US 20190213135A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2019/0213135 A1

COE et al.

43) Pub. Date: Jul. 11, 2019

(54) HARDWARE CONTROL OF CPU HOLD OF A

(71)

(72)

@
(22)

(1)

CACHE LINE IN PRIVATE CACHE

Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Inventors: DWIFUZI COE, POUGHKEEPSIE,
NY (US); YAIR FRIED, PETAH
TIQWA (IL); MARTIN
RECKTENWALD, SCHOENAICH
(DE); YOSSI SHAPIRA, SHOHAM
(L)

Appl. No.: 15/867,989
Filed: Jan. 11, 2018

Publication Classification

Int. CL.

GO6F 12/0891 (2006.01)
GO6F 12/0831 (2006.01)
GO6F 12/128 (2006.01)
GO6F 12/0811 (2006.01)

(52) US.CL
CPC ... GOGF 12/0891 (2013.01); GOGF 12/0831
(2013.01); GOG6F 2212/283 (2013.01); GO6F
12/0811 (2013.01); GO6F 2212/621 (2013.01);
GOGF 12/128 (2013.01)

(57) ABSTRACT

A memory access control includes a tracker configured to
receive cache invalidate (XI) commands from the memory
controller and to provide responses to the memory controller
and an address storage element in the tracker that stores an
address to be locked by one of the processing units. The
system also includes a lock required, a cache invalidate (XI)
tracker bit, a set input that upon receipt of a set command
sets the lock required bit when a first condition is met, a first
reset input that resets the lock required bit upon receipt of a
reset command; and a second reset input that resets the XI
tracker bit. The tracker rejects incoming XI commands from
the memory controller when the lock required bit is set,
allows incoming XI commands when the lock bit is not set
and sets the XI tracker bit when a first incoming XI
command is received.

kit
Rl CITER RYSTER SERVER 2%
N 30 SEERORY A
5 an
TALHE
g@.“,\
HE pet¥
DISFLAY b
3

Patent Application Publication Jul. 11,2019 Sheet 1 of 11 US 2019/0213135 A1

A

£

30 MERORY -

% AN

S -
i e

HO
T s s “ 0
LHOPLAY w4 MTEREACE

Patent Application Publication Jul. 11,2019 Sheet 2 of 11 US 2019/0213135 A1

Patent Application Publication Jul. 11,2019 Sheet 3 of 11 US 2019/0213135 A1

S~ : - ¥
hRE Y iRk §

 agdn

LR DAUHEES LGAL UAH

Hotn

320a 3223 320n 322n

REQOAGHEE:

Patent Application Publication Jul. 11,2019 Sheet 4 of 11 US 2019/0213135 A1

e e ot e T e e o e e m T o i o T e T T o e e e e e

Set from LSU

430/ 320\ 420

S ,

j V set

; ¢ Add spons

! From Memory XI commdnd‘ p (;;ss Response‘ .

t Controller 210 / e b

i / Logic ; To Memory
: / 403 ! Controller 210
; 406 — 408 !

: Lock Required Bit !

5 404 :

2 0 X ker B 3

: tracker Bit !

; -~ 405 !

3 reset T

i s 32‘;)

3 434 422 3

S 322 ‘ 436 ;

i AN

; 452 | s \

2 i 304
i o ;

5 LSU Release 432 |

e e e e o oo e !

Patent Application Publication Jul. 11,2019 Sheet 5 of 11 US 2019/0213135 A1

s g

&)

{ TIOR8

Patent Application Publication

Determine Storage Operand
Address

230

IS
operand
request a
"Hold”?
532

Yes

Xi
Tracker

Yes

Jul. 11,2019 Sheet 6 of 11

US 2019/0213135 Al

Bit?

No

v

Send “set command™ to Tracker
And Load address into address block 402

534

Deny X! requests while lock required

bit is set
536

A

Ignore Lock
Reguest
540

FIG. 5B

Patent Application Publication Jul. 11,2019 Sheet 7 of 11 US 2019/0213135 A1

§ 3
b

A%

US 2019/0213135 Al

Jul. 11,2019 Sheet 8 of 11

Patent Application Publication

Patent Application Publication Jul. 11,2019 Sheet 9 of 11 US 2019/0213135 A1

S

> 5
23 Eed
% %

MATIVE CR MEMORY

B e ERMATOE INPUT OUTPUT
S BEGIRTERY 1 CODE

FIG. 8A

MERCRY
950

TR T
IS TRUCTIONS

IS TRERITION
4 TRANSLATERN
ROUTINE

i
&

k3 £
2 kS s
i i i
sons 000 roe arsi. 9005 o5, ss0se Gose sasem oo wsn somn rosos smsen oy
i
- i
3
i

Patent Application Publication Jul. 11,2019 Sheet 10 of 11 US 2019/0213135 Al

ettt

B
Y

t\A\m\a«m%«m\m«m;
el e

FIG. 9

Patent Application Publication Jul. 11,2019 Sheet 11 of 11 US 2019/0213135 Al

onronont

FIG. 10

US 2019/0213135 Al

HARDWARE CONTROL OF CPU HOLD OF A
CACHE LINE IN PRIVATE CACHE

BACKGROUND

[0001] One or more aspects relate, in general, to locking a
cache line and, in particular, to a hardware control of a next
instruction access intent instruction.

[0002] Ina multiprocessing computing environment, mul-
tiple processing units, such as central processing units
(CPUs) or cores, are connected to share access to common
storage, such as common main storage locations. The stor-
age hierarchy across the configuration may include various
cache levels private or local to each processing unit, various
cache levels shared among several processing units, and
main storage. When a processing unit is to update a storage
location, a line of storage is transferred to the processing unit
by the storage hierarchy, and the line is held exclusively
within a cache level that is private to the processing unit
performing the update. While a line of storage is held
exclusively by a processing unit, other processing units are
not permitted to update or read that line of storage, until after
the line is released and no longer held exclusively by the
processing unit.

[0003] Where several computer processes share access to
an area of main storage, a semaphore (or lock) may be used
to control access to that area of storage. The semaphore is
typically a word or double word in main storage and the
semaphore contents dictate which processing unit within the
configuration currently is permitted access to the corre-
sponding area of storage. When a process executing on a
processing unit requires access to the storage area, that
process updates the semaphore to indicate the shared area is
in use, completes tasks that access the shared area, and then
updates the semaphore again to indicate that the shared area
is no longer in use.

[0004] While the above process works well in most
instances, in some cases, a process or processor that has
access can hang and not be able to release the line. In other
cases, the processor that has the lock may release it but then
reacquire it before a competing processor has a chance to
request a lock.

SUMMARY

[0005] In one embodiment, a memory access control sys-
tem including a tracker for use in computing environment
including two or more processing units is disclosed. Each of
the two or more processing units include a tracker that
includes an address storage element that stores an address to
be locked by one of the processing units, a lock required bit
and a cache invalidate (XI) tracker bit. The tracker also
includes a set input that upon receipt of a set command sets
the lock required bit when a first condition is met, a first reset
input that resets the lock required bit upon receipt of a reset
command; a second reset input that resets the XI tracker bit.
The tracker also includes logic that causes the tracker to
reject incoming X1 commands when the lock required bit is
set, to allow incoming XI commands when the lock bit is not
set and to set the XI tracker bit when a first incoming XI
command is received.

