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ABSTRACT

An apparatus for generating a generalized linear model
structure definition by generating a gradient boosted tree
model and separating each decision tree into a plurality of
indicator variables upon which a dependent variable of the
generalized linear model depends.
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Each leaf is dafined by the splits, not the entire tree,
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The rest of the ree can be discarded without "harming" Ly,
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Each leaf definition can define an indicator variable,
502
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FIG. 5H-2

(Non-trivial) Trees are seldom dentical, so we can seldom combine them.
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TRAINING GRADIENT BOOSTED DECISION
TREES WITH PROGRESSIVE MAXIMUM
DEPTH FOR PARSIMONY AND
INTERPRETABILITY

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] The present application claims the benefit of pri-
ority to U.S. Provisional Patent Application Ser. No. 62/615,
691, titled “TRAINING GRADIENT BOOSTED DECI-
SION TREES WITH PROGRESSIVE MAXIMUM
DEPTH FOR PARSIMONY AND INTERPRETABILITY,”
filed Jan. 10, 2018, the contents of which are incorporated
herein by reference in their entirety.

BACKGROUND

[0002] A Generalized Linear Model (GLM) is a statistical
model which relaxes or removes several of the assumptions
required by a least-squares linear regression. The flexibility
thus gained makes the Generalized Linear Model (GLM)
suitable for application to a larger set of data types and
prediction problems. As a statistical model, a Generalized
Linear Model (GLM) favors analytical rigor and clarity of
interpretation over the exhaustive maximization of predic-
tive accuracy. A skilled practitioner must specify which
variables will contribute to the model’s prediction, and the
form of their relationship with the quantity to be predicted.
In addition to being very labor intensive, this manual speci-
fication process tends to overlook some variables and com-
binations of variables which could improve the predictive
accuracy of the Generalized Linear Model (GLM).

[0003] Gradient boosting is a machine learning technique
for regression and classification problems which produces a
prediction model in the form of an ensemble of weak
prediction models, typically decision trees. It builds the
model in a stage-wise fashion like other boosting methods
do, and it generalizes them by allowing optimization of an
arbitrary differentiable loss function. For example, gradient
boosting combines weak learners into a single strong learner
in an iterative fashion. Gradient boosting tends to aggres-
sively exploit any opportunity to improve predictive accu-
racy, to the detriment of clarity of interpretation (or, indeed,
the feasibility of any interpretation whatsoever).

[0004] Applicant has identified a number of deficiencies
and problems associated with existing techniques involving
generalized linear models (GLMs) and gradient boosting.
Through applied effort, ingenuity, and innovation, many of
these identified problems have been solved by developing
solutions that are included in embodiments of the present
disclosure, many examples of which are described in detail
herein.

SUMMARY

[0005] The present disclosure is directed to methods and
apparatuses for generating a generalized linear model defi-
nition structure, the method comprising partitioning decision
trees of a gradient boosted tree model into a plurality of
indicator variables.

[0006] An insurance price must estimate the expected
number and dollar cost of claims which will be paid out
under an insurance contract. This component of an insurance
price is also known as “loss cost”. Expected loss costs are
customarily calculated according to the following formula;

Jul. 11, 2019

R (9]
E[Loss Costs] — (Base Rate)- 1_[ Relativiry,
i=1

[0007] The “base rate” is the expected loss cost for an
arbitrarily selected class of risk. The expected losses are
increased or decreased by some percent by the application of
one or more price “relativities,” which are multiplicative
factors that indicate risk relative to the selected base class.
For example, in auto insurance, it is common to estimate risk
based on information about the driver of the insured vehicle,
such as the driver’s age, and the number of claims they have
incurred in prior policy periods. In this simple example,
expected loss costs for a young (i.e. inexperienced, and
therefore riskier) driver with one or more prior claims (and
therefore a higher demonstrated propensity to incur claim
costs) would be calculated as follows;

E[Loss Costs]=(Base Rate)-Relativity, e
AgeRelativity p,, crammslol LOss Costs]-$100-1.
5-1.2-$180 2)

[0008] Pricing relativities can be estimated using GLMs,
interpreting the main and interaction effects in the GLMs to
produce the indicated (estimated) relativities. Such a GLM
might have a mathematical form as follows:

E[Loss Costs]=e(Bo+Psrare ¥srare™ I?)age Faget I?)prior

claims Xppiop claims) ®

[0009] Control variables, such as state (e.g., Alaska, New
York, etc.), are included in these models, but the estimated
relativity for state will not but used in the generation of a
price. Instead, differences in risk between states, or over
time (and projected in the future) are calculated by other
means during the determination of the base rate. As a result
of the different treatment of the effects estimated in a GLM
for state (and any other control variables), it is critical to the
estimation of insurance price relativities to be able to
inspect, interpret, and arbitrarily select main and interaction
effects from the GLM. If the effect of state is not identified
and removed from the relativities estimated by the GLM, it
will be “double counted,” as the effect is reflected both in the
base rate and the relativities.

[0010] In a machine learning model, it is not generally
possible to identify, inspect, and extract the effects of
individual predictors. This prevents identification and
removal of control variable effects from the model, thus
ensuring such effects will be double counted in the calcu-
lation of expected loss costs. This complication renders
machine learning models unusable for insurance pricing,
denying the predictive modelers access to the increased
accuracy such models offer.

[0011] The insurance industry is highly regulated, and the
prices insurers charge for coverage must be approved by
regulators prior to use. Regulators will demand explanations
and justification for any proposed price relativities, which
will require transparent and interpretable models. Regula-
tions may also prohibit the use of some information for
pricing, or dictate limitations in the way permitted informa-
tion may influence a price. Demonstration of compliance
with such regulations also requires transparent and interpre-
table models.

[0012] The inventors have therefore determined that the
computing resources dedicated to such demonstration of
compliance with such regulations and the creation of trans-
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parent and interpretable machine learning models are easily
exhausted due to the aforementioned limitations. The inven-
tors have determined that the ability to programmatically
generate a generalized linear model structure definition by
partitioning decision trees of a gradient boosted tree model
into a plurality of indicator variables reduces processing
time and required resources and provides interpretability and
accuracy over existing methods.

[0013] Embodiments of the present disclosure are directed
to an apparatus for generating a generalized linear model
structure definition.

[0014] In embodiments, the apparatus comprises at least
one processor and at least one non-transitory computer
readable medium storing instructions that, when executed by
the at least one processor, cause the apparatus to receive a
plurality of data records. In embodiments, each data record
of the plurality of records comprising a feature vector
comprising plurality of predictor variables, a plurality of
corresponding predictor variable values, a dependent vari-
able, and a corresponding dependent variable value.
[0015] In embodiments, the apparatus comprises at least
one processor and at least one non-transitory computer
readable medium storing instructions that, when executed by
the at least one processor, cause the apparatus to generate a
gradient boosted tree model using the plurality of data
records.

[0016] In embodiments, generating the gradient boosted
tree model comprises forming a first plurality of decision
tree structures each having a maximum tree depth of one (1).
In embodiments, each decision tree structure comprises a
split node and a pair of leaf nodes, and the first plurality of
decision tree structures comprises a first number of decision
tree structures necessary to exhaust all main effects of the
plurality of predictor variables on the dependent variable.
[0017] In embodiments, generating the gradient boosted
tree model further comprises iteratively forming successive
pluralities of decision tree structures each having a maxi-
mum tree depth increased by one (1) as compared to its
immediately preceding plurality of decision tree structures.
In embodiments, each successive plurality of decision tree
structures comprising a number of decision tree structures
necessary to exhaust all interactions between the plurality of
predictor variables. In embodiments, the interactions asso-
ciated with a number of predictor variables equal to the
maximum depth of a current plurality of decision tree
structures.

[0018] In embodiments, the apparatus comprises at least
one processor and at least one non-transitory computer
readable medium storing instructions that, when executed by
the at least one processor, cause the apparatus to separate
each decision tree of each of the successive pluralities of
decision tree structures into a plurality of indicator variables
represented by the leaf nodes of the decision tree, where the
indicator variables are defined by a series of split decisions
leading up to each leaf node. In embodiments, each indicator
variable is associated with a corresponding coefficient esti-
mate, and each corresponding coefficient estimate is defined
by a prediction associated with each leaf node.

[0019] In embodiments, the apparatus comprises at least
one processor and at least one non-transitory computer
readable medium storing instructions that, when executed by
the at least one processor, cause the apparatus to reduce the
plurality of indicator variables into a first subset of the
plurality of indicator variables by combining those indicator
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variable definitions that are identical and summing the
corresponding coefficient estimates.

[0020] In embodiments, the apparatus comprises at least
one processor and at least one non-transitory computer
readable medium storing instructions that, when executed by
the at least one processor, cause the apparatus to combine the
first subset of the plurality of indicator variables into a
generalized linear model structure definition upon which the
dependent variable depends.

[0021] In embodiments, the apparatus comprises at least
one processor and at least one non-transitory computer
readable medium storing instructions that, when executed by
the at least one processor, cause the apparatus to reduce the
first subset of the plurality of indicator variables into a
second subset of the plurality of indicator variables, the
second subset of the plurality of indicator variables com-
prising only those indicator variables of the first subset of the
plurality of indicator variables whose indicator variables are
associated with a common predictor variable.

[0022] In embodiments, the apparatus comprises at least
one processor and at least one non-transitory computer
readable medium storing instructions that, when executed by
the at least one processor, cause the apparatus to generate a
vector for each possible value of the common predictor
variable, the vector comprising a plurality of cells, each cell
of the plurality of cells initiated to a null value.

[0023] In embodiments, the apparatus comprises at least
one processor and at least one non-transitory computer
readable medium storing instructions that, when executed by
the at least one processor, cause the apparatus to, for each
indicator variable of the second subset of the plurality of
indicator variables, identify each cell of the plurality of cells
satisfying the indicator variable definition, and replace the
null value of the cell with a corresponding estimated coef-
ficient associated with the indicator variable. In embodi-
ments, the plurality of indicator variables of the second
subset of the plurality of indicator variables comprise dif-
fering split values applied to the common predictor vari-
ables.

[0024] In embodiments, the apparatus comprises at least
one processor and at least one non-transitory computer
readable medium storing instructions that, when executed by
the at least one processor, cause the apparatus to reduce the
first subset of the plurality of indicator variables into a
second subset of the plurality of indicator variables, the
second subset of the plurality of indicator variables com-
prising only those indicator variables of the first subset of the
plurality of indicator variables whose indicator variables are
associated with a common predictor variable.

[0025] In embodiments, the apparatus comprises at least
one processor and at least one non-transitory computer
readable medium storing instructions that, when executed by
the at least one processor, cause the apparatus to, for each
indicator variable of the second subset of the plurality of
indicator variables, generate a multi-dimensional array, the
multi-dimensional array comprising a plurality of dimension
cells, each dimension cell associated with each predictor
variable of the indicator variable definition, each dimension
cell of the plurality of dimension cells initiated to a null
value, identify each dimension cell of the plurality of
dimension cells satisfying conditions of the indicator vari-
able definition, and replace the null value of the dimension
cell with a corresponding estimated coefficient associated
with the indicator variable.
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[0026] Inembodiments, the plurality of indicator variables
of the second subset of the plurality of indicator variables
comprise differing split values applied to the common
predictor variables.

