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(57) ABSTRACT

Disclosed herein are system, method, and computer-read-
able storage device embodiments for implementing auto-
mated root-cause analysis for static verification. An embodi-
ment includes a system with memory and processor(s)
configured to receive a report comprising violations and
debug fields, and accept a selection of a seed debug field
from among the plurality of debug fields. Clone violations
may be generated by calculating an overlay of a given
violation of the violations and a seed debug field, yielding
possible values for a subset of debug fields. A clone violation
may be created for a combination of the at least two second
debug fields, populating a projection matrix, which may be
used to map violations and clone violations to corresponding
numerical values in the projection matrix and determine a
violation cluster based on the mapping having correspond-
ing numerical values and score(s) satisfying a threshold, via
ML. Clustering may further be used to generate visualiza-
tions.
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819

- <Violation id="4" displayWidth="20" display="18C_STRATEGY MISSING" record="1" type="180_STRATEGY MIS
<Hgader compressed="0" waived="0" display="180_STRATEGY MISSING" severity="error’ count="3"%>
- <Objecis>
<tem display="Tag" type="Tag">I80_STRATEGY MISSING</item>
<ltem display="Description’ type="Dascription”>lsolation required on crossing from {Source] fo [Sin
<lter: display="Viplation" type="Viclation">LP:4</ltem>
+ <Record display="Scurce" type="SEGMENT_SOURCE™>
<lem digplay="Sink" type="SEGMENT_SINK">i_core2icore?_and/A</ilem>
<item display="SegmentSourceDomain’ lype="SEGMENT SOURCE _DOMAIN">top_pd<iltem>
<ltem display="SegmentSinkDomain' lype="SEGMENT SINK_DOMAIN'>I_coreZicore? pd<ilem>
+<Record display="LogicSource” type="LOGICAL_SOURCE™
<ltern display="Logic8ink" type="LOGICAL_SINK'>i_core2icore?_andidiitem>
<ltem display="DomainSource’ type="DOMAIN_SOURCE >top 3</ltem>
<ltem display="DomainSink" ype="DOMAIN_SINK">I_core2icore? [i</tem>
- <Record display="Seurcelnfo’ lype="SOURCE_SUPPLY INFO™
- <Record display="PowerNet" type="PWR_NET">
y="NatName" lype="NET NAME >top_pd_ss.power</itern>
<ltem display="NetType" type="NET_TYPE">UPFilem>
</Record>
<Htgm display="PowerMathod” type="PWR_RESCLVE_TYPE">FROM_UPF_DRIVER_SUPPLY<iferm>
- <Record dispiay="GroundNet" fyps="GND_NET">
<itern display="NetName" type="NET_NAME">corel pd_ss.ground</item>
<itern display="NetType” type="NET_TYPE">UPFdltem>
</Record>
<ltem display="GroundMethod" type="GND_RESOLVE TYPE'>FROM UPF_DRIVER SUPPLY<ltem:
</Record>
- <Record display="8inkinfo" type="SINK_SUPPLY _INFO">
- <Record display="PowerNet' type="PWR_NET">
<item display="NetName" type="NET_NAME >core2 pd_ss power<item>
<itern display="NetType" type="NET_TYPE">UPF</item>
</Record>
<{tern display="PowerMethod’ type="PWR_RESOLVE_TYPE>FROM_UPF_POWER_DOMAIN</item>
- <Record dispiay="CGroundNet’ type="GND_NET">
<item dispiay="NetName" ype="NET NAME">corel pd_ss.ground<iliem>
<ltem digplay="NetTyps" iype="NET_TYPE'>UPF<item>
</Record>
<ltem display="GroundMethod" ype="GND_RESOLVE_TYPL">FROM_UPF_POWER_DOMAIN<iem
<fRecord>
+ <List display="States’ type="STATE_LIST™>
<{Chjscts>
<Miolation>

FIG. 2
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AUTOMATED ROOT-CAUSE ANALYSIS,
VISUALIZATION, AND DEBUGGING OF
STATIC VERIFICATION RESULTS

BACKGROUND

[0001] Static verification tools, available in EDA systems,
are used by circuit designers to be in compliance with design
specifications of various aspects of circuit designs, such as
low power, asynchronous clocks, functionality, style, and
structure, for example.

[0002] Typical designs may vary in complexity. For
example, the number of digital logic gates may range from
dozens to billions. Similarly, auxiliary data associated with
power formats and clocks that may be required for static
verification may also be very complex.

[0003] Static verification tools typically take a design and
any auxiliary data as input, perform complex analysis, and
produce reports containing many separate messages, includ-
ing information about potential violations of conformance
with design specifications. Each message or violation may
indicate some problem in the design or auxiliary data, or in
their interaction, and may have one or more fields containing
at least one pointer to a part of the design, a part of auxiliary
data, or both.

[0004] A typical verification tool report may contain thou-
sands or millions of messages or violations. To progress
toward a solution, a designer may typically analyze the
report manually, sort or group the reported messages or
violations, and make guesses or inferences to try to deduce
at least one root cause of the violations. Typically, manual
analysis may be aided by techniques such as visual display
of'the design and/or any auxiliary data, tracing of the design,
knowledge of the design and any auxiliary data, knowledge
of the domain, using additional commands provided by the
static verification tools, or any combination of the above
techniques. Typically, domain knowledge refers to the expe-
rience gathered in an area of work, such as static verification
of compliance with low-power specifications, linting, or
clock-domain crossing (CDC), to name a few examples.
This manual process may be slow and error-prone. For
example, unrelated violations may be grouped together,
which may cause added difficulty in identifying root causes
or determining which violations are root-cause violations.

[0005] Root-cause analysis may play a large role in facili-
tating solutions of problems in circuit designs that result in
violations at the verification stage. For at least the reasons
described above, conventional static verification tools tend
to be inefficient, slow, and costly with respect to root-cause
analysis, adding to the overall cost of circuit design and
verification.

SUMMARY

[0006] Some embodiments disclosed herein enable com-
puter technology that may, using machine learning (ML),
automatically group violations or messages in reports pro-
duced by static verification tools. Higher-level violations
may be cloned and enriched automatically based on domain
knowledge, allowing automatic root-cause detection for
violation groups. Although some embodiments described
below refer to low-power specifications, e.g., UPF as
defined below, the same approach may be used for any other
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kind of static verification tools in other embodiments, e.g.,
CDC checkers or linters, to name a few non-limiting
examples.

