FIGS. 5 and
6 illustrated two such types of operations, a virtual machine
deployment operation (FIG. 5) and a virtual machine migra-
tion operation (FIG. 6). Application of the same techniques
to other types of virtual machine management operations

US 2017/0220377 Al

would be well within the skill of the ordinary artisan having
the benefit of the instant disclosure.

[0076] FIG. 5, in particular, illustrates an example
sequence of operations 260 for deploying a virtual machine
in a virtualized computing environment such as illustrated in
FIGS. 3A-3B. The sequence of operations may be initiated,
for example, in response to a request for a virtual machine
management operation such as a virtual machine deploy-
ment operation, and may be performed, for example, by
framework 200 of FIG. 4. The virtual machine deployment
operation may include a number of sub-operations, includ-
ing, for example, creating a virtual machine, adding adapt-
ers, adding storage, copying an image to a boot drive, and
booting or starting the virtual machine, and some or all of
these sub-operations may include associated concurrency
limits for any components with which these sub-operations
are performed.

[0077] Inorder to track the number of active operations on
one or more hosts, an active operation may be initially
logged in block 262. The logging may be performed indi-
vidually and locally on a host-by-host basis, or may be
logged across all hosts. The logging may also indicate the
type of active operation such that the sub-operations and the
concurrency limits associated therewith can be ascertained
when determining whether a virtual machine management
operation may be performed on a particular host based upon
concurrency limits.

[0078] Next, block 264 receives any required resources
and/or other configuration settings for the virtual machine to
be deployed. A user (e.g., an administrator) may specify, for
example, a desired number of virtual processors, a desired
amount of virtual memory, a desired amount of virtual
storage, desired network and/or storage connections, etc., as
well as settings such as performance tunings, virtual
machine name, type of storage, number of storage disks or
volumes, etc. In addition, a user may specify a template or
flavor upon which the virtual machine is to be based.
[0079] Next, in block 266, the virtual machine to be
deployed is placed on a host, i.e., a host for the virtual
machine is selected from a plurality of hosts in the virtual-
ized computing environment, and using a host placement
algorithm discussed in greater detail in connection with FIG.
7 below. A host may selected based upon various factors,
including compatibility with the virtual machine require-
ments and settings specified by the administrator as well as
optimizing the overall performance of the virtualized envi-
ronment by balancing workloads. Moreover, as will be
discussed in greater detail below, a host may be selected in
part based upon availability in view of one or more concur-
rency limits.

[0080] Next, once a host is selected for the virtual
machine, the virtual machine is created in block 268, e.g., by
instructing virtual machine management functionality on the
selected host to create a new virtual machine on that host.
Next, in block 270, one or more virtual adapters may be
added to the virtual machine, e.g., to create network and/or
storage connectivity, and in block 272, one or more virtual
storage volumes may be added for the virtual machine.
Then, in block 274, a virtual machine image is copied to the
boot volume, e.g., from a collection of pre-stored images
including the operating system and application(s) to execute
in the virtual machine.

[0081] Block 276 next obtains system configuration infor-
mation for the operating system of the virtual machine, e.g.,

Aug. 3, 2017

information such as host name, IP address, etc. In some
embodiments, for example, a virtual optical drive may be
added to the virtual machine with the system configuration
information provided on a virtual optical disc. In other
embodiments, the system configuration information may be
obtained in another manner, e.g., via a networked metadata
service. Then, in block 278, the virtual machine is booted.
Booting a virtual machine is analogous to powering on a
physical computer and bringing it into a fully active state,
and thus may be considered to incorporate the initialization
and execution of program code of the virtual machine to
bring the virtual machine into a fully active state. Upon
completion of block 278, the virtual machine deployment
operation is complete, and as such, block 280 may clear the
active operation from the log of active operations.

[0082] It will be appreciated that the deployment of virtual
machines may be implemented in a number of different
manners in different virtualized environments. As such, a
number of different alternative processes may be used in
other embodiments, as will be appreciated by one of ordi-
nary skill in the art having the benefit of the instant disclo-
sure.

