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SYSTEMS, METHODS, AND APPARATUSES FOR
DISTRIBUTED CONSISTENCY MEMORY

FIELD OF INVENTION

[0001] The field of invention relates generally to computer processor architecture, and,

more specifically, to instructions which when executed cause a particular result.

BACKGROUND

[0002] Extension to instruction set architecture (ISA) provides interfaces for software to
work with transactional memory (TM) support. The basic goal is to speed-up multi-threaded
workloads by providing hardware schemes that let these workloads execute certain group of
operations through lock elision. A commercial example of TM is Hardware Lock Elision
(HLE) and Restricted Transactional Memory (RTM).

[0003] HLE extensions add two new instruction prefixes, XACQUIRE and XRELEASE.
The basic concept is that the thread executes XACQUIRE, an arbitrary stream of instructions
plus XRELEASE. Logically, this section can be seen as “lock();Instructions();unlock()”.
Even though one thread may be executing this section, the other threads see this section as
free. In case a violation (meaning other threads enter the critical section) is detected by the
processor, the inflight transaction is aborted and the thread restarts the instructions stream
from the XACQUIRE. All the instructions are committed after XRELEASE are executed
with no violation detected.

[0004] TSX is a good hardware-based solution to improve software systems that are
heavily threaded accessing small but frequently shared streams of address and code.
However, this mechanism is applied within a coherent domain (i.e. multi-socket system
connected through UPI). With increasing volumes of datasets, transactional software such as
databases, need to be able to operate on several shared memory systems over a high speed
interconnect, such as a fabric. There may be several 10s of these systems connected via the
interconnect, and they will span different coherent domains (a domain could be a single

system or a group of systems).
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BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The present invention is illustrated by way of example and not limitation in the

figures of the accompanying drawings, in which like references indicate similar elements and
in which:

[0006] Figure 1 illustrates an embodiment of a system that supports remote monitoring;
[0007] Figure 2 illustrates an embodiment of the tag directory;

[0008] Figure 3 illustrates an exemplary embodiment of the use of smonitor;

[0009] Figure 4 illustrates two embodiments for handling a remote monitoring violation;
[0010] Figure 5 illustrates an exemplary embodiment of the use of smonitor on the
receiving side;

[0011] Figure 6 illustrates an exemplary embodiment of the use of srelease on the
receiving side;

[0012] Figure 7 illustrates an example of an initialization and finalization flow using
smonitor and srelease;

[0013] Figure 8 illustrates an embodiment of a method for handling conflicts by a core
that did not request a monitor (non-originating core);

[0014] Figure 9 illustrates an example of handling a conflict. In this example, setup
(smonitor) has already occurred;

[0015] Figure 10 illustrates an exemplary embodiment of the use of a transactional
memory monitor;

[0016] Figure 11 illustrates an embodiment of a method for extending monitoring to a
transaction;

[0017] Figure 12 illustrates an embodiment of a method for transactional monitoring at a
receiver node proxys;

[0018] Figure 13 illustrates an example of an extension of monitoring for a transaction;
[0019] Figure 14 illustrates an embodiment of a method for processing a monitor
instruction by a processing core;

[0020] Figure 15 is a block diagram of a register architecture according to one
embodiment of the invention;

[0021] Figure 16A is a block diagram illustrating both an exemplary in-order pipeline and
an exemplary register renaming, out-of-order issue/execution pipeline according to

embodiments of the invention.
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[0022] Figure 16B is a block diagram illustrating both an exemplary embodiment of an
in-order architecture core and an exemplary register renaming, out-of-order issue/execution
architecture core to be included in a processor according to embodiments of the invention;
[0023] Figures 17A-B illustrate a block diagram of a more specific exemplary in-order
core architecture, which core would be one of several logic blocks (including other cores of
the same type and/or different types) in a chip;

[0024] Figure 18 is a block diagram of a processor that may have more than one core,
may have an integrated memory controller, and may have integrated graphics according to
embodiments of the invention;

[0025] Figures 19-22 are block diagrams of exemplary computer architectures; and
[0026] Figure 23 is a block diagram contrasting the use of a software instruction
converter to convert binary instructions in a source instruction set to binary instructions in a

target instruction set according to embodiments of the invention.
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DETAILED DESCRIPTION

[0027] In the following description, numerous specific details are set forth. However, it
is understood that embodiments of the invention may be practiced without these specific
details. In other instances, well-known circuits, structures and techniques have not been
shown in detail in order not to obscure the understanding of this description.

b3

[0028] References in the specification to “one embodiment,” “an embodiment,” “an
example embodiment,” etc., indicate that the embodiment described may include a particular
feature, structure, or characteristic, but every embodiment may not necessarily include the
particular feature, structure, or characteristic. Moreover, such phrases are not necessarily
referring to the same embodiment. Further, when a particular feature, structure, or
characteristic is described in connection with an embodiment, it is submitted that it is within
the knowledge of one skilled in the art to affect such feature, structure, or characteristic in
connection with other embodiments whether or not explicitly described.

[0029] Embodiments of hardware and methods of its use to implement remote address
access monitoring are detailed herein. Figure 1 illustrates an embodiment of a system that
supports remote monitoring. A typical socket 101 includes a plurality of processor cores 105,
on die interconnect hardware 113, and a fabric interface 111. Remote monitoring may be
from socket to socket within a node (through a coherent on die interconnect 113) or between
nodes using a fabric switch and a fabric interface 111. As such, depending on the address
space that monitor requests are targeting, requests may go to the same node’s local memory,
they may go the on die interconnect 113 to route the request to the other processors within the
same coherent domain, or they may go to processors through a Host Fabric Interface (HFI)
111 that are outside the coherent domain. One system can be composed by one or more
coherent domains being all the coherent domains connected through fabric interconnect. For
example, high performance computing or data centers are composed by N clusters or servers
that can communicate with each other using the fabric. Using the fabric, each coherent
domain can expose some address regions to the other coherent domains. However, accesses
between different coherent domains are not coherent. In most instances, the fabric allows for
mapping address of memory ranges between different coherent domains.

[0030] Nodes also typically have caching agents and/or home agents 115. Caching
agents are the coherency agents within a node that process memory requests from the cores
within the same node. Home agents (HA) are the node clusters that are responsible of
processing memory requests from the caching agents and act as a home for part of the

memory address space (one die can have multiple Homes having a distributed address space
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mapping). In this illustration, there is a home agent 115 per socket, however, in some
embodiments there is one home agent per node. Further, in some embodiments, the
functionality of the home agent is included in the caching agent and called a caching home
agent (CHA) as shown as 109. Throughout this description, CHA is typically used for ease in
description.

[0031] A caching agent (such as CHA 109) is an entity which may initiate transactions
into coherent memory, and which may retain copies in its own cache structure. The caching
agent is defined by the messages it may sink and source according to the behaviors defined in
the cache coherence protocol. A caching agent can also provide copies of the coherent
memory contents to other caching agents. A home agent (such as CHA 109 or home agent
115) is an entity which services coherent transactions, including handshaking as necessary
with caching agents. A home agent supervises a portion of the coherent memory. A home
agent is responsible for managing the conflicts that might arise among the different caching
agents. It provides the appropriate data and ownership responses as required by a given
transaction’s flow.

[0032] Further, the home agents include a distributed directory that has the following
states for memory addresses: clean (this is the only copy, for example, lines that are just
written back), any (any remote socket within the node may have a copy), and invalid (the
local socket’s cache has a copy). An additional state (remote) indicates that a remote node
has requested a copy and may have and may be updated when a request for the line originates
from the fabric.

[0033] One logical place to add a monitoring scheme is the home agents inside the node,
and in some embodiments, that is the case. However, when distributed schemes map address
spaces in the HA (node controller, hashing schemes, hemisphere, quadrant schemes, etc.),
this may add too much complexity in terms of design, area and validation. As such, in some
embodiments, this monitoring information is kept as a monitoring table (MT) 103: 1) in the
proxies to the node, that tunnel any memory transaction coming from other nodes to the home
node (fabric interface 111), 2) the cores inside the node 105, and 3) the unique agents that can
access the local memory without going through the proxies (on die interconnect 113), to
identify accesses. This table is used by a monitor circuit (not shown) which tracks
memory/cache accesses, compares those accesses to the table, and alerts the originating core
of any accesses as requested.

[0034] In some embodiments, a distributed memory monitoring scheme allows the core

to register at the home nodes to monitor the address range of interest. The monitoring
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scheme allows for discovering when a given line that is accessed by other caching agents in
the system falls within the specified address range; accordingly, it updates the sharer’s valid
bits for the given range. The core that requests the tracking for the address range uses a tag
directory structure 107 to denote the sockets in the cluster that have access to the specific
address range and is used by the core to track/monitor the address range.

