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A system includes a machine-learning network. The network
includes an input interface configured to receive input data
from a sensor. The processor is programmed to receive the
input data, generate a perturbed input data set utilize the
input data, wherein the perturbed input data set includes
perturbations of the input data, denoise the perturbed input
data set utilizing a denoiser, wherein the denoiser is config-
ured to generate a denoised data set, send the denoised data
set to both a pre-trained classifier and a rejector, wherein the
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SYSTEM AND METHOD FOR IMPROVING
ROBUSTNESS OF PRETRAINED SYSTEMS
IN DEEP NEURAL NETWORKS UTILIZING
RANDOMIZATION AND SAMPLE
REJECTION

TECHNICAL FIELD

[0001] The present disclosure relates to augmentation and
processing of an image (or other inputs) utilizing machine
learning.

BACKGROUND

[0002] Deep learning models may be known to be vulner-
able against adversarial attacks, where small imperceptible
perturbations on the input image can considerably change
model predictions. Many empirical defense mechanisms and
training procedures have been proposed against adversarial
attacks while often times stronger attacks have followed to
break them. These advances have lead to defenses which
provide lower bounds of robust classification accuracy,
which may include randomized smoothing and such vari-
ants. Most of these defenses, however, retrain the classifiers
while also sacrificing the accuracy on clean images. This
may be undesirable property and limits the deployment of
such defenses for several reasons. For example, retraining
may require significant additional resources. Additionally,
since the deployed systems would be expected to operate
under normal environments most of the time, such as with
clean inputs, reducing clean accuracy to such a degree
means that in all likelihood these methods will not be
deployed in most practical situations.

[0003] Randomized smoothing may not be, in general,
directly effective on pretrained classifiers. Specifically, per-
formance of an off-the-shelf classifier can considerably
deteriorate when the input is subject to Gaussian noise
(leading to small A and subsequently small certification
radius R), as standard classifiers, in general, are not trained
to be robust against Gaussian perturbations of their inputs.

[0004] In order to construct robust classifiers without
altering the underlying weights of a given network f, some
systems may utilize an image denoiser as a pre-processing
step before passing inputs through f, where the denoiser
aims at removing the Gaussian noise added to the input in
randomized smoothing. Concretely, this is done by augment-
ing the classifier f with a custom-trained denoiser
D6:Rd—Rd, rendering the entire system as the composite
function foDO:Rd—Y.

[0005] Such denoisers can be trained using various objec-
tives subject to a varying level of complexity. The simplest
objective is minimization of the mean-squared-error (MSE)
of the reconstructed image, or the stability loss, which seeks
the denoiser weights 6 such that the classification output of
the denoised images remain close to that of the original
images xi (without noise).

[0006] Utilizing this objective to train the denoising mod-
ule to robustify the classifier at hand has proven to be
successful, while best performance is achieved by imposing
up-to an order of magnitude increase in training time and
complexity compared to the training time with the cheaper
denoisers using the MSE loss minimization. Empirical
results have shown that training the denoiser with the simple
MSE loss followed by fine tuning it subject to the stability
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loss can give a well-traded performance in terms of its
training complexity and verified robustness radius.

SUMMARY

[0007] A first illustrative embodiment discloses a com-
puter-implemented method for training a machine-learning
network includes receiving an input data from a sensor,
wherein the input data is indicative of image, radar, sonar, or
sound information, generating a perturbed input data set
utilizing the input data, wherein the perturbed input data set
includes perturbed data, denoising the perturbed input data
set to generate a denoised data set, training the machine-
learning network utilizing the denoised data set, wherein the
machine-learning network is configured to reject the
denoised data set when a classification probability falls
below classification threshold, wherein the classification
threshold is associated with classification the denoised data
set, and in response to the classification probability falling
below the classification threshold, outputting an abstain
classification associated with the input data, wherein the
abstain classification is ignored for classification.

[0008] A second illustrative embodiment discloses a sys-
tem including a machine-learning network. The network
includes an input interface configured to receive input data
from a sensor, wherein the sensor includes a camera, a radar,
a sonar, or a microphone, a processor, in communication
with the input interface. The processor is programmed to
receive the input data, wherein the input data is indicative of
image, radar, sonar, or sound information, generate a per-
turbed input data set utilizing the input data, wherein the
perturbed input data set includes perturbations of the input
data, denoise the perturbed input data set utilizing a
denoiser, wherein the denoiser is configured to generate a
denoised data set, send the denoised data set to both a
pre-trained classifier and a rejector, wherein the pre-trained
classifier is configured to classify the denoised data set and
the rejector is configured to reject a classification of the
denoised data set, train, utilizing the denoised input data set,
the a rejector to achieve a trained rejector, and in response
to obtaining the trained rejector, output an abstain classifi-
cation associated with the input data, wherein the abstain
classification is ignored for classification.

[0009] A third illustrative embodiment discloses a com-
puter-program product storing instructions which, when
executed by a computer, cause the computer to receive input
data from a sensor, wherein the input data is indicative of
image, radar, sonar, or sound information, generate a per-
turbed input data set utilizing the input data, wherein the
perturbed input data set includes perturbations of the input
data, denoise the input data set utilizing a pretrained
denoiser, wherein the pretrained denoiser is configured to
generate a denoised data set, classify or reject the denoised
data set utilizing a pretrained classifier and a rejector, train
the rejector utilizing the denoised data set, wherein the
rejector is configured to reject the denoised data set when a
classification probability falls below classification threshold,
wherein the classification threshold is associated with clas-
sification of the denoised data set, and in response to the
classification probability falling below the classification
threshold, output an abstain classification associated with
the input data, wherein the abstain classification ignores a
classification.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 shows a system 100 for training a neural
network.
[0011] FIG. 2 shows a computer-implemented method 200

for training a neural network.

[0012] FIG. 3 illustrates a flow chart of a hybrid unsuper-
vised semantic segmentation.

[0013] FIG. 4 illustrates a flow chart for training a network
utilizing the hybrid unsupervised semantic segmentation.
[0014] FIG. 5 depicts a schematic diagram of an interac-
tion between computer-controlled machine 10 and control
system 12.

[0015] FIG. 6 depicts a schematic diagram of the control
system of FIG. 1 configured to control a vehicle, which may
be a partially autonomous vehicle or a partially autonomous
robot.

[0016] FIG. 7 depicts a schematic diagram of the control
system of FIG. 1 configured to control a manufacturing
machine, such as a punch cutter, a cutter or a gun drill, of
manufacturing system, such as part of a production line.
[0017] FIG. 8 depicts a schematic diagram of the control
system of FIG. 1 configured to control a power tool, such as
a power drill or driver, that has an at least partially autono-
mous mode.

[0018] FIG. 9 depicts a schematic diagram of the control
system of FIG. 1 configured to control an automated per-
sonal assistant.