[0006] In one embodiment, a memory access control sys-
tem for use in computing environment including two or
more processing units and at least one shared memory
controlled by a memory controller is disclosed. The system

Jul. 11, 2019

of this embodiment includes a tracker configured to receive
cache invalidate (XI) commands from the memory control-
ler and to provide responses to the memory controller and an
address storage element in the tracker that stores an address
to be locked by one of the processing units. The system also
includes a lock required bit in the tracker, a cache invalidate
(XI) tracker bit in the tracker a set input in the tracker that
upon receipt of a set command sets the lock required bit
when a first condition is met, a first reset input in the tracker
that resets the lock required bit upon receipt of a reset
command and a second reset input that resets the XI tracker
bit. The tracker is configured to reject incoming XI com-
mands from the memory controller when the lock required
bit is set, to allow incoming XI commands when the lock bit
is not set and to set the XI tracker bit when a first incoming
XI command is received.

[0007] Additional features and advantages are realized
through the techniques described herein. Other embodi-
ments and aspects are described in detail herein and are
considered a part of the claimed aspects.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] One or more aspects are particularly pointed out
and distinctly claimed as examples in the claims at the
conclusion of the specification. The foregoing and objects,
features, and advantages of one or more aspects are apparent
from the following detailed description taken in conjunction
with the accompanying drawings in which:

[0009] FIG. 1 depicts one example of a computing envi-
ronment to incorporate and use one or more aspects of the
present invention;

[0010] FIG. 2 depicts a further example of a computing
environment to incorporate and use one or more aspects of
the present invention;

[0011] FIG. 3 depicts one example of a multiprocessing
unit environment to incorporate and use one or more aspects
of the present invention;

[0012] FIG. 4 depicts one embodiment of a tracker in
accordance with one or more aspects of the present inven-
tion;

[0013] FIGS. 5A and 5B are flowcharts depicting a more
detailed example of storage operand request-related process-
ing, in accordance with one or more aspects of the present
invention;

[0014] FIG. 6A illustrates one embodiment of an instruc-
tion format useful in accordance with one or more aspects of
the present invention;

[0015] FIG. 6B illustrates one embodiment of an access
intent control field of an instruction format such as depicted
in FIG. 6A, in accordance with one or more aspects of the
present invention;

[0016] FIG. 7 depicts another embodiment of a tracker in
accordance with one or more aspects of the present inven-
tion

[0017] FIG. 8A depicts another example of a computing
environment to incorporate and use one or more aspects of
the present invention;

[0018] FIG. 8B depicts further details of the memory of
FIG. 8A;
[0019] FIG. 9 depicts one embodiment of a cloud com-

puting environment; and
[0020] FIG. 10 depicts one example of abstraction model
layers.

US 2019/0213135 Al

DETAILED DESCRIPTION

[0021] As noted, processing unit features intended to
enhance individual processing unit performance, such as
pipelining, superscalar, out-of-order execution, and branch
prediction, may result in speculative memory requests.
Speculative requests to private storage locations can be
advantageous, but excessive speculative requests to com-
mon storage locations can be detrimental to semaphore (or
lock) processing.

[0022] Contention among processing units for a sema-
phore to control a common shared storage location increases
as: the number of speculative memory requests increases by
the processing units in the computing environment (or
computing configuration), the number of processing units in
the computing environment increases, or potentially based
on memory subsystem topology, etc. As contention among
processing units increases, it becomes increasingly more
difficult for each individual processing unit to successfully
obtain and hold a line of storage containing a particular
shared memory location. Therefore, overall system perfor-
mance may degrade.

[0023] For instance, as multiple processing units attempt
to update a storage location corresponding to a semaphore,
system controls may broadcast cache invalidate commands
to all processing units in the computing environment,
including the processing unit currently holding the line of
storage, which may contain the semaphore in an exclusive
state. Standard memory management protocols may cause
the processing unit, currently executing a process owning
the lock to release the exclusive ownership of the line,
before the process can complete all tasks and before the
process can update the lock to indicate that the shared area
is no longer in use. In this case, the processing unit will need
to later retrieve the line exclusively again in order to finish
the process. In view of this, a cache line containing a
semaphore may frequently be traversing the computing
environment, without benefitting any individual process.

[0024] In some systems, a facility is provided for a pro-
gram to signal a processing unit that a specific storage
operand access corresponds to a common storage location
containing a semaphore (or lock) and is to have an extended
hold. When signaled, the processing unit may deviate from
standard memory management protocols for the purpose of
holding a cache line exclusively, throughout the computing
environment, for a longer duration than conventional,
thereby increasing the probability of completing the process
being run on the processing unit before releasing the cache
line. As a result, the number of times the cache line,
containing the semaphore traverses the computing environ-
ment unproductively is reduced, thereby increasing system
performance.

[0025] One embodiment of a computing environment to
incorporate and use one or more aspects of the present
invention is described with reference to FIG. 1. In one
example, the computing environment may be based on the
7/Architecture, offered by International Business Machines
Corporation, Armonk, N.Y. One embodiment of the z/Ar-
chitecture is described in “z/Architecture Principles of
Operation,” IBM Publication No. SA22-7832-10, March
2015, which is hereby incorporated herein by reference in its
entirety. Z/ARCHITECTURE is a registered trademark of
International Business Machines Corporation, Armonk,
N.Y,, USA.

Jul. 11, 2019

[0026] In another example, the computing environment
may be based on the Power Architecture, offered by Inter-
national Business Machines Corporation, Armonk, N.Y. One
embodiment of the Power Architecture is described in
“Power ISA™ Version 2.07B,” International Business
Machines Corporation, Apr. 9, 2015, which is hereby incor-
porated herein by reference in its entirety. POWER ARCHI-
TECTURE is a registered trademark of International Busi-
ness Machines Corporation, Armonk, N.Y., USA.

[0027] The computing environment may also be based on
other architectures, including, but not limited to, the Intel
x86 architectures. Other examples also exist.

[0028] As shown in FIG. 1, a computing environment 100
includes, for instance, a node 10 having, e.g., a computer
system/server 12, which is operational with numerous other
general purpose or special purpose computing system envi-
ronments or configurations. Examples of well-known com-
puting systems, environments, and/or configurations that
may be suitable for use with computer system/server 12
include, but are not limited to, personal computer (PC)
systems, server computer systems, thin clients, thick clients,
handheld or laptop devices, multiprocessor systems, micro-
processor-based systems, set top boxes, programmable con-
sumer electronics, network PCs, minicomputer systems,
mainframe computer systems, and distributed cloud com-
puting environments that include any of the above systems
or devices, and the like.

[0029] Computer system/server 12 may be described in
the general context of computer system-executable instruc-
tions, such as program modules, being executed by a com-
puter system. Generally, program modules may include
routines, programs, objects, components, logic, data struc-
tures, and so on that perform particular tasks or implement
particular abstract data types. Computer system/server 12
may be practiced in many computing environments, includ-
ing but not limited to, distributed cloud computing environ-
ments where tasks are performed by remote processing
devices that are linked through a communications network.
In a distributed cloud computing environment, program
modules may be located in both local and remote computer
system storage media including memory storage devices.