[0035] This directory is a non-perfect tag directory in two dimensions. First, given that
the whole system can have a very large address space, different addresses can match in the
same tag entry (explained below). Second, each bit in the sharer’s remote tracking
information (e.g., bit mask or bloom filter) corresponds to a group of caching agents in the
system. Filtering hardware associated with the tag directory per core performs Bloom or
other filtering to test inclusion in a set.

[0036] Figure 2 illustrates an embodiment of the tag directory. An entry in the tag
directory 201 includes fields for tracking size granularity 203, address hash 205, tracking
granularity 207, and remote sharer information 209.

[0037] The tracking size 203 and tracking granularity 207 can be provided through a
mcoherent call as detailed above. As such, the number of rows in the directory can be
reduced using page-level or huge page level tracking instead of cache line tracking.

[0038] As a simplified example, assume a hypothetical cluster of 8 nodes, 2 sockets each
and consider each node has only 4MB of memory (65K lines of 64B each). Now there are
65K row entries in the look-up-directory, each corresponding to a line in the node. In this
scenario, the 16 bit bit-mask accurately tracks the sockets which have requested memory
from this node. However, in reality, systems have much, much larger memory and the space
requirements for the look-up-directory can quickly become impractical. For this reason, the
directory non-perfect.

[0039] Bloom filtering, or node groups, or a subset of nodes 209 instead of the bit mask
to reduce the space complexity for the directory.

[0040] In order to provide scalability, in some embodiments, cache line addresses 205 are
hashed onto rows in the directory using a hash function H(), note that number of rows is less
than the number of cache lines. A good choice of H() can result in fewer collisions, for
example, using lower-order bits of the cache line address ensures good distribution for the
hashing function. Note that having collisions does not mean any loss of correctness; it merely
indicates potential false positives: since two cache lines map onto the same row in the

directory, we will end up snooping the union of the “remote nodes” for the two cache lines.
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[0041] With the choice of a good hash function, and the use of the distributed directory
bits (the tag directory need only be consulted if the distributed directory bit for the cache line
says “remote”) the probability of false positives becomes small. At the same time, the number
of nodes requiring snoops is significantly reduced. As mentioned earlier, further tradeoffs are
possible by varying the granularity of hashing, and using bloom filter tracking instead of a
bit-mask based on hints specified by the application

[0042] Software has the ability to reset the entries corresponding to a memory region in
the look-up-directory based on usages with the srelease (detailed herein), and this ensures the
number of false positives of the directory does not monotonically increase over time (since a
bloom filter based approach becomes less effective as the filter becomes fully populated —
recall it only tells for sure if something is not present — and this reduces the search space).
Further, at points when coherence needs to be enforced, software can consult the directory
structure and explicitly issue remote snoop, write-back, or invalidate commands.

[0043] Each proxy and core can contain a fixed number of monitors, and each monitor
contains the address range and original home requesting the monitor. If there are no free
entries in the monitors, then that monitoring request fails. The request would also fail if the
address range being requested overlaps with another monitoring entry. In a case of failure, a
fail response would be sent back to the originator fabric and it would be communicated to the
software stack. Eventually, the software would get notified in case of failure and it would
need to take corresponding actions. A different way to propagate the failure to the software
stack could be issuing a callback to the software stack from the core.

[0044] To allow monitoring a given address range which is being monitored by a given
core, in some embodiments instructions and messages for monitor initialization (smonitor)
and monitor release (srelease) are supported by processor cores. These instructions provide a
new interface that allows a software thread to specify that a given set of instructions is bound
to a specific type of access to a certain memory range. Any access to this address space
performed by any other thread (in or outside the coherent domain) in the specified mode will
be automatically notified to the software stack. From this point, the software stack is the one
responsible of taking a specific action (for example, restart the copy of the monitored object).
[0045] An embodiment of the smonitor and srelease instructions are:

SMONITOR base_address, granularity, mode, size

SRELEASE

[0046] The semantic of SMONITOR is the following, the thread provides a base line

address, the granularity of address space that needs to be monitored, the monitoring mode,
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and size. The granularity can be, for example, a cache line, memory line, KB, MB or GB (for
example, coded as: 0, 1, 2, 3, 4). The size specifies the multiple of the granularity space that
needs to be monitored. The mode specifies what type of violation is being monitored read (R)
or write (W) (for example, W mode would imply that the thread will get notified if the
address region is accessed with a write operation). The following example shows a way to
bind instructions within a transaction to the address space corresponding to [300000,
300000+4MB], but only in write mode (for this example, assume Core X in node A is
executing this instruction): SMONITOR 300000, 3, W, 4. The execution of SMONITOR
causes a SMONITOR message to be sent from the initiating (originating) core to its local
caching agent to be propagated to the remote cores, etc. to set up monitoring (e.g., monitor
table(s)). In some embodiments, the monitoring table for the executing core is also set (for
example, when the information in the monitoring table is duplicated across cores, proxies,
etc. in nodes).

[0047] The execution of SRELEASE stops the monitor(s) and removes an associated
monitor table.

[0048] Figure 3 illustrates an exemplary embodiment of the use of smonitor. At 301, a
first core (originating core) in a first node, executes an smonitor instruction. For example, in
Figure 1, core 0 105 executes a smonitor instruction.

[0049] This execution causes a monitoring request (smonitor message) to be sent from
the first core to its corresponding caching agent at 303. This request includes the information
(base address, granularity, size, and mode) from the instruction. The caching agent manages
the baseline address to setup the requested monitor. This caching agent is separate from the
home agent depending upon the implementation. For example, in Fig. 1, the core 105 sends a
request to CHA 109 (combined caching and home agent). In other words, the core alerts the
caching agent of the address (AS) that it wants monitored [base address to
base_address+granularity*size] and the type of monitoring (write/read).

[0050] At 305, in some embodiments, the caching agent identifies a local domain home
agent responsible to manage the request. For example, the home agent responsible for the
base address. Note that the identified home agent may be combined in the same entity
(CHA) as the caching agent as detailed above.

[0051] The identified home agent identifies what node in the system is the home for the
address space that the core (thread) wants to monitor (it can be the local coherent domain) at

307.
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[0052] Once the home for the address region is identified, a request is sent to the proxy
(in the illustration of Figure 1 the fabric 111 or on die interconnect 113) to setup a monitor in
the home node at 309. In other words, a monitoring message proxy connect (smonitor
message) is sent from the identified home agent to a remote node which is the home of the
address space at 309. Note that the node can belong to a different coherent domain and use
the fabric, or it could be within the same coherent domain. In that case the proxy would be a
on die interconnect.

[0053] A response from the proxy connect regarding the success or failure of the
registration of the monitor is received by the originating core at 311. Examples of what may
cause a failure include, but are not limited to, overlapping address spaces, no free monitor
space, and hardware failure. If the monitor(s) is/are successful, then the tag directory for the
core is updated. Further, in most embodiments, a monitoring table is updated across all
proxies in the socket upon an acknowledgment of one or more monitors being configured.
[0054] After registration, in some embodiments, a notification of a violation upon a
transaction to the monitored address space is received at 313. For example, a remote monitor
processes a write to the monitored address. This may be received by the core or a proxy.
Figure 4 illustrates two embodiments for handling a remote monitoring violation. At401, a
violation notification is received by the core. This causes the core to generate a user interrupt
at 403.

[0055] Alternatively, at 405, a violation notification is received by the core. This causes
the core to notify the software stack at 409. In either case, the software stack is the
responsible to take the proper actions to address the failure.

[0056] In case of success, where all the different operations are executed without a
violation the requesting core, a monitor release (de-registration) is sent from the first core to
the monitoring proxies at 313. For example, the core executes a srelease instruction to
release the monitors and once the release instruction is executed the core notifies the release
to the remote proxy (HFI of Socket B in the example). The proxy propagates the release
notification to the real home for this monitor and cores.

[0057] Figure 5 illustrates an exemplary embodiment of the use of smonitor on the
receiving side. At 501, a proxy of the receiving node receives a request to start a monitor. In
other words, a monitoring message proxy connect (smonitor message) is received at the
remote node which is the home of the address space. Note that the node can belong to a
different coherent domain and use the fabric, or it could be within the same coherent domain.

In that case the proxy would be an on die interconnect.

9



WO 2017/117318 PCT/US2016/069063

[0058] This request is sent to cores and proxies at 503.

[0059] Acknowledgements from the cores and proxies regarding the request is received
by the receiving proxy (e.g., fabric) at 505. For example, is the monitor successfully setup or
not. These acknowledgments typically include an identifier of the responder.

[0060] These acknowledgments are processed by the proxy into a single acknowledgment
which is sent to the originating core at 507. The acknowledgment to the originating core
includes identifiers of where monitoring is taking place.

[0061] Figure 6 illustrates an exemplary embodiment of the use of srelease on the
receiving side. At 601, a proxy of the receiving node receives a request to release a monitor.
In other words, a monitoring message proxy connect (srelease message) is received at the
remote node which is the home of the address space at 309. Note that the node can belong to
a different coherent domain and use the fabric, or it could be within the same coherent
domain. In that case the proxy would be an on die interconnect.