[0019] FIG. 10 depicts a schematic diagram of the control
system of FIG. 1 configured to control a monitoring system,
such as a control access system or a surveillance system.
[0020] FIG. 11 depicts a schematic diagram of the control
system of FIG. 1 configured to control an imaging system,
for example an MM apparatus, x-ray imaging apparatus or
ultrasonic apparatus.

DETAILED DESCRIPTION

[0021] Embodiments of the present disclosure are
described herein. It is to be understood, however, that the
disclosed embodiments are merely examples and other
embodiments can take various and alternative forms. The
figures are not necessarily to scale; some features could be
exaggerated or minimized to show details of particular
components. Therefore, specific structural and functional
details disclosed herein are not to be interpreted as limiting,
but merely as a representative basis for teaching one skilled
in the art to variously employ the embodiments. As those of
ordinary skill in the art will understand, various features
illustrated and described with reference to any one of the
figures can be combined with features illustrated in one or
more other figures to produce embodiments that are not
explicitly illustrated or described. The combinations of
features illustrated provide representative embodiments for
typical applications. Various combinations and modifica-
tions of the features consistent with the teachings of this
disclosure, however, could be desired for particular appli-
cations or implementations.

[0022] This disclosure relates to a method for robustifying
a pretrained neural network classification system with an
abstain (rejection) option with provable robust (worst-case/
adversarial) performance. The typical setup for an adver-
sarial attack on a classifier, which we call f, may be as
follows: given an input x with true label y that is correctly
classified by f (meaning, (x)=y), the attacker may aim to find
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a small (ideally human-imperceptible) perturbation d such
that x+9 is incorrectly classified by C (that is, f (x+3)=y)).
Robustness may be claimed when there can be no such
perturbations that change the classification outcome, in other
words, all perturbed inputs within the “admissible perturba-
tions set” give the original outcome as that of the clean
(unperturbed) input.

[0023] A number of works (without rejection/abstain/de-
tection) have proposed training procedures under which the
resulting robustified classifier has provable performance, i.e.
an upper bound on the error rate (misclassification probabil-
ity) for adversarially perturbed images subject to norm
constraint on the perturbation. When randomization is used
to provide robustness may provide: (1) a clean input image
is perturbed and classified for different realization of a
Gaussian noise, (1) the probability of the majority class and
the runner up class are estimated, and (3) provable guaran-
tees for robustness is computed. Such networks need to be
trained with such Gaussian-perturbation augmentations for
non-trivial performance.

[0024] In addition it is of interest to robustify a pretrained
network against adversarial perturbations. One embodiment
may propose to do this by leveraging the randomization idea
together with adding a denoiser module to the system.
[0025] Finally, in practice it is of interest to detect adver-
sarially perturbed examples. However, all the available
detection methods in the literature lack provable perfor-
mance, and have been shown to fail detection if the attacker
devises carefully crafted “adaptive perturbations” to simul-
taneously evade detection and cause misclassification .
[0026] Some embodiments propose training a classifier
with an extra class, i.e., K+1 classes for a K-class classifi-
cation task, where the extra class is referred to as the
“abstain-class”. By classifying an image in this class, the
classifier is in fact abstaining from declaring the input as any
of the other K-classes, and thus can be thought of as
abstaining (or detecting or rejecting) the adversarial input.
This work however has no provable performance guaran-
tees, and its training process is different than the one
proposed in this invention.

[0027] The disclosure formulates a provable robust train-
ing procedure for robustifying pretrained neural networks
against adversarial attacks. The proposed system may be
comprised of (1) the pretrained-classifier, (2) the pretrained
denoiser (image to image convertor), and (3) the proposed
module: a per-class rejector.

[0028] The system and method may utilize an approach to
leverage a rejection class together with denoised smoothing
to keep its desirable properties (namely, being able to
produce robust versions of pretrained classifiers), while
improving the accuracy, especially clean accuracy, of the
resulting system.

[0029] The system may robustify pretrained classifiers
with sample rejection while providing certifiable accuracy.
One key to such an approach is to use a reject class, realized
through cheaply-trainable per-class rejectors, which are
trained to reject noisy samples whose prediction is incon-
sistent with the prediction of the clean sample. Inevitably
this can also lead to a small number of correctly classified
samples to also get rejected, however, the overall certifica-
tion radius with a pretrained denoiser is improved since: (a)
the reject class is used to provide a lower (and tighter) upper
bound on the wrong class probabilities, and subsequently (b)
the lowered probability of the runner-up class leads to higher



US 2023/0298315 Al

certification radius due to its non-linear dependence via the
inverse Gaussian CDF function.

[0030] To this end, the full system for every perturbation
can be viewed as a classifier augmented with a denoiser and
detector/rejector modules: resulting in a (K+1)-class classi-
fier for an originally (K)-class classification task.

[0031] (1) The image will be perturbed N number of times,
and every perturbation will be classified into one of these
(K+1) classes, where the additional class is referred to as
abstain/detection/rejection-class.

[0032] (2) The final classification outcome is any of the K
(original, thus excluding the rejection class) classes, which
has the majority vote.

[0033] (3) Probability of the runner up class as well as the
rejection class is estimated, and the utilization of these joint
quantities leads to improved performance and higher certi-
fication radius compared to state of the art.

[0034] (4) Imperative to the proposed method is to train
the proposed rejector module to discriminate (classify) cor-
rectly-classified vs. misclassified randomly perturbed
images.

[0035] The embodiments disclosed enable detection of
adversarial inputs by classifying them in the rejection class.
Furthermore, it provides provable guarantees on the perfor-
mance of the classifier by giving a certificate that all possible
perturbations within a family of perturbations will be cor-
rectly-classified, thus guaranteeing unsuccessful attack by
the adversary. This provides additional boost in performance
guarantee achieved by other techniques without the detec-
tion capability.

[0036] Another important aspect of his work is the ability
to robustify pre-trained off-the-shelf classifiers and denois-
ers. This is of high importance when changing the weight of
the classifier and/or detector is infeasible due to cost/
privacy/etc.

[0037] This can also be used in detecting adversarial
environments, and thus used for demanding manual control
for safety-critical tasks by interpreting the detection of
adversaries as unsafe/adversarial environment.

[0038] Also, abstaining from classification is sometimes
interpreted as the classifier declaring its lack of certainty in
the outcome of the classification task, and thus can be used
for declaring high uncertainty.

[0039] In one embodiment, the system may allow for
randomized smoothing. For example, consider a classifica-
tion problem from R to classes Y:={1,2, ..., K}. According
to the randomized smoothing method, one can construct a
“smoothed” classifier g from an arbitrary base classifier f by
defining

g(x) = ;"E‘?P(f(x +€) = ¢) where E~N(0, 0'21).