[0027] Inembodiments, reducing the plurality of indicator
variables into a first subset of the plurality of indicator
variables by combining those indicator variable definitions
that are identical comprises identifying those indicator vari-
able definitions that share one or more successions of
conditions, wherein the one or more successions of condi-
tions are not in identical order, and reordering the one or
more successions of conditions such that the indicator
variable definitions are identical.

[0028] In embodiments, the generalized linear model
structure definition is used to programmatically generate one
or more of predictions of homeowner loss frequency and
homeowner loss severity for an insurance provider comput-
ing device.

BRIEF DESCRIPTION OF THE DRAWINGS

[0029] Having thus described the invention in general
terms, reference will now be made to the accompanying
drawings, which are not necessarily drawn to scale, and
wherein:

[0030] FIG. 1 is a system architecture diagram of system
configured to practice embodiments of the present disclo-
sure;

[0031] FIG. 2 is an exemplary schematic diagram of a
computing entity according to one embodiment of the pres-
ent disclosure;

[0032] FIG. 3Ais an exemplary illustration of components
of'an exemplary decision tree, according to embodiments of
the present disclosure;

[0033] FIG. 3B is an exemplary illustration of a process by
which a decision tree creates a prediction, according to
embodiments of the present disclosure;

[0034] FIG. 3C is an exemplary illustration comparing a
decision tree to a generalized linear model, according to
embodiments of the present disclosure;

[0035] FIG. 3D is an exemplary illustration comparing a
decision tree to a generalized linear model which fully
reflects the complexity of the tree structure and leaf node
definitions, according to embodiments of the present disclo-
sure;

[0036] FIG. 4A illustrates exemplary decision tree split
depths and their relation to GLM interaction complexity, for
use with embodiments of the present disclosure;

[0037] FIG. 4B illustrates exemplary gradient boosted tree
model training processes for use with embodiments of the
present disclosure;

[0038] FIG. 4C illustrates exemplary clarity enforcing
processes for use with embodiments of the present disclo-
sure;

[0039] FIG. 5A illustrates exemplary generation of indi-
cator variables using a decision tree model according to
embodiments of the present disclosure;

[0040] FIG. 5B illustrates exemplary generation of indi-
cator variables using a decision tree model according to
embodiments of the present disclosure;

[0041] FIG. 5C illustrates exemplary generation of indi-
cator variables using a decision tree model according to
embodiments of the present disclosure;
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[0042] FIG. 5D illustrates exemplary generation of indi-
cator variables using a decision tree model according to
embodiments of the present disclosure;

[0043] FIG. 5E-1 illustrates exemplary generation of indi-
cator variables using a decision tree model according to
embodiments of the present disclosure;

[0044] FIG. 5E-2 illustrates exemplary generation of indi-
cator variables using a decision tree model according to
embodiments of the present disclosure;

[0045] FIG. 5E-3 illustrates exemplary generation of indi-
cator variables using a decision tree model according to
embodiments of the present disclosure;

[0046] FIG. 5F illustrates exemplary generation of a GLM
comprised of indicator variables derived from a decision tree
model according to embodiments of the present disclosure;
[0047] FIG. 5G illustrates exemplary simplification of
decision tree models with identical split node structure
according to embodiments of the present disclosure;
[0048] FIG. 5H-1 illustrates exemplary complications in
the simplification of decision tree models with nearly iden-
tical split node structure according to embodiments of the
present disclosure;

[0049] FIG. 5H-2 illustrates exemplary complications in
the simplification of decision tree models with nearly iden-
tical split node structure according to embodiments of the
present disclosure;

[0050] FIG. 6A illustrates an exemplary combination and/
or reordering of decision trees by leaf node according to
embodiments of the present disclosure;

[0051] FIG. 6B-1 illustrates an exemplary combination
and/or reordering of decision trees by leaf node according to
embodiments of the present disclosure;

[0052] FIG. 6B-2 illustrates an exemplary combination
and/or reordering of decision trees by leaf node according to
embodiments of the present disclosure;

[0053] FIG. 6C illustrates an exemplary combination and/
or reordering of decision trees by leaf node according to
embodiments of the present disclosure;

[0054] FIG. 7 illustrates a prior art process for determining
main effects of predictor variables on decision tree model
outcome;

[0055] FIG. 8 illustrates an exemplary process for deter-
mining, by collection, aggregation, and summarization of
related indicator variables and indicator variable parameter
estimates, main effects of predictor variables on decision
tree model outcome for use with embodiments of the present
disclosure;

[0056] FIG. 9A illustrates an exemplary process for deter-
mining, by collection, aggregation, and summarization of
related indicator variables and indicator variable parameter
estimates, interactions between predictor variables within a
decision tree model for use with embodiments of the present
disclosure;

[0057] FIG. 9B illustrates an exemplary process for deter-
mining, by collection, aggregation, and summarization of
related indicator variables and indicator variable parameter
estimates, interactions between predictor variables within a
decision tree model for use with embodiments of the present
disclosure;

[0058] FIG. 9C illustrates an exemplary process for deter-
mining, by collection, aggregation, and summarization of
related indicator variables and indicator variable parameter
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estimates, interactions between predictor variables within a
decision tree model for use with embodiments of the present
disclosure; and

[0059] FIG. 10 illustrates an exemplary process for defin-
ing a generalized linear model structure definition based on
(and equivalent to) a gradient boosted tree model for use
with embodiments of the present disclosure.

DETAILED DESCRIPTION

[0060] Various embodiments of the present disclosure
now will be described more fully hereinafter with reference
to the accompanying drawings, in which some, but not all
embodiments of the disclosures are shown. Indeed, these
disclosures may be embodied in many different forms and
should not be construed as limited to the embodiments set
forth herein; rather, these embodiments are provided so that
this disclosure will satisfy applicable legal requirements.
The term “or” is used herein in both the alternative and
conjunctive sense, unless otherwise indicated. The terms
“illustrative” and “exemplary” are used to be examples with
no indication of quality level. Like numbers refer to like
elements throughout.

Exemplary Definitions

29 < 29 c

[0061] As used herein, the terms “data,” “content,” “infor-
mation,” and similar terms may be used interchangeably to
refer to data capable of being transmitted, received, and/or
stored in accordance with embodiments of the present
disclosure. Thus, use of any such terms should not be taken
to limit the spirit and scope of embodiments of the present
disclosure. Further, where a computing device is described
herein to receive data from another computing device, it will
be appreciated that the data may be received directly from
another computing device or may be received indirectly via
one or more intermediary computing devices, such as, for
example, one or more servers, relays, routers, network
access points, base stations, hosts, and/or the like, some-
times referred to herein as a “network.” Similarly, where a
computing device is described herein to send data to another
computing device, it will be appreciated that the data may be
sent directly to another computing device or may be sent
indirectly via one or more intermediary computing devices,
such as, for example, one or more servers, relays, routers,
network access points, base stations, hosts, and/or the like.

[0062] In the pattern recognition field, a pattern is defined
by the feature xi which represents the pattern and its related
value yi. For a classification problem, yi represents a class
or more than one class to which the pattern belongs. For a
regression problem, yi is a real value. For a classification
problem, the task of a classifier is to learn from the given
training dataset in which patterns with their classes are
provided. The output of the classifier is a model or hypoth-
esis h that provides the relationship between the attributes xi
and the class yi. The hypothesis h is used to predict the class
of a pattern depending upon the attributes of the pattern.

[0063] Neural networks, naive Bayes, decision trees, and
support vector machines are popular classifiers.

[0064] In decision analysis, a decision tree can be used to
visually and explicitly represent decisions and decision
making. In data mining, a decision tree describes data (but
the resulting classification tree is used as an input for
decision making).
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[0065] Decision Tree, Supervised Learning: In embodi-
ments, a decision tree is in the form of a tree structure, where
each node is either a leaf node (indicates the prediction of
the model), or a split node (specifies some test to be carried
out on a single attribute-value), with two branches. A
decision tree can be used to make a prediction by starting at
the root of the tree and moving through it until a leaf node
is reached, which provides the prediction for the example.
[0066] Decision Tree Learning (Synonyms: CART—Clas-
sification And Regression Tree, Recursive Partitioning):
Decision tree learning uses a decision tree (as a predictive
model) to go from observations about an item (represented
in the split nodes) to conclusions about the item’s dependent
variable (represented in the leaf nodes).

[0067] The term “classification tree” refers to a classifi-
cation model created by a decision tree algorithm such as
CART.

[0068] The term “regression tree” refers to a regression
model created by a decision tree algorithm such as CART.
[0069] Decision Tree Learning Objective: In decision tree
leaning, the goal is to create a model that predicts the value
of a dependent variable based on several independent vari-
ables. Each leaf of the decision tree represents a value of the
dependent variable given the values of the independent
variables, represented by the path from the root to the leaf
(passing through split nodes).

[0070] A Generalized Linear Model (GLM) is a statistical
model which relaxes or removes several of the assumptions
required by a least-squares linear regression. The flexibility
thus gained makes the Generalized Linear Model (GLM)
suitable for application to a larger set of data types and
prediction problems. As a statistical model, a Generalized
Linear Model (GLM) favors analytical rigor and clarity of
interpretation over the exhaustive maximization of predic-
tive accuracy (statistical inference over predictive accuracy).
A skilled practitioner must specify which variables will
contribute to the model’s prediction, and the form of their
relationship with the quantity to be predicted. In addition to
being very labor intensive, this manual specification process
tends to overlook some variables and combinations of
variables which could improve the predictive accuracy of
the Generalized Linear Model (GLM).

[0071] Gradient boosting is a machine learning technique
for regression and classification problems which produces a
prediction model in the form of an ensemble of weak
prediction models, typically decision trees. It builds the
model in a stage-wise fashion like other boosting methods
do, and it generalizes them by allowing optimization of an
arbitrary differentiable loss function. For example, gradient
boosting combines weak learners into a single strong learner
in an iterative fashion. Gradient boosting tends to aggres-
sively exploit any opportunity to improve predictive accu-
racy, to the detriment of clarity of interpretation (or, indeed,
the feasibility of any interpretation whatsoever).

[0072] The term “classifier” refers to a class or type to
which data is said to belong or with which the data is said
to be associated.

[0073] The term “regression model” refers to a supervised
model in which the dependent variable is a numeric variable.
[0074] The term “classification model” refers to a super-
vised model in which the dependent variable is a categorical
variable. A classification model may be referred to as a
classifier.
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[0075] The terms “classifier algorithm™ or “classification
algorithm” refer to a classifier algorithm which estimates a
classification model from a set of training data. The “clas-
sifier algorithm” uses one or more classifiers and an asso-
ciated algorithm to determine a probability or likelihood that
a set of data belong to another set of data. A decision tree
model where a target variable can take a discrete set of
values is called a classification tree (i.e., and therefore can
be considered a classifier or classification algorithm).

[0076] The term “numeric variable” refers to a variable
whose values are real numbers. Numeric variables may also
be referred to as real-valued variables or continuous vari-
ables.

[0077] The term “ordinal variable” refers to a variable
whose values can be ordered, but the distance between
values is not meaningful (e.g., first, second third, etc.).

[0078] The term “categorical variable” refers to a variable
whose values are discrete and unordered. These values are
commonly known as “classes.”

