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(57) ABSTRACT

The present disclosure includes apparatuses and methods for
proactive corrective actions in memory based on a proba-
bilistic data structure. A number of embodiments include a
memory, and circuitry configured to input information asso-
ciated with a subset of data stored in the memory into a
probabilistic data structure and proactively determine, at
least partially using the probabilistic data structure, whether
to take a corrective action on the subset of data stored in the
memory.
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PROACTIVE CORRECTIVE ACTIONS IN
MEMORY BASED ON A PROBABILISTIC
DATA STRUCTURE

PRIORITY INFORMATION

[0001] This Application is a Continuation of U.S. appli-
cation Ser. No. 15/229,301, filed Aug. 5, 2016, the contents
of which are incorporated herein by reference.

TECHNICAL FIELD

[0002] The present disclosure relates generally to semi-
conductor memory and methods, and more particularly, to
proactive corrective actions in memory based on a proba-
bilistic data structure.

BACKGROUND

[0003] Memory devices are typically provided as internal,
semiconductor, integrated circuits and/or external remov-
able devices in computers or other electronic devices. There
are many different types of memory including volatile and
non-volatile memory. Volatile memory can require power to
maintain its data and can include random-access memory
(RAM), dynamic random access memory (DRAM), and
synchronous dynamic random access memory (SDRAM),
among others. Non-volatile memory can retain stored data
when not powered and can include NAND flash memory,
NOR flash memory, phase change random access memory
(PCRAM), resistive random access memory (RRAM), and
magnetic random access memory (MRAM), among others.
[0004] Memory devices can be combined together to form
a solid state drive (SSD). An SSD can include non-volatile
memory (e.g., NAND flash memory and/or NOR flash
memory), and/or can include volatile memory (e.g., DRAM
and/or SRAM), among various other types of non-volatile
and volatile memory. Flash memory devices can include
memory cells storing data in a charge storage structure such
as a floating gate, for instance, and may be utilized as
non-volatile memory for a wide range of electronic appli-
cations. Flash memory devices typically use a one-transistor
memory cell that allows for high memory densities, high
reliability, and low power consumption.

[0005] Memory cells in an array architecture can be pro-
grammed to a target (e.g., desired) state. For instance,
electric charge can be placed on or removed from the charge
storage structure (e.g., floating gate) of a memory cell to
program the cell to a particular data state. The stored charge
on the charge storage structure of the memory cell can
indicate a threshold voltage (V1) of the cell.

[0006] For example, a single level cell (SLC) can be
programmed to a targeted one of two different data states,
which can be represented by the binary units 1 or 0. Some
flash memory cells can be programmed to a targeted one of
more than two data states (e.g., 1111, 0111, 0011, 1011,
1001, 0001, 0101, 1101, 1100, 0100, 0000, 1000, 1010,
0010, 0110, and 1110). Such cells may be referred to as multi
state memory cells, multiunit cells, or multilevel cells
(MLCs). MLCs can provide higher density memories with-
out increasing the number of memory cells since each cell
can represent more than one digit (e.g., more than one bit).
[0007] A state of a flash memory cell can be determined by
sensing the stored charge on the charge storage structure
(e.g., the Vit) of the cell. However, a number of mechanisms,
such as read disturb, program disturb, cell-to-cell interfer-
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ence, and/or charge loss (e.g., charge leakage), for example,
can cause the Vt of the memory cell to change, which may
reduce the quality of the data stored in the memory. For
example, a change in the Vt of a memory cell may cause the
cell to be sensed to be in a state other than the target state
(e.g., a state different than the state to which the cell was
programmed). Such a reduction in the quality of the data
may decrease the lifetime of the memory, and/or may cause
the memory to fail, if corrective actions are not taken.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 illustrates a diagram of a portion of a
memory array having a number of physical blocks in accor-
dance with a number of embodiments of the present disclo-
sure.

[0009] FIG. 2 illustrates a block diagram of a probabilistic
data structure in accordance with a number of embodiments
of the present disclosure.

[0010] FIG. 3 is a functional block diagram of a comput-
ing system including an apparatus in the form of a memory
device in accordance with a number of embodiments of the
present disclosure.

[0011] FIG. 4 illustrates a method for operating memory in
accordance with a number of embodiments of the present
disclosure.

[0012] FIG. 5 illustrates a method for operating memory
in accordance with a number of embodiments of the present
disclosure.

DETAILED DESCRIPTION

[0013] The present disclosure includes apparatuses and
methods for proactive corrective actions in memory based
on a probabilistic data structure. A number of embodiments
include a memory, and circuitry configured to input infor-
mation associated with a subset of data stored in the memory
into a probabilistic data structure and proactively determine,
at least partially using the probabilistic data structure,
whether to take a corrective action on the subset of data
stored in the memory.

[0014] Embodiments of the present disclosure may use a
probabilistic data structure, such as, for instance, a counting
Bloom filter, to track indicators of data quality in memory to
proactively determine when corrective action may need to
be taken on the data. For instance, embodiments of the
present disclosure can use a probabilistic data structure to
track read disturb, wear leveling, and/or hot and cold data
classification, among other indicators (e.g., metrics) of data
quality, to proactively determine when to take corrective
action. As such, embodiments of the present disclosure can
be used to reduce failures in the memory, and/or increase the
lifetime of memory, among other benefits. Further, embodi-
ments of the present disclosure may be suitable for fast
and/or straightforward hardware and/or firmware implemen-
tation.