[0040] That is, the smoothed classifier g returns the class
that the base classifier f is most likely to return around the
neighborhood of x, where the density of samples in the
neighborhood is represented as Gaussian Noise e~N(0, 6°T)
[0041] One advantage of the randomized-smoothing
method is its inherent capability in providing certifiable
robustness against bounded € 2—norm worst-case perturba-
tions. Formally, for any deterministic or random function
fRY:={12, ..., K}, suppose c,, czeY and &, mze[0,1]
satisfy:
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P(fa+e)=ca)zmy zmp 2\ gy P(fx+€) =)

[0042] In one example, a tight verification bound may be
utilized as follows: g(x+0)=c, for all ||§||<R, where

R=Z{0 ) - 07 (r)

and @' () is the inverse of the standard Gaussian CDF.
[0043] Since computing exact values of m,=P(f(x+€)=c,)
and mty=P(f(x+€)=c}) is not practical, Monte Carlo sampling
is used to estimate the class with the highest probability with
arbitrarily high confidence, followed by approximating
n,=1-x, yielding

R=cd"\(x,)

[0044] Practically, although the above results hold for any
function f, one needs to train the base classifier f against
Gaussian perturbations for effective certification, as using
standard classifiers usually lead to trivial certification
bounds because they are not robust against Gaussian noise.
Increasing confidence of the certification can be achieved by
running a larger number of samples in the Monte Carlo
estimation, which then leads to an increase in inference time.
Furthermore, although the above results hold for any func-
tion f one needs to train the base classifier f against Gaussian
perturbations for effective certification, as using standard
classifiers usually lead to trivial certification bounds because
they are not robust against Gaussian noise.

[0045] FIG. 1 shows a system 100 for training a neural
network. The system 100 may comprise an input interface
for accessing training data 192 for the neural network. For
example, as illustrated in FIG. 1, the input interface may be
constituted by a data storage interface 180 which may access
the training data 192 from a data storage 190. For example,
the data storage interface 180 may be a memory interface or
a persistent storage interface, e.g., a hard disk or an SSD
interface, but also a personal, local or wide area network
interface such as a Bluetooth, Zigbee or Wi-Fi interface or
an ethernet or fiberoptic interface. The data storage 190 may
be an internal data storage of the system 100, such as a hard
drive or SSD, but also an external data storage, e.g., a
network-accessible data storage.

[0046] In some embodiments, the data storage 190 may
further comprise a data representation 194 of an untrained
version of the neural network which may be accessed by the
system 100 from the data storage 190. It will be appreciated,
however, that the training data 192 and the data represen-
tation 194 of the untrained neural network may also each be
accessed from a different data storage, e.g., via a different
subsystem of the data storage interface 180. Each subsystem
may be of a type as is described above for the data storage
interface 180. In other embodiments, the data representation
194 of the untrained neural network may be internally
generated by the system 100 on the basis of design param-
eters for the neural network, and therefore may not explicitly
be stored on the data storage 190. The system 100 may
further comprise a processor subsystem 160 which may be
configured to, during operation of the system 100, provide
an iterative function as a substitute for a stack of layers of
the neural network to be trained. Here, respective layers of
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the stack of layers being substituted may have mutually
shared weights and may receive, as input, an output of a
previous layer, or for a first layer of the stack of layers, an
initial activation, and a part of the input of the stack of
layers. The processor subsystem 160 may be further con-
figured to iteratively train the neural network using the
training data 192. Here, an iteration of the training by the
processor subsystem 160 may comprise a forward propaga-
tion part and a backward propagation part. The processor
subsystem 160 may be configured to perform the forward
propagation part by, amongst other operations defining the
forward propagation part which may be performed, deter-
mining an equilibrium point of the iterative function at
which the iterative function converges to a fixed point,
wherein determining the equilibrium point comprises using
a numerical root-finding algorithm to find a root solution for
the iterative function minus its input, and by providing the
equilibrium point as a substitute for an output of the stack of
layers in the neural network. The system 100 may further
comprise an output interface for outputting a data represen-
tation 196 of the trained neural network, this data may also
be referred to as trained model data 196. For example, as
also illustrated in FIG. 1, the output interface may be
constituted by the data storage interface 180, with said
interface being in these embodiments an input/output (“10”)
interface, via which the trained model data 196 may be
stored in the data storage 190. For example, the data
representation 194 defining the ‘untrained’ neural network
may during or after the training be replaced, at least in part
by the data representation 196 of the trained neural network,
in that the parameters of the neural network, such as weights,
hyperparameters and other types of parameters of neural
networks, may be adapted to reflect the training on the
training data 192. This is also illustrated in FIG. 1 by the
reference numerals 194, 196 referring to the same data
record on the data storage 190. In other embodiments, the
data representation 196 may be stored separately from the
data representation 194 defining the ‘untrained’ neural net-
work. In some embodiments, the output interface may be
separate from the data storage interface 180, but may in
general be of a type as described above for the data storage
interface 180.

[0047] FIG. 2 depicts a data annotation system 200 to
implement a system for annotating data. The data annotation
system 200 may include at least one computing system 202.
The computing system 202 may include at least one pro-
cessor 204 that is operatively connected to a memory unit
208. The processor 204 may include one or more integrated
circuits that implement the functionality of a central pro-
cessing unit (CPU) 206. The CPU 206 may be a commer-
cially available processing unit that implements an instruc-
tion stet such as one of the x86, ARM, Power, or MIPS
instruction set families. During operation, the CPU 206 may
execute stored program instructions that are retrieved from
the memory unit 208. The stored program instructions may
include software that controls operation of the CPU 206 to
perform the operation described herein. In some examples,
the processor 204 may be a system on a chip (SoC) that
integrates functionality of the CPU 206, the memory unit
208, a network interface, and input/output interfaces into a
single integrated device. The computing system 202 may
implement an operating system for managing various
aspects of the operation.
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[0048] The memory unit 208 may include volatile memory
and non-volatile memory for storing instructions and data.
The non-volatile memory may include solid-state memories,
such as NAND flash memory, magnetic and optical storage
media, or any other suitable data storage device that retains
data when the computing system 202 is deactivated or loses
electrical power. The volatile memory may include static
and dynamic random-access memory (RAM) that stores
program instructions and data. For example, the memory
unit 208 may store a machine-learning model 210 or algo-
rithm, a training dataset 212 for the machine-learning model
210, raw source dataset 215.

[0049] The computing system 202 may include a network
interface device 222 that is configured to provide commu-
nication with external systems and devices. For example, the
network interface device 222 may include a wired and/or
wireless Ethernet interface as defined by Institute of Elec-
trical and Electronics Engineers (IEEE) 802.11 family of
standards. The network interface device 222 may include a
cellular communication interface for communicating with a
cellular network (e.g., 3G, 4G, 5G). The network interface
device 222 may be further configured to provide a commu-
nication interface to an external network 224 or cloud.
[0050] The external network 224 may be referred to as the
world-wide web or the Internet. The external network 224
may establish a standard communication protocol between
computing devices. The external network 224 may allow
information and data to be easily exchanged between com-
puting devices and networks. One or more servers 330 may
be in communication with the external network 224.
[0051] The computing system 202 may include an input/
output (I/O) interface 220 that may be configured to provide
digital and/or analog inputs and outputs. The [/O interface
220 may include additional serial interfaces for communi-
cating with external devices (e.g., Universal Serial Bus
(USB) interface).

