

(19) United States

(12) Reissued Patent

Dyckman et al.

US RE49.893 E (10) Patent Number:

(45) Date of Reissued Patent: Apr. 2, 2024

(54) [1,2,4]TRIAZOLO[1,5-A]PYRIDINYL SUBSTITUTED INDOLE COMPOUNDS

(71) Applicant: Bristol-Myers Squibb Company, Princeton, NJ (US)

(72) Inventors: Alaric J. Dyckman, Lawrenceville, NJ

(US); Dharmpal S. Dodd, Monmouth Junction, NJ (US); Tasir Shamsul Hague, Yardley, PA (US); Louis J. Lombardo, Belle Mead, NJ (US); John E. Macor, Washington Crossing, PA (US); Christopher P. Mussari, Princeton, NJ (US); Laxman Pasunoori, Warangal (IN); Sreekantha Ratna Kumar, Bangalore (IN); Trevor

C. Sherwood, West Windsor, NJ (US); Shoshana L. Posy, Highland Park, NJ (US); Ramesh Kumar Sistla, Bangalore (IN); Subramanya Hegde, Bangalore (IN); Anupama Kandhi

Ramachandra Reddy, Chitradurga (IN)

(73) Assignee: BRISTOL-MYERS SQUIBB COMPANY, Princeton, NJ (US)

(21) Appl. No.: 17/584,155

(22) Filed: Jan. 25, 2022

Related U.S. Patent Documents

Reissue of:

(64) Patent No.: 10,912,766 Issued: Feb. 9, 2021 Appl. No.: 16/653,297 Oct. 15, 2019 Filed:

U.S. Applications:

(63) Continuation of application No. 16/042,116, filed on Jul. 23, 2018, now Pat. No. 10,478,424, which is a continuation of application No. 15/635,055, filed on Jun. 27, 2017, now Pat. No. 10,071,079.

(30)Foreign Application Priority Data

(51) Int. Cl. A61K 31/4196 (2006.01)A61K 31/437 (2006.01)A61K 31/4427 (2006.01)A61K 45/06 (2006.01)C07D 249/00 (2006.01)C07D 471/04 (2006.01)

(52) U.S. Cl.

CPC A61K 31/4196 (2013.01); A61K 31/437 (2013.01); A61K 31/4427 (2013.01); A61K 45/06 (2013.01); C07D 249/00 (2013.01); **C07D** 471/04 (2013.01)

(58) Field of Classification Search

CPC A61K 31/4196; A61K 31/437; A61K 31/4427; A61K 45/06; C07D 249/00; C07D 471/04; A61P 19/02; A61P 25/00; A61P 29/00; A61P 35/00; A61P 37/00; A61P 37/02; A61P 43/00

See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

6,867,200 B1	3/2005	Allen et al.	
7,410,975 B2	8/2008	Lipford et al.	
8,138,187 B2	3/2012	Zemolka et al.	
8,354,400 B2	1/2013	Zheng et al.	
9,126,996 B2	9/2015	Lipford et al.	
9.126.999 B2	9/2015	Boivin et al.	
9,241,991 B2	1/2016	Ji et al.	
9,353,115 B2	5/2016	Lipford et al.	
9,376,398 B2	6/2016	Hori et al.	
9,428,495 B2	8/2016	Carlson et al.	
9,643,967 B2	5/2017	Koul et al.	
10,071,079 B2	9/2018	Dyckman et al.	
10,478,424 B2	11/2019	Dyckman et al.	
10,544,143 B2	1/2020	Dyckman et al.	
10,660,877 B2	5/2020	Dyckman et al.	
10,730,877 B2	8/2020	Dyckman et al.	
11,053,244 B1	7/2021	Dyckman et al.	
11,130,756 B2	9/2021	Dyckman et al.	
11,180,474 B2	11/2021	Dyckman et al.	
	(Continued)		

FOREIGN PATENT DOCUMENTS

WO 2006113458 A1 10/2006 WO 2007115306 A2 10/2007 (Continued)

OTHER PUBLICATIONS

Non-Final Office Action issued in U.S. Appl. No. 16/955,097 dated Jan. 27, 2022 (21 pages).

(Continued)

Primary Examiner — Jerry D Johnson (74) Attorney, Agent, or Firm — Mintz, Levin, Cohn, Ferris, Glovsky and Popeo, P.C.

(57)ABSTRACT

Disclosed are compounds of Formula (I)

or a salt thereof, wherein R₁, R₂, R₃, R₄, R₅, m, n, and p are defined herein. Also disclosed are methods of using such compounds as inhibitors of signaling through Toll-like receptor 7, or 8, or 9, and pharmaceutical compositions comprising such compounds. These compounds are useful in treating inflammatory and autoimmune diseases.

17 Claims, No Drawings

US RE49,893 E

Page 2

(56)	References Cited	WO 2009030996 A1 3/2009 WO 2010093425 A1 8/2010
U.S.	PATENT DOCUMENTS	WO 2010144571 A1 12/2010 WO 2010149769 A1 12/2010
2006/0235037 A1 2010/0160314 A1 2011/0009444 A1 2011/0015219 A1 2011/0275631 A1 2013/0045986 A1	10/2006 Purandare et al. 6/2010 Lipford et al. 1/2011 Dubois et al. 1/2011 Trawick et al. 1/2011 Abeywardane et al. 2/2013 Nagarathnam et al.	WO 2013009140 A1 1/2013 WO 2015088045 A1 6/2015 WO 2016029077 A1 2/2016 WO 2017027645 A1 2/2017 WO 2018005772 A1 1/2018
2014/0066432 A1 2014/0088085 A1	3/2014 Howbert et al. 3/2014 Burgess et al.	OTHER PUBLICATIONS
2014/0242121 A1 2014/0242121 A1 2016/0096833 A1 2019/0119347 A1 2020/0339437 A1 2020/03308195 A1 2020/0331920 A1 2020/0339581 A1 2020/0335382 A1 2021/0070751 A1 2021/0085651 A1 2021/0287174 A1 2021/0253593 A1 2021/0393608 A1	8/2014 Lipford et al. 4/2016 Emmitte et al. 4/2019 Kim et al. 1/2020 Dyckman et al. 10/2020 Dyckman et al. 10/2020 Dyckman et al. 10/2020 Dyckman et al. 10/2020 Dyckman et al. 12/2020 Dyckman et al. 12/2020 Dyckman et al. 12/2020 Dyckman et al. 3/2021 Dyckman et al. 3/2021 Dyckman et al. 3/2021 Dyckman et al. 8/2021 Dyckman et al. 12/2021 Dyckman et al.	International Search Report received for PCT Application No. PCT/US2017/039633, dated Sep. 7, 2017,14 pages. Kawai et al. (May 2010) "The Role of Pattern-recognition Receptors in Innate Immunity: Update on Toll-like Receptors", Nature Immunology, 11(5):373-384. Lamphier et al. (Mar. 2014) "Novel Small Molecule Inhibitors of TLR7 and TLR9: Mechanism of Action and Efficacy In Vivo," Molecular Pharmacology, 85(3):429-440. Patra et al. (Jun. 2016) "Recent Progress in the Development of Toll-like Receptor (TLR) Antagonists," Expert Opinion on Thera-
	12/2021 Gilmore et al. EN PATENT DOCUMENTS 2471 A1 12/2008	peutic Patents, 26(6):719-730. Sims et al. (Feb. 2010) "The IL-1 Family: Regulators of Immunity," Nature Reviews Immunology, 10(2):89-102. Non-final Office Action dated Jul. 26, 2021 in U.S. Appl. No. 16/763,670 (32 pages).

1

[1,2,4]TRIAZOLO[1,5-A]PYRIDINYL SUBSTITUTED INDOLE COMPOUNDS

Matter enclosed in heavy brackets [] appears in the 5 original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue; a claim printed with strikethrough indicates that the claim was canceled, disclaimed, or held invalid by a prior post-patent action or proceeding.

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of U.S. 15 patent application Ser. No. 16/042,116 filed Jul. 23, 2018, which is a continuation application of U.S. patent application Ser. No. 15/635,055 filed Jun. 27, 2017, which claims the benefit of Indian Provisional Application Serial No. 201611022328, filed Jun. 29, 2016.

DESCRIPTION

The present invention generally relates to [1,2,4]triazolo [1,5-a]pyridinyl substituted indole compounds useful as inhibitors of signaling through Toll-like receptor 7, 8, or 9 (TLR7, TLR8, TLR9) or combinations thereof. Provided herein are [1,2,4]triazolo[1,5-a]pyridinyl substituted indole compounds, compositions comprising such compounds, and methods of their use. The invention further pertains to 30 pharmaceutical compositions containing at least one compound according to the invention that are useful for the treatment of conditions related to TLR modulation, such as inflammatory and autoimmune diseases, and methods of inhibiting the activity of TLRs in a mammal.

Toll/IL-1 receptor family members are important regulators of inflammation and host resistance. The Toll-like receptor family recognizes molecular patterns derived from infectious organisms including bacteria, fungi, parasites, and viruses (reviewed in Kawai, T. et al., Nature Immunol., 40 11:373-384-(2010)). Ligand binding to the receptor induces dimerization and recruitment of adaptor molecules to a conserved cytoplasmic motif in the receptor termed the Toll/IL-1 receptor (TIR) domain. With the exception of TLR₃, all TLRs recruit the adaptor molecule MyD88. The 45 IL-1 receptor family also contains a cytoplasmic TIR motif and recruits MyD88 upon ligand binding (reviewed in Sims, J. E. et al., Nature Rev. Immunol., 10:89-102 (2010)).

Toll-like receptors (TLRs) are a family of evolutionarily conserved, transmembrane innate immune receptors that 50 participate in the first-line defense. As pattern recognition receptors, the TLRs protect against foreign molecules, activated by pathogen associated molecular patterns (PAMPs), or from damaged tissue, activated by danger associated molecular patterns (DAMPs). A total of 13 TLR family 55 members have been identified, 10 in human, that span either the cell surface or the endosomal compartment. TLR7-9 are among the set that are endosomally located and respond to single-stranded RNA (TLR7 and TLR8) or unmethylated single-stranded DNA containing cytosinephosphateguanine 60 (CpG) motifs (TLR9).

Activation of TLR7/8/9 can initiate a variety of inflammatory responses (cytokine production, B cell activation and IgG production, Type I interferon response). In the case of autoimmune disorders, the aberrant sustained activation of 65 TLR7/8/9 leads to worsening of disease states. Whereas overexpression of TLR7 in mice has been shown to exac2

erbate autoimmune disease, knockout of TLR7 in mice was found to be protective against disease in lupusprone MRL/ lpr mice. Dual knockout of TLR7 and 9 showed further enhanced protection.

As numerous conditions may benefit by treatment involving modulation of cytokines, IFN production and B cell activity, it is immediately apparent that new compounds capable of modulating TLR7 and/or TLR8 and/or TLR9 and methods of using these compounds could provide substantial therapeutic benefits to a wide variety of patients.

The present invention relates to a new class of [1,2,4] triazolo[1.5-a]pyridinyl substituted indole compounds found to be effective inhibitors of signaling through TLR7/8/9. These compounds are provided to be useful as pharmaceuticals with desirable stability, bioavailability, therapeutic index, and toxicity values that are important to their drugability.

SUMMARY OF THE INVENTION

The present invention provides compounds of Formula (I) that are useful as inhibitors of signaling through Toll-like receptor 7, 8, or 9 and are useful for the treatment of proliferative diseases, allergic diseases, autoimmune diseases and inflammatory diseases, or stereoisomers, tautomers, pharmaceutically acceptable salts, solvates or prodrugs thereof.

The present invention also provides pharmaceutical compositions comprising a pharmaceutically acceptable carrier and at least one of the compounds of the present invention or stereoisomers, tautomers, pharmaceutically acceptable salts, solvates, or prodrugs thereof.

The present invention also provides a method for inhibition of Toll-like receptor 7, 8, or 9 comprising administering to a host in need of such treatment a therapeutically effective amount of at least one of the compounds of the present invention or stereoisomers, tautomers, pharmaceutically acceptable salts, solvates, or prodrugs thereof.

The present invention also provides a method for treating proliferative, metabolic, allergic, autoimmune and inflammatory diseases, comprising administering to a host in need of such treatment a therapeutically effective amount of at least one of the compounds of the present invention or stereoisomers, tautomers, pharmaceutically acceptable salts, solvates, or prodrugs thereof.

The present invention also provides a method of treating a disease or disorder associated with Toll-like receptor 7, 8, or 9 activity, the method comprising administering to a mammal in need thereof, at least one of the compounds of Formula (I) or salts, solvates, and prodrugs thereof.

The present invention also provides processes and intermediates for making the compounds of Formula (I) including salts, solvates, and prodrugs thereof.

The present invention also provides at least one of the compounds of Formula (I) or salts, solvates, and prodrugs thereof, for use in therapy.

The present invention also provides the use of at least one of the compounds of Formula (I) or salts, solvates, and prodrugs thereof, for the manufacture of a medicament for the treatment of prophylaxis of Toll-like receptor 7, 8, or 9 related conditions, such as allergic disease, autoimmune diseases, inflammatory diseases, and proliferative diseases.

The compound of Formula (I) and compositions comprising the compounds of Formula (I) may be used in treating, preventing, or curing various Toll-like receptor 7, 8, or 9 related conditions. Pharmaceutical compositions comprising these compounds are useful for treating, preventing, or

slowing the progression of diseases or disorders in a variety of therapeutic areas, such as allergic disease, autoimmune diseases, inflammatory diseases, and proliferative diseases.

These and other features of the invention will be set forth in expanded form as the disclosure continues.

DETAILED DESCRIPTION

The first aspect of the present invention provides at least one compound of Formula (I):

or a salt thereof, wherein:

R₁ is H, Cl, —CN, C₁₋₄ alkyl, C₁₋₃ fluoroalkyl, C₁₋₃ hydroxy-fluoroalkyl, —CR_z—CH₂, C₃₋₆ cycloalkyl, —CH₂(C₃₋₆ cycloalkyl), —C(O)O(C₁₋₃ alkyl), or tetrahy- 25 dropyranyl;

each R_2 is independently halo, —CN, —OH, —NO $_2$ +, C_{1-3} alkyl, —CD $_3$, C_{1-2} fluoroalkyl, C_{1-2} cyanoalkyl, C_{1-3} hydroxyalkyl, C_{1-3} aminoalkyl, —O(CH $_2$) $_{1-2}$ OH, —(CH $_2$) $_{0-4}$ O(C_{1-4} alkyl), C_{1-3} fluoroalkoxy, —(CH $_2$) $_{1-4}$ O ³⁰ (C_{1-3} alkyl), —O(CH $_2$) $_{1-2}$ OC(O)(C_{1-3} alkyl), —O (CH $_2$) $_{1-2}$ NR $_x$ R $_x$, —C(O)O(C_{1-3} alkyl), —C(O)NR $_y$ R $_y$, —NR $_y$ R $_y$, —NR $_y$ C($_{1-3}$ fluoroalkyl), —NR $_x$ C($_{1-4}$ hydroxyalkyl), —NR $_x$ C(O)(C_{1-3} alkyl), —NR $_x$ C(O) $_2$ C($_{3-6}$ cycloalkyl), —NR $_x$ C(O)($_{1-3}$ alkyl), —NR $_x$ C(H $_2$ -cyclopropyl), ³⁵ C $_{3-6}$ cycloalkyl, morpholinyl, dioxothiomorpholinyl, methylpiperidinyl, methylpiperazinyl, amino-oxadiazolyl, imidazolyl, triazolyl, or —C(O)(thiazolyl);

 R_3 is: (a) -L₁-A; or

(b) H, C_{1-6} alkyl, C_{1-3} fluoroalkyl, C_{1-3} cyanoalkyl, C_{1-6} hydroxyalkyl, C_{1-3} hydroxy-fluoroalkyl, $--CR_xR_xCR_x$ $(OH)CR_x = CR_xR_x$, $-C = N(NR_xR_x)$, $-(CR_xR_x)_{1-4}O$ $(C_{1-3} \text{ alkyl}), -(CR_xR_x)_{1-4}O(CR_xR_x)_{1-3}O(C_{1-3} \text{ alkyl}),$ $-CH_2CH(OH)CH_2O(C_{1-3} \text{ alkyl}), -(CR_xR_x)_{1-3}S(C_{1-3})$ $-(CR_xR_x)_{0-3}$ $-(CH_2)_{1-3}C(O)OC(CH_3)_3,$ $-(CR_xR_x)_{0-3}NR_x(C_{1-4})$ hydroxyalkyl), $-CH_2CH(OH)CH_2NR_xR_v$, -C(O)H, $-C(O)(C_{1-6})$ alkyl), — $C(O)(C_{1-4} \text{ hydroxyalkyl})$, — $C(O)(C_{1-3} \text{ fluo-}$ roalkyl), — $C(O)(C_{1-3}$ chloroalkyl), — $C(O)(C_{1-3}$ cyanoalkyl), $-(CR_xR_x)_{0-3}C(O)OH$, $-C(O)(CH_2)_{0-2}O$ $(C_{1-4} \text{ alkyl}), -C(O)(CR_xR_x)_{0-2}O(CR_xR_x)_{1-2}O(C_{1-3})$ alkyl), — $C(O)(CR_xR_x)_{0-2}O(CR_xR_x)_{1-2}NR_yR_y$, —C(O) $CR_xR_xS(O)_2(C_{1-3} \text{ alkyl}), -C(O)CR_xR_xN\mathring{R}_x\mathring{S}(O)_2(C_{1-3} \text{ alkyl})$ alkyl), $-C(O)CR_xR_xOC(O)(C_{1-3}$ alkyl), -C(O) 55 $(CR_xR_x)_{0-3}NR_yR_y$, $--C(O)(CR_xR_x)_{0-1}NR_xC_{1-3}$ cyano---C(O)(CR_xR_x)₀₋₂NR_y(C₁₋₆ hydroxyalkyl), $-C(O)(CR_xR_x)_{0-2}NR_x(C_{1-3}$ fluoroalkyl), $(CR_xR_x)_{0-1}NR_x(C_{1-5}$ hydroxy-fluoroalkyl), --C(O) $(CR_xR_x)_{0-1}NR_x(CH_2)_{1-2}O(C_{1-3} \text{ hydroxyalkyl}), --C(O)$ 60 $(CR_xR_x)_{0-2}NR_x(CH_2)_{1-2}NR_xC(O)(C_{1-2} \text{ alkyl}), -C(O)$ $(CR_xR_x)_{0-2}NR_x((CR_xR_x)_{1-2}O(C_{1-2})$ alkyl)), $(CR_xR_x)_{0-2}N((CR_xR_x)_{1-2}O(C_{1-2} \quad alkyl))_2,$ $(CR_xR_x)_{0-2}NR_x(CR_xR_x)_{1-3}NR_xR_x$, $-C(O)CR_x(NH_2)$ $(CR_xR_x)_{1-4}NR_xR_x$, $-C(O)CR_x(NH_2)(CR_xR_x)_{1-4}NR_xC$ $-C(O)(CR_xR_x)_{0-3}NR_x(CH_2)_{0-1}C(O)(C_3$ $(O)NR_xR_x$,

4

 $--C(O)(CR_xR_x)_{0-3}N((CH_2)_{0-1}C(O)(C_{1-3})$ alkyl), alkyl))₂, $--C(O)(CR_xR_x)_{0-1}NR_x(CH_2)_{0-1}C(O)(C_{1-3})$ cyanoalkyl), $-C(O)(CR_xR_x)_{0-2}NR_x(CH_2)_{1-2}C(O)$ $-C(O)(CR_xR_x)_{1-3}C(O)NR_yR_y,$ NR,R., $(CR_x\dot{R}_x)_{1-3}S(O)_2NR_vR_v$,— $C(O)(CR_x\dot{R}_x)_{0-2}NR_x(CHR_v$ (CH_2OH) , $-(CR_xR_x)_{1-2}C(O)NR_\nu R_\nu$, -CH(CN)C(O) $-(CR_xR_x)_{1-2}C(O)NR_v(C_{1-3})$ fluoroalkyl), $-(CR_xR_x)_{1-2}C(O)NR_y(C_{1-4} \text{ hydroxyalkyl}), -(CR_x)$ R_x)₁₋₂ $C(O)NR_y$ (C_{1-3} cyanoalkyl), —(CR_xR_x)₁₋₂C(O) $NR_x(CH_2)_{1-2}O(C_{1-3} \text{ alkyl}), -(CR_xR_x)_{1-2}C(O)NR_xCH$ $(C_{1-4} \text{ alkyl})(C_{1-3} \text{ hydroxyalkyl}), -(CR_xR_x)_{1-2}C(O)$ NR_x CH(C₁₋₃ hydroxyalkyl)(C₃₋₆ cycloalkyl), $-(CH_2)_{1-2}C(O)NR_x(CH_2)_{1-2}C(O)NR_xR_x$, $-(CH_2)_{1-2}$ $C(O)NR_x(CH_2)_{1-2}S(C_{1-3} \text{ alkyl}), --(CH_2)_{1-2}C(O)NR_x$ $(CH_2)_{1-2}S(O)_2OH$, $-(CH_2)_{1-2}C(O)NR_x(CH_2)_{1-2}NR_xC$ (O)(C_{1-3} alkyl), —(CH_2)₁₋₂ $C(O)NR_x(CH_2)$ ₁₋₃ NR_xR_x $-(CH_2)_{1-2}C(O)N(CH_2CH_3)(CH_2)_{1-3}NR_xR_x$ — $(CR_xR_x)_{0-3}S(O)_2(C_{1-4} \text{ alkyl}),$ — $(CH_2)_{0-2}S(O)_2(C_{1-3} \text{ fluoroalkyl}),$ — $(CR_xR_x)_{0-2}S(O)_2NR_yR_y,$ — $(CR_xR_x)_{0-2}S(O)_2NR_yR_y$, $\begin{array}{lll} & \text{fluoroalkyl}), & -(\text{CR}_x\text{R}_x)_{0\text{-}2}\text{S}(\text{O})_2\text{NR}_y\text{R}_y, & -(\text{CR}_x\text{R}_x)_{0\text{-}2}\\ & \text{NR}_x\text{S}(\text{O})_2(\text{C}_{1\text{-}3} \text{ alkyl}), & -\text{C}(\text{O})\text{C}(\text{O})\text{OH}, & -\text{C}(\text{O})\text{C}(\text{O}) \end{array}$ $NR_{\nu}R_{\nu}$, or $-C(O)C(O)NR_{\nu}(CR_{x}R_{x})_{1-2}NR_{\nu}R_{\nu}$;

 $(CR_xR_x)_{0-1}$, $-CR_xR_xC(O)NR_x(CR_xR_x)_{0-4}$, -C(O) $(\operatorname{CR}_x \operatorname{R}_x)_{0\text{-}3} -\!\!\!-\!\!\!-,$ $--C(O)(CR_xR_x)_{0-2}NR_x(CR_xR_x)_{0-2}--,$ $-C(O)(CR_xR_x)_{0-2}N(C_{1-2}$ hydroxyalkyl) $(CR_xR_x)_{0-2}$ $-C(O)(CR_xR_x)_{0-2}NR_x(CR_xR_x)_{1-2}CR_x(OH)$ $(CR_xR_x)_{1-2}C(O)NR_x$ —, $-(CR_xR_x)_{0-2}C(O)NR_x(CR_x)$ $(R_x)_{1-2}CR_x(OH)$ —, $(CR_xR_x)_{0-2}C(O)N(C_{1-2})$ hydroxyalkyl)(CR_xR_x)₁₋₂ $-C(O)(CR_xR_x)_{0-1}O (CR_xR_x)_{1-2}NHS(O)_2$ —, $-C(O)CR_{r}(NH_{2})CR_{r}R_{r} -C(O)C(O)(CR_xR_x)_{0-2}$, $-C(O)NR_x(CR_xR_x)_{1-2}$, or $-S(O)_2$; A is 2-oxa-6-azaspiro[3,3]heptanyl, 4-oxaspiro[2.5]octanyl, 7-azaspiro[3.5]nonanyl, 8-azabicyclo [3.2.1]octanyl, 8-oxa-3-azabicyclo[3.2.1]octanyl, 9-azabicyclo[3.3.1]nonanyl, adamantanyl, azepanyl, azetidinyl, C₃₋₆ cycloalkyl, diazepanyl, dihydroinonyl, dihydropyrimidinonyl, dioxanyl, dioxidothiadiazinanyl, dioxidothiazolidinyl, dioxidothiomorpholinyl, dioxoisothiazolidinyl, dioxidothiazinanyl, dioxotetrahydrothiophenyl, dioxotetrahydrothiopyranyl, dioxothiomorpholinyl, furanyl, imidazolyl, imidazolidinonyl, indolyl, isoquinolinyl, isoxazolyl, morpholinyl, morpholinonyl, naphthalenyl, octahydrocyclopenta[b]pyranyl, octahydropyrrolo[3,4-b]pyridinyl, oxazolidinonyl, oxadiazolyl, oxazolyl, oxetanyl, phenyl, piperidinyl, piperidinonyl, piperazinyl, piperazinonyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridazinonyl, pyridinyl, pyridinyl, pyrimidinyl, pyrrolidinonyl, pyrrolidinyl, pyrrolyl, quinolinyl, quinolizinonyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydrothiopyranyl, tetrazolyl, thiadiazolyl, thiazolyl, triazolonyl, or triazolyl, each substituted with -L₂R_a and zero to 4 R_b ; L_2 is a bond or CR_xR_x ;

R_a 1S: (a) H, F, Cl, —CN, —OH, C₁₋₆ alkyl, C₁₋₃ fluoroalkyl, $-(CH_2)_{0-4}O(C_{1-3} \quad alkyl),$ C_{1-5} hydroxyalkyl, $-(CR_xR_x)_{1-3}S(C_{1-3} \text{ alkyl}), -(CR_xR_x)_{1-3}NHC(O)O$ $(C_{1-4} \text{ alkyl}), -(CR_xR_x)_{1-3}NR_yR_y, -(CR_xR_x)_{1-3}C(O)$ $NR_{1}R_{2}$, $-O(C_{1-3}$ fluoroalkyl), $-O(CR_{2}R_{2})_{1-3}NR_{2}R_{2}$, $-NHS(O_{1}R_{2})_{1-3}NR_{2}R_{3}$ $-S(O)_2NR_2R_2$ $-NHS(O)_2(C_{1-3})$ $-NR_xR_x$, $-NR_x(C_{1-4} \text{ alkyl})$, $-NR_xC(O)(C_{1-4} \text{ alkyl})$, $-(CR_xR_x)_{0-3}C(O)OH, -C(O)(C_{1-5} \text{ alkyl}), -C(O)$ $(C_{1-3}$ fluoroalkyl), $-C(O)O(C_{1-4}$ alkyl), -C(O)NH $(C_{1-3} \text{ cyanoalkyl}), -C(O)NR_yR_y, -C(O)NR_xCH_2C$ $(O)NR_{r}R_{r}$ or $-C(O)NR_{x}CH_{2}CH_{2}NHC(O)(C_{1-3})$ alkyl);

5

(b) C_{3-6} cycloalkyl or $C(O)NH(C_{3-6}$ cycloalkyl), wherein each cycloalkyl is substituted with zero to 2 substituents independently selected from —OH, C_{1-3} alkyl, C_{1-3} hydroxyalkyl, C_{1-3} fluoroalkyl, and — $C(O)O(C_{1-3}$ alkyl); or

(c) A_1 , $-CH_2A_1$, $-C(O)A_1$, $-NR_xA_1$, or -C(O) NR_xA_1 , wherein A_1 is furanyl, imidazolyl, indolyl, isoxazolyl, morpholinyl, octahydropyrrolo[3,4-c]pyrrolyl, oxazolyl, oxetanyl, phenyl, piperazinyl, piperidinyl, pyrazolyl, pyridinyl, pyrimidinyl, pyrrolidinyl, 10 pyrrolyl, tetrahydrofuranyl, tetrahydropyranyl, thiadiazolyl, thiazolyl, thiophenyl, or triazolyl, each substituted with zero to three substituents independently selected from -OH, C_{1-3} alkyl, C_{1-3} hydroxyalkyl, $-C(O)(C_{1-2}$ alkyl), $-C(O)(C_{1-3}$ alkyl), $-NR_xR_x$, 15 phenyl, trifluoromethyl-phenyl, $-CH_2$ (bromophenyl), and $-CH_2CH_2$ (pyrrolidinyl);

each R_b is independently F, —OH, —CH₃, —CF₃, or —OCH₃:

each R_x is independently H or —CH₃;

each R_{ν} is independently H or C_{1-6} alkyl;

 R_z is H, C_{1-2} alkyl, or C_{1-2} fluoroalkyl;

each R_4 is independently F, —OH, C_{1-2} alkyl, or —OCH $_3$; or two R_4 attached to the same carbon atom form —O; or wherein when m is at least 2, two R_4 , each attached 25 to a different carbon atom adjacent to the nitrogen atom in the piperidinyl ring, can form a —CH $_2$ CH $_2$ —bridge;

each R_5 is independently F, Cl, —CN, C_{1-2} alkyl, C_{1-2} fluoroalkyl, or —OCH₃;

m is zero, 1, 2, 3, or 4;

n is zero, 1, or 2; and

p is zero, 1, 2, 3, or 4.

