US011985356B2

a2 United States Patent
Ma et al.

US 11,985,356 B2
May 14, 2024

(10) Patent No.:
45) Date of Patent:

(54) METHODS AND APPARATUS FOR
PREDICTION SIMPLIFICATION IN VIDEO

CODING
(71) Applicant: BEIJING DAJIA INTERNET
INFORMATION TECHNOLOGY
CO., LTD., Beijing (CN)
(72) Inventors: Tsung-Chuan Ma, Beijing (CN);
Hong-Jheng Jhu, Beijing (CN);
Xianglin Wang, Beijing (CN); Yi-Wen
Chen, Beijing (CN); Xiaoyu Xiu,
Beijing (CN); Shuiming Ye, Beijing
(CN); Yun-fei Zheng, Beijing (CN);
Bing Yu, Beijing (CN)
(73) Assignee: BEIJING DAJIA INTERNET
INFORMATION TECHNOLOGY
CO., LTD., Beijing (CN)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 202 days.
(21) Appl. No.: 17/558,292
(22) Filed: Dec. 21, 2021
(65) Prior Publication Data
US 2022/0116663 Al Apr. 14, 2022
Related U.S. Application Data
(63) Continuation of application No.
PCT/US2020/038466, filed on Jun. 18, 2020.
(Continued)
(51) Imt. ClL
HO4N 19/70 (2014.01)
HO4N 19/159 (2014.01)
(Continued)
(52) US. CL
CPC HO4N 19/70 (2014.11); HO4N 19/159

(2014.11); HO4N 19/1883 (2014.11); HO4N
19/46 (2014.11)

(58) Field of Classification Search
CPC .. HO4N 19/70; HO4N 19/159; HO4N 19/1883;
HO4N 19/46
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2013/0301715 Al* 11/2013 Lin HO4N 19/593

375/240.12
2015/0049813 Al* 2/2015 Tabatabai HO4N 19/70
375/240.16

(Continued)

FOREIGN PATENT DOCUMENTS

WO WO02016137368 Al 9/2016

OTHER PUBLICATIONS

Beijing Dajia Internet Information Technology Co. Ltd. et al.,
International Search Report and Written Opinion, PCT/US2020/
038466, dated Sep. 21, 2020, 8 pgs.

(Continued)

Primary Examiner — Rowina J Cattungal
(74) Attorney, Agent, or Firm — Osha Bergman Watanabe
& Burton LLP

(57) ABSTRACT

A method of decoding a syntax element for a current coding
unit of video data is performed by an electronic apparatus.
The electronic apparatus identifies, for the current coding
unit, an above coding unit and a coding tree unit including
the current coding unit. After determining that the above
coding unit is within the coding tree unit, the electronic
apparatus decodes, from a video bitstream, a corresponding
syntax element for the current coding unit based, at least in
part, on a syntax element associated with the above coding
unit retrieved from a line buffer associated with the coding
tree unit; otherwise, the electronic apparatus decodes, from
the video bitstream, the corresponding syntax element for
the current coding unit based, at least in part, on a default

(Continued)

800

identifying, for the cuent coding unit, an above ooding unit and a coding tree nit
including ihe current coding unit 610

]

" determine ..
¥es__whigther the above coding uritis... 1o
.. within the coding tres unit

encoding, into & video bitstream, &

corresponding syntax element for the

current coding unit based, at lsast in

part, on a syntax slement associated

with the above coding unit retrieved

from a line buffer associated with the:
coding tree unit 830

ncoding, into the video bitstraarm, the
cormesponding syntax element for the
current coding unit based, at least in
part, on 2 default value assigned to
the syntex element associated with
the above coding unit 640

updating the comesponding
updating the corresponding syntax element for the curent
syntax slement for the curent coding unit in accordane with a
oding unitin accordance with a height comparison of a left
width comparison of the above coding unit of the current coding
coding unit and the current unit and the current coding unit
coding unit and the syntax and the dsfault value assigned to
slement associated with the the syntax element associated
above coding unit 530-1 with the above coding unit 40-1
detarmining a context index of determining a contexd index of
the qunrent coding unit based on the current coding unit based on
the updated comesponding the updated comesponding
syntax element for the curent syntax element for tha cunrent
cading unit 830-3 coding unit 403
ancoding, into the video ancoding, into the video
bitsiream, the coresponding bitsiream, the corresponding
syntax element for the curent syntax element for the curent
coding unit in accordance with coding unitin eccordance with
the cantext index of the current the context index of the curent
cading unit 630-5 coding unit 40-5

US 11,985,356 B2
Page 2

value assigned to the syntax element associated with the
above coding unit.

18 Claims, 10 Drawing Sheets

Related U.S. Application Data

(60) Provisional application No. 62/887,533, filed on Aug.
15, 2019, provisional application No. 62/865,180,
filed on Jun. 22, 2019.

(51) Imt.CL
HO4N 19/169 (2014.01)
HO4N 19/46 (2014.01)
(56) References Cited

U.S. PATENT DOCUMENTS

2016/0065964 Al 3/2016 Zhang et al.
2017/0223379 Al 8/2017 Chuang et al.
2018/0213224 Al 7/2018 Son et al.

OTHER PUBLICATIONS

Benjamin Bross et al., “Versatile Video Coding (Draft 5),” JVET-
N1001-v8, Joint Video Experts Team (JVET) of ITU-T SG 16 WP
3 and ISO/IEC JTC 1S/C 29/WG 11, 14th Meeting: Geneva, CH,
Jun. 11, 2019, pp. 1-385, pp. 20, 24, 330-331, 400 pgs.

Extended European Search Report issued in corresponding Euro-
pean patent application No. 20831311.4 dated May 17, 2023 (8

pages).

* cited by examiner

US 11,985,356 B2

Sheet 1 of 10

May 14, 2024

U.S. Patent

gz aoepLlU| Indu

|

¢ Jopo2aQ 08pIA

1 "Old

9l

N

Z2Z @oeualu| IndinQ

|

Z Jopooug oapIA

.

¥< aoineq Aeidsig

ZE 921na(abelois

[921A8Q uoneunsaqg

|

gl @2Jn0S 09pIA

[991A8Qg 924n0S

US 11,985,356 B2

Sheet 2 of 10

May 14, 2024

U.S. Patent

¢ Old
09 1un ¢d
Buissasold A > ¥9 Jayng
wiosuell | yo0g [enpisay yo0Ig alnpld papodaq
mm%é_ POJONIISUODDY PaIONIISUODDY
8|S HuN
uonezinuenp
— 9SJaAU| — ¥¥ 1un
B b con || [T | [sotitos
weans)g \ao.;cm_ SAIJOIpald UONOW
03pIA I 4
pspoouy oF F472
sjuswa|3 xejuAs nun Buissasoid | | 1un uonewnsg
uonoIpald eauy uonown
S Hun T
x0lg sy
uoljeziuent) AIOIpOIY nun uoned
T% uun Buissesold uonoipald
_ o I
2s nan
Buisseoold | + OF Aowsa|y eleq 09pIA |-
wJojsuel | A00|g [enplisay

Z Japoou3 oapIA

ejeq O0spIA

US 11,985,356 B2

Sheet 3 of 10

May 14, 2024

U.S. Patent

€ 'Old
— 06
< NML%%_”_m < 88 uun Buissasold
eled U@UOO.@O X00|9 %00|g [BnpISaY wiiojsuel] asianu|
03pIA Papo2aQ pPaIoNIISU0IDY
300|g|uoidipald
98 1un
gg uun Adon uoneziueny) asJaAu|
300|g eJiu|
SILET]NTETolg)
— paziuend
RN
uonoipald el o8
> -
300|g 9oualaley =50 SJUSW9|g nun Buipooseg Adosug
uonesuadwo?) XejuAs
UonoiN

78 nun Buissaoold
uonoipald

¢ Japo29Q 0apIA

67 fows|y Bleg 09PIA

|

weans)g

O8pIN
papooug

U.S. Patent May 14, 2024 Sheet 4 of 10 US 11,985,356 B2

CHHcSHY T
R 7] -——-F T
o Luma CTB
(128x128)
64x64 —
32x32
16x16)
cbcTB | crcTBe

FIG. 4B

US 11,985,356 B2

Sheet 5 of 10

May 14, 2024

U.S. Patent

or 'Ol
8XQ | 8X8
91X91 91X91| 91X91L
/ 8XQ | 8X8
ZEXTE S~ ovp ZeXTE
91X91 91X91| 91X91L 91X91
8XQ | 8X8
Om/u”\\ 91X91 91X91| 91X91
8XQ | 8X8
ZEXTE zEXTE
91X91 91X91| 91X91L 91X91
\\\\\| oz
i
ZEXTE ZEXTE
¢ (rox¥9) NLD
ZEXTE ZEXTE

US 11,985,356 B2

Sheet 6 of 10

May 14, 2024

U.S. Patent

8x8

91X0l

ARSAN

4

8x8

8x8

0cy

arv oid
gxg 8X8 8X8 8Xxg 8X8
91X9l 91X9l 91X9l 91X9l
oey
AR LA
Ol
0]0]7

91x91

US 11,985,356 B2

Sheet 7 of 10

May 14, 2024

U.S. Patent

3y 'Old
Buiuoniued
Aieulia) [eoiua)
V/H
¢/H
V/H
Buiuoniued Buiuoniued
Kieuiq [eoiap Aleuiq |BlUOZIIOH
[
¢/H “
—— I —— N —— R —— B —— B —— B —— I —— =
|
¢/H !
|
I

¢/M

¢/M

Buiuoniued

Aieulia) |ejuUOZIIOH
[[
| |
| |
| |
| |
| |
| |
[[

VIM /M /M
Buiuoniued
Keusayenpd

[

|

|

o

|

|

|

|

+-—-——-MN—-————>

<“-——-——I ————>

US 11,985,356 B2

Sheet 8 of 10

May 14, 2024

U.S. Patent

we

S 'Old
'D5G Jepoo onewyue Aeulq 1_
[— ssedAq
_ ovg eubuz | |
i Siq _omvoo_ Buipoo ssedAg [uiq
ssedAq _
ansiq g _
" Y Jeinbe. _
[_ a7
“ S}q p8pod 0¢S auibug A."| ._w_wwmo_\,_ Buuys uig
Buipoo tejnbay ' .
_ _ [Spow Xajuoo ulq Jo Buisseooud
e Sy 4 XBJUOD + |elas
‘anjeA uiq _ .