[0030] As shown in FIG. 1, computer system/server 12 is
shown in the form of a general-purpose computing device.
The components of computer system/server 12 may include,
but are not limited to, one or more processors or processing
units 16, a system memory 28, and a bus 18 that couples
various system components including system memory 28 to
processor 16.

[0031] Bus 18 represents one or more of any of several
types of bus structures, including a memory bus or memory
controller, a peripheral bus, an accelerated graphics port, and
a processor or local bus using any of a variety of bus
architectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus.

[0032] Computer system/server 12 typically includes a
variety of computer system readable media. Such media
may be any available media that is accessible by computer
system/server 12, and it includes both volatile and non-
volatile media, removable and non-removable media.

US 2019/0213135 Al

[0033] System memory 28 can include computer system
readable media in the form of volatile memory, such as
random access memory (RAM) 30 and/or cache memory 32.
Computer system/server 12 may further include other
removable/non-removable, volatile/non-volatile computer
system storage media. By way of example only, storage
system 34 can be provided for reading from and writing to
a non-removable, non-volatile magnetic media (not shown
and typically called a “hard drive”). Although not shown, a
magnetic disk drive for reading from and writing to a
removable, non-volatile magnetic disk (e.g., a “floppy
disk™), and an optical disk drive for reading from or writing
to a removable, non-volatile optical disk such as a CD-
ROM, DVD-ROM or other optical media can be provided.
In such instances, each can be connected to bus 18 by one
or more data media interfaces. As will be further depicted
and described below, memory 28 may include at least one
program product having a set (e.g., at least one) of program
modules that are configured to carry out the functions of
embodiments of the invention.

[0034] Program/utility 40, having a set (at least one) of
program modules 42, may be stored in memory 28 by way
of example, and not limitation, as well as an operating
system 17, one or more application programs, other program
modules, and program data. Each of the operating system,
one or more application programs, other program modules,
and program data or some combination thereof, may include
an implementation of a networking environment. Program
modules 42 may generally carry out the functions and/or
methodologies of one or more embodiments of the invention
as described herein.

[0035] Computer system/server 12 may also communicate
with one or more external devices 14 such as a keyboard, a
pointing device, a display 24, etc.; one or more devices that
enable a user to interact with computer system/server 12;
and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 12 to communicate with one
or more other computing devices. Such communication can
occur via Input/Output (I/0) interfaces 22. Still yet, com-
puter system/server 12 can communicate with one or more
networks such as a local area network (LAN), a general wide
area network (WAN), and/or a public network (e.g., the
Internet) via network adapter 20. As depicted, network
adapter 20 communicates with the other components of
computer system/server 12 via bus 18. It should be under-
stood that although not shown, other hardware and/or soft-
ware components could be used in conjunction with com-
puter system/server 12. Examples, include, but are not
limited to: microcode, device drivers, redundant processing
units, external disk drive arrays, RAID systems, tape drives,
and data archival storage systems, etc.

[0036] As an example, processing unit 16 may include a
plurality of functional components used to execute instruc-
tions. These functional components may include, for
instance, an instruction fetch component to fetch instruc-
tions to be executed; an instruction decode unit to decode the
fetched instructions; instruction execution components to
execute the decoded instructions; a memory access compo-
nent to access memory for instruction execution, if neces-
sary; and a write back component to provide the results of
the executed instructions. One or more of these components
may, in accordance with an aspect of the present invention,
be used to implement deviations from typical memory
management protocols with respect to a cache line corre-

Jul. 11, 2019

sponding to a storage-operand request identified as hold, and
resuming typical memory management protocols with
respect to a cache line corresponding to a storage-operand
request identified as release, as described further below.
[0037] Processing unit 16 also includes, in one embodi-
ment, one or more registers to be used by one or more of the
functional components.

[0038] Another example of a computing environment to
incorporate and use one or more aspects of the present
invention is described with reference to FIG. 2. In one
example, the computing environment may again be based on
the above-referenced z/Architecture, offered by Interna-
tional Business Machines Corporation, Armonk, N.Y. In
another example, the computing environment may be based
on the above-referenced Power Architecture, offered by
International Business Machines Corporation, Armonk, N.Y.
The computing environment may also be based on other
architectures, including, but not limited to, the Intel 64 and
TA-32 architectures. Other examples also exist.

[0039] Referring to FIG. 2, in one example, a computing
environment 200 includes at least one processing unit (PU),
such as a central processing unit (CPU), coupled to one or
more higher level caches 205. Central processing unit 16
includes, for instance, one or more execution units 201 to
request and consume data. Execution units 201 are coupled
to a load/store unit (LSU) 202, which includes a load/store
queue (LSQ) 203. Load/store unit 202 issues memory access
operations (loads and stores) that retrieve prefetched data or
cause the data to be fetched from the memory subsystem or
higher level caches. LSU 202 may be coupled to a local (or
private) cache(s) 204 via, e.g., a translation mechanism, such
as, e.g., a translation look-aside buffer (TLB) or an effective-
to-real address translation table (ERAT).

[0040] Processing unit 16 is coupled to and communicates
with a memory hierarchy that includes, for instance, local
(or private) cache(s) 204, which may include an L1 data
cache; one or more higher level caches 205, which may
include a single level two (L2) cache or multiple other
sequentially numbered higher levels, e.g., L3, L.4; a memory
215; and an associated memory controller 210, which con-
trols accesses to memory 215. Local cache(s) 204 serves as
a prefetch buffer for data (and/or data streams) that are
prefetched. Local cache(s) 204 has a corresponding load
miss queue (LMQ), which the cache utilizes to save infor-
mation about ongoing prefetch requests.

[0041] Further, in one embodiment, local cache(s) 204
may have an associated cache directory, which may be
implemented as part of the cache or be maintained separate
therefrom. The cache directory may include a tag for each
cache line in the local cache. The tag provides information
about the cache line, including at least part of a real or
absolute address of the data in the cache line, as well as
status information, such as whether the data is being held
exclusive or shared, etc.; the use of the data, such as whether
it is most recently used, least recently used, or somewhere in
between, etc.; and/or other status information. The tag may
also include additional information regarding the data in the
cache line. Each cache level may have an associated cache
directory, either its own directory or a shared directory.
[0042] In addition to the example memory hierarchy,
computing environment 200 may also include additional
storage devices that form a part of the memory hierarchy
from the perspective of processing unit 16. The storage
devices may be one or more electronic storage media, such

US 2019/0213135 Al

as a floppy disk, hard drive, CD-ROM, or DVD. CPU 102
communicates with each of the above devices within the
memory hierarchy by various mechanisms, including via
buses and/or direct channels, as examples.

[0043] The buses may represent one or more of any of
several types of bus structures, including a memory bus or
memory controller, a peripheral bus, an accelerated graphics
port, and a processor or local bus using any of a variety of
bus architectures. By way of example, and not limitation,
such architectures include Industry Standard Architecture
(ISA) bus, Video Electronics Standards Association (VESA)
local bus, and Peripheral Component Interconnect (PCI)
bus.