[0079] The term “indicator variable” refers to a variable
that is a special case of a numeric variable, in which the
variable can only take the values 1 or 0. These values are
commonly used to represent “True” or “False” (“boolean”)
values, respectively. Such truth values can provide a
numeric representation of membership in a group, such as a
class of a categorical variable (e.g. “This record is a member
of this particular class; true or false?”’), or membership in a
partition of the data. In embodiments, a definition of an
indicator variable is generated by methods described herein.
In embodiments, an indicator variable definition refers to a
set of conditions that, when satisfied, result in the indicator
variable taking a value of 1. In embodiments, the set of
conditions within the indicator variable definition are set
based upon those split nodes through which a traversal steps
until reaching a leaf node associated with the indicator
variable to be defined.

[0080] The term “datum” refers to, in the context of
supervised models, a pair of elements consisting of a value
for a dependent variable and one or more values for the
independent variable(s). Datum may also be referred to as a
record, observation, instance, and example.

[0081] The term “dependent variable” refers to a variable
whose value depends on the values of independent variables.
The dependent variable represents the output or outcome
whose variation is being studied. A dependent variable may
also be referred to as a response, an output variable, or a
target variable.

[0082] The terms “independent variable” or “predictor
variable” refer to a variable which is used to predict the
dependent variable, and whose value is not influenced by
other values in the supervised model. Models and experi-
ments described herein test or determine the effects that
independent variables have on dependent variables. Super-
vised models and statistical experiments test or estimate the
effects that independent variables have on the dependent
variable. Independent variables may be included for other
reasons, such as for their potential confounding effect,
without a wish to test their effect directly. In embodiments,
predictor variables are input variables (i.e., variables used as
input for a model are referred to as predictors). In embodi-
ments, predictor or input variables are also referred to as
feature Independent variables may also be referred to as
features, predictors, regressors, and input variables.
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[0083] The term “control variable” refers to an indepen-
dent variable which is included in a model, without intention
to analyze its effect on the response variable. Such variables
are included to avoid biasing, by their absence, the estimates
of other effects of interest in the model. Control variables
may also be referred to as nuisance variables.

[0084] The terms “supervised model” and “predictive
model” refer to a supervised model, which is an estimate of
a mathematical relationship in which the value of a depen-
dent variable is calculated from the values of one or more
independent variables. The functional form of the relation-
ship is determined by the specific type (e.g. decision tree,
GLM, gradient boosted trees) of supervised model. Indi-
vidual numeric components of the mathematical relationship
are estimated based on a set of training data. The set of
functional forms and numerical estimates a specific type of
supervised model can represent is called its “hypothesis
space”.

[0085] The term “effect” refers to an estimated impact in
a supervised model of one or more independent variables on
the dependent variable. An effect may be referred to as a beta
or a coeflicient in the context of a traditional statistical
model (e.g. a GLM).

[0086] The term “main effect” refers to an effect which is
determined by a single independent variable on a dependent
variable—ignoring all other independent variables. That is,
a main effect does not change in response to the value of
other independent values.

[0087] The term “interaction effect” refers to an effect by
a single independent variable on a dependent variable,
taking into consideration one or more other independent
variables. When a model assesses possible interactions, for
example, the model assess whether the different conditions
for a first independent variable produce results that differ
depending on what condition is considered for a second
independent variable. That is, an interaction effect is an
effect in which the impact of one independent variable on the
dependent variable changes based on the values of one or
more other independent variables

[0088] The term “split node” refers to an internal node of
a decision tree representing a test for an attribute. A split
node may split data into two directions (i.e., those data
satisfying the condition may traverse to a particular next
node, and those data not satisfying the condition may
traverse to an alternative next node). The path to the next
node is sometimes referred to as a branch (i.e., each branch
representing the outcome of the test or condition at the split
node). A first split node of a decision tree may be referred to
as a root node. A root node has no incoming edges/paths and
zero or more outgoing edges/paths/branches. A split node
has exactly one incoming edge/branch/path and two or more
outgoing edges/branches/paths.

[0089] The term “split node definition” refers to a condi-
tion or test performed at the associated split node. For
example, a condition may be that a piece of data be greater
than, less than, equal to, and the like, a defined numerical
value.

[0090] The term “leaf node” refers to a terminal node of a
decision tree. In embodiments, a leaf node represents a class
of data, where the class of data is uniquely defined by the
path leading to the leaf node. A leaf node has exactly one
incoming edge/path/branch and no outgoing edges/paths/
branches.
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[0091] The term “leaf node definition” refers to a set of
split node definitions associated with a traversal to a leaf
node being defined. For example, if a traversal through a
decision tree steps through split A and then split B before
arriving at the leaf node, the leaf node is defined by the
conditions contained within split A and split B, in that order.
In embodiments, as explained herein, some situations result
in the leaf node definition becoming reordered (i.c., the leaf
node can be defined by the conditions within split B and split
A, in that order).

[0092] The term “data record” refers to an electronic data
value within a data structure. A data record may, in some
embodiments, be an aggregate data structure (e.g., a tuple or
struct). In embodiments, a data record is a value that
contains other values. In embodiments, the elements of a
data record are referred to as fields or members. In embodi-
ments, data may come in records of the form: (x, Y)=(x,,
XX, - - - Xz Y ) Where the dependent variable Y is the target
variable that the model is attempting to understand/classify,
or generalize. The vector x (i.e., feature vector) is composed
of the features x,, X,, X, etc. that are used for the task.
[0093] The term “feature vector” refers to an n-dimen-
sional vector of features that represent an object. N is a
number. Many algorithms in machine learning require a
numerical representation of objects, and therefore the fea-
tures of the feature vector may be numerical representations.
[0094] The terms “tree depth,” “decision tree depth,”
“maximum tree depth,” “depth,” and the like refer to a
maximum number of queries that can occur in a decision tree
before a leaf node is reached and a result obtained.

Computer Program Products, Methods, and Computing
Entities

[0095] Embodiments of the present disclosure may be
implemented in various ways, including as computer pro-
gram products that comprise articles of manufacture. A
computer program product may include a non-transitory
computer-readable storage medium storing applications,
programs, program modules, scripts, source code, program
code, object code, byte code, compiled code, interpreted
code, machine code, executable instructions, and/or the like
(also referred to herein as executable instructions, instruc-
tions for execution, program code, and/or similar terms used
herein interchangeably). Such non-transitory computer-
readable storage media include all computer-readable media
(including volatile and non-volatile media).

[0096] In one embodiment, a non-volatile computer-read-
able storage medium may include a floppy disk, flexible
disk, hard disk, solid-state storage (SSS) (e.g., a solid state
drive (SSD), solid state card (SSC), solid state module
(SSM)), enterprise flash drive, magnetic tape, or any other
non-transitory magnetic medium, and/or the like. A non-
volatile computer-readable storage medium may also
include a punch card, paper tape, optical mark sheet (or any
other physical medium with patterns of holes or other
optically recognizable indicia), compact disc read only
memory (CD-ROM), compact disc-rewritable (CD-RW),
digital versatile disc (DVD), Blu-ray disc (BD), any other
non-transitory optical medium, and/or the like. Such a
non-volatile computer-readable storage medium may also
include read-only memory (ROM), programmable read-only
memory (PROM), erasable programmable read-only
memory (EPROM), electrically erasable programmable
read-only memory (EEPROM), flash memory (e.g., Serial,
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NAND, NOR, and/or the like), multimedia memory cards
(MMC), secure digital (SD) memory cards, SmartMedia
cards, CompactFlash (CF) cards, Memory Sticks, and/or the
like. Further, a non-volatile computer-readable storage
medium may also include conductive-bridging random
access memory (CBRAM), phase-change random access
memory (PRAM), ferroelectric random-access memory (Fe-
RAM), non-volatile random-access memory (NVRAM),
magnetoresistive random-access memory (MRAM), resis-
tive random-access memory (RRAM), Silicon-Oxide-Ni-
tride-Oxide-Silicon memory (SONOS), floating junction
gate random access memory (FJG RAM), Millipede
memory, racetrack memory, and/or the like.

[0097] In one embodiment, a volatile computer-readable
storage medium may include random access memory
(RAM), dynamic random access memory (DRAM), static
random access memory (SRAM), fast page mode dynamic
random access memory (FPM DRAM), extended data-out
dynamic random access memory (EDO DRAM), synchro-
nous dynamic random access memory (SDRAM), double
information/data rate synchronous dynamic random access
memory (DDR SDRAM), double information/data rate type
two synchronous dynamic random access memory (DDR2
SDRAM), double information/data rate type three synchro-
nous dynamic random access memory (DDR3 SDRAM),
Rambus dynamic random access memory (RDRAM), Twin
Transistor RAM (TTRAM), Thyristor RAM (T-RAM),
Zero-capacitor (Z-RAM), Rambus in-line memory module
(RIMM), dual in-line memory module (DIMM), single
in-line memory module (SIMM), video random access
memory (VRAM), cache memory (including various lev-
els), flash memory, register memory, and/or the like. It will
be appreciated that where embodiments are described to use
a computer-readable storage medium, other types of com-
puter-readable storage media may be substituted for or used
in addition to the computer-readable storage media
described above.

[0098] As should be appreciated, various embodiments of
the present disclosure may also be implemented as methods,
apparatus, systems, computing devices, computing entities,
and/or the like. As such, embodiments of the present dis-
closure may take the form of an apparatus, system, com-
puting device, computing entity, and/or the like executing
instructions stored on a computer-readable storage medium
to perform certain steps or operations. However, embodi-
ments of the present disclosure may also take the form of an
entirely hardware embodiment performing certain steps or
operations.

[0099] Embodiments of the present disclosure are
described below with reference to block diagrams and
flowchart illustrations. Thus, it should be understood that
each block of the block diagrams and flowchart illustrations
may be implemented in the form of a computer program
product, an entirely hardware embodiment, a combination of
hardware and computer program products, and/or apparatus,
systems, computing devices, computing entities, and/or the
like carrying out instructions, operations, steps, and similar
words used interchangeably (e.g., the executable instruc-
tions, instructions for execution, program code, and/or the
like) on a computer-readable storage medium for execution.
For example, retrieval, loading, and execution of code may
be performed sequentially such that one instruction is
retrieved, loaded, and executed at a time. In some exemplary
embodiments, retrieval, loading, and/or execution may be
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performed in parallel such that multiple instructions are
retrieved, loaded, and/or executed together. Thus, such
embodiments can produce specifically-configured machines
performing the steps or operations specified in the block
diagrams and flowchart illustrations. Accordingly, the block
diagrams and flowchart illustrations support various com-
binations of embodiments for performing the specified
instructions, operations, or steps.

Exemplary System Architecture

[0100] Methods, apparatuses, and computer program
products of the present disclosure may be embodied by any
of a variety of devices. For example, the method, apparatus,
and computer program product of an example embodiment
may be embodied by a networked device (e.g., an enterprise
platform), such as a server or other network entity, config-
ured to communicate with one or more devices, such as one
or more client devices. Additionally or alternatively, the
computing device may include fixed computing devices,
such as a personal computer or a computer workstation. Still
further, example embodiments may be embodied by any of
a variety of mobile devices, such as a portable digital
assistant (PDA), mobile telephone, smartphone, laptop com-
puter, tablet computer, wearable, or any combination of the
aforementioned devices.

[0101] FIG. 1 illustrates an example computing system
within which embodiments of the present disclosure may
operate. Client devices may access a machine learning
analytics system 115 via a communications network 102
(e.g., the Internet, LAN, WAN, or the like) using client
devices 101A-101N. The machine learning analytics system
115 may comprise a server 107 in communication with one
or more databases or repositories 108.