—_—_——,e—ee e, e, e, e, e e, e o ———

alepdn [apow JX8juo9 Jo} anjeA ulq

Juawg|a xejuhs Aleulq >

Buuys
uiq

01§
Jlazueulg

1UBWa|e XeuAs
Aleuig-uou

TENEE)

XeJUAs

U.S. Patent May 14, 2024 Sheet 9 of 10 US 11,985,356 B2

00

identifying, for the current coding unit, an above coding unit and a coding tree unit
including the current coding unit 610

determine
whether the above coding unit
within the coding tree unit
620

encoding, into a video bitstream, a encoding, into the video bitstream, the
corresponding syntax element for the corresponding syntax element for the
current coding unit based, at least in current coding unit based, at least in
part, on a syntax element associated part, on a default value assigned to
with the above coding unit retrieved the syntax element associated with
from a line buffer associated with the the above coding unit 640
coding tree unit 630 _ .
: : updating the corresponding
updating the corresponding syntax element for the current
syntax element for the current coding unit in accordance with a
coding unit in accordance with a height comparison of a left
width comparison of the above coding unit of the current coding
coding unit and the current unit and the current coding unit
coding unit and the syntax and the default value assigned to
element associated with the the syntax element associated
above coding unit 630-1 with the above coding unit 640-1
determining a context index of determining a context index of
the current coding unit based on the current coding unit based on
the updated corresponding the updated corresponding
syntax element for the current syntax element for the current
coding unit 630-3 coding unit 640-3
encoding, into the video encoding, into the video
bitstream, the corresponding bitstream, the corresponding
syntax element for the current syntax element for the current
coding unit in accordance with coding unit in accordance with
the context index of the current the context index of the current
coding unit 630-5 coding unit 640-5

FIG. 6A

U.S. Patent May 14, 2024 Sheet 10 of 10 US 11,985,356 B2

50

identifying, for the current coding unit, an above coding unit and a coding tree unit
including the current coding unit 660

determine
whether the above coding unit
within the coding tree unit
670

decoding, from a video bitstream, a
corresponding syntax element for the
current coding unit based, at least in
part, on a syntax element associated
with the above coding unit retrieved
from a line buffer associated with the

coding tree unit 680

updating the corresponding
syntax element for the current
coding unit in accordance with a
width comparison of the above
coding unit and the current
coding unit and the syntax
element associated with the
above coding unit 680-1

'

determining a context index of
the current coding unit based on
the updated corresponding
syntax element for the current
coding unit 680-3

!

decoding, from the video
bitstream, the corresponding
syntax element for the current
coding unit in accordance with
the context index of the current
coding unit 680-5

decoding, from the video bitstream,
the corresponding syntax element for
the current coding unit based, at least
in part, on a default value assigned to
the syntax element associated with
the above coding unit 690

updating the corresponding
syntax element for the current
coding unit in accordance with a
height comparison of a left
coding unit of the current coding
unit and the current coding unit
and the default value assigned to
the syntax element associated
with the above coding unit 690-1

:

determining a context index of
the current coding unit based on
the updated corresponding
syntax element for the current
coding unit 690-3

!

decoding, from the video
bitstream, the corresponding
syntax element for the current
coding unit in accordance with
the context index of the current
coding unit 690-5

FIG. 6B

US 11,985,356 B2

1
METHODS AND APPARATUS FOR
PREDICTION SIMPLIFICATION IN VIDEO
CODING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of PCT Application
PCT/US2020/038466 filed on Jun. 18, 2020, which is based
upon and claims priority to U.S. Provisional Application No.
62/865,180 filed on Jun. 22, 2019 and U.S. Provisional
Application No. 62/887,533 filed on Aug. 15, 2019, all of
which are incorporated herein by reference in their entities
for all purposes.

TECHNICAL FIELD

The present application generally relates to video data
coding and compression, and in particular, to method and
apparatus for prediction simplification in video coding.

BACKGROUND

Digital video is supported by a variety of electronic
devices, such as digital televisions, laptop or desktop com-
puters, tablet computers, digital cameras, digital recording
devices, digital media players, video gaming consoles, smart
phones, video teleconferencing devices, video streaming
devices, etc. The electronic devices transmit, receive,
encode, decode, and/or store digital video data by imple-
menting video compression/decompression standards as
defined by MPEG-4, ITU-T H.263, ITU-T H.264/MPEG-4,
Part 10, Advanced Video Coding (AVC), High Efficiency
Video Coding (HEVC), and Versatile Video Coding (VVC)
standard. Video compression typically includes performing
spatial (intra frame) prediction and/or temporal (inter frame)
prediction to reduce or remove redundancy inherent in the
video data. For block-based video coding, a video frame is
partitioned into one or more slices, each slice having mul-
tiple video blocks, which may also be referred to as coding
tree units (CTUs). Each CTU may contain one coding unit
(CU) or recursively split into smaller CUs until the pre-
defined minimum CU size is reached. Each CU (also named
leaf CU) contains one or multiple transform units (TUs) and
each CU also contains one or multiple prediction units
(PUs). Each CU can be coded in either intra, inter or
intra-block copy (IBC) modes. Video blocks in an intra
coded (1) slice of a video frame are encoded using spatial
prediction with respect to reference samples in neighboring
blocks within the same video frame. Video blocks in an inter
coded (P or B) slice of a video frame may use spatial
prediction with respect to reference samples in neighboring
blocks within the same video frame or temporal prediction
with respect to reference samples in other previous and/or
future reference video frames.

Spatial or temporal prediction based on a reference block
that has been previously encoded, e.g., a neighboring block,
results in a predictive block for a current video block to be
coded. The process of finding the reference block may be
accomplished by block matching algorithm. Residual data
representing pixel differences between the current block to
be coded and the predictive block is referred to as a residual
block or prediction errors. An inter-coded block is encoded
according to a motion vector that points to a reference block
in a reference frame forming the predictive block, and the
residual block. The process of determining the motion vector
is typically referred to as motion estimation. An intra coded

15

40

45

55

2

block is encoded according to an intra prediction mode and
the residual block. For further compression, the residual
block is transformed from the pixel domain to a transform
domain, e.g., frequency domain, resulting in residual trans-
form coefficients, which may then be quantized. The quan-
tized transform coefficients, initially arranged in a two-
dimensional array, may be scanned to produce a one-
dimensional vector of transform coefficients, and then
entropy encoded into a video bitstream to achieve even more
compression.

The encoded video bitstream is then saved in a computer-
readable storage medium (e.g., flash memory) to be accessed
by another electronic device with digital video capability or
directly transmitted to the electronic device wired or wire-
lessly. The electronic device then performs video decom-
pression (which is an opposite process to the video com-
pression described above) by, e.g., parsing the encoded
video bitstream to obtain syntax elements from the bitstream
and reconstructing the digital video data to its original
format from the encoded video bitstream based at least in
part on the syntax elements obtained from the bitstream, and
renders the reconstructed digital video data on a display of
the electronic device.

With digital video quality going from high definition, to
4Kx2K or even 8Kx4K, the amount of vide data to be
encoded/decoded grows exponentially. It is a constant chal-
lenge in terms of how the video data can be encoded/
decoded more efficiently while maintaining the image qual-
ity of the decoded video data.

SUMMARY

The present application describes implementations related
to video data encoding and decoding and, more particularly,
to the improvements and simplifications of prediction in
video coding.

According to a first aspect of the present application, a
method of decoding a syntax element for a current coding
unit of video data includes: identifying, for the current
coding unit, an above coding unit and a coding tree unit
including the current coding unit; in accordance with a
determination that the above coding unit is within the coding
tree unit, decoding, from a video bitstream, a corresponding
syntax element for the current coding unit based, at least in
part, on a syntax element associated with the above coding
unit retrieved from a line buffer associated with the coding
tree unit; and in accordance with a determination that the
above coding unit is not within the coding tree unit, decod-
ing, from the video bitstream, the corresponding syntax
element for the current coding unit based, at least in part, on
a default value assigned to the syntax element associated
with the above coding unit.

According to a second aspect of the present application,
a method of encoding a syntax element for a current coding
unit of video data includes: identifying, for the current
coding unit, an above coding unit and a coding tree unit
including the current coding unit; in accordance with a
determination that the above coding unit is within the coding
tree unit, encoding, into a video bitstream, a corresponding
syntax element for the current coding unit based, at least in
part, on a syntax element associated with the above coding
unit retrieved from a line buffer associated with the coding
tree unit; and in accordance with a determination that the
above coding unit is not within the coding tree unit, encod-
ing, into the video bitstream, the corresponding syntax

US 11,985,356 B2

3

element for the current coding unit based, at least in part, on
a default value assigned to the syntax element associated
with the above coding unit.

According to a third aspect of the present application, an
electronic apparatus includes one or more processing units,
memory and a plurality of programs stored in the memory.
The programs, when executed by the one or more processing
units, cause the electronic apparatus to perform the methods
of decoding or encoding a syntax element for a current
coding unit of video data as described above.