[0015] Further, by using a probabilistic data structure to
track data quality indicators, embodiments of the present
disclosure can use (e.g. consume) significantly less memory
than previous approaches of tracking data quality indicators,
such as approaches in which a different counter is assigned
to track data quality indicators for each respective subset
(e.g., block) of data stored in the memory. For instance,
using a probabilistic data structure to track data quality
indicators in accordance with the present disclosure can
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eliminate the need for the memory to include a different
counter for each respective subset, as with such previous
approaches. As such, embodiments of the present disclosure
may use significantly less memory, for instance, approxi-
mately 75% less memory as an example, than such previous
approaches for tracking data quality indicators.

[0016] Further, embodiments of the present disclosure can
dynamically track data quality indicators in memory effec-
tively and/or accurately (e.g., just as effectively and/or
accurately as previous approaches that use significantly
more memory). For example, the error rate associated with
embodiments of the present disclosure (e.g., the rate at
which corrective actions are taken when they may not
actually be needed, and/or the rate at which corrective
actions are not taken when they actually may be needed)
may be negligible as compared to an ideal, error-free system.
For instance, the error rate associated with embodiments of
the present disclosure may be approximately 1.5x107>, as an
example.

[0017] As used herein, “a number of” something can refer
to one or more such things. For example, a number of
memory cells can refer to one or more memory cells.
Additionally, the designators “R”, “B”, “S”, “K”, and “N”,
as used herein, particularly with respect to reference numer-
als in the drawings, indicates that a number of the particular
feature so designated can be included with a number of
embodiments of the present disclosure.

[0018] The figures herein follow a numbering convention
in which the first digit or digits correspond to the drawing
figure number and the remaining digits identify an element
or component in the drawing. Similar elements or compo-
nents between different figures may be identified by the use
of similar digits.

[0019] FIG. 1 illustrates a diagram of a portion of a
memory array 100 having a number of physical blocks in
accordance with a number of embodiments of the present
disclosure. Memory array 100 can be, for example, a NAND
flash memory array. However, embodiments of the present
disclosure are not limited to a particular type of memory or
memory array. For example, memory array 100 can be a
DRAM array, an RRAIVI array, or a PCRAM array, among
other types of memory arrays. Further, although not shown
in FIG. 1, memory array 100 can be located on a particular
semiconductor die along with various peripheral circuitry
associated with the operation thereof.

[0020] As shown in FIG. 1, memory array 100 has a
number of physical blocks 116-0 (BLOCK 0), 116-1
(BLOCK 1), ..., 116-B (BLOCK B) of memory cells. The
memory cells can be single level cells and/or multilevel cells
such as, for instance, two level cells, triple level cells (TLCs)
or quadruple level cells (QLCs). As an example, the number
of physical blocks in memory array 100 may be 128 blocks,
512 blocks, or 1,024 blocks, but embodiments are not
limited to a particular power of two or to any particular
number of physical blocks in memory array 100.

[0021] A number of physical blocks of memory cells (e.g.,
blocks 116-0, 116-1, . . ., 116-B) can be included in a plane
of memory cells, and a number of planes of memory cells
can be included on a die. For instance, in the example shown
in FIG. 1, each physical block 116-0, 116-1, . . ., 116-B can
be part of a single die. That is, the portion of memory array
100 illustrated in FIG. 1 can be die of memory cells.
[0022] As shown in FIG. 1, each physical block 116-0,
116-1, . . ., 116-B includes a number of physical rows (e.g.,
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120-0,120-1, ..., 120-R) of memory cells coupled to access
lines (e.g., word lines). The number of rows (e.g., word
lines) in each physical block can be 32, but embodiments are
not limited to a particular number of rows 120-0, 120-1, . .
., 120-R per physical block. Further, although not shown in
FIG. 1, the memory cells can be coupled to sense lines (e.g.,
data lines and/or digit lines).

[0023] As one of ordinary skill in the art will appreciate,
each row 120-0, 120-1, . . ., 120-R can include a number of
pages of memory cells (e.g., physical pages). A physical
page refers to a unit of programming and/or sensing (e.g., a
number of memory cells that are programmed and/or sensed
together as a functional group). In the embodiment shown in
FIG. 1, each row 120-0, 120-1, . . . , 120-R comprises one
physical page of memory cells. However, embodiments of
the present disclosure are not so limited. For instance, in a
number of embodiments, each row can comprise multiple
physical pages of memory cells (e.g., one or more even
pages of memory cells coupled to even-numbered bit lines,
and one or more odd pages of memory cells coupled to odd
numbered bit lines). Additionally, for embodiments includ-
ing multilevel cells, a physical page of memory cells can
store multiple pages (e.g., logical pages) of data (e.g., an
upper page of data and a lower page of data, with each cell
in a physical page storing one or more bits towards an upper
page of data and one or more bits towards a lower page of
data).

[0024] A program operation (e.g., a write operation) can
include applying a number of program pulses (e.g., 16V-
20V) to a selected word line in order to increase the
threshold voltage (Vt) of the selected cells coupled to that
selected word line to a desired program voltage level cor-
responding to a target (e.g., desired) data state. A sense
operation, such as a read or program verify operation, can
include sensing a voltage and/or current change of a sense
line coupled to a selected cell in order to determine the data
state of the selected cell.

[0025] In a number of embodiments of the present disclo-
sure, and as shown in FIG. 1, a page of memory cells can
comprise a number of physical sectors 122-0, 122-1, . . .,
122-S (e.g., subsets of memory cells). Each physical sector
122-0, 122-1, . . ., 122-S of cells can store a number of
logical sectors of data (e.g., data words). Additionally, each
logical sector of data can correspond to a portion of a
particular page of data. As an example, a first logical sector
of data stored in a particular physical sector can correspond
to a logical sector corresponding to a first page of data, and
a second logical sector of data stored in the particular
physical sector can correspond to a second page of data.
Each physical sector 122-0, 122-1, . . ., 122-S, can store
system and/or user data, and/or can include overhead data,
such as error correction code (ECC) data, logical block
address (LBA) data, and recurring error data.