[0052] The computing system 202 may include a human-
machine interface (HMI) device 218 that may include any
device that enables the system 200 to receive control input.
Examples of input devices may include human interface
inputs such as keyboards, mice, touchscreens, voice input
devices, and other similar devices. The computing system
202 may include a display device 232. The computing
system 202 may include hardware and software for output-
ting graphics and text information to the display device 232.
The display device 232 may include an electronic display
screen, projector, printer or other suitable device for dis-
playing information to a user or operator. The computing
system 202 may be further configured to allow interaction
with remote HMI and remote display devices via the net-
work interface device 222.

[0053] The system 200 may be implemented using one or
multiple computing systems. While the example depicts a
single computing system 202 that implements all of the
described features, it is intended that various features and
functions may be separated and implemented by multiple
computing units in communication with one another. The
particular system architecture selected may depend on a
variety of factors.

[0054] The system 200 may implement a machine-learn-
ing algorithm 210 that is configured to analyze the raw
source dataset 215. The raw source dataset 215 may include
raw or unprocessed sensor data that may be representative of
an input dataset for a machine-learning system. The raw
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source dataset 215 may include video, video segments,
images, text-based information, and raw or partially pro-
cessed sensor data (e.g., radar map of objects). In some
examples, the machine-learning algorithm 210 may be a
neural network algorithm that is designed to perform a
predetermined function. For example, the neural network
algorithm may be configured in automotive applications to
identify pedestrians in video images.

[0055] The computer system 200 may store a training
dataset 212 for the machine-learning algorithm 210. The
training dataset 212 may represent a set of previously
constructed data for training the machine-learning algorithm
210. The training dataset 212 may be used by the machine-
learning algorithm 210 to learn weighting factors associated
with a neural network algorithm. The training dataset 212
may include a set of source data that has corresponding
outcomes or results that the machine-learning algorithm 210
tries to duplicate via the learning process. In this example,
the training dataset 212 may include source videos with and
without pedestrians and corresponding presence and loca-
tion information. The source videos may include various
scenarios in which pedestrians are identified.

[0056] The machine-learning algorithm 210 may be oper-
ated in a learning mode using the training dataset 212 as
input. The machine-learning algorithm 210 may be executed
over a number of iterations using the data from the training
dataset 212. With each iteration, the machine-learning algo-
rithm 210 may update internal weighting factors based on
the achieved results. For example, the machine-learning
algorithm 210 can compare output results (e.g., annotations)
with those included in the training dataset 212. Since the
training dataset 212 includes the expected results, the
machine-learning algorithm 210 can determine when per-
formance is acceptable. After the machine-learning algo-
rithm 210 achieves a predetermined performance level (e.g.,
100% agreement with the outcomes associated with the
training dataset 212), the machine-learning algorithm 210
may be executed using data that is not in the training dataset
212. The trained machine-learning algorithm 210 may be
applied to new datasets to generate annotated data.

[0057] The machine-learning algorithm 210 may be con-
figured to identify a particular feature in the raw source data
215. The raw source data 215 may include a plurality of
instances or input dataset for which annotation results are
desired. For example, the machine-learning algorithm 210
may be configured to identify the presence of a pedestrian in
video images and annotate the occurrences. The machine-
learning algorithm 210 may be programmed to process the
raw source data 215 to identify the presence of the particular
features. The machine-learning algorithm 210 may be con-
figured to identify a feature in the raw source data 215 as a
predetermined feature (e.g., pedestrian). The raw source data
215 may be derived from a variety of sources. For example,
the raw source data 215 may be actual input data collected
by a machine-learning system. The raw source data 215 may
be machine generated for testing the system. As an example,
the raw source data 215 may include raw video images from
a camera.

[0058] In the example, the machine-learning algorithm
210 may process raw source data 215 and output an indi-
cation of a representation of an image. The output may also
include augmented representation of the image. A machine-
learning algorithm 210 may generate a confidence level or
factor for each output generated. For example, a confidence
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value that exceeds a predetermined high-confidence thresh-
old may indicate that the machine-learning algorithm 210 is
confident that the identified feature corresponds to the
particular feature. A confidence value that is less than a
low-confidence threshold may indicate that the machine-
learning algorithm 210 has some uncertainty that the par-
ticular feature is present.

[0059] FIG. 3 illustrates an embodiment of a flowchart as
related to robustifying pretrained classifiers. At step 301, the
input (e.g. image or similar data) x may be received at a
processor, computer, server, etc. At step 302, the input may
be perturbed by noise E. At step 303, the perturbed data may
pass through the preprocessing (e.g., denoising) step via
D(x+). The denoiser may be a pre-trained denoiser. At step
305, the resulting denoised data may go through the base
classifier with a reject class. The base classifier may include
both a pre-trained classifier (e.g., K-class classifier) and a
rejector. The rejector may be trained to successfully dis-
criminate between the correctly classified and mis-classified
denoised inputs that are assigned to class k by the base
classifier f(.). At step 307, the classification output of the
smoothed joint system of (D, f, {h,},_,”) may be claimed as
the most likely class over the noise distribution (or it
empirical realization via N i.i.d. samples). The schematic of
such a system is shown in FIG. 4 below, and he overall
system may be defined as

s={p.som " )

[0060] In such an embodiment, the pretrained K-class
classifier and pretrained denoiser are augmented with a
per-class rejector- that is a binary detector for each of the
original K classes. We aim to improve certification accuracy
of pretrained classifiers by incorporating an explicit ‘reject’
class into the base classifier, while preserving the certifi-
ability against worst-case perturbations with bounded
12-norm.

[0061] The proposed classification procedure for the full
system containing classifier f, denoiser D, rejectors {h,, . .
. .k} the image x will go through the following steps: (a) it
is first perturbed by noise € drawn from Gaussian noise with
variance G-. (b) noisy image passes through the image
preprocessing (denoising) step via D(x+€) (c) the resulting
denoised image goes through fo(D(x+€)) denoting the base-
classifier-with-rejection defined as

fR (o i fGrO=cy and hy(x+e)=0
(Z)’{ R if fOrtO=cg and hy(x+e)=1

(d) finally, the classification output of the smoothed joint
system is claimed as the most likely class over the noise
distribution (or it empirical realization via N i.i.d. samples,
that is: repeat steps a-c for a total of N times with different
noise realizations and take the majority class).

[0062] The schematic depicts a visual placement of the
components in the overall system denoted as S={f,.D.h,, . .
., het

[0063] Algorithm 1,2,3 provide the pseudocode for the
prediction and certification of the overall system, where
function LowerConfBound(S,n, 1—a) returns a one-sided
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1—a lower confidence interval for the Binomial parameter q
given a sample s~Binomial(n,q).