According to a fourth aspect of the present application, a
non-transitory computer readable storage medium stores a
plurality of programs for execution by an electronic appa-
ratus having one or more processing units. The programs,
when executed by the one or more processing units, cause
the electronic apparatus to perform the methods of decoding
or encoding a syntax element for a current coding unit of
video data as described above.

BRIEF DESCRIPTION OF DRAWINGS

The accompanying drawings, which are included to pro-
vide a further understanding of the implementations and are
incorporated herein and constitute a part of the specification,
illustrate the described implementations and together with
the description serve to explain the underlying principles.
Like reference numerals refer to corresponding parts.

FIG. 1 is a block diagram illustrating an exemplary video
encoding and decoding system in accordance with some
implementations of the present disclosure.

FIG. 2 is a block diagram illustrating an exemplary video
encoder in accordance with some implementations of the
present disclosure.

FIG. 3 is a block diagram illustrating an exemplary video
decoder in accordance with some implementations of the
present disclosure.

FIGS. 4A through 4E are block diagrams illustrating how
a frame is recursively partitioned into multiple video blocks
of different sizes and shapes in accordance with some
implementations of the present disclosure.

FIG. 5 is a block diagram illustrating an example of
performing context-based encoding of syntax elements in
accordance with some implementations of the present dis-
closure.

FIG. 6A is a flowchart illustrating an exemplary process
by which a video encoder implements the techniques of
encoding a syntax element for a current coding unit of video
data in accordance with some implementations of the pres-
ent disclosure.

FIG. 6B is a flowchart illustrating an exemplary process
by which a video decoder implements the techniques of
decoding a syntax element for a current coding unit of video
data in accordance with some implementations of the pres-
ent disclosure.

DETAILED DESCRIPTION

Reference will now be made in detail to specific imple-
mentations, examples of which are illustrated in the accom-
panying drawings. In the following detailed description,
numerous non-limiting specific details are set forth in order
to assist in understanding the subject matter presented
herein. But it will be apparent to one of ordinary skill in the
art that various alternatives may be used without departing
from the scope of claims and the subject matter may be
practiced without these specific details. For example, it will
be apparent to one of ordinary skill in the art that the subject

10

20

30

35

40

45

55

4

matter presented herein can be implemented on many types
of electronic devices with digital video capabilities.

FIG. 1 is a block diagram illustrating an exemplary
system 10 for encoding and decoding video blocks in
parallel in accordance with some implementations of the
present disclosure. As shown in FIG. 1, system 10 includes
a source device 12 that generates and encodes video data to
be decoded subsequently by a destination device 14. Source
device 12 and destination device 14 may comprise any of a
wide variety of electronic devices, including desktop or
laptop computers, tablet computers, smart phones, set-top
boxes, digital televisions, cameras, display devices, digital
media players, video gaming consoles, video streaming
device, or the like. In some implementations, source device
12 and destination device 14 are equipped with wireless
communication capabilities.

In some implementations, destination device 14 may
receive the encoded video data to be decoded via a link 16.
Link 16 may comprise any type of communication medium
or device capable of moving the encoded video data from
source device 12 to destination device 14. In one example,
link 16 may comprise a communication medium to enable
source device 12 to transmit the encoded video data directly
to destination device 14 in real-time. The encoded video data
may be modulated according to a communication standard,
such as a wireless communication protocol, and transmitted
to destination device 14. The communication medium may
comprise any wireless or wired communication medium,
such as a radio frequency (RF) spectrum or one or more
physical transmission lines. The communication medium
may form part of a packet-based network, such as a local
area network, a wide-area network, or a global network such
as the Internet. The communication medium may include
routers, switches, base stations, or any other equipment that
may be useful to facilitate communication from source
device 12 to destination device 14.

In some other implementations, the encoded video data
may be transmitted from output interface 22 to a storage
device 32. Subsequently, the encoded video data in storage
device 32 may be accessed by destination device 14 via
input interface 28. Storage device 32 may include any of a
variety of distributed or locally accessed data storage media
such as a hard drive, Blu-ray discs, DVDs, CD-ROMs, flash
memory, volatile or non-volatile memory, or any other
suitable digital storage media for storing encoded video
data. In a further example, storage device 32 may corre-
spond to a file server or another intermediate storage device
that may hold the encoded video data generated by source
device 12. Destination device 14 may access the stored
video data from storage device 32 via streaming or down-
loading. The file server may be any type of computer capable
of storing encoded video data and transmitting the encoded
video data to destination device 14. Exemplary file servers
include a web server (e.g., for a website), an FTP server,
network attached storage (NAS) devices, or a local disk
drive. Destination device 14 may access the encoded video
data through any standard data connection, including a
wireless channel (e.g., a Wi-Fi connection), a wired con-
nection (e.g., DSL, cable modem, etc.), or a combination of
both that is suitable for accessing encoded video data stored
on a file server. The transmission of encoded video data from
storage device 32 may be a streaming transmission, a
download transmission, or a combination of both.

As shown in FIG. 1, source device 12 includes a video
source 18, a video encoder 20 and an output interface 22.
Video source 18 may include a source such as a video
capture device, e.g., a video camera, a video archive con-

US 11,985,356 B2

5

taining previously captured video, a video feed interface to
receive video from a video content provider, and/or a
computer graphics system for generating computer graphics
data as the source video, or a combination of such sources.
As one example, if video source 18 is a video camera of a
security surveillance system, source device 12 and destina-
tion device 14 may form camera phones or video phones.
However, the implementations described in the present
application may be applicable to video coding in general,
and may be applied to wireless and/or wired applications.

The captured, pre-captured, or computer-generated video
may be encoded by video encoder 20. The encoded video
data may be transmitted directly to destination device 14 via
output interface 22 of source device 12. The encoded video
data may also (or alternatively) be stored onto storage device
32 for later access by destination device 14 or other devices,
for decoding and/or playback. Output interface 22 may
further include a modem and/or a transmitter.

Destination device 14 includes an input interface 28, a
video decoder 30, and a display device 34. Input interface 28
may include a receiver and/or a modem and receive the
encoded video data over link 16. The encoded video data
communicated over link 16, or provided on storage device
32, may include a variety of syntax elements generated by
video encoder 20 for use by video decoder 30 in decoding
the video data. Such syntax elements may be included within
the encoded video data transmitted on a communication
medium, stored on a storage medium, or stored a file server.

In some implementations, destination device 14 may
include a display device 34, which can be an integrated
display device and an external display device that is con-
figured to communicate with destination device 14. Display
device 34 displays the decoded video data to a user, and may
comprise any of a variety of display devices such as a liquid
crystal display (LCD), a plasma display, an organic light
emitting diode (OLED) display, or another type of display
device.

Video encoder 20 and video decoder 30 may operate
according to proprietary or industry standards, such as VVC,
HEVC, MPEG-4, Part 10, Advanced Video Coding (AVC),
or extensions of such standards. It should be understood that
the present application is not limited to a specific video
coding/decoding standard and may be applicable to other
video coding/decoding standards. It is generally contem-
plated that video encoder 20 of source device 12 may be
configured to encode video data according to any of these
current or future standards. Similarly, it is also generally
contemplated that video decoder 30 of destination device 14
may be configured to decode video data according to any of
these current or future standards.

Video encoder 20 and video decoder 30 each may be
implemented as any of a variety of suitable encoder cir-
cuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits
(ASICs), field programmable gate arrays (FPGAs), discrete
logic, software, hardware, firmware or any combinations
thereof. When implemented partially in software, an elec-
tronic device may store instructions for the software in a
suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more
processors to perform the video coding/decoding operations
disclosed in the present disclosure. Each of video encoder 20
and video decoder 30 may be included in one or more
encoders or decoders, either of which may be integrated as
part of a combined encoder/decoder (CODEC) in a respec-
tive device.

20

30

40

45

6

FIG. 2 is a block diagram illustrating an exemplary video
encoder 20 in accordance with some implementations
described in the present application. Video encoder 20 may
perform intra and inter predictive coding of video blocks
within video frames. Intra predictive coding relies on spatial
prediction to reduce or remove spatial redundancy in video
data within a given video frame or picture. Inter predictive
coding relies on temporal prediction to reduce or remove
temporal redundancy in video data within adjacent video
frames or pictures of a video sequence.

As shown in FIG. 2, video encoder 20 includes video data
memory 40, prediction processing unit 41, decoded picture
buffer (DPB) 64, summer 50, transform processing unit 52,
quantization unit 54, and entropy encoding unit 56. Predic-
tion processing unit 41 further includes motion estimation
unit 42, motion compensation unit 44, partition unit 45, intra
prediction processing unit 46, and intra block copy (BC) unit
48. In some implementations, video encoder 20 also
includes inverse quantization unit 58, inverse transform
processing unit 60, and summer 62 for video block recon-
struction. A deblocking filter (not shown) may be positioned
between summer 62 and DPB 64 to filter block boundaries
to remove blockiness artifacts from reconstructed video. An
in loop filter (not shown) may also be used in addition to the
deblocking filter to filter the output of summer 62. Video
encoder 20 may take the form of a fixed or programmable
hardware unit or may be divided among one or more of the
illustrated fixed or programmable hardware units.

Video data memory 40 may store video data to be encoded
by the components of video encoder 20. The video data in
video data memory 40 may be obtained, for example, from
video source 18. DPB 64 is a buffer that stores reference
video data for use in encoding video data by video encoder
20 (e.g., in intra or inter predictive coding modes). Video
data memory 40 and DPB 64 may be formed by any of a
variety of memory devices. In various examples, video data
memory 40 may be on-chip with other components of video
encoder 20, or off-chip relative to those components.