The second aspect of the present invention provides at least one compound of Formula (I) or a salt thereof, 35 wherein:

R₁ is H, Cl, —CN, C₁₋₄ alkyl, C₁₋₃ fluoroalkyl, C₁₋₃ hydroxy-fluoroalkyl, —CR_z—CH₂, C₃₋₆ cycloalkyl, —CH₂(C₃₋₆ cycloalkyl), —C(O)O(C₁₋₃ alkyl), or tetrahydropyranyl;

each R_2 is independently halo, —CN, —OH, — NO_2^+ , C_{1-3} alkyl, C_{1-2} fluoroalkyl, C_{1-3} hydroxyalkyl, C_{1-3} aminoalkyl, $(CH_2)_{0-4}O(C_{1-3}$ alkyl), C_{1-3} fluoroalkoxy, C_{2-4} alkoxyalkoxy, — $O(CH_2)_{1-2}NR_xR_x$, — $C(O)O(C_{1-3}$ alkyl), — $C(O)NR_yR_y$, — NR_yR_y , — $NR_xC(O)(C_{1-3}$ alkyl), — $NR_x(CH_2$ -cyclopropyl), C_{3-6} cycloalkyl, methylpiperidinyl, methylpiperazinyl, amino-oxadiazolyl, imidazolyl, triazolyl, or C(O)(thiazolyl);

R₃ is:

(a) $-L_1$ -A; or

(b) H, C_{1-6} alkyl, C_{1-3} fluoroalkyl, C_{1-3} cyanoalkyl, C_{1-6} hydroxyalkyl, C_{1-3} hydroxy-fluoroalkyl, — $CR_xR_xCR_x$ $(OH)CR_{r}=CR_{r}R_{r}$ $-(CR_xR_x)_{1-4}O(C_{1-3})$ $-(\hat{CR}_x\hat{R}_x)_{1-4}\hat{O(\hat{CR}_xR_x)_{1-3}}\hat{O(\hat{C}_{1-3})}$ alkyl), — CH_2CH $(OH)CH_2O(C_{1-3} \text{ alkyl}), -(CR_xR_x)_{1-3}S(C_{1-3} \text{ alkyl}), 55$ $-(CH_2)_{1-3}C(O)OC(CH_3)_3$ $-(CR_xR_x)_{0-3}NR_xR_y$ $-(CR_xR_x)_{0-3}NR_x(C_{1-4} \text{ hydroxyalkyl}), -CH_2CH(OH)$ $CH_2NR_xR_y$, -C(O)H, $-C(O)(C_{1-6}$ alkyl), -C(O) $(C_{1-3} \text{ hydroxyalkyl}), -C(O)(C_{1-3} \text{ fluoroalkyl}), -C(O)$ chloroalkyl), $--C(O)(C_{1-3})$ cyanoalkyl), 60 $-(CR_xR_x)_{0-3}C(O)OH$, $-C(O)(CH_2)_{0-2}O(C_{1-4}$ alkyl), $-C(O)(CR_xR_x)_{0-2}O(CR_xR_x)_{1-2}O(C_{1-3} \text{ alkyl}), --C(O)$ $CR_xR_xS(O)_2(C_{1-3} \text{ alkyl}), -C(O)CR_xR_xNR_xS(O)_2(C_{1-3} \text{ alkyl})$ alkyl), $-C(O)CR_xR_xOC(O)(C_{1-3}$ alkyl), -C(O) $(CR_xR_x)_{0-3}NR_vR_v$, — $C(O)(CR_xR_x)_{0-1}NR_x(C_{1-3} \text{ cyano-} 65)$ $-C(O)(CR_xR_x)_{0-2}NR_y(C_{1-6} \text{ hydroxyalkyl}),$ $-C(O)(CR_xR_x)_{0-1}NR_x(C_{1-3}$ fluoroalkyl),

6

 $(CR_xR_x)_{0-1}NR_x(C_{1-5} \text{ hydroxy-fluoroalkyl}), -C(O)$ $(CR_xR_x)_{0-1}NR_x(CH_2)_{1-2}O(C_{1-3} \text{ hydroxyalkyl}), --C(O)$ $(CR_xR_x)_{0-1}NR_x(CH_2)_{1-2}NR_xC(O)(C_{1-2} \text{ alkyl}), --C(O)$ $(CR_xR_x)_{0-1}NR_x((CR_xR_x)_{1-2}O(C_{1-2} \text{ alkyl})), --C(O)CR_x$ $--C(O)CR_x(NH_2)(CR_x)$ $(NH_2)(CR_xR_x)_{1-4}NR_xR_x$ $--C(O)(CR_xR_x)_{0-3}NR_x$ R_x)₁₋₄NR_xC(O)NR_xR_x, $-C(O)(CR_xR_x)_{0-1}NR_x$ $(CH_2)_{0-1}C(O)(C_{1-3} \quad alkyl),$ $(CH_2)_{0-1}C(O)(C_{1-3}$ cyanoalkyl), $--C(O)(CR_xR_x)_{0-1}$ $-C(O)(CR_xR_x)_{1-3}C(O)$ $NR_x(CH_2)_{1-2} \quad C(O)NR_vR_v$ NR,R, $-C(O)(CR_xR_x)_{0-1}NR_x(CHR_y(CH_2OH)),$ $-(CR_xR_x)_{1-2}C(O)NR_yR_y$, $-(CR_xR_x)_{1-2}C(O)NR_y(C_{1-3})$ fluoroalkýl), $-(CR_xR_x)_{1-2}C(O)NR_y(C_{1-4} \text{ hydroxyal-}$ $-(CR_xR_x)_{1-2}C(O)NR_y(C_{1-3})$ cyanoalkyl), $-(CR_xR_x)_{1-2}C(O)NR_x(CH_2)_{1-2}O(C_{1-3})$ alkyl), $-(CR_xR_x)_{1-2}C(O)NR_xCH(C_{1-4} alkyl)(C_{1-3} hydroxyal -(CH_2)_{1-2}C(O)NR_x(CH_2)_{1-2}C(O)NR_xR_x$ kyl), $-(CH_2)_{1-2}C(O)NR_x(CH_2)_{1-2}S(O)_2OH,$ $(O)NR_x(CH_2)_{1-2}NR_xC(O)(C_{1-3} \text{ alkyl}), --(CH_2)_{1-2}C(O)$ $-(CH_2)_{1-2}C(O)N(CH_2CH_3)$ $NR_x(CH_2)_{1-3}NR_xR_x$ $-(CH_2)_{0-2}S(O)_2(C_{1-4}$ $(CH_2)_{1-3}NR_xR_x$ alkyl), $-(CH_2)_{0-2}S(O)_2(C_{1-3})$ fluoroalkyl), $S(O)_2NR_xR_x$, —C(O)C(O)OH, — $C(O)C(O)NR_vR_v$, or $-C(O)C(O)NR_{\nu}(CR_{x}R_{x})_{1-2}NR_{\nu}R_{\nu};$

 L_1 is a bond, $-(CR_xR_x)_{1-2}$, $-(CR_xR_x)_{1-2}CR_x(OH)$, $-(CR_xR_x)_{1-2}O$, $-(CR_xR_xC(O)$, $-(CR_xR_x)_2NR_x$ $(CR_xR_x)_{0-1}$ $-CR_rR_rC(O)NR_r(CR_rR_r)_{0.4}$ $-C(O)(CR_xR_x)_{0-2}NR_x(CR_x)$ $-C(O)(CR_xR_x)_{0-3}$ $-C(O)(CR_xR_x)_{0-2}N(C_{1-2}$ hydroxyalkyl) $(CR_xR_x)_{0-2}$ —, $-C(O)(CR_xR_{x/1-2}C(O)NR_x$ —, $-C(O)(CR_xR_{x/1-2}C(O)NR_x$ —, $-C(O)(CR_xR_{x/1-2}C(O)NR_x$ —) $--C(O)(CR_xR_x)_{0-2}NR_x(CR_xR_x)_{1-2}CR_x$ $R_x)_{0-2}C(O)NR_x(CR_xR_x)_{1-2}CR_x(OH)$ —, — $(CR_xR_x)_{0-2}C$ hydroxyalkyl)(CR_xR_x)₁₋₂—, $(O)N(C_{1-2})$ -C(O) $(CR_xR_x)_{01}O$ —, $-C(O)(CR_xR_x)_{1-2}NHS(O)_2$ $-C(O)CR_x(NH_2)CR_xR_x$ $-C(O)C(O)(CR_x)$ $R_x)_{0-2}$ —, —C(O)N R_x (C $R_xR_x)_{1-2}$ —, or —S(O)₂-

A is 2-oxa-6-azaspiro[3,3]heptanyl, 4-oxaspiro[2.5]octanyl, 7-azaspiro[3.5]nonanyl, 8-azabicyclo[3.2.1]octanyl, 8-oxa-3-azabicyclo[3.2.1]octanyl, 9-azabicyclo [3.3.1] nonanyl, adamantanyl, azepanyl, azetidinyl, C₃₋₆ cycloalkyl, diazepanyl, dihydroinonyl, dihydropyrimidinonyl, dioxidothiadiazinanyl, dioxidoisothiazolidinyl, dioxidothiazinanyl, dioxotetrahydrothiophenyl, dioxotetrahydrothiopyranyl, dioxothiomorpholinyl, furanyl, imidazolyl, imidazolidinonyl, indolyl, isoquinolinyl, isoxazolyl, morpholinyl, morpholinonyl, naphthalenyl, octahydrocyclopenta[b]pyranyl, oxazolidinonyl, oxadiazolyl, oxetanyl, oxazolyl, phenyl, piperidinyl, piperidinonyl, piperazinyl, piperazinonyl, pyrazinyl, pyrazolyl, pyridazinonyl, pyridinonyl, pyridinyl, pyrimidinyl, pyrrolidinonyl, pyrrolidinyl, pyrrolyl, quinolinyl, quinolizinonyl, tetrahydrofuranyl, tetrahydropyranyl, tetrazolyl, thiadiazolyl, thiazolyl, or triazolyl, each substituted wtih $-L_2R_a$ and zero to $4R_b$;

 L_2 is a bond or $-CR_xR_x$,

 R_a is:

50

(a) H, F, Cl, —CN, —OH, C_{1-6} alkyl, C_{1-3} fluoroalkyl, $-(CH_2)_{0-4}O(C_{1-3})$ hydroxyalkyl, $-(CR_xR_x)_{1-3}S(C_{1-3} \text{ alkyl}), -(CR_xR_x)_{1-3}NHC(O)O$ $(C_{1-4} \text{ alkyl}), -(CR_xR_x)_{1-3}NR_vR_v, -(CR_xR_x)_{1-3}C(O)$ $--S(O)_2NR_xR_x$ $NR_{\nu}R_{\nu}$, — $O(C_{1-3}$ fluoroalkyl), $--\acute{O}(\acute{C}R_xR_x)_{1-3}NR_xR_x$ $-NHS(O)_2(C_{1-3})$ alkyl), $--NR_xR_x$, $--NR_x(C_{1-4} \text{ alkyl})$, $--NR_xC(O)(C_{1-4} \text{ alkyl})$, $-(CR_xR_x)_{0-3}C(O)OH, --C(O)(C_{1-5} \text{ alkyl}), --C(O)$ $(C_{1-3}$ fluoroalkyl), $-C(O)O(C_{1-4}$ alkyl), -C(O)NH(C₁₋₃ cyanoalkyl), —C(O)NR_vR_v, —C(O)NR_xCH₂C $(O)NR_xR_x$ $-C(O)NR_xCH_2CH_2NHC(O)(C_{1-3})$ or alkyl);

(b) C_{3-6} cycloalkyl or $-C(O)NH(C_{3-6}$ cycloalkyl), wherein each cycloalkyl is substituted with zero to 2 substituents independently selected from —OH, C₁₋₃ alkyl, C_{1-3} hydroxyalkyl, C_{1-3} fluoroalkyl, and —C(O) $O(C_{1-3} \text{ alkyl}); \text{ or }$

(c) A_1 , $--CH_2A_1$, $--C(O)A_1$, $--NR_xA_1$, or --C(O)NR_xA₁, wherein A₁ is furanyl, imidazolyl, indolyl, isoxazolyl, morpholinyl, octahydropyrrolo[3,4-c]pyrrolyl, oxazolyl, oxetanyl, phenyl, piperazinyl, piperidinyl, pyrazolyl, pyridinyl, pyrimidinyl, pyrrolidinyl, pyrrolyl, tetrahydrofuranyl, tetrahydropyranyl, thiadiazolyl, thiazolyl, thiophenyl, or triazolyl, each substituted with zero to three substituents independently selected from —OH, C₁₋₃ alkyl, C₁₋₃ hydroxyalkyl, $-C(O)(C_{1-2} \text{ alkyl}), -C(O)O(C_{1-3} \text{ alkyl}), -NR_xR_x, 15$ phenyl, trifluoromethyl-phenyl, —CH₂(bromophenyl), and —CH₂CH₂(pyrrolidinyl);

each R_b is independently F, $-CH_3$, $-CF_3$, or $-OCH_3$; each R_x is independently H or —CH₃;

each R_{ν} is independently H or C_{1-6} alkyl;

 R_z is H, C_{1-2} alkyl, or C_{1-2} fluoroalkyl;

each R_4 is independently F, —OH, C_{1-2} alkyl, or —OCH₃; or two R_4 attached to the same carbon atom form =0; each R₅ is independently F, Cl, —CN, C₁₋₂ alkyl, C₁₋₂ fluoroalkyl, or —OCH₃;

m is zero, 1, 2, 3, or 4;

n is zero, 1, or 2; and

p is zero, 1, 2, 3, or 4.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein $\rm R_1$ is H, Cl, —CN, $\rm C_{1\text{--}4}$ alkyl, $\rm C_{1\text{--}3}$ $\,$ 30 fluoroalkyl, C₁₋₃ hydroxy-fluoroalkyl, C₃₋₆ cycloalkyl, -CH₂(C_{3-6} cycloalkyl), or tetrahydropyranyl; and R_2 , R_3 , R₄, R₅, m, n, and p are defined in the first aspect or the second aspect. Included in this embodiment are compounds in which R_1 is H, Cl, —CN, C_{1-4} alkyl, or C_{1-2} fluoroalkyl. 35 Also included are compounds in which R_1 is $-CH_2CH_3$, —CH(CH₃)₂, or —CH₂CHF₂; and compounds in which R₁ is —CH(CH₃)₂. Also included are compounds in which m is zero and n is zero.

One embodiment provides a compound of Formula (I) or 40 a salt thereof, wherein each R₂ is independently F, Cl, —CN, –OH, C_{1-3} alkyl, — CD_3 , C_{1-2} fluoroalkyl, C_{1-3} hydroxyalkyl, C_{1-2} cyanoalkyl, C_{1-3} aminoalkyl, C_{1-4} alkoxy, C_{1-2} fluoroalkoxy, $-O(CH_2)_{1-2}OH$, $-(CH_2)_{1-4}O(C_{1-3}$ alkyl), $-O(CH_2)_{1-2}OC(O)(C_{1-3})$ alkyl), $-O(CH_2)_{1-2}NR_xR_x$, 45 $-C(O)O(C_{1-3} \text{ alkyl}), -C(O)NR_{\nu}R_{\nu}, -NR_{\nu}R_{\nu}, -NR_{\nu}(C_{1-3} R_{\nu})$ fluoroalkyl), $-NR_y(C_{1-4} \text{ hydroxyalkyl})$, $-NR_xCH_2(\text{phe-}$ yl), $-NR_xS(O)_2(C_{3-6}$ cycloalkyl), C_{3-6} cycloalkyl, $-NR_xC(O)(C_{1-3}$ alkyl), $-NR_x(CH_2$ -cyclopropyl), C_{3-6} cycloalkyl, morpholinyl, dioxothiomorpholinyl, methylpiperidinyl, methylpiperazinyl, amino-oxadiazolyl, imidazolyl, triazolyl, or -C(O)(thiazolyl); and R_1 , R_3 , R_4 , R_5 , R_8 , R_8 , R_9 , m, n, and p are defined in the first aspect or the second aspect. Included in this embodiment are compounds in -CD₃, C₁₋₂ fluoroalkyl, C₁₋₃ hydroxyalkyl, C₁₋₂ cyanoalkyl, C_{1-4} alkoxy, C_{1-2} fluoroalkoxy, $--O(CH_2)_{1-2}OH$, $-(CH_2)_{1-4}O(C_{1-3} \text{ alkyl}), -O(CH_2)_{1-2}OC(O)(C_{1-3} \text{ alkyl}),$ $-NR_{\nu}R_{\nu}$, $-NR_{\nu}(C_{1-3} \text{ fluoroalkyl})$, $-NR_{\nu}(C_{1-4} \text{ hydroxyal-}$ kyl), $-NR_xCH_2(phenyl)$, $-NR_xS(O)_2(C_{3-6}$ cycloalkyl), 60 C₃₋₆ cycloalkyl, morpholinyl, di oxothiomorpholinyl, or methylpiperazinyl. Also included in this embodiment are compounds in which each R₂ is independently F, Cl, —CN, $-CH_3$, $-CH_2CH_3$, $-CH(CH_3)_2$, $-CD_3$, $-CF_3$, $-\text{CH}_2\text{CN}$, $-\text{CH}_2\text{OH}$, $-\text{CH}_2\text{CH}_2\text{OH}$, $-\text{CH}(\text{CH}_3)\text{OH}$, 65 $-C(CH_3)_2OH$, $-OCH_2CH_2OH$, $-OCH_3$, $-OCH_2CH_3$, -OCH₂CH(CH₃)₂, -OCHF₂, -CH2OCH3,

8

—CH₂OCH₂CH₃, —OCH₂CH₂OC(O)CH₃, —NH₂, —NH $-NH(CH_2CF_3),$ —NH(CH₂C(CH₃)₂OH), -NHCH₂(phenyl), --NHS(O)₂(cyclopropyl), cyclopropyl, morpholinyl, dioxothiomorpholinyl, or methylpiperazinyl.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein each R₂ is independently halo, —CN, C_{1-3} alkyl, — CD_3 , C_{1-2} fluoroalkyl, C_{1-2} cyanoalkyl, C_{1-3} hydroxyalkyl, — $O(CH_2)_{1-2}OH$, — $(CH_2)_{0-4}O(C_{1-4}$ alkyl), C_{1-3} fluoroalkoxy, — $O(CH_2)_1$ and R_1 , R_3 , R_4 , R_5 , R_x , R_y , m, n, and p are defined in the first aspect or the second aspect. Included in this embodiment are compounds in which 2OC $(O)(C_{1-3} \text{ alkyl}), -NR_{\nu}R_{\nu}, -NR_{\nu}(C_{1-3} \text{ fluoroalkyl}), -NR_{\nu}$ $(C_{1-4} \text{ hydroxyalkyl}), -NR_xCH_2(\text{phenyl}), -NR_xS(O)_2(C_{3-6})$ cycloalkyl), C₃₋₆ cycloalkyl, morpholinyl, dioxothiomorpholinyl, or methylpiperazinyl; and R₁, R₃, R₄, R₅, R_x, R_y, m, n, and p are defined in the first aspect or the second aspect. Included in this embodiment are compounds in which each R₂ is independently F, Cl, —CN, —OH, C₁₋₃ alkyl, — CD_3 , C_{1-2} fluoroalkyl, C_{1-2} cyanoalkyl, C_{1-3} 20 hydroxyalkyl, — $O(CH_2)_{1-2}OH$, — $O(C_{1-4}$ alkyl), C_{1-2} fluo- $\begin{array}{ll} (C_{1\text{--}3} \ alkyl), \ -NR_yR_y, \ -NR_y(C_{1\text{--}3} \ fluoroalkyl), \ -NR_y\\ (C_{1\text{--}4} \ hydroxyalkyl), \ -NR_xCH_2(phenyl), \ -NR_xS(O)_2(C_{3\text{-}6} \end{array}$ cycloalkyl), C₃₋₆ cycloalkyl, morpholinyl, dioxothiomorpholinyl, or methylpiperazinyl. Also included are compounds in which m is zero and n is zero.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein R_2 is F, Cl, -CN, C_{1-2} alkyl, -CD₃, $-CF_3$, $-CH_2OH$, $-C(CH_3)_2OH$, $-OCH_3$, $-CH_2OCH_3$, —OCH₂CH₃, cyclopropyl, or morpholinyl; and R₁, R₃, R₄, R₅, m, n, and p are defined in the first aspect or the second aspect. Included in this embodiment are compounds in which each R₂ is independently —CH₃ or —OCH₃. Also included are compounds in which m is zero and n is zero.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein R_3 is $-L_1$ -A; and R_1 , R_2 , R_4 , R_5 , L_1 , and A are defined in the first aspect or the second aspect. Included in this embodiment are compounds in which L_1 is bond, $-(CR_xR_x)_{1-2}--,$ $-(CR_xR_x)_{1-2}CR_x(OH)$ —, $-CR_xR_xC(O) -(CR_xR_x)_{1-2}O--,$ $-(CR_xR_x)_2NR_x$ $(CR_xR_x)_{0-1}$ —, $-CR_xR_xC(O)NR_x(CR_xR_x)_{0-4}$ —, -C(O) $(CR_xR_x)_{0-3}$ —, — $C(O)(CR_xR_x)_{0-2}NR_xCR_xR_x)_{0-2}$ —, —C(O) $(CR_xR_x)_{0-2}N(C_{1-2}$ hydroxyalkyl) $(CR_xR_x)_{0-2}$ —, $(CR_xR_x)_{1-2}C(O)NR_x$ —, $--C(O)(CR_xR_x)_{0-2}NR_x(CR_x)$ $--(CR_xR_x)_{0-2}C(O)NR_x(CR_xR_x)_{1-2}CR_x$ R_x)₁₋₂ CR_x (OH)- $-(CR_xR_x)_{0-2}C(O)N(C_{1-2} hydroxyalkyl)(CR_x)$ (OH)--, $-C(O)(CR_xR_x)_{0-1}O-, -C(O)(CR_xR_x)_{1-2}NHS$ R_x)₁₋₂—, $-C(O)CR_x(NH_2)CR_xR_x$, $-C(O)C(O)(CR_x$ -, $-C(O)NR_x(CR_xR_x)_{1-2}$ or $-S(O)_2$. Also included are compounds in which L_1 is a bond, $-CR_xR_x$, $-CR_xR_xC(O)$ —, $-CR_xR_xC(O)NR_x$ —, or $-C(O)(CR_x)$ R_x)₀₋₂—. Also included are compounds in which m is zero and n is zero.

One embodiment provides a compound of Formula (I) or which each R₂ is independently F, Cl, —CN, C₁₋₃ alkyl, 55 a salt thereof, wherein R₃ is -L₁-A; L₁ is a bond, —CR_xR_x, $-CR_xR_xC(O)$ —, $-CR_xR_xC(O)NR_x$ —, or $-C(O)(CR_xC(O)NR_x$ R_x)₀₋₂—; A is a ring selected from azetidinyl, C_{3-6} cycloalkyl, dioxotetrahydrothiopyranyl, dioxidothiadiazinanyl, dioxidothiomorpholinyl, furanyl, imidazolyl, isoquinolinyl, morpholinyl, oxazolyl, 2-oxa-6-azaspiro[3.3]heptanyl, oxetanyl, phenyl, piperazinyl, piperidinyl, pyrazinyl, pyrazolyl, pyridinyl, pyrrolidinyl, pyrrolyl, quinolinyl, tetrahydrofuranyl, tetrahydropyranyl, tetrazolyl, thiadiazolyl, thiazolyl, and triazolyl, each substituted wtih -L₂-R_a and zero to $4 R_b$; and R_1 , R_2 , R_4 , R_5 , R_x , L_2 , R_a m, n, and p are defined in the first aspect or the second aspect. Included in this embodiment are compounds in which L₂ is a bond or

 $--CR_xR_x$ —; and R_a is (a) H, --CN, --OH, C_{1-3} alkyl, C_{1-2} fluoroalkyl, C_{1-3} hydroxyalkyl, $-(CH_2)_{1-2}O(C_{1-3}$ alkyl), $-(CR_xR_x)_{1-3}NHC(O)O(C_{1-4} \quad alkyl),$ $-(CR_{r}R_{r})_{1-3}NH_{2}$ $-(CR_xR_x)_{1-3}NR_x(C_{1-4} \text{ alkyl}), -O(C_{1-2} \text{ fluoroalkyl}), -S(O)_2NR_xR_x, -NHS(O)_2(C_{1-3} \text{ alkyl}), -NR_xR_x, -NR_x$ $(C_{1-4} \text{ alkyl}), -(CR_xR_x)_{1-2}C(O)OH, -C(O)OH, -C(O)$ $(C_{1-3} \text{ alkyl}), -C(O)O(C_{1-3} \text{ alkyl}), -C(O)NR_x(C_{1-2} \text{ alkyl}),$ $-C(O)N(C_{1-3} \text{ alkyl})_2$, $-C(O)NR_xCH_2C(O)NR_xR_x$, or $-C(O)NR_xCH_2CH_2NHC(O)(C_{1-3} alkyl)$; (b) C_{3-6} cycloalkyl or —C(O)NH(C₃₋₆ cycloalkyl), wherein each cycloalkyl is substituted with zero to 2 substituents independently selected from —OH, C_{1-3} alkyl, C_{1-3} hydroxyalkyl, C_{1-3} fluoroalkyl, and — $C(O)O(C_{1-3} \text{ alkyl})$; or (c) A_1 , — CH_2A_1 , $-C(O)A_1$, or $-C(O)NHA_1$, wherein A_1 is furanyl, imidazolyl, indolyl, isoxazolyl, octahydropyrrolo[3,4-c]pyrrolyl, oxazolyl, oxetanyl, phenyl, piperazinyl, piperidinyl, pyrazolyl, pyridinyl, pyrimidinyl, pyrrolidinyl, pyrrolyl, tetrahydrofuranyl, tetrahydropyranyl, thiadiazolyl, thiazolyl, thiophenyl, or triazolyl, each substituted with zero to three C_{1-3} hydroxyalkyl, $-C(O)(C_{1-2}$ alkyl), $-C(O)O(C_{1-3})$ alkyl), —NR_xR_x, phenyl, trifluoromethyl-phenyl, —CH₂ —CH₂CH₂(pyrrolidinyl). (bromophenyl), and included are compounds in which m is zero and n is zero.

One embodiment provides a compound of Formula (I) or 25 a salt thereof, wherein R_3 is H, C_{1-6} alkyl, C_{1-3} fluoroalkyl, C₁₋₃ cyanoalkyl, C₁₋₆ hydroxyalkyl, C₁₋₃ hydroxy-fluoroalkyl, $-CR_xR_xCR_x(OH)CR_x=CR_xR_x$, $-C = N(NR_xR_x),$ $-(CR_xR_x)_{1-4}O(C_{1-3} \text{ alkyl}), -(CR_xR_x)_{1-4}O(CR_xR_x)_{1-3}O$ $(C_{1-3} \text{ alkyl}), -CH_2CH(OH)CH_2O(C_{1-3} \text{ alkyl}), -(CR_x 30)$ $R_x)_{1-3}S(C_{1-3} \text{ alkyl}), -(CH_2)_{1-3}C(O)OC(CH_3)_3, -(CR_x)_{1-3}C(O)OC(CH_3)_3$ $-(CR_xR_x)_{0-3}NR_x(C_{1-4})$ $R_{r})_{0-3}NR_{r}R_{r}$ hydroxyalkyl), $-\mathrm{CH_2CH}(\mathrm{\acute{O}H})\mathrm{CH_2NR}_x\mathrm{R}_v,\ -\!\!-\mathrm{C(O)H},\ -\!\!-\mathrm{C(O)(C}_{1\text{-}6}\ \text{alkyl}),$ $-C(O)(C_{1-4} \text{ hydroxyalkyl}), -C(O)(C_{1-3} \text{ fluoroalkyl}),$ — $C(O)(C_{1-3}$ chloroalkyl), cyanoalkyl), 35 $--C(O)(C_{1-3}$ $-(CR_xR_x)_{0-3}C(O)OH,$ $-C(O)(CH_2)_{0-2}O(C_{1-4})$ $-C(O)(CR_xR_x)_{0-2}O(CR_xR_x)_{1-2}O(C_{1-3})$ alkyl), $-C(O)CR_xR_xS(O)_2(C_{1-3})$ $(CR_xR_x)_{0-2}O(CR_xR_x)_{1-2}NR_vR_v$, $-C(O)CR_xR_xNR_xS(O)_2(C_{1-3})$ alkyl), alkyl), $CR_xR_xOC(O)(C_{1-3})$ alkyl), $-C(O)(CR_xR_x)_{0-1}NR_x(C_{1-3})$ cyanoalkyl), $-C(O)(CR_*$ $R_x)_{0-2}NR_v(C_{1-6} \text{ hydroxyalkyl}), -C(O)(CR_xR_x)_{0-2}NR_x(C_{1-3})$ fluoroalkyl), — $C(O)(CR_xR_x)_{0-1}NR_x(C_{1-5} \text{ hydroxy-fluoroal-}$ kyl), — $C(O)(CR_xR_x)_{0-1}NR_x(CH_2)_{1-2}O(C_{1-3} \text{ hydroxyalkyl}),$ $-C(O)(CR_xR_x)_{0-2}NR_x(CH_2)_{1-2}NR_xC(O)(C_{1-2})$ alkyl), 45 $-C(O)(CR_xR_x)_{0-2}NR_x(CR_xR_x)_{1-2}O(C_{1-2} \text{ alkyl}),$ -C(O) $(CR_xR_x)_{0-2}N((CR_xR_x)_{1-2}O(C_{1-2})$ alkyl))₂, -C(O)(CR_ $R_{x})_{0-2}NR_{x}(CR_{x}R_{x})_{1-3}NR_{x}R_{x}$ $-C(O)CR_{r}(NH_{2})(CR_{r})$ $\mathbf{R}_{x}^{\mathsf{T}})_{1-4}^{\mathsf{T}}\mathbf{N}\mathbf{R}_{x}^{\mathsf{T}}\mathbf{R}_{x}^{\mathsf{T}}, --\mathbf{C}(\mathbf{O})\mathbf{C}\mathbf{R}_{x}^{\mathsf{T}}(\mathbf{N}\mathbf{H}_{2})(\mathbf{C}\mathbf{R}_{x}\mathbf{R}_{x}^{\mathsf{T}})_{1-4}\mathbf{N}\mathbf{R}_{x}^{\mathsf{T}}\mathbf{C}(\mathbf{O})\mathbf{N}\mathbf{R}_{x}\mathbf{R}_{x}^{\mathsf{T}},$ $-C(O)(CR_xR_x)_{0-3}NR_x(CH_2)_{0-1}C(O)(C_{1-3} \text{ alkyl}), -C(O)$ 50 $(CR_xR_x)_{0-3}N((CH_2)_{0-1}C(O)(C_{1-3} \quad alkyl))_2,$ $--C(O)(CR_x)$ $--C(O)(CR_x)$ R_x)₀₋₁ NR_x (CH₂)₀₋₁C(O)(C₁₋₃ cyanoalkyl), $R_x)_{0-2}NR_x(CH_2)_{1-2}C(O)NR_yR_y$, $-C(O)(CR_xR_x)_{1-3}C(O)$ $-C(O)(CR_xR_x)_{1-3}S(O)_2NR_vR_v,$ NR,,R,, –C(O)(CR_x R_x)₀₋₂NR_x(CHR_v(CH₂OH)), $-\text{CH}(\text{CN})\text{C}(\text{O})\text{NR}_{y}\overline{\text{R}_{y}}, --(\text{CR}_{x}\text{R}_{x})_{1-2}\text{C}(\text{O})\text{NR}_{v}(\text{C}_{1-3} \text{ fluoro-}$ $-(CR_x\dot{R}_x)_{1-2}C(O)NR_v(C_{1-4})$ hydroxyalkyl), $-(CR_xR_x)_{1-2}C(O)NR_y(C_{1-3} \text{ cyanoalkyl}), -(CR_xR_x)_{1-2}C(O)$ $NR_x(CH_2)_{1-2}O(C_{1-3} \text{ alkyl}), --(CR_xR_x)_{1-2}C(O)NR_xCH(C_{1-4})$ alkyl)(C_{1-3} hydroxyalkyl), $-(CH_2)_{1-2}C(O)NR_x(CH_2)_{1-2}C$ 60 $-(CH_2)_{1-2}C(O)NR_x(CH_2)_{1-2}S(C_{1-3})$ alkvl). $-(CH_2)_{1-2}C(O)NR_x(CH_2)_{1-2}S(O)_2OH,$ $-(CH_2)_{1-2}C(O)$ $-(CH_2)_{1-2}C(O)NR_x$ $NR_x(CH_2)_{1-2}NR_xC(O)(C_{1-3}$ alkyl), -(CH₂)₁₋₂C(O)N(CH₂CH₃) $(CH_2)_{1-3}NR_xR_x$ $(\mathrm{CH_2})_{1\text{--}3}\mathrm{NR}_x\mathrm{R}_x,$ $--(CR_xR_x)_{0-3}S(O)_2(C_{1-4})$ alkyl), 65 $-(CH_2)_{0-2}S(O)_2(C_{1-3})$ $-(CR_xR_x)_{0-2}$ fluoroalkyl), $S(O)_2NR_{\nu}R_{\nu}$, — $(CR_xR_x)_{0-2}NR_xS(O)_2(C_{1-3} \text{ alkyl})$, —C(O)C