[0007] These root-causes may be displayed, for example,
in a graphical user interface (GUI) allowing for improved
comprehension and debugging of a given group of viola-
tions. In addition, dominant violation fields causing a vio-
lation group may be identified automatically. These fields
may improve efficiency of debugging significantly for a
given violation group. The fields may be highlighted on
demand using the GUI or an element thereof, such as a
schematic viewer.

[0008] In an embodiment of a system, at least one com-
puter processor may be coupled to a memory and configured
to receive a report comprising a plurality of violations and
a plurality of debug fields and accept a selection of a seed
debug field from among the plurality of debug fields. From
this report and selection, the processor may be further
configured to generate a plurality of clone violations, by
calculating, via an overlay mechanism, an overlay of a given
violation of the plurality of violations and a seed debug field.
[0009] The overlay mechanism may yield a plurality of
possible values for a subset of the plurality of debug fields.
A given clone violation may be created by the processor for
a given combination of the at least two second debug fields,
which may be used to populate a projection matrix. The
projection matrix may be used to produce a mapping of the
plurality of violations and the plurality of clone violations to
corresponding numerical values in the projection matrix and
determine a violation cluster based on the mapping having
a set of corresponding numerical values having one or more
scores satisfying at least one score threshold, via an ML
algorithm. The clustering may further be used to generate
visualizations, in some embodiments.

BRIEF SUMMARY OF THE DRAWINGS

[0010] The accompanying drawings are incorporated
herein and form a part of the specification.

[0011] FIG. 1 depicts an overall workflow for some of the
embodiments disclosed herein.

[0012] FIG. 2 depicts an example of a static verification
violation and corresponding debug fields, according to some
embodiments.

[0013] FIG. 3 depicts an example of creating a clone of a
static verification violation, according to some embodi-
ments.

[0014] FIG. 4 depicts an example of a cluster of static
verification violations, according to some embodiments.

[0015] FIG. 5 depicts a violation visualization in 3-D
space.

[0016] FIG. 6 depicts a violation cluster visualization in
2-D space.

[0017] FIG. 7 depicts an example computer system useful

for implementing various embodiments.

[0018] In the drawings, like reference numbers generally
indicate identical or similar elements. Additionally, gener-
ally, the left-most digit(s) of a reference number identifies
the drawing in which the reference number first appears.

DETAILED DESCRIPTION

[0019] FIG. 1 depicts an overall workflow 100 for some of
the embodiments disclosed herein. The ML algorithm flow
is also shown in FIG. 1.
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1. Selection of Features from Violation Reports Produced by
Static Verification Tools

[0020] A violation may have a set of debug fields. The
debug fields may correspond to the design and/or to the
auxiliary data, such as formatted data in Unified Power
Format (UPF) specified by the IEEE 1801 standard, and may
be useful to understand and debug the violation. A designer
may choose a subset (e.g., one or more) of these debug fields
which may represent a violation appropriately to ML algo-
rithms. This selection of features for a violation tag is driven
by the domain knowledge of static verification tools. FIG. 2
depicts an example XML, representation 200 of a violation
and corresponding debug fields. A low-power violation
report may be generated by a static verification tool, for
example, to identify violations of compliance with a low-
power circuit design specification. This low-power violation
report may be an input for an automated root-cause analysis
tool. An output of the automated root-cause analysis tool
may include a set of clusters of violation instances from the
low-power violation report. The output may then be used by
another tool or module of a static verification tool, for
example, to assist a circuit designer with more advanced
debugging. A violation report as input in XML format may
be parsed to extract the information, although other formats
(JSON, structured or unstructured text, databases, binary
representations, or the like, to name a few non-limiting
examples) may be used additionally or alternatively for the
similar purposes. A typical violation report in XML format
may look like the listing of FIG. 2.

2. Enrichment or Cloning of Violations Based on Domain
Knowledge to Facilitate Root-Cause Analysis

[0021] Enrichment and/or cloning of violations may be
used to perform automated root-cause detection.

[0022] Violations can be of different types. The debug
fields of a certain violation type may differ from those of
another violation type. Debug field types for a certain kind
of violation may be chosen carefully such that a designer
debugging the violation may clearly understand the issue
pointed to by the violation itself.

[0023] For example, a Low Power checker may generate
UPF-based, UPF+Design-based, and Design-based viola-
tions. UPF-based violations do not require any design-based
debug fields. Additionally, adding design-related informa-
tion to a UPF-based violation may lead to an explosion of
tool-generated data and increase the debug time to find out
the actual UPF issue. In other embodiments, similar con-
cepts may be applied to CDC checking and/or linting in
addition to or instead of UPF or low-power specification
compliance.

[0024] This variation in occurrence of debug fields for
different violation types poses the following challenges to
the clustering methods.

[0025] A. Due to the absence of certain fields in certain
violations, one may need to 0-pad missing values or use
some other imputation method for ML. This can lead to poor
cluster quality, such as including spurious results. Therefore,
this is not desirable.

[0026] B. A single violation at the UPF level may lead to
many violations when the UPF is applied to the design.
Similarly, a single violation related to a library cell may
manifest itself as many design-level violations. There is an
inherent cause and effect relationship between a small
number of violations at a higher level (like UPF or library
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cells) with many violations at a lower level. If captured, this
relationship may enable a designer to detect root causes
from groups of violations automatically.
[0027] However, the absence of design related informa-
tion in a UPF based violation makes it impossible to link
UPF based violations to Design/Design+UPF related viola-
tions. Any tool that enables this link can identify a repre-
sentative UPF violation and fixing it may lead to solving
many UPF+Design/Design based violations (i.e., faster con-
vergence of design bugs). This association between hetero-
geneous violations is not possible without adding additional/
adequate information (i.e., additional debug field values).
This justifies why “cloning” may be needed.
[0028] To address the above needs, for some of the
embodiments disclosed herein, under a special mode, the
Static Verification tool may execute the following steps:
[0029] 1) Some debug fields for every violation type

(e.g. UPF-based violation) may be marked as seed

debug fields. Choice of seed debug fields may be based

on domain knowledge of the Static Verification tool.