[0102] The server 107 may be embodied as a computer or
computers as known in the art. The server 107 may provide
for receiving of electronic data from various sources, includ-
ing but not necessarily limited to the client devices 101A-
10IN. For example, the server 107 may be operable to
receive and process routing requests provided by the client
devices 101A-101N. The server 107 may facilitate the
generation and training of gradient boosted trees with pro-
gressive maximum depth. The server 107 may include a
generalized linear model structure definition module 103 for
performing functions described herein.

[0103] The databases or repositories 108 may be embod-
ied as a data storage device such as a Network Attached
Storage (NAS) device or devices, or as a separate database
server or servers. The databases 108 include information
accessed and stored by the server 107 to facilitate the
operations of the machine learning analytics system 115. For
example, the databases 108 may include, without limitation,
data representing metrics of interest to an insurance pro-
vider.

[0104] The client devices 101A-101N may be any com-
puting device as defined above. Electronic data received by
the server 107 from the client devices 101A-101N may be
provided in various forms and via various methods. For
example, the client devices 101A-101N may include desk-
top computers, laptop computers, smartphones, netbooks,
tablet computers, wearables, and the like.

[0105] In embodiments where a client device 101A-101N
is a mobile device, such as a smart phone or tablet, the client
device 101A-101IN may execute one or more “apps” to
interact with the machine learning analytics system 115.
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Such apps are typically designed to execute on mobile
devices, such as tablets or smartphones. For example, an app
may be provided that executes on mobile device operating
systems such as 1OS®, Android®, or Windows®. These
platforms typically provide frameworks that allow apps to
communicate with one another and with particular hardware
and software components of mobile devices. For example,
the mobile operating systems named above each provide
frameworks for interacting with location services circuitry,
wired and wireless network interfaces, user contacts, and
other applications. Communication with hardware and soft-
ware modules executing outside of the app is typically
provided via application programming interfaces (APIs)
provided by the mobile device operating system.

[0106] Additionally or alternatively, the client device
101A-101N may interact with the machine learning analyt-
ics system 115 via a web browser. As yet another example,
the client device 101A-101N may include various hardware
or firmware designed to interface with the machine learning
analytics system 115.

[0107] The server 107 may be embodied by one or more
computing systems, such as apparatus 200 shown in FIG. 2.
The apparatus 200 may include a processor 202, a memory
201, input/output circuitry 204, communications circuitry
205, and generalized linear model structure definition cir-
cuitry 203. The apparatus 200 may be configured to execute
the operations described herein. Although these components
201-205 are described with respect to functional limitations,
it should be understood that the particular implementations
necessarily include the use of particular hardware. It should
also be understood that certain of these components 201-205
may include similar or common hardware. For example, two
sets of circuitry may both leverage use of the same proces-
sor, network interface, storage medium, or the like to per-
form their associated functions, such that duplicate hardware
is not required for each set of circuitry.

[0108] The use of the term “circuitry” as used herein with
respect to components of the apparatus should therefore be
understood to include particular hardware configured to
perform the functions associated with the particular circuitry
as described herein. That is, the term “circuitry” should be
understood broadly to include hardware and, in some
embodiments, software for configuring the hardware. For
example, in some embodiments, “circuitry” may include
processing circuitry, storage media, network interfaces,
input/output devices, and the like. In some embodiments,
other elements of the apparatus 200 may provide or supple-
ment the functionality of particular circuitry. For example,
the processor 202 may provide processing functionality, the
memory 201 may provide storage functionality, the com-
munications circuitry 205 may provide network interface
functionality, and the like.

[0109] In some embodiments, the processor 202 (and/or
co-processor or any other processing circuitry assisting or
otherwise associated with the processor) may be in commu-
nication with the memory 201 via a bus for passing infor-
mation among components of the apparatus. The memory
201 may be non-transitory and may include, for example,
one or more volatile and/or non-volatile memories. In other
words, for example, the memory may be an electronic
storage device (e.g., a computer readable storage medium).
The memory 201 may be configured to store information,
data, content, applications, instructions, or the like, for
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enabling the apparatus to carry out various functions in
accordance with example embodiments of the present dis-
closure.

[0110] The processor 202 may be embodied in a number
of different ways and may, for example, include one or more
processing devices configured to perform independently.
Additionally or alternatively, the processor may include one
or more processors configured in tandem via a bus to enable
independent execution of instructions, pipelining, and/or
multithreading. The use of the term “processing circuitry”
may be understood to include a single core processor, a
multi-core processor, multiple processors internal to the
apparatus, and/or remote or “cloud” processors.

[0111] In an example embodiment, the processor 202 may
be configured to execute instructions stored in the memory
201 or otherwise accessible to the processor. Alternatively,
or additionally, the processor may be configured to execute
hard-coded functionality. As such, whether configured by
hardware or software methods, or by a combination thereof,
the processor may represent an entity (e.g., physically
embodied in circuitry) capable of performing operations
according to an embodiment of the present disclosure while
configured accordingly. Alternatively, as another example,
when the processor is embodied as an executor of software
instructions, the instructions may specifically configure the
processor to perform the algorithms and/or operations
described herein when the instructions are executed.
[0112] In some embodiments, the apparatus 200 may
include input/output circuitry 204 that may, in turn, be in
communication with processor 202 to provide output to the
user and, in some embodiments, to receive an indication of
a user input. The input/output circuitry 204 may comprise a
user interface and may include a display and may comprise
a web user interface, a mobile application, a client device, a
kiosk, or the like. In some embodiments, the input/output
circuitry 204 may also include a keyboard, a mouse, a
joystick, a touch screen, touch areas, soft keys, a micro-
phone, a speaker, or other input/output mechanisms. The
processor and/or user interface circuitry comprising the
processor may be configured to control one or more func-
tions of one or more user interface elements through com-
puter program instructions (e.g., software and/or firmware)
stored on a memory accessible to the processor (e.g.,
memory 204, and/or the like).

[0113] The communications circuitry 205 may be any
means such as a device or circuitry embodied in either
hardware or a combination of hardware and software that is
configured to receive and/or transmit data from/to a network
and/or any other device, circuitry, or module in communi-
cation with the apparatus 200. In this regard, the commu-
nications circuitry 205 may include, for example, a network
interface for enabling communications with a wired or
wireless communication network. For example, the commu-
nications circuitry 205 may include one or more network
interface cards, antennae, buses, switches, routers, modems,
and supporting hardware and/or software, or any other
device suitable for enabling communications via a network.
Additionally or alternatively, the communication interface
may include the circuitry for interacting with the antenna(s)
to cause transmission of signals via the antenna(s) or to
handle receipt of signals received via the antenna(s).
[0114] The generalized linear model structure definition
circuitry 203 includes hardware configured to generate,
train, analyze, and use gradient boosted decision trees with
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progressive maximum depth, among performing other func-
tions described herein. The generalized linear model struc-
ture definition circuitry 203 may utilize processing circuitry,
such as the processor 202, to perform these actions. It should
also be appreciated that, in some embodiments, the gradient
boosted decision trees circuitry 203 may include a separate
processor, specially configured field programmable gate
array (FPGA), or application specific interface circuit
(ASIC).

[0115] As will be appreciated, any such computer program
instructions and/or other type of code may be loaded onto a
computer, processor or other programmable apparatus’s
circuitry to produce a machine, such that the computer,
processor or other programmable circuitry that execute the
code on the machine create the means for implementing
various functions, including those described herein.

[0116] It is also noted that all or some of the information
presented by the example displays discussed herein can be
based on data that is received, generated and/or maintained
by one or more components of apparatus 200. In some
embodiments, one or more external systems (such as a
remote cloud computing and/or data storage system) may
also be leveraged to provide at least some of the function-
ality discussed herein.

[0117] As described above and as will be appreciated
based on this disclosure, embodiments of the present dis-
closure may be configured as methods, mobile devices,
backend network devices, and the like. Accordingly,
embodiments may comprise various means including
entirely of hardware or any combination of software and
hardware. Furthermore, embodiments may take the form of
a computer program product on at least one non-transitory
computer-readable storage medium having computer-read-
able program instructions (e.g., computer software) embod-
ied in the storage medium. Any suitable computer-readable
storage medium may be utilized including non-transitory
hard disks, CD-ROMs, flash memory, optical storage
devices, or magnetic storage devices.

Exemplary System Operation

[0118] Embodiments of the present disclosure provide for
a gradient boosted decision tree (GBM) algorithm that is
forced to use data in a manner such that it produces a model
that captures an improvement in prediction accuracy over a
conventional generalized linear model (GLM) while allow-
ing for inspection of the resulting algorithm output and an
understanding of how the algorithm is using variables to
generate its predictions. A machine learning model (e.g., a
generalized linear model or generalized linear model struc-
ture) generated according to embodiments of the present
disclosure enables production of indicated pricing relativi-
ties for an insurance provider. In some examples, predictions
of homeowner’s loss frequency and severity, as predicted by
a machine learning model according to embodiments dis-
closed herein, experience substantially improved accuracy
over those predictions generated by conventional general-
ized linear models (GLM).

[0119] In the context of insurance applications, interpre-
table machine learning (referred to hereafter as “IML”) can
be used to directly model insurance claim costs. The IML
model produces GLM structure definition and effect esti-
mates for the structure it defines. This provides the benefit of
ML accuracy in contexts which require model interpretabil-

1ty.
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[0120] Further, the IML is used to model the difference
between an arbitrary ML model and a GLM to understand
the differences. The GLM structure definition and effect
estimates “export” the interpretability of an IML. model to an
ML model.

[0121] Moreover, IML is used to model the difference
between the raw claim costs and the GLM (GLM “errors” or
“residuals™). This model will try to find anything left in the
data after the GLM has finished making its predictions, and
expose effects which improve the GLM, but have been
overlooked by other solutions. This application has been
prototyped in models of homeowners claim frequency and
severity (the product of which is loss cost, and forms the
basis of insurance prices), and has yielded material improve-
ment in the accuracy of these models.

[0122] In embodiments, a gradient boosted decision tree
(GBM) algorithm is trained in stages, with each stage
corresponding to a particular component of an equivalent
generalized linear model (GLM). In embodiments, a first
stage trains decision trees which capture single predictor
variable components (“main effects”) of the generalized
linear model (GLM), and subsequent stages capture increas-
ingly complex interactions between the predictor variables
of the model. In contrast, in a traditional gradient boosted
decision tree (GBM) model, it would not be possible to
identify or inspect the main and interaction effects.

[0123] The present disclosure applies constraints to a
gradient boosted decision tree (GBM) algorithm training
process to force a resulting model into an interpretable
mathematical form that approximates the structure of, and
thereby allows for inspection of estimated effects in a
manner identical to, a generalized linear model. As such, the
present disclosure provides for a system that benefits from
the increased accuracy of a machine learning model (a
gradient boosted tree model) without sacrificing the ease of
interpretation or implementation of a generalized linear
model (GLM).

[0124] Further, the present disclosure partitions the gradi-
ent boosted decision tree model into leaf node definitions
that correspond to indicator variable definitions of a gener-
alized linear model structure definition. Indicator variables
having identical definitions can be combined, thereby reduc-
ing complexity of the model and reducing computation/
processing time and required resources.