(O)OH, $--C(O)C(O)NR_yR_y$, or $-C(O)C(O)NR_{\nu}(CR_{x})$ R_{x})₁₋₂ $NR_{y}R_{y}$; and R_{1} , R_{2} , R_{4} , R_{5} , R_{x} , R_{y} , m, n, and p are defined in the first aspect or the second aspect. Also included are compounds in which m is zero and n is zero.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein R_3 is H, C_{1-6} alkyl, C_{1-3} fluoroalkyl, $-CH_2CH(OH)CH_2NR_xR_y$, $-C(O)(C_{1-6})$ alkyl), $(C_{1-4} \text{ hydroxyalkyl})$, $-C(O)(C_{1-3} \text{ fluoroalkyl})$, $-C(O)(C_{1-3} \text{ fluoroalkyl})$ chloroalkyl), — $C(O)(C_{1-3}$ cyanoalkyl), — $(CR_xR_x)_{0-3}C(O)$ OH, $-C(O)(CH_2)_{0-2}O(C_{1-4} \text{ alkyl})$, $-C(O)(CR_xR_x)_{0-2}O$ $(CR_xR_x)_{1-2}O(C_{1-3}\tilde{alkyl}), -C(O)(CH_2)_{0-2}O(CH_2)_{1-2}HR_y\bar{R}_y$ $\begin{array}{lll} & -\text{C(O)CR}_{x}\text{R}_{x}\text{S(O)}_{2}(\text{C}_{1\text{-}2} & \text{alkyl}), & -\text{C(O)CR}_{x}\text{R}_{x}\text{NR}_{x}\text{S(O)}_{2}\\ & (\text{C}_{1\text{-}2} & \text{alkyl}), & -\text{C(O)CR}_{x}\text{R}_{x}\text{OC(O)}(\text{C}_{1\text{-}3} & \text{alkyl}), & -\text{C(O)}\\ & (\text{CR}_{x}\text{R}_{x})_{0\text{-}2}\text{NR}_{x}\text{R}_{x}, & -\text{C(O)}(\text{CR}_{x}\text{R}_{x})_{0\text{-}2}\text{NR}_{x}(\text{C}_{1\text{-}2} & \text{cyanoalkyl}), \\ & (\text{CR}_{x}\text{R}_{x})_{0\text{-}2}\text{NR}_{x}\text{R}_{x}, & -\text{C(O)}(\text{CR}_{x}\text{R}_{x})_{0\text{-}2}\text{NR}_{x}(\text{C}_{1\text{-}2} & \text{cyanoalkyl}), \\ & (\text{CR}_{x}\text{R}_{x})_{0\text{-}2}\text{NR}_{x}\text{R}_{x}, & -\text{C(O)}(\text{CR}_{x}\text{R}_{x})_{0\text{-}2}\text{NR}_{x}(\text{CR}_{1\text{-}2} & \text{cyanoalkyl}), \\ & (\text{CR}_{x}\text{R}_{x})_{0\text{-}2}\text{NR}_{x}(\text{CR}_{1\text{-}2} & \text{cy$ phenyl, or triazolyl, each substituted with zero to three substituents independently selected from -OH, C_{1-3} alkyl, 20 $R_x O_{1-2} NR_x (C_{1-3} C_{1-3} C_$ hýdroxy-fluoroalkyl), $-\tilde{C}(O)(CR_x R_x)_{0-1} N\tilde{R}_x ((\tilde{CR}_x R_x)_{1-2} O)$ $-C(O)(CR_xR_x)_{0-1}NR_x(CH_2)_{1-2}O(C_1$ alkyl)), $-C(O)(CR_xR_x)_{0-1}NR_xCH_2)_{1-2}NR_xC(O)$ $-C(O)(CR_xR_x)_{0-2}NR_x(CR_xR_x)_{1-2}O(C_{1-2})$ hydroxyalkyl), alkyl), alkyl)), $-C(O)(CR_xR_x)_{0-1}NR_x(CR_xR_x)_{1-3}NR_xR_x$ $CR_xNH_2)(CR_xR_x)_{1-4}NR_xR_x$ -C(O)CR₂(NH₂)(CR₂ $-C(O)(CR_xR_x)_{0-3}NR_x(CH_2)_{0-1}C$ R_x)₁₋₄ NR_x C(O) NR_x R_x , (O)(C_{1-3} alkyl), -C(O)(CR_xR_x)₀₋₁NR_x(CH_2)₀₋₁C(O)(C_{1-3} $-C(\hat{O})(\hat{C}R_x\hat{R}_x)_{0-2}\hat{N}R_x\hat{C}H_2)_{1-2}C(\hat{O})NR_yR_y$ cyanoalkyl), $-C(O)(CR_xR_x)_{0-2}NR_x(CHR_y(CH_2OH)),$ $(CR_*R_*)_{1-2}C$ $\begin{array}{ll} \text{D)NR}_{y} R_{y}, & -(\text{CR}_{x} R_{x})_{1-2} \text{C(O)NR}_{y} (\text{C}_{1-3} & \text{fluoroalkyl)}, \\ -(\text{CR}_{x} R_{x})_{1-2} \text{C(O)NR}_{y} (\text{C}_{1-4} & \text{hydroxyalkyl)}, & -(\text{CR}_{x} R_{x})_{1-2} \text{C}_{x} (\text{C}_{x} R_{x$ (O)NR_{ν}R_{ν}, $(O)NR_{x}(C_{1-3})$ cyanoalkyl), -CH(CN)C(O)NR,R, $(CR_xR_x)_{1-2}C(O)NR_x(CH_2)_{1-2}O(C_{1-3}$ $CR_xR_x)_{1-2}C(O)NR_xCH(C_{1-4})$ alkyl) (C_{1-3}) alkyl), R_x)₁₋₂ $\tilde{C}(\tilde{O})\tilde{N}\tilde{R}_x\tilde{C}H(C_{1-4})$ hydroxyalkyl), $-(CH_2)_{1-2}C(O)NR_x(CH_2)_{1-2}C(O)NR_xR_x$ $-(CH_2)_{1-2}$ $S(O)_2\widetilde{NR}_x(CH_2)_{1-2}S(C_{1-2})$ $-(CH_2)_{1-2}C(O)NR$ alkyl), $S(O)_2NR_x(CH_2)_{1-2}S(C_{1-2})$ alky1), $-(CH_2)_{1-2}C(O)_1NR_x$ $(CH_2)_{1-2}S(O)_2OH$, $-(CH_2)_{1-2}C(O)_1NR_x(CH_2)_{1-2}NR_xC(O)$ $-(CH_2)_{1-2}C(O)NR_x(CH_2)_{1-3}NR_xR_x$ alkyl), $-(CH_2)_{1-2}C(O)N(CH_2CH_3)(CH_2)_{1-3}NR_xR_x,$ $-C(O)(CR_xR_x)_{0-3}NR_yR_y$, 40 $R_x)_{1-3}S(O)_2(C_{1-4} \text{ alkyl})$, $-(CH_2)_{0-2}S(O)_2(C_{1-3} \text{ fluoroalkyl})$, $-(CH_2)_{1-2}S(O)_2NR_{\nu}R_{\nu}$, --C(O)C(O)OH, --C(O)C(O) $NR_{\nu}R_{\nu}$, or $-C(O)C(O)NR_{\nu}(CR_{\nu}R_{\nu})_{1-2}NR_{\nu}R_{\nu}$; and R_1 , R_2 , R₄, R₅, m, n, and p are defined in the first aspect or the second aspect. Also included are compounds in which m is zero and n is zero.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein R₃ is —C(O)CH₂(2-oxa-6-azaspiro [3.3]heptanyl), —C(O)CH₂(piperazinonyl), —C(O)CH₂ (piperazinyl), —C(O)CH₂(piperidinyl), —C(O)CH₂(pyrim-—C(O)CH₂(pyrrolidinyl), idinyl), —C(O)СН₂ (tetrahydropyranyl), —C(O)CH₂(tetrazolyl), —C(O)CH₂ (thiazolyl), —C(O)CH₂CH₂(azepanyl), —C(O)CH₂CH₂ -C(O)CH₂CH₂(dioxothiomorpholinyl), -C(O)CH₂CH₂(morpholinyl), —C(O)CH₂CH₂(piperidi- $-(C\dot{R}_x\dot{R}_x)_{1-2}C(O)NR_vR_v$, 55 nonyl), $-C(O)CH_2CH_2$ (piperidinyl), $-C(O)CH_2CH_2$ (pyrrolidinonyl), —C(O)CH₂CH₂(pyrrolidinyl), —C(O)CH₂CH (CH₃)(oxetanyl), —C(O)NH(piperidinyl), (pyrrolidinyl, —C(O)CH₂NH(cyclopropyl), $CH_2NH(cyclobutyl)$, $-C(O)CH_2NH(cyclohexyl)$, -C(O)-C(O)CH₂N(CH₃)(cyclopropyl), CH₂NH(oxetanyl), -C(O)CH₂N(CH₃)(cyclohexyl), -C(O)CH₂CH₂NH(cyclopentyl), —C(O)CH₂CH₂NH(cyclohexyl), CH₂CH₂N(CH₃)(cyclohexyl), —C(O)CH₂N(CH₂CH₂OH) -C(O)CH₂CH₂N(CH₂CH₂OH) (cyclopropyl), (cyclopropyl), —C(O)CH₂CH₂NH(CH₂(cyclopropyl)), -C(O)CH₂CH₂NH(CH₂(tetrahydrofuranyl)), CH₂NH(CH₂(cyclopropyl)), -C(O)CH₂NH(CH₂(cyclo-C(O)NH(CH₂(pyrrolidinyl)),NH(CH₂(piperidinyl)), -C(O)NH(CH₂CH₂(morpholinyl)), —C(O)NH(CH₂CH₂ (piperazinyl)), —C(O)NH(CH₂CH₂(piperidinyl)), —C(O) NH(CH₂CH₂(pyrrolidinyl)), —C(O)O(azetidinyl), —C(O) O(piperidinyl), —C(O)O(pyrrolidinyl), $-C(O)OCH_2$ —C(O)OCH₂(piperidinyl), (azetidinyl), $--C(O)OCH_2$ (pyrrolidinyl), —C(O)OCH₂CH₂(dioxothiomoropholinyl), -C(O)OCH₂CH₂(imidazolyl), -C(O)OCH₂CH₂(mor-—C(O)OCH₂CH₂(piperazinyl), pholinyl), -C(O) 10 OCH₂CH₂(piperidinyl), -C(O)OCH₂CH₂(pyrrolidinyl), CH₂(cyclopropyl), CH₂(dioxotetrahydrothiopyranyl), —CH₂(isoxazolyl), —CH₂(morpholi--CH₂(imidazolyl), nyl), —CH₂(oxadiazolyl), —CH₂(oxazolyl), —CH₂(oxetanyl), —CH₂(phenyl), —CH₂(pyrazinyl), —CH₂(pyrazolyl), 15 -CH₂(pyridazinyl), —CH₂(pyrimidinyl), —CH₂(tetrazolyl), —CH₂(thiadiazolyl), —CH₂(thiazolyl), —CH₂(triazolonyl), —CH₂(triazolyl), —CH(CH₃)(pyrazolyl), —CH (CH₃)(pyridazinyl), —CH(CH₃)(pyrimidinyl), —CH₂CH₂ (dioxoisothiazolidinyl), —CH(CN)(oxetanyl), —CH(CH₃) 20 CH₂S(O)₂(morpholinyl), $-CH(CH_3)CH_3S(O)_3$ —CH₂C(O)(morpholinyl), (piperidinyl), $--CH_2C(O)(2$ oxa-6-azaspiro[3.3]heptanyl), —CH₂C(O)(azetidinyl), -CH₂C(O)(dioxidothiadiazinanyl), -CH₂C(O)(dioxi-—CH₂C(O)(dioxidothiomorpholinyl), 25 dothiazolidinyl), -CH₂C(O)(dioxothiomorpholinyl), --CH₂C(O)(2-oxa-6--CH₂C(O)(piperazinonyl), azaspiro[3.3]heptanyl), -CH₂C(O)(piperazinyl), —CH₂C(O)(piperidinyl), -CH₂C(O)(pyrrolidinyl), -CH₂C(O)NHCH (CH₂CH₂OH)(cyclopropyl), —CH₂C(O)N(CH₂CH₂OH) 30 (cyclopropyl), —CH₂C(O)N(CH₃)(cyclopropyl), —CH₂C $-CH_2C(O)N(CH_3)$ (O)N(CH₃)(tetrahydrofuranyl), (tetrahydropyranyl), -CH₂C(O)N(CH₃)CH₂CH₃ —CH₂C(O)N(CH₃)CH₂CH₂(pyrazolyl), (cyclopentyl), -CH₂C(O)NH(azetidinyl), -CH₂C(O)NH(CH₂(oxeta-35)nyl)), —CH₂C(O)NH(cyclobutyl), —CH₂C(O)NH(cyclopropyl), —CH₂C(O)NH(oxetanyl), —CH₂C(O)NH(tetrahy--CH₂CH₂S(O)₂(morpholinyl), $-CH_2CH_2S(O)_2$ (phenyl); and R_1 , R_2 , R_4 , R_5 , m, n, and p are defined in the first aspect or the second aspect. Also 40 included are compounds in which m is zero and n is zero.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein R_3 is $H,\,C_{1\text{--}5}$ alkyl, $C_{2\text{--}3}$ fluoroalkyl, C_{1-3} cyanoalkyl, C_{2-5} hydroxyalkyl, — $CH_2CH_2OCH_3$, $-CH_2CH_2NH(CH_3)$, $-C=N(NH_2)$, 45 $-CH_2N(CH_3)_2$ $-C(O)CH(CH_2CH_3)_2$, -C(O)CH₃, $-C(O)CH_2CF_3$ $-C(O)CH_2CH_2OH$, $-C(O)CH(CH_3)OH$, $-C(O)CH_3CH$ $-C(O)CH_2C(CH_3)_2OH$, -C(O)CH₂CN, $-C(O)CH_2CH_2CN$, $-C(O)OC(CH_3)_3$, $-C(O)CH_2OCH_3$, $-C(O)CH_2CH_2OCH_3$, $-C(O)OCH_2CH_2NH_2$, -C(O) 50 OCH₂CH₂N(CH₃)₂, $-C(O)OCH_2CH_2N(CH_2CH_3)_2$, $-C(\tilde{O})C\tilde{H}_2\tilde{S}(O)_2\tilde{C}H_3$, $-C(O)CH_2CH_2\tilde{S}(O)_2CH_3$, -C(O)CH₂NHS(O)₂CH₃, -C(O)NH(CH₂C(CH₃)₃), $CH_2NH(CH_3)$, $-C(O)CH_2NH(CH_2CH_3)$, $-C(O)CH_2NH$ $(CH_2CH_2CH_3)$, $-C(O)CH_2NH(CH_2CH_2CH_3)$, -C(O) 55 CH₂NH(CH(CH₃)₂), $-C(O)CH_2NH(CH_2CH(CH_3)_2),$ $-C(O)CH_2NH(C(CH_3)_3), -C(O)CH_2N(CH_3)_2, -C(O)$ CH₂N(CH₃)(CH₂CH₃), —C(O)CH₂N(CH₃)(CH₂CH₂CH₃), -C(O)CH₂N(CH₃)(CH(CH₃)₂), $-C(O)CH_2N(CH_3)$ $-C(O)CH_2N(CH_2CH_3)_2$, (CH₂CH(CH₃)₂), -C(O) 60 $CH_2CH_2NH(CH_3)$, $-C(O)CH_2CH_2NH(CH_2CH_3)$, -C(O)CH₂CH₂NH(CH₂CH₂CH₃), -C(O)CH₂CH₂NH(CH $-C(O)CH_2CH_2NH(CH_2C(CH_3)_3),$ CH2CH2N(CH3)2, -C(O)CH₂CH₂N(CH₃)(CH₂CH₃), $-C(O)CH_2CH_2N(CH_3)(CH_2CH_2CH_3), -C(O)CH_2CH_2N$ $-C(O)CH(CH_3)NH(CH_3),$ (CH₃)(CH(CH₃)₂),CH₂NH(CH₂CN), -C(O)CH₂N(CH₃)(CH₂CH₂CN),

 $-C(O)CH_2NH(CH_2C(O)NH_2), -C(O)CH_2N(CH_3)(CH_2C)$ $(O)N(CH_3)_2$, $-C(O)CH_2CH_2NH(CH_2C(O)NH_2)$, -C(O)−C(O)CH₂NH CH₂CH₂N(CH₃)CH₂C(O)N(CH₃)₂, (CH_2CH_2OH) , $-C(O)CH_2N(CH_3)(CH_2CH_2OH)$, $-\tilde{C}(O)$ $CH_2CH_2NH(CH_2CH_2OH)$, $-C(O)CH_2CH_2N(CH_3)$ (CH_2CH_2OH) , $-C(O)CH_2NH(CH_2CH_2F)$, $-C(O)CH_2NH$ (CH₂CF₃), $-C(O)CH_2CH_2NH(CH_2CH_2F),$ CH₂NH(CH₂CH₂OCH₃), $-C(O)CH_2N(CH_3)$ -C(O)CH₂CH₂NH(CH₂CH₂OCH₃), (CH₂CH₂OCH₃), $-C(O)CH_2CH_2N(CH_3)(CH_2CH_2OCH_3),$ -C(O)CH₂N $(CH_2CH_2OCH_3)_2$, $-C(O)CH_2CH_2CH_2S(O)_2NH_2$ $-CH_2C(O)NH(CH_3),$ $-CH_2C(O)NH_2$ -CH₂C(O)N $(CH_3)_2$, $-CH_2C(O)NH(CH_2CH_3),$ -CH₂C(O)N(CH₃) $-CH_2C(O)N(CH_2CH_3)_3$ -CH₂C(O)NH $(CH_2CH_2CH_3)$, $-CH_2C(O)NH(CH(CH_3)_2)$, -CH(CN)C $(O)\tilde{N}(CH_3)_2$, $-CH_2C(O)\tilde{N}H(CH_2CH_2CF_3)$, $-CH_2\tilde{C}(O)\tilde{N}$ $-CH_2C(O)N(CH_3)(CH_2CH_2OH),$ (CH₃)(CH₂CH₂OH),-CH₂C(O)N(CH₂CH₃)(CH₂CH₂OH), -CH₂C(O)N $(CH_2\tilde{C}H_2CH_3)(CH_2CH_2OH),$ $-CH_2C(O)N(CH_3)$ -CH₂C(O)NH(CH₂C(CH₃)₂OH), (CH,CH,CH,OH), $-\tilde{CH}_2C(O)\tilde{N}(CH_2CH(CH_3)C\tilde{H}_2CH_3)(CH_2C\tilde{H}_2OH),$ -CH₂C(O)NH(CH₂CH₂CN), -CH₂C(O)N(CH₃) $(CH_2\tilde{C}H_2CN)$, $CH_2C(\tilde{O})N(CH_3)(CH_2CH_2O\tilde{C}H_3)$, - $(CH_3)CH_2S(O)_2(CH_2CH_2CH_2CH_3)$, $--CH_2CH_2S(O)_2NH_2$, $CH_2CH_2S(O)_2NH(CH_3),$ -CH₂CH₂S(O)₂N(CH₃)₂, $-CH(CH_3)CH_2S(O)_2N(CH_2CH_3)_2$ -CH₂CH₂NH $S(O)_2CH_3$, $-CH_2CH_2N(CH_3)S(O)_2CH_3$, $-CH_2C(O)NH$ (CH₂CH₂SCH₃), -C(O)NH(CH₂CH₂NH₂),(CH₃)CH₂CH₂NH₂ -C(O)NH(CH₂CH₂N(CH₃)₂),-C(O)NH(CH₂CH₂CH₂NH₂),--CH2CH2S(O)2CH3, $-CH_2CH_2CH_2S(O)_2CH_3$, or $-CH(CH_3)CH_2S(O)_2CH_3$; and R₁, R₂, R₄, R₅, m, n, and p are defined in the first aspect or the second aspect. Also included are compounds in which m is zero and n is zero.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein each R_4 is independently F, —OH, C_{1-2} alkyl, or —OCH $_3$; or two R_4 attached to the same carbon atom form —O; and R_1 , R_2 , R_3 , R_5 , m, n and p are defined in the first aspect. Included in this embodiment are compounds in which each R_4 is independently F, —CH $_3$, or —OCH $_3$. Also included are compounds in which n is zero. One embodiment provides a compound of Formula (I) or a salt thereof, wherein each R_5 is independently F, Cl, —CN, —CH $_3$, —CF $_3$, or —OCH $_3$; and R_1 , R_2 , R_3 , R_4 , m, n and p are defined in the first aspect. Included in this embodiment are compounds in which each R_5 is independently F, —CN, —CH $_3$, or —CF $_3$. Also included are compounds in which m is zero. Further, included are compounds in which m is zero and n is 1.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein m is 2, 3, or 4; two R₄, each attached to a different carbon atom adjacent to the nitrogen atom in the piperidinyl ring, can form a —CH₂CH₂— bridge; and R₁, R₂, R₃, R₅, m, n, and p are defined in the first aspect. The compounds of this embodiment have the structure of Formula (Ia):

$$\begin{array}{c} R_3 \\ N \\ N \\ R_1 \\ R_2)_p \\ R_1 \\ R_2)_p \\ N \\ N \\ N \\ N \end{array}$$
(Ia)

Included in this embodiment are compounds in which R₁ is $-CH(CH_3)_2$; each R_2 is $-CH_3$; R_3 is $-CH_2CN$, $-CH_2C$ $(O)N(CH_3)_2$, or $-CH_2CH_2S(O)_2CH_3$; m is 2; n is zero, and p is zero, 1, or 2. Also included in this embodiment are compounds selected from 2-(3-(2-(7,8-dimethyl-[1,2,4]tri-5 azolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)-8azabicyclo[3.2.1]octan-8-yl)acetonitrile (981);

13

2-(3-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)-8-azabicyclo[3.2.1]octan-8-yl)-N,N-dimethylacetamide (982-983); and

6-(3-isopropyl-5-(8-(2-(methylsulfonyl)ethyl)-8-azabicyclo [3.2.1]octan-3-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4] triazolo[1,5-a]pyridine (984-985).

One embodiment provides a compound of Formula (I) or a salt thereof, wherein: $\rm R_1$ is H, Cl, —CN, $\rm C_{1-4}$ alkyl, or $\rm C_{1-2}$ fluoroalkyl; each R_2 is independently F, Cl, —CN, —OH, C₁₋₃ alkyl, —CD₃, C₁₋₂ fluoroalkyl, C₁₋₂ cyanoalkyl, C₁₋₃ hydroxyalkyl, C_{1-3} aminoalkyl, $-O(CH_2)_{1-2}OH$, $-O(C_{1-4}$ alkyl), C_{1-2} fluoroalkoxy, $-(CH_2)_{1-4}O(C_{1-3}$ alkyl), $-O(CH_2)_{1-2}OC(O)(C_{1-3})$ alkyl), $--O(CH_2)_{1-2}NR_xR_x$, 20 $-C(O)O(C_{1-3} \text{ alkyl}), -C(O)NR_{\nu}R_{\nu}, -NR_{\nu}R_{\nu}, -NR_{\nu}(C_{1-3})$ fluoroalkyl), —NR_y(C₁₋₄ hydroxyalkyl), —NR_xCH₂(phenyl), $-NR_xS(O)_2(\tilde{C}_{3-6} \text{ cycloalkyl}), -NR_xC(O)(C_{1-3} \text{ alkyl}),$ $-NR_x(CH_2$ -cyclopropyl), C_{3-6} cycloalkyl, morpholinyl, dioxothiomorpholinyl, methylpiperidinyl, methylpiperazi- 25 nyl, amino-oxadiazolyl, imidazolyl, triazolyl, or -(thiazolyl); R_3 is: (a) $-L_1$ -A; or (b) H, C_{1-6} alkyl, C_{1-3} fluoroalkyl, C_{1-3} cyanoalkyl, C_{1-5} hydroxyalkyl, -C = N (NR_xR_x), $-(CR_xR_x)_{1-2}O(C_{1-2}$ alkyl), $-(CR_xR_x)_{1-4}O$ $(CR_xR_x)_{1-3}O(C_{1-3} \text{ alkyl}), -CH_2CH(OH)CH_2O(C_{1-3} \text{ alkyl}), 30$ $-(CR_xR_x)_{1-3}S(C_{1-3} \text{ alkyl}), -(CH_2)_{1-3}C(O)OC(CH_3)_3,$ $-(CR_xR_x)_{0-3}NR_xR_v$, $-(CR_xR_x)_{0-3}NR_xC_{1-4}$ hydroxyalkyl), $--CH_2CH(OH)CH_2NR_xR_v$, $--C(O)(C_{1-6}$ alkyl), --C(O) $(C_{1-4} \text{ hydroxyalkyl}), -C(O)(C_{1-3} \text{ fluoroalkyl}), -C(O)(C_{1-3} \text{ fluoroalkyl})$ chloroalkyl), — $C(O)(C_{1-3}$ cyanoalkyl), — $(CR_xR_x)_{0-3}C(O)$ 35 OH, $-C(O)(CH_2)_{0-2}O(C_{1-4} \text{ alkyl})$, $-C(O)(CR_xR_x)_{0-2}O(CR_xR_x)_$ $(CR_xR_x)_{1-2}O(C_{1-3} \text{ alkyl}), -C(O)(CH_2)_{0-2}O(CH_2)_{1-2}HR_v\tilde{R}_v,$ $-C(O)CR_xR_xS(O)_2(C_{1-2} \text{ alkyl}), -C(O)CR_xR_xNR_xS(O)_2$ $(C_2 \text{ alkyl}), -C(O)CR_xR_xOC(O)(C_{1-3} \text{ alkyl}), -C(O)$ $-C(O)(CR_xR_x)_{0-2}NR_{\nu}(C_{1-6} \text{ hydroxyalkyl}), -C(O)(CR_x)_{0-2}$ R_x)₀₋₂NR_x(C_{1-3} fluoroalkyl), —C(O)(CR_xR_x)₀₋₁NR_x(C_{1-5} hydroxy-fluoroalkyl), — $C(O)(CR_xR_x)_{0-1}NR_x((CR_xR_x)_{1-2}O)$ alkyl)), $--C(O)(CR_xR_x)_{0-1}NR_x(CH_2)_{1-2}O(C_{1-3})$ hydroxyalkyl), alkyl), $--C(O)(CR_xR_x)_{0-2}NR_x(CR_xR_x)_{1-2}O(C_{1-2})$ alkyl)), $-C(O)(CR_xR_x)_{0-1}NR_x(CR_xR_x)_{1-3}NR_xR_x$, -C(O)(O)(C_{1-3} alkyl), $-C(O)(CR_xR_x)_{0-1}NR_x(CH_2)_{0-1}C(O)(C_{1-3}$ 50 $-C(O)(\widehat{CR}_x\widehat{R}_x)_{0-2}\widehat{NR}_x\widehat{CH}_2)_{1-2}C(O)\widehat{NR}_yR_y$ cyanoalkyl), $-C(O)(CR_xR_x)_{0-2}NR_x(CHR_y(CH_2OH)),$ $-(CR_{x}R_{x})_{1-2}C$ $-(CR_xR_x)_{1-2}C(O)NR_y(C_{1-3})$ (O)NR,R,, fluoroalkyl), $-(CR_xR_x)_{1-2}C(O)NR_y(C_{1-4}$ hydroxyalkyl), $-(CR_xR_x)_{1-2}C$ D)NR_x(C₁₋₃ cyanoalkyl), $-CH(CN)C(O)NR_yR_y$, $-CH(CN)C(O)NR_{\nu}R_{\nu}$, 55 (O)NR_x(C_{1-3} $-(CR_x R_x)_{1-2} C(O)NR_x (CH_2)_{1-2} O(C_{1-3})$ alkyl), R_x)₁₋₂ $C(O)NR_xCH(C_{1-4})$ alkyl)(C₁₋₃ hydroxyalkyl), $-(CH_2)_{1-2}C(O)NR_x(CH_2)_{1-2}C(O)NR_xR_x$ $-(CH_2)_{1-2}$ $-(CH_2)_{1-2}C(O)NR_x$ $S(O)_2NR_x(CH_2)_{1-2}S(C_{1-2} \quad alkyl),$ $(CH_2)_{1-2}S(O)_2OH$, $-(CH_2)_{1-2}C(O)NR_x(CH_2)_{1-2}NR_xC(O)$ 60 alkyl), $-(CH_2)_{1-2}C(O)NR_x(CH_2)_{1-3}NR_xR_x,$ $-(CH_2)_{1-2}C(O)N(CH_2CH_3)(CH_2)_{1-3}NR_xR_x$ $-(CR_xR_x)_{1-3}$ $(O)_2(C_{1-4} \text{ alkyl}), \quad -(CH_2)_{0-2}S(O)_2(C_{1-3} -(CH_2)_{1-2}S(O)_2NR_yR_y, \quad -C(O)C(O)OH,$ $S(O)_2(C_{1-4} \text{ alkyl}),$ fluoroalkyl), -C(O)C(O) $NR_{\nu}R_{\nu}$, or $-C(O)C(O)NR_{\nu}(CR_{x}R_{x})_{1-2}NR_{\nu}R_{\nu}$; L₁ is a bond, 65 $-\acute{C}R_xR_x$ —, $-CR_xR_xC(\acute{O})$ —, $-CR_xR_x\acute{C}(O)NR_x$ —, or —C(O)(CR_xR_x)₀₋₂—; A is a ring selected from azetidinyl,

C₃₋₆ cycloalkyl, dioxotetrahydrothiopyranyl, dioxidothiadiazinanyl, dioxidothiomorpholinyl, furanyl, imidazolyl, isoquinolinyl, morpholinyl, oxazolyl, 2-oxa-6-azaspiro[3.3] heptanyl, oxetanyl, phenyl, piperazinyl, piperidinyl, pyrazinyl, pyrazolyl, pyridinyl, pyrrolidinyl, pyrrolyl, quinolinyl, tetrahydrofuranyl, tetrahydropyranyl, tetrazolyl, thiadiazolyl, thiazolyl, and triazolyl, each substituted with -L₂-R_a and zero to 4 R_b; L₂ is a bond or —CR_xR_x—; R_a is: (a) H, —CN, —OH, C_{1-3} alkyl, C_{1-2} fluoroalkyl, C_{1-3} hydroxyalkyl, — $(CH_2)_{1-2}O(C_{1-3}$ alkyl), — $(CR_xR_x)_{1-3}NHC$ (O)O(C_{1-4} alkyl), —(CR_xR_x)₁₋₃NH₂, —(CR_xR_x)₁₋₃NR_x(C_{1-4} alkyl), — $O(C_{1-2}$ fluoroalkyl), — $S(O)_2NR_xR_x$, — $NHS(O)_2$ $(C_{1-3} \text{ alkyl}), -NR_xR_x, -NR_x(C_{1-4} \text{ alkyl}), -(CR_xR_x)_{1-2}C_x$ (O)OH, —C(O)OH, —C(O)(C_{1-3} alkyl), —C(O)O(C_{1-3} alkyl), $-C(O)NR_x(C_{1-2}$ alkyl), $-C(O)N(C_{1-3}$ alkyl)₂, $-C(O)NR_xCH_2C(O)NR_xR_x$, or $-C(O)NR_xCH_2CH_2NHC$ (O)(C_{1-3} alkyl); (b) C_{3-6} cycloalkyl or $-C(O)NH(C_{3-6}$ cycloalkyl), wherein each cycloalkyl is substituted with zero to 2 substituents independently selected from —OH, C₁₋₃ $(C_{1-3} \text{ alkyl}); \text{ or } (c) A_1, -CH_2A_1, -C(O)A_1, \text{ or } -C(O)$ NHA_1 , wherein A_1 is furanyl, imidazolyl, indolyl, isoxazolyl, octahydropyrrolo[3,4-c]pyrrolyl, oxazolyl, oxetanyl, phenyl, piperazinyl, piperidinyl, pyrazolyl, pyridinyl, pyrimidinyl, pyrrolidinyl, pyrrolyl, tetrahydrofuranyl, tetrahydropyranyl, thiadiazolyl, thiazolyl, thiophenyl, or triazolyl, each substituted with zero to three substituents independently selected from -OH, C₁₋₃ alkyl, C₁₋₃ hydroxyalkyl, — $C(O)(C_{1-2}$ alkyl), — $C(O)O(C_{1-3}$ alkyl), -NR_xR_x, phenyl, trifluoromethyl-phenyl, —CH₂(bromophenyl), and —CH₂CH₂(pyrrolidinyl); each R₄ is independently F, —OH, C₁₋₂ alkyl, or —OCH₃; or two R₄ attached to the same carbon atom form =O; R_5 is F, Cl, -CN, C_{1-2} alkyl, or -OCH3; each Rb is independently -CH3 or -CF₃; each R_r is independently H or -CH₃; each R_r is independently H or C₁₋₅ alkyl; m is zero, 1, or 2; n is zero or 1; and p is zero, 1, or 2.