[0044] In a further embodiment, the processing disclosed
herein may be used in a multiprocessor environment, such as
the one described below with reference to FIG. 3. In one
example, a multiprocessor environment 300 includes a plu-
rality of cores 302a . . . 302x. Each core includes at least one
hardware thread or processing unit 304a, 304 that includes
a local (or private) cache, such as an L1 cache 3064, 3067.
Each core 3024, 302# is coupled to zero or more higher level
private caches (e.g., L2 cache(s)). Additionally, multipro-
cessor environment 300 includes zero or more shared caches
310, such as L3 and/or L4 caches, which are shared between
the cores, and more particularly, shared among the process-
ing units. Other topologies may also exist.

[0045] Each processing unit in the multiprocessor envi-
ronment (or a subset of the processing units) may also
include a query function to be used to query one or more of
the caches, including one or more of the shared cache(s), if
available, to obtain cache residency status and/or other
information of selected data.

[0046] In accordance with one or more aspects of the
present invention, a cache line tracker 320 is provided in one
or more of the processing units 306a, 3067. The tracker 320
can include one or more logical operators or instructions that
allow it to store a cache line address from, for example,
higher level shared cache(s) 310 that the particular processor
306a has a lock. An example is instructive in this regard and
is set for with respect to FIGS. 3 and 4. It shall be understood
that the tracker 320 could be included in any (e.g. processing
unit 16) disclosed herein. Also, while shown in the process-
ing units herein, the tracker 320 is not so limited and can be
included in any location in any of the cores disclosed herein.

[0047] The tracker 320 includes a cache line address store
(address) 402 that is currently being used for a particular
instruction or that may be needed for next (or future)
instruction that the processing unit 304 has currently locked.
The address 402 can be implemented in hardware as an
address store. This can be register in one embodiment.

[0048] When the lock is acquired, one or more timers
discussed below may be started. The timers can be located
in any location and may be implemented in software/
hardware or a combination thereof and for clarity are shown,
for example, generally by timers 322q, 3227 in FIG. 3. In
general operation, the lock is held for as long as possible to
allow for as much of a particular operation to be completed.
To that end, the tracker 320 includes a lock required bit 404
that is set (e.g., to a logical “1”) while the lock is being held
released (e.g., forced to a logical zero) when the lock is no
longer needed. In some instances, the lock required bit 404
can be referred to or considered a “tracker valid bit” that
indicates that the tracker 320 is to deny cache invalidate (XI)

Jul. 11, 2019

requests as further described below. When this bit is not set,
XI commands are allowed and the line is released.

[0049] In operation, when another processor requests
access to the locked address, the memory controller 210 can
send a request (such as cache invalidate (XI) request 406) to
the processor that has locked the address. In embodiments
disclosed herein, the tracker 320 will receive such a request
and provide a response 408 that either allows another
processor to lock the cache line or not. The response will
depend on the status of the lock required bit. If the lock is
still needed, any request will be denied (e.g., response 408
will be negative). If it is not, then the request will be granted.
The response can be generated by tracker logic 403 in one
embodiment. The logic 403 can include instructions or
hardware causing it to provide the comparisons described
herein and produce the responses 408 in the manner
described herein.

[0050] It shall further be understood that the lock bit is
required when the state of the cache line is deemed exclusive
to the particular processor.

[0051] As discussed herein, upon determination that a
cache line is to be held exclusively, a timer 322 can be set.
The timer may be initiated to a set interval for continued
holding of the corresponding cache line (e.g., setting the
lock required bit 404) in the private cache exclusively after
completing processing of the storage operand request, and
discontinuing the holding of the corresponding cache line in
private cache exclusively after reaching the set interval. In
one or more embodiments, a length of the set interval may
be dependent on an access type of the storage operand
request. The access type may be, for instance, a fetch-type,
a store-type or update-type access. In certain embodiments,
the length of the set interval may be greater for a store-type
access or an update-type access than for fetch-type access.
By way of example, the set interval may be a time-based
interval or a cycle-based interval, and the continuing hold of
the corresponding cache line may be released upon the timer
counting down (or up) to the set count interval.

[0052] As discussed, above, in one or more embodiments,
any cache invalidate commands (e.g., from a system control
of the computing environment) for the corresponding cache
line in the private cache are rejected during the continuing
hold of the corresponding cache line in private cache exclu-
sively after completing processing of the storage operand
request.

[0053] In one embodiment, the tracker 320 can also
include an XI tracker bit 405. This bit is set when an XI
command has been received and rejected. In one embodi-
ment, this bit can serve to prevent the tracker 320 from
dominating a particular address. Consider the following
situation: The tracker 320 has locked a particular address
402 and received an XI command that it rejected. In normal
operation, the requester may wait a certain amount time to
make a subsequent request. During that time, the address
402 may be released. Now suppose that the same processing
unit 320 again wants to lock the same address before the
subsequent XI command is received. Without an indication
that another processing unit has requested the address, the
processing unit would just “reestablish” the same lock by
never releasing the address. Certain logic in the tracker 320
can address such a situation as described further below.
[0054] The tracker 320 also includes a first reset input 422
that causes the lock required bit 404 to be reset and allow for
access to the cache line address 402 upon the next request.

US 2019/0213135 Al

[0055] With further reference to FIGS. 5A and 5B opera-
tion of the system shown in FIGS. 3-5B will be described.
In one aspect, some or all of the release steps described
therein can be performed in hardware. Additional releases
may also be provided as are suggested below. Regardless of
the number of releases, embodiments herein may help
alleviate or remove hang ups that can occur when a proces-
sor that has locked a particular address is not functioning
properly or is abusing access to a particular cache line.
[0056] Referring first to FIG. S5A, a processing unit may
fetch an instruction 500, and decode the instruction to
determine, for instance, operand related signals, an execu-
tion unit (LSU, FXU, etc.), a “hold” designation, a “release”
designation, etc. 505. As will be understood, the hold and
release designations can be reflected in the value of the lock
required bit 404. When bit 404 is “set” XI commands are
denied. Otherwise, they are allowed. To that end, the tracker
320 includes a set input 420 that causes the lock required bit
404 to be set. The setting of the tracker 404 can include
loading the locked address into address 402. The set input
can receive a set command 430 from, for example, an LSU
202 or other controller.

[0057] The lock required bit 404 is shown as a separate
element but in one embodiment it can be bit in the same
hardware element as the address 402. The same is true of the
XI tracker bit 405.

[0058] The instruction is queued for execution 510, and
the processing unit determines whether the instruction is
ready to issue 515. If “no”, then the instruction remains in
the queue 510. Otherwise, the instruction is issued to the
execution unit. In this example, the instruction is assumed to
include a storage operand request or access and is issued to
the load store unit (LSU) 501 (FIG. 5B) for processing.
[0059] Referring to FIG. 5B, LSU 501 determines the
storage operand address 530, and requests storage operand
access from the entire storage hierarchy (including private
cache to the processing unit, such as L1 cache).