[0026] Logical block addressing is a scheme that can be
used by a host for identifying a logical sector of data. For
example, each logical sector can correspond to a unique
logical block address (LBA). Additionally, an LBA may also
correspond (e.g., dynamically map) to a physical address. A
logical sector of data can be a number of bytes of data (e.g.,
256 bytes, 512 bytes, or 1,024 bytes). However, embodi-
ments are not limited to these examples.

[0027] It is noted that other configurations for the physical
blocks 116-0, 116-1, . . . , 116-B, rows 120-0, 120-1, . . .,
120-R, sectors 122-0, 122-1, . . ., 122-S, and pages are
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possible. For example, rows 120-0, 120-1, . . . , 120-R of
physical blocks 116-0, 116-1, . . . , 116-B can each store data
corresponding to a single logical sector which can include,
for example, more or less than 512 bytes of data.

[0028] FIG. 2 illustrates a block diagram of a probabilistic
data structure 202 in accordance with a number of embodi-
ments of the present disclosure. Probabilistic data structure
202 can be, for example, based on (e.g., a modified version
of) a counting Bloom filter that can be used to proactively
determine whether to take a corrective action on a subset of
data stored in memory, as will be further described herein.
[0029] A probabilistic data structure such as a counting
Bloom filter can include a number of counters (e.g., counters
232 illustrated in FIG. 2). For example, a counting Bloom
filter can include M d-bit up/down counters, where M is the
quantity of counters and d is quantity of bits of each
respective counter. As such, the size of the counting Bloom
filter can be given by Mxd. When the counting Bloom filter
is empty, each counter (e.g., the value of each counter) is set
to 0. Although the example illustrated in FIG. 2 includes 16
counters (e.g., 0 to 15), embodiments of the present disclo-
sure are not limited to a particular quantity of counters.
[0030] The counting Bloom filter can further include a
number of (e.g., K) different hash functions, each of which
can hash (e.g., map) an input (e.g., subject) element to one
of the counters, preferably with a uniform random distribu-
tion. For example, the input element can be processed
according to each of the K hash functions to determine the
corresponding K counters to which the element is mapped,
and these counters (e.g., the values of these counters) can be
updated accordingly. When the value of a counter reaches a
particular threshold, the counter can be reset to 0.

[0031] As an example, FIG. 2 shows probabilistic data
structure (e.g., counting Bloom filter) 202 having a number
of hash functions 230-1, 230-2, . . ., 230-K (e.g., H;, H,, .
.., Hp). In the example illustrated in FIG. 2, an element 234
(e.g., X) is shown as being processed by (e.g., passed
through) counting Bloom filter 202 to produce respective
hash outputs (e.g., H,(X), Hy(X), . . . , Hi{X)). For instance,
element 234 as processed by hash function 230-1 is indi-
cated as H, (X) and corresponds to counter 7 of counters 232
of counting Bloom filter 202, which is shown as being
updated to a value of 8. Further, element 234 as processed
by hash function 230-2 is indicated as H,(X) and corre-
sponds to counter 14 of counters 232, which is shown as
being updated to a value of 2. Further, element 234 as
processed by hash function 230-K is indicated as H(X) and
corresponds to counter 1 of counters 232, which is shown as
being updated to a value of 8. In a number of embodiments,
hash functions 230-1, 230-2, . . . , 230-K can produce their
respective outputs based on binary operations, such as XOR
operations, SHIFT operations, etc., which can make hard-
ware and/or firmware implementation of counting Bloom
filter 202 fast and/or straightforward.

[0032] As such, counting Bloom filter 202 can be used to
capture the frequency at which a particular element is
occurring (e.g., the frequency at which the element is input
into and processed by counting Bloom filter 202). In con-
trast, a standard Bloom filter may simply be used to indicate
inclusion, or exclusion, of elements from a particular set of
elements (e.g., to check whether an element is a member of
the set).

[0033] It should be noted that in some instances, the output
of hash functions 230-1, 230-2, . . . , 230-K may overlap for
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different input elements, which may result in false positive
and/or false negative errors (e.g., an element being indicated
to be occurring more or less frequently that it actually is).
However, such errors may be reduced (e.g., minimized or
optimized) based on the quantities used for M, d, and K. For
instance, such errors may be reduced (e.g., minimized) in
embodiments in which counting Bloom filter 202 includes
two hash functions and 1024 8-bit counters (e.g., in embodi-
ments in which M, d, and K are 1024, 8, and 2, respectively).
In such embodiments, the size of the memory portion of
counting Bloom filter 202 (e.g., not including the two hash
functions) would be 1 kiloByte (kB). However, embodi-
ments of the present disclosure are not limited to such
embodiments.

[0034] FIG. 3 is a functional block diagram of a comput-
ing system 304 including an apparatus in the form of a
memory device 344 in accordance with a number of embodi-
ments of the present disclosure. As used herein, an “appa-
ratus” can refer to, but is not limited to, any of a variety of
structures or combinations of structures, such as a circuit or
circuitry, a die or dice, a module or modules, a device or
devices, or a system or systems, for example.