Algorithm 1 Sampling under noise for the overall system
S={D, £, (hJX,)

function SAMPLEUNDERNOISE (8, x, n, G)
Initialize count= [O, . . ., Olxy1x1
forv=1,...,ndo
sample noise e, € N (0, o°)
ke fD(x+e))
if hy(D(x + €,)) = 0 then
++ counts [k]
else
++ counts [R]
end if
end for
return count

Algorithm 1 Certification and prediction

# predict for x; using g,
function PREDICT (S = {D, f, {h.},_,*}, 6, x, N)
counts ¢« SAMPLEUNDERNOISE (S, g, x, N)
€€z <top two indices in counts
n,, ng < counts|€4], count]ex]
If BINOMPVALUE (n,4,n, + ng, 0.5) < & then
return €z,
else
return ABSTAIN
end if
# certify the robustness of gz around x

function CERTIFY(S = (D, file},}, o, x, N, @)
counts ¢« SAMPLEUNDERNOISE (S, a, x, N)
€4 < top index in counts O

n4, Ng < counts [€2], counts [R]

Pa < LOWERCONFBOUND (n,, N, 1 — @)

Px < LOWERCONFBOUND (1, N, 1 — )

Pasr < LOWERCONFBOUND (n, + ng, N, 1 — o)

1
if ps> T(l —pg) then

—~ fpo Tpl -1
return £, R = 2(<I> )+ P (Pair)

else
return ABSTAIN
end if

[0064] To train the rejectors, the parameters of the rejector
networks {h,, . . . hg} are learned by training them to
discriminate the correctly classified vs misclassified noisy
samples. That is, concretely define the classification loss for
rejector h, as

Ly=t (HDG+e).b,)

cross-entropy

where H, is the softmax outputs of rejector k, and the target
label b, for image x, is defined as

b, _{1 if f(DG;+e) % flx;)
7o otherwise

[0065] That is, target label b=0 if the classifier f has
classified denoised input to the same class as that of the
noise-free image, and 1 otherwise, thus rejecting the noisy
images whose classification outcome has changed.

[0066] The total loss aggregated over the entire set of data
with all possible K classes, yields
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Lo =Exe

K
ZLa)k x 1</<Xf):k)]
k=1

where the parameter set 0={0,, . . ., O} captures the set of
parameters of all the K rejectors.

[0067] In order to make the training more affordable, we
propose to tie the K rejectors through a shared backbone h,
parameterized by 055 and define each h, by adding a fully-
connected layer parameterized by ®, to the features
extracted via the backbone network.

[0068] FIG. 4 illustrates an embodiment of a diagram
according to an embodiment. The system may receive an
input 401. The input 401 may include data from one or more
sensors, such as video data, radar, LiDAR, ultrasonic,
motion, thermal imaging cameras, etc. Noise 403 may be
added to the input to help in the robustification process of the
pretrained neural network against adversarial attacks. The
system may then use a pretrained denoiser 405. The pre-
trained denoiser 405 may be an image to image convertor
and thus utilizing image preprocessing to create a denoised
image or denoised image set. In order to construct robust
classifiers without altering the underlying weights of a given
network f, a system may utilize an image denoisier 405 as
a pre-processing step before passing inputs through f, where
the denoiser 405 aims at removing the Gaussian noise added
to the input in randomized smoothing. Concretely, this is
done by augmenting the classifier f with a custom-trained
denoiser Dgy:R“—R?, rendering the entire system as the
composite function foDg:R?—Y. The image or input 401
may be perturbed N number of times, and every perturbation
may be classified into one of the (K+1) classes. The addi-
tional class may be referred to as an abstain/detection/
rejection-class.

[0069] The K-class classifier 409 (which may be pre-
trained) and denoiser 405 may be augmented with a per-
class rejector 410. The rejector 410 may be a binary detector
for each of the original K classes. The system may work to
train the rejector 410 utilizing each of the iterations of the
data that has noise added and that is pre-processed via the
denoiser. The system may aim to improve certification
accuracy of pretrained classifiers by incorporating an
explicit ‘reject’ class into the base classifier, while preserv-
ing the certifiability against worst-case perturbations with
bounded 12-norm. The rejector module 411 may be utilized
to train the proposed rejector module to discriminate (clas-
sify) correctly-classified vs. misclassified randomly per-
turbed images. The rejector selector module 411 may work
with both the pre-trained classifier 409 and the

[0070] In order to make the training more affordable, the
system may tie the K rejectors through a shared backbone
410. The system may thus reject to classify the inputs which
are likely to be mis-classified. The rejector or rejectors 410
may be utilized in blocking such inputs. The rejector selector
module will either output a class k 412 or a rejection 413
associated with the input. The various iterations of the input
data that is added different iterations of noise (e.g. perturbed)
and preprocessed may be used n times.

[0071] At 415, the system and classifier may work to
certify and predict both a final class 417 and abstain clas-
sification 416. The system may sample the various counts of
the perturbed data that is denoised. It may then determine the
appropriate bound to certify the robustness of the input. To
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the extent that the input is not certified, it may be returned
as a misclassification or an abstain class.

[0072] Thus, the system may aim to improve certification
accuracy of pretrained classifiers by incorporating an
explicit ‘reject’ class into the base classifier, while preserv-
ing the certifiability against worst-case perturbations with
bounded 12-norm. To this end, let h: R*—={0, 1} may denote
a general function with binary outputs, which effectively
‘flags’ the input x if h(x)=1, thus assigning it to the reject
class; while h(x)=0 indicates allowing the input to pass and
thus not rejecting it. Thus, the system and algorithm may
effectively train and operate such a ‘rejector’ in conjunction
with pretrained denoised smoothing in order to improve the
robust performance of a pretrained classifier.

[0073] FIG. 5 depicts a schematic diagram of an interac-
tion between computer-controlled machine 500 and control
system 502. Computer-controlled machine 500 includes
actuator 504 and sensor 506. Actuator 504 may include one
or more actuators and sensor 506 may include one or more
sensors. Sensor 506 is configured to sense a condition of
computer-controlled machine 500. Sensor 506 may be con-
figured to encode the sensed condition into sensor signals
508 and to transmit sensor signals 508 to control system 502.
Non-limiting examples of sensor 506 include video, radar,
LiDAR, ultrasonic and motion sensors. In one embodiment,
sensor 506 is an optical sensor configured to sense optical
images of an environment proximate to computer-controlled
machine 500.

[0074] Control system 502 is configured to receive sensor
signals 508 from computer-controlled machine 500. As set
forth below, control system 502 may be further configured
to compute actuator control commands 510 depending on
the sensor signals and to transmit actuator control com-
mands 510 to actuator 504 of computer-controlled machine
500.