[0062] This request is sent to cores and proxies such as on die interconnects at 603.
[0063] Acknowledgements from the cores and proxies regarding the request is received
by the receiving proxy (e.g., fabric) at 605. These acknowledgments typically include an
identifier of the responder.

[0064] These acknowledgments are processed by the proxy into a single acknowledgment
which is sent to the originating core at 607. The acknowledgment to the originating core
includes identifiers of where monitoring is taking place.

[0065] Figure 7 illustrates an example of an initialization and finalization flow using
smonitor and srelease. An initiating core 701 decodes and executes a smonitor instruction.
For example, a thread on core 701 executes an smonitor instruction. This instruction
provides a base address, granularity of the space to be monitored (e.g., memory line, KB,
MB, or GB), the size, and the mode.

[0066] The core 701 in Node A sends a request to the local caching agent managing the
baseline address (CHA: CA+HA) in order to setup a monitor. The core 701 notifies the CHA
that it wants to monitor the address space (AS) where AS=[@base_address to
base_address+granularity*size].

[0067] The CHA 703 identifies to what home (such as a socket) the specified memory
region is mapped. In some embodiments, if the region belongs to several homes the
instruction is aborted. The CHA 703 identifies what is the home agent in the local coherent

domain that is responsible to manage the request the address (base_address). The home agent
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(CHA 703) identifies what node (socket) in the system is the Home for the address space that
the thread wants to monitor (it can be the local coherent domain).

[0068] The CHA 703 sends a monitoring message proxy connection fabric 707 to send to
the remote node acting as a Home for AS. On the target side, the proxy generates a multicast
message that targets including proxies to the socket such any on die interconnect agent in the
node 717 and any fabric interconnect agent 709 in the node and all the cores 711 and 715 in
the home socket.

[0069] All the target destinations respond success or failure about the registration of the
monitor with acknowledgement messages. Typically, the responses will be collapsed by the
proxy in the home node that received the monitoring request (in this example fabric 709). In
case of failure it will propagate the notification to the requestor and will cancel the
registration to the rest of peers inside the home node.

[0070] In case that any proxy agent or core identifies a transaction to the address space
violating the requested monitoring AS, they will send a violation message to the core 701
notifying it of the violation. The core 701 propagates the violation to the user space.

[0071] When there are no issues, or there has been a violation detected, the core 701 will
send a de-registration message once a srelease instruction is decoded and executed alerting
the proxies that the core does not need more monitoring on AS. Once the release instruction
is executed the Core notifies the release to the remote proxy (fabric 709). The proxy 709
propagates the release notification to the real home for this monitor and cores. Note that the
core 701 would know the proxy identifier because of the acknowledgement received in the
registration process detailed earlier.

[0072] As hinted at above, there may be times when there is a conflict detected by a
monitor. For example, after initialization (detailed in the first portion of Figure 3 as the
handling of smonitor), an originating core may issue remote read or write operations to be
handled in a remote node into the address space that is being monitored on behalf of the
originating core. This will not cause a conflict. However, when a different entity (another
core for example) issues a write operation to the monitor space, then a conflict has occurred.
The entity that makes this detection is the one that cause the access to occur. This entity
checks its copy of the monitor table (using, for example, its monitor circuitry) to see if the
memory address of the access is associated with a monitor. The entity making the conflicting
access sends a notification of the access to the originating core. The notification may be

fabric or interconnect based depending upon the configuration of the entities. The originating
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core then handles the violation as detailed earlier. Note that all instructions during the
monitoring are typically committed as they are executed.

[0073] Figure 8 illustrates an embodiment of a method for handling conflicts by a core
that did not request a monitor (non-originating core). At 801, the non-originating core writes
or reads (accesses) a memory or cache address.

[0074] A determination that the access is to a monitored address, and is of the type of
access being monitored, is made at 803. For example, a determination that a write (type of
access) to an address in a monitored address space is made. Of course, accesses to addresses
not being monitored, or accesses to addresses being monitored, but not of the type being
monitored, do not result in a conflict.

[0075] At 805, the non-originating core sends a violation notification to the core that
requested the monitor. This notification may go through a fabric or interconnect interface
depending upon how the cores are arranged.

[0076] Figure 9 illustrates an example of handling a conflict. In this example, setup
(smonitor) has already occurred. Additionally, several remote reads (RdCur and MemRd)
have occurred and data returned (Data_Cmp) without any conflicts. However, core 915
writes to the monitored address space which is a violation. Core 915 then sends a notification
to the originating core 901 through its fabric interface 909. The proxy 909 propagates
notication to the originating core 901 for it to handle. After the notification, the monitor is
typically not needed and the originating core triggers a release of the monitor (mrelease).
[0077] The remote monitoring discussion above may also be applied to transactional
memory (TM)/hardware lock elision (HLE). As detailed above, in HLE, the basic concept is
that a thread executes an instruction to delineate the start of a transaction (e.g., XBEGIN or
XACQUIRE), executes an arbitrary stream of instructions of the transactions, and then
commits the instructions of the transaction upon an end of the transaction (e.g., upon an
execution to end the transaction such as XRELEASE or XEND). Logically, this section can
be seen as “lock();Instructions();unlock()”. Even though one thread may be executing this
section, the other threads see this section as free. A violation (meaning other threads enter the
critical section) is detected by the processor, the inflight transaction is aborted and the thread
restarts the instructions stream from the start delineation instruction. All the instructions are
committed after the release instruction is executed with no violations detected. HLE is a
good hardware-based solution to improve software systems that are heavily threaded
accessing small, but frequently shared streams of address and code. While this mechanism is

applied within a coherent domain (such as a multi-socket system connected through a on die
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interconnect) with increasing volumes of datasets, transactional software such as databases,
will need to be able to operate on several shared memory systems over a high speed
interconnect, such as a fabric. There may be several tens of these systems connected via the
interconnect, and they will span different coherent domains (a domain could be a single
system or a group of systems).

[0078] HLE functionality is extendable to shared-memory systems connected through
high speed interconnects by binding the execution of operations on a specified address range
based on conditions specified by the application. The specified address range can be local to
the coherent domain or mapped to a remote address space.

[0079] HLE can be extended by having an application specify a memory region; in case
any other hardware thread within the same or remote coherent domain accesses this memory
region such that there is a data conflict, the application will be notified to that a violation has
happened and at what precise memory location happened. Detecting when access to specific
ranges of memory occurs between a set of instructions can be made by registering monitors at
the proper places of the system. Memory monitoring can occur across all the server
platforms in the data centers that can be connected via coherent protocols or via fabric
interconnect. For example, one thread in server A wants to copy an object from server B. In
this case, no locking schemes are used. However, the thread in server A would be notified in
the case that, in the middle of the copy, the object has been modified by any other thread in
the system. The action to be taken upon receiving the notification is left to the application
software. Additionally, traditional transactional memory execution of all or nothing commit
is used. The memory instructions inside the transaction are all committed or none of them in
case of a violation.

[0080] There are three basic scenarios that could occur in this HLE extention. First, the
address space is accessed by other agents in the specified mode. That would imply that the
transaction has been violated. Second, no access is done. That would imply that the xmonitor
has been successfully executed. Finally, any other type of failure occurs. For example,
remote nodes fail or a time out occurs. When an error, similar to registration failure of
smonitor, the originating core will trigger a user interrupt to notify the occurred error. At this
point, the software stack is the responsible to take the proper actions to address the failure.
[0081] Unlike the non-HLE approaches, any access to this address space performed by
any other thread (in or outside the coherent domain) will restart the stream of instructions.

The proposed feature would be an extension of the discussed previously.
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[0082] Monitoring in HLE is provided through two instructions, according to an
embodiment.

SXACQUIRE base_address, granularity, mode, size

SXRELEASE

[0083] The semantic of SXACQUIRE is the following, the thread provides a base line
address, the granularity of address space that needs to be monitored, the monitoring mode,
and size. The granularity can be, for example, memory line, KB, MB or GB (for example,
coded as: 0, 1, 2, 3, 4). The size specifies the multiple of the granularity space that needs to
be monitored. The mode specifies what type of violation is being monitored read (R) or write
(W) (for example: W mode would imply that the thread will get notified if the address region
is accessed with a write operation). The following example shows a way to bind the
instructions within the transaction to the address space corresponding to [300000,
300000+4MB] but only in write mode (for this example assume Core X in node A is
executing this instruction): SXACQUIRE 300000, 3, W, 4. The execution of SXACQUIRE
causes a SXACQUIRE message to be sent from the initiating (originating) core to its local
caching agent to be propagated to the remote cores, etc. to set up the monitoring (e.g.,
monitor table) and buffer stores of the transaction. In some embodiments, the monitoring
table for the executing core is also set (for example, when the information in the monitoring
table is duplicated across cores, proxies, etc. in nodes).