[0035] Memory device 344 can be, for example, a solid
state drive (SSD). In the embodiment illustrated in FIG. 3,
memory device 344 includes a physical host interface 346,
a number of memories 350-1, 350-2, . . ., 350-N (e.g., solid
state memory devices), and a controller 348 (e.g., an SSD
controller) coupled to physical host interface 346 and
memories 350-1, 350-2, . . ., 350-N.

[0036] Memories 350-1, 350-2, . . ., 350-N can include,
for example, a number of non-volatile memory arrays (e.g.,
arrays of non-volatile memory cells). For instance, memo-
ries 350-1, 350-2, . . ., 350-N can include a number of
memory arrays analogous to memory array 100 previously
described in connection with FIG. 1.

[0037] Physical host interface 346 can be used to com-
municate information between memory device 344 and
another device such as a host 342. Host 342 can include a
memory access device (e.g., a processor). One of ordinary
skill in the art will appreciate that “a processor” can intend
a number of processors, such as a parallel processing sys-
tem, a number of coprocessors, etc. Example hosts can
include personal laptop computers, desktop computers, digi-
tal cameras, digital recording and playback devices, mobile
phones such as smart phones, PDAs, memory card readers,
interface hubs, and the like.

[0038] Physical host interface 346 can be in the form of a
standardized physical interface. For example, when memory
device 344 is used for information storage in computing
system 304, physical host interface 346 can be a serial
advanced technology attachment (SATA) physical interface,
a peripheral component interconnect express (PCle) physi-
cal interface, or a universal serial bus (USB) physical
interface, among other physical connectors and/or inter-
faces. In general, however, physical host interface 346 can
provide an interface for passing control, address, informa-
tion (e.g., data), and other signals between memory device
344 and a host (e.g., host 342) having compatible receptors
for physical host interface 346.

[0039] Controller 348 can include, for example, control
circuitry and/or logic (e.g., hardware and firmware). Con-
troller 348 can be included on the same physical device (e.g.,
the same die) as memories 350-1, 350-2, . . ., 350-N. For
example, controller 348 can be an application specific inte-
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grated circuit (ASIC) coupled to a printed circuit board
including physical host interface 346 and memories 350-1,
350-2, . . ., 350-N. Alternatively, controller 348 can be
included on a separate physical device that is communica-
tively coupled to the physical device that includes memories
350-1, 350-2, . . ., 350-N. In a number of embodiments,
components of controller 348 can be spread across multiple
physical devices (e.g., some components on the same die as
the memory, and some components on a different die,
module, or board) as a distributed controller.

[0040] Controller 348 can communicate with memories
350-1, 350-2, ..., 350-N to sense (e.g., read), program (e.g.,
write), and/or erase information, among other operations.
Controller 348 can have circuitry that may be a number of
integrated circuits and/or discrete components. In a number
of embodiments, the circuitry in controller 348 may include
control circuitry for controlling access across memories
350-1, 350-2, . . ., 350-N and/or circuitry for providing a
translation layer between host 342 and memory device 344.
[0041] In a number of embodiments, controller 348 can
use a probabilistic data structure, such as, for instance,
probabilistic data structure (e.g., counting Bloom filter) 202
previously described in connection with FIG. 2, to track
indicators (e.g., metrics) of the quality of the data stored in
memories 350-1, 350-2, . . ., 350-N, including, for example,
read disturb, wear leveling, and/or hot and cold data clas-
sification, among other data quality indicators, to proactively
determine when corrective action may need to be taken on
the data. For example, controller 348 can input information
associated with a subset of the data stored in memories
350-1, 350-2, . . . , 350-N into the probabilistic data
structure, and proactively determine, at least partially using
the probabilistic data structure, whether to take a corrective
action on the subset of data. For instance, controller 348 can
use the probabilistic data structure to perform an operation
on the inputted information, and proactively determine
whether to take the corrective action on the subset of data
based, at least in part, on the result of the operation. As used
herein, “proactively” determining when corrective action
may need to be taken, and “proactively” determining
whether to take corrective action, can refer to determining
that the corrective action may need to be taken, and deter-
mining whether to take corrective action, before the correc-
tive action may actually need to be taken, such as, for
instance, before a failure of the memory actually occurs
(e.g., in anticipation that a failure will soon occur).

[0042] Ina number of embodiments, the probabilistic data
structure can be included in controller 348. For example,
DRAM of controller 348 can be used for the counters of the
probabilistic data structure.

[0043] The inputted information can correspond to ele-
ment 234 previously described in connection with FIG. 2,
and can be, for instance, identification information associ-
ated with the subset of data (e.g., information that identifies
that subset). Further, the subset of data can be a block of data
(or other unit(s) of data such as a subset of a block or
multiple blocks of data), such as, for instance, a block on
which a sense (e.g., read) or program (e.g., write) operation
has been performed by controller 348 (e.g., a block that
includes a page of memory cells on which a sense or
program operation was performed). For example, the iden-
tification information can be input into the probabilistic data
structure upon (e.g., responsive to) the sense or program
operation being performed by controller 348.
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[0044] The operation performed on the inputted informa-
tion by the probabilistic data structure can include process-
ing the inputted information by the hash functions of the
probabilistic data structure, as previously described in con-
nection with FIG. 2. For example, the output of each
respective hash function can correspond to a different coun-
ter (e.g., location) of the probabilistic data structure, as
previously described in connection with FIG. 2, and each of
these counters (e.g., the respective values of each of these
counters) can be updated (e.g., increased, decreased, or
reset) accordingly. The respective values of each of the
counters after they have been updated can correspond to the
result of the operation performed by the probabilistic data
structure.