As shown in FIG. 2, after receiving video data, partition
unit 45 within prediction processing unit 41 partitions the
video data into video blocks. This partitioning may also
include partitioning a video frame into slices, tiles, or other
larger coding units (CUs) according to a predefined splitting
structures such as quad-tree structure associated with the
video data. The video frame may be divided into multiple
video blocks (or sets of video blocks referred to as tiles).
Prediction processing unit 41 may select one of a plurality
of possible predictive coding modes, such as one of a
plurality of intra predictive coding modes or one of a
plurality of inter predictive coding modes, for the current
video block based on error results (e.g., coding rate and the
level of distortion). Prediction processing unit 41 may
provide the resulting intra or inter prediction coded block to
summer 50 to generate a residual block and to summer 62 to
reconstruct the encoded block for use as part of a reference
frame subsequently. Prediction processing unit 41 also pro-
vides syntax elements, such as motion vectors, intra-mode
indicators, partition information, and other such syntax
information, to entropy encoding unit 56.

In order to select an appropriate intra predictive coding
mode for the current video block, intra prediction processing
unit 46 within prediction processing unit 41 may perform
intra predictive coding of the current video block relative to
one or more neighboring blocks in the same frame as the
current block to be coded to provide spatial prediction.
Motion estimation unit 42 and motion compensation unit 44
within prediction processing unit 41 perform inter predictive

US 11,985,356 B2

7

coding of the current video block relative to one or more
predictive blocks in one or more reference frames to provide
temporal prediction. Video encoder 20 may perform mul-
tiple coding passes, e.g., to select an appropriate coding
mode for each block of video data.

In some implementations, motion estimation unit 42
determines the inter prediction mode for a current video
frame by generating a motion vector, which indicates the
displacement of a prediction unit (PU) of a video block
within the current video frame relative to a predictive block
within a reference video frame, according to a predeter-
mined pattern within a sequence of video frames. Motion
estimation, performed by motion estimation unit 42, is the
process of generating motion vectors, which estimate
motion for video blocks. A motion vector, for example, may
indicate the displacement of a PU of a video block within a
current video frame or picture relative to a predictive block
within a reference frame (or other coded unit) relative to the
current block being coded within the current frame (or other
coded unit). The predetermined pattern may designate video
frames in the sequence as P frames or B frames. Intra BC
unit 48 may determine vectors, e.g., block vectors, for intra
BC coding in a manner similar to the determination of
motion vectors by motion estimation unit 42 for inter
prediction, or may utilize motion estimation unit 42 to
determine the block vector.

A predictive block is a block of a reference frame that is
deemed as closely matching the PU of the video block to be
coded in terms of pixel difference, which may be determined
by sum of absolute difference (SAD), sum of square differ-
ence (SSD), or other difference metrics. In some implemen-
tations, video encoder 20 may calculate values for sub-
integer pixel positions of reference frames stored in DPB 64.
For example, video encoder 20 may interpolate values of
one-quarter pixel positions, one-cighth pixel positions, or
other fractional pixel positions of the reference frame.
Therefore, motion estimation unit 42 may perform a motion
search relative to the full pixel positions and fractional pixel
positions and output a motion vector with fractional pixel
precision.

Motion estimation unit 42 calculates a motion vector for
a PU of a video block in an inter prediction coded frame by
comparing the position of the PU to the position of a
predictive block of a reference frame selected from a first
reference frame list (List 0) or a second reference frame list
(List 1), each of which identifies one or more reference
frames stored in DPB 64. Motion estimation unit 42 sends
the calculated motion vector to motion compensation unit 44
and then to entropy encoding unit 56.

Motion compensation, performed by motion compensa-
tion unit 44, may involve fetching or generating the predic-
tive block based on the motion vector determined by motion
estimation unit 42. Upon receiving the motion vector for the
PU of the current video block, motion compensation unit 44
may locate a predictive block to which the motion vector
points in one of the reference frame lists, retrieve the
predictive block from DPB 64, and forward the predictive
block to summer 50. Summer 50 then forms a residual video
block of pixel difference values by subtracting pixel values
of the predictive block provided by motion compensation
unit 44 from the pixel values of the current video block
being coded. The pixel difference values forming the
residual vide block may include luma or chroma difference
components or both. Motion compensation unit 44 may also
generate syntax elements associated with the video blocks of
a video frame for use by video decoder 30 in decoding the
video blocks of the video frame. The syntax elements may

25

40

45

50

55

8

include, for example, syntax elements defining the motion
vector used to identify the predictive block, any flags
indicating the prediction mode, or any other syntax infor-
mation described herein. Note that motion estimation unit 42
and motion compensation unit 44 may be highly integrated,
but are illustrated separately for conceptual purposes.

In some implementations, intra BC unit 48 may generate
vectors and fetch predictive blocks in a manner similar to
that described above in connection with motion estimation
unit 42 and motion compensation unit 44, but with the
predictive blocks being in the same frame as the current
block being coded and with the vectors being referred to as
block vectors as opposed to motion vectors. In particular,
intra BC unit 48 may determine an intra-prediction mode to
use to encode a current block. In some examples, intra BC
unit 48 may encode a current block using various intra-
prediction modes, e.g., during separate encoding passes, and
test their performance through rate-distortion analysis. Next,
intra BC unit 48 may select, among the various tested
intra-prediction modes, an appropriate intra-prediction
mode to use and generate an intra-mode indicator accord-
ingly. For example, intra BC unit 48 may calculate rate-
distortion values using a rate-distortion analysis for the
various tested intra-prediction modes, and select the intra-
prediction mode having the best rate-distortion characteris-
tics among the tested modes as the appropriate intra-predic-
tion mode to use. Rate-distortion analysis generally
determines an amount of distortion (or error) between an
encoded block and an original, unencoded block that was
encoded to produce the encoded block, as well as a bitrate
(i.e., a number of bits) used to produce the encoded block.
Intra BC unit 48 may calculate ratios from the distortions
and rates for the various encoded blocks to determine which
intra-prediction mode exhibits the best rate-distortion value
for the block.

In other examples, intra BC unit 48 may use motion
estimation unit 42 and motion compensation unit 44, in
whole or in part, to perform such functions for Intra BC
prediction according to the implementations described
herein. In either case, for Intra block copy, a predictive block
may be a block that is deemed as closely matching the block
to be coded, in terms of pixel difference, which may be
determined by sum of absolute difference (SAD), sum of
squared difference (SSD), or other difference metrics, and
identification of the predictive block may include calculation
of values for sub-integer pixel positions.

Whether the predictive block is from the same frame
according to intra prediction, or a different frame according
to inter prediction, video encoder 20 may form a residual
video block by subtracting pixel values of the predictive
block from the pixel values of the current video block being
coded, forming pixel difference values. The pixel difference
values forming the residual video block may include both
luma and chroma component differences.

Intra prediction processing unit 46 may intra-predict a
current video block, as an alternative to the inter-prediction
performed by motion estimation unit 42 and motion com-
pensation unit 44, or the intra block copy prediction per-
formed by intra BC unit 48, as described above. In particu-
lar, intra prediction processing unit 46 may determine an
intra prediction mode to use to encode a current block. To do
s0, intra prediction processing unit 46 may encode a current
block using various intra prediction modes, e.g., during
separate encoding passes, and intra prediction processing
unit 46 (or a mode select unit, in some examples) may select
an appropriate intra prediction mode to use from the tested
intra prediction modes. Intra prediction processing unit 46

US 11,985,356 B2

9

may provide information indicative of the selected intra-
prediction mode for the block to entropy encoding unit 56.
Entropy encoding unit 56 may encode the information
indicating the selected intra-prediction mode in the bit-
stream.

After prediction processing unit 41 determines the pre-
dictive block for the current video block via either inter
prediction or intra prediction, summer 50 forms a residual
video block by subtracting the predictive block from the
current video block. The residual video data in the residual
block may be included in one or more transform units (TUs)
and is provided to transform processing unit 52. Transform
processing unit 52 transforms the residual video data into
residual transform coefficients using a transform, such as a
discrete cosine transform (DCT) or a conceptually similar
transform.

Transform processing unit 52 may send the resulting
transform coefficients to quantization unit 54. Quantization
unit 54 quantizes the transform coefficients to further reduce
bit rate. The quantization process may also reduce the bit
depth associated with some or all of the coefficients. The
degree of quantization may be modified by adjusting a
quantization parameter. In some examples, quantization unit
54 may then perform a scan of a matrix including the
quantized transform coefficients. Alternatively, entropy
encoding unit 56 may perform the scan.

Following quantization, entropy encoding unit 56 entropy
encodes the quantized transform coefficients into a video
bitstream using, e.g., context adaptive variable length coding
(CAVLC), context adaptive binary arithmetic coding (CA-
BAC), syntax-based context-adaptive binary arithmetic cod-
ing (SBAC), probability interval partitioning entropy (PIPE)
coding or another entropy encoding methodology or tech-
nique. The encoded bitstream may then be transmitted to
video decoder 30, or archived in storage device 32 for later
transmission to or retrieval by video decoder 30. Entropy
encoding unit 56 may also entropy encode the motion
vectors and the other syntax elements for the current video
frame being coded.

Inverse quantization unit 58 and inverse transform pro-
cessing unit 60 apply inverse quantization and inverse
transformation, respectively, to reconstruct the residual
video block in the pixel domain for generating a reference
block for prediction of other video blocks. As noted above,
motion compensation unit 44 may generate a motion com-
pensated predictive block from one or more reference blocks
of the frames stored in DPB 64. Motion compensation unit
44 may also apply one or more interpolation filters to the
predictive block to calculate sub-integer pixel values for use
in motion estimation.

Summer 62 adds the reconstructed residual block to the
motion compensated predictive block produced by motion
compensation unit 44 to produce a reference block for
storage in DPB 64. The reference block may then be used by
intra BC unit 48, motion estimation unit 42 and motion
compensation unit 44 as a predictive block to inter predict
another video block in a subsequent video frame.