[0084] The execution of SXRELEASE stops the monitor, removes associated monitor
table(s) and commits buffered instructions of the transaction.

[0085] The set of instructions in the transaction will succeed unless another thread in the
data center (in any of the sockets of the system, irrespective of coherent domain) accesses the
specified region and causes a data conflict. To implement the proposed transactional
semantic, all the write memory operations issued by the requested node targeting the memory
in the monitored address range are temporary allocated in an intermediate buffer. If a
violation is identified this buffer is cleared. Otherwise, the intermediate buffer will be dump
in to memory on SXRELEASE. The intermediate buffer is placed in a memory controller
associated with the remote node according to an embodiment. In other embodiments, the
intermediate buffer is a part of an interface (fabric or interconnect) that receives the stores.
[0086] Figure 10 illustrates an exemplary embodiment of the use of a transactional
memory monitor. At 1001, a first core (originating core) in a first node, decodes and
executes a SXACQUIRE instruction. For example, in Figure 1, core 0 105 executes a

SXACQUIRE instruction.
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[0087] This execution causes a monitoring request (SXACQUIRE message) to be sent
from the first core to its corresponding caching agent at 1003. This request includes the
information (address, granularity, size, and mode) from the instruction. The caching agent
manages the baseline address to setup the requested monitor. This caching agent is separate
from the home agent depending upon the implementation. For example, in Fig. 1, the core
105 sends request to CHA 109 (combined caching and home agent). In other words, the core
alerts the caching agent of the address (AS) that it wants monitored for the transaction
([@base_address to base_address+granularity*size]) and the type of monitoring (write/read).
[0088] At 1005, in some embodiments, the caching agent identifies a local domain home
agent responsible to manage the request. For example, the home agent responsible for the
base address. Note that the identified home agent may be combined in the same entity
(CHA) as the caching agent as detailed above.

[0089] The identified home agent identifies what node (socket) in the system is the home
for the address space that the core (thread) wants to monitor (it can be the local coherent
domain) at 1007.

[0090] Once the home for the address region is identified, a request is sent to the proxy
(in the illustration of Figure 1 the fabric 111 or on die interconnect 113) to setup a monitor in
the home node at 1009. In other words, a monitoring message proxy connect (SXACQUIRE
message) is sent from the identified home agent to a remote node which is the home of the
address space at 1009. Note that the node can belong to a different coherent domain and use
the fabric, or it could be within the same coherent domain. In that case the proxy would be an
on die interconnect.

[0091] A response from the proxy connect regarding the success or failure of the
registration of the monitor is received by the originating core at 1011. Examples of what may
cause a failure include, but are not limited to, overlapping address spaces, no free monitor
space, and hardware failure. If the monitor(s) is/are successful, then the tag directory for the
core is updated. Further, in most embodiments a monitoring table is updated across all
proxies in the socket upon an acknowledgment of one or more monitors being configured.
[0092] Figure 11 illustrates an embodiment of a method for extending monitoring to a
transaction. It is assumed that prior to any of the below detailed actions, that one or more
monitors have been started (such as by an SXACQUIRE instruction execution).

[0093] At 1101, a store request from core is sent to a caching agent, home agent, or

caching home agent. For example, CHA 109 receives the store request from core 0 105. The
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store request is then forwarded from the caching agent, home agent, or caching home agent to
proxy within the same node as the core (e.g., fabric 111 or on die interconnect 113) at 1103.
[0094] The proxy then sends the store request to a proxy in a different node or socket as
the core at 1105. For example, the store request is sent to a different node via a fabric
interface 111. 1101-1105 are repeated for each store request of the transaction. Each of these
store requests is to be buffered by the receiving node until the transaction is complete.

[0095] A determination of if there have been any transaction violations (such as a write
into the monitored address space) is made at 1106. In other words, has the transaction
completed successfully? If not, then the buffered stores are flushed and not committed, and
the execution state is rolled back to SXACQUIRE at 1113.

[0096] If there are no issues within the transaction (no accesses to the monitored address
space), then the core executes SXRELEASE at 1107and sends a release request to the proxy
within the same node as the core at 1109.

[0097] This release is sent from the proxy to a proxy in the remote node at 1111 to cause
all of the buffered stores to be committed.

[0098] Figure 12 illustrates an embodiment of a method for transactional monitoring at a
receiver node proxy. At 1201 each store that is received from the core that requested the
transaction monitoring is buffered.

[0099] When there are monitor violations, upon receiving a violation notification,
flushing all stored buffers of the transaction and forwarding notification at 1203.

[0100] When there are no violations and the transaction successfully completes, receiving
a release request (SXRELEASE) and committing all buffer stores into memory at 1205. The
monitors are also reset.

[0101] An example of an extension of monitoring for a transaction is shown in Fig. 13.
[0102] Figure 14 illustrates an embodiment of a method for processing a monitor
instruction by a processing core. For example, the monitor instruction may be the
SMONITOR or SXACQUIRE instructions detailed earlier.

[0103] At 1401, the instruction is fetched. For example, the instruction is fetched from
an instruction cache or other memory structure. The instruction includes operands for base
address, granularity, size, and mode as detailed above.

[0104] At 1403, the fetched instruction is decoded by decode circuitry.

[0105] At 1405, data associated with the operands of the instruction is retrieved as

needed. For example, registers are accessed for their data.
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[0106] The decoded instruction is executed by execution circuitry (a functional unit) at
1407 to cause one or more monitors to be started (if possible).

[0107] Embodiments detailed above may be implemented in several different
architectures and systems. Detailed below are exemplary architectures and systems to

implement the above.

Exemplary Register Architecture

[0108] Figure 15 is a block diagram of a register architecture 1500 according to one
embodiment of the invention. In the embodiment illustrated, there are 32 vector registers
1510 that are 512 bits wide; these registers are referenced as zmmO through zmm31. The
lower order 256 bits of the lower 16 zmm registers are overlaid on registers ymm0-16. The
lower order 128 bits of the lower 16 zmm registers (the lower order 128 bits of the ymm
registers) are overlaid on registers xmmO-15.

[0109] In other words, the vector length field QABS9B selects between a maximum
length and one or more other shorter lengths, where each such shorter length is half the length
of the preceding length; and instructions templates without the vector length field QAB59B
operate on the maximum vector length. Further, in one embodiment, the class B instruction
templates of the specific vector friendly instruction format QACOO operate on packed or
scalar single/double-precision floating point data and packed or scalar integer data. Scalar
operations are operations performed on the lowest order data element position in an
zmm/ymm/xmm register; the higher order data element positions are either left the same as
they were prior to the instruction or zeroed depending on the embodiment.

[0110] Write mask registers 1515 - in the embodiment illustrated, there are 8 write mask
registers (kO through k7), each 64 bits in size. In an alternate embodiment, the write mask
registers 1515 are 16 bits in size. As previously described, in one embodiment of the
invention, the vector mask register kO cannot be used as a write mask; when the encoding that
would normally indicate kO is used for a write mask, it selects a hardwired write mask of
OxFFFF, effectively disabling write masking for that instruction.

[0111] General-purpose registers 1525 - in the embodiment illustrated, there are sixteen
64-bit general-purpose registers that are used along with the existing x86 addressing modes to
address memory operands. These registers are referenced by the names RAX, RBX, RCX,
RDX, RBP, RSI, RDI, RSP, and R8 through R15.

[0112] Scalar floating point stack register file (x87 stack) 1545, on which is aliased the
MMX packed integer flat register file 1550 - in the embodiment illustrated, the x87 stack is
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an eight-element stack used to perform scalar floating-point operations on 32/64/80-bit
floating point data using the x87 instruction set extension; while the MMX registers are used
to perform operations on 64-bit packed integer data, as well as to hold operands for some
operations performed between the MMX and XMM registers.

[0113] Alternative embodiments of the invention may use wider or narrower registers.
Additionally, alternative embodiments of the invention may use more, less, or different

register files and registers.

Exemplary Core Architectures, Processors, and Computer Architectures

[0114] Processor cores may be implemented in different ways, for different purposes, and
in different processors. For instance, implementations of such cores may include: 1) a
general purpose in-order core intended for general-purpose computing; 2) a high performance
general purpose out-of-order core intended for general-purpose computing; 3) a special
purpose core intended primarily for graphics and/or scientific (throughput) computing.
Implementations of different processors may include: 1) a CPU including one or more
general purpose in-order cores intended for general-purpose computing and/or one or more
general purpose out-of-order cores intended for general-purpose computing; and 2) a
coprocessor including one or more special purpose cores intended primarily for graphics
and/or scientific (throughput). Such different processors lead to different computer system
architectures, which may include: 1) the coprocessor on a separate chip from the CPU; 2) the
coprocessor on a separate die in the same package as a CPU; 3) the coprocessor on the same
die as a CPU (in which case, such a coprocessor is sometimes referred to as special purpose
logic, such as integrated graphics and/or scientific (throughput) logic, or as special purpose
cores); and 4) a system on a chip that may include on the same die the described CPU
(sometimes referred to as the application core(s) or application processor(s)), the above
described coprocessor, and additional functionality. Exemplary core architectures are

described next, followed by descriptions of exemplary processors and computer architectures.