[0045] The quantity (e.g., amount) by which each of the
different counters to which the output of each respective
hash function corresponds is updated (e.g., increased,
decreased, or reset) can depend on the type(s) of data quality
indicator being tracked by the probabilistic data structure.
For example, if the information is inputted in response to a
sense operation (e.g., if it was a sense operation that was
performed on the subset of data), and the probabilistic data
structure is tracking read disturb, each of the different
counters can be updated by the quantity of pages in the
subset of data on which the sense operation was performed.
However, embodiments of the present disclosure are not
limited to this particular example. For instance, if the
probabilistic data structure is tracking hot and cold data
classification, each of the different counters can be updated
by the quantity of times the subset of data is accessed during
sense and/or program operations performed on the subset of
data. As an additional example, if the probabilistic data
structure is tracking wear leveling, each of the different
counters can be updated by the quantity of program and/or
erase cycles performed on the subset of data.

[0046] This process can continue for subsequent inputted
information (e.g., subsequent sense operations performed
during operation of memory device 344), until the result of
the operation performed by the probabilistic data structure
(e.g., the values of the updated counters) meets or exceeds
a particular threshold. The threshold can be a fixed thresh-
old, or it can be an adjustable (e.g., programmable and/or
changeable) threshold. As an example, if the probabilistic
data structure is tracking read disturb, the threshold in the
probabilistic data structure can be less than or equal to
(2°d)-1, where d is the quantity of bits of each respective
counter. However, embodiments of the present disclosure
are not limited to this particular example.

[0047] Upon the result of the operation performed by the
probabilistic data structure (e.g., the values of the updated
counters) meeting or exceeding the particular threshold, the
counters (e.g., the value of the counters) can be reset (e.g.,
to zero), and the information (e.g., the identification infor-
mation) associated with the subset of data can be stored in
(e.g., moved to) a cache included in controller 348. For
instance, the cache can include a number of counters, and
one of the counters can be associated with (e.g., assigned to)
that subset of data. Each respective counter in the cache can
include 32-d bits. As such, the size of the cache can be given
by Lx(32-d), where L is the quantity of counters in the cache
and d is the quantity of bits of each respective counter in the
probabilistic data structure. As an example, the cache may
include 1060 counters (e.g., L. may be 1060). In such an
example, the size of the cache would be approximately 3.88
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kB (including the cache overhead). As an additional
example, the size of each counter used in the cache can be
at least ceil(log 2(T-T1)), wherein ceil(.) is the ceiling
function, log 2(.) is the logarithm function in base 2, T1 is
the threshold in the probabilistic data structure, and T is the
threshold at which a corrective action is performed.

[0048] In embodiments in which the memory of the con-
troller in which the probabilistic data structure is included is
two level memory (e.g., includes two level memory cells),
the probabilistic data structure may be included in a first
(e.g., one) of the two levels, and the cache may be included
in a second of the two levels (e.g., the other level). In
embodiments in which the memory of the controller in
which the probabilistic data structure is included is triple
level memories (e.g., includes TLCs), the probabilistic data
structure may be included in a first level and a second level
(e.g., two of the three levels), and the cache may be included
in a third level (e.g., the remaining level).

[0049] Upon the information associated with the subset of
data being stored in the cache, subsequent sense operations
performed on the subset of data may not result in the
information associated with the subset being inputted into
the probabilistic data structure. Rather, the counter in the
cache that is associated with the subset of data can be
updated upon (e.g., responsive to) each subsequent sense
operation performed on the subset. The quantity (e.g.,
amount) by which the counter in the cache is updated can
correspond to the quantity by which the counters of the
probabilistic data structure were updated. For instance, if the
probabilistic data structure is tracking read disturb and the
counters of the probabilistic data structure were being
updated by the quantity of pages in the subset of data on
which the sense operation was performed, then the counter
in the cache may also be updated by the quantity of pages in
the subset on which the sense operation was performed.
[0050] This process can continue until the value of the
counter in the cache that is associated with the subset of data
meets or exceeds a particular threshold. The threshold can be
a fixed threshold, or it can be an adjustable (e.g., program-
mable and/or changeable) threshold. Further, this threshold
may be much larger (e.g., orders of magnitude larger) than
the threshold used in the probabilistic data structure. As
such, the probabilistic data structure can be used to dynami-
cally filter subsets of data stored in memories 350-1, 350-2,
..., 350-N that may be likely to be decreasing in quality,
such as, for instance, subsets of data that may be reaching a
high read disturb count, and these subsets of data can then
be further tracked using the cache.

[0051] Upon the value of the counter in the cache that is
associated with the subset of data meeting or exceeding the
cache threshold, controller 348 can take the corrective action
on the subset of data, and the counter (e.g., the value of the
counter) can be reset (e.g., to zero) and the information
associated with the subset of data can be removed from the
cache. The corrective action can be, for example, a reloca-
tion of the subset of data to a different location (e.g., a
different physical location) in memories 350-1, 350-2, . . .,
350-N. For instance, the subset of data can be programmed
to and/or stored in a different page, block, or die of memo-
ries 350-1, 350-2, . . ., 350-N. As an additional example, in
embodiments in which memories 350-1, 350-2, . . ., 350-N
include SLCs and MLCs, the corrective action can include
programming data of the subset that is stored in the SL.Cs of
memories 350-1, 350-2, . . ., 350-N to the MLCs of
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memories 350-1, 350-2, . . ., 350-N (e.g., folding the SL.C
data to the MLCs, or vice versa). For instance, the SL.C data
can be folded to another physical location in memories