14

One embodiment provides a compound of Formula (I) or a salt thereof, wherein: R_1 is $--CH(CH_3)_2$; each R_2 is $(CR_xR_x)_{0-2}NR_yR_y$, $-C(O)(CR_xR_x)_{0-2}NR_x(C_{1-2}$ cyanoalkyl), 40 independently $-CH_3$, $-OCH_3$, or $-CH_2OCH_3$; R_3 is H_3 , $-CH_3$, -C $-CH(CH_3)_2$, $-CH(CH_3)_2$, $-CH_2CH(CH_3)_2$, $-CH_2CN$, $-\text{CH}_2\text{CH}_2\text{CN}$, $-\text{CH}_2\text{CH}_2\text{CN}$, $-\text{CH}_2\text{C}(\text{CH}_3)_2\text{OH}$, $-C(O)CH_3$, $-C(O)CH(CH_2CH_3)_2$, $-C(O)CH_2OCH_3$, $-C(O)CH_2CH_2OCH_3$, $-C(O)CH_2CH(CH_3)OH$, -C(O) $-C(O)(CR_xR_x)_{0-1}NR_x(CH_2)_{1-2}NR_xC(O)$ 45 CH_2CN , $-C(O)CH_2CH_2CN$, $-C(O)CH(CH_3)NH(CH_3)$, $-C(O)CH_2NH(CH_3),$ $-C(O)CH_2N(CH_3)_2$, $CH_2NHCH_2CH_2CH_3$, $-C(O)CH_2NHCH(CH_3)_2$, -C(O) $CH_2NHC(CH_3)_3$, $-C(O)CH_2N(CH_3)CH(CH_3)_2$, -C(O)CH₂NHCH₂CH₂OCH₃, —CH₂C(O)NH₂, —CH₂C(O)NH $(CH_3),$ $-CH_2C(O)N(CH_3)CH_2CH_3$, -CH₂C(O) NHCH₂CH₂CH₃, —CH₂C(O)NH(CH(CH₃)₂), —CH₂C(O) $N(CH_3)_2$, $-CH_2C(O)N(CH_2CH_3)_2$, $-CH_2CH_2S(O)_2CH_3$, -CH₂CH₂S(O)₂NH₂, $-CH_2C(O)NH(cyclobutyl),$ -CH₂C(O)NH(methyl--CH₂C(O)NH(cyclopropyl),oxetanyl), —CH₂C(O)N(CH₃)(cyclopropyl), oxetanyl, tetrahydropyranyl, dioxotetrahydrothiopyranyl, —CH₂(oxa--CH₂(pyrazolyl), -CH₂(tetrazolyl), (triazolyl), —CH₂(methyltriazolyl), —CH₂C(O)(2-oxa-6azaspiro[3.3]heptanyl), —CH₂C(O)(azetidinyl), —CH₂C -CH₂C(O) (O)(dioxidothiadiazinanyl), —CH₂C(O)(morpholinyl), (dioxidothiomorpholinyl), -CH₂C(O)(methoxyethylpiperazinyl), —CH₂C(O)(piperidinyl), —CH₂C(O)(hydroxypiperidinyl), —CH₂C(O) (pyrrolidinyl), —CH₂C(O)(hydroxypyrrolidinyl), —C(O) (azetidinyl), —C(O)(methylcyclopropyl), -C(O)(methyloxetanyl), or —C(O)CH₂(morpholinyl); m is zero; n is zero; and p is zero, 1 or 2.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein R_1 is H, Cl, —CN, $C_{1\text{-}4}$ alkyl, $C_{1\text{-}2}$ fluoroalkyl, $C_{1\text{-}2}$ hydroxy-fluoroalkyl, $C_{3\text{-}6}$ cycloalkyl, —CH $_2(C_{3\text{-}6}$ cycloalkyl), —C(O)O(C $_{1\text{-}2}$ alkyl), or tetrahydropyranyl; and R_2 , R_3 , R_4 , R_5 , m, n, and p are defined in the first aspect. Included in this embodiment are compounds in which R_1 is H, Cl, —CN, $C_{1\text{-}4}$ alkyl, or $C_{1\text{-}2}$ fluoroalkyl. Also included in this embodiment are compounds in which R_1 is —CH(CH $_3$) $_2$. Also included are compounds in which m is zero and n is zero.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein each R_2 is independently F, Cl, —CN, —OH, C_{1-3} alkyl, C_{1-2} fluoroalkyl, C_{1-3} hydroxyalkyl, C_{1-3} aminoalkyl, —(CH $_2$) $_{0-2}$ O(C $_{1-2}$ alkyl), C_{1-3} fluoroalkoxy, or C $_{3-6}$ cycloalkyl; and R_1 , R_3 , R_4 , R_5 , m, n, and p are defined in the first aspect. Included in this embodiment are compounds in which each R_2 is independently F, —CN, —OH, C_{1-2} alkyl, or —(CH $_2$) $_{0-1}$ O(C $_{1-2}$ alkyl). Also included in this embodiment are compounds in which each R_2 is independently —CH $_3$, —OCH $_3$, or —CH $_2$ OCH $_3$. Also included are compounds in which m is zero and n is zero.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein each R_2 is independently F, —CN, —OH, C_{1-2} alkyl, or $(CH_2)_{0-1}O(C_{1-2}$ alkyl); p is zero, 1 or 2; and R_1 , R_3 , R_4 , R_5 , m, and n are defined in the first aspect. Included in this embodiment are compounds in which each R_2 is independently —CH₃, —OCH₃, or —CH₂OCH₃. Also included are compounds in which m is zero and n is zero.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein the compound has one of the following structures:

-continued (I-5) $R_3 \qquad (R_4)_m \qquad (R_5)_m \qquad R_1 \qquad (I-6)$ $R_3 \qquad (R_4)_m \qquad (I-6)$ $R_4 \qquad (I-6)$ $R_5 \qquad (R_4)_m \qquad (I-6)$

Included in this embodiment are compounds in which R_1 is H, Cl, —CN, C_{1-4} alkyl, or C_{1-2} fluoroalkyl. Also included in this embodiment are compounds in which R_1 is —CH $(CH_3)_2$. Also included are compounds in which m is zero and n is zero.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein R₃ is -L₁-A; and R₁, R₂, R₄, R₅, L₁, A, m, n, and p are defined in the first aspect. Included in this 30 embodiment are compounds in which L₁ is a bond, $-CR_{x}R_{x}$ $--CR_xR_xC(O)$, $--CR_xR_xC(O)NR_x --C(O)(CR_xR_x)_{0-2}$; A is a ring selected from azetidinyl, C₃₋₆ cycloalkyl, dioxotetrahydrothiopyranyl, dioxidothiazinanyl, dioxidothiomorpholinyl, furanyl, imidazolyl, isoqui-35 nolinyl, morpholinyl, oxazolyl, 2-oxa-6-azaspiro[3.3]heptanyl, oxetanyl, phenyl, piperazinyl, piperidinyl, pyrazinyl, pyrazolyl, pyridinyl, pyrrolidinyl, pyrrolyl, quinolinyl, tetrahydrofuranyl, tetrahydropyranyl, tetrazolyl, thiadiazolyl, thiazolyl, and triazolyl, each substituted with -L₂-R_a and 40 zero to 4 R_b ; L_2 is a bond or $-CR_xR_x$ —; R_a is (a) H, -CN, —OH, C₁₋₃ alkyl, C₁₋₂ fluoroalkyl, C₁₋₃ hydroxyalkyl, $-(CH_2)_{1-2}O(C_{1-3} \quad alkyl), \quad --(CR_xR_x)_{1-3}NHC(O)O(C_{1-4})$ alkyl), $-(CR_xR_x)_{1-3}NH_2$, $-(CR_xR_x)_{1-3}NR_x(C_{1-4} \text{ alkyl})$, $-O(C_{1-2} \text{ fluoroalkyl}), -S(O)_2NR_xR_x, -NHS(O)_2(C_{1-3} \text{ alkyl}), -NR_xR_x, -NR_x(C_{1-4} \text{ alkyl}), -(CR_xR_x)_{1-2}C(O)OH,$ -C(O)OH, $-C(O)(C_{1-3}$ alkyl), $-C(O)O(C_{1-3}$ alkyl), $-C(O)NR_x(C_{1-2} \text{ alkyl}), -C(O)N(C_{1-3} \text{ alkyl})_2, -C(O)$ $NR_xCH_2C(O)NR_xR_x$, or $--C(O)NR_xCH_2CH_2NHC(O)(C_{1-3})$ alkyl); (b) C_{3-6} cycloalkyl or $-C(O)NH(C_{3-6}$ cycloalkyl), (I-3) 50 wherein each cycloalkyl is substituted with zero to 2 substituents independently selected from —OH, C_{1-3} alkyl, C_{1-3} hydroxyalkyl, C_{1-3} fluoroalkyl, and $-C(O)O(C_{1-3}$ alkyl); or (c) A_1 , — CH_2A_1 , — $C(O)A_1$, or — $C(O)NHA_1$, wherein A_1 is furanyl, imidazolyl, indolyl, isoxazolyl, octahydropyrrolo [3,4-c]pyrrolyl, oxazolyl, oxetanyl, phenyl, piperazinyl, piperidinyl, pyrazolyl, pyridinyl, pyrimidinyl, pyrrolidinyl, pyrrolyl, tetrahydrofuranyl, tetrahydropyranyl, thiadiazolyl, thiazolyl, thiophenyl, or triazolyl, each substituted with zero to three substituents independently selected from —OH, 60 C_{1-3} alkyl, C_{1-3} hydroxyalkyl, — $C(O)(C_{1-2}$ alkyl), —C(O) $O(C_{1-3} \text{ alkyl}), -NR_xR_x, \text{ phenyl}, \text{ trifluoromethyl-phenyl},$ -CH₂(bromophenyl), and —CH₂CH₂(pyrrolidinyl); each R_b is independently — CH_3 or — CF_3 ; and each R_x is independently H or —CH₃. Included in this embodiment are 65 compounds in which R₃ is -CH₂C(O)NH(cyclobutyl), CH₂C(O)NH(cyclopropyl), -CH₂C(O)NH(methyloxetanyl), -CH₂C(O)N(CH₃)(cyclopropyl), oxetanyl, tetrahydropyranyl, dioxotetrahydrothiopyranyl, —CH₂(oxa--CH₂(tetrazolyl), —CH₂(pyrazolyl), (triazolyl), —CH₂(methyltriazolyl), —CH₂C(O)(2-oxa-6azaspiro[3.3]heptanyl), —CH₂C(O)(azetidinyl), —CH₂C $-CH_2C(O)$ (O)(dioxidothiadiazinanyl), (dioxidothiomorpholinyl), -CH₂C(O)(morpholinyl), -CH₂C(O)(methoxyethylpiperazinyl), -CH₂C(O)(piperidinyl), —CH₂C(O)(hydroxypiperidinyl), —CH₂C(O) (pyrrolidinyl), —CH₂C(O)(hydroxypyrrolidinyl), – -C(O) 10 —C(O)(methylcyclopropyl), (azetidinyl), (methyloxetanyl), or —C(O)CH₂(morpholinyl). Also included are compounds in which m is zero and n is zero.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein R₃ is H, C₁₋₆ alkyl, C₁₋₃ cyanoalkyl, $\begin{array}{lll} C_{1-4} & \text{hydroxyalkyl}, & -(\text{CR}_x\text{R}_x)_{1-4}\text{O}(\text{C}_{1-3} & \text{alkyl}), & -(\text{CR}_x\text{R}_x)_{1-4}\text{O}(\text{C}_{1-3} & \text{alkyl}), & -(\text{CR}_x\text{R}_x)_{1-30}(\text{C}_{1-3} & \text{alkyl}), & -\text{CH}_2\text{CH}(\text{OH})\text{CH}_2\text{O}(\text{C}_{1-3} & \text{alkyl}), & -(\text{CR}_x\text{R}_x)_{1-3}\text{S}(\text{C}_{1-3} & \text{alkyl}), & -(\text{CH}_2)_{1-3}\text{C}(\text{O})\text{OC} \end{array}$ $-(CR_xR_x)_{0-3}NR_xR_v,$ $-(CR_xR_x)_{0-3}NR_x(C_{1-4})$ $(CH_3)_3$ -CH₂CH(OH)CH₂NR_xR_v, $-C(O)(C_{1-6})$ hydroxyalkyl), alkyl), — $C(O)(C_{1-3} \text{ hydroxyalkyl})$, — $C(O)(C_{1-3} \text{ fluoroal-} 20$ kyl), — $C(O)(C_{1-3}$ chloroalkyl), — $C(O)(C_{1-3}$ cyanoalkyl), $-(CR_xR_x)_{0-3}C(O)OH$, $-C(O)(CH_2)_{1-2}O(C_{1-2})$ $-C(O)(CR_xR_x)_{0-2}O(CR_xR_x)_{1-2}O(C_{1-3}$ alkyl), -C(O)CR_xR_xNR_xS(O)₂(C₁₋₃ $CR_xR_xS(O)_2(C_{1-3} \quad alkyl),$ $-C(O)CR_xR_xOC(O)(C_{1-3}$ alkyl), $-C(O)(CR_x 25)$ $R_{r})_{0-3}NR_{r}R_{r}$ $-C(O)(CR_xR_x)_{0-1}NR_x(C_3)$ cyanoalkyl), $-C(O)(CR_xR_x)_{0-2}NR_v(C_{1-6} \text{ hydroxyalkyl}),$ $--C(O)(CR_x)$ R_x)₀₋₁ NR_x (C_{1-3} fluoroalkyl), — $C(O)(CR_xR_x)$ ₀₋₁ NR_x (C_{1-5} hydroxy-fluoroalkyl), $-C(O)(CR_xR_x)_{0-1}NR_x(CH_2)_{1-2}O$ $(C_{1-3} \text{ hydroxyalkyl}), -C(O)(CR_xR_x)_{0-1}NR_x(CH_2)_{1-2}NR_xC$ 30 (O)(C_{1-2} alkyl), $-C(O)(CR_xR_x)_{0-1}NR_x((CR_xR_x)_{1-2}O(C_{1-2}))$ alkyl)), $-C(O)CR_x(NH_2)(CR_xR_x)_{1-4}NR_xR_x$, $-C(O)CR_x$ $(NH_2)(CR_xR_x)_{1.4}NR_xC(O)NR_xR_x, \quad --C(O)(CR_xR_x)_{0.3}NR_x$ $(CH_2)_{0-1}C(O)(C_{1-3} \text{ alkyl}), -C(O)(CR_xR_x)_{0-1}NR_x(CH_2)_{0-1}C$ $(O)(C_{1-3} \text{ cyanoalkyl}), -C(O)(CR_xR_x)_{0-1}NR_x(CH_2)_{1-2}C(O)$ 35 $-C(O)(CR_xR_x)_{0-1}NR_x(CHR_y(CH_2OH)),$ $-(CR_xR_x)_{1-2}C(O)NR_vR_v, -(CR_xR_x)_{1-2}C(O)NR_v(C_{1-3})$ fluo- $(CR_xR_x)_{1-2}C(O)NR_y(C_{1-4})$ roalkyl), hydroxyalkyl), $-(CR_xR_x)_{1-2}C(O)NR_y(C_{1-3} \text{ cyanoalkyl}), --(CR_xR_x)_{1-2}C(O)$ $NR_x(CH_2)_{1-2}O(C_{1-3} \text{ alkyl}), -(CR_xR_x)_{1-2}C(O)NR_xCH(C_{1-4} \text{ 40})$ alkyl)(C_{1-3} hydroxyalkyl), $-(CH_2)_{1-2}C(O)NR_xCH_2)_{1-2}C$ $(O)NR_xR_x$, $-(CH_2)_{1-2}C(O)NR_x(CH_2)_{1-2}S(O)_2OH,$ $-(CH_2)_{1-2}C(O)NR_x(CH_2)_{1-2}NR_xC(O)(C_{1-3} alkyl), --(CH_2)$ $\begin{array}{lll} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$ $(O)_2(C_{1-3}$ fluoroalkyl), $-(CH_2)_{1-2}S(O)_2NR_xR_x$, -C(O)C $-C(O)C(O)NR_yR_y$, or $-C(O)C(O)NR_y(CR_x)$ $R_x)_{1-2}NR_vR_v$; and R_1 , R_2 , R_4 , R_5 , R_x , R_v , R_v , R_v , R_v , and R_v are defined in the first aspect. Included in this embodiment are compounds in which R₃ is H, —CH(CH₃)₂, —CH(CH₃)₂, 50 -CH₂CH(CH₃)₂, —CH₂CN, -CH₂CH₂CN, -CH2CH2CH2CN, -C(O)CH₃, $-CH_2C(CH_3)_2OH$, $-C(O)CH(CH_2CH_3)_2$ -C(O)CH₂OCH₃, CH₂CH₂OCH₃, —C(O)CH₂CH(CH₃)OH, —C(O)CH₂CN, $-\tilde{C}(O)\tilde{C}H_2\tilde{C}H_2\tilde{C}N, C(O)\tilde{C}H(CH_3)NH(CH_3), C(O)$ 55 Formula (I-1): $-C(O)CH_2N(CH_3)_2$ CH2NH(CH2), $CH_2NHCH_2CH_3$, $-C(O)CH_2NHCH(CH_3)_2$, -C(O) $CH_2NHC(CH_3)_3$, $-C(O)CH_2N(CH_3)CH(CH_3)_2$, -C(O)CH₂NHCH₂CH₂OCH₃, —CH₂C(O)NH₂, —CH₂C(O)NH $-\tilde{CH}_2C(O)N(CH_3)CH_2CH_3$, $(CH_3),$ -CH₂C(O) 60 $NHCH_2CH_2CH_3$, $--CH_2C(O)NH(CH(CH_3)_2)$, $--CH_2C(O)$ $N(CH_3)_2$, — $CH_2C(O)N(CH_2CH_3)_2$, — $CH_2CH_2S(O)_2CH_3$, or —CH₂CH₂S(O)₂NH₂. Also included are compounds in which m is zero and n is zero.

One embodiment provides a compound of Formula (I) or 65 a salt thereof, wherein R₃ is H, —CH(CH₃)₂, —CH(CH₃)₂, —CH₂CH(CH₃)₂, —CH₂CN, —CH₂CH₂CN,

—CH₂CH₂CH₂CN, $--CH_2C(CH_3)_2OH$, $-C(O)CH_3$ -C(O)CH(CH₂CH₃)₂, -C(O)CH₂OCH₃, $CH_2CH_2OCH_3$, $-C(O)CH_2CH(CH_3)OH$, $-C(O)CH_2CN$, $-\tilde{C}(O)\tilde{C}H_2CH_2CN$, $-C(\bar{O})CH(CH_3)NH(CH_3)$, -C(O)CH₂NH(CH₃), $-C(O)CH_2N(CH_3)_2$ -C(O) $CH_2NHCH_2CH_2CH_3$, $-C(O)CH_2NHCH(CH_3)_2$, -C(O) $CH_2NHC(CH_3)_3$, $--C(O)CH_2N(CH_3)CH(CH_3)_2$, -C(O) $CH_2^{\uparrow}NHCH_2CH_2^{\downarrow}OCH_3, \quad -C\tilde{H_2}C(O)\tilde{N}H_2, \quad -\tilde{C}\tilde{H_2}C(O)\tilde{N}H_2$ -CH₂C(O)N(CH₃)CH₂CH₃, $(CH_3),$ $-CH_2C(O)$ $NHCH_2CH_3$, $-CH_2C(O)NH(CH(CH_3)_2)$, $-CH_2C(O)$ N(CH₃)₂, —CH₂C(O)N(CH₂CH₃)₂, —CH₂CH₂S(O)₂CH₃, -CH₂CH₂S(O)₂NH₂, -CH₂C(O)NH(cyclobutyl), -CH₂C(O)NH(cyclopropyl),—CH₂C(O)NH(methyloxetanyl), —CH₂C(O)N(CH₃)(cyclopropyl), oxetanyl, tetrahydropyranyl, dioxotetrahydrothiopyranyl, —CH₂(oxa--CH₂(pyrazolyl), -CH₂(tetrazolyl), zolvl). (triazolyl), —CH₂(methyltriazolyl), —CH₂C(O)(2-oxa-6azaspiro[3.3]heptanyl), —CH₂C(O)(azetidinyl), —CH₂C (O)(dioxidothiadiazinanyl), -CH₂C(O)(morpholinyl), (dioxidothiomorpholinyl), -CH₂C(O)(methoxyethylpiperazinyl), —CH₂C(O)(piperidinyl), —CH₂C(O)(hydroxypiperidinyl), —CH₂C(O) (pyrrolidinyl), —CH₂C(O)(hydroxypyrrolidinyl), —C(O) (azetidinyl), —C(O)(methylcyclopropyl), (methyloxetanyl), or $-C(O)CH_2$ (morpholinyl); and R_1, R_2 , R₄, R₅, m, n, and p are defined in the first aspect. Included in this embodiment are compounds in which each R₂ is independently F, —CN, —OH, C_{1-2} alkyl, or —(CH₂)₀₋₁O (C₁₋₂ alkyl); p is zero, 1 or 2. Included in this embodiment are compounds in which each R₂ is independently —CH₃, -OCH₃, or --CH₂OCH₃. Also included are compounds in which m is zero and n is zero.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein m is zero, 1, or 2; and R_1 , R_2 , R_3 , R_4 , R_5 , n, and p are defined in the first aspect. Included in this embodiment are compounds in which m is zero or 1. Also included in this embodiment are compounds in which m is zero. Also included are compounds in which m is zero and n is zero.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein n is zero or 1; and R_1 , R_2 , R_3 , R_4 , R_5 , m, and p are defined in the first aspect. Included in this embodiment are compounds in which n is zero. Also included are compounds in which m is zero. Also included are compounds in which m is zero and n is zero.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein m is zero, 1, or 2; n is zero or 1; and p is zero, 1, or 2; and R_1 , R_2 , R_3 , R_4 , and R_5 are defined in the first aspect. Included in this embodiment are compounds in which m is zero or 1; n is zero; and p is zero, 1, or 2. Also included are compounds in which m is zero; n is zero; and p is zero, 1, or 2.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein said compound has the structure of Formula (I-1):

19

20

and R₁, R₃, R₄, R₅, m, and n are defined in the first aspect or the second aspect. Included in this embodiment are compounds in which R₁ is —CHCH₃ or —CH(CH₃)₂. Included in this embodiment are compounds in which R₃ is $\label{eq:hamiltonian} \text{H, } -\text{CH}_3, \ -\text{CH}(\text{CH}_3)_2, \ -\text{CH}_2\text{CHF}_2, \ -\text{CH}_2\text{CH}_2\text{OH},$ -CH₂C(O)NH₂, -CH₂C(O)NH(CH₃), -CH₂C(O)NH (CH_3) , $-CH_2C(O)N(CH_3)_2$, $-CH_2C(CH_3)_2OH$, -C(O) $CH_2S(O)_2CH_3$ $-C(O)CH_2NH(CH_3),$ -C(O)CH₂N $(CH_3)_2$, $-C(O)CH_2CH(CH_3)OH$, or $-L_1$ -A; L_1 is $-CH_2$ —, —C(O)—, or —C(O)C $_2$ CH(C $_3$)—; and A is isoxazolyl, 10 oxazolyl, oxetanyl, pyrazolyl, pyrimidinyl, pyrrolidinonyl, tetrahydrofuranyl, tetrahydropyranyl, thiazolyl, or triazolyl, each substituted with $-L_2-R_a$ and zero to 2 R_b ; L_2 is a bond; R_a is H, C_{1-3} alkyl, —OCH₃, or —CH₂(cyclopropyl); and each R_b is —CH₃. Also included in this embodiment are compounds in which R_1 is — $CH(CH_3)_2$; m is zero, and n is

One embodiment provides a compound of Formula (I) or a salt thereof, wherein said compound is

- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (1);
- 1-(4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(methylamino)ethan-1-one
- 1-(4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(dimethylamino)ethan-1-one (51); (S)-1-(4-(2-([1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-hydroxybutan-1-one (53); 6-(3-ethyl-5-(piperidin-4-yl)-1H-indol-2-yl)-30 [1,2,4]triazolo[1,5-a]pyridine (121);
- 2-(4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (164);
- 2-(4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (240);
- 1-(4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-methylpropan-2-ol (241); 2-(4-(2-([1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (242);
- 6-(3-isopropyl-5-(1-methylpiperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (350);
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (351);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (352);
- 6-(3-isopropyl-5-(1-((l-methyl-1H-1,2,4-triazol-3-yl) methyl) piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1, 5-a]pyridine (353);
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (354);
- 6-(3-isopropyl-5-(1-(tetrahydrofuran-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (355);
- 2-(4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)ethan-1-ol (356);
- 6-(3-isopropyl-5-(1-(oxetan-3-ylmethyl)piperidin-4-yl)-1H- 55 indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (358);
- 6-(3-isopropyl-5-(1-((2-methoxypyrimidin-5-yl)methyl)piperidin-4-yl)-1H-indol-2-yl)[1,2,4]triazolo[1,5-a]pyridine (359);
- 2-(4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H- 60 indol-5-yl) piperidin-1-yl)acetamide (360);
- 3-((4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)methyl)-5-methylisoxazole (361);
- 4-((4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)methyl)-2-isopropylthiazole (362);

- 6-(3-isopropyl-5-(1-(((1-propyl-1H-pyrazol-4-yl)methyl)pi-peridin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (363);
- 6-(5-(1-((3,5-dimethyl-1H-pyrazol-4-yl)methyl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a] pyridine (364);
- 6-(5-(1-(((1H-1,2,3-triazol-4-yl)methyl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (365):
- 6-(5-(1-(((1-(cyclopropylmethyl)-1H-pyrazol-3-yl)methyl) piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-[1,2,4]tri-azolo[1,5-a]pyridine (366);
- 6-(3-isopropyl-5-(1-((1-methyl-1H-1,2,3-triazol-4-yl) methyl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1, 5-a]pyridine (367);
- 15 6-(3-isopropyl-5-(1-((5-methoxy-1,3-dimethyl-1H-pyrazol-4-yl)methyl)pi p eri din-4-yl)-1H-indol-2-yl)-[1,2,4]tri-azolo[1,5-a]pyridine (368);
 - 5-((4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)methyl)-2,4-dimethylthiazole (369);
 - 4-((4-(2-([1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)methyl)-3,5-dimethylisoxazole (370);
 - 6-(5-(1-((1,3-dimethyl-1H-pyrazol-4-yl)methyl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a] pyridine (371);
 - 4-((4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)methyl)-2,5-dimethyloxazole (372):
 - 6-(5-(1-((1,3-dimethyl-1H-pyrazol-5-yl)methyl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a] pyridine (373);
 - 2-((4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)methyl)thiazole (374);
 - 6-(3-isopropyl-5-(1-((1-isopropyl-1H-pyrazol-4-yl) methyl) piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (375):
 - 6-(3-isopropyl-5-(1-((1-methyl-1H-pyrazol-4-yl)methyl)pi-peridin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (376);
- 40 5-((4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)methyl)thiazole (377);
 - 4-((4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)methyl)-2-methyloxazole (378);
- 45 6-(5-(1-((1H-pyrazol-5-yl)methyl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (379);
 - 6-(3-isopropyl-5-(1-((3-methyl-1H-pyrazol-4-yl)methyl)pi-peridin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (380);
- 50 6-(3-isopropyl-5-(1-((1-methyl-1H-pyrazol-3-yl)methyl)pi-peridin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (381):
 - 6-(5-(1-((1-ethyl-1H-pyrazol-3-yl)methyl)piperidin-4-yl)-3isopropyl-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (382):
 - 2-((4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)methyl)-5-methylthiazole (383);
 - 4-((4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)methyl)oxazole (384);
 - 6-(3-isopropyl-5-(1-isopropylpiperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (536);
 - 4-(4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carbonyl)-1-methylpyrrolidin-2-one (601);
 - 1-(4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(methylsulfonyl)ethan-1-one

(619); or 1-(4-(2-([1,2,4]triazolo [1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-(oxetan-3-yl) butan-1-one (713).