[0083] FIG. 6 illustrates an example sequence of opera-
tions 290 for migrating a virtual machine in a virtualized
computing environment such as illustrated in FIGS. 3A-3B.
The sequence of operations may be initiated, for example, in
response to a request for a virtual machine management
operation such as a virtual machine migration operation, and
may be performed, for example, by framework 200 of FIG.
4. As with the virtual machine deployment operation illus-
trated in FIG. 5, an active operation may be initially logged
in block 292, and then in block 294, the virtual machine to
be migrated may be placed on a different host. In some
embodiments, the virtual machine migration operation may
specify a particular host to which the virtual machine should
be migrated, while in other embodiments, a placement
algorithm similar to that used for deployment may be used.
Next, once a new host is selected for the virtual machine, the
migration is performed in block 296, in a manner understood
by one of ordinary skill having the benefit of the instant
disclosure. Upon completion of block 296, the virtual
machine migration operation is complete, and as such, block
298 may clear the active operation from the log of active
operations.

[0084] Now turning to FIG. 7, a sequence of operations
300 is illustrated for placing a virtual machine, e.g., to
implement block 266 of FIG. 5 and/or block 294 of FIG. 6
in some embodiments of the invention. FIG. 7 may be
considered to in part implement a host placement algorithm
that selects a host for a virtual machine management opera-
tion. First, block 302 determines pools of hosts, storage
systems and fabrics that meet the requirements of the virtual
machine to be deployed, e.g., based upon any particular
storage, architectures, protocols, network resources,
resource capacity requirements, etc. that the virtual machine
will need in order to handle its workload. Next, block 304
filters hosts based upon concurrency limits, e.g., in a manner
discussed below in connection with FIG. 8.

[0085] Next, block 306 determines candidate combina-
tions of hosts, storage and fabrics from the pools that are
compatible with one another and that have sufficient capac-
ity to host the virtual machine. In determining whether a
particular combination is a suitable candidate, block 306
may consider capacities/limits of hardware resources on a

US 2017/0220377 Al

host, e.g., processor resources, memory resources, adapter
resources, etc., and in some embodiments, overcommit
ratios may be used in the determination of capacities of such
hardware resources. Likewise, block 306 may consider
capacities/limits of storage systems when determining
whether a combination is a suitable candidate.

[0086] Next, block 308 determines whether at least one
candidate combination has been found. If so, block 310
determines whether more than one candidate combination
has been found, and if only one candidate combination has
been found, control passes to block 312 to return the single
candidate combination as the combination selected by the
placement operation.

[0087] If more than one candidate combination has been
found, however, block 310 passes control to block 314 to
score each candidate combination, and then to block 316 to
select the highest scored candidate combination. Control
then passes to block 312 to return the selected candidate
combination.

[0088] When scoring candidate combinations, various fac-
tors may be considered, and various weights may be applied
to those factors, in order to optimize the placement of a
virtual machine within a virtualized environment. For
example, various load balancing algorithms may be applied
to place the virtual machine in order to balance workloads,
to maximize performance, to minimize communication costs
with other resources used by the virtual machine, to optimize
power consumption in a data center (e.g., to pack virtual
machines on a subset of hosts and enable other hosts to be
powered down), to co-locate the virtual machine with other
related virtual machines, to anti-collocate the virtual
machine with other related virtual machines for disaster or
high availability planning, etc.

[0089] Therefore, in some embodiments of the invention,
a score S may be calculated for a combination in some
embodiments as follows:

§= Zn: fiwi
P}

where f; is a factor among a total of n factors and w, is a
weight to be applied to that factor, and where at least one
factor £, is related to a fabric limit and/or fabric capacity.
[0090] Returning to block 308, if no candidate combina-
tions are found, control passes to block 318 to determine
whether other configuration settings are possible, e.g., to
enable a virtual machine to potentially be deployed to any
other combinations. If so, control passes to block 320 to
modify one or more requirements of the virtual machine, and
then to block 302 to determine pools of hosts, storage and
fabrics that meet the updated virtual machine requirements,
and attempt to identify one or more candidate combinations.
If block 318 determines that no other configuration settings
are possible, control is instead passed to block 322, whereby
routine 300 returns with an error, indicating that no suitable
combination was identified.