[0125] FIG. 3A is an exemplary schematic diagram of
components of an exemplary decision tree, according to
embodiments of the present disclosure. FIG. 3B is an
exemplary illustration of a process by which a decision tree
creates a prediction, according to embodiments of the pres-
ent disclosure.

[0126] In FIG. 3A and 3B, a decision tree 300 comprises
split nodes 301, 302, 303 and leaf nodes 304, 305, 306, and
307. In decision tree 300, each split node 301, 302, 303 splits
(i.e., partitions) data based on a value of a predictor. In FIG.
3A, split node 301 partitions data based on whether a
variable x, has a value less than value v,, split node 302
partitions data based on whether a variable x, has a value
less than value v,, and split node 303 partitions data based
on whether a variable x; has a value less than value v;. In
these examples, each of the variables can be considered a
predictor.

[0127] Further in FIGS. 3A and 3B, each leaf node 304,
305, 306, and 307 identifies a partition (e.g., the partition
defined by the upstream splits), in this example partitions L,
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L,, L;, and L,. As in shown in FIGS. 3A and 3B, to make
a prediction, a data record traverses down the decision tree
through the split nodes (e.g., 301, 302, 303) based on the
split variable values (e.g., X,, X,, X;) until the record arrives
at a leaf node (e.g., L, L,, L5, L,).

[0128] FIG. 3C is an exemplary illustration comparing a
decision tree to a generalized linear model, according to
embodiments of the present disclosure. FIG. 3D is an
exemplary illustration comparing a decision tree to a gen-
eralized linear model which fully reflects the complexity of
the tree structure and leaf node definitions, according to
embodiments of the present disclosure

[0129] Shown in FIG. 3C, a generalized linear model can
make the same partitions as the decision tree 300. In
examples, decision tree 300 can be represented as a gener-
alized linear model (GLM) 308 with indicator variables of
the GLM 308 corresponding to the partitions identified in
the leaf nodes of the decision tree (e.g., L;, L,, L5, L,), and
defined by the combination of split nodes which lead to the
leaf node, as shown in FIG. 3C. Accordingly, and as shown
in FIG. 3D, the indicators (e.g., X;;, X;5, Xz3, Xz4) are
defined by more than one variable (i.e., X;, is defined by
X) <1 @nd X 5, X, is defined by x, _,; and X, ..», X;5 is
defined by x, .., and X; _ 5, and X, , is defined by x, .,, and
X3 -,3), 50 the indicators may represent interactions between
variables. In such an example, the decision tree can be
represented as a generalized linear model (GLM) of inter-
action effects 309, as shown in FIG. 3D.

[0130] FIG. 4A illustrates exemplary decision tree split
depths and their relationship to GLM interaction complexity,
for use with embodiments of the present disclosure. In
embodiments, in a decision tree of maximum depth one (1),
the leaf nodes represent the main effects. In embodiments, in
a decision tree of a maximum depth greater than one (1), the
leaf nodes can represent main effects (applied sequentially,
but with independent effects) and/or interaction effects (ap-
plied sequentially, with each variable’s effect dependent on
the value of the other variable). This uncertainty impedes
interpretation of the decision tree.

[0131] FIG. 4B illustrates exemplary gradient boosting
tree model training processes for use with embodiments of
the present disclosure. In embodiments, a gradient boosting
tree process programmatically builds a machine learning
model one decision tree at a time. A prediction, according to
the machine learning model, is a sum of the predictions
produced by the decision trees in the model. Each decision
tree is fit to the residual of its combined predecessors, and
decision trees do not change once added to the machine
learning model. In such embodiments, decision trees are
added until no information about the predicted quantity
remains in the model residual. In other words, the decision
tree structures of the machine learning model cannot explain
any information about the predicted quantity left in the
model residual. In embodiments, the predicted quantity is
referred to as a dependent variable of the model.

[0132] FIG. 4C illustrates exemplary clarity enforcing
processes for use with embodiments of the present disclo-
sure. In embodiments, clarity is enforced according to the
present disclosure by building a gradient boosted tree model
with a maximum depth that is gradually increased. For
example, and as shown in FIG. 4C, the gradient boosted tree
model is initially built by allowing single splits. In such an
example, the machine learning model will fit only main
effects and exhaust any variation that can be explained by
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the main effects. Next, the gradient boosted tree model is
built upon by allowing two consecutive splits. In such
embodiments, the machine learning model could fit main
effects and interaction effects, however the main effects are
already contemplated by the first set of single splits. Thus,
any systematic variation remaining in the response is suffi-
ciently complex to require at least a two-way interaction to
reflect it in the model. Therefore, the second layer of the
gradient boosted tree model only contains two-way interac-
tion effects, thereby providing visibility into the machine
learning model and its components.

[0133] FIGS. SA-5H-2 illustrate exemplary generation of
indicator variables using a gradient boosted tree model
according to embodiments of the present disclosure.
[0134] In embodiments, a decision tree 500 comprises a
first split node 502, a second split node 504, a third split node
506, and four leat nodes L., 508, [., 510, [.; 512, and [, 514.
In embodiments, each leaf node L, 508, L., 510, [.; 512, and
L, 514 can be individually defined by the split nodes leading
up to it, and does not need to be tied to the decision tree 500.
As an example, as shown in FIGS. 5B and 5C, leafnode L,
508 is defined only by the first split node 502 and the second
split node 504. Leaf node L, 508 is preserved and
“unharmed” if the rest of the decision tree (with the excep-
tion of first split node 502 and second split node 504) is
discarded.

[0135] Accordingly, and as shown in FIG. 5D, decision
tree 500 can be “rewritten” as a set of single leaf node
definitions. For example, leaf node L., 508 is defined only by
the first split node 502 and the second split node 504; leaf
node L, 510 is defined only by the first split node 502 and
the second split node 504; leaf node L.; 512 is defined only
by the first split node 502 and the third split node 506; and
leaf node L, 514 is defined only by the first split node 502
and the third split node 506.

[0136] Shown in FIG. 5E-1, each leaf node definition can
define an indicator variable of a generalized linear model
(GLM). The leaf node contains the prediction of the tree
model for records assigned to the leaf node by splits in the
tree. The parameter 3, shown in FIG. 5E-1, for an indicator
variable in a GLM functions identically. Therefore, the leaf
definition and leaf node provide both the GLM structure and
GLM estimate (e.g., 0).

[0137] With continued reference to FIG. 5E-1, if a record
would have ended up in a particular leaf node (L, in this
example), then the indicator variable has a value of 1.
Otherwise, the variable has the value 0. Indicator variables
such as I; are how GLMs reflect the value of non-numeric
data. It will be appreciated that binary “yes or no” questions
require a single indicator variable. More complicated non-
numeric values (such as vehicle make, or the leaf nodes of
a decision tree) require more indicator variables to capture
each of the possible values.

[0138] For the tree in the example shown in FIG. 5E-1, an
equivalent GLM would have four indicator variables,
reflecting which of the four leaf nodes apply to a particular
record in the data (shown in FIGS. 5E-1 and 5E-2). By virtue
of being derived from the same tree, a record will have a
value of 1 in exactly one of the indicator variables. Thus
there is no danger of “double counting” by adding together
two leaf nodes from a single tree. Since membership in a leaf
node is mutually exclusive with all other leaf nodes from
that tree, only a single leaf node’s prediction will ever apply.
However, the GLM has no concept of the original “tree”; it
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only knows whether or not a record has a 1 or 0 for each of
our leaf node indicator variables.

[0139] Shown in FIG. 5E-2, each leaf node definition can
define an indicator variable of a generalized linear model
(GLM) 530. For example, leaf node L., 508, defined by the
first split node 502 and the second split node 504, defines an
indicator variable I, 516; leaf node L, 510, defined by the
first split node 502 and the second split node 504, defines an
indicator variable 1, 518; leaf node L; 512, defined by the
first split node 502 and the third split node 506, defines an
indicator variable I; 520; and leaf node L, 514, defined by
the first split node 502 and the third split node 506, defines
an indicator variable I, 522. It will be appreciated that each
indicator variable I, is defined as 1 if the splits of the split
nodes leading up to the corresponding leaf node are all
satisfied, and O otherwise.

[0140] Shown in FIG. 5E-3, similar to FIG. 5E-2, each
leaf node definition can define an indicator variable of a
generalized linear model 530. For example, leaf node L,
508, defined by the first split node 502 and the second split
node 504, defines an indicator variable I; 516. Illustrated in
FIG. 5E-3 is the fact that the order of the split nodes 502, 504
does not impact the leaf node definition 508 and therefore
does not impact the indicator variable definition 516. For
example, if a traversal went from split node 502 to split node
504 to arrive at leaf node 508, the indicator variable defi-
nition 516 is the same as if a traversal went from split node
504 to split node 502 to arrive at leaf node 508.

[0141] Shown in FIG. 5F, the indicator variables I, 1, 15,
and 1, are each defined by multiple variables (shown in the
split nodes of each indicator variable definition). In such a
case, the indicator variables may represent interactions of
the split variables (e.g., v,, v,, v;). Therefore, decision tree
500 has become represented as a GLM 530 of interaction
effects, including I, 516, 1, 518, 1; 520, and 1, 522.

[0142] Shown in FIG. 5G, identical split nodes across
multiple trees within a boosted tree model enables combin-
ing of those trees having common split nodes. For example,
decision tree 540 and decision tree 550 have identical first
542, second 544, and third 546 split nodes. Because each of
decision tree 540 and decision tree 550 have identical first
542, second 544, and third 546 split nodes, they can be
combined into decision tree 580. Decision tree 580 com-
prises a first split node 542, a second split node 544, and a
third split node 546. Decision tree 580 further comprises a
combination (L, +L5 or 560+570) of leaf nodes L., 560 and
L, 570 from decision trees 540 and 550, respectively.
Decision tree 580 further comprises a combination (L,+L¢
or 562+572) of leaf nodes L, 562 and L, 572 from decision
trees 540 and 550, respectively. Decision tree 580 further
comprises a combination (L;+L, or 564+574) of leaf nodes
L; 564 and [, 574 from decision trees 540 and 550,
respectively. Decision tree 580 further comprises a combi-
nation (L,+Lg or 566+576) of leaf nodes L, 566 and L4 576
from decision trees 540 and 550, respectively.

[0143] Shown in FIG. 5H-1, entire decision trees are
seldom identical as a whole, so they cannot be combined,
and thus no benefit can be gained from combination and
simplification.

[0144] Shown in FIG. SH-2, with reference to the feature
highlighted in FIG. 5E-2, entire decision trees are seldom
identical as a whole, so they cannot be combined. Thus, no
benefit can be gained by combination, simplification, and
reordering of splits.
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[0145] FIGS. 6A, 6B-1, 6B-2, and 6C illustrate an exem-
plary combination of decision trees by leaf node according
to embodiments of the present disclosure. Shown in FIG.
6A, decision trees 600 and 620 are not identical, although
they may share some leaf node definitions.

[0146] Also shown in FIG. 6A, decision tree 600 is
separated into each of its leaf node definitions. For example,
leafnode L, 608 of decision tree 600 is defined by split node
602 and split node 604; leaf node L, 610 of decision tree 600
is defined by split node 602 and split node 604; leaf node L5
612 of decision tree 600 is defined by split node 602 and split
node 606; and leaf node L, 614 of decision tree 600 is
defined by split node 602 and split node 606.