350-1, 350-2, . . ., 350-N with MLC configuration, or vice
versa.
[0052] Inanumber of embodiments, such as, for example,

embodiments in which the probabilistic data structure is
being used to track read disturb, a program operation per-
formed on the subset of data can result in a reset of the
probabilistic data structure and/or cache. For example, the
information (e.g., the identification information) associated
with the subset of data can be input into the probabilistic
data structure upon (e.g., responsive to) the program opera-
tion, and the inputted information can be processed by the
probabilistic data structure, in a manner analogous to that
previously described herein. However, instead of updating
each of the different counters of the probabilistic data
structure to which the output of each respective hash func-
tion of the probabilistic data structure corresponds (e.g., as
would occur in response to a sense operation), each of the
different counters (e.g. the value of each of the different
counters) can be reset (e.g., to zero). Further, if the infor-
mation associated with the subset of data is stored in the
cache (e.g., if the program operation occurs after the proba-
bilistic data structure threshold was met or exceeded and the
information was moved from the probabilistic data structure
to the cache), the counter in the cache associated with the
subset of data can be reset, and the information can be
removed from the cache, responsive to the program opera-
tion.

[0053] Using a probabilistic data structure to track data
quality indicators in accordance with the present disclosure
can use (e.g. consume) a significantly lower portion of
controller 348 (e.g., of the memory of controller 348) than
would be used by previous approaches of tracking data
quality indicators, such as approaches in which a different
counter is assigned to track data quality indicators for each
respective subset (e.g., block) of data stored in the memory.
For instance, using a probabilistic data structure to track data
quality indicators in accordance with the present disclosure
can eliminate the need to assign a counter (e.g., a dedicated
counter) in controller 348 and/or memories 350-1, 350-2, .
.., 350-N to each respective subset, as with such previous
approaches.

[0054] For instance, in the example previously described
herein, the probabilistic data structure can have a size of 1
kB, and the cache can have a size of approximately 3.88 kB,
for a total of approximately 4.88 kB of memory dedicated to
tracking data quality indicators. In contrast, a previous
approach may use a cache having a size of 20 kB that would
be dedicated to tracking data quality indicators. As such,
embodiments of the present disclosure may use significantly
less memory, for instance, approximately 75% less memory,
than such previous approaches for tracking data quality
indicators.

[0055] Further, embodiments of the present disclosure can
track data quality indicators in memories 350-1, 350-2, . . .
, 350-N effectively and/or accurately (e.g., just as effectively
and/or accurately as previous approaches that use signifi-
cantly more memory). For instance, as previously described
herein, the output of the hash functions of the probabilistic
data structure may overlap for different input elements,
which may result in false positive and/or false negative
errors, which may in turn result in corrective actions being
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taken when they may not actually be needed and/or correc-
tive actions not being taken when they may actually be
needed. However, as previously described herein, such
errors may be reduced (e.g., minimized) based on the
quantities used for M, d, and K in the probabilistic data
structure. For instance, using values of 1024, 8, and 2, for M,
d, and K, respectively, as described in the example described
in connection with FIG. 2, can result in an error rate of
approximately 1.5x107>, which may be negligible as com-
pared to an ideal, error-free system. However, this is just an
example illustration, and embodiments of the present dis-
closure are not so limited.

[0056] The embodiment illustrated in FIG. 3 can include
additional circuitry, logic, and/or components not illustrated
s0 as not to obscure embodiments of the present disclosure.
For example, memory device 344 can include address cir-
cuitry to latch address signals provided over /O connectors
through I/O circuitry. Address signals can be received and
decoded by a row decoder and a column decoder, to access
memories 350-1, 350-2, . . ., 350-N.

[0057] FIG. 4 illustrates a method 406 for operating
memory, such as, for instance, memories 350-1, 350-2, . . .
, 350-N previously described in connection with FIG. 3, in
accordance with a number of embodiments of the present
disclosure. Method 406 can be performed by, for example,
controller 348 previously described in connection with FIG.
3.

[0058] Method 406 can be used, for example, to track
indicators of data quality in memory to proactively deter-
mine when corrective action may need to be taken on the
data. For instance, method 406 can be used to track read
disturb in memory. However, embodiments of the present
disclosure are not so limited, and method 406 could be used
to track other data quality indicators, as previously described
herein.

[0059] At block 460, method 406 includes determining
identification information associated with a subset of data
stored in the memory. The subset of data can be, for
example, a block of data on which a sense (e.g., read)
operation has been performed, as previously described
herein (e.g., in connection with FIG. 3). That is, method 406
may be used when a sense operation has been performed.
The identification information can be determined by, for
example, mapping the logical block address (LBA) associ-
ated with the sense operation (e.g., the LBA used to identify
the subset of data on which the sense operation was per-
formed).

[0060] At block 462, method 406 includes determining
whether the identification information associated with the
subset of data is stored in a cache. For instance, the cache
can include a number of counters, as previously described
herein (e.g., in connection with FIG. 3), and determining
whether the identification information is stored in the cache
can include determining whether any of the counters are
associated with the identification information (e.g., assigned
to the subset of data).

[0061] If it is determined that the identification informa-
tion associated with the subset of data is not stored in the
cache, then the identification information can be input into
a probabilistic data structure at block 464. The probabilistic
data structure can be, for example, probabilistic data struc-
ture (e.g., counting Bloom filter) 202 described in connec-
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tion with FIG. 2. For instance, the inputted information can
correspond to element 234 previously described in connec-
tion with FIG. 2.

[0062] At block 466, method 406 includes performing an
operation on the inputted identification information using
the probabilistic data structure. The operation can include
processing the inputted information by the hash functions of
the probabilistic data structure, as previously described
herein (e.g., in connection with FIGS. 2 and 3).