Usually, a debug field (sometimes more than one) may

be present in every UPF level violation which summa-

rizes the whole violation (for example, Supply, Pin,
etc.). Using this debug field, the area of impact may be
determined for that UPF level violation.

[0030] The mapping between a violation and the seed
debug field may be fixed, and may be predetermined,
such as by a domain expert, in some embodiments.
This mapping may be captured in an XML file and
the automatic process may use that XML to deter-
mine the seed debug field for a UPF level violation.

[0031] 2) The associated violations are then enriched/
cloned by the tool by adding relevant design/auxiliary
data associated to these seed debug fields. Seed debug
field(s) may be a key to find associated design viola-
tions corresponding to a UPF level violation, for
example. The automated method of “cloning” may start
with at least one seed debug field, and with that debug
field(s) may trace the design to find any areas that may
be being impacted by that UPF level violation. These
design specific field values (like UPF, clock) are added
to the original UPF violation to create clone violations
of the original UPF violation.

[0032] This enrichment/cloning step for a violation is
triggered by the presence of one or more chosen seed debug
fields in the violation. A cloned and enriched higher-level
violation (e.g., a violation from the level of UPF or library
cells) may now cluster with lower-level violations like the
ones from the design-level. After cloning, the cloned UPF
level violations may acquire design specific information. On
the other hand, design level violations already possess
design specific information. With this setup, any two viola-
tions which contain a similar debug field value may auto-
matically be grouped together in the same cluster. This may
lead to high-quality clusters that automatically capture the
root-causes for each cluster by bring the cause violation(s)
and effect violation(s) into the same cluster.

[0033] This enriching or cloning process may not be
violation specific. It may be seed debug field (feature)
specific. So, any violation which uses a seed feature may be
automatically cloned by the tool. This may help in removing
human bias from the clustering/root cause analysis process.
Enriching or cloning may automatically add additional
information in the violations based on the seed features
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without bias and may leave the violation association or
grouping tasks to the ML clustering engine.

[0034] It may be appreciated to one of ordinary skill in the
art that a static verification tool report may not include
violations or messages that are cloned by default since this
may cause an explosion of tool-generated data making
debugging by a designer impossible. But cloning (cloning
and enriching may be similar or equivalent, in some embodi-
ments) may allow high-quality analysis by ML algorithms
and automated root-cause identification. Enriching or clon-
ing of data may allow for clustering violations or generating
streamlined error reports of any static tool in EDA. It may
help to connect different violation types or error types by
automatically supplying adequate information for heteroge-
neous data, thereby, enhancing the ML engine’s decision-
making and root-causing ability. In a normal usage of the
tool, enriching or cloning may not be required. Conversely,
these enriching or cloning steps may lead to an explosion of
data that may make human debugging more difficult.
[0035] In the following example, enrichment or cloning in
a Low Power verification tool is described. The tool may
start with a UPF based violation. Suppose the seed debug
field is POLICY. The tool may find possible values of other
pertinent debug fields for the given POLICY. Under a
special mode, in some embodiments, a variable may be
added to the tool. Turning that variable ON may enable this
special mode. For each such possible combination of addi-
tional discovered debug fields, the tool may create a new
clone violation from the original violation. Starting with the
seed debug field, the tool may trace the design to find
additional debug fields. The algorithm to find other debug
fields may be driven by low power knowledge. These
custom algorithms may then be added to the existing static
verification tools so that they may automatically populate
the additional debug field values from a seed debug field
value, even without knowledge of what the additional values
may be. It may be possible to create clone violations by
taking a cross-product of possible debug field values. Here,
the cross-product may also serve as an example of an
overlay mechanism for a design overlay of seed debug fields
of root cause violations.

[0036] FIG. 3 depicts an example 300 of creating a clone
violation, using the example of the ISO_CONTROL_
STATE violation, which is a UPF-based violation. Suppose
the only debug field present in it is POLICY, whereas the
UPF+Design/Design violations have debug fields POLICY,
Policy-association-node (PAN) and LOGICAL_SOURCE
populated for them. PAN and LOGICAL_SOURCE are
design-based fields. Clearly, in its original form, the ISO_
CONTROL_STATE violation will not form clusters with
UPF+Design or design-based violations because it does not
have the required fields. For such design-level violations, the
static verification tool may populated these values

[0037] POLICY may be chosen as a seed debug field, in
some embodiments, by a user (e.g., designer) having domain
knowledge. Starting from POLICY, the tool may automati-
cally deduce all possible PAN debug field values associated
with the POLICY debug field value. For each PAN value, the
tool may deduce the associated LOGICAL_SOURCE debug
field values. For each possible unique combination of PAN
and LOGICAL_SOURCE values, the tool may generate a
clone (unique clone) of the original ISO_CONTROL_
STATE violation. A unique clone means that no two clone
violations have the same combination of additional debug
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fields. For example, debug field A may have possible values
{U, V} and debug field B may have possible values {Y, Z}.
In some embodiments, four clone violations may be created
with value pairs {U, Y}; {U, Z}; {V, Y}; and {V, Z}.
[0038] Addition of design-related information (PAN and
LOGICAL_SOURCE in this example) to the clones of the
original ISO_CONTROL_STATE violation may enable the
clones to cluster with violations from UPF+Design and
Design stages, as they have common feature/debug field
values populated for them.

3. Modeling of Data for ML,

[0039] Public-domain literature on ML proposes several
techniques to map text strings into integers or real numbers.
Some of the embodiments disclosed herein may use a
variant of these techniques to map violation fields into real
numbers, further described below. Once that is done, the
violations may be plotted in a K-dimensional Euclidean
space where there are K unique field types and the ML
algorithms may be applied.

[0040] This step describes how the categorical debug field
values (like VDD, VSS etc.) may be mapped to numeric
values, by honoring their inter-relation getting reflected
from the violation summary report, so that these become
consumable by various ML algorithms.