FIG. 3 is a block diagram illustrating an exemplary video
decoder 30 in accordance with some implementations of the
present application. Video decoder 30 includes video data
memory 79, entropy decoding unit 80, prediction processing
unit 81, inverse quantization unit 86, inverse transform
processing unit 88, summer 90, and DPB 92. Prediction
processing unit 81 further includes motion compensation
unit 82, intra prediction unit 84, and intra BC unit 85. Video
decoder 30 may perform a decoding process generally
reciprocal to the encoding process described above with

10

15

20

25

30

35

40

45

50

55

60

65

10

respect to video encoder 20 in connection with FIG. 2. For
example, motion compensation unit 82 may generate pre-
diction data based on motion vectors received from entropy
decoding unit 80, while intra-prediction unit 84 may gen-
erate prediction data based on intra-prediction mode indi-
cators received from entropy decoding unit 80.

In some examples, a unit of video decoder 30 may be
tasked to perform the implementations of the present appli-
cation. Also, in some examples, the implementations of the
present disclosure may be divided among one or more of the
units of video decoder 30. For example, intra BC unit 85
may perform the implementations of the present application,
alone, or in combination with other units of video decoder
30, such as motion compensation unit 82, intra prediction
unit 84, and entropy decoding unit 80. In some examples,
video decoder 30 may not include intra BC unit 85 and the
functionality of intra BC unit 85 may be performed by other
components of prediction processing unit 81, such as motion
compensation unit 82.

Video data memory 79 may store video data, such as an
encoded video bitstream, to be decoded by the other com-
ponents of video decoder 30. The video data stored in video
data memory 79 may be obtained, for example, from storage
device 32, from a local video source, such as a camera, via
wired or wireless network communication of video data, or
by accessing physical data storage media (e.g., a flash drive
or hard disk). Video data memory 79 may include a coded
picture buffer (CPB) that stores encoded video data from an
encoded video bitstream. Decoded picture bufter (DPB) 92
of video decoder 30 stores reference video data for use in
decoding video data by video decoder 30 (e.g., in intra or
inter predictive coding modes). Video data memory 79 and
DPB 92 may be formed by any of a variety of memory
devices, such as dynamic random access memory (DRAM),
including synchronous DRAM (SDRAM), magneto-resis-
tive RAM (MRAM), resistive RAM (RRAM), or other types
of memory devices. For illustrative purpose, video data
memory 79 and DPB 92 are depicted as two distinct com-
ponents of video decoder 30 in FIG. 3. But it will be
apparent to one skilled in the art that video data memory 79
and DPB 92 may be provided by the same memory device
or separate memory devices. In some examples, video data
memory 79 may be on-chip with other components of video
decoder 30, or off-chip relative to those components.

During the decoding process, video decoder 30 receives
an encoded video bitstream that represents video blocks of
an encoded video frame and associated syntax elements.
Video decoder 30 may receive the syntax elements at the
video frame level and/or the video block level. Entropy
decoding unit 80 of video decoder 30 entropy decodes the
bitstream to generate quantized coefficients, motion vectors
or intra-prediction mode indicators, and other syntax ele-
ments. Entropy decoding unit 80 then forwards the motion
vectors and other syntax elements to prediction processing
unit 81.

When the video frame is coded as an intra predictive
coded (I) frame or for intra coded predictive blocks in other
types of frames, intra prediction unit 84 of prediction
processing unit 81 may generate prediction data for a video
block of the current video frame based on a signaled intra
prediction mode and reference data from previously decoded
blocks of the current frame.

When the video frame is coded as an inter-predictive
coded (i.e., B or P) frame, motion compensation unit 82 of
prediction processing unit 81 produces one or more predic-
tive blocks for a video block of the current video frame
based on the motion vectors and other syntax elements

US 11,985,356 B2

11

received from entropy decoding unit 80. Each of the pre-
dictive blocks may be produced from a reference frame
within one of the reference frame lists. Video decoder 30
may construct the reference frame lists, List 0 and List 1,
using default construction techniques based on reference
frames stored in DPB 92.

In some examples, when the video block is coded accord-
ing to the intra BC mode described herein, intra BC unit 85
of prediction processing unit 81 produces predictive blocks
for the current video block based on block vectors and other
syntax elements received from entropy decoding unit 80.
The predictive blocks may be within a reconstructed region
of the same picture as the current video block defined by
video encoder 20.

Motion compensation unit 82 and/or intra BC unit 85
determines prediction information for a video block of the
current video frame by parsing the motion vectors and other
syntax elements, and then uses the prediction information to
produce the predictive blocks for the current video block
being decoded. For example, motion compensation unit 82
uses some of the received syntax elements to determine a
prediction mode (e.g., intra or inter prediction) used to code
video blocks of the video frame, an inter prediction frame
type (e.g., B or P), construction information for one or more
of the reference frame lists for the frame, motion vectors for
each inter predictive encoded video block of the frame, inter
prediction status for each inter predictive coded video block
of the frame, and other information to decode the video
blocks in the current video frame.

Similarly, intra BC unit 85 may use some of the received
syntax elements, e.g., a flag, to determine that the current
video block was predicted using the intra BC mode, con-
struction information of which video blocks of the frame are
within the reconstructed region and should be stored in DPB
92, block vectors for each intra BC predicted video block of
the frame, intra BC prediction status for each intra BC
predicted video block of the frame, and other information to
decode the video blocks in the current video frame.

Motion compensation unit 82 may also perform interpo-
lation using the interpolation filters as used by video encoder
20 during encoding of the video blocks to calculate inter-
polated values for sub-integer pixels of reference blocks. In
this case, motion compensation unit 82 may determine the
interpolation filters used by video encoder 20 from the
received syntax elements and use the interpolation filters to
produce predictive blocks.

Inverse quantization unit 86 inverse quantizes the quan-
tized transform coefficients provided in the bitstream and
entropy decoded by entropy decoding unit 80 using the same
quantization parameter calculated by video encoder 20 for
each video block in the video frame to determine a degree
of quantization. Inverse transform processing unit 88 applies
an inverse transform, e.g., an inverse DCT, an inverse
integer transform, or a conceptually similar inverse trans-
form process, to the transform coefficients in order to
reconstruct the residual blocks in the pixel domain.

After motion compensation unit 82 or intra BC unit 85
generates the predictive block for the current video block
based on the vectors and other syntax elements, summer 90
reconstructs decoded video block for the current video block
by summing the residual block from inverse transform
processing unit 88 and a corresponding predictive block
generated by motion compensation unit 82 and intra BC unit
85. An in-loop filter (not pictured) may be positioned
between summer 90 and DPB 92 to further process the
decoded video block. The decoded video blocks in a given
frame are then stored in DPB 92, which stores reference

10

15

20

25

30

35

40

45

50

55

60

65

12

frames used for subsequent motion compensation of next
video blocks. DPB 92, or a memory device separate from
DPB 92, may also store decoded video for later presentation
on a display device, such as display device 34 of FIG. 1.

In a typical video coding process, a video sequence
typically includes an ordered set of frames or pictures. Each
frame may include three sample arrays, denoted SL, SCb,
and SCr. SL is a two-dimensional array of luma samples.
SCb is a two-dimensional array of Cb chroma samples. SCr
is a two-dimensional array of Cr chroma samples. In other
instances, a frame may be monochrome and therefore
includes only one two-dimensional array of luma samples.

As shown in FIG. 4A, video encoder 20 (or more spe-
cifically partition unit 45) generates an encoded representa-
tion of a frame by first partitioning the frame into a set of
coding tree units (CTUs). A video frame may include an
integer number of CTUs ordered consecutively in a raster
scan order from left to right and from top to bottom. Each
CTU is alargest logical coding unit and the width and height
of the CTU are signaled by the video encoder 20 in a
sequence parameter set, such that all the CTUs in a video
sequence have the same size being one of 128x128, 64x64,
32x32, and 16x16. But it should be noted that the present
application is not necessarily limited to a particular size. As
shown in FIG. 4B, each CTU may comprise one coding tree
block (CTB) of luma samples, two corresponding coding
tree blocks of chroma samples, and syntax elements used to
code the samples of the coding tree blocks. The syntax
elements describe properties of different types of units of a
coded block of pixels and how the video sequence can be
reconstructed at the video decoder 30, including inter or
intra prediction, intra prediction mode, motion vectors, and
other parameters. In monochrome pictures or pictures hav-
ing three separate color planes, a CTU may comprise a
single coding tree block and syntax elements used to code
the samples of the coding tree block. A coding tree block
may be an NxN block of samples.

To achieve a better performance, video encoder 20 may
recursively perform tree partitioning such as binary-tree
partitioning, ternary-tree partitioning, quad-tree partitioning
or a combination of both on the coding tree blocks of the
CTU and divide the CTU into smaller coding units (CUs).
As depicted in FIG. 4C, the 64x64 CTU 400 is first divided
into four smaller CU, each having a block size of 32x32.
Among the four smaller CUs, CU 410 and CU 420 are each
divided into four CUs of 16x16 by block size. The two
16x16 CUs 430 and 440 are each further divided into four
CUs of 8x8 by block size. FIG. 4D depicts a quad-tree data
structure illustrating the end result of the partition process of
the CTU 400 as depicted in FIG. 4C, each leaf node of the
quad-tree corresponding to one CU of a respective size
ranging from 32x32 to 8x8. Like the CTU depicted in FIG.
4B, each CU may comprise a coding block (CB) of luma
samples and two corresponding coding blocks of chroma
samples of a frame of the same size, and syntax elements
used to code the samples of the coding blocks. In mono-
chrome pictures or pictures having three separate color
planes, a CU may comprise a single coding block and syntax
structures used to code the samples of the coding block. It
should be noted that the quad-tree partitioning depicted in
FIGS. 4C and 4D is only for illustrative purposes and one
CTU can be split into CUs to adapt to varying local
characteristics based on quad/ternary/binary-tree partitions.
In the multi-type tree structure, one CTU is partitioned by a
quad-tree structure and each quad-tree leaf CU can be
further partitioned by a binary and ternary tree structure. As
shown in FIG. 4E, there are five partitioning types, i.e.,

US 11,985,356 B2

13

quaternary partitioning, horizontal binary partitioning, ver-
tical binary partitioning, horizontal ternary partitioning, and
vertical ternary partitioning.