[0060] In the implementation depicted, LSU 501 deter-
mines whether the storage operand request is designated as
hold 532. If “no”, then standard memory management
protocols are employed in processing the storage operand
request. If “yes”, then LSU 501 determines the type of
storage access. In the example depicted, the type of storage
access of interest may involve a fetch-type access, or alter-
natively, a store-type access or update-type access associ-
ated with the storage operand request.

[0061] If the corresponding cache line in private cache is
held exclusive (EX), then timer 322 is initiated to facilitate
holding of the cache line for a desired (or set) interval. Note
that in one or more other embodiments, a cycle-based
interval may be used rather than a time-based interval.
Further, it shall be understood that the timer 322 can have be
set based on the type of command. For instance, a first timer
value (e.g., timer value) can be established for fetch type
command and a second, longer timer value can be set for
store or update types of commands.

[0062] By way of further example, one embodiment of an
instruction format which may be used in accordance with
one or more embodiments of the present invention is
described below with reference to FIGS. 6A-7. In FIG. 6A,
an instruction format is depicted known as a Next Instruc-
tion Access Intent (NIAI) instruction. This instruction for-
mat may include an operation code field 601 indicating that
this is a next instruction access intent instruction. Addition-

Jul. 11, 2019

ally, a reserved field 602 may be provided, which in one or
more embodiments may contain zeros. The instruction for-
mat may also include fields or operands, such as an access
intent control field 603 (I,), and another access intent control
field 604 (1,).

[0063] For this instruction format, the term primary-access
operand means the lowest numbered storage operand of an
instruction. Similarly, the term secondary-access operand
means the next lowest numbered storage operand of the
instruction. These terms do not have the same meaning as
the terms first operand and second operand, even though
there may be some correlation.

[0064] Subject to the controls in the I, 603 and 1, 604
fields, the CPU is signaled to future access intent for either
or both the primary-access and the secondary-access oper-
ands of the next sequential instruction. The next sequential
instruction may be the instruction retrieved and executed
after the NIAI instruction. The I, 603 field may contain a
code to signal the CPU the access intent for the primary-
access operand of the next sequential instruction. The I, 604
field may contain a code to signal the CPU the access intent
for the secondary-access operand of the next sequential
instruction. When the next sequential instruction has only a
single storage operand, the I, 604 field may be ignored.
[0065] One embodiment of an instruction format may
include a single access intent field. Another embodiment of
an instruction format may include two access intent fields.
Another embodiment of instruction format may include
multiple access intent fields. Still another embodiment of
instruction format may include a field or operand that
contains a value specifying the number of subsequent next
sequential instructions. The access intent control fields I,
603 and I, 604 may have format 610 such as depicted in FIG.
6B, where a set number of bits of the I; 603 and I, 604 fields
contain an unsigned integer that is used as a code to signal
the CPU the access intent for the corresponding operand of
the next sequential instruction.

[0066] As described above, the hardware based tracker
can be set or reset based on whether a command (such as a
hold) is received and a timer, such as timer 322, expires or
when the LSU issues a release command such as indication
instruction 432 in FIG. 4. The expiration of the timer 322 is
indicated by timeout signal 434. Methods/hardware for
generation of the timeout signal 434 upon expiration of
timer 322 are known in the art and generally understood to
be included with timer 322. The actual signal could be
generated, however, by the processing unit. As discussed
further below, timer 322 can generate multiple time out
signals. As such, in some instances, the timer 322 may be
multiple timers.

[0067] According to one embodiment, the processing unit
304 can include an OR gate 436 that receives the timeout
signal 434 and the release instruction 434. In the event either
instruction is positive, the OR gate 436 will cause output a
positive signal. The output of the OR gate is connected to the
first reset input 422 of the tracker 320 and will cause the
tracker 320 to be reset. In one embodiment, resetting the
tracker only resets the lock required bit 404 and not the XI
tracker bit 405. As will be discussed further below, addi-
tional optional signals may also be provided to the OR gate
436 to ensure that tracker 320 releases the address 402 by
resetting (e.g., setting to “0”) the lock required bit 404.
[0068] In one or more embodiments, a processing unit
behavior control is described herein to selectively continue

US 2019/0213135 Al

holding the corresponding cache line in private cache exclu-
sively after completing processing of a storage operand
request where the storage operand request is designated
hold, and the corresponding cache line in private cache used
for processing the storage operand request is owned exclu-
sively by the processing unit as indicated by block 536 in
FIG. 5B.

[0069] As noted, the continuing hold may include initiat-
ing a timer to facilitate the hold for a desired interval.
Further, based on the access type being store-type or update-
type, a subsequent storage operand request may be desig-
nated release for the corresponding cache line in order to
discontinue the hold on the corresponding cache line in
private cache exclusively. Identifying the storage operand
request as “hold” or “release” may be accomplished, as
noted above, in one or more implementations, utilizing a
designated access intent code in one or more of the control
fields of the access intent instruction.

[0070] Stated otherwise, when a storage operand desig-
nated hold is successfully processed, a primary result of the
hardware based system including the OR gate 436 and the
tracker 320 described herein is for the processing unit 304 to
reject cache invalidate commands from system control that
are associated with a specific cache line held exclusively by
the processing unit. The processing unit 304 can cause the
reject by giving control to the tracker or forwarding the
output of the tracker to the memory controller 210. A
byproduct of rejecting these commands is that the corre-
sponding cache line is held exclusively throughout the
storage hierarchy by the processing unit longer than typical
protocols would permit. In such a case, upon receipt of a
cache invalidate (XI) command from system control, the
processing unit will no longer hold the cache line. That is,
whenever the output of OR gate 436 is a logical “1” the
cache line is released (e.g., response 408 allows the line to
g0 to another processing unit) the next time an XI command
406 is received.

[0071] In one embodiment, when the counter 322 reaches
a second preprogrammed level, the XI tracker bit 405 can be
reset. This will avoid situations where the other processor no
longer needs the cache line. This second reset input is
provided by output 450 and resets only the tracker bit 405.
[0072] In one embodiment, when an XI command is
received a second timer 452 is started. This timer is reset
each time any instruction completes. When it reaches a
tracker operational time limit, the timer 452 will reset the
tracker. Consider for example a hypothetical case where a
first processing unit obtained a first lock for a first location
A. As above, any XI requests for line A will reject that
request. Now assume that the first processing unit also needs
to lock location B. If another processing unit has already
locked location B and now wants to lock line A, a stalemate
can be created wherein the first processing unit is waiting for
line B while holding line A and the second processing unit
is waiting for line A and holding line B. The second timer
452 can detect such a case as it starts counting when some
second processing units wants the line held by the first
processing unit in the tracker, and it continues ticking as
long as the first processing unit does not complete any
instruction. This will suggest that the first processing unit is
stuck and the tracker should be reset.

[0073] FIG. 7 shows another embodiment of a circuit that
includes a tracker 320. This embodiment works in the same
manner as described above but includes one or more

Jul. 11, 2019

optional additional signals that cause the tracker 320 to reset.
Each of these optional additional signals will be provided,
along with signals 450, 434 and 432, to an OR gate 702 (or
a functional equivalent thereof) to provide a signal to the
first reset input 422.