Exemplary Core Architectures

In-order and out-of-order core block diagram

[0115] Figure 16A is a block diagram illustrating both an exemplary in-order pipeline and
an exemplary register renaming, out-of-order issue/execution pipeline according to
embodiments of the invention. Figure 16B is a block diagram illustrating both an exemplary

embodiment of an in-order architecture core and an exemplary register renaming, out-of-
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order issue/execution architecture core to be included in a processor according to
embodiments of the invention. The solid lined boxes in Figures 16A-B illustrate the in-order
pipeline and in-order core, while the optional addition of the dashed lined boxes illustrates
the register renaming, out-of-order issue/execution pipeline and core. Given that the in-order
aspect is a subset of the out-of-order aspect, the out-of-order aspect will be described.

[0116] In Figure 16A, a processor pipeline 1600 includes a fetch stage 1602, a length
decode stage 1604, a decode stage 1606, an allocation stage 1608, a renaming stage 1610, a
scheduling (also known as a dispatch or issue) stage 1612, a register read/memory read stage
1614, an execute stage 1616, a write back/memory write stage 1618, an exception handling
stage 1622, and a commit stage 1624.

[0117] Figure 16B shows processor core 1690 including a front end unit 1630 coupled to
an execution engine unit 1650, and both are coupled to a memory unit 1670. The core 1690
may be a reduced instruction set computing (RISC) core, a complex instruction set computing
(CISC) core, a very long instruction word (VLIW) core, or a hybrid or alternative core type.
As yet another option, the core 1690 may be a special-purpose core, such as, for example, a
network or communication core, compression engine, coprocessor core, general purpose
computing graphics processing unit (GPGPU) core, graphics core, or the like.

[0118] The front end unit 1630 includes a branch prediction unit 1632 coupled to an
instruction cache unit 1634, which is coupled to an instruction translation lookaside buffer
(TLB) 1636, which is coupled to an instruction fetch unit 1638, which is coupled to a decode
unit 1640. The decode unit 1640 (or decoder) may decode instructions, and generate as an
output one or more micro-operations, micro-code entry points, microinstructions, other
instructions, or other control signals, which are decoded from, or which otherwise reflect, or
are derived from, the original instructions. The decode unit 1640 may be implemented using
various different mechanisms. Examples of suitable mechanisms include, but are not limited
to, look-up tables, hardware implementations, programmable logic arrays (PLAs), microcode
read only memories (ROMs), etc. In one embodiment, the core 1690 includes a microcode
ROM or other medium that stores microcode for certain macroinstructions (e.g., in decode
unit 1640 or otherwise within the front end unit 1630). The decode unit 1640 is coupled to a
rename/allocator unit 1652 in the execution engine unit 1650.

[0119] The execution engine unit 1650 includes the rename/allocator unit 1652 coupled
to a retirement unit 1654 and a set of one or more scheduler unit(s) 1656. The scheduler
unit(s) 1656 represents any number of different schedulers, including reservations stations,

central instruction window, etc. The scheduler unit(s) 1656 is coupled to the physical register
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file(s) unit(s) 1658. Each of the physical register file(s) units 1658 represents one or more
physical register files, different ones of which store one or more different data types, such as
scalar integer, scalar floating point, packed integer, packed floating point, vector integer,
vector floating point,, status (e.g., an instruction pointer that is the address of the next
instruction to be executed), etc. In one embodiment, the physical register file(s) unit 1658
comprises a vector registers unit, a write mask registers unit, and a scalar registers unit.
These register units may provide architectural vector registers, vector mask registers, and
general purpose registers. The physical register file(s) unit(s) 1658 is overlapped by the
retirement unit 1654 to illustrate various ways in which register renaming and out-of-order
execution may be implemented (e.g., using a reorder buffer(s) and a retirement register
file(s); using a future file(s), a history buffer(s), and a retirement register file(s); using a
register maps and a pool of registers; etc.). The retirement unit 1654 and the physical register
file(s) unit(s) 1658 are coupled to the execution cluster(s) 1660. The execution cluster(s)
1660 includes a set of one or more execution units 1662 and a set of one or more memory
access units 1664. The execution units 1662 may perform various operations (e.g., shifts,
addition, subtraction, multiplication) and on various types of data (e.g., scalar floating point,
packed integer, packed floating point, vector integer, vector floating point). While some
embodiments may include a number of execution units dedicated to specific functions or sets
of functions, other embodiments may include only one execution unit or multiple execution
units that all perform all functions. The scheduler unit(s) 1656, physical register file(s)
unit(s) 1658, and execution cluster(s) 1660 are shown as being possibly plural because certain
embodiments create separate pipelines for certain types of data/operations (e.g., a scalar
integer pipeline, a scalar floating point/packed integer/packed floating point/vector
integer/vector floating point pipeline, and/or a memory access pipeline that each have their
own scheduler unit, physical register file(s) unit, and/or execution cluster — and in the case of
a separate memory access pipeline, certain embodiments are implemented in which only the
execution cluster of this pipeline has the memory access unit(s) 1664). It should also be
understood that where separate pipelines are used, one or more of these pipelines may be out-
of-order issue/execution and the rest in-order.

[0120] The set of memory access units 1664 is coupled to the memory unit 1670, which
includes a data TLB unit 1672 coupled to a data cache unit 1674 coupled to a level 2 (L.2)
cache unit 1676. In one exemplary embodiment, the memory access units 1664 may include a
load unit, a store address unit, and a store data unit, each of which is coupled to the data TLB

unit 1672 in the memory unit 1670. The instruction cache unit 1634 is further coupled to a
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level 2 (L2) cache unit 1676 in the memory unit 1670. The L2 cache unit 1676 is coupled to
one or more other levels of cache and eventually to a main memory.

[0121] By way of example, the exemplary register renaming, out-of-order issue/execution
core architecture may implement the pipeline 1600 as follows: 1) the instruction fetch 1638
performs the fetch and length decoding stages 1602 and 1604; 2) the decode unit 1640
performs the decode stage 1606; 3) the rename/allocator unit 1652 performs the allocation
stage 1608 and renaming stage 1610; 4) the scheduler unit(s) 1656 performs the schedule
stage 1612; 5) the physical register file(s) unit(s) 1658 and the memory unit 1670 perform the
register read/memory read stage 1614; the execution cluster 1660 perform the execute stage
1616; 6) the memory unit 1670 and the physical register file(s) unit(s) 1658 perform the write
back/memory write stage 1618; 7) various units may be involved in the exception handling
stage 1622; and 8) the retirement unit 1654 and the physical register file(s) unit(s) 1658
perform the commit stage 1624.

[0122] The core 1690 may support one or more instructions sets (e.g., the x86 instruction
set (with some extensions that have been added with newer versions); the MIPS instruction
set of MIPS Technologies of Sunnyvale, CA; the ARM instruction set (with optional
additional extensions such as NEON) of ARM Holdings of Sunnyvale, CA), including the
instruction(s) described herein. In one embodiment, the core 1690 includes logic to support a
packed data instruction set extension (e.g., AVX1, AVX2), thereby allowing the operations
used by many multimedia applications to be performed using packed data.

[0123] It should be understood that the core may support multithreading (executing two
or more parallel sets of operations or threads), and may do so in a variety of ways including
time sliced multithreading, simultaneous multithreading (where a single physical core
provides a logical core for each of the threads that physical core is simultaneously
multithreading), or a combination thereof (e.g., time sliced fetching and decoding and
simultaneous multithreading thereafter such as in the Intel® Hyperthreading technology).
[0124] While register renaming is described in the context of out-of-order execution, it
should be understood that register renaming may be used in an in-order architecture. While
the illustrated embodiment of the processor also includes separate instruction and data cache
units 1634/1674 and a shared L2 cache unit 1676, alternative embodiments may have a single
internal cache for both instructions and data, such as, for example, a Level 1 (L1) internal
cache, or multiple levels of internal cache. In some embodiments, the system may include a
combination of an internal cache and an external cache that is external to the core and/or the

processor. Alternatively, all of the cache may be external to the core and/or the processor.
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Specific Exemplary In-Order Core Architecture

[0125] Figures 17A-B illustrate a block diagram of a more specific exemplary in-order
core architecture, which core would be one of several logic blocks (including other cores of
the same type and/or different types) in a chip. The logic blocks communicate through a
high-bandwidth interconnect network (e.g., a ring network) with some fixed function logic,
memory I/O interfaces, and other necessary I/O logic, depending on the application.