One embodiment provides a compound of Formula (I) or a salt thereof, wherein said compound has the structure of 5 Formula (I-2):

$$R_3$$
 $(R_4)_m$
 $(R_5)_m$
 $(R_5)_m$
 $(R_5)_m$
 $(R_7)_m$
 $(R_8)_m$
 $(R_8)_m$

and R₁, R₃, R₄, R₅, m, and n are defined in the first aspect or the second aspect. Included in this embodiment are compounds in which R_1 is $-CH(CH_3)_2$. Included in this embodiment are compounds in which R₃ is H, C₁₋₃ cyanoalkyl, — $CH_2C(CH_3)_2OH$, — $CH_2C(O)NH(CH_3)$, — CH_2C $(O)N(CH_3)_2$, $-CH_2C(O)NH(CH_2CH_3)$, $-CH_2C(O)NH$ $(CH(CH_3)_2)$, $-CH_2C(O)N(CH_3)(CH_2CH_3)$, $-CH_2C(O)N$ $(CH_2CH_3)_2$ $-\text{CH}_2\text{C}(\text{O})\text{N}(\text{CH}_3)(\text{CH}_2\text{CH}_2\text{OH}),$ -CH2CH2S(O)2CH3, -CH(CH₃)CH₂S(O)₂CH₃, -CH₂CH₂S(O)₂NH(CH₃), -CH₂CH₂S(O)₂NH₂, -CH₂CH₂NHS(O)₂CH₃, 30 -CH₂CH₂S(O)₂N(CH₃)₂, $-C(O)CH_2CN$, or $-L_1$ -A; L_1 is $-CH_2$ -, $-CH_2C(O)$ -, -CH₂C(O)NH—, or —C(O)CH₂CH₂—; and A is cyclopropyl, dioxotetrahydrothiophenyl, dioxotetrahydrothiopyranyl, isoxazolyl, morpholinyl, oxadiazolyl, oxazolyl, oxetanyl, piperidinyl, pyrazinyl, pyrazolyl, pyridazinyl, 35 6-(3-isopropyl-5-(1-((4-methyl-4H-1,2,4-triazol-3-yl) pyrimidinyl, pyrrolidinyl, tetrahydropyranyl, thiazolyl, or triazolyl, each substituted with -L₂-R_a and zero to 1 R_b; L₂ is a bond; R_a is H, —CH₃, —CN, or —OCH₃; and R_b is —OCH₃. Also included in this embodiment are compounds in which R_1 is $-CH(CH_3)_2$; m is zero, and n is zero.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein said compound is

- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (3); 3-(4-(3-isopropyl-2-(7methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-3-oxopropanenitrile (49);
- 2-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethane-1-sulfonamide (180);
- 2-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetonitrile (181);
- 1-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-methylpropan-
- 2-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethane-1-sulfonamide (183);
- 2-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylethane- 60 1-sulfonamide (184);
- 2-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylethane-1-sulfonamide (185);
- 1-((4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)methyl) cyclopropane-1-carbonitrile (186);

- 1-((4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)methyl)cyclopropane-1-carbonitrile (187);
- 3-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) propanenitrile
- N-(2-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethyl)methanesulfonamide (189);
- 2-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylacet-
 - 2-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-N,N-dimethylacetamide (191);
 - 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (441);
 - 6-(3-isopropyl-5-(1-((2-methoxypyrimidin-5-yl)methyl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1, 5-a]pyridine (442);
 - 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4yl)-1H-indol-2-yl)-7-methyl[1,2,4]triazolo[1,5-a]pyridine (443);
- ²⁵ 6-(3-isopropyl-5-(1-((1-methyl-1H-pyrazol-5-yl)methyl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1, 5-a]pyridine (444);
 - 6-(3-isopropyl-5-(1-((1-methyl-1H-pyrazol-3-yl)methyl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1, 5-alpyridine (445); 2-((4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)methypoxa-
 - methyl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4] triazolo[1,5-a]pyridine (447);

zole (446):

- 6-(5-(1-((1H-pyrazol-5-yl)methyl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-7-methyl[1,2,4]triazolo[1,5-a]pyridine (448);
- 6-(3-isopropyl-5-(1-((1-methyl-1H-1,2,3-triazol-4-yl) methyl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4] triazolo[1,5-a]pyridine (449);
- 5-((4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)methyl)thiazole (450);
- 6-(5-(1-((1H-1,2,3-triazol-5-vl) methyl)piperidin-4-vl)-3isopropyl-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a] pyridine (451);
- 50 6-(3-isopropyl-5-(1-(pyrimidin-5-ylmethyl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine
- 3-((4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)methyl)-5-methyl-55 isoxazole (453):
 - 6-(3-isopropyl-5-(1-(pyrimidin-2-ylmethyl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine
 - 4-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)tetrahydro-2Hthiopyran 1,1-dioxide (455);
 - 6-(5-(1-((4,6-dimethoxypyrimidin-2-yl)methyl)piperidin-4yl)-3-isopropyl-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo [1,5-a]pyridine (456);
- 65 6-(3-isopropyl-5-(1-((1-methyl-1H-1,2,4-triazol-3-yl) methyl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4] triazolo[1,5-a]pyridine (457);

2-((4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) methyl)-1,3,4oxadiazole (458):

6-(5-(1-((1H-1,2,4-triazol-5-yl)methyl)piperidin-4-yl)-3isopropyl-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a] pyridine (459);

3-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) tetrahydrothiophene 1,1-dioxide (460);

6-(3-isopropyl-5-(1-(pyridazin-3-ylmethyl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine ((461);

3-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)butanenitrile (462);

6-(3-isopropyl-5-(1-((2-methylpyrimidin-5-yl)methyl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5alpyridine (463);

6-(3-isopropyl-5-(1-(1-(methylsulfonyl)propan-2-yl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (464);

6-(3-isopropyl-5-(1-((2-methylpyrimidin-4-yl)methyl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5a]pyridine (465):

6-(3-isopropyl-5-(1-((5-methylpyrazin-2-yl)methyl) piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a] pyridine (466);

6-(3-isopropyl-5-(1-(pyrazin-2-ylmethyl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine

2-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-1-(pyrrolidin-1yl)ethan-1-one (802);

N-isopropyl-2-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetamide (803):

N-ethyl-2-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-N-methylacetamide (804);

2-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-1-(piperidin-1yl)ethan-1-one (805);

N-cyclopropyl-2-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl) acetamide (806);

N-ethyl-2-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetamide (807):

N,N-diethyl-2-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetamide (808);

2-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-1-morpholinoethan-1-one (809);

N-(2-hydroxyethyl)-2-(4-(3-isopropyl-2-(7-methyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1yl)-N-methylacetamide (810); or

1-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-3-morpholinopropan-1-one (885).

a salt thereof, wherein said compound has the structure of Formula (I-3):

$$R_3$$
 $(R_4)_m$
 R_1
 R_2
 $(R_5)_n$
 R_1
 R_2

 R_2 is —CH₃ or —CD₃; and R_1 , R_3 , R_4 , R_5 , m, and n are defined in the first aspect or the second aspect. Included in this embodiment are compounds in which R₁ is —CHCH₃, -CH(CH₃)₂, or -CH₂CHF₂. Included in this embodiment are compounds in which R_3 is H, C_{3-5} alkyl, C_{2-3} fluoroalkyl, C₂₋₅ hydroxyalkyl, C₁₋₃ cyanoalkyl, —CH₂C(CH₃)₂OH, $-CH_2CH_2OCH_3$, $-CH_2C(O)NH_2$, $-CH_2C(O)NH(CH_3)$, -CH₂C(O)NH(CH₂CH₂CH₃),—CH₂C(O)NH(CH $(CH_3)_2),$ -CH2C(O)N(CH3)2, -CH₂C(O)N(CH₃)CH₂CH₃, $-CH_2C(O)N(CH_2CH_3)_2$ —CH(CN)C(O)N $(CH_3)_2$, $-CH_2C(O)N(CH_3)(CH_2CH_2OH)$, $-CH_2C(O)N$ (CH₂CH₃)(CH₂CH₂OH),-CH₂C(O)N(CH₂CH₂CH₃) -CH₂C(O)N(CH₃)(CH₂CH₂CH₂OH), (CH_2CH_2OH) , -CH₂C(O)N(CH₃)(CH₂C(CH₃)₂OH), -CH₂C(O)N (CH2CH2OH)(CH2CH(CH3)CH2CH3), -CH₂C(O)NH (CH₂CH₂SCH₃), —CH₂CH₂S(O)₂CH₃, —CH₂CH₂CH₂S $-CH(CH_3)CH_2S(O)_2CH_3$ (O)₂CH₃, $-CH(CH_3)CH_2$ 30 S(O)₂(CH₂CH₂CH₂CH₃), -CH₂CH₂S(O)₂NH₂, -CH2CH2S(O)2NH(CH3), $-CH_2CH_2S(O)_2N(CH_3)_2$, $-CH(CH_3)CH_2S(O)_2N(CH_2CH_3)_2$ -CH₂CH₂NH $S(O)_2CH_3$, $-C=N(NH_2)$, $-C(O)CH_3$ -C(O)CH $(CH_2CH_3)_2$, $-C(O)CH_2C\overline{H}_2CN$, $-C(O)C\overline{H}_2CH(CH_3)OH$, -C(O)CH₂OCH₃, —C(O)CH₂CH₂OCH₃, —C(O)CH₂NH (CH_3) , $-C(O)CH_2NH(CH_2CH_2CH_3)$, $-C(O)CH_2NHCH$ $-C(O)CH_2NHC(CH_3)_3$, $-C(O)CH_2N(CH_3)_2$, $(CH_3)_2$ $-C(O)CH(CH_3)NH(CH_3), -C(O)CH_2N(CH_3)CH(CH_3)_2,$ -C(O)CH₂N(CH₃)(CH₂CH₂OH), -C(O)CH₂NH 40 (CH₂CH₂OCH₃), —C(O)CH₂S(O)₂CH₃, —C(O)CH₂CH₂S $(O)_2CH_3$, $--C(O)CH_2NHS(O)_2CH_3$, or $-L_1-A$; L_1 is $-CH_2$ —, $-CH_2C(O)$ —, $-CH_2C(O)N(CH_2CH_2OH)$ — $-CH_2C(O)N(CH_3)$ —, $-CH_2C(O)N(CH_3)$ —, $-CH_2C(O)$ N(CH₃)CH₂CH₂—, —CH₂C(O)NH—, CH₂CH₂S(O)₂- $-\bar{C}(O)CH_2--, -C(O)CH_2CH_2-$ -C(O)- $CH_2CH_2N(CH_2CH_2OH)$ —, — $C(O)CH_2\bar{N}(CH_2CH_2OH)$ — -C(O)CH₂NH—, $-CH(CH_3)-$, or $-CH(CH_3)CH_3$ $S(O)_2$ —; and A is 2-oxa-6-azaspiro[3.3]heptanyl, azetidinyl, C₃₋₆ cycloalkyl, di oxidothiadiazinanyl, dioxidothiazolidi-50 nyl, dioxidothiomorpholinyl, dioxotetrahydrothiophenyl, dioxotetrahydrothiopyranyl, dioxothiomorpholinyl, imidazolyl, isoxazolyl, morpholinyl, oxa-azaspiro[3.3]heptanyl, oxadiazolyl, oxazolyl, oxetanyl, phenyl, piperazinyl, piperidinyl, pyrazinyl, pyrazolyl, pyridazinyl, pyrimidinyl, pyrrolidinonyl, pyrrolidinyl, tetrahydrofuranyl, tetrahydropyratetrahydrothiopyranyl, tetrazolyl, thiadiazolyl, thiazolyl, or triazolyl, each substituted with -L₂-R_a and zero to 2 R_b ; L_2 is a bond; R_a is H, F, —CH₃, —CN, —OH, —OCH₃, —CH₂OH, —CH₂CH₂OH, —CH₂CH₂OCH₃, $-C(O)CH_3$, $-C(O)OCH_2CH_3$, $-C(O)OC(CH_3)_3$, -NHC(O)OC(CH₃)₃, —S(O)₂CH₃, cyclopropyl, or pyrazinyl; and each R_h is independently F, —OH, —CH₃, or —OCH₃. Also included in this embodiment are compounds in which R₁ is -CH(CH₃)₂; m is zero, and n is zero. Additionally, included One embodiment provides a compound of Formula (I) or 65 in this embodiment are compounds in which R2 is -CH3. One embodiment provides a compound of Formula (I) or

a salt thereof, wherein said compound is

- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine hydrochloride (2);
- 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methyl acetamide (7);
- 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetonitrile (8);
- 3-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)propanenitrile (9);
- 6-(5-(1-butylpiperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (10);
- 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetamide (11); 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-methylpropan-2-ol (12);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo [1,5-a]pyridine (26);
- 6-(3-isopropyl-5-(1-isopropylpiperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (27);
- 6-(3-isopropyl-5-(1-propylpiperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (28);
- 6-(5-(1-isobutylpiperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (29);
- 6-(5-(1-((1H-pyrazol-5-yl)methyl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (30):
- 4-((4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)methyl)oxazole (31);
- 6-(5-(1-((1H-1,2,3-triazol-4-yl)methyl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a] pyridine (32);
- 6-(5-(1-((4H-1,2,4-triazol-3-yl)methyl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a] pyridine (33);
- 6-(5-(1-(((1H-tetrazol-5-yl)methyl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (34):
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (35);
- 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (36):
- 4-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) tetrahydro-2H-thiopyran 1,1-dioxide (37);
- 2-(dimethylamino)-1-(4-(3-isopropyl-2-(8-methyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (46);
- 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (48); 55
- 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-2-(methylamino) ethan-1-one (50);
- 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-methoxyethan-60 1-one (52);
- 4-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-4-oxobutanenitrile (54);
- (4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)(1-methylcyclopropyl)methanone (55);

- (S)-azetidin-2-yl(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) methanone (56);
- 2-(dimethylamino)-1-(4-(3-isopropyl-2-(8-methyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (57);
 - (S)-1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(methylamino) propan-1-one (58);
- (R)-1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(methylamino)propan-1-one (59);
- (S)-3-hydroxy-1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]tri-azolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) butan-1-one (60);
 - 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-3-methoxypropan-1-one (61);
- 20 (4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)(3-methyloxetan-3-yl) methanone (64);
 - 2-ethyl-1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)butan-1-one (65):
 - 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-morpholinoethan-1-one (68);
- 2-(tert-butylamino)-1-(4-(3-isopropyl-2-(8-methyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) ethan-1-one (69);
 - 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(isopropylamino)ethan-1-one (70);
- 35 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-((2-methoxyethyl)amino) ethan-1-one (71);
 - 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(propylamino) ethan-1-one (72);
 - 2-(isopropyl(methyl)amino)-1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (73);
- 1-(1,1-dioxidothiomorpholino)-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)ethan-1-one (74);
- N-cyclopropyl-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]tri-azolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) acetamide (75);
- 50 N-ethyl-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-N-methylacetamide (76);
 - (S)-1-(3-hydroxypiperidin-1-yl)-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl) ethan-1-one (77);
 - N-cyclobutyl-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetamide (78);
 - 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-1-(2-oxa-6-azaspiro[3.3]heptan-6-yl)ethan-1-one (79);
 - N,N-diethyl-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetamide (80):
- 65 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-propylacetamide (81);

- (R)-1-(3-hydroxypiperidin-1-yl)-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)ethan-1-one (82);
- (S)-1-(3-hydroxypyrrolidin-1-yl)-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) 5 piperidin-1-yl)ethan-1-one (83);
- (R)-1-(3-hydroxypyrrolidin-1-yl)-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (84);
- 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-1-(4-(2-methoxyethyl)piperazin-1-yl)ethan-1-one (85);
- 1-(azetidin-1-yl)-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]tri-azolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) ethan-1-one (86);
- N-isopropyl-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)acetamide (87);
- 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-1-morpholinoethan-1-one (88);
- 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-1-(piperidin-1-yl) ethan-1-one (89):
- 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-1-(pyrrolidin-1-yl)ethan-1-one (90);
- 1-(1,1-dioxidothiomorpholino)-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl) ethan-1-one (91);
- 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-(3-methyloxetan-3-yl)acetamide (92);
- N-cyclopropyl-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]tri-azolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (93);
- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8-(trideuteromethyl)-[1,2,4]triazolo[1,5-a]pyridine (117);
- 6-(3-ethyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2, 4]triazolo [1,5-a]pyridine (158);
- 6-(3-(2,2-difluoroethyl)-5-(piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (161);
- 6-(5-(1-isopentylpiperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (165);
- 6-(3-isopropyl-5-(1-(2-methoxyethyl) piperidin-4-yl)-1H- 45 indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (166);
- 4-((2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)ethyl)sulfo-nyl)morpholine (167);
- 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethane-1-sulfonamide (168);
- 2-cyano-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-N,N-dimethylacetamide (169);
- 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)propanenitrile (170);
- 1-((4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)methyl) cyclopropane-1-carbonitrile (171-172);
- 6-(3-isopropyl-5-(1-(2-(phenylsulfonyl)ethyl) piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (173);
- 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyri-din-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylethane-1-sulfonamide (174);

- 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylethane-1-sulfonamide (175);
- N-(2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) ethyl)methanesulfonamide (176):
- 6-(3-isopropyl-5-(1-(2-(methylsulfonyl)ethyl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (177);
- 6-(3-isopropyl-5-(1-(3-(methylsulfonyl)propyl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (178):
 - 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)-[1,4'-bipiperidin]-1'-yl)ethan-1-one (179):
 - 4-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidine-1-carbonyl)-1-methylpyrrolidin-2-one (243);
- 20 2-(4-(3-ethyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacet-amide (337);
 - 2-(4-(3-ethyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (338):
 - 6-(3-ethyl-5-(1-(2-(methylsulfonyl) ethyl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (339);
- 2-(4-(3-ethyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-1H-indol-5-yl)piperidin-1-yl)acetamide (340);
- 6-(3-ethyl-5-(1-(2-methoxyethyl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (341);
- 1-(4-(3-ethyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-methylpropan-2-ol (342);
- 2-(4-(3-(2,2-difluoroethyl)-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-N,N-dimethylacetamide (343);
- 40 2-(4-(3-(2,2-difluoroethyl)-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (344);
 - 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-(trideuteromethyl)-[1,2,4]triazolo[1,5-a]pyridine (357);
 - 6-(5-(1-(2,2-difluoroethyl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (385);
 - 6-(3-isopropyl-5-(1-((1-methyl-1H-1,2,4-triazol-3-yl) methyl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4] triazolo[1,5-a]pyridine (386);
 - 6-(3-isopropyl-5-(1-((2-methoxypyrimidin-5-yl)methyl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (387);
 - 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-ol (388);
 - 6-(3-isopropyl-5-(1-((1-methyl-1H-pyrazol-5-yl) methyl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (389);
 - 3-((4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) methyl)-1,2,4-oxadiazole (390);
 - 3-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)propan-1-ol (391);
- 65 6-(3-isopropyl-5-(1-((4-methyl-4H-1,2,4-triazol-3-yl) methyl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4] triazolo[1,5-a]pyridine (392);

- 6-(3-isopropyl-5-(1-(tetrahydrofuran-3-yl) piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-3-yl)piperidin-4yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyri-
- 3-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)tetrahydrothiophene 1,1-dioxide (395);
- 6-(3-isopropyl-5-(1-(pyrimidin-2-ylmethyl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine
- 4-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1Ĥ-indol-5-yl)piperidin-1-yl) butan-1-ol (397); 15
- 6-(5-(1-(2,6-difluorobenzyl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine
- 6-(5-(1-((3,5-dimethyl-112-pyrazol-4-yl)methyl) piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (399);
- (3,5-difluoro-4-((4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) methyl)phenyl)methanol (400);
- 3,5-difluoro-4-((4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) methyl)benzonitrile (401);
- 6-(3-isopropyl-5-(1-(pyrimidin-5-ylmethyl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine
- 4-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)cyclohexan-1-ol
- 6-(3-isopropyl-5-(1-((1-methyl-1H-1,2,4-triazol-5-yl) methyl)pip eridin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4] triazolo[1,5-a]pyridine (404);
- 6-(5-(1-((1,3-dimethyl-1H-pyrazol-5-yl)methyl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (405);
- 4-((4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)methyl)thiazole
- 4-((4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)methyl)-5-meth- 45 vlthiazole (407):
- 2-((4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)methyl)thiazole
- peridin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1, 5-alpyridine (409);
- 6-(5-(1-((1,5-dimethyl-1H-pyrazol-3-yl)methyl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (410);
- 4-((4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)methyl)-1,2,3thiadiazole (411);
- 6-(3-isopropyl-5-(1-(pyridazin-3-ylmethyl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine
- (2-((4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)methyl)pyrimidin-5-yl)methanol (413);
- 6-(3-isopropyl-5-(1-((2-methylpyrimidin-5-yl)methyl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5a]pyridine (414);

- 6-(3-isopropyl-5-(1-((2-methylpyrimi din-4-yl)methyl) piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5alpyridine (415);
- 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-1-methylcyclopentane-1-carbonitrile (416-417);
 - 6-(3-isopropyl-5-(1-(1-(6-methylpyridazin-3-yl)ethyl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5a)pyridine (418);
- 6-(3-isopropyl-5-(1-(1-(1-methyl-1H-pyrazol-4-ypethyl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1, 5-alpyridine (419);
- 6-(5-(1-(1-(1H-pyrazol-5-yl)ethyl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyri-
- 6-(3-isopropyl-5-(1-(1-(pyrimidin-2-yl)ethyl)piperidin-4yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyri-
- 20 6-(3-isopropyl-5-(1-(1-(methylsulfonyl)propan-2-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a] pyridine (422);
 - 3-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)butanenitrile
 - 6-(3-isopropyl-5-(1-((5-methylpyrazin-2-yl)methyl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a] pyridine (424);
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-thiopyran-4-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a] pyridine (425);
 - 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(1H-tetrazol-5yl)ethan-1-one (426);
- 35 N,N-diethyl-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)propane-1-sulfonamide (427);
 - 6-(5-(1-(1-(butylsulfonyl)propan-2-yl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a] pyridine (428);
 - 6-(3-isopropyl-5-(1-(pyrazin-2-ylmethyl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine
 - 4-((2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)propyl)sulfonyl)morpholine (430);
 - 6-(3-isopropyl-5-(1-(1-(piperidin-1-ylsulfonyl)propan-2-yl) piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo [1,5-a]pyridine (431);
- 6-(3-isopropyl-5-(1-((3-methyl-1H-pyrazol-5-yl)methyl)pi- 50 3-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)pentane-1,5-diol
 - 6-(3-isopropyl-5-(1-((2-methyl-2H-tetrazol-5-yl)methyl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1, 5-a]pyridine (433);
 - 6-(3-isopropyl-5-(1-((1-methyl-1H-1,2,3-triazol-4-yl) methyl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4] triazolo[1,5-a]pyridine (434);
 - 3-((4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)methyl)-5-methylisoxazole (435);
 - 5-((4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)methyl)thiazole (436);
 - 65 6-(3-isopropyl-5-(1-((1-methyl-1H-pyrazol-3-yl)methyl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1, 5-a]pyridine (437);

- 6-(5-(1-((4,6-dimethoxypyrimidin-2-yl)methyl)piperidin-4yl)-3-isopropyl-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo [1,5-a]pyridine (438);
- 5-cyclopropyl-2-((4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) methypoxazole (439):
- 2-((4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) methyl)oxazole
- 6-(3-isopropyl-5-(1-(3,3,3-trifluoropropyl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine
- tert-butyl (3-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1, 5-a|pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)cyclobutyl)carbamate (538);
- ethyl 3-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)cyclobutane-1-carboxylate (539);
- 1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (540-541);
- 6-(3-ethyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (596);
- 6-(3-(2,2-difluoroethyl)-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine
- 2-(4,4-difluoropiperidin-1-yl)-1-(4-(3-isopropyl-2-(8methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)ethan-1-one (602);
- 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(pyrazin-2-yl) ethan-1-one (603);
- (4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)(1-(pyrazin-2-yl)cyclopropyl)methanone (604);
- 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(2-methyl-2Htetrazol-5-vl)ethan-1-one (605):
- 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(methylsulfonyl)ethan-1-one (606);
- N-(2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-2-oxoethyl) 45 methanesulfonami de (607);
- 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-3-(methylsulfonyl)propan-1-one (608);
- 6-(3-isopropyl-5-(1-((2-methyl-1H-imidazol-4-yl)methyl) piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo [1,5-a]pyridine (620);
- (4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)(2,2,3,3-tetramethylcyclopropyl)methanone (621);
- ((2S,4R)-4-hydroxypyrrolidin-2-yl)(4-(3-isopropyl-2-(8methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)methanone (622);
- ((2S,3R)-3-hydroxypyrrolidin-2-yl)(4-(3-isopropyl-2-(8 $methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) \\ $ piperidin-1-yl)methanone (623);
- ((2S,4S)-4-hydroxypyrrolidin-2-yl)(4-(3-isopropyl-2-(8-isopropylmethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)methanone (624);
- ((2R,4R)-4-hydroxypyrrolidin-2-yl)(4-(3-isopropyl-2-(8methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)methanone (625);

- (4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)((2S,4R)-4-methoxypyrrolidin-2-yl)methanone (626);
- ((2S,4R)-4-fluoropyrrolidin-2-yl)(4-(3-isopropyl-2-(8methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)methanone (627);
 - 1-((2S.4R)-4-hydroxy-2-(4-(3-isopropyl-2-(8-methyl-[1,2, 4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidine-1-carbonyl)pyrrolidin-1-yl)ethan-1-one (628);
- 2-(dimethylamino)-1-(4-(3-ethyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) ethan-1-one (703);
- 1-(4-(3-ethyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-1H-indol-5-yl)piperidin-1-yl)-2-(methylamino)ethan-
- (R)-1-(4-(3-(2,2-diffuoroethyl)-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-3-hydroxybutan-1-one (705);
- 6-(3-isopropyl-5-(1-(tetrahydrofuran-3-yl) piperidin-4-yl)- 20 1-(4-(3-(2,2-difluoroethyl)-2-(8-methyl-[1,2,4]triazolo[1,5a|pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-2-(methylamino)ethan-1-one (706);
 - (S)-1-(4-(3-(2,2-difluoroethyl)-2-(8-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-3-hydroxybutan-1-one (707);
 - 1-(4-(3-(2,2-difluoroethyl)-2-(8-methyl-[1,2,4]triazolo[1,5a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-2-(dimethvlamino)ethan-1-one (712);
 - 2-((2-hydroxyethyl)(methyl)amino)-1-(4-(3-isopropyl-2-(8methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl) ethan-1-one (714);
 - 2-(cycl opropyl (2-hydroxyethyl)amino)-1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (715);
 - 35 2-(3,3-difluoropyrrolidin-1-yl)-1-(4-(3-isopropyl-2-(8methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)ethan-1-one (716);
 - 2-(1,1-dioxidothiomorpholino)-1-(4-(3-isopropyl-2-(8methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)ethan-1-one (717);
 - 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-2-((1-methylcyclopropyl)amino)ethan-1-one (768);
 - 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(piperidin-1yl) ethan-1-one (769);
 - 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(pyrrolidin-1yl)ethan-1-one (770);
 - 50 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(2-oxa-6azaspiro [3.3]heptan-6-yl)ethan-1-one (771);
 - 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(4-(2-methoxyethyl)piperazin-1-yl)ethan-1-one (772);
 - 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-2-(4-methoxypiperidin-1-yl)ethan-1-one (773);
 - (S)-2-(3-hydroxypyrrolidin-1-yl)-1-(4-(3-isopropyl-2-(8methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)ethan-1-one (774);
 - (S)-2-(3-hydroxypiperidin-1-yl)-1-(4-(3-isopropyl-2-(8methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)ethan-1-one (775);
 - 65 (R)-2-(3-hydroxypyrrolidin-1-yl)-1-(4-(3-isopropyl-2-(8methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)ethan-1-one (776);

- 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-1-(3-(methylsulfonyl) azetidin-1-yl)ethan-1-one (782);
- 1-(1,1-dioxidothiazolidin-3-yl)-2-(4-(3-isopropyl-2-(8methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) ⁵ piperidin-1-vl)ethan-1-one (783-784);
- 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-N-(2-(methylthio)ethyl)acetamide (785);
- 1-((2R,4R)-2-(hydroxymethyl)-4-methoxypyrrolidin-1-yl)-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one
- N-(2-hydroxyethyl)-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1yl)-N-methylacetamide (787);
- N-ethyl-N-(2-hydroxyethyl)-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetamide (788);
- N-(2-hydroxyethyl)-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1yl)-N-propylacetamide (789);
- (R)-1-(2-(hydroxymethyl)pyrrolidin-1-yl)-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1Hindol-5-yl)piperidin-1-yl)ethan-1-one (790);
- 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methyl-N-(tetrahydro-2H-pyran-4-yl)acetamide (791);
- N-(3-hydroxypropyl)-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1yl)-N-methylacetamide (792);
- 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyrirahydrofuran-3-yl)acetamide (793);
- N-(2-(1-hydroxycycl op entyl)ethyl)-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5yl)piperidin-1-yl)-N-methylacetamide (794);
- (R)-1-(3-(hydroxymethyl) morpholino)-2-(4-(3-isopropyl-40 2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (795);
- N-(2-hydroxy-2-methylpropyl)-2-(4-(3-isopropyl-2-(8methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-N-methylacetamide (796);
- (S)-1-(3-(hydroxymethyl)morpholino)-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5yl)piperidin-1-yl)ethan-1-one (797);
- (S)-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a] (tetrahydrofuran-3-yl)acetamide (798);
- 1-((2R,4R)-2-(hydroxymethyl)-4-methylpyrrolidin-1-yl)-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)ethan-1-one
- N-(2-hydroxyethyl)-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1yl)-N-(2-methylbutyl)acetamide (800);
- N-cyclopropyl-N-(2-hydroxyethyl)-2-(4-(3-isopropyl-2-(8-piperidin-1-yl)acetamide (801);
- 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-3-morpholinopropan-1-one (882);
- 3-(cyclopropyl(2-hydroxyethyl)(methyl)-14-azaneyl)-1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-1H-indol-5-yl)piperidin-1-yl)propan-1-one (883);

- 3-(1,1-dioxidothiomorpholino)-1-(4-(3-isopropyl-2-(8methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)propan-1-one (884); or
- 4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-1H-indol-5-yl)piperidine-1-carboximidamide (994). One embodiment provides a compound of Formula (I) or a salt thereof, wherein said compound has the structure of Formula (I-4):

$$R_3$$
 R_4
 R_5
 R_1
 R_1

20 and R₁, R₃, R₄, R₅, m, and n are defined in the first aspect or the second aspect. Included in this embodiment are compounds in which R₁ is -CHCH₃, -CH(CH₃)₂, or -CH₂CHF₂. Included in this embodiment are compounds in which R₃ is H, —CH₂CH(CH₃)₂, —CH₂CN, —CH₂C $(CH_3)_2OH$, $-CH_2CH_2OCH_3$, $-CH_2CH_2NH(CH_3)$, --CH₂CH₂S(O)₂CH₃, --CH(CH₃)CH₂S(O)₂CH₃, --CH₂C (O)NH₂ $-CH_2C(O)NH(CH_3)$, $-CH_2C(O)N(CH_3)_2$, -CH₂C(O)NH(CH₂C(CH₃)₂OH),--CH₂C(O)N(CH₃)(CH₂CH₃), -C(O)CH₂S(O)₂CH₃,--C(O)CH₂OCH₃, $-C(O)CH_2NH(CH_3),$ —C(O)CH₂NH(CH₂CH₂OCH₃), din-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methyl-N-(tet- $_{35}$ CH₂C(CH₃)₂OH, or -L₁-A; L₁ is -CH₂, -C(O)-, -C(O) CH_2 —, $-C(O)CH_2CH_2$ —, $-C(O)CH_2NH$ —, $-CH_2CH_2$ (O)—, or —CH₂C(O)NH—; and A is azetidinyl, cyclobutyl, dioxanyl, dioxotetrahydrothiopyranyl, dioxothiomorpholinyl, morpholinyl, oxetanyl, piperazinonyl, pyrrolidinonyl, pyrrolidinyl, tetrahydrofuranyl, or tetrahydropyranyl, each substituted wtih $-L_2R_a$ and zero to $1 R_b$; L_2 is a bond; R_a is H, F, C_{1-2} alkyl, —CN, —OH, —OCH₃, —C(O)CH₃, or $-C(O)OC(CH_3)_3$; and R_b is F or $--CH_3$. Also included in this embodiment are compounds in which R_1 is $-CH(CH_3)$ 2; m is zero, and n is zero.