[0075] As shown in FIG. 5, control system 502 includes
receiving unit 512. Receiving unit 512 may be configured to
receive sensor signals 508 from sensor 506 and to transform
sensor signals 508 into input signals x. In an alternative
embodiment, sensor signals 508 are received directly as
input signals x without receiving unit 512. Each input signal
X may be a portion of each sensor signal 508. Receiving unit
512 may be configured to process each sensor signal 508 to
product each input signal x. Input signal x may include data
corresponding to an image recorded by sensor 506.

[0076] Control system 502 includes classifier 514. Clas-
sifier 514 may be configured to classify input signals x into
one or more labels using a machine learning (ML) algo-
rithm, such as a neural network described above. Classifier
514 is configured to be parametrized by parameters, such as
those described above (e.g., parameter 0). Parameters 6 may
be stored in and provided by non-volatile storage 516.
Classifier 514 is configured to determine output signals y
from input signals x. Each output signal y includes infor-
mation that assigns one or more labels to each input signal
x. Classifier 514 may transmit output signals y to conversion
unit 518. Conversion unit 518 is configured to covert output
signals y into actuator control commands 510. Control
system 502 is configured to transmit actuator control com-
mands 510 to actuator 504, which is configured to actuate
computer-controlled machine 500 in response to actuator
control commands 510. In another embodiment, actuator
504 is configured to actuate computer-controlled machine
500 based directly on output signals y.
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[0077] Upon receipt of actuator control commands 510 by
actuator 504, actuator 504 is configured to execute an action
corresponding to the related actuator control command 510.
Actuator 504 may include a control logic configured to
transform actuator control commands 510 into a second
actuator control command, which is utilized to control
actuator 504. In one or more embodiments, actuator control
commands 510 may be utilized to control a display instead
of or in addition to an actuator.

[0078] In another embodiment, control system 502
includes sensor 506 instead of or in addition to computer-
controlled machine 500 including sensor 506. Control sys-
tem 502 may also include actuator 504 instead of or in
addition to computer-controlled machine 500 including
actuator 504.

[0079] As shown in FIG. 5, control system 502 also
includes processor 520 and memory 522. Processor 520 may
include one or more processors. Memory 522 may include
one or more memory devices. The classifier 514 (e.g., ML
algorithms) of one or more embodiments may be imple-
mented by control system 502, which includes non-volatile
storage 516, processor 520 and memory 522.

[0080] Non-volatile storage 516 may include one or more
persistent data storage devices such as a hard drive, optical
drive, tape drive, non-volatile solid-state device, cloud stor-
age or any other device capable of persistently storing
information. Processor 520 may include one or more devices
selected from high-performance computing (HPC) systems
including high-performance cores, microprocessors, micro-
controllers, digital signal processors, microcomputers, cen-
tral processing units, field programmable gate arrays, pro-
grammable logic devices, state machines, logic circuits,
analog circuits, digital circuits, or any other devices that
manipulate signals (analog or digital) based on computer-
executable instructions residing in memory 522. Memory
522 may include a single memory device or a number of
memory devices including, but not limited to, random access
memory (RAM), volatile memory, non-volatile memory,
static random access memory (SRAM), dynamic random
access memory (DRAM), flash memory, cache memory, or
any other device capable of storing information.

[0081] Processor 520 may be configured to read into
memory 522 and execute computer-executable instructions
residing in non-volatile storage 516 and embodying one or
more ML algorithms and/or methodologies of one or more
embodiments. Non-volatile storage 516 may include one or
more operating systems and applications. Non-volatile stor-
age 516 may store compiled and/or interpreted from com-
puter programs created using a variety of programming
languages and/or technologies, including, without limita-
tion, and either alone or in combination, Java, C, C++, C#,
Objective C, Fortran, Pascal, Java Script, Python, Perl, and
PL/SQL.

[0082] Upon execution by processor 520, the computer-
executable instructions of non-volatile storage 516 may
cause control system 502 to implement one or more of the
ML algorithms and/or methodologies as disclosed herein.
Non-volatile storage 516 may also include ML data (includ-
ing data parameters) supporting the functions, features, and
processes of the one or more embodiments described herein.
[0083] The program code embodying the algorithms and/
or methodologies described herein is capable of being
individually or collectively distributed as a program product
in a variety of different forms. The program code may be
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distributed using a computer readable storage medium hav-
ing computer readable program instructions thereon for
causing a processor to carry out aspects of one or more
embodiments. Computer readable storage media, which is
inherently non-transitory, may include volatile and non-
volatile, and removable and non-removable tangible media
implemented in any method or technology for storage of
information, such as computer-readable instructions, data
structures, program modules, or other data. Computer read-
able storage media may further include RAM, ROM, eras-
able programmable read-only memory (EPROM), electri-
cally erasable programmable read-only memory
(EEPROM), flash memory or other solid state memory
technology, portable compact disc read-only memory (CD-
ROM), or other optical storage, magnetic cassettes, mag-
netic tape, magnetic disk storage or other magnetic storage
devices, or any other medium that can be used to store the
desired information and which can be read by a computer.
Computer readable program instructions may be down-
loaded to a computer, another type of programmable data
processing apparatus, or another device from a computer
readable storage medium or to an external computer or
external storage device via a network.

[0084] Computer readable program instructions stored in a
computer readable medium may be used to direct a com-
puter, other types of programmable data processing appara-
tus, or other devices to function in a particular manner, such
that the instructions stored in the computer readable medium
produce an article of manufacture including instructions that
implement the functions, acts, and/or operations specified in
the flowcharts or diagrams. In certain alternative embodi-
ments, the functions, acts, and/or operations specified in the
flowcharts and diagrams may be re-ordered, processed seri-
ally, and/or processed concurrently consistent with one or
more embodiments. Moreover, any of the flowcharts and/or
diagrams may include more or fewer nodes or blocks than
those illustrated consistent with one or more embodiments.
[0085] The processes, methods, or algorithms can be
embodied in whole or in part using suitable hardware
components, such as Application Specific Integrated Cir-
cuits (ASICs), Field-Programmable Gate Arrays (FPGAs),
state machines, controllers or other hardware components or
devices, or a combination of hardware, software and firm-
ware components.

[0086] FIG. 6 depicts a schematic diagram of control
system 502 configured to control vehicle 600, which may be
an at least partially autonomous vehicle or an at least
partially autonomous robot. Vehicle 600 includes actuator
504 and sensor 506. Sensor 506 may include one or more
video sensors, cameras, radar sensors, ultrasonic sensors,
LiDAR sensors, and/or position sensors (e.g. GPS). One or
more of the one or more specific sensors may be integrated
into vehicle 600. Alternatively or in addition to one or more
specific sensors identified above, sensor 506 may include a
software module configured to, upon execution, determine a
state of actuator 504. One non-limiting example of a soft-
ware module includes a weather information software mod-
ule configured to determine a present or future state of the
weather proximate vehicle 600 or other location.