[0126] Figure 17A is a block diagram of a single processor core, along with its
connection to the on-die interconnect network 1702 and with its local subset of the Level 2
(L2) cache 1704, according to embodiments of the invention. In one embodiment, an
instruction decoder 1700 supports the x86 instruction set with a packed data instruction set
extension. An L1 cache 1706 allows low-latency accesses to cache memory into the scalar
and vector units. While in one embodiment (to simplify the design), a scalar unit 1708 and a
vector unit 1710 use separate register sets (respectively, scalar registers 1712 and vector
registers 1714) and data transferred between them is written to memory and then read back in
from a level 1 (L1) cache 1706, alternative embodiments of the invention may use a different
approach (e.g., use a single register set or include a communication path that allow data to be
transferred between the two register files without being written and read back).

[0127] The local subset of the L2 cache 1704 is part of a global L2 cache that is divided
into separate local subsets, one per processor core. Each processor core has a direct access
path to its own local subset of the L2 cache 1704. Data read by a processor core is stored in
its L2 cache subset 1704 and can be accessed quickly, in parallel with other processor cores
accessing their own local L2 cache subsets. Data written by a processor core is stored in its
own L2 cache subset 1704 and is flushed from other subsets, if necessary. The ring network
ensures coherency for shared data. The ring network is bi-directional to allow agents such as
processor cores, L2 caches and other logic blocks to communicate with each other within the
chip. Each ring data-path is 1012-bits wide per direction.

[0128] Figure 17B is an expanded view of part of the processor core in Figure 17A
according to embodiments of the invention. Figure 17B includes an L1 data cache 1706A
part of the L1 cache 1704, as well as more detail regarding the vector unit 1710 and the
vector registers 1714. Specifically, the vector unit 1710 is a 16-wide vector processing unit
(VPU) (see the 16-wide ALU 1728), which executes one or more of integer, single-precision
float, and double-precision float instructions. The VPU supports swizzling the register inputs

with swizzle unit 1720, numeric conversion with numeric convert units 1722A-B, and
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replication with replication unit 1724 on the memory input. Write mask registers 1726 allow

predicating resulting vector writes.

[0129] Figure 18 is a block diagram of a processor 1800 that may have more than one
core, may have an integrated memory controller, and may have integrated graphics according
to embodiments of the invention. The solid lined boxes in Figure 18 illustrate a processor
1800 with a single core 1802A, a system agent 1810, a set of one or more bus controller units
1816, while the optional addition of the dashed lined boxes illustrates an alternative processor
1800 with multiple cores 1802A-N, a set of one or more integrated memory controller unit(s)
1814 in the system agent unit 1810, and special purpose logic 1808.

[0130] Thus, different implementations of the processor 1800 may include: 1) a CPU
with the special purpose logic 1808 being integrated graphics and/or scientific (throughput)
logic (which may include one or more cores), and the cores 1802A-N being one or more
general purpose cores (e.g., general purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the cores 1802A-N being a large
number of special purpose cores intended primarily for graphics and/or scientific
(throughput); and 3) a coprocessor with the cores 1802A-N being a large number of general
purpose in-order cores. Thus, the processor 1800 may be a general-purpose processor,
coprocessor or special-purpose processor, such as, for example, a network or communication
processor, compression engine, graphics processor, GPGPU (general purpose graphics
processing unit), a high-throughput many integrated core (MIC) coprocessor (including 30 or
more cores), embedded processor, or the like. The processor may be implemented on one or
more chips. The processor 1800 may be a part of and/or may be implemented on one or more
substrates using any of a number of process technologies, such as, for example, BICMOS,
CMOS, or NMOS.

[0131] The memory hierarchy includes one or more levels of cache within the cores, a set
or one or more shared cache units 1806, and external memory (not shown) coupled to the set
of integrated memory controller units 1814. The set of shared cache units 1806 may include
one or more mid-level caches, such as level 2 (IL2), level 3 (L3), level 4 (IL4), or other levels
of cache, a last level cache (LLC), and/or combinations thereof. While in one embodiment a
ring based interconnect unit 1812 interconnects the integrated graphics logic 1808, the set of
shared cache units 1806, and the system agent unit 1810/integrated memory controller unit(s)

1814, alternative embodiments may use any number of well-known techniques for
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interconnecting such units. In one embodiment, coherency is maintained between one or
more cache units 1806 and cores 1802-A-N.

[0132] In some embodiments, one or more of the cores 1802A-N are capable of multi-
threading. The system agent 1810 includes those components coordinating and operating
cores 1802A-N. The system agent unit 1810 may include for example a power control unit
(PCU) and a display unit. The PCU may be or include logic and components needed for
regulating the power state of the cores 1802A-N and the integrated graphics logic 1808. The
display unit is for driving one or more externally connected displays.

[0133] The cores 1802A-N may be homogenous or heterogeneous in terms of
architecture instruction set; that is, two or more of the cores 1802A-N may be capable of
execution the same instruction set, while others may be capable of executing only a subset of

that instruction set or a different instruction set.

Exemplary Computer Architectures

[0134] Figures 19-22 are block diagrams of exemplary computer architectures. Other
system designs and configurations known in the arts for laptops, desktops, handheld PCs,
personal digital assistants, engineering workstations, servers, network devices, network hubs,
switches, embedded processors, digital signal processors (DSPs), graphics devices, video
game devices, set-top boxes, micro controllers, cell phones, portable media players, hand
held devices, and various other electronic devices, are also suitable. In general, a huge
variety of systems or electronic devices capable of incorporating a processor and/or other
execution logic as disclosed herein are generally suitable.

[0135] Referring now to Figure 19, shown is a block diagram of a system 1900 in
accordance with one embodiment of the present invention. The system 1900 may include
one or more processors 1910, 1915, which are coupled to a controller hub 1920. In one
embodiment the controller hub 1920 includes a graphics memory controller hub (GMCH)
1990 and an Input/Output Hub (IOH) 1950 (which may be on separate chips); the GMCH
1990 includes memory and graphics controllers to which are coupled memory 1940 and a
coprocessor 1945; the IOH 1950 is couples input/output (I/O) devices 1960 to the GMCH
1990. Alternatively, one or both of the memory and graphics controllers are integrated within
the processor (as described herein), the memory 1940 and the coprocessor 1945 are coupled
directly to the processor 1910, and the controller hub 1920 in a single chip with the IOH
1950.
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[0136] The optional nature of additional processors 1915 is denoted in Figure 19 with
broken lines. Each processor 1910, 1915 may include one or more of the processing cores
described herein and may be some version of the processor 1800.

[0137] The memory 1940 may be, for example, dynamic random access memory
(DRAM), phase change memory (PCM), or a combination of the two. For at least one
embodiment, the controller hub 1920 communicates with the processor(s) 1910, 1915 via a
multi-drop bus, such as a frontside bus (FSB), point-to-point interface such as QuickPath
Interconnect (QPI), or similar connection 1995.

[0138] In one embodiment, the coprocessor 1945 is a special-purpose processor, such as,
for example, a high-throughput MIC processor, a network or communication processor,
compression engine, graphics processor, GPGPU, embedded processor, or the like. In one
embodiment, controller hub 1920 may include an integrated graphics accelerator.

[0139] There can be a variety of differences between the physical resources 1910, 1915 in
terms of a spectrum of metrics of merit including architectural, microarchitectural, thermal,
power consumption characteristics, and the like.

[0140] In one embodiment, the processor 1910 executes instructions that control data
processing operations of a general type. Embedded within the instructions may be
coprocessor instructions. The processor 1910 recognizes these coprocessor instructions as
being of a type that should be executed by the attached coprocessor 1945. Accordingly, the
processor 1910 issues these coprocessor instructions (or control signals representing
coprocessor instructions) on a coprocessor bus or other interconnect, to coprocessor 1945.
Coprocessor(s) 1945 accept and execute the received coprocessor instructions.

[0141] Referring now to Figure 20, shown is a block diagram of a first more specific
exemplary system 2000 in accordance with an embodiment of the present invention. As
shown in Figure 20, multiprocessor system 2000 is a point-to-point interconnect system, and
includes a first processor 2070 and a second processor 2080 coupled via a point-to-point
interconnect 2050. Each of processors 2070 and 2080 may be some version of the processor
1800. In one embodiment of the invention, processors 2070 and 2080 are respectively
processors 1910 and 1915, while coprocessor 2038 is coprocessor 1945. In another
embodiment, processors 2070 and 2080 are respectively processor 1910 coprocessor 1945.
[0142] Processors 2070 and 2080 are shown including integrated memory controller
(IMC) units 2072 and 2082, respectively. Processor 2070 also includes as part of its bus
controller units point-to-point (P-P) interfaces 2076 and 2078; similarly, second processor

2080 includes P-P interfaces 2086 and 2088. Processors 2070, 2080 may exchange
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information via a point-to-point (P-P) interface 2050 using P-P interface circuits 2078, 2088.
As shown in Figure 20, IMCs 2072 and 2082 couple the processors to respective memories,
namely a memory 2032 and a memory 2034, which may be portions of main memory locally
attached to the respective processors.