[0091] Now turning to FIG. 8, an example implementation
of block 304 is illustrated by sequence of operations 330. In
some embodiments, as noted above, hosts may be filtered
from consideration for a virtual machine management opera-
tion based upon a concurrency limit being met, e.g., based
upon at least one concurrency limit for a component

Aug. 3, 2017

involved with one or more sub-operations associated with
the virtual machine management operation being met. The
filtering may effectively filter a host from consideration by
a host placement algorithm, e.g., the host placement algo-
rithm that places virtual machines on hosts as discussed
above in connection with FIG. 7. As a result of filtering a
host, and assuming another suitable host is identified, the
virtual machine management operation will effectively be
placed on the other suitable host by the host placement
algorithm. Sequence of operations 330, in some embodi-
ments, may monitor active virtual machine management
operations on all relevant hosts in the virtualized computing
environment and determine, for each of the hosts, whether
any of the concurrency limits associated with the sub-
operations for the requested virtual machine management
operation has been met based at least in part on the moni-
tored active virtual machine management operations on that
host. Then, based upon the determination, the sequence of
operations may filter any host for which a determination is
made that at least one concurrency limit associated with at
least one sub-operation for the requested virtual machine
management operation has been met from consideration by
a host placement algorithm, such that the virtual machine
management operation may thereafter be scheduled on a
different, non-filtered host.

[0092] In one embodiment, for example, sequence of
operations 330 receives as input a list of hosts and a
requested virtual machine management operation. A FOR
loop may be initiated in block 332 to determine the collec-
tive availability of each host among the pool of hosts
identified in block 302 of FIG. 7 for the requested virtual
machine management operation. For each such host, block
334 may determine a count of the active operations being
performed by the host (e.g., as logged in the manner
discussed above), and then block 336 may determine counts
of the sub-operations associated with each of the active
operations. In addition, to the extent needed, block 336 may
also query any components that are involved with any of the
sub-operations to determine the sub-operation counts.

[0093] It will be appreciated that in some embodiments,
different active operations and/or sub-operations may be
analyzed depending upon the requested virtual machine
management operation, as some active operations and/or
sub-operations may not be relevant to a particular requested
virtual machine management operation. It will also be
appreciated that different virtual machine management
operations may involve different sub-operations, so different
combinations of active virtual machine management opera-
tions may lead to different sub-operation counts. As but one
example, a virtual machine deployment operation may
include sub-operations for creating a virtual machine and
zoning a fabric switch, which may respectively involve a
hypervisor on the host and a fabric switch, whereas a virtual
machine resize operation that does not affect storage may
involve the hypervisor on the host, but may not involve the
fabric switch. Moreover, a component such as a fabric
switch may be accessed by multiple hosts, so a concurrency
limit such as a maximum number of concurrent zoning
operations for a fabric switch may be based upon sub-
operations initiated by multiple hosts, and not just a single
host, so a concurrency limit being met for such a switch may
result in the filtering out of any hosts coupled to that switch.
As such, the FOR loop of blocks 332-336 may be used to
determine counts of sub-operations across multiple hosts

US 2017/0220377 Al

and associated components, but with separate counts main-
tained as appropriate to determine the availability of a
particular host to handle a requested virtual machine man-
agement operation.

[0094] Once sub-operation counts have been collected
across all hosts, block 332 passes control to block 338 to
determine concurrency limits for each of the sub-operations,
querying any components as needed. Block 340 then initi-
ates a second FOR loop to cycle through each host in the
pool of hosts. For each such host, block 342 determines
whether any concurrency limits for any sub-operations
related to the requested virtual machine management opera-
tion have been met by the active operations related to that
host. If not, control returns to block 340; however, if any
concurrency limit is met, block 342 instead passes control to
block 344 to filter out that host, effectively removing that
host for placement consideration. Control then returns to
block 340 to process the next host. Once all hosts have been
processed, block 340 passes control to block 346 to return a
filtered list of hosts still available for consideration by the
host placement algorithm implemented in FIG. 7.