[0041] After violation report parsing is performed, debug
field values that use the same type of values and together
may potentially contribute towards the root cause of a
violation may be bucketized together. For a given violation
type (e.g., ISO_STRATEGY_MISSING), a subset of debug
fields may be selected to be used as “features” for ML.
Selection of features for a certain type of violation may be
driven by domain knowledge of static verification.

[0042] For example, for Low Power the categories may
appear as shown below in Table 1.

TABLE 1

Category Name Debug Fields in that Category

LogicSourceSink LogicSource
LogicSink
SourceSupplyPower
SourceSupplyGround
SinkSupplyPower

SinkSupplyGround

SourceSinkSupply

[0043] Next, a lookup table may be created containing
possible unique values those debug fields can assume. The
lookup table may serve as an example of a projection matrix
with violations mapped to debug fields, in some embodi-
ments. Other embodiments of the projection matrix may
serve the same purposes without departing from the scope of
this disclosure.

[0044] Inanembodiment, in the violation example of FIG.
2, Sourcelnfo/PowerNet/NetName and SinkInfo/PowerNet/
NetName debug fields may use the same type of value,
specifically, a signal name such as top_pd_ss.power, to name
one example. A typical lookup table may appear as shown in
the following Table 2:

TABLE 2
top__pd__ss.power 0
corel_pd_ ss.power 2
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TABLE 2-continued

core2_ pd_ ss.power 3
top__pd__ss.ground 1

[0045] There may be multiple such lookup tables similar
to Table 2 generated for a given violation report.

[0046] In some embodiments, results of static verification
may be parsed and fed into an algorithm designed to
populate a KxN table, using a counting method, where N is
the number of violations and K is the number of unique field
values collected in the previous step. For each unique field
value, the algorithm may fill in an integer J in the table for
a given violation where the value occurs I times in the
violation.

[0047] For each unique field value, the table gives its
position in an N-dimensional Euclidean space.

[0048] For a violation report with three violations we may
visualize the coordinates of the debug field values in a 3-D
space (for three violations here), as shown by the coordinate
system 500 in FIG. 5.

[0049] The 4x3 table for this diagram may appear as
shown in the following Table 3:

TABLE 3
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[0052] For each bucket of debug field values, one such
distance matrix may be present.

[0053] A distance matrix is an indicator of spatial prox-
imity of two debug field values. Small distances may indi-
cate two debug field values are highly correlated. Next, the
debug field values may be mapped into real numbers such
that their mutual distance relationship defined in the previ-
ous table is honored as closely as possible. An ML method
called Multi-Dimensional Scaling (MDS) may be used to
perform this mapping.

[0054] After MDS is performed, a numeric value corre-
sponding to each debug field value is produced, which not
only reflects the inter-debug field value distance but also
gives us a good statistical modelling of the entire violation
report. Applying MDS on the above distance matrix may
present the following examples of Table 6:

TABLE 6

Debug Field Value Name Encoded Value

top__pd_ss.power 1.23
top__pd__ss.ground 3.67
core2_ pd__ss.power 2.7
corel__pd_ ss.power 3

ISO_S ... MISSINGO ISO_I...MISSING2 ISO_S...MISSING1

top__pd__ss.power
top__pd__ss.ground
core2_ pd_ ss.power
corel__pd_ ss.power

S
—_—— o

_ 0 = O

[0050] Having the same value along an axis signifies two
debug field values are close to each other with respect to that
violation. However, 0 value along a particular axis may
indicate that two debug field values may be unrelated, even
if they are geometrically close. To accommodate this idea in
the data model, a new axis may be added called zero-count
axis. Debug field values along this axis may be the total
number of axes along which its value is zero, normalized by
some factor. A resulting enhanced projection table may
appear as shown in the following Table 4:

TABLE 4

4. Cluster Generation and Grading

[0055] Violation data generated as described above may
be processed by three state-of-the-art ML algorithms:
k-means, mean shift, and balanced iterative reducing and
clustering using hierarchies (BIRCH) to generate clusters of
violations. Each cluster itself may be a violation of type
CLUSTER_LP_VIOLATION, in some embodiments.

[0056] Once the modeling of categorical debug field val-
ues to numeric values is completed, Feature Selection may

ISO_S ... MISSINGO ISO_I...MISSING2 ISO_S...MISSING1

top__pd__ss.power
top__pd__ss.ground
core2__pd__ss.power
corel __pd_ ss.power

S,
—_———o

Zero-Count
0 1
1 2.298
0 2.298
1 1

[0051] Next, the Euclidean distance may be computed
between each pair of unique debug field values to create a
new distance matrix, as shown in the following Table 5:

TABLE 5

next be performed, where features may be acquired, such as
direct features, or generated features (also called derived
features) which may create a signature for each violation

top__pd_ss.power top_pd_ss.ground core2_pd_ss.power corel_pd_ss.power

top_pd__ss.power 0 1.919 1.919
top__pd__ss.ground 1.919 0 1.414
core2__pd__ss.power 1.919 1.414 0

corel__pd_ ss.power 1.732 1.414 1.638

1.732
1.414
1.638
0
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instance. In an embodiment, direct features may be debug
fields, and generated features may be new fields which may
sum up the information of multiple debug fields. In a direct
feature, a debug field of a violation may be directly used as
a feature, whereas in a derived or generated feature, multiple
debug fields may be used to create a single feature, for
example. For direct features, the encoded value of that
debug field value may be directly used, and for generated or
derived features, the value may be created from the encoded
debug field values.

[0057] The above-mentioned violations of the ISO family
may be characterized by the following features: Sourcelnfo/
PowerNet, Sourcelnfo/GroundNet, SinkInfo/PowerNet,
SinkInfo/PowerNet, StrategyNodePresent, SegmentSource-
Domain, or SegmentSinkDomain. A feature value may be
the encoded value of the corresponding debug field value in
the violation report. In this manner, an NxM feature matrix
may be attained (where N is the number of violations and M
is feature size) as shown in the following Table 7:

TABLE 7
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ponents to get the intelligent debug aid from the grouping
information with the group of violations. This grouping
information may be parsed by any tool capable of parsing
the violations however they are formatted, e.g., XML,
JSON, etc.