[0143] Processors 2070, 2080 may each exchange information with a chipset 2090 via
individual P-P interfaces 2052, 2054 using point to point interface circuits 2076, 2094, 2086,
2098. Chipset 2090 may optionally exchange information with the coprocessor 2038 via a
high-performance interface 2039. In one embodiment, the coprocessor 2038 is a special-
purpose processor, such as, for example, a high-throughput MIC processor, a network or
communication processor, compression engine, graphics processor, GPGPU, embedded
processor, or the like.

[0144] A shared cache (not shown) may be included in either processor or outside of both
processors, yet connected with the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the shared cache if a processor is placed
into a low power mode.

[0145] Chipset 2090 may be coupled to a first bus 2016 via an interface 2096. In one
embodiment, first bus 2016 may be a Peripheral Component Interconnect (PCI) bus, or a bus
such as a PCI Express bus or another third generation I/O interconnect bus, although the
scope of the present invention is not so limited.

[0146] As shown in Figure 20, various I/O devices 2014 may be coupled to first bus
2016, along with a bus bridge 2018 which couples first bus 2016 to a second bus 2020. In
one embodiment, one or more additional processor(s) 2015, such as coprocessors, high-
throughput MIC processors, GPGPU’s, accelerators (such as, e.g., graphics accelerators or
digital signal processing (DSP) units), field programmable gate arrays, or any other
processor, are coupled to first bus 2016. In one embodiment, second bus 2020 may be a low
pin count (LPC) bus. Various devices may be coupled to a second bus 2020 including, for
example, a keyboard and/or mouse 2022, communication devices 2027 and a storage unit
2028 such as a disk drive or other mass storage device which may include instructions/code
and data 2030, in one embodiment. Further, an audio I/O 2024 may be coupled to the second
bus 2020. Note that other architectures are possible. For example, instead of the point-to-
point architecture of Figure 20, a system may implement a multi-drop bus or other such
architecture.

[0147] Referring now to Figure 21, shown is a block diagram of a second more specific

exemplary system 2100 in accordance with an embodiment of the present invention. Like
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elements in Figures 20 and 21 bear like reference numerals, and certain aspects of Figure 20
have been omitted from Figure 21 in order to avoid obscuring other aspects of Figure 21.
[0148] Figure 21 illustrates that the processors 2070, 2080 may include integrated
memory and I/O control logic (“CL”) 2072 and 2082, respectively. Thus, the CL 2072, 2082
include integrated memory controller units and include I/O control logic. Figure 21
illustrates that not only are the memories 2032, 2034 coupled to the CL 2072, 2082, but also
that I/0 devices 2114 are also coupled to the control logic 2072, 2082. Legacy I/O devices
2115 are coupled to the chipset 2090.

[0149] Referring now to Figure 22, shown is a block diagram of a SoC 2200 in
accordance with an embodiment of the present invention. Similar elements in Figure 18 bear
like reference numerals. Also, dashed lined boxes are optional features on more advanced
SoCs. In Figure 22, an interconnect unit(s) 2202 is coupled to: an application processor 2210
which includes a set of one or more cores 202A-N and shared cache unit(s) 1806; a system
agent unit 1810; a bus controller unit(s) 1816; an integrated memory controller unit(s) 1814; a
set or one or more coprocessors 2220 which may include integrated graphics logic, an image
processor, an audio processor, and a video processor; an static random access memory
(SRAM) unit 2230; a direct memory access (DMA) unit 2232; and a display unit 2240 for
coupling to one or more external displays. In one embodiment, the coprocessor(s) 2220
include a special-purpose processor, such as, for example, a network or communication
processor, compression engine, GPGPU, a high-throughput MIC processor, embedded
processor, or the like.

[0150] Embodiments of the mechanisms disclosed herein may be implemented in
hardware, software, firmware, or a combination of such implementation approaches.
Embodiments of the invention may be implemented as computer programs or program code
executing on programmable systems comprising at least one processor, a storage system
(including volatile and non-volatile memory and/or storage elements), at least one input
device, and at least one output device.

[0151] Program code, such as code 2030 illustrated in Figure 20, may be applied to input
instructions to perform the functions described herein and generate output information. The
output information may be applied to one or more output devices, in known fashion. For
purposes of this application, a processing system includes any system that has a processor,
such as, for example; a digital signal processor (DSP), a microcontroller, an application

specific integrated circuit (ASIC), or a microprocessor.
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[0152] The program code may be implemented in a high level procedural or object
oriented programming language to communicate with a processing system. The program code
may also be implemented in assembly or machine language, if desired. In fact, the
mechanisms described herein are not limited in scope to any particular programming
language. In any case, the language may be a compiled or interpreted language.

[0153] One or more aspects of at least one embodiment may be implemented by
representative instructions stored on a machine-readable medium which represents various
logic within the processor, which when read by a machine causes the machine to fabricate
logic to perform the techniques described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and supplied to various customers or
manufacturing facilities to load into the fabrication machines that actually make the logic or
processor.

[0154] Such machine-readable storage media may include, without limitation, non-
transitory, tangible arrangements of articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type of disk including floppy disks,
optical disks, compact disk read-only memories (CD-ROMs), compact disk rewritable’s (CD-
RWs), and magneto-optical disks, semiconductor devices such as read-only memories
(ROMs), random access memories (RAMs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), erasable programmable read-only
memories (EPROMs), flash memories, electrically erasable programmable read-only
memories (EEPROMs), phase change memory (PCM), magnetic or optical cards, or any
other type of media suitable for storing electronic instructions.

[0155] Accordingly, embodiments of the invention also include non-transitory, tangible
machine-readable media containing instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, circuits, apparatuses, processors
and/or system features described herein. Such embodiments may also be referred to as

program products.

Emulation (including binary translation, code morphing, etc.)

[0156] In some cases, an instruction converter may be used to convert an instruction from
a source instruction set to a target instruction set. For example, the instruction converter may
translate (e.g., using static binary translation, dynamic binary translation including dynamic
compilation), morph, emulate, or otherwise convert an instruction to one or more other

instructions to be processed by the core. The instruction converter may be implemented in
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software, hardware, firmware, or a combination thereof. The instruction converter may be on
processor, off processor, or part on and part off processor.

Figure 23 is a block diagram contrasting the use of a software instruction converter to convert
binary instructions in a source instruction set to binary instructions in a target instruction set
according to embodiments of the invention. In the illustrated embodiment, the instruction
converter is a software instruction converter, although alternatively the instruction converter
may be implemented in software, firmware, hardware, or various combinations thereof.
Figure 23 shows a program in a high level language 2302 may be compiled using an x86
compiler 2304 to generate x86 binary code 2306 that may be natively executed by a
processor with at least one x86 instruction set core 2316. The processor with at least one x86
instruction set core 2316 represents any processor that can perform substantially the same
functions as an Intel processor with at least one x86 instruction set core by compatibly
executing or otherwise processing (1) a substantial portion of the instruction set of the Intel
x86 instruction set core or (2) object code versions of applications or other software targeted
to run on an Intel processor with at least one x86 instruction set core, in order to achieve
substantially the same result as an Intel processor with at least one x86 instruction set core.
The x86 compiler 2304 represents a compiler that is operable to generate x86 binary code
2306 (e.g., object code) that can, with or without additional linkage processing, be executed
on the processor with at least one x86 instruction set core 2316. Similarly, Figure 23 shows
the program in the high level language 2302 may be compiled using an alternative instruction
set compiler 2308 to generate alternative instruction set binary code 2310 that may be
natively executed by a processor without at least one x86 instruction set core 2314 (e.g., a
processor with cores that execute the MIPS instruction set of MIPS Technologies of
Sunnyvale, CA and/or that execute the ARM instruction set of ARM Holdings of Sunnyvale,
CA). The instruction converter 2312 is used to convert the x86 binary code 2306 into code
that may be natively executed by the processor without an x86 instruction set core 2314.

This converted code is not likely to be the same as the alternative instruction set binary code
2310 because an instruction converter capable of this is difficult to make; however, the
converted code will accomplish the general operation and be made up of instructions from the
alternative instruction set. Thus, the instruction converter 2312 represents software,
firmware, hardware, or a combination thereof that, through emulation, simulation or any
other process, allows a processor or other electronic device that does not have an x86

instruction set processor or core to execute the x86 binary code 2306.
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We claim:

1. An apparatus comprising:
at least one monitoring circuit to monitor for memory accesses to an address space;
at least one a monitoring table to store an identifier of the address space;

at least one hardware core to execute an instruction to enable the monitoring circuit.

2. The apparatus of claim 1, wherein the instruction includes a base address, a memory size
granularity, a tracking granularity, a mode, and a size of the address space as a multiple of

the granularity.

3. The apparatus of claim 2, wherein the memory size granularity is one of at least cache

line, page, large page, or huge page.