In some implementations, video encoder 20 may further
partition a coding block of a CU into one or more MxN
prediction blocks (PB). A prediction block is a rectangular
(square or non-square) block of samples on which the same
prediction, inter or intra, is applied. A prediction unit (PU)
of'a CU may comprise a prediction block of luma samples,
two corresponding prediction blocks of chroma samples,
and syntax elements used to predict the prediction blocks. In
monochrome pictures or pictures having three separate color
planes, a PU may comprise a single prediction block and
syntax structures used to predict the prediction block. Video
encoder 20 may generate predictive luma, Cb, and Cr blocks
for luma, Cb, and Cr prediction blocks of each PU of the CU.

Video encoder 20 may use intra prediction or inter pre-
diction to generate the predictive blocks for a PU. If video
encoder 20 uses intra prediction to generate the predictive
blocks of a PU, video encoder 20 may generate the predic-
tive blocks of the PU based on decoded samples of the frame
associated with the PU. If video encoder 20 uses inter
prediction to generate the predictive blocks of a PU, video
encoder 20 may generate the predictive blocks of the PU
based on decoded samples of one or more frames other than
the frame associated with the PU.

After video encoder 20 generates predictive luma, Cb, and
Cr blocks for one or more PUs of a CU, video encoder 20
may generate a luma residual block for the CU by subtract-
ing the CU’s predictive luma blocks from its original luma
coding block such that each sample in the CU’s luma
residual block indicates a difference between a luma sample
in one of the CU’s predictive luma blocks and a correspond-
ing sample in the CU’s original luma coding block. Simi-
larly, video encoder 20 may generate a Cb residual block and
a Cr residual block for the CU, respectively, such that each
sample in the CU’s Cb residual block indicates a difference
between a Cb sample in one of the CU’s predictive Chb
blocks and a corresponding sample in the CU’s original Cb
coding block and each sample in the CU’s Cr residual block
may indicate a difference between a Cr sample in one of the
CU’s predictive Cr blocks and a corresponding sample in the
CU’s original Cr coding block.

Furthermore, as illustrated in FIG. 4C, video encoder 20
may use quad-tree partitioning to decompose the luma, Cb,
and Cr residual blocks of a CU into one or more luma, Cb,
and Cr transform blocks. A transform block is a rectangular
(square or non-square) block of samples on which the same
transform is applied. A transform unit (TU) of a CU may
comprise a transform block of luma samples, two corre-
sponding transform blocks of chroma samples, and syntax
elements used to transform the transform block samples.
Thus, each TU of a CU may be associated with a luma
transform block, a Cb transform block, and a Cr transform
block. In some examples, the luma transform block associ-
ated with the TU may be a sub-block of the CU’s luma
residual block. The Cb transform block may be a sub-block
of'the CU’s Cb residual block. The Cr transform block may
be a sub-block of the CU’s Cr residual block. In mono-
chrome pictures or pictures having three separate color
planes, a TU may comprise a single transform block and
syntax structures used to transform the samples of the
transform block.

Video encoder 20 may apply one or more transforms to a
luma transform block of a TU to generate a luma coeflicient
block for the TU. A coefficient block may be a two-
dimensional array of transform coefficients. A transform

10

15

20

25

30

35

40

45

50

55

60

65

14

coeflicient may be a scalar quantity. Video encoder 20 may
apply one or more transforms to a Cb transform block of a
TU to generate a Cb coeflicient block for the TU. Video
encoder 20 may apply one or more transforms to a Cr
transform block of a TU to generate a Cr coeflicient block
for the TU.

After generating a coeflicient block (e.g., a luma coeffi-
cient block, a Cb coefficient block or a Cr coefficient block),
video encoder 20 may quantize the coefficient block. Quan-
tization generally refers to a process in which transform
coeflicients are quantized to possibly reduce the amount of
data used to represent the transform coefficients, providing
further compression. After video encoder 20 quantizes a
coeflicient block, video encoder 20 may entropy encode
syntax elements indicating the quantized transform coeffi-
cients. For example, video encoder 20 may perform Con-
text-Adaptive Binary Arithmetic Coding (CABAC) on the
syntax elements indicating the quantized transform coeffi-
cients. Finally, video encoder 20 may output a bitstream that
includes a sequence of bits that forms a representation of
coded frames and associated data, which is either saved in
storage device 32 or transmitted to destination device 14.

After receiving a bitstream generated by video encoder
20, video decoder 30 may parse the bitstream to obtain
syntax elements from the bitstream. Video decoder 30 may
reconstruct the frames of the video data based at least in part
on the syntax elements obtained from the bitstream. The
process of reconstructing the video data is generally recip-
rocal to the encoding process performed by video encoder
20. For example, video decoder 30 may perform inverse
transforms on the coefficient blocks associated with TUs of
a current CU to reconstruct residual blocks associated with
the TUs of the current CU. Video decoder 30 also recon-
structs the coding blocks of the current CU by adding the
samples of the predictive blocks for PUs of the current CU
to corresponding samples of the transform blocks of the TUs
of'the current CU. After reconstructing the coding blocks for
each CU of a frame, video decoder 30 may reconstruct the
frame.

As noted above in connection with FIG. 2, the encoding
process of video data ends with entropy encoding unit 56
encoding the quantized transform coefficients of a current
video frame as well as the associated motion vectors (if inter
predicted) and other syntax elements associated with the
current video frame being coded into a video bitstream using
one of many existing coding schemes, one of which is
context adaptive binary arithmetic coding (CABAC).
CABAC is based on arithmetic coding and it encodes binary
symbols based on probability modelling for more frequently
used bits of any symbol. The probability models are selected
adaptively based on local context, allowing better modelling
of probabilities, because coding modes are usually locally
well correlated. CABAC has multiple probability modes for
different contexts. It first converts all non-binary symbols to
binary. Then, for each bit, the coder selects which probabil-
ity model to use, then uses information from neighboring
elements to optimize the probability estimate. Arithmetic
coding is finally applied to compress the data. The context
modeling provides estimates of conditional probabilities of
the coding symbols. Utilizing suitable context models, a
given inter-symbol redundancy can be exploited by switch-
ing between different probability models according to
already-coded symbols in the neighborhood of the current
symbol to encode.

FIG. 5 is a block diagram illustrating how to encode
syntax elements using the CABAC scheme in accordance
with some implementations of the present disclosure. In this

US 11,985,356 B2

15

example, entropy encoding unit 56 includes a binarizer 510
for converting a non-binary syntax element (e.g., a transform
coeflicient or a motion vector element) into a binary string;
a context modeler 520 for choosing a context model for a
binary bin to be encoded based on a statistical analysis; and
a binary arithmetic coder 550 for coding the bin value and/or
the context model.

As depicted in FIG. 5, a given non-binary valued syntax
element is uniquely mapped by the binarizer 510 to a binary
sequence, also referred to as “bin string”. This process is
similar to the process of converting a data symbol into a
variable length code but the binary code is further encoded
(by the arithmetic coder) prior to transmission. When a
binary valued syntax element is given, this initial step is
bypassed. For each element of the bin string or for each
binary valued syntax element, one or two subsequent steps
may follow depending on the coding mode.

In the regular coding mode, before the actual arithmetic
coding process performed by the regular coding engine 530,
a given bin enters the context modeling stage, where the
context model 520 selects a probability model for the bin
depending on the statistics of previously encoded syntax
elements or bins. The context model stores the probability of
each bin being “1” or “0”. The selected context model is also
updated based on the actual coded value (e.g., if the bin
value was “1”, the frequency count of “1”’s in the model is
increased). After the selection of a context model, the bin
value along with its associated context model is passed to the
regular coding engine 530, where the final stage of arith-
metic encoding together with a subsequent model updating
takes place.

Alternatively, if the bypass coding mode is chosen for a
selected bin, e.g., to allow a speedup of the whole encoding
(and decoding) process, the selected bin is processed by a
simplified bypass coding engine 540 without using an
explicitly selected probability model, as illustrated by the
lower right branch of the switch in FIG. 5.

For example, if a current CU is coded in an intra predic-
tion mode, a syntax element, e.g., a binary flag of 1, may be
generated for indicating that the current CU is coded in the
intra prediction mode and encoded into the video bitstream
such that, when the video bitstream is decoded by video
decoder 30, the same syntax element indicating the intra
prediction mode can be retrieved from the video bitstream
and used for reconstructing the current CU at video decoder
30. During the encoding of the syntax flag representing the
intra prediction mode (or lack thereof) associated with the
current CU, entropy encoding unit 56 (or more specifically,
context modeler 520) needs to determine a context model for
the current CU. In some embodiments, the context model is
represented by a context index of one of multiple context
models managed by context modeler 520. To determine the
statistically most efficient context index, context modeler
520 may need to access the syntax elements representing the
intra prediction mode of neighboring CUs of the current CU
including, e.g., the left CU and the above CU of the current
CU. In some implementations, a line buffer is used by
entropy encoding unit 56 for caching such parameters when
determining a context model for a syntax element of a
current CU. As a result, the more syntax elements entropy
encoding unit 56 encodes, the more space required in the
line buffer for caching the corresponding syntax elements of
neighboring blocks.