[0063] At block 468, method 406 includes determining
whether the result of the operation meets or exceeds a
particular threshold. The result of the operation can corre-
spond to the values of the counters of the probabilistic data
structures that were updated during the operation, as previ-
ously described herein (e.g., in connection with FIG. 3).
[0064] If it is determined that the result of the operation
(e.g., the values of the counters that were updated during the
operation) does not meet or exceed the threshold, method
406 ends at block 472. If it is determined that the result of
the operation meets or exceeds the threshold, then the
identification information is stored in the cache (e.g., one of
the counters of the cache can be assigned to the identification
information) at block 470, and the values of the counters of
the probabilistic data structure that were updated during the
operation can be reset.

[0065] If it is determined that the identification informa-
tion associated with the subset of data is stored in the cache
(e.g., the identification information has been assigned to one
of the counters of the cache) at block 462, the value of that
counter is updated at block 474. The quantity (e.g., amount)
by which the counter is updated can correspond to the
quantity by which the counters of the probabilistic data
structure were updated, as previously described herein (e.g.,
in connection with FIG. 3).

[0066] At block 476, method 406 includes determining
whether the value of the counter of the cache that was
updated at block 474 meets or exceeds a particular threshold.
This threshold may be much larger than the threshold used
in the probabilistic data structure, as previously described
herein (e.g., in connection with FIG. 3).

[0067] 1If it is determined that the value of the counter of
the cache does not meet or exceed the threshold, method 406
ends at block 480. If it is determined that the value of the
counter of the cache meets or exceeds the threshold, a
corrective action on the subset of data is taken at block 478,
and the identification information associated with the subset
of data is removed from the cache. The corrective action can
be, for example, a relocation of the subset of data to a
different location in the memory, and/or can include pro-
gramming data of the subset that is stored in SLCs of the
memory to MLCs of the memory (or vice versa), as previ-
ously described herein (e.g., in connection with FIG. 3).
[0068] FIG. 5 illustrates a method 508 for operating
memory, such as, for instance, memories 350-1, 350-2, . . .
, 350-N previously described in connection with FIG. 3, in
accordance with a number of embodiments of the present
disclosure. Method 508 can be performed by, for example,
controller 348 previously described in connection with FIG.
3.

[0069] Method 508 can be used, for example, to track
indicators of data quality in memory to proactively deter-
mine when corrective action may need to be taken on the
data. For instance, method 508 can be used to track read
disturb in memory. However, embodiments of the present



US 2019/0213218 Al

disclosure are not so limited, and method 508 could be used
to track other data quality indicators, as previously described
herein.

[0070] Further, in a number of embodiments, method 508
may only be used (e.g., triggered) if the quantity of pages
affected by a program operation performed on a subset (e.g.,
block) of data meets or exceeds a particular threshold. For
instance, in such embodiments, if this threshold is 100, and
only 50 pages are programmed during a program operation,
method 508 would not be triggered. Additionally or alter-
natively, in a number of embodiments, method 508 may only
be used (e.g., triggered) if a particular type or types if
program operation is performed on a subset of data. For
instance, in such embodiments, method 508 may only be
triggered if the program operation is re-programming data to
a portion of the subset (e.g., programming data to a portion
of the subset that has previously had data programmed
thereto).

[0071] At block 582, method 508 includes determining
identification information associated with a subset of data
stored in the memory. The subset of data can be, for
example, a block of data on which a program (e.g., write)
operation has been performed, as previously described
herein (e.g., in connection with FIG. 3). That is, method 508
may be used when a program operation has been performed.
The identification information can be determined by, for
example, mapping the logical block address (LBA) associ-
ated with the program operation (e.g., the LBA used to
identify the subset of data on which the program operation
was performed).

[0072] At block 584, method 508 includes determining
whether the identification information associated with the
subset of data is stored in a cache. For instance, the cache
can include a number of counters, as previously described
herein (e.g., in connection with FIG. 3), and determining
whether the identification information is stored in the cache
can include determining whether any of the counters are
associated with the identification information (e.g., assigned
to the subset of data).

[0073] If it is determined that the identification informa-
tion associated with the subset of data is not stored in the
cache, then the identification information can be input into
a probabilistic data structure at block 586. The probabilistic
data structure can be, for example, probabilistic data struc-
ture (e.g., counting Bloom filter) 202 described in connec-
tion with FIG. 2. For instance, the inputted information can
correspond to element 234 previously described in connec-
tion with FIG. 2.

[0074] At block 588, method 508 includes performing an
operation on the inputted identification information using
the probabilistic data structure. The operation can include
processing the inputted information by the hash functions of
the probabilistic data structure, as previously described
herein (e.g., in connection with FIGS. 2 and 3). However,
instead of the operation updating each of the different
counters of the probabilistic data structure to which the
output of each respective hash function of the probabilistic
data structure corresponds (e.g., as would occur in response
to a sense operation, such as, for instance, at block 466 of
method 406 described in connection with FIG. 4), the
operation may reset (e.g., to zero) each of the different
counters (e.g. the value of each of the different counters).
That is, method 508 includes resetting these counters of the
probabilistic data structure at block 590.
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[0075] If it is determined that the identification informa-
tion associated with the subset of data is stored in the cache
at block 584, the identification information is removed from
the cache at block 592. For instance, the counter in the cache
that is associated with the identification information can be
reset.