5. Determination and Display of Dominant Debug Fields for
Each Violation Cluster

[0062] Each cluster is processed to find out the violation
fields that are primarily responsible for the creation of the
given cluster. Intuitively, these are fields that may bind the
violations of a given cluster together. The circuit designer
needs to focus on these fields to debug the violations in the
given cluster.

[0063] Given a violation cluster with K violations, sup-
pose a field Foo occurs in all violations. That means in this
cluster, Foo may have zero variance and is a dominant field.
Suppose another field Foo' occurs only in a small % of the
K violations. That means Foo' may not be a dominant field.

Strategy  Seg- Seg-
Node  Source Sink

SrcPwr  SreGnd  SinkPwr  SinkGnd  Present Domain Domain
ISO_STRATEGY__MISSINGO 2.34 2.4 1.89 2.4 1 6.68 4.7
ISO_STRATEGY__MISSING1 2.34 2.4 1.89 2.4 1 6.68 4.7
ISO__INST_MISSING2 3.21 2.4 1.89 2.4 0 7.02 4.7
[0058] Once the NxM matrix is prepared, an automatic [0064] For each cluster, a set of fields with lowest variance

computer process may feed it to an appropriate clustering
algorithm, such as one of the ML algorithms described
below, to achieve a desired output. A given algorithm may
be chosen based on its suitability for a given dataset, for
example. Several clustering algorithms are available to
cluster data points. Each of these algorithms works best only
on certain types of datasets. Prior knowledge about datasets
may facilitate a designer’s task of deciding what algorithm
to choose. But here, there is no prior knowledge about the
data pattern. To solve this, a method is described in the
following sections. A designer should have a good prior
knowledge about the distribution of data, which is difficult
to predict in most of the ML problems.

[0059] To solve that problem, instead of relying on a fixed
clustering algorithm, a designer may consider a set of
clustering algorithms, which perform well on most of the
distributions in combination. In an embodiment, at least one
of three algorithms may be chosen for this task, to name a
few non-limiting examples: k-means, mean shift, or BIRCH,
as mentioned above. In this manner, the data matrix may be
fed to any or all of the selected clustering algorithms in the
set in parallel.

[0060] The final output may be determined by grading the
clusters on two essential metrics. The first is Silhouette
Index, a scoring system which grades the cluster based on
structural cohesion. The second is quality score, a domain-
knowledge-based metric defined to measure how well the
output fits the objective. A combination of these scores may
define the final score of a clustering technique. The output
with the highest combined score may be chosen and the
result presented to the designer.

[0061] Once the cluster-set is refined by applying the
above-mentioned process flow, the group of violations may
be channelized (passed) to various static verification com-

will be chosen and presented to the user as dominant debug
fields for the given cluster. The user may then focus on these
fields to debug the root cause of the violations in the given
cluster. The dominant fields of a cluster will be highlighted
in Verdi Schematic Viewer on demand.

6. Determination & Display of Root-Causes for Each
Violation Cluster

[0065] Referring to Section 2 above (describing ‘enrich-
ment or cloning of violations based on domain knowledge to
facilitate root-cause analysis’), a step was described to
generate cloned or enriched violations that may create
high-quality clusters and automatically detect root-causes
for violation clusters. In another embodiment, as described
below, it may be possible, additionally or alternatively, to
detect the potential root-causes for a given cluster automati-
cally.

[0066] FIG. 4 depicts a cluster violation 400. Each field of
a cluster violation is an original violation produced by a
static verification tool.

[0067] InFIG.4,LS_STRATEGY_REDUND may repre-
sent original violations from a UPF+DESIGN level. Viola-
tions DEBUG_PDLSPOL_REDUND, DEBUG_SUPPLY_
ON and DEBUG_SUPPLY_UNUSED may represent
original violations from a UPF level and thus may be the
highest-level violations in this cluster. Domain knowledge
may be used to determine which violations are highest-level
violations, in some embodiments. Stages of each violation
may already be defined in our static verification tools.
Usually, violations of UPF stage may be chosen as high-
level violations. A violation that cannot be considered an
effect of some other cause violation is generally considered
to be a highest-level violation.
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[0068] Each cluster is processed by means of an algorithm
to determine their highest-level violations. These highest-
level violations may be the potential root-causes for the
cluster.

7. Visualization

[0069] Often multiple violations may be mapped to a
common root cause. In this manner, a specific design bug
may eradicate several violations from the violation report. In
an embodiment, details of data modeling are provided for
VCLP violations and application of unsupervised ML to
group the violations into clusters where each cluster is
highly likely to have a common root cause.

[0070] Each violation may be characterized by its debug
fields (or ‘features’). Given a static verification-generated
violation report, the categorical debug field values may be
mapped to numeric values so that each violation may be
represented as a point in Euclidean space, where a distance
between two violations defines their affinity with respect to
root cause. More specifically, affinity may generally be
defined as having an inverse correlation with distance—
thus, when modeling debug field values in Euclidean space
according to the techniques described above, a smaller
Euclidean distance between two given violations may sig-
nify a greater likelihood of those two violations belonging to
the same cluster, and in turn may signify a higher probability
of a shared root cause. Clustering algorithms may be used to
group violations in such a way that, in a same cluster,
violations may have a common root cause.

[0071] Once the violation report is passed through the ML
framework described above, output clusters of violations
may be mapped and visualized in 2D space 600 as shown in
FIG. 6.

Example Computer Systems

[0072] Various embodiments may be implemented, for
example, using one or more well-known computer systems,
such as computer system 700 shown in FIG. 7. One or more
computer systems 700 may be used, for example, to imple-
ment any of the embodiments discussed herein, as well as
combinations and sub-combinations thereof.

[0073] Computer system 700 may include one or more
processors (also called central processing units, or CPUs),
such as a processor 704. the processor may be, include, or
be implemented using any of a microprocessor, graphics
processing unit (GPU), or digital signal processor (DSP), or
various electronic processing equivalents, such as an appli-
cation specific integrated circuit (ASIC) or programmable
logic device (PLD), such as a field programmable gate array
(FPGA), among other embodiments. Processor 704 may be
connected to a bus or communication infrastructure 706.
[0074] Computer system 700 may also include user input/
output device(s) 703, such as monitors, keyboards, pointing
devices, etc., which may communicate with communication
infrastructure 706 through user input/output interface(s)
702.