In some embodiments, it is proposed to reduce the reli-
ance upon the syntax elements of neighboring CUs when
determining the corresponding syntax elements for the cur-
rent CU. For example, a line buffer is defined as being

20

35

40

45

55

16

uniquely associated with a CTU including the current CU.
After the last CU in the CTU is encoded, the line buffer is
reset to be empty for the next CTU. In other words, when the
above CU of the current CU is not within the same CTU,
context modeler 520 does not need to query the line buffer
for the corresponding syntax element for helping determine
the context index of the current CU. As such, the size of the
line buffer allocated for determining the context model of the
current CU can be reduced. Instead of retrieving the corre-
sponding syntax element associated with the above CU from
the line buffer, a default value of th corresponding syntax
element is used by context modeler 520 for determining the
context index of the current CU. For example, if the syntax
element to be encoded is the intra prediction mode of the
current CU, a default value of O or 1 may be used for
representing the syntax element of the above CU. Of course,
this default value of 0 or 1 may not always be the actual
syntax element of the above CU. But the potential discrep-
ancy between the default value and the actual syntax ele-
ment of the above CU has little impact on the context model
selection by the CABAC scheme while more space can be
used for other functions than being allocated for the line
buffer.

Besides the intra prediction mode flag of the current CU,
there are other binary or non-binary syntax elements that can
be handled in a similar manner whereby less space is
allocated for the line buffer of the current CTU. That is,
when the context modeler 520 determines, among multiple
candidate context models, a context index pointing to one of
them for the current CU, it retrieves the actual syntax
element of the above CU only if the above CU and the
current CU are within the same CTU. Otherwise, the context
modeler 520 uses a default value as the syntax element of the
above CU for determining the context index for the current
CU for the encoding purpose.

For example, if the current CU is predicted in the matrix-
based intra prediction (MBIP) mode, a MBIP flag is assigned
to the current CU. In some implementations, one of four
context models is used by context modeler 520 for coding
the MBIP flag. The selection of this context model for the
MBIP flag is not depending on the MBIP flag of above CU
when the above CU is not located in the same CTU as
current CU. In this case, the value of MBIP flag of the above
CU can be assumed as a default value, e.g., O or 1. As a
result, there is no need to store MBIP flag information in the
line buffer. For example, if the MBIP flag of the left CU is
1 (i.e., the left CU is in a MBIP mode), the context index is
set to be 1; otherwise, if the width of the current CU is larger
than 2 times of the height of the current CU or the height of
the current CU is larger than 2 times of the width, the context
index is set to be 3.

In some embodiments, the IBC mode flag of the current
CU indicates if the current CU is in an IBC mode or not. In
order to calculate the context index of the IBC mode flag, the
IBC mode flag of both the left and above neighboring blocks
are used. But the selection of context model for the CABAC
coding of the IBC mode flag is not depending on the actual
IBC mode flag of above CU when the above CU is not in the
same CTU as current CU. Instead, the value of IBC mode
flag of the above CU is set to be a default value, e.g. O or 1.

In some embodiments, the selection of context model for
the CABAC coding of a CU split flag is not depending on
the width of above CU when the above CU is not located in
the same CTU as current CU. As a result, there is no need
to store the block width information of the above CU in the
line buffer. Assume that cuAbovelnsideCTU is set to true if
the above CU exists and it is located in the same CTU as the

US 11,985,356 B2

17

current CU; otherwise, the variable is set to false. The
selection of the context index (ctxItx) for the CU split flag
is designed as illustrated below, with the initial value set to
Zero.

ctxldx=(cuLeft && LeftHeight<CurrHeight)?1:0;

ctxIdx+=(cuAbovelnsideCTU &&
AboveWidth<CurrWidth)?1:0;

Note that the cul eft indicates the availability of left CU. The
LeftHeight and CurrHeight are the height of left and current
CU, respectively. The AboveWidth and CurrWidth are the
width of above and current CU, respectively.

In some embodiments, the quadtree (or QT) split flag
indicates if the current CU is split based on the quadtree
partition or based on binary/ternary tree partition. In order to
calculate the context index (ctxIdx) of QT split flag, the QT
partition depth of above and left CUs are used. The selection
of context index for the CABAC coding of QT split flag is
not depending on the QT partition depth of above CU when
the above CU is not located in the same CTU as current CU.
As a result, there is no need to store the above CUs’ QT
partition depth information in the line buffer. The selection
of context index (ctxIdx) for the QT split flag is designed as
illustrated below.

ctxldx=(cuLeft && LeftQtDepth>CurrQtDepth)?1:0;

ctxIdx+=(!cuAbovelnsideCTU)?1:
(AboveQtDepth>CurrQtDepth)?1:0;

ctxIdx+=CurrQtDepth<2?0:3;

Note that the cul eft indicates the availability of left CU. The
LeftQtDepth, AboveQtDepth and CurrQtDepth are the num-
bers of applied quad-splits (i.e. QT split depth) of left, above
and current CU, respectively.

In some embodiments, the affine flag indicates if the
current CU is in an affine mode or not. In order to calculate
the context index (ctxIdx) used for coding the affine flag, the
affine flags of both the left and above CUs are used. The
context selection for the CABAC coding of the affine flag is
not depending on the affine flag of above CU when the above
CU is not located in the same CTU as current CU. In this
case, the value of affine flag of the above CU is set to having
a default value, e.g. 0 or 1, in deriving the value of ctxIdx.

In some embodiments, the subblock merge flag indicates
whether the subblock-based inter prediction parameters for
the current CU are inferred from the neighboring blocks. In
order to calculate the context index (ctxIdx) used for coding
the subblock merge flag of the current CU, the affine flags of
both the left and above CUs are used. The selection of
context index for the CABAC coding of subblock merge flag
is not depending on the affine flag of above CU when the
above CU is not located in the same CTU as current CU. In
this case, the value of affine flag of the above CU is set to
having a default value, e.g. 0 or 1, in deriving the value of
ctxldx.

In some embodiments, in order to generate affine mode
prediction, the motion vector from the above CU (if also
affine coded) may be used as candidate. The above CU
candidate is not used for affine mode prediction when the
above CU is not in the same CTU as current CU. In this case,
the value of affine mode flag of the above CU is set to having
a default value, e.g., O or 1.

As a summary of the present disclosure, FIG. 6A is a
flowchart illustrating an exemplary process 600 by which a
video encoder 20 implements the techniques of encoding a

20

25

30

35

40

45

18

syntax element for a current coding unit of video data in
accordance with some implementations of the present dis-
closure.

Video encoder 20 identifies (610), for the current coding
unit, an above coding unit and a coding tree unit including
the current coding unit and then determines (620) whether
the above coding unit is within the coding tree unit or not.
If so (620—yes), video encoder 20 encodes (630), into a
video bitstream, a corresponding syntax element for the
current coding unit based, at least in part, on a syntax
element associated with the above coding unit retrieved
from a line buffer associated with the coding tree unit. In
some embodiments, video encoder 20 updates (630-1) the
corresponding syntax element for the current coding unit in
accordance with a width comparison of the above coding
unit and the current coding unit and the syntax element
associated with the above coding unit retrieved from the line
buffer. Then video encoder 20 determines (630-3) a context
index of the current coding unit based on the updated
corresponding syntax element for the current coding unit
and encodes (630-5), into the video bitstream, the corre-
sponding syntax element for the current coding unit in
accordance with the context index of the current coding unit.

If not (620—no), video encoder 20 then encodes (640),
into the video bitstream, the corresponding syntax element
for the current coding unit based, at least in part, on a default
value assigned to the syntax element associated with the
above coding unit. In some embodiments, video encoder 20
updates (640-1) the corresponding syntax element for the
current coding unit in accordance with a height comparison
of'a left coding unit of the current coding unit and the current
coding unit and the default value assigned to the syntax
element associated with the above coding unit. Next video
encoder 20 determines (640-3) a context index of the current
coding unit based on the updated corresponding syntax
element for the current coding unit and encodes (640-5), into
the video bitstream, the corresponding syntax element for
the current coding unit in accordance with the context index
of the current coding unit.

FIG. 6B is a flowchart illustrating an exemplary process
650 by which a video decoder 30 implements the techniques
of decoding a syntax element for a current coding unit of
video data in accordance with some implementations of the
present disclosure.

Video decoder 30 identifies (660), for the current coding
unit, an above coding unit and a coding tree unit including
the current coding unit and then determines (670) whether
the above coding unit is within the coding tree unit or not.
If so (670—yes), video decoder 30 decodes (680), from a
video bitstream, a corresponding syntax element for the
current coding unit based, at least in part, on a syntax
element associated with the above coding unit retrieved
from a line buffer associated with the coding tree unit. In
some embodiments, video decoder 30 updates (680-1) the
corresponding syntax element for the current coding unit in
accordance with a width comparison of the above coding
unit and the current coding unit and the syntax element
associated with the above coding unit retrieved from the line
buffer. Then video decoder 30 determines (680-3) a context
index of the current coding unit based on the updated
corresponding syntax element for the current coding unit
and decodes (680-5), from the video bitstream, the corre-
sponding syntax element for the current coding unit in
accordance with the context index of the current coding unit.

If not (670—no), video decoder 30 then decodes (690),
from the video bitstream, the corresponding syntax element
for the current coding unit based, at least in part, on a default

US 11,985,356 B2

19

value assigned to the syntax element associated with the
above coding unit. In some embodiments, video decoder 30
updates (690-1) the corresponding syntax element for the
current coding unit in accordance with a height comparison
of'a left coding unit of the current coding unit and the current
coding unit and the default value assigned to the syntax
element associated with the above coding unit. Next video
decoder 30 determines (690-3) a context index of the current
coding unit based on the updated corresponding syntax
element for the current coding unit and decodes (690-5),
from the video bitstream, the corresponding syntax element
for the current coding unit in accordance with the context
index of the current coding unit.