[0147] Decision tree 620 is similarly separated into each
of'its leaf node definitions. For example, leaf node L. 628 of
decision tree 620 is defined by split node 622 and split node
624; leaf node L, 630 of decision tree 620 is defined by split
node 622 and split node 624; leaf node L, 632 of decision
tree 620 is defined by split node 622 and split node 626; and
leaf node L4 634 of decision tree 620 is defined by split node
622 and split node 626.

[0148] Accordingly, shown in FIG. 6B-1, the leaf nodes
can be separated from the decision trees 600, 620, and those
leaf nodes with identical definitions can be combined
regardless of whether they originated from decision tree 600
or 620. For example, leaf node L, 608 and leaf node L, 628
have the same definition (illustrated by the split decisions
within their respective associated split nodes) and can be
combined (L,+L;) into a leaf node 640. Also, leaf node L,
610 and leaf node L, 630 have the same definition (illus-
trated by the split decisions within their respective associ-
ated split nodes) and can be combined (L,+L;) into a leaf
node 642. The remaining leafnodes, L, 612,L, 614, L. 632,
and Lg 634 remain the same because they do not share
definitions with any other leaf nodes.

[0149] As discussed above, a traversal of split nodes can
be reordered as necessary to facilitate simplification (a
benefit only afforded because the present disclosure liberates
leaf nodes from the oppressive context of their source trees).
Shown in FIG. 6B-2, leaf nodes can be separated from
decision trees, and those leaf nodes with identical definitions
can be combined regardless of a decision tree from which
they originated. Further, those leaf nodes having identical
split decisions, regardless of an ordering of the split deci-
sions, can have their definitions reordered to aid in combi-
nation and simplification. For example, leaf node L, 608 and
leaf node L5 652 have the same definition (illustrated by the
split decisions within their respective associated split nodes)
if those split decisions 644 and 646 leading to leaf node L
652 are reordered. Then, leaf L; 608 and leaf node L 652
can be combined (L,+L5) into a leaf node 656. Also, leaf
node L, 610 and leaf node L, 654 have the same definition
(illustrated by the split decisions within their respective
associated split nodes) if those split decisions 648 and 650
leading to leaf node L, 654 are reordered. Then, leaf L., 610
and leaf node L4 654 can be combined (L, +L) into a leaf
node 660. The remaining leafnodes, L, 612,L, 614, L. 662,
and Ly 664 remain the same because they do not share
definitions with any other leaf nodes.

[0150] Shown in FIG. 6C, each leaf node definition can
therefore define an indicator variable of a generalized linear
model (GLM) 650. For example, leaf node 640, defines an
indicator variable I, 652; leaf node 642 defines an indicator
variable 1, 654; leaf node [; 612 defines an indicator
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variable I; 656; leaf node [, 614 defines an indicator
variable I, 658; leaf node [, 632 defines an indicator
variable 15 660; and leaf node Ly 634 defines an indicator
variable I 662.

[0151] Once the component trees of a gradient boosted
tree model have been decomposed into their leaf nodes, and
the leaf nodes which have identical leaf node definitions
have been aggregated, it is advantageous to collect and
summarize leaf nodes which are defined by the same inde-
pendent variables, but not necessarily by the same split
points for those variables. An effect may be (and often is)
defined by a plurality of indicator variables. For example, if
an independent variable has n distinct possible values, and
the model estimates a different predicted effect for each of
those n distinct values, then n—-1 indicator variables will be
necessary to represent the main effect of this independent
variable. For interactions, the potential complexity is even
greater. The GLM structure definition and effect estimates
may produce an equation with many thousands of individual
indicator variables. In the absence of some process for the
collection and aggregation of the indicator variables asso-
ciated with an effect, these components may be scattered
throughout the GLM equation. An effect could easily be
obfuscated by the mass of arbitrarily ordered indicator
variables.

[0152] In embodiments, an exemplary format (though
certainly not the only one) for representing such collected
and aggregated effects is a matrix. Such matrix outputs are
useful for communication of results, as they allow for
inspection of the entirety of an effect at a glance, and in a
single concise representation (relative to scattered and dis-
joint indicator variables and leaf node estimates). This
matrix format is also necessary for insurance pricing appli-
cations which are table-driven. For example, an exemplary
IT implementation of insurance pricing algorithms may
utilize such matrix format, and the format in which GLM-
based relativities must be delivered for implementation
utilizes such matrix format.

[0153] FIG. 7 illustrates a prior art process 700 for deter-
mining main effects of predictor variables on decision tree
model outcome. In prior art processes such as that depicted
in 700, main effects are incorporated one decision tree at a
time, and those main effects are kept separate unless the
decision trees are identical (as discussed with respect to FIG.
5H above). As shown in FIG. 7, each decision tree is
transformed into a unique/separate matrix based upon an
input data set, and each matrix of predictions (or values at
leaf nodes) is summed or aggregated. As such, the main
effects are kept separate (i.e., in the unique matrices).
[0154] FIG. 8 illustrates an exemplary process 800 for
determining main effects of predictor variables on decision
tree model outcome for use with embodiments of the present
disclosure. In process 800, the main effects from the trees in
FIG. 7 are incorporated one leaf node at a time, and the
effects are combined where possible (as depicted in FIGS.
6A-6C above). In FIG. 8, though the leaf nodes are defined
by different split values, they all split on the same variable,
X. A matrix is created for the possible values of x, and
pre-populated with zeros. The split node which defines leaf
one is used to identify the cells of the matrix to which leaf
1 applies. Then, the prediction from leaf node 1 is added to
the current contents of the cells thus identified (currently
zeros). The subsequent leaf nodes are incorporated into the
matrix in the same manner; the split node identifies the
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impacted cells of the matrix, and then the values in those
cells of the matrix are updated by adding the prediction of
the leaf node to the values to the current values in the cells.
This results in a single matrix which incorporates the
information contained in all of the leaf nodes (equivalently,
indicator variable parameter estimates) which are defined
only by split on the variable x, which appear through the
model. As such, the main effects are incorporated and
observed at each leaf node. Exemplary main effects in FIG.
8 are shown by way of a heat map, where the darker matrix
rows represent a higher degree of effect.

[0155] FIGS. 9A-9C illustrate an exemplary process 900
for determining interactions between predictor variables
within a decision tree model 901 for use with embodiments
of the present disclosure.

[0156] Inastep 904, a matrix is generated (more generally,
a multidimensional array is generated) with a dimension for
each independent variable which appears in a leaf node
definition, according to variable definitions 903.

[0157] Ina step 905, the matrix is populated with zeros (or
other numerical value which reflects a neutral or absent
value in a GLM).

[0158] In steps 906 and 907, for each indicator variable,
cells of the matrix are identified (906) which fulfill the
conditions of the split nodes in the leaf node definition.
Subsequently, the values in the identified cells are updated
(e.g., added) with the estimated values in the leaf node (see
902).

[0159] Exemplary interaction effects in FIG. 9C are shown
by way of a heat map, where the darker matrix rows
represent a higher degree of effect.

[0160] FIG. 10 illustrates an exemplary process for defin-
ing a generalized linear model structure definition for use
with embodiments of the present disclosure.

[0161] In embodiments, a process 1000 begins with
receiving a plurality of data records. In embodiments (opera-
tion 1002), each data record of the plurality of records
comprises a feature vector comprising a plurality of predic-
tor variables, a plurality of corresponding predictor variable
values, a dependent variable, and a corresponding dependent
variable value.

[0162] In embodiments, process 1000 continues with gen-
erating a gradient boosted tree model using the plurality of
data records (operation 1004).

[0163] In embodiments, generating the gradient boosted
tree model comprises forming a first plurality of decision
tree structures each having a maximum tree depth of one (1)
(operation 1006). In embodiments, each decision tree struc-
ture comprises a split node and a pair of leaf nodes. In
embodiments, the first plurality of decision tree structures
comprises a first number of decision tree structures neces-
sary to exhaust all main effects of the plurality of predictor
variables on a dependent variable of the generalized linear
model structure definition.

[0164] In embodiments, generating the gradient boosted
tree model further comprises iteratively forming successive
pluralities of decision tree structures each having a maxi-
mum tree depth increased by one (1) as compared to its
immediately preceding plurality of decision tree structures
(operation 1008). In embodiments, each successive plurality
of decision tree structures comprises a number of decision
tree structures necessary to exhaust all interactions (involv-
ing a number of predictor variables equal to the maximum
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depth of the current plurality of decision trees) between the
plurality of predictor variables.

[0165] In embodiments, process 1000 continues with
separating each decision tree of each of the successive
pluralities of decision tree structures into a plurality of
indicator variables represented by the leaf nodes of the
decision tree (operation 1010), thus creating a generalized
linear model (GLM) structure. In embodiments, the indica-
tor variables are defined by a series of split decisions leading
up to each leaf node.

[0166] In embodiments, process 1000 continues with
reducing the plurality of indicator variables into a subset of
the plurality of indicator variables by combining those
indicator variable definitions that are identical (operation
1012).

[0167] Inembodiments, process 1000 continues with com-
bining the indicator variables of the subset of the plurality of
indicator variables into a generalized linear model structure
definition upon which the dependent variable depends (op-
eration 1014).

[0168] Details regarding various embodiments are
described in the attached appendices, the contents of which
are hereby herein incorporated by reference in their entirety.

Additional Implementation Details

[0169] Although an example processing system has been
described in FIG. 2, implementations of the subject matter
and the functional operations described herein can be imple-
mented in other types of digital electronic circuitry, or in
computer software, firmware, or hardware, including the
structures disclosed in this specification and their structural
equivalents, or in combinations of one or more of them.
[0170] Embodiments of the subject matter and the opera-
tions described herein can be implemented in digital elec-
tronic circuitry, or in computer software, firmware, or hard-
ware, including the structures disclosed in this specification
and their structural equivalents, or in combinations of one or
more of them. Embodiments of the subject matter described
herein can be implemented as one or more computer pro-
grams, e.g., one or more modules of computer program
instructions, encoded on computer storage medium for
execution by, or to control the operation of, information/data
processing apparatus. Alternatively, or in addition, the pro-
gram instructions can be encoded on an artificially-gener-
ated propagated signal, e.g., a machine-generated electrical,
optical, or electromagnetic signal, which is generated to
encode information/data for transmission to suitable
receiver apparatus for execution by an information/data
processing apparatus. A computer storage medium can be, or
be included in, a computer-readable storage device, a com-
puter-readable storage substrate, a random or serial access
memory array or device, or a combination of one or more of
them. Moreover, while a computer storage medium is not a
propagated signal, a computer storage medium can be a
source or destination of computer program instructions
encoded in an artificially-generated propagated signal. The
computer storage medium can also be, or be included in, one
or more separate physical components or media (e.g., mul-
tiple CDs, disks, or other storage devices).

[0171] The operations described herein can be imple-
mented as operations performed by an information/data
processing apparatus on information/data stored on one or
more computer-readable storage devices or received from
other sources.
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[0172] The term “data processing apparatus” encompasses
all kinds of apparatus, devices, and machines for processing
data, including by way of example a programmable proces-
sor, a computer, a system on a chip, or multiple ones, or
combinations, of the foregoing. The apparatus can include
special purpose logic circuitry, e.g., an FPGA or an ASIC.
The apparatus can also include, in addition to hardware,
code that creates an execution environment for the computer
program in question, e.g., code that constitutes processor
firmware, a protocol stack, a database management system,
an operating system, a cross-platform runtime environment,
a virtual machine, or a combination of one or more of them.
The apparatus and execution environment can realize vari-
ous different computing model infrastructures, such as web
services, distributed computing and grid computing infra-
structures.