[0087] Classifier 514 of control system 502 of vehicle 600
may be configured to detect objects in the vicinity of vehicle
600 dependent on input signals x. In such an embodiment,
output signal y may include information characterizing the
vicinity of objects to vehicle 600. Actuator control command
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510 may be determined in accordance with this information.
The actuator control command 510 may be used to avoid
collisions with the detected objects.

[0088] In embodiments where vehicle 600 is an at least
partially autonomous vehicle, actuator 504 may be embod-
ied in a brake, a propulsion system, an engine, a drivetrain,
or a steering of vehicle 600. Actuator control commands 510
may be determined such that actuator 504 is controlled such
that vehicle 600 avoids collisions with detected objects.
Detected objects may also be classified according to what
classifier 514 deems them most likely to be, such as pedes-
trians or trees. The actuator control commands 510 may be
determined depending on the classification. In a scenario
where an adversarial attack may occur, the system described
above may be further trained to better detect objects or
identify a change in lighting conditions or an angle for a
sensor or camera on vehicle 600.

[0089] In other embodiments where vehicle 600 is an at
least partially autonomous robot, vehicle 600 may be a
mobile robot that is configured to carry out one or more
functions, such as flying, swimming, diving and stepping.
The mobile robot may be an at least partially autonomous
lawn mower or an at least partially autonomous cleaning
robot. In such embodiments, the actuator control command
510 may be determined such that a propulsion unit, steering
unit and/or brake unit of the mobile robot may be controlled
such that the mobile robot may avoid collisions with iden-
tified objects.

[0090] In another embodiment, vehicle 600 is an at least
partially autonomous robot in the form of a gardening robot.
In such embodiment, vehicle 600 may use an optical sensor
as sensor 506 to determine a state of plants in an environ-
ment proximate vehicle 600. Actuator 504 may be a nozzle
configured to spray chemicals. Depending on an identified
species and/or an identified state of the plants, actuator
control command 510 may be determined to cause actuator
504 to spray the plants with a suitable quantity of suitable
chemicals.

[0091] Vehicle 600 may be an at least partially autono-
mous robot in the form of a domestic appliance. Non-
limiting examples of domestic appliances include a washing
machine, a stove, an oven, a microwave, or a dishwasher. In
such a vehicle 600, sensor 506 may be an optical sensor
configured to detect a state of an object which is to undergo
processing by the household appliance. For example, in the
case of the domestic appliance being a washing machine,
sensor 506 may detect a state of the laundry inside the
washing machine. Actuator control command 510 may be
determined based on the detected state of the laundry.
[0092] FIG. 7 depicts a schematic diagram of control
system 502 configured to control system 700 (e.g., manu-
facturing machine), such as a punch cutter, a cutter or a gun
drill, of manufacturing system 702, such as part of a pro-
duction line. Control system 502 may be configured to
control actuator 504, which is configured to control system
700 (e.g., manufacturing machine).

[0093] Sensor 506 of system 700 (e.g., manufacturing
machine) may be an optical sensor configured to capture one
or more properties of manufactured product 704. Classifier
514 may be configured to determine a state of manufactured
product 704 from one or more of the captured properties.
Actuator 504 may be configured to control system 700 (e.g.,
manufacturing machine) depending on the determined state
of manufactured product 704 for a subsequent manufactur-
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ing step of manufactured product 704. The actuator 504 may
be configured to control functions of system 700 (e.g.,
manufacturing machine) on subsequent manufactured prod-
uct 106 of system 700 (e.g., manufacturing machine)
depending on the determined state of manufactured product
704.

[0094] FIG. 8 depicts a schematic diagram of control
system 502 configured to control power tool 800, such as a
power drill or driver, that has an at least partially autono-
mous mode. Control system 502 may be configured to
control actuator 504, which is configured to control power
tool 800.

[0095] Sensor 506 of power tool 800 may be an optical
sensor configured to capture one or more properties of work
surface 802 and/or fastener 804 being driven into work
surface 802. Classifier 514 may be configured to determine
a state of work surface 802 and/or fastener 804 relative to
work surface 802 from one or more of the captured prop-
erties. The state may be fastener 804 being flush with work
surface 802. The state may alternatively be hardness of work
surface 802. Actuator 504 may be configured to control
power tool 800 such that the driving function of power tool
800 is adjusted depending on the determined state of fas-
tener 804 relative to work surface 802 or one or more
captured properties of work surface 802. For example,
actuator 504 may discontinue the driving function if the state
of fastener 804 is flush relative to work surface 802. As
another non-limiting example, actuator 504 may apply addi-
tional or less torque depending on the hardness of work
surface 802.

[0096] FIG. 9 depicts a schematic diagram of control
system 502 configured to control automated personal assis-
tant 900. Control system 502 may be configured to control
actuator 504, which is configured to control automated
personal assistant 900. Automated personal assistant 900
may be configured to control a domestic appliance, such as
a washing machine, a stove, an oven, a microwave or a
dishwasher.

[0097] Sensor 506 may be an optical sensor and/or an
audio sensor. The optical sensor may be configured to
receive video images of gestures 904 of user 902. The audio
sensor may be configured to receive a voice command of
user 902.

[0098] Control system 502 of automated personal assistant
900 may be configured to determine actuator control com-
mands 510 configured to control system 502. Control system
502 may be configured to determine actuator control com-
mands 510 in accordance with sensor signals 508 of sensor
506. Automated personal assistant 900 is configured to
transmit sensor signals 508 to control system 502. Classifier
514 of control system 502 may be configured to execute a
gesture recognition algorithm to identify gesture 904 made
by user 902, to determine actuator control commands 510,
and to transmit the actuator control commands 510 to
actuator 504. Classifier 514 may be configured to retrieve
information from non-volatile storage in response to gesture
904 and to output the retrieved information in a form
suitable for reception by user 902.

[0099] FIG. 10 depicts a schematic diagram of control
system 502 configured to control monitoring system 1000.
Monitoring system 1000 may be configured to physically
control access through door 1002. Sensor 506 may be
configured to detect a scene that is relevant in deciding
whether access is granted. Sensor 506 may be an optical
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sensor configured to generate and transmit image and/or
video data. Such data may be used by control system 502 to
detect a person’s face.

[0100] Classifier 514 of control system 502 of monitoring
system 1000 may be configured to interpret the image and/or
video data by matching identities of known people stored in
non-volatile storage 516, thereby determining an identity of
a person. Classifier 514 may be configured to generate and
an actuator control command 510 in response to the inter-
pretation of the image and/or video data. Control system 502
is configured to transmit the actuator control command 510
to actuator 504. In this embodiment, actuator 504 may be
configured to lock or unlock door 1002 in response to the
actuator control command 510. In other embodiments, a
non-physical, logical access control is also possible.
[0101] Monitoring system 1000 may also be a surveillance
system. In such an embodiment, sensor 506 may be an
optical sensor configured to detect a scene that is under
surveillance and control system 502 is configured to control
display 1004. Classifier 514 is configured to determine a
classification of a scene, e.g. whether the scene detected by
sensor 506 is suspicious. Control system 502 is configured
to transmit an actuator control command 510 to display 1004
in response to the classification. Display 1004 may be
configured to adjust the displayed content in response to the
actuator control command 510. For instance, display 1004
may highlight an object that is deemed suspicious by clas-
sifier 514. Utilizing an embodiment of the system disclosed,
the surveillance system may identify adversarial perturba-
tions or random perturbations (e.g., bad shadows or lighting)
in the video of the environment.