In one or more examples, the functions described may be
implemented in hardware, software, firmware, or any com-
bination thereof. If implemented in software, the functions
may be stored on or transmitted over, as one or more
instructions or code, a computer-readable medium and
executed by a hardware-based processing unit. Computer-
readable media may include computer-readable storage
media, which corresponds to a tangible medium such as data
storage media, or communication media including any
medium that facilitates transfer of a computer program from
one place to another, e.g., according to a communication
protocol. In this manner, computer-readable media generally
may correspond to (1) tangible computer-readable storage
media that is non-transitory or (2) a communication medium
such as a signal or carrier wave. Data storage media may be
any available media that can be accessed by one or more
computers or one or more processors to retrieve instructions,
code and/or data structures for implementation of the imple-
mentations described in the present application. A computer
program product may include a computer-readable medium.

The terminology used in the description of the implemen-
tations herein is for the purpose of describing particular
implementations only and is not intended to limit the scope
of claims. As used in the description of the implementations
and the appended claims, the singular forms “a,” “an,” and
“the” are intended to include the plural forms as well, unless
the context clearly indicates otherwise. It will also be
understood that the term “and/or” as used herein refers to
and encompasses any and all possible combinations of one
or more of the associated listed items. It will be further
understood that the terms “comprises” and/or “comprising,”
when used in this specification, specify the presence of
stated features, elements, and/or components, but do not
preclude the presence or addition of one or more other
features, elements, components, and/or groups thereof.

It will also be understood that, although the terms first,
second, etc. may be used herein to describe various ele-
ments, these elements should not be limited by these terms.
These terms are only used to distinguish one element from
another. For example, a first electrode could be termed a
second electrode, and, similarly, a second electrode could be
termed a first electrode, without departing from the scope of
the implementations. The first electrode and the second
electrode are both electrodes, but they are not the same
electrode.

The description of the present application has been pre-
sented for purposes of illustration and description, and is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications, variations, and alter-
native implementations will be apparent to those of ordinary
skill in the art having the benefit of the teachings presented
in the foregoing descriptions and the associated drawings.
The embodiment was chosen and described in order to best
explain the principles of the invention, the practical appli-

15

20

25

30

40

45

50

20

cation, and to enable others skilled in the art to understand
the invention for various implementations and to best utilize
the underlying principles and various implementations with
various modifications as are suited to the particular use
contemplated. Therefore, it is to be understood that the scope
of claims is not to be limited to the specific examples of the
implementations disclosed and that modifications and other
implementations are intended to be included within the
scope of the appended claims.

What is claimed is:

1. A method of decoding a syntax element for a current
coding unit of video data, the method comprising:

identifying, for the current coding unit, an above coding

unit and a coding tree unit including the current coding
unit;

in accordance with a determination that the above coding

unit is within the coding tree unit, decoding, from a
video bitstream, a corresponding syntax element for the
current coding unit based, at least in part, on a syntax
element associated with the above coding unit retrieved
from a line buffer associated with the coding tree unit;
and

in accordance with a determination that the above coding

unit is not within the coding tree unit, decoding, from
the video bitstream, the corresponding syntax element
for the current coding unit based, at least in part, on a
default value assigned to the syntax element associated
with the above coding unit.

2. The method of claim 1, wherein the decoding, from the
video bitstream, the corresponding syntax element for the
current coding unit based, at least in part, on the syntax
element associated with the above coding unit retrieved
from the line buffer further comprises:

updating the corresponding syntax element for the current

coding unit in accordance with a width comparison of
the above coding unit and the current coding unit and
the syntax element associated with the above coding
unit retrieved from the line buffer;

determining a context index of the current coding unit

based on the updated corresponding syntax element for
the current coding unit; and

decoding, from the video bitstream, the corresponding

syntax element for the current coding unit in accor-
dance with the context index of the current coding unit.
3. The method of claim 1, wherein the decoding, from the
video bitstream, the corresponding syntax element for the
current coding unit based, at least in part, on a default value
assigned to the syntax element associated with the above
coding unit further comprises:
updating the corresponding syntax element for the current
coding unit in accordance with a height comparison of
a left coding unit of the current coding unit and the
current coding unit and the default value assigned to the
syntax element associated with the above coding unit;

determining a context index of the current coding unit
based on the updated corresponding syntax element for
the current coding unit; and

decoding, from the video bitstream, the corresponding

syntax element for the current coding unit in accor-
dance with the context index of the current coding unit.

4. The method of claim 1, wherein the syntax element is
a binary flag.

5. The method of claim 4, wherein the syntax element
indicates that the current coding unit is encoded in an intra
prediction mode, an intra block copy mode, a matrix-based
intra prediction mode, or an affine mode.

US 11,985,356 B2

21

6. The method of claim 1, wherein the line buffer is
associated with the coding tree unit.

7. A method of encoding a syntax element for a current
coding unit of video data, the method comprising:

identifying, for the current coding unit, an above coding

unit and a coding tree unit including the current coding
unit;

in accordance with a determination that the above coding

unit is within the coding tree unit, encoding, into a
video bitstream, a corresponding syntax element for the
current coding unit based, at least in part, on a syntax
element associated with the above coding unit retrieved
from a line buffer associated with the coding tree unit;
and

in accordance with a determination that the above coding

unit is not within the coding tree unit, encoding, into the
video bitstream, the corresponding syntax element for
the current coding unit based, at least in part, on a
default value assigned to the syntax element associated
with the above coding unit.

8. The method of claim 7, wherein the encoding, into the
video bitstream, the corresponding syntax element for the
current coding unit based, at least in part, on the syntax
element associated with the above coding unit retrieved
from the line buffer further comprises:

updating the corresponding syntax element for the current

coding unit in accordance with a width comparison of
the above coding unit and the current coding unit and
the syntax element associated with the above coding
unit retrieved from the line buffer;

determining a context index of the current coding unit

based on the updated corresponding syntax element for
the current coding unit; and

encoding, into the video bitstream, the corresponding

syntax element for the current coding unit in accor-
dance with the context index of the current coding unit.
9. The method of claim 7, wherein the encoding, into the
video bitstream, the corresponding syntax element for the
current coding unit based, at least in part, on a default value
assigned to the syntax element associated with the above
coding unit further comprises:
updating the corresponding syntax element for the current
coding unit in accordance with a height comparison of
a left coding unit of the current coding unit and the
current coding unit and the default value assigned to the
syntax element associated with the above coding unit;

determining a context index of the current coding unit
based on the updated corresponding syntax element for
the current coding unit; and

encoding, into the video bitstream, the corresponding

syntax element for the current coding unit in accor-
dance with the context index of the current coding unit.

10. The method of claim 7, wherein the syntax element is
a binary flag.

11. The method of claim 10, wherein the syntax element
indicates that the current coding unit is encoded in an intra
prediction mode, an intra block copy mode, a matrix-based
intra prediction mode, or an affine mode.

12. The method of claim 7, wherein the line buffer is
associated with the coding tree unit.

13. An electronic apparatus comprising:

one or more processing units;

20

25

30

40

45

55

60

22

memory coupled to the one or more processing units; and

a plurality of programs stored in the memory that, when
executed by the one or more processing units, cause the
electronic apparatus to:

identify, for a current coding unit of video data, an above

coding unit and a coding tree unit including the current
coding unit;

in accordance with a determination that the above coding

unit is within the coding tree unit, decode, from a video
bitstream, a corresponding syntax element for the cur-
rent coding unit based, at least in part, on a syntax
element associated with the above coding unit retrieved
from a line buffer associated with the coding tree unit;
and

in accordance with a determination that the above coding

unit is not within the coding tree unit, decode, from the
video bitstream, the corresponding syntax element for
the current coding unit based, at least in part, on a
default value assigned to the syntax element associated
with the above coding unit.

14. The electronic apparatus of claim 13, wherein the
decode, from the video bitstream, the corresponding syntax
element for the current coding unit based, at least in part, on
the syntax element associated with the above coding unit
retrieved from the line buffer further comprises:

updating the corresponding syntax element for the current

coding unit in accordance with a width comparison of
the above coding unit and the current coding unit and
the syntax element associated with the above coding
unit retrieved from the line buffer;

determining a context index of the current coding unit

based on the updated corresponding syntax element for
the current coding unit; and

decoding, from the video bitstream, the corresponding

syntax element for the current coding unit in accor-
dance with the context index of the current coding unit.
15. The electronic apparatus of claim 13, wherein the
decode, from the video bitstream, the corresponding syntax
element for the current coding unit based, at least in part, on
a default value assigned to the syntax element associated
with the above coding unit further comprises:
updating the corresponding syntax element for the current
coding unit in accordance with a height comparison of
a left coding unit of the current coding unit and the
current coding unit and the default value assigned to the
syntax element associated with the above coding unit;

determining a context index of the current coding unit
based on the updated corresponding syntax element for
the current coding unit; and

decoding, from the video bitstream, the corresponding

syntax element for the current coding unit in accor-
dance with the context index of the current coding unit.

16. The electronic apparatus of claim 13, wherein the
syntax element is a binary flag.

17. The electronic apparatus of claim 16, wherein the
syntax element indicates that the current coding unit is
encoded in an intra prediction mode, an intra block copy
mode, a matrix-based intra prediction mode, or an affine
mode.

18. The electronic apparatus of claim 13, wherein the line
buffer is associated with the coding tree unit.

#* #* #* #* #*