[0074] One of the additional signals is “switch program”
signal 720 that indicates that the processor is no longer
working on the program that requested the hold. This signal
can be generated by the processing unit 304. In such a case,
the tracker 320 is reset. Another additional signal is an L3
hang signal 722 that indicates that the 1.3 cache believes a
line has been held for too long. The tracker 320 can also be
reset when the processing unit itself or another processor
determines that the processor that includes the tracker 320
hung (line 724). Finally, the tracker 320 and the XI tracker
bit 405 can be reset when L2 cache determines that it
became the LRU line as indicated by line 726. In operation
the private L1 and 1.2 caches in each processing unit have
limited space, so sometimes when the processing unit
fetches a new line from memory it must evict one of the
existing lines in its cache, just for the space it occupies.
Usually the line chosen to be evicted is the Least Recently
Used (LRU), so the process of evicting a line to make space
to a new line is nicknamed [.LRUing, and the line about to be
evicted is the “LRU line”. So if the line held in the tracker
is evicted, the tracker needs to be reset as the line is no
longer being used in the processing unit.

[0075] Also shown in FIG. 7 is logic to control setting the
tracker 320. This logic can include a OR gate 760 to ensure
that only trusted software can set the tracker or that the
processor has issued a configuration “enable all” command
(line 762). The skilled artisan will understand how to
determine the value of the trusted software input 764.
[0076] The output of OR gate 760 can be provided along
with LSU set signal 430 at AND gate 766 to set tracker 320.
[0077] Another embodiment of a computing environment
to incorporate and use one or more aspects is described with
reference to FIG. 8A. In this example, a computing envi-
ronment 900 includes, for instance, a native central process-
ing unit (CPU) 902, a memory 904, and one or more
input/output devices and/or interfaces 906 coupled to one
another via, for example, one or more buses 908 and/or other
connections. As examples, computing environment 900 may
include a PowerPC processor or a pSeries server offered by
International Business Machines Corporation, Armonk,
N.Y.; an HP Superdome with Intel Itanium II processors
offered by Hewlett Packard Co., Palo Alto, Calif.; and/or
other machines based on architectures offered by Interna-
tional Business Machines Corporation, Hewlett Packard,
Intel, Oracle, or others.

[0078] Native central processing unit 902 includes one or
more native registers 910, such as one or more general
purpose registers and/or one or more special purpose regis-
ters used during processing within the environment. These
registers include information that represent the state of the
environment at any particular point in time.

[0079] Moreover, native central processing unit 902
executes instructions and code that are stored in memory
904. In one particular example, the central processing unit
executes emulator code 912 stored in memory 904. This
code enables the computing environment configured in one
architecture to emulate another architecture. For instance,
emulator code 912 allows machines based on architectures
other than the z/Architecture, such as PowerPC processors,

US 2019/0213135 Al

pSeries servers, HP Superdome servers or others, to emulate
the z/Architecture and to execute software and instructions
developed based on the z/Architecture.

[0080] Further details relating to emulator code 912 are
described with reference to FIG. 9B. Referring collectively
to FIGS. 8A and 8B, guest instructions 950 stored in
memory 904 include software instructions (e.g., correlating
to machine instructions) that were developed to be executed
in an architecture other than that of native CPU 902. For
example, guest instructions 950 may have been designed to
execute on a 7/ Architecture processor, but instead, are being
emulated on native CPU 902, which may be, for example, an
Intel Itanium II processor. In one example, emulator code
912 includes an instruction fetching routine 952 to obtain
one or more guest instructions 950 from memory 904, and
to optionally provide local buffering for the instructions
obtained. It also includes an instruction translation routine
954 to determine the type of guest instruction that has been
obtained and to translate the guest instruction into one or
more corresponding native instructions 956. This translation
includes, for instance, identifying the function to be per-
formed by the guest instruction and choosing the native
instruction(s) to perform that function.

[0081] Further, emulator code 912 includes an emulation
control routine 960 to cause the native instructions to be
executed. Emulation control routine 960 may cause native
CPU 902 to execute a routine of native instructions that
emulate one or more previously obtained guest instructions
and, at the conclusion of such execution, return control to the
instruction fetch routine to emulate the obtaining of the next
guest instruction or a group of guest instructions. Execution
of the native instructions 956 may include loading data into
a register from memory 904; storing data back to memory
from a register; or performing some type of arithmetic or
logic operation, as determined by the translation routine.
[0082] Each routine is, for instance, implemented in soft-
ware, which is stored in memory and executed by native
central processing unit 902. In other examples, one or more
of the routines or operations are implemented in firmware,
hardware, software or some combination thereof. The reg-
isters of the emulated processor may be emulated using
registers 910 of the native CPU or by using locations in
memory 904. In embodiments, guest instructions 950, native
instructions 956 and emulator code 912 may reside in the
same memory or may be disbursed among different memory
devices.

[0083] As used herein, firmware includes, e.g., the micro-
code, millicode and/or macrocode of the processor. The term
includes, for instance, the hardware-level instructions and/or
data structures used in implementation of higher level
machine code. In one embodiment, firmware may include,
for instance, proprietary code that is typically delivered as
microcode that includes trusted software or microcode spe-
cific to the underlying hardware and controls operating
system access to the system hardware.

[0084] A guest instruction 950 that is obtained, translated
and executed is, for instance, one or more of the instructions
described herein. The instruction, which is of one architec-
ture (e.g., the z/Architecture), is fetched from memory,
translated and represented as a sequence of native instruc-
tions 956 of another architecture (e.g., PowerPC, pSeries,
Intel, etc.). These native instructions may then be executed.
[0085] Although various examples are provided, varia-
tions are possible without departing from a spirit of the

Jul. 11, 2019

claimed aspects. For example, values that are included in
registers and/or fields used by the instruction may, in other
embodiments, be in other locations, such as memory loca-
tions, etc. Many other variations are possible.

[0086] One or more aspects may relate to cloud comput-
ing.
[0087] It is understood in advance that although this

disclosure includes a detailed description on cloud comput-
ing, implementation of the teachings recited herein are not
limited to a cloud computing environment. Rather, embodi-
ments of the present invention are capable of being imple-
mented in conjunction with any other type of computing
environment now known or later developed.

[0088] Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.
[0089] Characteristics are as follows:

[0090] On-demand self-service: a cloud consumer can
unilaterally provision computing capabilities, such as server
time and network storage, as needed automatically without
requiring human interaction with the service’s provider.
[0091] Broad network access: capabilities are available
over a network and accessed through standard mechanisms
that promote use by heterogeneous thin or thick client
platforms (e.g., mobile phones, laptops, and PDAs).
[0092] Resource pooling: the provider’s computing
resources are pooled to serve multiple consumers using a
multi-tenant model, with different physical and virtual
resources dynamically assigned and reassigned according to
demand. There is a sense of location independence in that
the consumer generally has no control or knowledge over
the exact location of the provided resources but may be able
to specity location at a higher level of abstraction (e.g.,
country, state, or datacenter).

[0093] Rapid elasticity: capabilities can be rapidly and
elastically provisioned, in some cases automatically, to
quickly scale out and rapidly released to quickly scale in. To
the consumer, the capabilities available for provisioning
often appear to be unlimited and can be purchased in any
quantity at any time.