4. The apparatus of claim 23, wherein the tracking granularity is by number of node groups.

5. The apparatus of any of claims 1-4, wherein the remote node indicatory is a bit mask of

nodes that have access to the address space.

6. The apparatus of claim 2, wherein the mode is one of read and write.

7. The apparatus of any of claims 1-6, further comprising:
caching agent circuitry to process memory requests from at least one of the
plurality of hardware cores; and
home agent circuitry to process memory requests from the caching agent and as a

home for part of a memory space of the apparatus.

8. The apparatus of any of claims 1-7, further comprising:
a buffer to store remote store requests that are a part of a transaction initiated by an

execution of the instruction.

9. A method comprising:
executing an instruction in a core to cause,
sending a monitor request to monitor for accesses to an address space to a first

proxy connection,
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sending the monitor request to a second proxy connection for the second proxy
connection to broadcast as a multicast message to all cores in a socket of the second
proxy connection to initiate a monitor,

receiving an acknowledgment from the second proxy connection indicating

success or failure of the monitor request.

The method of claim 9, wherein the first and second proxy connections are on physically

different nodes and communicate over a fabric interface.

The method of claim 9, wherein the first and second proxy connection are on physically

different sockets and communicate over a socket interface.

The method of any of claims 9-11, further comprising:

deregistering the monitors.

The method of any of claims 9-12, further comprising:

the second proxy connection sending a message to any interconnect agents in its node.

The method of any of claims 9-13, further comprising:

updating a tag directory to track accesses to the address space.

The method of claim 14, further comprising:
receiving an indication of access to the address space;

updating the tag directory to indicate that access to the address space.

The method of any of claims 9-15, further comprising:

buffering all stores of a transaction during monitoring.

. The method of claim 16, further comprising:

committing all buffered all stores of the transaction upon the transactions

successfully completing.

An apparatus comprising:

at least one monitoring means to monitor for memory accesses to an address space;
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at least one a monitoring table means to store an identifier of the address space;

at least one hardware core to execute an instruction to enable the monitoring circuit.

19. The apparatus of claim 18, wherein the instruction includes a base address, a memory size
granularity, a tracking granularity, a mode, and a size of the address space as a multiple of

the granularity.

20. The apparatus of claim 19, wherein the memory size granularity is one of at least cache

line, page, large page, or huge page.

21. The apparatus of claim 19, wherein the tracking granularity is by number of node groups.

22. The apparatus of any of claims 18-21, wherein the remote node indicatory is a bit mask of

nodes that have access to the address space.

23. The apparatus of claim 22, wherein the mode is one of read and write.

24. The apparatus of any of claims 18-23, further comprising:
caching agent means to process memory requests from at least one of the plurality
of hardware cores; and
home agent means to process memory requests from the caching agent and as a

home for part of a memory space of the apparatus.
25. The apparatus of any of claims 18-24, further comprising:

a buffer to store remote store requests that are a part of a transaction initiated by an

execution of the instruction.
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EXECUTING SMONITOR 301

v

SENDING A MONITORING REQUEST, FROM A FIRST CORE IN AFIRST NODE, TO A
CORRESPONDING CACHING AGENT 303

$

IDENTIFYING, WITH THE CACHING AGENT, A LOCAL DOMAIN HOME AGENT
RESPONSIBLE TO MANAGE THE REQUEST (RESPONSIBLE FOR BASE ADDRESS) 305

;

DENTIFYING WHAT NODE IS THE HOME OF THE ADDRESS SPACE TO BE MONITORED
USING THE HOME AGENT 307

SENDING A MONITORING MESSAGE PROXY CONNECTION FROM THE IDENTIFIED HOME
AGENT TO A REMOTE NODE (THAT IS THE HOME OF THE ADDRESS SPACE} 208

;

RECEIVING A RESPONSE FROM THE PROXY CONNECTION REGARDING SUCCESS OR
FAILURE OF REGISTRATION OF THE MONITOR 311

;

RECEIVING A VIOLATION NOTIFICATION FROM THE PROXY CONNECTION UPONA
“TRANSACTION TO THE MONITORED ADDRESS SPACE AND CONFIGURING THE TAG
DIRECTORY 313

'SENDING A MONITOR RELEASE, FROM THE FIRST CORE THROUGH THE HOME AGENT,
j?(} VIA THE PROXY CONNECTION 315 |

FIG. 3
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RECEIVING A VIOLATION NOTIFICATION 481

;

GENERATING A USER INTERRUPT IN RESPONSE TO THE VIOLATION NOTIFICATION BY A
PROXY 403

RECEIVING A VICLATION NOTIFICATION 405

$

NOTIFYING THE SOFTWARE STACK BY THE REQUESTING CORE 407

FIG. 4
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RECEIVING, AT APROXY OF ANODE, A REQUEST TO START A MONITOR 581

;

SENDING THE REQUEST TO CORES, CACHING AGENTS, AND OTHER PROXIES WITHIN
THE NODE TO INITIALIZE MONITORING OF THE ADDRESS (RANGE) 503

$

RECEIVING ACKNOWLEDGMENTS FROM THE CORES, CACHING AGENTS, AND OTHER
PROXIES {(IF APPLICABLE) 508

SENDING AN ACKNOWLEDGMENT TO THE ORIGINATING CORE 507

FIG. 5
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RECEIVING, AT APROXY OF ANODE, A REQUEST TO RELEASE A MONITOR 601

;

SENDING THE REQUEST TO CORES, CACHING AGENTS, AND OTHER PROXIES WITHIN
THE NODE TO STOP THE MONITOR (CLEAR MONITORING TABLE ENTRY)} 803

$

RECEIVING ACKNOWLEDGMENTS FROM THE CORES, CACHING AGENTS, AND OTHER
PROXIES {(IF APPLICABLE) 608

SENDING AN ACKNOWLEDGMENT TO THE ORIGINATING CORE 807

FIG. 6
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%ACCESS?NG AN ADDRESS BY ANON-REQUESTING CORE 881

;

DETERMINING THE ACCESS {5 TO A MONITORED ADDRESS 803

é

SENDING A VIOLATION NOTIFICATION TO THE REQUESTING CORE 808
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EXECUTING SXACQUIRE 1081

v

SENDING A MONITORING REQUEST, FROM A FIRST CORE IN AFIRST NODE, TO A
CORRESPONDING CACHING AGENT 1063

$

IDENTIFYING, WITH THE CACHING AGENT, A LOCAL DOMAIN HOME AGENT
RESPONSIBLE TO MANAGE THE REQUEST (RESPONSIBLE FOR BASE ADDRESS) 1005

;

DENTIFYING WHAT NODE IS THE HOME OF THE ADDRESS SPACE TO BE MONITORED
USING THE HOME AGENT 1067

SENDING A MONITORING MESSAGE PROXY CONNECTION FROM THE IDENTIFIED HOME
AGENT TO A REMOTE NODE (THAT IS THE HOME OF THE ADDRESS SPACE} 1009

;

RECEIVING A RESPONSE FROM THE PROXY CONNECTION REGARDING SUCCESS OR
FAILURE OF REGISTRATION OF THE MONITOR 1011

FIG. 10
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v
'SENDING A STORE REQUEST FROM A CORE TO A CACHING HOME AGENT

SENDING THE STORE REQUEST FROM THE CACHING HOME AGENTTO A
PROXY WITHIN THE SAME NODE AS THE CORE 1103

L

SENDING THE STORE REQUEST FROM THE PROXY WITHIN THE SAME NODE
AS THE CORE TO APROXY IN A DIFFERENT NODE 1108

v

YES 7 DETERMINING IF THE TRANSACTION . NO

...............

\ SUCCESSFULLY COMPLETED 1106

|
¥

%EXEC{STENG A RELEASE INSTRUCTION AT THE CORE 1107
SENDING A RELEASE REQUEST TO THE PROXY WITHIN THE SAME NODE AS
THE CORE 1109

SENDING THE RELEASE REQUEST FROM THE PROXY WITHIN THE SAME
NODE AS THE CORE TO APROXY INADIFFERENT NCDE 11414

'

ROLLING BACK EXECUTION 111

FIG. 11
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BUFFERING EACH STORE RECEIVED AT THE PROXY 1201

UPON RECEIVING A NOTIFICATION OF A MONITOR VIGLATION, FLUSHING ALL STORED
BUFFERS OF THE TRANSACTION AND FORWARDING THE NOTIFICATION 1203 ‘

l

§U§30N RECEIVING A RELEASE REQUEST AT THE PROXY, COMMITTING ALL BUFFERED |
STORES INTO MEMORY 1208

FIG. 12
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FETCH AN INSTRUCTION 1481

;
:

ﬁRETRiEVE DATA ASSOCIATED WITH THE OPERANDS OF THE INSTRUCTION 1405

#

%EXECGTE THE DECODED INSTRUCTION TO CAUSE ONE OR MORE MONITORS TO BE
STARTED 1407

DECODE THE FETCHED INSTRUCTION

FIG. 14
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