[0095] Now turning to FIG. 9, as noted above, in some
embodiments, rather than filtering hosts from initial consid-
eration by a host placement algorithm based on concurrency
limits, concurrency limits may be used to automatically
reschedule a virtual machine management operation on a
different host after some period of time has expired during
which concurrency limits prevent the virtual machine man-
agement operation from being performed on a previously-
selected host. In some embodiments, for example, if a
concurrency limit associated with a requested virtual
machine management operation is found to have been met at
a first time, performance of the requested operation may be
deferred, and the concurrency limits related to the deferred
operation may thereafter be re-checked one or more addi-
tional times. If, during any of the subsequent checks of the
concurrency limits, the number of active operations in the
virtualized computing environment has decreased to a point
at which none of the related concurrency limits are met,
performance of the requested virtual machine management
operation may be initiated on the originally-selected host.
Otherwise, if during all of the subsequent checks of the
concurrency limits, one or more concurrency limits is still
met, performance of the requested virtual machine manage-
ment operation may be initiated on a different host, e.g.,
another host from the pool for which a candidate combina-
tion for placement exists.

[0096] FIG. 9, in particular, illustrates a sequence of
operations 360 for deploying a virtual machine to a specified
host. Sequence of operations 360 may be called in some
embodiments in response to a request to deploy a virtual
machine to a user-selected host. Sequence of operations 360
may also be called in some embodiments after a host has
been selected by a placement algorithm in response to a
request to deploy a virtual machine that does not specify a
host. First, in block 362, the active operation is logged, and
then in block 364 a count is made of the active operations
relevant to the virtual machine deployment operation
requested for the host. Then, in block 366 counts are
determined for all of the sub-operations for the various
active operations, and in block 368, concurrency limits for
all of the sub-operations are determined. In both of blocks
366 and 368, components may be queried as necessary to
retrieve any sub-operation counts or concurrency limits.

Aug. 3, 2017

Blocks 364-368, in particular, may operate in a similar
manner to blocks 334-338 of FIG. 8.

[0097] Block 370 then determines whether any concur-
rency limits have been met by the active operations, and if
s0, passes control to block 372 to complete deployment of
the virtual machine on the host, i.e., to perform the virtual
machine management operation as scheduled on the host.
Control then passes to block 374 to clear the active operation
from the active operation log, and deployment of the virtual
machine is complete.

[0098] Returning to block 370, if any concurrency limit
has been met, control instead passes to block 376 to deter-
mine whether to continuing waiting to see if the count of
active operations decreases to a level such that no concur-
rency limits related to the requested deployment are met. In
one embodiment, for example, block 376 may determine
whether a predetermined number of polling intervals has
been reached. If not, block 376 passes control to block 378
to wait for a next polling interval, and then back to block 364
to assess, at a later time, whether any concurrency limits
related to the requested virtual machine deployment opera-
tion have been met.

[0099] Ifthe number of polling intervals has been reached,
block 376 instead passes control to block 380 to place the
virtual machine on an alternate host, e.g., using the afore-
mentioned host placement algorithm, and additionally veri-
fying, in a similar manner to that described above, that no
concurrency limits preclude deployment of the virtual
machine on the alternate host. Block 382 then completes the
deployment on the alternate host, and passes control to block
374 to clear the active operation from the active operation
log, whereby deployment of the virtual machine is complete,
but on an alternate host from that originally requested.

[0100] It will be appreciated similar functionality to that
described above in connection with FIG. 9 may be used to
automatically defer (and if necessary, reschedule) other
types of virtual machine management operations based on
concurrency limits being met. It will also be appreciated that
different techniques may be used to monitor and count active
operations and their associated sub-operations in other
embodiments. For example, FIG. 10 illustrates an example
sequence of operations 390 for an active operation monitor
that may run, for example, as a background process or
thread, and that attempts to maintain an up-to-date avail-
ability status for a plurality of hosts for different virtual
machine management operations. During each polling inter-
val, for example, block 392 may determine the number of
active operations and associated sub-operations for each
host, in a similar manner to that discussed above in connec-
tion with FIGS. 8 and 9, and then block 394 may identify any
hosts that already meet a concurrency limit for a particular
type of virtual machine management operation. Block 396
then waits for a next polling interval, before returning
control to block 392.