[0075] One or more of processors 704 may be a graphics
processing unit (GPU). In an embodiment, a GPU may be a
processor that is a specialized electronic circuit designed to
process mathematically intensive applications. The GPU
may have a parallel structure that is efficient for parallel
processing of large blocks of data, such as mathematically
intensive data common to computer graphics applications,
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images, videos, vector processing, array processing, etc., as
well as cryptography (including brute-force cracking), gen-
erating cryptographic hashes or hash sequences, solving
partial hash-inversion problems, and/or producing results of
other proof-of-work computations for some blockchain-
based applications, for example.

[0076] Additionally, one or more of processors 704 may
include a coprocessor or other implementation of logic for
accelerating cryptographic calculations or other specialized
mathematical functions, including hardware-accelerated
cryptographic coprocessors. Such accelerated processors
may further include instruction set(s) for acceleration using
coprocessors and/or other logic to facilitate such accelera-
tion.

[0077] Computer system 700 may also include a main or
primary memory 708, such as random access memory
(RAM). Main memory 708 may include one or more levels
of cache. Main memory 708 may have stored therein control
logic (i.e., computer software) and/or data.

[0078] Computer system 700 may also include one or
more secondary storage devices or secondary memory 710.
Secondary memory 710 may include, for example, a main
storage drive 712 and/or a removable storage device or drive
714. Main storage drive 712 may be a hard disk drive or
solid-state drive, for example. Removable storage drive 714
may be a floppy disk drive, a magnetic tape drive, a compact
disk drive, an optical storage device, tape backup device,
and/or any other storage device/drive.

[0079] Removable storage drive 714 may interact with a
removable storage unit 718. Removable storage unit 718
may include a computer usable or readable storage device
having stored thereon computer software (control logic)
and/or data. Removable storage unit 718 may be a floppy
disk, magnetic tape, compact disk, DVD, optical storage
disk, and/any other computer data storage device. Remov-
able storage drive 714 may read from and/or write to
removable storage unit 718.

[0080] Secondary memory 710 may include other means,
devices, components, instrumentalities or other approaches
for allowing computer programs and/or other instructions
and/or data to be accessed by computer system 700. Such
means, devices, components, instrumentalities or other
approaches may include, for example, a removable storage
unit 722 and an interface 720. Examples of the removable
storage unit 722 and the interface 720 may include a
program cartridge and cartridge interface (such as that found
in video game devices), a removable memory chip (such as
an EPROM or PROM) and associated socket, a memory
stick and USB port, a memory card and associated memory
card slot, and/or any other removable storage unit and
associated interface.

[0081] Computer system 700 may further include a com-
munication or network interface 724. Communication inter-
face 724 may enable computer system 700 to communicate
and interact with any combination of external devices,
external networks, external entities, etc. (individually and
collectively referenced by reference number 728). For
example, communication interface 724 may allow computer
system 700 to communicate with external or remote devices
728 over communication path 726, which may be wired
and/or wireless (or a combination thereof), and which may
include any combination of LANs, WANS, the Internet, etc.
Control logic and/or data may be transmitted to and from
computer system 700 via communication path 726.
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[0082] Computer system 700 may also be any of a per-
sonal digital assistant (PDA), desktop workstation, laptop or
notebook computer, netbook, tablet, smart phone, smart
watch or other wearable, appliance, part of the Internet of
Things (IoT), and/or embedded system, to name a few
non-limiting examples, or any combination thereof.

[0083] Computer system 700 may be a client or server,
accessing or hosting any applications and/or data through
any delivery paradigm, including but not limited to remote
or distributed cloud computing solutions; local or on-prem-
ises software (e.g., “on-premise” cloud-based solutions); “as
a service” models (e.g., content as a service (CaaS), digital
content as a service (DCaaS), software as a service (SaaS),
managed software as a service (MSaaS), platform as a
service (PaaS), desktop as a service (DaaS), framework as a
service (FaaS), backend as a service (BaaS), mobile backend
as a service (MBaaS), infrastructure as a service (laaS),
database as a service (DBaaS), etc.); and/or a hybrid model
including any combination of the foregoing examples or
other services or delivery paradigms.

[0084] Any applicable data structures, file formats, and
schemas may be derived from standards including but not
limited to JavaScript Object Notation (JSON), Extensible
Markup Language (XML), Yet Another Markup Language
(YAML), Extensible Hypertext Markup Language
(XHTML), Wireless Markup Language (WML), Mes-
sagePack, XML User Interface Language (XUL), or any
other functionally similar representations alone or in com-
bination. Alternatively, proprietary data structures, formats
or schemas may be used, either exclusively or in combina-
tion with known or open standards.

[0085] Any pertinent data, files, and/or databases may be
stored, retrieved, accessed, and/or transmitted in human-
readable formats such as numeric, textual, graphic, or mul-
timedia formats, further including various types of markup
language, among other possible formats. Alternatively or in
combination with the above formats, the data, files, and/or
databases may be stored, retrieved, accessed, and/or trans-
mitted in binary, encoded, compressed, and/or encrypted
formats, or any other machine-readable formats.

[0086] Interfacing or interconnection among various sys-
tems and layers may employ any number of mechanisms,
such as any number of protocols, programmatic frameworks,
floorplans, or application programming interfaces (API),
including but not limited to Document Object Model
(DOM), Discovery Service (DS), NSUserDefaults, Web
Services Description Language (WSDL), Message
Exchange Pattern (MEP), Web Distributed Data Exchange
(WDDX), Web Hypertext Application Technology Working
Group (WHATWG) HTMLS Web Messaging, Representa-
tional State Transfer (REST or RESTful web services),
Extensible User Interface Protocol (XUP), Simple Object
Access Protocol (SOAP), XML Schema Definition (XSD),
XML Remote Procedure Call (XML-RPC), or any other
mechanisms, open or proprietary, that may achieve similar
functionality and results.