[0076] Although specific embodiments have been illus-
trated and described herein, those of ordinary skill in the art
will appreciate that an arrangement calculated to achieve the
same results can be substituted for the specific embodiments
shown. This disclosure is intended to cover adaptations or
variations of a number of embodiments of the present
disclosure. It is to be understood that the above description
has been made in an illustrative fashion, and not a restrictive
one. Combination of the above embodiments, and other
embodiments not specifically described herein will be appar-
ent to those of ordinary skill in the art upon reviewing the
above description. The scope of a number of embodiments
of the present disclosure includes other applications in
which the above structures and methods are used. Therefore,
the scope of a number of embodiments of the present
disclosure should be determined with reference to the
appended claims, along with the full range of equivalents to
which such claims are entitled.

[0077] In the foregoing Detailed Description, some fea-
tures are grouped together in a single embodiment for the
purpose of streamlining the disclosure. This method of
disclosure is not to be interpreted as reflecting an intention
that the disclosed embodiments of the present disclosure
have to use more features than are expressly recited in each
claim. Rather, as the following claims reflect, inventive
subject matter lies in less than all features of a single
disclosed embodiment. Thus, the following claims are
hereby incorporated into the Detailed Description, with each
claim standing on its own as a separate embodiment.

What is claimed is:

1. An apparatus, comprising:

a memory; and

circuitry configured to:

input identification information associated with a sub-
set of data stored in the memory into a probabilistic
data structure;
perform, using the probabilistic data structure, an
operation on the inputted identification information,
wherein the operation includes:
processing the inputted identification information by
a number of hash functions of the probabilistic
data structure, wherein an output of each respec-
tive hash function corresponds to a different coun-
ter of the probabilistic data structure; and
updating each of the different counters to which the
output of each respective hash function corre-
sponds; and
proactively determine whether to take a corrective
action on the subset of data based, at least in part, on
a result of the operation performed by the probabi-
listic data structure.

2. The apparatus of claim 1, wherein the operation
includes updating each of the different counters by a quantity
of pages in the subset of data on which a sense operation was
performed.

3. The apparatus of claim 1, wherein the operation
includes updating each of the different counters by a quantity
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of times the subset of data was accessed during a sense or
program operation performed on at least a portion of the
subset of data.

4. The apparatus of claim 1, wherein the operation
includes updating each of the different counters by a quantity
of program and/or erase cycles performed on at least a
portion of the subset of data.

5. The apparatus of claim 1, wherein the result of the
operation performed by the probabilistic data structure cor-
responds to a value of each of the different counters after
they have been updated.

6. The apparatus of claim 5, wherein the circuitry is
configured to proactively determine whether to take the
corrective action based on whether the value of each of the
different counters after they have been updated meets or
exceeds a particular threshold.

7. The apparatus of claim 1, wherein updating each of the
different counters includes increasing a value of each of the
different counters.

8. The apparatus of claim 1, wherein updating each of the
different counters includes decreasing a value of each of the
different counters.

9. The apparatus of claim 1, wherein updating each of the
different counters includes resetting a value of each of the
different counters.

10. A method for operating memory, comprising:

inputting identification information associated with a sub-

set of data stored in a memory into a counting Bloom
filter having a number of counters and a number of hash
functions;

performing, by the counting Bloom filter, an operation on

the inputted identification information, wherein the

operation includes:

processing the inputted identification information by
the number of hash functions, wherein an output of
each respective hash function corresponds to a dif-
ferent one of the number of counters; and

updating each of the different counters to which the
output of each respective hash function corresponds;
and

proactively determining whether to take a corrective

action on the subset of data based, at least in part, on a
result of the operation performed by the counting
Bloom filter.

11. The method of claim 10, wherein the method includes
inputting the identification information into the counting
Bloom filter upon determining the identification information
is not stored in a cache.

12. The method of claim 10, wherein:

the identification information is inputted into the counting

Bloom filter in response to a sense operation being
performed on the subset of data; and

the operation includes updating each of the different

counters by a quantity of pages in the subset of data.
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13. The method of claim 10, wherein:

the identification information is inputted into the counting
Bloom filter in response to a sense operation being
performed on the subset of data; and

the operation includes updating each of the different

counters by a quantity of times the subset of data is
accessed during the sense operation.

14. The method of claim 10, wherein:

the identification information is inputted into the counting

Bloom filter in response to a program operation being
performed on the subset of data; and

the operation includes updating each of the different

counters by a quantity of times the subset of data is
accessed during the program operation.

15. The method of claim 10, wherein the number of hash
functions is two.

16. An apparatus, comprising:

a memory; and

circuitry configured to:

perform a program operation or a sense operation on a
subset of data stored in the memory;
input identification information associated with the
subset of data into a probabilistic data structure;
perform, using the probabilistic data structure, an
operation on the inputted identification information,
wherein the operation includes:
processing the inputted identification information by
a number of hash functions of the probabilistic
data structure, wherein an output of each respec-
tive hash function corresponds to a different coun-
ter of the probabilistic data structure;
updating each of the different counters to which the
output of each respective hash function corre-
sponds if a sense operation was performed on the
subset of data; and
resetting each of the different counters to which the
output of each respective hash function corre-
sponds if a program operation was performed on
the subset of data; and
proactively determine whether to take a corrective
action on the subset of data based, at least in part, on
a result of the operation performed using the proba-
bilistic data structure.

17. The apparatus of claim 16, wherein proactively deter-
mining whether to take the corrective action includes deter-
mining whether to take the corrective action before a failure
of the memory occurs.

18. The apparatus of claim 16, wherein the probabilistic
data structure is a counting Bloom filter.

19. The apparatus of claim 16, wherein the subset of data
is a block of data.

20. The apparatus of claim 16, wherein resetting each of
the different counters includes setting a value of each of the
different counters to zero.
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