[0101] By identifying hosts meeting a concurrency limit
for a particular virtual machine management operation,
placement logic may determine whether a host is capable of
handling a requested virtual machine management operation
by querying the availability status of that host as determined
by the monitor. In other embodiments, block 394 may be
omitted, whereby a determination of availability may
include a retrieval of counts determined by the monitor and
a comparison of the retrieved counts with concurrency limits

US 2017/0220377 Al

associated with the components involved in the sub-opera-
tions for a requested virtual machine management operation.

[0102] The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

What is claimed is:

1. A method of managing a virtualized computing envi-
ronment, the method comprising:

monitoring active virtual machine management opera-
tions on a first host among a plurality of hosts in the
virtualized computing environment, wherein each
active virtual machine management operation includes
a plurality of sub-operations with associated concur-
rency limits;

receiving a request to perform a virtual machine manage-
ment operation;

in response to receiving the request, determining whether
any of the concurrency limits associated with the
sub-operations for the requested virtual machine man-
agement operation has been met based at least in part
on the monitored active virtual machine management
operations on the first host; and

initiating performance of the requested virtual machine
management operation on a second host among the
plurality of hosts in response to determining that at
least one concurrency limit associated with at least one
sub-operation for the requested virtual machine man-
agement operation has been met.

2. The method of claim 1, further comprising, in response
to the request:

in response to determining at a first time that at least one
concurrency limit associated with at least one sub-
operation for the requested virtual machine manage-
ment operation has been met, deferring performance of
the requested virtual machine management operation
on the first host; and

after deferring performance of the requested virtual
machine management operation on the first host, deter-
mining at a second time whether any of the concur-
rency limits associated with the sub-operations for the
requested virtual machine management operation has
been met based at least in part on the monitored active
virtual machine management operations on the first
host;

wherein initiating performance of the requested virtual
machine management operation on the second host is
performed in response to determining at the second
time that at least one concurrency limit associated with
at least one sub-operation for the requested virtual
machine management operation has been met.

3. The method of claim 2, wherein the request specifies
the first host.

11

Aug. 3, 2017

4. The method of claim 2, further comprising initially
scheduling the requested virtual machine management
operation on the first host based upon a host placement
algorithm.
5. The method of claim 2, wherein the second time is
associated with a predetermined number of polling intervals,
the method further comprising, in response to the request,
determining at each of the plurality of polling intervals that
at least one concurrency limit associated with at least one
sub-operation for the requested virtual machine manage-
ment operation has been met.
6. The method of claim 1, in response to receiving a
request to perform a second virtual machine management
operation:
determining that at least one concurrency limit associated
with at least one sub-operation for the requested second
virtual machine management operation has been met;

after determining that at least one concurrency limit
associated with at least one sub-operation for the
requested second virtual machine management opera-
tion has been met, determining at each of a plurality of
polling intervals whether any of the concurrency limits
associated with the sub-operations for the requested
second virtual machine management operation has
been met based at least in part on the monitored active
virtual machine management operations on the first
host;

in response to determining during all of the plurality of

polling intervals that at least one concurrency limit
associated with at least one sub-operation for the
requested second virtual machine management opera-
tion has been met, initiating performance of the
requested second virtual machine management opera-
tion on a different host from the first host among the
plurality of hosts; and

in response to determining during one of the plurality of

polling intervals that no concurrency limit associated
with any sub-operation for the requested second virtual
machine management operation has been met, initiat-
ing performance of the requested second virtual
machine management operation on the first host.

7. The method of claim 1, wherein initiating performance
of the requested virtual machine management operation on
the second host includes:

filtering the first host from consideration by a host place-

ment algorithm in response to determining that at least
one concurrency limit associated with at least one
sub-operation for the requested virtual machine man-
agement operation has been met; and

after filtering the first host, scheduling the virtual machine

management operation on the second host using the
host placement algorithm.