> One embodiment provides a compound of Formula (I) or a salt thereof, wherein said compound is

- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8methoxy-[1,2,4]triazolo[1,5-a]pyridine (5);
- pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methyl-N- 50 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetonitrile (21);
 - 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetamide (22);
 - 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (23);
 - 1-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-methylpropan-
 - din-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (25);
 - 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (44);
 - 65 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)pi p eri din-4-yl)-1H-indol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a] pyridine (45);

- 1-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(methylamino) ethan-1-one (62):
- 1-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-methoxyethan-1-one (63);
- 2-(dimethylamino)-1-(4-(3-isopropyl-2-(8-methoxy-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (67);
- 6-(3-(2,2-difluoroethyl)-5-(piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-[1,2,4]triazolo [1,5-a]pyridine (156);
- 6-(3-ethyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-[1, 2,4]triazolo[1,5-a]pyridine (157);
- 6-(3-isopropyl-5-(1-(2-(methylsulfonyl)ethyl)piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (263):
- 6-(3-isopropyl-5-(1-(1-(methylsulfonyl)propan-2-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (264);
- 6-(3-isopropyl-5-(1-(1-(methylsulfonyl)propan-2-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (265);
- 6-(3-isopropyl-5-(1-(2-methoxyethyl) piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (266):
- 2-(4-(3-(2,2-difluoroethyl)-2-(8-methoxy-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (329);
- 2-(4-(3-(2,2-difluoroethyl)-2-(8-methoxy-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (330);
- 2-(4-(3-ethyl-2-(8-methoxy-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (331);
- 6-(3-ethyl-5-(1-(2-(methylsulfonyl)ethyl)piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (332);
- 2-(4-(3-ethyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6- 40 yl)-1H-indol-5-yl) piperidin-1-yl)acetamide (333);
- 1-(4-(3-ethyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-methylpropan-2-ol (334);
- 2-(4-(3-ethyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6- 45 yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (335):
- 6-(3-ethyl-5-(1-(2-methoxyethyl) piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (336);
- 1-(4-(3-(2,2-difluoroethyl)-2-(8-methoxy-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-methylpropan-2-ol (349);
- 4-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)tetrahydro-2H-thiopyran 1,1-dioxide (561);
- 6-(5-(1-(2,2-dimethyltetrahydro-2H-pyran-4-yl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-8-methoxy-[1,2,4]triazolo [1,5-a]pyridine (562-564);
- (R)-3-((4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo [1,5-a] pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) methyl)mor- 60 pholine (565);
- 6-(3-isopropyl-5-(1-((3-methyloxetan-3-yl)methyl)piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (566);
- 3-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)cyclobutane-1-carbonitrile (567);

- 6-(3-isopropyl-5-(1-(tetrahydrofuran-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (568-569);
- 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylethan-1-amine (570):
 - 6-(3-(2,2-difluoroethyl)-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (598);
- ¹ 6-(3-ethyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (600);
- (4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)(tetrahydrofuran-2-yl)methanone (663);
- 1-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-3-methoxypropan-1-one (664);
- 4-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-4-oxobutane-1-sulfonamide (665);
- 1-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(tetrahydro-2H-pyran-4-yl) ethan-1-one (666);
- 25 3-(dimethylamino)-1-(4-(3-isopropyl-2-(8-methoxy-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)propan-1-one (667);
 - 1-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-2-(methylsulfonyl)ethan-1-one (668);
 - 3-hydroxy-1-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-3-methylbutan-1-one (669);
- 35 (S)-1-(2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidine-1-carbonyl) pyrrolidin-1-yl)ethan-1-one (670);
 - 1-(3-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-3-oxopropyl) pyrrolidin-2-one (671):
 - (4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)(1-methylpyrrolidin-3-yl)methanone (672);
 - 1-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-morpholinoethan-1-one (673);
 - ((2S,4R)-4-hydroxypyrrolidin-2-yl)(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)methanone (674);
- 0 (4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)((2S,4R)-4-methoxy-pyrrolidin-2-yl)methanone (675);
 - (4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)(1-methylpyrrolidin-3-yl) methanone (676);
 - 4-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidine-1-carbonyl)-1-methylpyrrolidin-2-one (677);
- 4-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidine-1-carbonyl)-1-methylpyrrolidin-2-one (678);
- (4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)(1-methylpyrrolidin-3-yl)methanone (679);
- 65 2-(dimethylamino)-1-(4-(3-ethyl-2-(8-methoxy-[1,2,4]tri-azolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) ethan-1-one (701);

- 1-(4-(3-ethyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(methylamino)ethan-1-one (702):
- 1-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-((2-methoxy-ethyl)amino)ethan-1-one (780):
- 1-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-((3-methyl oxetan-3-yl)amino)ethan-1-one (781);
- 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-N-(3-methyloxetan-3-yl) acetamide (854);
- tert-butyl 3-(2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetamido) azetidine-1-carboxylate (855);
- 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-(4-methyltetrahydro-2H-pyran-4-yl)acetamide (856);
- N-(2-hydroxy-2-methylpropyl)-2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) acetamide (857);
- 1-(1,1-dioxidothiomorpholino)-2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (858);
- N-ethyl-2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (859);
- 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-(1-methylcy-clobutyl)acetamide (860);
- N-((3-ethyloxetan-3-yl)methyl)-2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)acetamide (861);
- 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-((3-methyloxetan-3-yl)methyl)acetamide (862);
- (R)-1-(3-hydroxypyrrolidin-1-yl)-2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) ethan-1-one (863);
- 1-(3-fluoroazetidin-1-yl)-2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperi-din-1-yl)ethan-1-one (864);
- 1-(3,3-difluoroazetidin-1-yl)-2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)ethan-1-one (865);
- 4-(2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) acetyl)piperazin-2-one (866);
- 1-(3-hydroxyazetidin-1-yl)-2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (867);
- (R)-1-(3-fluoropyrrolidin-1-yl)-2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) ethan-1-one (868);
- 1-((2S,6R)-2,6-dimethyl morpholino)-2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) ethan-1-one (869);
- 1-(azetidin-1-yl)-2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]tri-azolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) ethan-1-one (870);
- (R)-2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo [1,5-a] pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-1-(3-methyl-morpholino)ethan-1-one (871);
- 1-(3,3-difluoropyrrolidin-1-yl)-2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (872);

- 1-(2,5-dimethylpyrrolidin-1-yl)-2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)ethan-1-one (873);
- (S)-1-(3-hydroxypyrrolidin-1-yl)-2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)ethan-1-one (874);
 - (S)-1-(3-fluoropyrrolidin-1-yl)-2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (875);
- 2-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-N,N-dimethylacetamide (991);
- 6-(4-fluoro-5-(1-isobutylpiperidin-4-yl)-3-isopropyl-1H-in-dol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (992);
- or 6-(5-(1-(2,2-dimethyl-1,3-dioxan-5-yl) piperidin-4-yl)-4-fluoro-3-isopropyl-1H-indol-2-yl)-8-methoxy-[1,2,4]tri-azolo[1,5-a]pyridine (993).

One embodiment provides a compound of Formula (I-4) or a salt thereof, wherein R₁ is —CH(CH₃)₂; m is zero; n is zero, and R₃ is defined in the first aspect or the second aspect. Compounds of this embodiment have the structure of Formula (I-4a)

Included in this embodiment are compounds in which R_3 is —(CR_xR_x)₁₋₂C(O)NR_yR_y, wherein each R_x is independently H or —CH₃; and each R_x is independently H or —CH₃. Also included in this embodiment are compounds in which R₃ is —CH₂C(O)NH₂, —CH₂C(O)NH(CH₃), or —CH₂C(O)N (CH₃)₂.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein said compound is:

Included in this embodiment is 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-N,N-dimethylacetamide (25). Also included in this embodiment is one or more salts of 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein said compound has the structure of Formula (I-5):

$$\begin{array}{c} R_3 \\ N \\ \end{array} \begin{array}{c} (R_4)_m \\ (R_5)_n \end{array} \begin{array}{c} (I-5) \\ N \\ N \end{array}$$

and R₁, R₃, R₄, R₅, m, and n are defined in the first aspect or the second aspect. Included in this embodiment are compounds in which R₁ is -CH(CH₃)₂. Included in this 15 embodiment are compounds in which R₃ is H, —CH₂CN, $-CH_2C(O)NH_2$, $-CH_2C(O)NH(CH_3)$, $-CH_2C(O)NH$ (CH_2CH_3) , $-CH_2C(O)NH(CH_2CH_2CN)$, $-CH_2C(O)NH$ $(CH_2CH_2CF_3)$, $-CH_2C(O)NH(CH(CH_3)_2)$, $-CH_2C(O)N$ (CH₃)CH₂CH₂OCH₃, -CH₂C(O)N(CH₃)CH₂CH₂CH₂OH, -CH₂CH₂S(O), —CH₂C(O)NHCH $-CH_2CH_2S(O)_2CH_3$ (CH₂CH₂OH)(cyclopropyl), or -L₁-A; L₁ is —CH₂—, $-CH_2CH_2-$, $-CH_2C(O)-$, $-CH_2C(O)N(CH_3)-$, or —CH₂C(O)N(CH₃)CH₂CH₂—; A is azetidinyl, dioxidothi- 25 adiazinanyl, dioxoisothiazolidinyl, dioxothiomorpholinyl, morpholinyl, oxetanyl, piperidinyl, pyrazolyl, pyrimidinyl, pyrrolidinyl, tetrahydrofuranyl, tetrahydropyranyl, or triazolyl, each substituted with $-L_2R_a$ and zero to 1 R_b ; L_2 is a bond; R_a is H, F, — CH_3 , —CN, — CH_2OH , or — $S(O)_2CH_3$; 30 and R_b is F, —CH₃, —CF₃, or —OCH₃. Also included in this embodiment are compounds in which R_1 is $-CH(CH_3)$ 2; m is zero, and n is zero.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein said compound is

- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8-(methoxymethyl)-[1,2,4]triazolo[1,5-a]pyridine (6);
- 2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (198);
- 2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) acetamide (199);
- 6-(3-isopropyl-5-(1-(2-(methylsulfonyl)ethyl)piperidin-4-yl)-1H-indol-2-yl)-8-(methoxy methyl)-[1,2,4]triazolo[1, 45 5-a]pyridine (200);
- 2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetonitrile (201);
- 2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (202);
- 2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethane-1-sulfonamide (203);
- 6-(3-isopropyl-5-(1-((1-methyl-1H-1,2,3-triazol-4-yl) methyl)piperidin-4-yl)-1H-indol-2-yl)-8-(methoxymethyl)-[1,2,4]triazolo[1,5-a]pyridine (470);
- 6-(3-isopropyl-5-(1-((2-methylpyrimidin-5-yl)methyl)piperidin-4-yl)-1H-indol-2-yl)-8-(methoxymethyl)-[1,2,4] triazolo[1,5-a]pyridine (471);
- 6-(3-isopropyl-5-(1-((3-methyl oxetan-3-yl)methyl)piperidin-4-yl)-1H-indol-2-yl)-8-(methoxymethyl)-[1,2,4]triazolo[1,5-a]pyridine (472);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-(methoxymethyl)-[1,2,4]triazolo[1,5-a]pyridine (473);

2-(2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethyl) isothiazolidine 1,1-dioxide (474);

N-(2-cyanoethyl)-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-N-methylacetamide (811);

(S)-1-(2-(hydroxymethyl)pyrrolidin-1-yl)-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (812);

1-(1,1-di oxido-1,2,4-thi adiazinan-4-yl)-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (813);

N-(3-hydroxypropyl)-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-N-methylacetamide (814);

2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methyl-N-(tetrahydro-2H-pyran-4-yl)acetamide (815);

—CH₂C(O)N(CH₃)CH₂CH₂CN, 20 N-ethyl-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]tri-H₂CH₂OH, —CH₂CH₂S(O)₂ azolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) h₂CH₃, —CH₂C(O)NHCH acetamide (816);

N,N-diethyl-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2, 4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetamide (817);

N-(2-hydroxyethyl)-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-N-methylacetamide (818);

N-ethyl-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]tri-azolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (819);

2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-(2-methoxyethyl)-N-methylacetamide (820);

N-isopropyl-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2, 4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetamide (821):

1-((2R,4R)-2-(hydroxymethyl)-4-methoxypyrrolidin-1-yl)-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (822);

(S)-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methyl-N-(tetrahydrofuran-3-yl)acetamide (823);

1-((2R,4R)-2-(hydroxymethyl)-4-(trifluoromethyppyrrolidin-1-yl)-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (824);

50 N-ethyl-N-(2-hydroxyethyl)-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetamide (825);

2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-1-(3-(methylsulfonyl)azetidin-1-yl)ethan-1-one (826);

1-(1,1-dioxidothiomorpholino)-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (827);

N-(2-hydroxy-2-methylpropyl)-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1Hindol-5-yl)piperidin-1-yl)-N-methylacetamide (828);

(R)-1-(3-(hydroxymethyl)morpholino)-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (829);

65 1-(4,4-difluoropiperidin-1-yl)-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (830);

azetidin-1-yl)-2-(4-(3-isopropyl-2-(8-1-(3,3-dimethyl (methoxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1Hindol-5-yl)piperidin-1-yl)ethan-1-one (831);

2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1, 5-alpyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-(3,3 3-trifluoropropyl)acetamide (832);

1-(3,3-difluoropyrrolidin-1-yl)-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1Hindol-5-yl)piperidin-1-yl)ethan-1-one (833);

N-(1-cyclopropyl-3-hydroxypropyl)-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetamide (834);

(R)-1-(2-(hydroxymethyl)pyrrolidin-1-yl)-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (835);

N-(2-(1H-pyrazol-4-yl))ethyl)-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1Hindol-5-yl)piperidin-1-yl)-N-methyl acetamide (836);

1-((2R,4R)-2-(hydroxymethyl)-4-methylpyrrolidin-1-yl)-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1one (837):

1-(2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetyl) azetidine-3-carbonitrile (838);

2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-Nmethyl-N-(tetrahydrofuran-3-yl)acetamide (839);

1-(3,3-difluoroazetidin-1-yl)-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H- ³⁰ indol-5-yl)piperidin-1-yl)ethan-1-one (840);

1-((2S,4S)-2-(hydroxymethyl)-4-(trifluoromethyl)pyrrolidin-1-yl)-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2, 4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1yl)ethan-1-one (841); or

N-(2-cyanoethyl)-2-(4-(3-isopropyl-2-(8-(methoxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetamide (842).

One embodiment provides a compound of Formula (I) or a salt thereof, wherein said compound has the structure of 40 Formula (I-6):

and R₁, R₃, R₄, R₅, m, and n are defined in the first aspect 55 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3or the second aspect. Included in this embodiment are compounds in which R₁ is —CH(CH₃)₂ or —CH₂CHF₂. Included in this embodiment are compounds in which R₃ is H, C₁₋₅ alkyl, C₁₋₂ cyanoalkyl, —CH₂CH₂CF₃, —CH₂C $-CH_2C(O)NH_2$ -CH₂C(O)NH(CH₃), -CH₂C(O)N $-CH_2C(O)N(CH_3)(CH_2CH_2OH),$ $-CH_2CH_3$ $(CH_3)_2$ $-CH_2CH_2S(O)_2NH_2$, -CH2CH2S(O)2N $S(O)_2CH_3$ -CH₂CH₂NHS(O)₂CH₃, -CH₂CH₂N(CH₃)S $(CH_3)_2$ (O)₂CH₃, $--C(O)OCH_2CH_2NH_2$, —C(O)OCH₂CH₂N (CH₃)₂, —C(O)OCH₂CH₂N(CH₂CH₃)₂, —C(O)OC(CH₃)₃, -C(O)NHCH₂C(CH₃)₃, $-C(O)NH(CH_2CH_2NH_2),$

-C(O)NH(CH₂CH₂N(CH₃)₂),-C(O)NH $(CH_2CH_2CH_2NH_2)$, $-C(O)N(CH_3)CH_2CH_2NH_2$, -C(O)CH₂NHCH(CH₃)₂, -C(O)CH₂NHC(CH₃)₃,CH₂NH(CH₃), —C(O)CH₂NH(CH₂CN), —C(O)CH₂NH (CH₂CH₃), —C(O)CH₂NH(CH₂CH₂OH), —C(O)CH₂NH (CH₂CH₂OCH₃), $--C(O)CH_2NH(CH_2CH_2F),$ -C(O) $CH_2NH(CH_2CH_2CH_3)$, $-C(O)CH_2NH(CH_2CH(CH_3)_2),$ $-C(O)CH_2NH(CH_2CF_3), -C(O)CH_2NH(CH_2C(O)NH_2),$ -C(O)CH₂N(CH₃)CH₂CH₃, $-C(O)CH_2N(CH_3)$ 10 CH₂CH₂CN, —C(O)CH₂N(CH₃)CH₂CH₂CH₃, CH₂N(CH₃)CH₂CH(CH₃)₂, —C(O)CH₂N(CH₃)CH₂C(O)N $-C(O)CH_2N(CH_3)CH(CH_3)_2$, -C(O)CH₂N $(CH_3)_2$, $-C(O)CH_2N(CH_3)(CH_2CH_2OH)$, $-C(O)CH_2N$ $(CH_3)(CH_2CH_2OCH_3)$, $-C(O)CH_2N(CH_2CH_3)_2$, -C(O) $-\bar{C}(O)C\bar{H}_2C\bar{H}_2NH(C\bar{H}_3),$ 15 CH₂N(CH₂CH₂OCH₃)₂, -C(O)CH₂CH₂NH(CH₂CH₃), -C(O)CH,CH,NH (CH₂CH₂OH), $-C(O)CH_2CH_2NH(CH_2CH_2OCH_3),$ $-C(O)CH_2CH_2NH(CH_2CH_2F),$ -C(O)CH2CH2NH (CH2CH2CH3), -C(O)CH₂CH₂NH(CH₂C(O)NH₂), $-C(O)CH_2CH_2NH(CH_2C(CH_3)_3),$ —C(O)CH₂CH₂NH $(CH(CH_3)_2)$, $-C(O)CH_2CH_2N(CH_3)CH_2CH_2OH$, -C(O) $CH_2CH_2N(CH_3)CH_2CH_2OCH_3$, $--C(O)CH_2CH_2N(CH_3)$ $CH_2C(O)N(CH_3)_2$, —C(O)CH₂CH₂N(CH₃)(CH₂CH₃), —C(O)CH₂CH₂N(CH₃)(CH₂CH₂CH₃), —C(O)CH₂CH₂N 25 (CH₃)(CH(CH₃)₂), or -L₁-A; L₁ is —CH₂—, —CH₂CH₂—, —C(O)CH₂— -CH(CN)---, —C(O)—, CH₂CH₂—, $-C(O)CH_2NH--$, $-C(O)CH_2N(CH_3) -C(O)CH_2CH_2NH_3$, $-C(O)CH_2CH_2N(CH_3)$, -C(O) CH_2NHCH_2 —, $-C(O)CH_2CH_2NHCH_2$ —, $-CH_2C(O)$ —, $-CH_2C(O)NH-$ —C(O)NH—, --C(O)NHCH₂- $-C(O)NHCH_2CH_2-$, -C(O)O-, $-C(O)OCH_2-$, or —C(O)OCH₂CH₂—; and A is azepanyl, azetidinyl, cyclobutyl, cyclohexyl, cyclopentyl, cyclopropyl, dioxoisothiazolidinyl, di oxotetrahydrothiopyranyl, dioxothiomor-35 pholinyl, imidazolyl, morpholinyl, octahydropyrrolo[3,4-b] pyridinyl, oxa-azaspiro[3.3]heptan-6-yl, piperazinonyl, piperazinyl, piperidinonyl, piperidinyl, pyridinyl, pyrimidinyl, pyrrolidinyl, tetrahydrofuranyl, tetrahydropyranyl, triazolonyl, or triazolyl; azetidinyl, cyclobutyl, dioxanyl, dioxotetrahydrothiopyranyl, dioxothiomorpholinyl, morpholinyl, oxetanyl, piperazinonyl, pyrrolidinonyl, pyrrolidinyl, tetrahydrofuranyl, or tetrahydropyranyl, each substituted with $-L_2R_a$ and zero to $1 R_b$; L_2 is a bond; R_a is H, F, C_{1-3} alkyl, C_{1-2} hydroxyalkyl, 45 —CH₂OCH₃, —CH₂CH₂OCH₃, —OH, —OCH₃, —NH₂, $-C(O)CH_3, -C(O)CH(CH_2CH_3)_2, -C(O)NH_2, -C(O)N$ $(CH_2CH_3)_2$, $-C(O)OC(CH_3)_3$, $-S(O)_2CH_3$, or pyridinyl; and R_h is F or —CH₃. Also included in this embodiment are compounds in which R_1 is $-CH(CH_3)_2$; m is zero, and n is

50 zero. One embodiment provides a compound of Formula (I) or a salt thereof, wherein said compound is

6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridine (4);

isopropyl-1H-indol-5-yl)piperidin-1-yl)acetonitrile (13);

3-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)propanenitrile

isopropyl-1H-indol-5-yl)piperidin-1-yl) acetamide (15);

> 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (16);

65 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-methylpropan-2-ol (17);

- 6-(3-isopropyl-5-(1-(2-(methylsulfonyl)ethyl)piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridine (18);
- 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)ethane-1-sulfonamide (19);
- 4-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)tetrahydro-2H-thiopyran 1,1-dioxide (20);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (38); 6-(5-(1-((1H-1,2,3-triazol-5-yl)methyl) piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (39);
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridine (40);
- 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (41);
- 6-(3-isopropyl-5-(1-((1-methyl-1H-1,2,3-triazol-4-yl) methyl)piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (42);
- 6-(3-isopropyl-5-(1-((l-methyl-1H-1,2,4-triazol-3-yl) methyl) piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1, 2,4]triazolo[1,5-a]pyridine (43);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(dimethyl-amino)ethan-1-one (66);
- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-5,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (110);
- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (124);
- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-2,7-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (125);
- N-(2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)ethyl) methanesulfonamide (204);
- N-(2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6- 40 yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)ethyl)-N-methylmethanesulfonamide (205);
- 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylethane-1-sulfonamide (206);
- 2-(2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)ethypisothiazolidine 1,1-dioxide (475);
- 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-2-(3-methyloxetan-3-yl)acetonitrile (476);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-2-morpholinoethan-1-one (477);
- 6-(5-(1-isobuty|piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)- 55 7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (478);
- 6-(5-(1-isopentylpiperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (479);
- 6-(5-(1-ethylpiperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-7, 8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (480);
- 6-(3-isopropyl-5-(1-propylpiperidin-4-yl)-1H-indol-2-yl)-7, 8-dimethyl-[1,2,4]triazolo [1,5-a]pyridine (481);
- 6-(5-(1-ethylpiperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-7, 8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (482);
- 5-((4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)methyl)-2,4-di-hydro-3H-1,2,4-triazol-3-one (483);

- 6-(3-isopropyl-5-(1-(3,3,3-trifluoropropyl)piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine(484);
- 6-(3-isopropyl-5-(1-methylpiperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (485);
- 6-(3-isopropyl-5-(1-(2-methoxyethyl)piperidin-4-yl)-1H-in-dol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (486):
- tert-butyl 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (609):
 - 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-morpholino-propan-1-one (610);
- 2-(bis(2-methoxyethyl)amino)-1-(4-(2-(7,8-dimethyl-[1,2, 4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)ethan-1-one (718);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-2-(3-hydroxy-pyrrolidin-1-yl)ethan-1-one (719);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(2,6-dimethyl-morpholino)ethan-1-one (720);
- 25 1 (1 (2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-oxoethyl)piperidin-3-yl)-2-ethylbutan-1-one (721);
 (S)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(2-(methoxymethyl) pyrrolidin-1-yl)ethan-1-one (722);
 - 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-2-(isobutyl (methyl)amino)ethan-1-one (723);
- 35 1-(2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-oxoethyl)piperidine-4-carboxamide (724);
 - 4-(2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-oxoethyl)piperazin-2-one (725):
 - 3-((2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-oxoethyl)(methyl)amino)propanenitrile (726);
 - 2-(cyclopentylamino)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (727);
 - 2-(cyclohexylamino)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (728);
- piperidin-1-yl)-2-(3-methyl- 50 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-((4-hydroxy-cyclohexyl)amino)ethan-1-one (729);
 - 2-((cyclohexylmethyl)amino)-1-(4-(2-(7,8-dimethyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)ethan-1-one (730);
 - 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(((tetrahydrofuran-2-yl)methyl)amino)ethan-1-one (731);
 - 2-(tert-butylamino)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (732);
 - 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(neopentylamino)ethan-1-one (733);
 - 65 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(propylamino) ethan-1-one (734);

- (R)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-2-(3-hydroxypyrrolidin-1-yl)ethan-1-one (735);
- (S)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-2-(3-hy-5 droxypyrrolidin-1-yl)ethan-1-one (736);
- 1-(4-(2-(7.8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(isopropylamino)ethan-1-one (737);
- (S)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-2-(3-fluoropyrrolidin-1-yl)ethan-1-one (738);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3piperidin-1-yl)-2-((2-fluoroisopropyl-1H-indol-5-yl) ethyl)amino)ethan-1-one (739);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(ethylamino) ethan-1-one (740);
- triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)ethan-1-one (741);
- 2-(cyclopropylamino)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (742);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-((2-methoxyethyl)amino)ethan-1-one (743);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(piperidin-1yl)ethan-1-one (744);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(pyrrolidin-1yl) ethan-1-one (745);
- isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(isobutylamino)ethan-1-one (746);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(3,3-dimethylpiperidin-1-yl)ethan-1-one (747);
- 2-((2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-oxoethyl)amino)acetamide (748);
- (S)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-2-(2-(hy- 45 droxymethyl)pyrrolidin-1-yl)ethan-1-one (749);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(4-methoxypiperidin-1-yl)ethan-1-one (750);
- triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)ethan-1-one (751);
- 2-((2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-oxoethyl)amino)acetonitrile (752);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(methyl amino) ethan-1-one (753);
- 2-(azepan-1-yl)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl) 60 ethan-1-one (754);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(4-hydroxypiperidin-1-yl)ethan-1-one (755);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-((2-hydroxyethyl)(methyl)amino) ethan-1-one (756);

- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-((2-hydroxyethyl) amino)ethan-1-one (757);
- 2-((cyclopropylmethyl)amino)-1-(4-(2-(7,8-dimethyl-[1,2, 4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-vl)ethan-1-one (758);
- 2-((2-(4-(2-(7.8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-2-oxoethyl)(methyl)amino)-N,N-dimethylacetamide (759);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-((2-methoxyethyl)(methyl)amino)ethan-1-one (760);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-((2,2,2-trifluoroethyl)amino)ethan-1-one (761);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(methyl (propyl)amino)ethan-1-one (762);
- 2-(4,4-difluoropiperidin-1-yl)-1-(4-(2-(7,8-dimethyl-[1,2,4] 20 2-(diethylamino)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo [1,5a|pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl) ethan-1-one (763);
 - 2-(cycl ° butyl amino)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (764);
 - 2-(azetidin-1-yl)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl) ethan-1-one (765);
 - 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(ethyl(methyl) amino)ethan-1-one (766);
 - 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(isopropyl (methyl)amino)ethan-1-one (767);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3- 35 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-1-morpholinoethan-1-one (843);
 - 1-(azetidin-1-yl)-2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl) ethan-1-one (844);
 - 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl) piperidin-1-yl)-1-(3-(methylsulfonyl)azetidin-1-yl)ethan-1-one (845);
 - 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-N-(3-methyloxetan-3-yl)acetamide (846);
 - 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-1-(1,1-dioxidothiomorpholino)ethan-1-one (847);
- 2-(cyclohexyl(methyl)amino)-1-(4-(2-(7,8-dimethyl-[1,2,4] 50 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl) piperidin-1-yl)-N-(2-hydroxyethyl)-N-methylacetamide (848);
 - 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-1-(2-oxa-6azaspiro [3.3]heptan-6-yl)ethan-1-one (849);
 - 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl) piperidin-1-yl)-3-((4-hydroxycyclohexyl)amino)propan-1-one (886);
 - 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl) piperidin-1-yl)-3-(((tetrahydrofuran-2-yl)methyl)amino)propan-1-one (887);
 - (R)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-(3-fluoropyrrolidin-1-yl)propan-1-one (888);
 - 65 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-((2-hydroxyethypamino)propan-1-one (889);

- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-(propylamino) propan-1-one (890);
- 2-((3-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-oxopropyl)amino)acetamide (891);
- 3-((cyclopropylmethyl)amino)-1-(4-(2-(7.8-dimethyl-[1.2. 4|triazolo[1,5-a|pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)propan-1-one (892);
- 3-(azetidin-1-yl)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1yl) propan-1-one (893);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-(ethyl(methyl) amino)propan-1-one (894);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-(methyl(propyl)amino)propan-1-one (895);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3- 20 3-(cycl ° butyl amino)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-(isopropyl (methyl)amino)propan-1-one (896);
- 2-((3-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-oxopropyl)(methyl)amino)-N,N-dimethylacetamide (897);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-((2-methoxyethyl)(methyl)amino)propan-1-one (898);
- (R)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-3-(3-hy-30 droxypyrrolidin-1-yl)propan-1-one (899);
- 3-(4,4-difluoropiperidin-1-yl)-1-(4-(2-(7,8-dimethyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl) propan-1-one (900);
- isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-((2-methoxyethyl)amino)propan-1-one (901);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-(i sopropyl amino)propan-1-one (902);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-(ethylamino) propan-1-one (903);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-(piperidin-1yl)propan-1-one (904);
- 1-(4-(2-(7.8-dimethyl-[1.2.4]triazolo[1.5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-(methylamino) propan-1-one (905);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-(2,6-dimethylmorpholino)propan-1-one (906);
- 1-(3-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-oxopropyl)-N,N-diethylpiperidine-3-carboxamide (907);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-(3,3-dimethylpiperidin-1-yl)propan-1-one (908);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl) piperidin-1-yl)-3-(4-hydroxypi- 60 peridin-1-yl)propan-1-one (909);
- 3-(azepan-1-yl)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl) propan-1-one (910);
- (S)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-3-(2-(methoxymethyl)pyrrolidin-1-yl)propan-1-one (911);

- 1-(3-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-oxopropyl)piperidine-4-carboxamide (912);
- 4-(3-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-oxopropyl) piperazin-2-one (913);
- 1-(4-(2-(7.8-dimethyl-[1.2.4]triazolo[1.5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-((2-hydroxyethyl)(methyl)amino)propan-1-one (914);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-(4-methoxypiperidin-1-yl)propan-1-one (915);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-(pyrrolidin-1yl)propan-1-one (916);
 - (S)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-3-(2-(hydroxymethyl)pyrrolidin-1-yl)propan-1-one (917);
- [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)propan-1-one (918);
 - 3-(cyclopentylamino)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)propan-1-one (919);
 - 3-(cycl ohexyl amino)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)propan-1-one (920);
- (S)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-(3-fluoropyrrolidin-1-yl)propan-1-one (921);
- (S)-1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-3-(3-hydroxypyrrolidin-1-yl)propan-1-one (922);
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3- 35 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-(3-hydroxypyrrolidin-1-yl)propan-1-one (923);
 - 3-(cyclohexyl(methyl)amino)-1-(4-(2-(7,8-dimethyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)propan-1-one (924);
 - 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-((2-fluoroethyl)amino)propan-1-one (925);
 - 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-(neopentylamino)propan-1-one (926); azetidin-3-vl 4-(2-(7.8-dimethyl-[1,2,4]triazolo[1,5-a]
 - pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (927);
 - 50 2-aminoethyl 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (928);
 - (R)-pyrrolidin-3-yl 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1carboxylate (929);
 - piperidin-3-yl 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (930);
 - (S)-pyrrolidin-3-yl 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1carboxylate (931);
 - piperidin-3-ylmethyl 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5a|pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1carboxylate (932);
 - 65 (S)-pyrrolidin-2-ylmethyl 4-(2-(7,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (933);