[0102] FIG. 11 depicts a schematic diagram of control
system 502 configured to control imaging system 1100, for
example an Mill apparatus, x-ray imaging apparatus or
ultrasonic apparatus. Sensor 506 may, for example, be an
imaging sensor. Classifier 514 may be configured to deter-
mine a classification of all or part of the sensed image.
Classifier 514 may be configured to determine or select an
actuator control command 510 in response to the classifi-
cation obtained by the trained neural network. For example,
classifier 514 may interpret a region of a sensed image to be
potentially anomalous. In this case, actuator control com-
mand 510 may be determined or selected to cause display
302 to display the imaging and highlighting the potentially
anomalous region.

[0103] While exemplary embodiments are described
above, it is not intended that these embodiments describe all
possible forms encompassed by the claims. The words used
in the specification are words of description rather than
limitation, and it is understood that various changes can be
made without departing from the spirit and scope of the
disclosure. As previously described, the features of various
embodiments can be combined to form further embodiments
of the invention that may not be explicitly described or
illustrated. While various embodiments could have been
described as providing advantages or being preferred over
other embodiments or prior art implementations with respect
to one or more desired characteristics, those of ordinary skill
in the art recognize that one or more features or character-
istics can be compromised to achieve desired overall system
attributes, which depend on the specific application and
implementation. These attributes can include, but are not
limited to cost, strength, durability, life cycle cost, market-
ability, appearance, packaging, size, serviceability, weight,
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manufacturability, ease of assembly, etc. As such, to the
extent any embodiments are described as less desirable than
other embodiments or prior art implementations with respect
to

[0104] or more characteristics, these embodiments are not
outside the scope of the disclosure and can be desirable for
particular applications.

What is claimed is:

1. A computer-implemented method for training a
machine-learning network, comprising:

receiving an input data from a sensor, wherein the input

data is indicative of image, radar, sonar, or sound
information;

generating a perturbed input data set utilizing the input

data, wherein the perturbed input data set includes
perturbed data;

denoising the perturbed input data set to generate a

denoised data set;

training the machine-learning network utilizing the

denoised data set, wherein the machine-learning net-
work is configured to reject the denoised data set when
a classification probability falls below a classification
threshold, wherein the classification threshold is asso-
ciated with classification the denoised data set; and
in response to the classification probability falling below
the classification threshold, outputting an abstain clas-
sification associated with the input data, wherein the
abstain classification is ignored for classifying.

2. The computer-implemented method of claim 1,
wherein the method includes outputting a final classification
that has a majority vote in comparison to the abstain
classification when classifying.

3. The computer-implemented method of claim 1,
wherein the method includes utilizing a classifier that
includes a per-class rejector that is a binary detector for
original classes associated with the input data.

4. The computer-implemented method of claim 1,
wherein the method includes utilizing a pre-trained classifier
configured to classify the input data and a rejector config-
ured to reject classification of the denoised data set.

5. The computer-implemented method of claim 4,
wherein the pre-trained classifier further includes a denoiser.

6. The computer-implemented method of claim 1,
wherein the method includes utilizing multiple iterations of
the denoised data set.

7. The computer-implemented method of claim 1,
wherein method further includes utilizing a classifier con-
figured to classity the input data.

8. A system including a machine-learning network, com-
prising:

an input interface configured to receive input data from a

sensor, wherein the sensor includes a camera, a radar,
a sonar, or a microphone;

a processor, in communication with the input interface,

wherein the processor is programmed to:
receive the input data, wherein the input data is indicative
of image, radar, sonar, or sound information;

generate a perturbed input data set utilizing the input data,
wherein the perturbed input data set includes perturba-
tions of the input data;

denoise the perturbed input data set utilizing a denoiser,

wherein the denoiser is configured to generate a
denoised data set;
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send the denoised data set to both a pre-trained classifier
and a rejector, wherein the pre-trained classifier is
configured to classify the denoised data set and the
rejector is configured to reject a classification of the
denoised data set;

train, utilizing the denoised input data set, the a rejector to

achieve a trained rejector; and

in response to obtaining the trained rejector, output an

abstain classification associated with the input data,
wherein the abstain classification is ignored for classi-
fying.
9. The system of claim 8, wherein the denoiser is a
pretrained denoiser.
10. The system of claim 8, wherein the processor is
further programmed to output a final classification associ-
ated with the input data.
11. The system of claim 8, wherein training the rejector
includes utilizing Monte Carlo sampling associated with the
input data.
12. The system of claim 8, wherein the rejector includes
a shared backbone configured to be parameterized.
13. The system of claim 8, wherein the denoiser is
configured to remove or mitigate Gaussian noise added to
the input.
14. A computer-program product storing instructions
which, when executed by a computer, cause the computer to:
receive input data from a sensor, wherein the input data is
indicative of image, radar, sonar, or sound information;

generate a perturbed input data set utilizing the input data,
wherein the perturbed input data set includes perturba-
tions of the input data;

denoise the input data set utilizing a pretrained denoiser,

wherein the pretrained denoiser is configured to gen-
erate a denoised data set;

classify or reject the denoised data set utilizing a pre-

trained classifier and a rejector;

train the rejector utilizing the denoised data set, wherein

the rejector is configured to reject the denoised data set
when a classification probability falls below classifica-
tion threshold, wherein the classification threshold is
associated with classification of the denoised data set;
and

in response to the classification probability falling below

the classification threshold, output an abstain classifi-
cation associated with the input data, wherein the
abstain classification ignores a classification.

15. The computer-program product of claim 14, wherein
the input data includes an image received from a camera in
communication with the computer.

16. The computer-program product of claim 14, wherein
instructions further cause the computer to train the rejector,
wherein training includes an upper bound and lower bound
defined utilizing Monte Carlo sampling.

17. The computer-program product of claim 14, wherein
the instructions further cause the computer to classify or
reject the denoised data set utilizing the pretrained classifier
for multiple iterations.

18. The computer-program product of claim 14, wherein
the pretrained denoiser is configured to be trained and
mitigate Gaussian noise or remove Gaussian noise.

19. The computer-program product of claim 14, wherein
parameters of the rejector are configured to learn via training
the rejector to discriminate a correct classification versus a
misclassification.
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20. The computer-program product of claim 14, wherein
the input data includes sound information obtained from a
microphone.
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