8. The method of claim 1, further comprising:

monitoring active virtual machine management opera-

tions on the plurality of hosts in the virtualized com-
puting environment;

determining, for each of the plurality of hosts, whether

any of the concurrency limits associated with the
sub-operations for the requested virtual machine man-
agement operation has been met based at least in part
on the monitored active virtual machine management
operations on such host;

filtering any host among the plurality of hosts for which

a determination is made that at least one concurrency

US 2017/0220377 Al

limit associated with at least one sub-operation for the
requested virtual machine management operation has
been met from consideration by a host placement
algorithm; and

scheduling the virtual machine management operation on

the second host using the host placement algorithm
based upon the second host not being filtered.

9. The method of claim 1, wherein monitoring the active
virtual machine management operations on the first host is
performed in response to receiving the request.

10. The method of claim 1, wherein monitoring the active
virtual machine management operations on the first host is
performed substantially continuously.

11. The method of claim 1, wherein the virtual machine
management operation is a virtual machine deployment
operation, a virtual machine migration operation, a virtual
machine resize operation, a virtual machine delete operation,
a virtual machine capture operation, a virtual machine attach
volume operation, a virtual machine remote restart opera-
tion, or a virtual machine suspend operation.

12. The method of claim 1, wherein each concurrency
limit is a hypervisor concurrency limit, a storage system
concurrency limit, a virtualization library concurrency limit,
or a network concurrency limit.

13. The method of claim 1, wherein at least one concur-
rency limit is a maximum number of concurrent virtual
machine creation operations, a maximum number of con-
current create volume operations, a maximum number of
concurrent network zoning operations, or a maximum num-
ber of concurrent virtual machine migration operations.

14. The method of claim 1, wherein determining whether
any of the concurrency limits associated with the sub-
operations for the requested virtual machine management
operation has been met includes querying a component in
the virtualized computing environment for a concurrency
limit for the component.

15. The method of claim 1, wherein determining whether
any of the concurrency limits associated with the sub-
operations for the requested virtual machine management
operation has been met includes querying a component in
the virtualized computing environment for a count of active
sub-operations for the component.

16. The method of claim 1, wherein the virtualized
computing environment comprises a cloud computing envi-
ronment.

17. The method of claim 16, wherein at least one the
concurrency limit is a concurrency limit in the virtualization
or cloud management stack for the first host.

18. The method of claim 1, wherein determining whether
any of the concurrency limits associated with the sub-

Aug. 3, 2017

operations for the requested virtual machine management
operation has been met is performed by virtual machine
scheduler logic.
19. An apparatus, comprising:
at least one processor; and
program code configured upon execution by the at least
one processor to manage a virtualized computing envi-
ronment, the program code configured to:
monitor active virtual machine management operations
on a first host among a plurality of hosts in the
virtualized computing environment;
receive a request to perform a virtual machine man-
agement operation;
in response to receiving the request, determine whether
a concurrency limit for the virtualized computing
environment has been met by the monitored active
virtual machine management operations on the first
host; and
initiate performance of the requested virtual machine
management operation on a second host among the
plurality of hosts in response to determining that the
concurrency limit for the virtualized computing
environment has been met by the monitored active
virtual machine management operations on the first
host.
20. A program product, comprising:
a non-transitory computer readable medium; and
program code stored on the non-transitory computer read-
able medium and configured upon execution by at least
one processor to manage a virtualized computing envi-
ronment by:
monitoring active virtual machine management opera-
tions on a first host among a plurality of hosts in the
virtualized computing environment;
receiving a request to perform a virtual machine man-
agement operation;
in response to receiving the request, determining
whether a concurrency limit for the virtualized com-
puting environment has been met by the monitored
active virtual machine management operations on
the first host; and
initiating performance of the requested virtual machine
management operation on a second host among the
plurality of hosts in response to determining that the
concurrency limit for the virtualized computing
environment has been met by the monitored active
virtual machine management operations on the first
host.