- 3-aminopropyl 4-(2-(7,8-dimethyl-[1,2,4]triazolo [1,5-a] pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1carboxylate (934):
- piperidin-4-yl 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (935);
- piperidin-4-vlmethyl 4-(2-(7.8-dimethyl-[1.2.4]triazolo[1.5a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1carboxylate (936);
- pyrrolidin-2-ylmethyl 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1, 5-a|pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (937-938);
- (R)-pyrrolidin-3-ylmethyl 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (939);
- pyrrolidin-3-yl 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1carboxylate (940);
- azetidin-3-ylmethyl 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-20 4-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3a|pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1carboxylate (941);
- (S)-(1-methylpyrrolidin-2-yl) methyl 4-(2-(7,8-dimethyl-[1, 2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5yl) piperidine-1-carboxylate (942);
- 2-(dimethylamino)ethyl 4-(2-(7,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (943);
- 2-(1H-imidazol-1-yl)ethyl 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)pip- 30 eridine-1-carboxylate (944);
- 1-isopropylpyrrolidin-3-yl 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (945);
- 2-(1,1-dioxidothiomorpholino)ethyl 4-(2-(7,8-dimethyl-[1, 35 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5yl)piperidine-1-carboxylate (946);
- 2-(piperidin-1-yl)ethyl 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (947);
- 2-(pyrrolidin-1-yl)ethyl
- 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (948);
- 2-(diethylamino)ethyl 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (949);
- (1-(2-methoxyethyl)pyrrolidin-3-yl)methyl 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1Hindol-5-yl)piperidine-1-carboxylate (950);
- triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidine-1-carboxylate (951);
- 2-morpholinoethyl 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1carboxylate (952);
- (R)-(1-methylpyrrolidin-2-yl)methyl 4-(2-(7,8-dimethyl-[1, 2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5yl)piperidine-1-carboxylate (953);
- 1-methylpyrrolidin-3-yl 4-(2-(7,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (954);
- 1-(2-methoxyethyl)azetidin-3-yl 4-(2-(7,8-dimethyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidine-1-carboxylate (955);
- 1-propylazetidin-3-yl 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1, 65 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (956);

- (4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)(4-methylpiperazin-1-yl)methanone (957);
- (4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)(4-(2-hydroxyethyl)piperazin-1-vl)methanone (958);
 - N-(3-aminopropyl)-4-(2-(7.8-dimethyl-[1,2,4]triazolo[1,5a|pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1carboxamide (959);
- (4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)(octahydro-6Hpyrrolo[3,4-b]pyridin-6-yl)methanone ((960);
- (R)-4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)-N-(pyrrolidin-3-yl)piperidine-1-carboxamide (961);
- N-(2-aminoethyl)-4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1carboxamide (962);
- isopropyl-1H-indol-5-yl)piperidine-1-carbonyl)-1-methylpiperazin-2-one (963);
- 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)-N-(piperidin-3-yl)piperidine-1carboxamide (964);
- (4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)(4-propylpiperazin-1-yl)methanone (965);
- 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)-N-(piperidin-2-ylmethyl) piperidine-1-carboxamide (966);
- (3-aminoazetidin-1-yl)(4-(2-(7,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)methanone (967);
- isopropyl-1H-indol-5-yl)-N-(pyrrolidin-3-yl) piperidine-1-carboxamide (968);
- (4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)(4-(pyridin-4-yl) piperazin-1-yl)methanone (969);
- 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)-N-(piperidin-4-ylmethyl)piperidine-1-carboxamide (970);
- (S)-4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)-N-(pyrrolidin-3-yl)piperidine-1-carboxamide (971);
- N-(2-aminoethyl)-4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)-N-methylpiperidine-1-carboxamide (972);
- 2-(4-methylpiperazin-1-yl)ethyl 4-(2-(7,8-dimethyl-[1,2,4] 50 (4-(2-(7,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)(4-isopropylpiperazin-1-yl) methanone (973);
 - 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)-N-(2-(pyrrolidin-1-yl)ethyl)piperidine-1-carboxamide (974);
 - 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)-N-((1-(2-methoxyethyl) pyrrolidin-2-yl)methyl)piperidine-1-carboxamide (975);
 - 4-(2-(7,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)-N-(2-(4-methylpip erazin-1-yl) ethyl) piperidine-1-carboxamide (976);
 - 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)-N-((1-methylpyrrolidin-2-yl) methyl)piperidine-1-carboxamide (977);
 - isopropyl-1H-indol-5-yl)-N-(2-(dimethylamino)ethyl)piperidine-1-carboxamide (978);

4-(2-(7,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)-N-(2-morpholinoethyl)piperidine-1-carboxamide (979);

4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)-N-(2-(piperidin-1-yl)ethyl)piperidine-1-carboxamide (980);

6-(3-isopropyl-5-(1-(pyridin-2-yl)piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (986);

1-(6-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)pyridin-3-yl)-N,N-dimethylmethanamine (987);

1-(2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)pyridin-4-yl)-N,N-dimethylmethanamine (988); or

6-(3-isopropyl-5-(1-(pyrimidin-2-yl)piperidin-4-yl)-1H-in-dol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (989).

One embodiment provides a compound of Formula (I-6) 20 or a salt thereof, wherein R_1 is —CH(CH₃)₂; m is zero; n is zero, and R_3 is defined in the first aspect or the second aspect. Compounds of this embodiment have the structure of Formula (I-6a)

Included in this embodiment are compounds in which R_3 is —(CR_xR_x)₁₋₂C(O)NR_xR_y, wherein each R_x is independently H or —CH₃, and each R_x is independently H or —CH₃. Also included in this embodiment are compounds in which R₃ is —CH₂C(O)NH₂, —CH₂C(O)NH(CH₃), or —CH₂C(O)N (CH₃)₂.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein said compound is selected from:

Included in this embodiment is 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl) acetamide (15). Also included in this embodiment is one or more salts of 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl) acetamide (15).

One embodiment provides a compound of Formula (I) or 65 a salt thereof, wherein said compound has the structure of Formula (I-7):

$$\begin{array}{c} R_3 \\ N \\ \hline \\ (R_5)_n \end{array} \qquad \begin{array}{c} R_1 \\ R_2 \\ \hline \\ N \\ N \end{array}$$

wherein R₂ is F, Cl, —CN, —NH₂, —CH₂CH₃, —CH $-CF_3$, C_{1-3} hydroxyalkyl, -CH₂OCH₂CH₃, —OCH₂F, —OCH₂CH₃, —OCH₂CH (CH₃)₂, —OCH₂CH₂OH, —OCH₂CH₂OC(O)CH₃, —NH $--NH(CH_2CF_3),$ (CH₂CH₃),-NH(CH₂C(CH₃)₂OH),-NHCH₂(phenyl), -NHS(O)₂(cyclopropyl), cyclopropyl, morpholinyl, methyl-piperazinyl, or dioxothiomorpholinyl; and R₁, R₃, R₄, R₅, m, and n are defined in the first aspect or the second aspect. Included in this embodiment are compounds in which R_1 is $-CH(CH_3)_2$. Included in this embodiment are compounds in which R₃ is H, C₃₋₄ alkyl, C_{1-2} cyanoalkyl, — $CH_2C(CH_3)_2OH$, — $CH_2C(O)N(CH_3)_2$, $-CH_2C(O)NH(CH_3)$, $-CH_2C(O)NH_2$, $-CH_2CH_2NHS$ -CH₂CH₂S(O)₂CH₃, -CH₂CH₂S(O)₂NH₂, $-C(O)CH_2CF_3$, $-C(O)CH_2CH_2OH$, $-C(O)CH(CH_3)OH$, $-C(O)CH_2CH(CH_3)OH, --C(O)CH_2C(CH_3)_2OH, --C(O)$ CH_2OCH_3 , $-C(O)CH_2CH_2OCH_3$, $-C(O)CH_2NH(CH_3)$, $-C(O)CH_2N(CH_3)_2$, -C(O)CH₂N(CH₃)(CH₂CH₃), $-C(O)CH_2CH_2N(CH_3)_2$, $-C(O)CH_2N(CH_3)CH(CH_3)_2$ or -L₁-A; L₁ is — CH_2 —, — CH_2CH_2 —, —C(O)—, —C(O) $-C(O)CH_2CH_2-$ —C(O)CH₂N(CH₃)—, -CH₂C(O)—; and A is cyclopropyl, dioxoisothiazolidinyl, 35 dioxotetrahydrothiopyranyl, morpholinyl, oxetanyl, piperidinyl, pyrazinyl, pyrazolyl, pyrimidinyl, tetrahydrofuranyl, tetrahydropyranyl, tetrazolyl, thiadiazolyl, thiazolyl, or triazolyl, each substituted with -L2Ra; L2 is a bond; and Ra is H, -CN, -CH₃, -CF₃, or -OCH₃. Also included in this embodiment are compounds in which R₁ is —CH $(CH_3)_2$; m is zero, and n is zero.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein said compound is selected from

8-ethyl-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1, 2,4]triazolo[1,5-a]pyridine (94);

8-isopropyl-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (95);

8-(ethoxymethyl)-6-(3-isopropyl-5-(piperidin-4-yl)-1H-in-dol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (99);

50 2-(6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4] triazolo[1,5-a]pyridin-8-yl)propan-2-ol (100);

1-(6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4] triazolo[1,5-a]pyridin-8-yl)ethan-1-ol (103);

6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]tri-azolo[1,5-a]pyridine-8-carbonitrile (111);

8-fluoro-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine(112);

(6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]tri-azolo[1,5-a]pyridin-8-yl)methanol (113);

60 2-((6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4] triazolo[1,5-a]pyridin-8-yl)oxy)ethan-1-ol (114);

2-(6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4] triazolo [1,5-a]pyridin-8-yl)ethan-1-01 (115);

2-((6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4] triazolo[1,5-a]pyridin-8-yl)oxy)ethyl acetate (116);

8-chloro-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (118);

- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridine (128);
- 8-ethoxy-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (132);
- 8-isobutoxy-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2vl)-[1,2,4]triazolo[1,5-a]pyridine (136);
- 4-(6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4] triazolo[1,5-a]pyridin-8-yl) morpholine (143);
- N-ethyl-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo [1,5-a]pyridin-8-amine (144);
- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-N-(2,2,2trifluoroethyl)-[1,2,4]triazolo[1,5-a]pyridin-8-amine
- 1-((6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4] ₁₅ triazolo[1,5-a]pyridin-8-yl)amino)-2-methylpropan-2-ol
- N-(6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4] triazolo[1,5-a]pyridin-8-yl) cyclopropanesulfonamide
- 4-(6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4] triazolo[1,5-a]pyridin-8-yl)thiomorpholine 1,1-dioxide
- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8-(4methylpiperazin-1-yl)-[1,2,4]triazolo[1,5-a]pyridine (149);
- 8-cyclopropyl-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (151);
- N-benzyl-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-amine (159);
- 8-(difluoromethoxy)-6-(3-isopropyl-5-(piperidin-4-yl)-1Hindol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (160);
- 2-(4-(2-(8-(ethoxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (163);
- 2-(4-(2-(8-fluoro-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (193);
- 8-fluoro-6-(3-isopropyl-5-(1-(2-(methylsulfonyl)ethyl) pip- 40 eridin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine
- 2-(4-(2-(8-fluoro-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)acetonitrile (195);
- 2-(4-(2-(8-fluoro-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)acetamide (196);
- 2-(4-(2-(8-fluoro-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (197);
- 3 (4-(2-(8 (2 hydroxypropan-2-yl)-[1,2,4]triazolo[1,5-a] 50 2-(4-(3-isopropyl-2-(8-(trifluoromethyl)-[1,2,4]triazolo[1,5-a] 50 (4-(2-(8 (2 hydroxypropan-2-yl)-[1,2,4]triazolo[1,5-a] 50 (4-(2-(4 (2 hydroxypropan-2-yl)-[1,2,4]triazolo[1,5-a] 50 (4-(2 hydroxypropan-2-yl)-[1,2,4] pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl) propanenitrile (211);
- 2 (4-(2-(8 (2 hydroxypropan-2-yl)-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl) acetonitrile (212);
- 2 (4-(2-(8 (2 hydroxypropan-2-yl)-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl) acetamide (213);
- 2-(6-(3-isopropyl-5-(1-(2-(methylsulfonyl)ethyl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl) propan-2-ol (214);
- N-(2-(4-(2-(8 (2 hydroxypropan-2-yl)-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl) ethyl)methanesulfonamide (215);
- pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (216);

- 2 (4-(2-(8 (2 hydroxypropan-2-yl)-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-N,N-dimethylacetamide (217);
- 2 (4-(2-(8 (2 hydroxypropan-2-yl)-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl) ethane-1-sulfonamide (218):
 - N-(2-(4-(2-(8 cyano-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl) piperidin-1-yl)ethyl)methanesulfonamide (220);
- 6-(5-(1-(2-hydroxy-2-methylpropyl) piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine-8carbonitrile (221);
- 6-(3-isopropyl-5-(1-(2-(methylsulfonyl)ethyl)piperidin-4yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine-8-carb onitril e (222);
- 6-(5-(1-(cyanomethyl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine-8-carbonitrile
- 20 2-(4-(2-(8-cyano-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (224);
 - 2 (4-(2-(8 (1 hydroxyethyl)-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (225);
 - 2-(4-(2-(8-(cyanomethyl)-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (228);
- 2 (4-(2-(8 (1 hydroxyethyl)-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)acetonitrile (229);
 - $2\hbox{-}(4\hbox{-}(2\hbox{-}(8\hbox{-}(hydroxymethyl)\hbox{-}[1,2,4]triazolo[1,5\hbox{-}a]pyridin-6\hbox{-}$ yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (231);
- 35 2-(4-(2-(8-(hydroxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl -1H-indol-5-yl)piperidin-1-yl)acetonitrile (232):
- (6-(3-isopropyl-5-(1-(2-(methyl sul fonyl)ethyl)piperidin-4yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl) methanol (233);
- 2-(4-(2-(8-(hydroxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl -1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (234);
- 3-(4-(2-(8-(hydroxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)oxetane-3carbonitrile (235);
- 2 (4-(2-(8 (2 hydroxyethoxy)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (236);
- 5-a|pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-Nmethylacetamide (250);
 - 2-(4-(3-isopropyl-2-(8-(tri fluoromethyl)-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (251);
- 1-(4-(3-isopropyl-2-(8-(trifluoromethyl)-[1,2,4]triazolo[1, 5-a|pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-methylpropan-2-ol (252);
- 2-(4-(3-isopropyl-2-(8-(trifluoromethyl)-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) acetoni-
- 6-(3-isopropyl-5-(1-(2-(methylsulfonyl)ethyl)piperidin-4yl)-1H-indol-2-yl)-8-(trifluoro methyl)-[1,2,4]triazolo[1, 5-a]pyridine (254);
- 2 (4-(2-(8 (2 hydroxypropan-2-yl)-[1,2,4]triazolo[1,5-a] 65 2-(4-(2-(8-ethoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (268);

- 2-(4-(2-(8-ethoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-iso-propyl-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (269):
- 1-(4-(2-(8-ethoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-iso-propyl-1H-indol-5-yl)piperidin-1-yl)-2-methylpropan-2-ol (270);
- 2-(4-(2-(8-isobutoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (278);
- 2-(4-(2-(8-isobutoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (279);
- 2-(4-(2-(8-chloro-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-iso-propyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (280):
- 2-(4-(2-(8-chloro-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-iso-propyl-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (281);
- 1-(4-(2-(8-chloro-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-iso-propyl-1H-indol-5-yl)piperidin-1-yl)-2-methylpropan-2-ol (282);
- 2-(4-(3-isopropyl-2-(8-morpholino-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (291);
- 2-(4-(3-isopropyl-2-(8-morpholino-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (292);
- 2-(4-(2-(8-ethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-iso-propyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (293); 2-(4-(2-(8-ethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (294);
- 2-(4-(3-isopropyl-2-(8-isopropyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (295);
- 2-(4-(3-isopropyl-2-(8-isopropyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (296);
- 2-(4-(2-(8-(ethylamino)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (297);
- 2-(4-(3-isopropyl-2-(8-((2,2,2-trifluoroethyl)amino)-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (298);
- 2-(4-(3-isopropyl-2-(8-((2,2,2-trifluoroethyl)amino)-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (299);
- 2-(4-(2-(8-((2-hydroxy-2-methylpropyl) amino)-[1,2,4]tri-50 azolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N.N-dimethylacetamide (300);
- 2-(4-(2-(8-((2-hydroxy-2-methylpropyl)amino)-[1,2,4]tri-azolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (301);
- 2-(4-(2-(8-(cyclopropanesulfonamido)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-N-methylacetamide (307);
- 2-(4-(2-(8-(1,1-dioxidothiomorpholino)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (308);
- 2-(4-(2-(8-(1,1-dioxidothiomorpholino)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (309);
- 6-(3-isopropyl-5-(1-(2-(methylsulfonyl)ethyl)piperidin-4-yl)-1H-indol-2-yl)-8-(4-methyl piperazin-1-yl)-[1,2,4]tri-azolo[1,5-a]pyridine (310);

- 6-(3-isopropyl-5-(1-(2-(methylsulfonyl)ethyl)piperidin-4-yl)-1H-indol-2-yl)-8-(4-methyl piperazin-1-yl)-[1,2,4]tri-azolo[1,5-a]pyridine (311);
- 2-(4-(2-(8-cyclopropyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (319):
- 2-(4-(2-(8-cyclopropyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (320);
- 10 8-cyclopropyl-6-(3-isopropyl-5-(1-(2-(methylsulfonyl) ethyl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (321);
 - 1-(4-(2-(8-cyclopropyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-methylpropan-2-ol (322);
 - 2-(4-(2-(8-(difluoromethoxy)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (347);
 - 2-(4-(2-(8-(benzylamino)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (348);
 - 8-fluoro-6-(3-isopropyl-5-(1-((1-methyl-1H-1,2,3-triazol-4-yl)methyl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo [1,5-a]pyridine (468);
- 25 8-fluoro-6-(3-isopropyl-5-(1-(oxetan-3-yl)pip eri di n-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (469);
 - 2-(6-(3-isopropyl-5-(1-((2-methylpyrimidin-5-yl)methyl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)propan-2-ol (490);
- 30 2-(6-(3-isopropyl-5-(1-((1-methyl-1H-pyrazol-3-yl)methyl) piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)propan-2-ol (491);
 - 2-(6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)propan-2-ol (492);
 - 2-(6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)propan-2-ol (493);
- 2-(6-(3-isopropyl-5-(1-(pyrimi din-2-ylmethyl)piperidin-4yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)propan-2-ol (494);
 - 2-(6-(3-isopropyl-5-(1-((1-methyl-1H-1,2,4-triazol-3-yl) methyl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1, 5-a]pyridin-8-yl)propan-2-ol (495);
- 45 4-(4-(2-(8 (2 hydroxypropan-2-yl)-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl) tetrahydro-2H-thiopyran 1,1-dioxide (496);
 - 2-(6-(5-(1-((1H-1,2,3-triazol-4-yl)methyl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)propan-2-ol (497);
 - 2 (2-(4-(2-(8 (2 hydroxypropan-2-yl)-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl) ethyl)isothiazolidine 1,1-dioxide (498);
 - 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine-8-carbonitrile (500):
 - 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine-8-carbonitrile (501);
 - 1-(6-(3-isopropyl-5-(1-((1-methyl-1H-1,2,3-triazol-4-yl) methyl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1, 5-a]pyridin-8-yl)ethan-1-ol (502);
 - 1-(6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)ethan-1-ol (503):
- 65 2-(6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)acetonitrile (506);

- (6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)methanol (510);
- (6-(3-isopropyl-5-(1-((1-methyl-1H-1,2,4-triazol-3-yl) methyl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1, 5-a]pyridin-8-yl)methanol (511);
- (6-(3-isopropyl-5-(1-((2-methylpyrimidin-5-yl)methyl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)methanol (512);
- (6-(5-(1-((1H-1,2,3-triazol-5-yl)methyl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)methanol (513);
- 4-(4-(2-(8-(hydroxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)tetrahydro-2H-thiopyran 1,1-dioxide (514);
- (6-(3-isopropyl-5-(1-((2-methoxypyrimi din-5-yl)methyl) piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)methanol (515);
- (6-(3-isopropyl-5-(1-((1-methyl-1H-pyrazol-3-yl)methyl) piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)methanol (516);
- (6-(3-isopropyl-5-(1-(pyrimidin-5-ylmethyl) piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl) methanol (517);
- (6-(5-(1-((1,2,3-thiadiazol-4-yl)methyl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)methanol (518);
- (6-(3-isopropyl-5-(1-((2-methylpyrimidin-4-yl)methyl) piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)methanol (519);
- (6-(3-isopropyl-5-(1-(pyrimidin-2-ylmethyl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)methanol (520);
- (6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl) methanol (521);
- (6-(3-isopropyl-5-(1-((2-methyl-2H-tetrazol-5-yl)methyl) piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)methanol (522):
- (6-(3-isopropyl-5-(1-((1-methyl-1H-1,2,3-triazol-4-yl) methyl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1, 5-a]pyridin-8-yl)methanol (523);
- (6-(3-isopropyl-5-(1-((5-methylpyrazin-2-yl)methyl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)methanol (524):
- 2-(6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)ethan-1-ol (525);
- 2-(6-(3-isopropyl-5-(1-((2-methylpyrimidin-5-yl)methyl)pi- 50 peridin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)ethan-1-01 (526);
- 2-(6-(3-isopropyl-5-(1-((l-methyl-1H-1,2,3-triazol-4-yl) methyl) piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1, 5-a]pyridin-8-yl)ethan-1-ol (527);
- 2-(((6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl) oxy)ethylacetate (528);
- 2-((6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)oxy)ethan-1-ol (529-530):
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridine (549);
- 4-(4-(3-isopropyl-2-(8-(trifluoromethyl)-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)tetrahydro-2H-thiopyran 1,1-dioxide (550);

- 6-(3-isopropyl-5-(1-isopropylpiperidin-4-yl)-1H-indol-2-yl)-8-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridine (551):
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)-1H-indol-2-yl)-8-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridine (552);
 - 6-(5-(1-isobutylpiperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-8-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridine (553);
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridine (554);
- 6-(3-isopropyl-5-(1-((3-methyloxetan-3-yl)methyl)piperidin-4-yl)-1H-indol-2-yl)-8-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridine (555);
- 6-(3-isopropyl-5-(1-(tetrahydrofuran-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-(trifluoromethyl)-[1,2,4]triazolo[1,5-a] pyridine (556-557);
- 8-ethoxy-6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)pi-peridin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (571);
- 8-ethoxy-6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (572);
- 4-(4-(2-(8-ethoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-iso-propyl-1H-indol-5-yl)piperidin-1-yl)tetrahydro-2H-thiopyran 1,1-dioxide (573);
- 4-(6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl) morpholine (581);
- 8-ethyl-6-(5-(1-isobutylpiperidin-4-yl)-3-isopropyl-1H-in-dol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (582);
 - 8-ethyl-6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (583);
- 6-(5-(1-isobutylpiperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-8-isopropyl-[1,2,4]triazolo[1,5-a]pyridine (584);
 - 8-isopropyl-6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (585);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-N-(2,2,2-trifluoroethyl)-[1,2,4]triazolo[1,5-a]pyridin-8-amine (586):
 - N-(6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)cyclopropanesulfonamide (590);
- 45 4-(6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)thiomorpholine 1,1-dioxide (591):
 - 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-(4-methylpiperazin-1-yl)-[1,2,4]triazolo[1,5-a] pyridine (592);
 - 8-cyclopropyl-6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (593);
 - 2-(dimethylamino)-1-(4-(2-(8-fluoro-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl) ethan-1-one (640);
 - 1-(4-(3-isopropyl-2-(8-(trifluoromethyl)-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(methylamino)ethan-1-one (641);
 - 2-(dimethylamino)-1-(4-(3-isopropyl-2-(8-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)ethan-1-one (642);
 - 1-(4-(3-isopropyl-2-(8-(trifluoromethyl)-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-methoxyethan-1-one (643);
- 65 1-(4-(3-isopropyl-2-(8-(trifluoromethyl)-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-3-(piperidin-1-yl)propan-1-one (644);

- (4-(3-isopropyl-2-(8-(trifluoromethyl)-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)(tetrahydrofuran-2-yl)methanone (645);
- 1-(4-(3-isopropyl-2-(8-(trifluoromethyl)-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-3methoxypropan-1-one (646);
- 3-hvdroxy-1-(4-(3-isopropyl-2-(8-(trifluoromethyl)-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1yl)propan-1-one (647);
- 3,3,3-trifluoro-1-(4-(3-isopropyl-2-(8-(trifluoromethyl)-[1, 2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)propan-1-one (648);
- 3-(dimethylamino)-1-(4-(3-isopropyl-2-(8-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)propan-1-one (649);
- 1-(4-(3-isopropyl-2-(8-(trifluoromethyl)-[1,2,4]triazolo[1, 5-a|pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(2methylthiazol-4-yl)ethan-1-one (650);
- 3-hydroxy-1-(4-(3-isopropyl-2-(8-(trifluoromethyl)-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1yl)-3-methylbutan-1-one (651);
- 2-hydroxy-1-(4-(3-isopropyl-2-(8-(trifluoromethyl)-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1yl)propan-1-one (652);
- (4-(3-isopropyl-2-(8-(trifluoromethyl)-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)(1-(trifluoromethyl)cyclopropyl) methanone (653);
- (4-(3-isopropyl-2-(8-(trifluoromethyl)-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)(oxetan-3-yl) 30 methanone (654);
- 1-(4-(3-isopropyl-2-(8-(trifluoromethyl)-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-mor-
- pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl) ethan-1-one (680);
- 1-(4-(2-(8-ethoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(methylamino) ethan-1-one (681);
- 2-(dimethylamino)-1-(4-(2-(8-isobutoxy-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (684);
- (S)-1-(4-(2-(8-chloro-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-hydroxybutan- 45 1-one (685):
- 1-(4-(2-(8-chloro-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(dimethylamino) ethan-1-one (686);
- 2-(dimethylamino)-1-(4-(3-isopropyl-2-(8-morpholino-[1,2, 50 4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1yl)ethan-1-one (690);
- 2-(dimethylamino)-1-(4-(2-(8-(1,1-dioxidothiomorpholino)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (691);
- 1-(4-(2-(8-cyclopropyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(dimethylamino)ethan-1-one (696);
- 1-(4-(2-(8-cyclopropyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(methylamino)ethan-1-one (697);
- sopropyl(methyl)amino)-1-(4-(3-isopropyl-2-(8-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (777);
- 2-(ethyl(methyl)amino)-1-(4-(3-isopropyl-2-(8-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)ethan-1-one (778);

- 2-(cyclopropyl(methyl)amino)-1-(4-(3-isopropyl-2-(8-(tri fluoromethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (779);
- 2 (4-(2-(8 (2 hydroxypropan-2-yl)-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-1-morpholinoethan-1-one (850); and 2-(4-(2-(8-amino-[1.2.4]triazolo[1.5-alpyridin-6-vl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (990).
- One embodiment provides a compound of Formula (I) or a salt thereof, wherein said compound has the structure of Formula (I-8):

(I-8) $(R_4)_m$ $(R_2)_{0-2}$

wherein each R₂ is independently F, Cl, —NH₂, C₁₋₂ alkyl, —CF₃, —OCH₃, —OCH₂CH₃, —OCHF₂, cyclopropyl, or morpholinyl; and R₁, R₃, R₄, R₅, m, and n are defined in the first aspect or the second aspect. Included in this embodiment are compounds in which R₁ is —CH₂CH₃, —CH (CH₃)₂, or —CH₂CHF₂. Included in this embodiment are compounds in which R₃ is H, —CH(CH₃)₂, —CH₂CH $(CH_3)_2$, $--CH_2C(CH_3)_2OH$, pholinoethan-1-one (655); $- CH_2C(O)N(CH_3)_2, - C(O)CH_2CH(CH_3)OH, - C(O)CH_2CH(CH_$ $(CH_3)_2$, or $-L_1$ -A; L_1 is $-CH_2$ -, -C(O)-, or $-CH_2$ C dioxotetrahydrothiopyranyl, (O)—: is A dioxothiomorpholinyl, imidazolyl, morpholinyl, oxetanyl, pyrazolyl, pyrrolidinyl, tetrahydrofuranyl, or tetrahydropy-40 ranyl, each substituted with $-L_2R_a$ and zero to 1 R_b ; L_2 is a bond; R_a is H, —OH, —CH₃, or —C(O)OC(CH₃)₃; and R_b is —OH. Also included in this embodiment are compounds in which R_1 is $-CH(CH_3)_2$; m is zero, and n is zero.