[0087] Such interfacing or interconnection may also make
use of uniform resource identifiers (URI), which may further
include uniform resource locators (URL) or uniform
resource names (URN). Other forms of uniform and/or
unique identifiers, locators, or names may be used, either
exclusively or in combination with forms such as those set
forth above.
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[0088] Any of the above protocols or APIs may interface
with or be implemented in any programming language,
procedural, functional, or object-oriented, and may be com-
piled or interpreted. Non-limiting examples include C, C++,
C#, Objective-C, Java, Swift, Go, Ruby, Perl, Python,
JavaScript, WebAssembly, or virtually any other language,
with any other libraries or schemas, in any kind of frame-
work, runtime environment, virtual machine, interpreter,
stack, engine, or similar mechanism, including but not
limited to Node.js, V8, Knockout, jQuery, Dojo, Dijit,
OpenUI5, Angular]S, Express.js, Backbone.js, Ember.js,
DHTMLX, Vue, React, Electron, and so on, among many
other non-limiting examples.

[0089] Computer system 700 may include hardware
design tools, including but not limited to electronic design
automation (EDA) and electronic computer-aided design
(ECAD), which may further include capabilities of high-
level synthesis, logic synthesis, simulation (physical, logi-
cal, and/or behavioral), analysis, and/or verification (physi-
cal, functional, and/or formal, including clock-domain
crossing), among other related functionalities useful for
circuit design or development of hardware, electronic or
otherwise. Included hardware design tools may further
include compilers, assemblers, and/or interpreters for hard-
ware design languages including but not limited to VHDL,
Verilog, SystemC, SpecC, SystemVerilog, and/or any high-
level software language that may be translated or compiled
to register-transfer level (RTL) hardware description or
netlist, for example. Any of the above languages or equiva-
lents may be used to specify hardware elements for imple-
menting technology that may leverage the enhanced tech-
niques described herein.

[0090] As used herein, the term “module” may signify a
tangible data- or information-processing device, that may be
limited in size or complexity. Additionally, a module may
refer to at least one method or procedure to transform data
or information, such as in a computer program. A module
may also refer to a network of digital logic devices, such as
gates, latches, flip-flops, and/or registers, for example, in
which interconnections among logic devices may give struc-
ture to the network.

[0091] Methods or procedures forming a module, speci-
fied in a software-programming or hardware-description
language, may be used to generate a specification for a
network of digital logic devices to process data or informa-
tion with repeatable results obtained from such methods or
procedures. As used herein, the term “algorithm” may
signify a sequence or set of operations or instructions that a
module may use to transform data and information to
achieve a result, which may be repeatable. A module may
include one or more algorithm.

[0092] A module may be permanently configured (e.g.,
hardwired to form hardware), temporarily configured (e.g.,
programmed with software), or a combination of the two
configurations (for example, a “structured ASIC” or other
programmable logic device). Permanently configured mod-
ules, such as arithmetic logic units (ALUs), programmable
logic arrays (PLAs), or read-only memories (ROMs), may
be configured during manufacturing. Temporarily config-
ured modules may be manufactured, for example, using field
programmable gate arrays (FPGAs), random access memo-
ries (RAMs), or microprocessors, for example. A module
may be configured to process data and information, typically
using one or more sequence transformations (also referred to
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as operations) applied to the data or information, and/or
transforming data or information by using, e.g., input
address of memory that may stores output data or informa-
tion, to perform aspects of the enhanced techniques dis-
closed herein.

[0093] Temporarily configured modules need not be con-
figured at any one time. For example, a processor compris-
ing one or more modules may have the one or more modules
configured separately at different times. The processor may
comprise a set of one or more modules at one particular time,
and may comprise a different set of one or more modules at
a different time. The decision to manufacture or implement
a module in a permanently configured form, a temporarily
configured form, or any combination of the two forms, may
be driven by cost, time considerations, engineering con-
straints and/or specific design goals. The substance of a
module’s processing is independent of the form in which it
may be manufactured or implemented.

[0094] In some embodiments, a tangible, non-transitory
apparatus or article of manufacture comprising a tangible,
non-transitory computer useable or readable medium having
control logic (software) stored thereon may also be referred
to herein as a computer program product or program storage
device. This includes, but is not limited to, computer system
700, main memory 708, secondary memory 710, and remov-
able storage units 718 and 722, as well as tangible articles
of manufacture embodying any combination of the forego-
ing. Such control logic, when executed by one or more data
processing devices (such as computer system 700), may
cause such data processing devices to operate as described
herein.

CONCLUSION

[0095] Based on the teachings contained in this disclosure,
it may be apparent to persons skilled in the relevant art(s)
how to make and use embodiments of this disclosure using
data processing devices, computer systems and/or computer
architectures other than that shown in FIG. 7. In particular,
embodiments may operate with software, hardware, and/or
operating system implementations other than those
described herein.

[0096] It is to be appreciated that the Detailed Description
section, and not any other section, is intended to be used to
interpret the claims. Other sections may set forth one or
more but not all exemplary embodiments as contemplated
by the inventor(s), and thus, are not intended to limit this
disclosure or the appended claims in any way.

[0097] While this disclosure describes exemplary embodi-
ments for exemplary fields and applications, it should be
understood that the disclosure is not limited thereto. Other
embodiments and modifications thereto are possible, and are
within the scope and spirit of this disclosure. For example,
and without limiting the generality of this paragraph,
embodiments are not limited to the software, hardware,
firmware, and/or entities illustrated in the figures and/or
described herein. Further, embodiments (whether or not
explicitly described herein) have significant utility to fields
and applications beyond the examples described herein.
[0098] Embodiments have been described herein with the
aid of functional building blocks illustrating the implemen-
tation of specified functions and relationships thereof. The
boundaries of these functional building blocks have been
arbitrarily defined herein for the convenience of the descrip-
tion. Alternate boundaries may be defined as long as the
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specified functions and relationships (or equivalents thereof)
are appropriately performed. Also, alternative embodiments
may perform functional blocks, steps, operations, methods,
etc. using orderings different from those described herein.
[0099] References herein to “one embodiment,” “an
embodiment,” “an example embodiment,” “some embodi-
ments,” or similar phrases, indicate that the embodiment
described may include a particular feature, structure, or
characteristic, but every embodiment may not necessarily
include the particular feature, structure, or characteristic.
Moreover, such phrases are not necessarily referring to the
same embodiment.