[0173] A computer program (also known as a program,
software, software application, script, or code) can be writ-
ten in any form of programming language, including com-
piled or interpreted languages, declarative or procedural
languages, and it can be deployed in any form, including as
a stand-alone program or as a module, component, subrou-
tine, object, or other unit suitable for use in a computing
environment. A computer program may, but need not, cor-
respond to a file in a file system. A program can be stored in
a portion of a file that holds other programs or information/
data (e.g., one or more scripts stored in a markup language
document), in a single file dedicated to the program in
question, or in multiple coordinated files (e.g., files that store
one or more modules, sub-programs, or portions of code). A
computer program can be deployed to be executed on one
computer or on multiple computers that are located at one
site or distributed across multiple sites and interconnected
by a communication network.

[0174] The processes and logic flows described herein can
be performed by one or more programmable processors
executing one or more computer programs to perform
actions by operating on input information/data and gener-
ating output. Processors suitable for the execution of a
computer program include, by way of example, both general
and special purpose microprocessors, and any one or more
processors of any kind of digital computer. Generally, a
processor will receive instructions and information/data
from a read-only memory or a random access memory or
both. The essential elements of a computer are a processor
for performing actions in accordance with instructions and
one or more memory devices for storing instructions and
data. Generally, a computer will also include, or be opera-
tively coupled to receive information/data from or transfer
information/data to, or both, one or more mass storage
devices for storing data, e.g., magnetic, magneto-optical
disks, or optical disks. However, a computer need not have
such devices. Devices suitable for storing computer program
instructions and information/data include all forms of non-
volatile memory, media and memory devices, including by
way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto-
optical disks; and CD-ROM and DVD-ROM disks. The
processor and the memory can be supplemented by, or
incorporated in, special purpose logic circuitry.

[0175] To provide for interaction with a user, embodi-
ments of the subject matter described herein can be imple-
mented on a computer having a display device, e.g., a CRT

Jul. 11, 2019

(cathode ray tube) or LCD (liquid crystal display) monitor,
for displaying information/data to the user and a keyboard
and a pointing device, e.g., a mouse or a trackball, by which
the user can provide input to the computer. Other kinds of
devices can be used to provide for interaction with a user as
well; for example, feedback provided to the user can be any
form of sensory feedback, e.g., visual feedback, auditory
feedback, or tactile feedback; and input from the user can be
received in any form, including acoustic, speech, or tactile
input. In addition, a computer can interact with a user by
sending documents to and receiving documents from a
device that is used by the user; for example, by sending web
pages to a web browser on a user’s client device in response
to requests received from the web browser.

[0176] Embodiments of the subject matter described
herein can be implemented in a computing system that
includes a back-end component, e.g., as an information/data
server, or that includes a middleware component, e.g., an
application server, or that includes a front-end component,
e.g., a client computer having a graphical user interface or
a web browser through which a user can interact with an
implementation of the subject matter described herein, or
any combination of one or more such back-end, middleware,
or front-end components. The components of the system can
be interconnected by any form or medium of digital infor-
mation/data communication, e.g., a communication net-
work. Examples of communication networks include a local
area network (“LLAN™) and a wide area network (“WAN”),
an inter-network (e.g., the Internet), and peer-to-peer net-
works (e.g., ad hoc peer-to-peer networks).

[0177] The computing system can include clients and
servers. A client and server are generally remote from each
other and typically interact through a communication net-
work. The relationship of client and server arises by virtue
of computer programs running on the respective computers
and having a client-server relationship to each other. In some
embodiments, a server transmits information/data (e.g., an
HTML page) to a client device (e.g., for purposes of
displaying information/data to and receiving user input from
a user interacting with the client device). Information/data
generated at the client device (e.g., a result of the user
interaction) can be received from the client device at the
server.

[0178] While this specification contains many specific
implementation details, these should not be construed as
limitations on the scope of any disclosures or of what may
be claimed, but rather as descriptions of features specific to
particular embodiments of particular disclosures. Certain
features that are described herein in the context of separate
embodiments can also be implemented in combination in a
single embodiment. Conversely, various features that are
described in the context of a single embodiment can also be
implemented in multiple embodiments separately or in any
suitable subcombination. Moreover, although features may
be described above as acting in certain combinations and
even initially claimed as such, one or more features from a
claimed combination can in some cases be excised from the
combination, and the claimed combination may be directed
to a subcombination or variation of a subcombination.
[0179] Similarly, while operations are depicted in the
drawings in a particular order, this should not be understood
as requiring that such operations be performed in the par-
ticular order shown or in sequential order, or that all illus-
trated operations be performed, to achieve desirable results.
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In certain circumstances, multitasking and parallel process-
ing may be advantageous. Moreover, the separation of
various system components in the embodiments described
above should not be understood as requiring such separation
in all embodiments, and it should be understood that the
described program components and systems can generally
be integrated together in a single software product or pack-
aged into multiple software products.

[0180] Thus, particular embodiments of the subject matter
have been described. Other embodiments are within the
scope of the following claims. In some cases, the actions
recited in the claims can be performed in a different order
and still achieve desirable results. In addition, the processes
depicted in the accompanying figures do not necessarily
require the particular order shown, or sequential order, to
achieve desirable results. In certain implementations, mul-
titasking and parallel processing may be advantageous.

Conclusion

[0181] Many modifications and other embodiments of the
disclosures set forth herein will come to mind to one skilled
in the art to which these disclosures pertain having the
benefit of the teachings presented in the foregoing descrip-
tions and the associated drawings. Therefore, it is to be
understood that the disclosures are not to be limited to the
specific embodiments disclosed and that modifications and
other embodiments are intended to be included within the
scope of the appended claims. Although specific terms are
employed herein, they are used in a generic and descriptive
sense only and not for purposes of limitation.

What is claimed is:

1. An apparatus for generating a generalized linear model
structure definition, the apparatus comprising at least one
processor and at least one non-transitory computer readable
medium storing instructions that, when executed by the at
least one processor, cause the apparatus to:

receive a plurality of data records, each data record of the

plurality of records comprising a feature vector com-
prising plurality of predictor variables, a plurality of
corresponding predictor variable values, a dependent
variable, and a corresponding dependent variable
value;

generate a gradient boosted tree model using the plurality

of data records, wherein generating the gradient

boosted tree model comprises:

forming a first plurality of decision tree structures each
having a maximum tree depth of one (1), wherein
each decision tree structure comprises a split node
and a pair of leaf nodes, and wherein the first
plurality of decision tree structures comprises a first
number of decision tree structures necessary to
exhaust all main effects of the plurality of predictor
variables on the dependent variable; and

iteratively forming successive pluralities of decision
tree structures each having a maximum tree depth
increased by one (1) as compared to its immediately
preceding plurality of decision tree structures, each
successive plurality of decision tree structures com-
prising a number of decision tree structures neces-
sary to exhaust all interactions between the plurality
of predictor variables, the interactions associated
with a number of predictor variables equal to the
maximum depth of a current plurality of decision
tree structures;
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separate each decision tree of each of the successive
pluralities of decision tree structures into a plurality of
indicator variables represented by the leaf nodes of the
decision tree, wherein the indicator variables are
defined by a series of split decisions leading up to each
leaf node, wherein each indicator variable is associated
with a corresponding coefficient estimate, and wherein
each corresponding coefficient estimate is defined by a
prediction associated with each leaf node;

reduce the plurality of indicator variables into a first

subset of the plurality of indicator variables by com-
bining those indicator variable definitions that are iden-
tical and summing the corresponding coeflicient esti-
mates; and

combine the first subset of the plurality of indicator

variables into a generalized linear model structure
definition upon which the dependent variable depends.

2. The apparatus of claim 1, wherein the apparatus is
further configured to:

reduce the first subset of the plurality of indicator vari-

ables into a second subset of the plurality of indicator
variables, the second subset of the plurality of indicator
variables comprising only those indicator variables of
the first subset of the plurality of indicator variables
whose indicator variables are associated with a com-
mon predictor variable;

generate a vector comprising a plurality of cells, the

vector comprising a number of cells equal to a number
of all possible values or ranges of values of the com-
mon predictor variable, each cell associated with a
different possible value or range of values of all pos-
sible values or ranges of values of the common pre-
dictor variable, each cell of the plurality of cells initi-
ated to a null value; and

for each indicator variable of the second subset of the

plurality of indicator variables and successively until

all indicator variables of the second subset of the

plurality of indicator variables have been evaluated,

identify each cell of the plurality of cells satisfying an
indicator variable definition associated with the indi-
cator variable; and

in an instance where the existing identified cell contains
a null value, replace the null value with a corre-
sponding coeflicient associated with the indicator
variable;

in an instance where the existing identified cell contains
a value other than a null value, update the existing
identified cell with a sum of the existing identified
cell’s value and a corresponding coefficient associ-
ated with the indicator variable.

3. The apparatus of claim 2, wherein the plurality of
indicator variables of the second subset of the plurality of
indicator variables comprise differing split values applied to
the common predictor variables.

4. The apparatus of claim 1, wherein the apparatus is
further configured to:

reduce the first subset of the plurality of indicator vari-

ables into a second subset of the plurality of indicator
variables, the second subset of the plurality of indicator
variables comprising only those indicator variables of
the first subset of the plurality of indicator variables
whose indicator variables are associated with a com-
mon set of predictor variables;
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generate a multi-dimensional array, the multi-dimensional
array comprising a plurality of dimensions, a number of
dimensions in the plurality of dimensions equal to a
number of predictor variables included in the common
set of predictor variables, each dimension of the plu-
rality of dimensions associated with a different predic-
tor variable of the common set of predictor variables,
each dimension comprising a plurality of dimension
cells, a number of each plurality of dimension cells
equal to a number of all possible values or range of
values of the corresponding predictor variable associ-
ated therewith, each dimension cell associated with a
different possible value or range of values of all pos-
sible values or ranges of values of each corresponding
predictor variable associated therewith, each dimension
cell of the plurality of dimension cells initiated to a null
value;

for each indicator variable of the second subset of the

plurality of indicator variables, and for each predictor
variable and condition of the indicator variable’s defi-
nition, and successively until all indicator variables of
the second subset of the plurality of indicator variables
have been evaluated,

identify each dimension cell of the plurality of dimension

cells satisfying conditions of the indicator variable

definition; and

in an instance where the existing identified dimension
cell contains a null value, replace the null value with
a corresponding coefficient associated with the indi-
cator variable;

in an instance where the existing identified dimension
cell contains a value other than a null value, update
the existing identified dimension cell with a sum of
the existing identified dimension cell’s value and a
corresponding coeflicient associated with the indica-
tor variable.

5. The apparatus of claim 4, wherein the plurality of
indicator variables of the second subset of the plurality of
indicator variables comprise differing split values applied to
the common predictor variables.

6. The apparatus of claim 1, wherein reducing the plural-
ity of indicator variables into a first subset of the plurality of
indicator variables by combining those indicator variable
definitions that are identical comprises:

identifying those indicator variable definitions that share

one or more successions of conditions, wherein the one
or more successions of conditions are not in identical
order; and

reordering the one or more successions of conditions such

that the indicator variable definitions are identical.