[0094] Measured service: cloud systems automatically
control and optimize resource use by leveraging a metering
capability at some level of abstraction appropriate to the
type of service (e.g., storage, processing, bandwidth, and
active user accounts). Resource usage can be monitored,
controlled, and reported providing transparency for both the
provider and consumer of the utilized service.

[0095] Service Models are as follows:

[0096] Software as a Service (SaaS): the capability pro-
vided to the consumer is to use the provider’s applications
running on a cloud infrastructure. The applications are
accessible from various client devices through a thin client
interface such as a web browser (e.g., web-based email). The
consumer does not manage or control the underlying cloud
infrastructure including network, servers, operating systems,
storage, or even individual application capabilities, with the
possible exception of limited user-specific application con-
figuration settings.

US 2019/0213135 Al

[0097] Platform as a Service (PaaS): the capability pro-
vided to the consumer is to deploy onto the cloud infra-
structure consumer-created or acquired applications created
using programming languages and tools supported by the
provider. The consumer does not manage or control the
underlying cloud infrastructure including networks, servers,
operating systems, or storage, but has control over the
deployed applications and possibly application hosting envi-
ronment configurations.

[0098] Infrastructure as a Service (laaS): the capability
provided to the consumer is to provision processing, storage,
networks, and other fundamental computing resources
where the consumer is able to deploy and run arbitrary
software, which can include operating systems and applica-
tions. The consumer does not manage or control the under-
lying cloud infrastructure but has control over operating
systems, storage, deployed applications, and possibly lim-
ited control of select networking components (e.g., host
firewalls).

[0099] Deployment Models are as follows:

[0100] Private cloud: the cloud infrastructure is operated
solely for an organization. It may be managed by the
organization or a third party and may exist on-premises or
off-premises.

[0101] Community cloud: the cloud infrastructure is
shared by several organizations and supports a specific
community that has shared concerns (e.g., mission, security
requirements, policy, and compliance considerations). It
may be managed by the organizations or a third party and
may exist on-premises or off-premises.

[0102] Public cloud: the cloud infrastructure is made
available to the general public or a large industry group and
is owned by an organization selling cloud services.

[0103] Hybrid cloud: the cloud infrastructure is a compo-
sition of two or more clouds (private, community, or public)
that remain unique entities but are bound together by stan-
dardized or proprietary technology that enables data and
application portability (e.g., cloud bursting for load balanc-
ing between clouds).

[0104] A cloud computing environment is service oriented
with a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure comprising a network of interconnected
nodes. One such node is node 10 depicted in FIG. 1.
[0105] Computing node 10 is only one example of a
suitable cloud computing node and is not intended to suggest
any limitation as to the scope of use or functionality of
embodiments of the invention described herein. Regardless,
cloud computing node 10 is capable of being implemented
and/or performing any of the functionality set forth herein-
above.

[0106] Referring now to FIG. 9, illustrative cloud com-
puting environment 50 is depicted. As shown, cloud com-
puting environment 50 comprises one or more computing
nodes 10 with which local computing devices used by cloud
consumers, such as, for example, personal digital assistant
(PDA) or cellular telephone 54A, desktop computer 54B,
laptop computer 54C, and/or automobile computer system
54N may communicate. Nodes 10 may communicate with
one another. They may be grouped (not shown) physically or
virtually, in one or more networks, such as Private, Com-
munity, Public, or Hybrid clouds as described hereinabove,
or a combination thereof. This allows cloud computing
environment 50 to offer infrastructure, platforms and/or

Jul. 11, 2019

software as services for which a cloud consumer does not
need to maintain resources on a local computing device. It
is understood that the types of computing devices 54A-N
shown in FIG. 7 are intended to be illustrative only and that
computing nodes 10 and cloud computing environment 50
can communicate with any type of computerized device over
any type of network and/or network addressable connection
(e.g., using a web browser).

[0107] Referring now to FIG. 10, a set of functional
abstraction layers provided by cloud computing environ-
ment 50 (FIG. 9) is shown. It should be understood in
advance that the components, layers, and functions shown in
FIG. 11 are intended to be illustrative only and embodiments
of the invention are not limited thereto. As depicted, the
following layers and corresponding functions are provided:

[0108] Hardware and software layer 60 includes hardware
and software components. Examples of hardware compo-
nents include mainframes 61; RISC (Reduced Instruction
Set Computer) architecture based servers 62; servers 63;
blade servers 64; storage devices 65; and networks and
networking components 66. In some embodiments, software
components include network application server software 67
and database software 68.

[0109] Virtualization layer 70 provides an abstraction
layer from which the following examples of virtual entities
may be provided: virtual servers 71; virtual storage 72;
virtual networks 73, including virtual private networks;
virtual applications and operating systems 74; and virtual
clients 75.

[0110] In one example, management layer 80 may provide
the functions described below. Resource provisioning 81
provides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment. Metering and Pricing 82
provide cost tracking as resources are utilized within the
cloud computing environment, and billing or invoicing for
consumption of these resources. In one example, these
resources may comprise application software licenses. Secu-
rity provides identity verification for cloud consumers and
tasks, as well as protection for data and other resources. User
portal 83 provides access to the cloud computing environ-
ment for consumers and system administrators. Service level
management 84 provides cloud computing resource alloca-
tion and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 85 provide pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement is
anticipated in accordance with an SLA.

[0111] Workloads layer 90 provides examples of function-
ality for which the cloud computing environment may be
utilized. Examples of workloads and functions which may
be provided from this layer include: mapping and navigation
91; software development and lifecycle management 92;
virtual classroom education delivery 93; data analytics pro-
cessing 94; transaction processing 95; and instruction pro-
cessing 96.

[0112] The present invention may be a system, a method,
and/or a computer program product at any possible technical
detail level of integration. The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

US 2019/0213135 Al

[0113] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0114] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0115] Computer readable program instructions for carry-
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written in any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may

Jul. 11, 2019

execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

[0116] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0117] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0118] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0119] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.
[0120] In addition to the above, one or more aspects may
be provided, offered, deployed, managed, serviced, etc. by a
service provider who offers management of customer envi-
ronments. For instance, the service provider can create,
maintain, support, etc. computer code and/or a computer

US 2019/0213135 Al

infrastructure that performs one or more aspects for one or
more customers. In return, the service provider may receive
payment from the customer under a subscription and/or fee
agreement, as examples. Additionally or alternatively, the
service provider may receive payment from the sale of
advertising content to one or more third parties.

[0121] In one aspect, an application may be deployed for
performing one or more embodiments. As one example, the
deploying of an application comprises providing computer
infrastructure operable to perform one or more embodi-
ments.

[0122] As afurther aspect, a computing infrastructure may
be deployed comprising integrating computer readable code
into a computing system, in which the code in combination
with the computing system is capable of performing one or
more embodiments.

[0123] As yet a further aspect, a process for integrating
computing infrastructure comprising integrating computer
readable code into a computer system may be provided. The
computer system comprises a computer readable medium, in
which the computer medium comprises one or more
embodiments. The code in combination with the computer
system is capable of performing one or more embodiments.