[0100] Further, when a particular feature, structure, or
characteristic is described in connection with an embodi-
ment, it would be within the knowledge of persons skilled in
the relevant art(s) to incorporate such feature, structure, or
characteristic into other embodiments whether or not explic-
itly mentioned or described herein. Additionally, some
embodiments may be described using the expression
“coupled” and “connected” along with their derivatives.
These terms are not necessarily intended as synonyms for
each other. For example, some embodiments may be
described using the terms “connected” and/or “coupled” to
indicate that two or more elements are in direct physical or
electrical contact with each other. The term “coupled,”
however, may also mean that two or more elements are not
in direct contact with each other, but yet still co-operate or
interact with each other.

[0101] The breadth and scope of this disclosure should not
be limited by any of the above-described exemplary embodi-
ments, but should be defined only in accordance with the
following claims and their equivalents.

2 <

We claim:
1. A system for performing automated root-cause analysis,
comprising:
memory and at least one computer processor communi-
catively coupled with the memory and configured to:
receive a report comprising a plurality of violations and
a plurality of debug fields;
accept a selection of a seed debug field from among the
plurality of debug fields;
generate a plurality of clone violations, wherein to
generate the plurality of clone violations, the at least
one computer processor is further configured to:
calculate, via an overlay mechanism, an overlay of a
given violation of the plurality of violations and
the seed debug field, wherein the overlay mecha-
nism yields a plurality of possible values for a
subset of the plurality of debug fields; and
create a given clone violation for a given combina-
tion of the at least two second debug fields;
populate a projection matrix;
produce a mapping of the plurality of violations and the
plurality of clone violations to corresponding
numerical values in the projection matrix; and
determine a violation cluster based on the mapping
having a set of corresponding numerical values hav-
ing one or more scores satisfying at least one score
threshold, via a machine-learning algorithm.
2. The system of claim 1, wherein the one or more scores
comprise a structural cohesion index.
3. The system of claim 1, wherein the one or more scores
comprise a quality score.
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4. The system of claim 1, wherein the machine-learning
algorithm comprises a mean-shift algorithm, k-means clus-
tering, balanced iterative reducing and clustering using
hierarchies (BIRCH), or a combination thereof.

5. The system of claim 1, wherein the plurality of viola-
tions comprises a Unified Power Format (UPF) violation.

6. The system of claim 1, wherein the report is generated
by a debugging tool.

7. The system of claim 6, wherein the debugging tool
comprises an electronic design automation (EDA) tool, a
circuit simulator, a clock-domain crossing (CDC) checker, a
static verification tool, or a combination thereof.

8. A method of automated root-cause analysis, compris-
ing:

receiving, by at least one computer processor, a report

comprising a plurality of violations and a plurality of
debug fields;

accepting, by the at least one computer processor, a

selection of a seed debug field from among the plurality
of debug fields;

generating, by the at least one computer processor, a

plurality of clone violations, wherein the generating

comprises:

calculating, by the at least one computer processor, via
an overlay mechanism, an overlay of a given viola-
tion of the plurality of violations and the seed debug
field, wherein the overlay mechanism yields a plu-
rality of possible values for a subset of the plurality
of debug fields; and

creating, by the at least one computer processor, a given
clone violation for a given combination of the at least
two second debug fields;

populating, by the at least one computer processor, a

projection matrix;

producing, by the at least one computer processor, a

mapping of the plurality of violations and the plurality
of clone violations to corresponding numerical values
in the projection matrix; and

determining, by the at least one computer processor, a

violation cluster based on the mapping having a set of
corresponding numerical values having one or more
scores satisfying at least one score threshold, via a
machine-learning algorithm.

9. The method of claim 8, wherein the one or more scores
comprise a structural cohesion index.

10. The method of claim 8, wherein the one or more
scores comprise a quality score.

11. The method of claim 8, wherein the machine-learning
algorithm comprises a mean-shift algorithm, k-means clus-
tering, balanced iterative reducing and clustering using
hierarchies (BIRCH), or a combination thereof.

12. The method of claim 8, wherein the plurality of
violations comprises a Unified Power Format (UPF) viola-
tion.

13. The method of claim 8, wherein the report is generated
by a debugging tool.
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14. The method of claim 13, wherein the debugging tool
comprises an electronic design automation (EDA) tool, a
circuit simulator, a clock-domain crossing (CDC) checker, a
static verification tool, or a combination thereof.

15. A non-transitory computer-readable storage device
having instructions stored thereon, wherein the instructions,
when executed, cause at least one computer processor to
perform operations for automated root-cause analysis, the
operations comprising:

receiving a report comprising a plurality of violations and

a plurality of debug fields;

accepting a selection of a seed debug field from among the
plurality of debug fields;

generating a plurality of clone violations, wherein the
generating comprises:

calculating via an overlay mechanism, an overlay of a
given violation of the plurality of violations and the
seed debug field, wherein the overlay mechanism
yields a plurality of possible values for a subset of
the plurality of debug fields; and

creating a given clone violation for a given combina-
tion of the at least two second debug fields;

populating a projection matrix;
producing a mapping of the plurality of violations and the

plurality of clone violations to corresponding numeri-
cal values in the projection matrix; and

determining a violation cluster based on the mapping
having a set of corresponding numerical values having
one or more scores satisfying at least one score thresh-
old, via a machine-learning algorithm.

16. The non-transitory computer-readable storage device
of claim 15, wherein the one or more scores comprise a
structural cohesion index.

17. The non-transitory computer-readable storage device
of claim 15, wherein the one or more scores comprise a
quality score.

18. The non-transitory computer-readable storage device
of claim 15, wherein the machine-learning algorithm com-
prises a mean-shift algorithm, k-means clustering, balanced
iterative reducing and clustering using hierarchies (BIRCH),
or a combination thereof.

19. The non-transitory computer-readable storage device
of claim 15, wherein the plurality of violations comprises a
Unified Power Format (UPF) violation.

20. The non-transitory computer-readable storage device
of claim 15, wherein the report is generated by a debugging
tool, and wherein the debugging tool comprises an elec-
tronic design automation (EDA) tool, a circuit simulator, a
clock-domain crossing (CDC) checker, a static verification
tool, or a combination thereof.
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