7. The apparatus of claim 1, wherein the generalized
linear model structure definition is used to programmatically
generate one or more of predictions of homeowner loss
frequency and homeowner loss severity for an insurance
provider computing device.

8. A computer-implemented method for generating a
generalized linear model structure definition, the method
comprising:

receiving, by processing circuitry, a plurality of data

records, each data record of the plurality of records
comprising a feature vector comprising plurality of
predictor variables, a plurality of corresponding pre-
dictor variable values, a dependent variable, and a
corresponding dependent variable value;
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generating, by processing circuitry, a gradient boosted
tree model using the plurality of data records, wherein
generating the gradient boosted tree model comprises:
forming a first plurality of decision tree structures each
having a maximum tree depth of one (1), wherein
each decision tree structure comprises a split node
and a pair of leaf nodes, and wherein the first
plurality of decision tree structures comprises a first
number of decision tree structures necessary to
exhaust all main effects of the plurality of predictor
variables on the dependent variable; and
iteratively forming successive pluralities of decision
tree structures each having a maximum tree depth
increased by one (1) as compared to its immediately
preceding plurality of decision tree structures, each
successive plurality of decision tree structures com-
prising a number of decision tree structures neces-
sary to exhaust all interactions between the plurality
of predictor variables, the interactions associated
with a number of predictor variables equal to the
maximum depth of a current plurality of decision
tree structures;
separating, by processing circuitry, each decision tree of
each of the successive pluralities of decision tree struc-
tures into a plurality of indicator variables represented
by the leaf nodes of the decision tree, wherein the
indicator variables are defined by a series of split
decisions leading up to each leaf node, wherein each
indicator variable is associated with a corresponding
coeflicient estimate, and wherein each corresponding
coeflicient estimate is defined by a prediction associ-
ated with each leaf node;
reducing, by processing circuitry, the plurality of indicator
variables into a first subset of the plurality of indicator
variables by combining those indicator variable defi-
nitions that are identical and summing the correspond-
ing coeflicient estimates; and
combining, by processing circuitry, the first subset of the
plurality of indicator variables into a generalized linear
model structure definition upon which the dependent
variable depends.
9. The method of claim 8, further comprising:
reducing, by processing circuitry, the first subset of the
plurality of indicator variables into a second subset of
the plurality of indicator variables, the second subset of
the plurality of indicator variables comprising only
those indicator variables of the first subset of the
plurality of indicator variables whose indicator vari-
ables are associated with a common predictor variable;
generating, by processing circuitry, a vector comprising a
plurality of cells, the vector comprising a number of
cells equal to a number of all possible values or ranges
of values of the common predictor variable, each cell
associated with a different possible value or range of
values of all possible values or ranges of values of the
common predictor variable, each cell of the plurality of
cells initiated to a null value; and
for each indicator variable of the second subset of the
plurality of indicator variables and successively until
all indicator variables of the second subset of the
plurality of indicator variables have been evaluated,
identifying, by processing circuitry, each cell of the
plurality of cells satisfying an indicator variable
definition associated with the indicator variable; and
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in an instance where the existing identified cell contains 13. The method of claim 8, wherein reducing the plurality
a null value, replacing, by processing circuitry, the of indicator variables into a first subset of the plurality of
null value with a corresponding coefficient associ- indicator variables by combining those indicator variable
ated with the indicator variable; definitions that are identical comprises:
in an instance where the existing identified cell contains identifying, by the processor, those indicator variable
a value other than a null value, updating, by pro- definitions that share one or more successions of con-
cessing circuitry, the existing identified cell with a ditions, wherein the one or more successions of con-
sum of the existing identified cell’s value and a ditions are not in identical order; and
corresponding coeflicient associated with the indica- reordering, by the processor, the one or more successions
tor variable. of conditions such that the indicator variable definitions
10. The method of claim 9, wherein the plurality of are identical.
indicator variables of the second subset of the plurality of 14. The method of claim 8, wherein the generalized linear
indicator variables comprise differing split values applied to model structure definition is used to programmatically gen-
the common predictor variables. erate one or more of predictions of homeowner loss fre-

quency and homeowner loss severity for an insurance pro-

11. The method of claim 8, further comprising: L ( L
vider computing device.

reducing, by processing circuitry, the first subset of the

plurality of indicator variables into a second subset of
the plurality of indicator variables, the second subset of
the plurality of indicator variables comprising only
those indicator variables of the first subset of the
plurality of indicator variables whose indicator vari-
ables are associated with a common set of predictor
variables;

generating, by processing circuitry, a multi-dimensional

array, the multi-dimensional array comprising a plural-
ity of dimensions, a number of dimensions in the
plurality of dimensions equal to a number of predictor
variables included in the common set of predictor
variables, each dimension of the plurality of dimen-
sions associated with a different predictor variable of
the common set of predictor variables, each dimension
comprising a plurality of dimension cells, a number of
each plurality of dimension cells equal to a number of
all possible values or range of values of the correspond-
ing predictor variable associated therewith, each
dimension cell associated with a different possible
value or range of values of all possible values or ranges
of values of each corresponding predictor variable
associated therewith, each dimension cell of the plu-
rality of dimension cells initiated to a null value;

for each indicator variable of the second subset of the

plurality of indicator variables, and for each predictor
variable and condition of the indicator variable’s defi-
nition, and successively until all indicator variables of
the second subset of the plurality of indicator variables
have been evaluated,

identifying, by processing circuitry, each dimension cell
of the plurality of dimension cells satisfying conditions
of the indicator variable definition; and

in an instance where the existing identified dimension
cell contains a null value, replacing, by processing
circuitry, the null value with a corresponding coef-
ficient associated with the indicator variable;

in an instance where the existing identified dimension
cell contains a value other than a null value, updat-
ing, by processing circuitry, the existing identified
dimension cell with a sum of the existing identified
dimension cell’s value and a corresponding coeffi-
cient associated with the indicator variable.

15. A system for generating a generalized linear model
structure definition, the system comprising at least one
repository and at least one server comprising at least one
processor and at least one non-transitory computer readable
medium storing instructions that, when executed by the at
least one processor, cause the system to:

receive a plurality of data records, each data record of the

plurality of records comprising a feature vector com-
prising plurality of predictor variables, a plurality of
corresponding predictor variable values, a dependent
variable, and a corresponding dependent variable
value;

generate a gradient boosted tree model using the plurality

of data records, wherein generating the gradient

boosted tree model comprises:

forming a first plurality of decision tree structures each
having a maximum tree depth of one (1), wherein
each decision tree structure comprises a split node
and a pair of leaf nodes, and wherein the first
plurality of decision tree structures comprises a first
number of decision tree structures necessary to
exhaust all main effects of the plurality of predictor
variables on the dependent variable; and

iteratively forming successive pluralities of decision
tree structures each having a maximum tree depth
increased by one (1) as compared to its immediately
preceding plurality of decision tree structures, each
successive plurality of decision tree structures com-
prising a number of decision tree structures neces-
sary to exhaust all interactions between the plurality
of predictor variables, the interactions associated
with a number of predictor variables equal to the
maximum depth of a current plurality of decision
tree structures;

separate each decision tree of each of the successive

pluralities of decision tree structures into a plurality of
indicator variables represented by the leaf nodes of the
decision tree, wherein the indicator variables are
defined by a series of split decisions leading up to each
leaf node, wherein each indicator variable is associated
with a corresponding coefficient estimate, and wherein
each corresponding coefficient estimate is defined by a
prediction associated with each leaf node;

reduce the plurality of indicator variables into a first

12. The method of claim 11, wherein the plurality of subset of the plurality of indicator variables by com-
indicator variables of the second subset of the plurality of bining those indicator variable definitions that are iden-
indicator variables comprise differing split values applied to tical and summing the corresponding coeflicient esti-

the common predictor variables. mates; and
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combine the first subset of the plurality of indicator
variables into a generalized linear model structure
definition upon which the dependent variable depends.

16. The system of claim 15, wherein the system is further
caused to:

reduce the first subset of the plurality of indicator vari-

ables into a second subset of the plurality of indicator
variables, the second subset of the plurality of indicator
variables comprising only those indicator variables of
the first subset of the plurality of indicator variables
whose indicator variables are associated with a com-
mon predictor variable;

generate a vector comprising a plurality of cells, the

vector comprising a number of cells equal to a number
of all possible values or ranges of values of the com-
mon predictor variable, each cell associated with a
different possible value or range of values of all pos-
sible values or ranges of values of the common pre-
dictor variable, each cell of the plurality of cells initi-
ated to a null value; and

for each indicator variable of the second subset of the

plurality of indicator variables and successively until

all indicator variables of the second subset of the

plurality of indicator variables have been evaluated,

identify each cell of the plurality of cells satisfying an
indicator variable definition associated with the indi-
cator variable; and

in an instance where the existing identified cell contains
a null value, replace the null value with a corre-
sponding coefficient associated with the indicator
variable;

in an instance where the existing identified cell contains
a value other than a null value, update the existing
identified cell with a sum of the existing identified
cell’s value and a corresponding coefficient associ-
ated with the indicator variable.

17. The system of claim 16, wherein the plurality of
indicator variables of the second subset of the plurality of
indicator variables comprise differing split values applied to
the common predictor variables.

18. The system of claim 15, wherein the system is further
caused to:

reduce the first subset of the plurality of indicator vari-

ables into a second subset of the plurality of indicator
variables, the second subset of the plurality of indicator
variables comprising only those indicator variables of

the first subset of the plurality of indicator variables
whose indicator variables are associated with a com-
mon set of predictor variables;

generate a multi-dimensional array, the multi-dimensional

array comprising a plurality of dimensions, a number of
dimensions in the plurality of dimensions equal to a

17
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number of predictor variables included in the common
set of predictor variables , each dimension of the
plurality of dimensions associated with a different
predictor variable of the common set of predictor
variables, each dimension comprising a plurality of
dimension cells, a number of each plurality of dimen-
sion cells equal to a number of all possible values or
range of values of the corresponding predictor variable
associated therewith, each dimension cell associated
with a different possible value or range of values of all
possible values or ranges of values of each correspond-
ing predictor variable associated therewith, each
dimension cell of the plurality of dimension cells
initiated to a null value;

for each indicator variable of the second subset of the

plurality of indicator variables, and for each predictor
variable and condition of the indicator variable’s defi-
nition, and successively until all indicator variables of
the second subset of the plurality of indicator variables
have been evaluated,

identify each dimension cell of the plurality of dimension

cells satisfying conditions of the indicator variable
definition; and

in an instance where the existing identified dimension
cell contains a null value, replace the null value with
a corresponding coeflicient associated with the indi-
cator variable;

in an instance where the existing identified dimension
cell contains a value other than a null value, update
the existing identified dimension cell with a sum of
the existing identified dimension cell’s value and a
corresponding coeflicient associated with the indica-
tor variable.

19. The system of claim 15, wherein reducing the plurality
of indicator variables into a first subset of the plurality of
indicator variables by combining those indicator variable
definitions that are identical comprises:

identifying those indicator variable definitions that share

one or more successions of conditions, wherein the one
or more successions of conditions are not in identical
order; and

reordering the one or more successions of conditions such

that the indicator variable definitions are identical.

20. The system of claim 15, wherein the generalized linear
model structure definition is used to programmatically gen-
erate one or more of predictions of homeowner loss fre-
quency and homeowner loss severity for an insurance pro-
vider computing device.
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