[0124] Although wvarious embodiments are described
above, these are only examples. For example, computing
environments of other architectures can be used to incorpo-
rate and use one or more embodiments. Further, different
instructions, instruction formats, instruction fields and/or
instruction values may be used. Many variations are pos-
sible.

[0125] Further, other types of computing environments
can benefit and be used. As an example, a data processing
system suitable for storing and/or executing program code is
usable that includes at least two processors coupled directly
or indirectly to memory elements through a system bus. The
memory elements include, for instance, local memory
employed during actual execution of the program code, bulk
storage, and cache memory which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

[0126] Input/Output or I/O devices (including, but not
limited to, keyboards, displays, pointing devices, DASD,
tape, CDs, DVDs, thumb drives and other memory media,
etc.) can be coupled to the system either directly or through
intervening /O controllers. Network adapters may also be
coupled to the system to enable the data processing system
to become coupled to other data processing systems or
remote printers or storage devices through intervening pri-
vate or public networks. Modems, cable modems, and
Ethernet cards are just a few of the available types of
network adapters.

[0127] The terminology used herein is for the purpose of
describing particular embodiments only and is not intended
to be limiting. As used herein, the singular forms “a”, “an”
and “the” are intended to include the plural forms as well,
unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising”, when used in this specification, specify the pres-
ence of stated features, integers, steps, operations, elements,
and/or components, but do not preclude the presence or
addition of one or more other features, integers, steps,
operations, elements, components and/or groups thereof.

Jul. 11, 2019

[0128] The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims below, if any, are intended to include any structure,
material, or act for performing the function in combination
with other claimed elements as specifically claimed. The
description of one or more embodiments has been presented
for purposes of illustration and description, but is not
intended to be exhaustive or limited to in the form disclosed.
Many modifications and variations will be apparent to those
of ordinary skill in the art. The embodiment was chosen and
described in order to best explain various aspects and the
practical application, and to enable others of ordinary skill
in the art to understand various embodiments with various
modifications as are suited to the particular use contem-
plated.

What is claimed is:

1. A memory access control system for use in a computing
environment including two or more processing units, each of
the two or more processing units including a tracker, the
tracker on each processing unit including:

an address storage element that stores an address to be
locked by one of the processing units;

a lock required bit;

a cache invalidate (XI) tracker bit;

a set input that upon receipt of a set command sets the lock
required bit when a first condition is met;

a first reset input that resets the lock required bit upon
receipt of a reset command;

a second reset input that resets the XI tracker bit; and

logic that causes the tracker to reject incoming XI com-
mands when the lock required bit is set, to allow
incoming XI commands when the lock required bit is
not set, and to set the XI tracker bit when a first
incoming XI command is received.

2. The system of claim 1, further comprising:

a first timer, the first timer connected to the tracker such
that it resets the lock required bit after expiration of a
first threshold.

3. The system of claim 2, wherein the first timer is
connected to the tracker such that it resets the XI tracker bit
after expiration of a second threshold, the second threshold
being longer than the first threshold.

4. The system of claim 2, further comprising:

a second timer, the second timer connected to the tracker
such that it resets the lock required bit and the XI
tracker bit after expiration of a tracker threshold limit.

5. The system of claim 4, wherein the system includes an
OR gate connected on its inputs to an output of the first
timer, an output of the second timer, and a signal from a
processing unit indicating that the cache line can be released
and on its output to the first reset input of the tracker.

6. The system of claim 2, wherein the system includes an
OR gate connected on its inputs to an output of the first timer
and a signal from a processing unit indicating that the cache
line can be released and on its output to the first reset input
of the tracker.

7. The system of claim 6, wherein the OR gate includes
one or more additional inputs.

8. The system of claim 7, wherein the one or more
additional inputs include one or more of:

a switch program signal that indicates that a first process-

ing unit is no longer working on a program that
requested the hold;

US 2019/0213135 Al

an [.3 cache hang signal that indicates that an .3 cache
believes a line has been held for too long; and

an external reset signal indicating that the first processing
unit itself or another processing unit determines that the
first processing unit that includes the tracker is hung.

9. The system of claim 7, wherein the one or more
additional inputs include an L2 cache signal received when
an L2 cache determines that the address in the address
storage element was evicted, wherein the XI tracker bit is
also reset upon receipt of the L2 cache signal.

10. The system of claim 1, wherein the logic determines
when the first condition is met, wherein the first condition is
met when the XI tracker bit is not set.

11. The system of claim 1, wherein the set command is
produced by a signal from a load store unit.

12. The system of claim 1, wherein the set command is
produced by a logical combination of a signal from a load
store unit and a signal produced by one or more of an enable
signal and a trusted software input.

13. A memory access control system for use in a com-
puting environment including two or more processing units
and at least one shared memory controlled by a memory
controller, the system including:

a tracker configured to receive cache invalidate (XI)
commands from the memory controller and to provide
responses to the memory controller, the tracker includ-
ing:

an address storage element that stores an address to be
locked by one of the processing units;

a lock required bit;

a cache invalidate (XI) tracker bit;

a set input that upon receipt of a set command sets the lock
required bit when a first condition is met;

a first reset input that resets the lock required bit upon
receipt of a reset command; and

a second reset input that resets the XI tracker bit;

wherein the tracker is configured to reject incoming XI
commands from the memory controller when the lock
required bit is set, to allow incoming XI commands
when the lock required bit is not set, and to set the XI
tracker bit when a first incoming XI command is
received.

11

Jul. 11, 2019

14. The system of claim 13, further comprising:

a first timer,

wherein the first timer is connected to the tracker such that
it resets the lock required bit after expiration of a first
threshold; and

wherein the first timer is connected to the tracker such that
it resets the XI tracker bit after expiration of a second
threshold, the second threshold being longer than the
first threshold.

15. The system of claim 14, further comprising:

a second timer, the second timer connected to the tracker
such that it resets the lock required bit and the XI
tracker bit after expiration of a tracker threshold limit.

16. The system of claim 15, wherein the system includes
an OR gate connected on its inputs to an output of the first
timer, an output of the second timer, and a signal from a
processing unit indicating that the cache line can be released
and on its output to the first reset input of the tracker.

17. The system of claim 14, wherein the system includes
an OR gate connected on its inputs to an output of the first
timer and a signal from a processing unit indicating that the
cache line can be released and on its output to the first reset
input of the tracker.

18. The system of claim 17, wherein the OR gate includes
one or more additional inputs, wherein the one or more
additional inputs include one or more of:

a switch program signal that indicates that a first process-
ing unit is no longer working on a program that
requested the hold;

an L3 cache hang signal that indicates that an .3 cache
believes a line has been held for too long; and

an external reset signal indicating that the first processing
unit itself or another processing unit determines that the
first processing unit that includes the tracker is hung.

19. The system of claim 17, wherein the OR gate also
receives an L2 cache signal received when an L2 cache
determines that the address in the address storage element
was evicted, wherein the XI tracker bit is also reset upon
receipt of the L2 cache signal.

20. The system of claim 13, wherein the logic determines
when the first condition is met, wherein the first condition is
met when the XI tracker bit is not set.

#* #* #* #* #*