> One embodiment provides a compound of Formula (I) or a salt thereof, wherein said compound is selected from

8-chloro-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-2-methyl-[1,2,4]triazolo[1,5-a]pyridine (96);

- 8-ethyl-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-2methyl-[1,2,4]triazolo[1,5-a]pyridine (97);
- 6-(3-ethyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo [1,5-a]pyridin-2-amine (109);
- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8-methyl-2-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridine (120);
- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-2-methyl-[1,2,4]triazolo[1,5-a]pyridine (122);
- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (124);
- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-2,7-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (125);
- 60 8-fluoro-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-2-methyl-[1,2,4]triazolo[1,5-a]pyridine (126);
 - 7-fluoro-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-2-methyl-[1,2,4]triazolo[1,5-a]pyridine (127);
 - 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8methoxy-2-methyl-[1,2,4]triazolo[1,5-a]pyridine (133);
 - 8-(difluoromethoxy)-6-(3-isopropyl-5-(piperidin-4-yl)-1Hindol-2-yl)-2-methyl-[1,2,4]triazolo[1,5-a]pyridine (134);

- 8-ethoxy-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-2-methyl-[1,2,4]triazolo[1,5-a]pyridine (135);
- 8-chloro-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-2,7-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (138);
- 8-cyclopropyl-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-2-methyl-[1,2,4]triazolo[1,5-a]pyridine (141);
- 6-(3-(2,2-difluoroethyl)-5-(piperidin-4-yl)-1H-indol-2-yl)-2-methyl-[1,2,4]triazolo[1,5-a]pyridine (142);
- 4-(6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-2methyl-[1,2,4]triazolo[1,5-a]pyridin-8-yl) morpholine (150);
- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-2-methyl-8-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridine (153);
- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-2-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridine (154);
- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-2,5-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (155);
- 6-(3-(2,2-difluoroethyl)-5-(piperidin-4-yl)-1H-indol-2-yl)-2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (162);
- 2-(4-(3-isopropyl-2-(2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methyl acetamide (237);
- 2-(4-(3-isopropyl-2-(2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (238);
- 1-(4-(3-isopropyl-2-(2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-methylpropan-2-ol (239);
- 2-(4-(2-(2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (244);
- 2-(4-(2-(2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (245);
- 1-(4-(2-(2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-methylpropan-2-ol (246):
- 2-(4-(2-(2,7-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (247);
- 2-(4-(2-(2,7-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (248);
- 1-(4-(2-(2,7-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-methylpropan-2-ol (249);
- 2-(4-(3-(2,2-difluoroethyl)-2-(2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (255);
- 2-(4-(3-(2,2-difluoroethyl)-2-(2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-N,N-dimethylacetamide (256);
- 2-(4-(2-(2,5-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (257);
- 2-(4-(2-(2,5-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (258);
- 2-(4-(3-isopropyl-2-(2-methyl-8-(trifluoromethyl)-[1,2,4] triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (259);
- 2-(4-(2-(8-chloro-2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-N,N-dimethylacetamide (260);

- 2-(4-(2-(8-chloro-2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-N-methylacetamide (261);
- 1-(4-(2-(8-chloro-2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-2-methyl-propan-2-ol (262);
 - 2-(4-(3-isopropyl-2-(8-methoxy-2-methyl-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (271);
- O 2-(4-(3-isopropyl-2-(8-methoxy-2-methyl-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (272);
- 1-(4-(3-isopropyl-2-(8-methoxy-2-methyl-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-methylpropan-2-ol (273);
- 2-(4-(2-(8-(difluoromethoxy)-2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-N,N-dimethylacetamide (274);
- 20 2-(4-(2-(8-(difluoromethoxy)-2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (275);
 - 2-(4-(2-(8-ethoxy-2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-N,N-dimethylacetamide (276);
 - 2-(4-(2-(8-ethoxy-2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (277);
- 2-(4-(2-(8-ethyl-2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-0 yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-N,N-dimethylacetamide (283);
 - 1-(4-(2-(8-ethyl-2-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-methyl-propan-2-ol (284);
- 35 2-(4-(2-(8-ethyl-2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-N-methylacetamide (285);
 - 2-(4-(3-isopropyl-2-(8-methyl-2-(trifluoromethyl)-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (312);
 - 2-(4-(3-isopropyl-2-(8-methyl-2-(trifluoromethyl)-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (313);
 - 1-(4-(3-isopropyl-2-(8-methyl-2-(trifluoromethyl)-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-methylpropan-2-ol (314);
 - 2-(4-(3-isopropyl-2-(2-methyl-8-morpholino-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (315);
- 50 2-(4-(3-isopropyl-2-(2-methyl-8-morpholino-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (316);
 - 2-(4-(3-isopropyl-2-(8-methoxy-2-(trifluoromethyl)-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (317);
 - 2-(4-(3-isopropyl-2-(8-methoxy-2-(trifluoromethyl)-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (318);
 - 2-(4-(2-(8-cyclopropyl-2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (323);
 - 1-(4-(2-(8-cyclopropyl-2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indo 1-5-yl)piperidin-1-yl)-2-methylpropan-2-ol (324);
- 65 2-(4-(2-(8-cyclopropyl-2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indo 1-5-yl)piperidin-1-yl)-N, N-dimethylacetamide (325);

- 2-(4-(3-(2,2-difluoroethyl)-2-(2,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,Ndimethylacetamide (345);
- 2-(4-(3-(2,2-difluoroethyl)-2-(2,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-Nmethylacetamide (346);
- 2-(4-(3-isopropyl-2-(2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylethan-1-amine (531);
- 6-(3-isopropyl-5-(1-((2-methyl-1H-imidazol-4-yl)methyl) piperidin-4-yl)-1H-indol-2-yl)-2-methyl-[1,2,4]triazolo [1,5-a]pyridine (532);
- 6-(3-isopropyl-5-(1-isopropylpiperidin-4-yl)-1H-indol-2yl)-2-methyl-[1,2,4]triazolo[1,5-a]pyridine (533);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-2-methyl-[1,2,4]triazolo [1,5-a]pyridine (534);
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4yl)-1H-indol-2-yl)-2-methyl[1,2,4]triazolo[1,5-a]pyri-
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (542);
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4yl)-1H-indol-2-yl)-2,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridine (543);
- 6-(5-(1-isobutylpiperidin-4-yl)-3-isopropyl-1H-indol-2-yl)- 25 2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (544);
- 4-(4-(2-(2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl) tetrahydro-2Hthiopyran 1,1-dioxide (545);
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl) piperidin-4- 30 yl)-1H-indol-2-yl)-2,7-dimethyl-[1,2,4]triazolo[1,5-a] pyridine (546);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-2,7-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (547);
- 4-(4-(2-(2,7-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3- 35 (4-(2-(2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)tetrahydro-2Hthiopyran 1,1-dioxide (548);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-y1)-2,5-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (558);
- 6-(3-isopropyl-5-(1-isopropylpiperidin-4-yl)-1H-indol-2yl)-2,5-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (559);6-(3-isopropyl-5-(1-((l-methyl-1H-pyraz ol-4-yl)methyl) piperidin-4-yl)-1H-indol-2-yl)-2,5-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (560);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-2-methyl-[1,2,4]triazolo[1,5-a]pyridine
- 6-(3-isopropyl-5-(1-(tetrahydrofuran-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-2-methyl-[1,2,4]triazolo[1,5a)pyridine (575-576);
- 8-ethyl-6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)-1H-indol-2-yl)-2-methyl-[1,2,4]triazolo[1,5alpyridine (577);
- 8-ethyl-6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-2-methyl-[1,2,4]triazolo[1,5-a]pyridine
- 8-cyclopropyl-6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-2-methyl-[1,2,4]triazolo[1,5-a]pyridine (594);
- 6-(3-isopropyl-5-(1-isopropylpiperidin-4-yl)-1H-indol-2yl)-2,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridine (599);
- 2-(dimethylamino)-1-(4-(3-isopropyl-2-(2-methyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1yl)ethan-1-one (612);
- (R)-3-hydroxy-1-(4-(3-isopropyl-2-(2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) butan-1-one (613);

- 3-hydroxy-1-(4-(3-isopropyl-2-(2-methyl-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-3-methvlbutan-1-one (614);
- ((2S,3R)-3-hydroxypyrrolidin-2-yl)(4-(3-isopropyl-2-(2methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-vl)methanone (615);
 - ((2S,4R)-4-hvdroxypyrrolidin-2-vl)(4-(3-isopropyl-2-(2methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)methanone (616);
- (S)-3-hydroxy-1-(4-(3-isopropyl-2-(2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl) butan-1-one (617);
 - 1-(4-(3-isopropyl-2-(2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(methylamino) ethan-1-one (618);
 - 1-(4-(2-(2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(methylamino) ethan-1-one (629);
- 20 1-(4-(2-(2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(dimethylamino)ethan-1-one (630);
 - (S)-1-(4-(2-(2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-3-hydroxybutan-1-one (631);
 - 1-(4-(2-(2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-hydroxy-3methylbutan-1-one (632);
 - (R)-1-(4-(2-(2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-3-hydroxybutan-1-one (633);
 - tert-butyl (2S,3R)-2-(4-(2-(2,8-dimethyl-[1,2,4]triazolo[1,5a|pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1carbonyl)-3-hydroxypyrrolidine-1-carboxylate (634);
 - isopropyl-1H-indol-5-yl)piperidin-1-yl)((2S,3R)-3-hydroxypyrrolidin-2-yl)methanone (635);
 - (4-(2-(2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl) ((2S,4R)-4-hydroxypyrrolidin-2-yl)methanone (636);
 - (S)-1-(4-(2-(2,7-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-hydroxybutan-1-one (637);
 - 1-(4-(2-(2,7-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl) piperidin-1-yl)-2-(dimethylamino)ethan-1-one (638);
 - 1-(4-(2-(2,7-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(methyl amino)ethan-1-one (639);
- 50 1-(4-(3-(2,2-difluoroethyl)-2-(2-methyl-[1,2,4]triazolo[1,5a|pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-2-(dimethylamino)ethan-1-one(656);
 - (R)-1-(4-(3-(2,2-di fluoroethyl)-2-(2-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-3-hydroxybutan-1-one (657);
 - 1-(4-(3-(2,2-difluoroethyl)-2-(2-methyl-[1,2,4]triazolo[1,5alpyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-3-hydroxy-3-methylbutan-1-one (658);
 - 1-(4-(3-(2,2-difluoroethyl)-2-(2-methyl-[1,2,4]triazolo[1,5a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-2-(methylamino)ethan-1-one (659);
 - 1-(4-(2-(2,5-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(dimethylamino)ethan-1-one (660);
- 65 1-(4-(2-(2,5-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(methylamino) ethan-1-one (661);

- 1-(4-(2-(8-chl oro-2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-2-(dimethylamino)ethan-1-one (662);
- 2-(dimethylamino)-1-(4-(3-isopropyl-2-(8-methoxy-2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) ⁵ piperidin-1-yl)ethan-1-one (682);
- 1-(4-(3-isopropyl-2-(8-methoxy-2-methyl-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(methylamino) ethan-1-one (683);
- 2-(dimethylamino)-1-(4-(2-(8-ethyl-2-methyl-[1,2,4]tri-azolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (687);
- 1-(4-(2-(8-ethyl-2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-2-(methyl-amino)ethan-1-one (688);
- 2-(dimethylamino)-1-(4-(3-isopropyl-2-(8-methyl-2-(trif-luoromethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-in-dol-5-yl)piperidin-1-yl)ethan-1-one (692);
- 1-(4-(3-isopropyl-2-(8-methyl-2-(trifluoromethyl)-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(methylamino)ethan-1-one (693);
- (4-(3-isopropyl-2-(8-methyl-2-(trifluoromethyl)-[1,2,4]tri-azolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) (1-methylpiperidin-4-yl)methanone (694);
- 2-(dimethylamino)-1-(4-(3-isopropyl-2-(8-methoxy-2-(trif-luoromethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-in-dol-5-yl)piperidin-1-yl) ethan-1-one (695);
- 1-(4-(2-(8-cyclopropyl-2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(dimethylamino)ethan-1-one (698);
- 1-(4-(3-(2,2-difluoroethyl)-2-(2,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(dimethylamino)ethan-1-one (708);
- (S)-1-(4-(3-(2,2-difluoroethyl)-2-(2,8-dimethyl-[1,2,4]tri-azolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-3-hydroxybutan-1-one (709);
- 1-(4-(3-(2,2-difluoroethyl)-2-(2,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-3-hy-droxy-3-methylbutan-1-one (710);
- 1-(4-(3-(2,2-diffuoroethyl)-2-(2,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(methylamino)ethan-1-one (711);
- 2-(4-(2-(2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-1-(pyrrolidin-1-yl)ethan-1-one (851);
- 2-(4-(2-(2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-1-morpholinoethan-1-one (852); and
- 2-(4-(2-(2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-1-(1,1-dioxidothiomorpholino)ethan-1-one (853).

One embodiment provides a compound of Formula (I) or a salt thereof, wherein said compound has the structure of Formula (I-9):

wherein R₂ is F, Cl, —CH₂CH₃, —CF₃, —OCH₃, —CH₂OH, —CH₂OCH₃, or cyclopropyl; and R₁, R₃, R₄, R₅, m, and n are defined in the first aspect or the second aspect. Included in this embodiment are compounds in which R_1 is $-CH(CH_3)_2$. Included in this embodiment are compounds in which R₃ is H, -CH(CH₃)₂, -CH₂CH $-CH_2C(CH_3)_2OH$, $-CH_2C(O)NH(CH_3),$ $(CH_3)_2$ $-CH_2C(O)N(CH_3)_2$, $-C(O)CH_2CH(CH_3)OH$, -C(O) $CH_2C(CH_3)_2OH$, $-C(O)CH_2NH(CH_3),$ -C(O)CH₂N $(CH_3)_2$, or $-L_1$ -A; L_1 is $-CH_2$ —, $-CH_2C(O)NHCH_2$ —, or -CH₂C(O)—; and A is azetidinyl, dioxothiomorpholinyl, morpholinyl, oxetanyl, tetrahydropyranyl, or triazolyl, each substituted with $-L_2R_a$; L_2 is a bond; R_a is H or —CH₃. Also included in this embodiment are compounds in which R₁ is -CH(CH₃)₂; m is zero, and n is zero.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein said compound is selected from tert-butyl

- 4-(2-(8-ethyl-7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (98);
 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8(methoxymethyl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (101);
 - 8-fluoro-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (102);
 - (6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridin-8-yl)methanol (104);
 - 8-fluoro-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (106);
- 8-fluoro-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (107);
 - 8-chloro-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (119);
 - 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (140);
 - 8-cyclopropyl-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (152);
- 2-(4-(3-isopropyl-2-(8-(methoxymethyl)-7-methyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (219);
- 2-(4-(2-(8-(hydroxymethyl)-7-methyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (226);
- 2-(4-(2-(8-(hydroxymethyl)-7-methyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl) acetonitrile (227);
- 2-(4-(2-(8-chloro-7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-N,N-dimethylacetamide (286);
- 50 1-(4-(2-(8-chloro-7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-2-methyl-propan-2-ol (287);
 - 2-(4-(2-(8-chloro-7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-N-methyl-acetamide (288);
 - 2-(4-(2-(8-chloro-7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-N-methyl-acetamide (289);
 - 8-chloro-6-(3-isopropyl-5-(1-(2-(methylsulfonyl)ethyl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (290);
 - 2-(4-(2-(8-ethyl-7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-N,N-dimethylacetamide (302);
- 65 2-(4-(3-isopropyl-2-(8-methoxy-7-methyl-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (303);

60

- 2-(4-(3-isopropyl-2-(8-methoxy-7-methyl-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (304);
- 1-(4-(3-isopropyl-2-(8-methoxy-7-methyl-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-methylpropan-2-ol (305):
- 6-(3-isopropyl-5-(1-(2-(methylsulfonyl)ethyl)piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-7-methyl-[1,2,4]triazolo [1,5-a]pyridine (306);
- 2-(4-(2-(8-cyclopropyl-7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (326);
- 2-(4-(2-(8-cyclopropyl-7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-1-5-yl)piperidin-1-yl)-N, N-dimethylacetamide (327);
- 1-(4-(2-(8-cyclopropyl-7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-methylpropan-2-ol (328);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-(methoxymethyl)-7-methyl-[1,2,4]triazolo[1,5-a] pyridine (499);
- (6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridin-8-yl)methanol (504):
- (6-(5-(1-((1H-1,2,3-triazol-4-yl) methyl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a] pyridin-8-yl)methanol (505);
- 8-fluoro-6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (507):
- 8-chloro-6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)pi-peridin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1, 5-a]pyridine (579);
- 8-chloro-6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (580):
- 8-ethyl-6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (587); 6-(3-isopropyl-5-(1-(oxetan-3-yl) piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (588);
- 6-(3-isopropyl-5-(1-((3-methyloxetan-3-yl)methyl)piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (589);
- 8-cyclopropyl-6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (595);
- 1-(4-(2-(8-chloro-7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-2-(dimethylamino)ethan-1-one (689);
- 1-(4-(2-(8-cyclopropyl-7-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(dimethylamino)ethan-1-one (699);
- 1-(4-(2-(8-cyclopropyl-7-methyl-[1,2,4]triazolo[1,5-a]pyri-din-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(methylamino)ethan-1-one (700);
- 2-(4-(3-isopropyl-2-(8-methoxy-7-methyl-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-((3-methyloxetan-3-yl)methyl)acetamide (876);
- 2-(4-(3-isopropyl-2-(8-methoxy-7-methyl-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-(3-methyloxetan-3-yl) acetamide (877);
- 1-(azetidin-1-yl)-2-(4-(3-isopropyl-2-(8-methoxy-7-methyl-65 [1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (878);

- N-ethyl-2-(4-(3-isopropyl-2-(8-methoxy-7-methyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-N-methylacetamide (879);
- 1-(1,1-dioxidothiomorpholino)-2-(4-(3-isopropyl-2-(8-methoxy-7-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) ethan-1-one (880); and 2-(4-(3-isopropyl-2-(8-methoxy-7-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-1-morpholinoethan-1-one (881).

One embodiment provides a compound of Formula (I) or a salt thereof, wherein said compound has the structure of Formula (I-10):

$$\begin{array}{c} R_3 \\ N \\ \hline \\ (R_4)_m \\ \hline \\ (R_4)_n \\ \end{array}$$

- wherein R_2 is —CH₃, —OCH₃, or —CH₂OH; and R_1 , R_3 , R_4 , R_5 , m, and n are defined in the first aspect or the second aspect. Included in this embodiment are compounds in which R_1 is —CH(CH₃)₂. Included in this embodiment are compounds in which R_3 is H, —CH₂CN, —CH₂C(O)NH₂,
- 30 —CH₂C(O)N(CH₃)₂, —CH₂(triazolyl), or oxetanyl. Also included in this embodiment are compounds in which R₁ is —CH(CH₃)₅; m is zero; and n is zero.

One embodiment provides a compound of Formula (I) or a salt thereof, wherein said compound is selected from

- ³⁵ (6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo [1,5-a]pyridin-7-yl)methanol (108);
 - 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-7methoxy-[1,2,4]triazolo[1,5-a]pyridine (131); 2-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo
- 40 [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetamide (192);
 - 2-(4-(2-(7-(hydroxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)acetonitrile (230);
- 45 2-(4-(3-isopropyl-2-(7-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (267); (6-(3-isopropyl-5-(1-(oxetan-3-yl) piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-7-yl)methanol (508); and (6-(3-isopropyl-5-(1-((1-methyl-11,2,3-triazol-4-yl)methyl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-7-yl)methanol (509).

One embodiment provides a compound of Formula (I) or a salt thereof, wherein said compound has the structure of Formula (I-11):

wherein R₁, R₃, R₄, R₅, m, and n are defined in the first aspect or the second aspect. Included in this embodiment are compounds in which R₁ is —CH(CH₃)₂. Included in this embodiment are compounds in which R₃ is —CH₂CN, $-CH_2C(O)N(CH_3)_2$, $-CH_2CH_2S(O)_2CH_3$, $-CH_2(meth-5)$ yltriazolyl), —C(O)CH₂N(CH₃)₂, dioxotetrahydrothiopyranyl, oxetanyl, or tetrahydropyranyl. Also included in this embodiment are compounds in which R₁ is —CH(CH₃)₂; m is zero, and n is zero.

One embodiment provides a compound of Formula (I) or $\,^{10}$ a salt thereof, wherein said compound is selected from

- 2-(4-(2-(5,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (207);
- 6-(3-isopropyl-5-(1-((1-methyl-1H-1,2,4-triazol-3-yl) methyl)piperidin-4-yl)-1H-indol-2-yl)-5,8-dimethyl-[1,2, 4]triazolo[1,5-a]pyridine (208);
- 6-(3-isopropyl-5-(1-(2-(methylsulfonyl)ethyl)piperidin-4yl)-1H-indol-2-yl)-5,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridine (209);
- 2-(4-(2-(5,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)acetonitrile (210):
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-5,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (487);
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4yl)-1H-indol-2-yl)-5,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridine (488);
- isopropyl-1H-indol-5-yl)piperidin-1-yl)tetrahydro-2Hthiopyran 1,1-dioxide (489);
- and 1-(4-(2-(5,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(dimethylamino)ethan-1-one (611).

One embodiment provides a compound of Formula (I) or a salt thereof, wherein said compound is selected from

- 2-(6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4] triazolo[1,5-a]pyridin-8-ypacetonitrile (105);
- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-5- 40 methyl-[1,2,4]triazolo[1,5-a]pyridine (123);
- One embodiment provides a compound of Formula (I) or a salt thereof, wherein said compound is selected from 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (1);
- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine hydrochloride (2);
- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (3);
- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (4);
- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8methoxy-[1,2,4]triazolo[1,5-a]pyridine (5);
- 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8-(methoxymethyl)-[1,2,4]triazolo[1,5-a]pyridine (6);
- 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (7);
- 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetonitrile (8);
- 3-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) propanenitrile
- 6-(5-(1-butylpiperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-8methyl-[1,2,4]triazolo[1,5-a]pyridine (10);
- 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetamide (11);

70

- 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-methylpropan-
- 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)acetonitrile (13);
- 3-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)propanenitrile (14);
- 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl) acetamide (15);
- 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-N-methylacet-
- 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-methylpropan-2-ol (17);
 - 6-(3-isopropyl-5-(1-(2-(methylsulfonyl)ethyl)piperidin-4yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridine (18);
- 20 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)ethane-1-sulfonamide (19);
 - 4-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl) piperidin-1-yl)tetrahydro-2Hthiopyran 1,1-dioxide (20);
 - 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) acetonitrile (21);
 - 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)acetamide (22);
- 4-(4-(2-(5,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3- 30 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (23);
 - 1-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-methylpropan-2-01 (24);
 - 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (25);
 - 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (26);
 - 6-(3-isopropyl-5-(1-isopropylpiperidin-4-yl)-1H-indol-2yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (27);
 - 6-(3-isopropyl-5-(1-propylpiperidin-4-yl)-1H-indol-2-yl)-8methyl-[1,2,4]triazolo[1,5-a]pyridine (28);
 - 45 6-(5-(1-isobutylpiperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (29);
 - 6-(5-(1-((1H-pyrazol-5-yl)methyl) piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyri-
 - 50 4-((4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)methyl)oxazole
 - 6-(5-(1-((1H-1,2,3-triazol-4-yl)methyl)piperidin-4-yl)-3isopropyl-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a] pyridine (32);
 - 6-(5-(1-((4H-1,2,4-triazol-3-yl)methyl)piperidin-4-yl)-3isopropyl-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a] pyridine (33);
 - 6-(5-(1-((1H-tetrazol-5-yl)methyl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyri-
 - 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (35);
 - 65 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (36);

- 4-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) tetrahydro-2Hthiopyran 1,1-dioxide (37);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (38);
- 6-(5-(1-((1H-1,2,3-triazol-5-vl)methyl)piperidin-4-vl)-3isopropyl-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1, 5-a pyridine (39);
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl) piperidin-4yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridine (40);
- 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide (41);
- 6-(3-isopropyl-5-(1-((1-methyl-1H-1,2,3-triazol-4-yl) methyl) piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1, 2,4]triazolo[1,5-a]pyridine (42);
- 6-(3-isopropyl-5-(1-((1-methyl-1H-1,2,4-triazol-3-yl) 4]triazolo[1,5-a]pyridine (43);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl) piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (44);
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4yl)-1H-indol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyri- 25
- 2-(dimethylamino)-1-(4-(3-isopropyl-2-(8-methyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1yl) ethan-1-one (46);
- 1-(4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H- 30 indol-5-yl) piperidin-1-yl)-2-(methylamino)ethan-1-one
- 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (48);
- 3-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-3-oxopropanenitrile (49);
- 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(methylamino) ethan-1-one (50);
- 1-(4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1Hindol-5-yl)piperidin-1-yl)-2-(dimethylamino)ethan-1-one
- 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-methoxyethan- 45 1-one (52);
- (S)-1-(4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-3-hydroxybutan-1-one
- 4-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-4-oxobutanenitrile (54);
- (4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)(1-methylcyclopropyl)methanone (55);
- (S)-azetidin-2-yl(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)methanone (56);
- 2-(dimethylamino)-1-(4-(3-isopropyl-2-(8-methyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1yl)ethan-1-one (57);
- (S)-1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(methylamino)propan-1-one (58);
- (R)-1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(methylamino)propan-1-one (59);

- (S)-3-hydroxy-1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl) butan-1-one (60):
- 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-3-methoxypropan-1-one (61);
 - 1-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(methylamino) ethan-1-one (62);
- 1-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-methoxyethan-
 - (4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)(3-methyloxetan-3-yl) methanone (64);
 - 2-ethyl-1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)butan-1-one (65);
- methyl)piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2, 20 1-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(dimethylamino)ethan-1-one (66);
 - 2-(dimethylamino)-1-(4-(3-isopropyl-2-(8-methoxy-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1yl)ethan-1-one (67);
 - 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-morpholinoethan-1-one (68);
 - 2-(tert-butylamino)-1-(4-(3-isopropyl-2-(8-methyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1yl)ethan-1-one (69);
 - 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(isopropylamino)ethan-1-one (70);
 - 35 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-((2-methoxyethyl)amino)ethan-1-one (71);
 - 1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-2-(propylamino) ethan-1-one (72);
 - (methyl)amino)-1-(4-(3-isopropyl-2-(8-2-(isopropyl methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl) ethan-1-one (73);
 - 1-(1,1-dioxido-1,2,4-thiadiazinan-4-yl)-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethan-1-one (74);
 - N-cyclopropyl-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) acetamide (75);
 - 50 N-ethyl-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5a|pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-methylacetamide (76);
 - (S)-1-(3-hydroxypiperidin-1-yl)-2-(4-(3-isopropyl-2-(8methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)ethan-1-one (77);
 - N-cyclobutyl-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetamide (78);
 - 2-(4-3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-1-(2-oxa-6-azaspiro [3.3]heptan-6-yl)ethan-1-one (79);
 - N,N-diethyl-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetamide (80);
 - 65 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-propylacetamide (81);

(R)-1-(3-hydroxypiperidin-1-yl)-2-(4-(3-isopropyl-2-(8methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)ethan-1-one (82);

(S)-1-(3-hydroxypyrrolidin-1-yl)-2-(4-(3-isopropyl-2-(8methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) ⁵ piperidin-1-yl)ethan-1-one (83);

(R)-1-(3-hydroxypyrrolidin-1-yl)-2-(4-(3-isopropyl-2-(8methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)ethan-1-one (84);

2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyripiperidin-1-yl)-1-(4-(2din-6-yl)-1H-indol-5-yl) methoxyethyl) piperazin-1-yl)ethan-1-one (85);

1-(azetidin-1-yl)-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl) ethan-1-one (86):

N-isopropyl-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)acetamide (87):

2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-1-morpholinoethan-1-one (88);

2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-1-(piperidin-1vl)ethan-1-one (89);

2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-1-(pyrrolidin-1yl)ethan-1-one (90);

1-(1,1-dioxidothiomorpholino)-2-(4-(3-isopropyl-2-(8piperidin-1-yl)ethan-1-one (91);

2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N-(3-methyloxetan-3-yl) acetamide (92);

N-cyclopropyl-2-(4-(3-isopropyl-2-(8-methyl-[1,2,4] 35 triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1yl)-N-methylacetamide (93).

One embodiment provides a compound of Formula (I) or a salt thereof, wherein R₁ is -CH(CH₃)₂; each R₂ is independently —CH₃ or —OCH₃; R_3 is —(CR_xR_x)₁₋₂C(O) ₄₀ $NR_{\nu}R_{\nu}$; m is zero, n is zero, p is 1 or 2; each R_{x} is independently H or —CH₃; and each R_y is independently H or —CH₃. Included in this embodiment are compounds in which R₃ is -CH₂C(O)NR_vR_v. Also included in this embodiment are compounds having the structure of Formula (I-4b) or Formula (I-6b) in which each R, is H or —CH₃:

(I-4b) CH₂ OCH_3 (I-6b)

$$\begin{array}{c} O \\ \\ R_{y} \end{array} \begin{array}{c} N \\ \\ R_{y} \end{array} \begin{array}{c} H_{3}C \\ \\ \\ H \end{array} \begin{array}{c} CH_{3} \\ \\ H_{3}C \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \end{array}$$

74

Additionally, included in this embodiment are compounds in which R_3 is $-CH_2C(O)NH_2$ or $-CH_2C(O)N(CH_3)_2$.

The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof. The invention encompasses all combinations of the aspects and/or embodiments of the invention noted herein. It is understood that any and all embodiments of the present invention may be taken in conjunction with any other embodiment or embodiments to describe additional embodiments. It is also to be understood that each individual element of the embodiments is meant to be combined with any and all other elements from any embodiment to describe an additional embodiment.

Definitions

The features and advantages of the invention may be more readily understood by those of ordinary skill in the art upon reading the following detailed description. It is to be appre-20 ciated that certain features of the invention that are, for clarity reasons, described above and below in the context of separate embodiments, may also be combined to form a single embodiment. Conversely, various features of the invention that are, for brevity reasons, described in the context of a single embodiment, may also be combined so as to form sub-combinations thereof. Embodiments identified herein as exemplary or preferred are intended to be illustrative and not limiting.

Unless specifically stated otherwise herein, references methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) 30 made in the singular may also include the plural. For example, "a" and "an" may refer to either one, or one or

> As used herein, the phrase "compounds" refers to at least one compound. For example, a compound of Formula (I) includes a compound of Formula (I) and two or more compounds of Formula (I).

> Unless otherwise indicated, any heteroatom with unsatisfied valences is assumed to have hydrogen atoms sufficient to satisfy the valences.

> The definitions set forth herein take precedence over definitions set forth in any patent, patent application, and/or patent application publication incorporated herein by reference.

> Listed below are definitions of various terms used to describe the present invention. These definitions apply to the terms as they are used throughout the specification (unless they are otherwise limited in specific instances) either individually or as part of a larger group.

Throughout the specification, groups and substituents 50 thereof may be chosen by one skilled in the field to provide stable moieties and compounds.

In accordance with a convention used in the art,

60 is used in structural formulas herein to depict the bond that is the point of attachment of the moiety or substituent to the core or backbone structure.

The terms "halo" and "halogen," as used herein, refer to F, Cl, Br, and I.

The term "cyano" refers to the group —CN.

The term "amino" refers to the group —NH₂.

The term "oxo" refers to the group = O.

The term "alkyl" as used herein, refers to both branched and straight-chain saturated aliphatic hydrocarbon groups containing, for example, from 1 to 12 carbon atoms, from 1 to 6 carbon atoms, and from 1 to 4 carbon atoms. Examples of alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (e.g., n-propyl and i-propyl), butyl (e.g., n-butyl, i-butyl, sec-butyl, and t-butyl), and pentyl (e.g., n-pentyl, isopentyl, neopentyl), n-hexyl, 2-methylpentyl, 2-ethylbutyl, 3-methylpentyl, and 4-methylpentyl. When numbers appear in a subscript after the symbol "C", the subscript defines with more specificity the number of carbon atoms that a particular group may contain. For example, "C $_{1-6}$ alkyl" denotes straight and branched chain alkyl groups with one to six carbon atoms.

The term "fluoroalkyl" as used herein is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups substituted with one or more fluorine atoms. For example, " C_{1-4} fluoroalkyl" is intended to include C_1 , C_2 , C_3 , and C_4 alkyl groups substituted with one 20 or more fluorine atoms. Representative examples of fluoroalkyl groups include, but are not limited to, — CF_3 and — CH_2CF_3 .

The term "chloroalkyl" as used herein is intended to include both branched and straight-chain saturated aliphatic 25 hydrocarbon groups substituted with one or more chlorine atoms. For example, " C_{1-4} chloroalkyl" is intended to include C_1 , C_2 , C_3 , and C_4 alkyl groups substituted with one or more chlorine atoms. Representative examples of fluoroalkyl groups include, but are not limited to, — CCl_3 and 30 — CH_2CCl_3 .

The term "cyanoalkyl" includes both branched and straight-chain saturated alkyl groups substituted with one or more cyano groups. For example, "cyanoalkyl" includes $-\mathrm{CH_2CN}$, $-\mathrm{CH_2CH_2CN}$, and $\mathrm{C_{1-4}}$ cyanoalkyl.

The term "aminoalkyl" includes both branched and straight-chain saturated alkyl groups substituted with one or more amine groups. For example, "aminoalkyl" includes —CH₂NH₂, —CH₂CH₂NH₂, and C₁₋₄ aminoalkyl.

The term "hydroxyalkyl" includes both branched and 40 are described in: straight-chain saturated alkyl groups substituted with one or more hydroxyl groups. For example, "hydroxyalkyl" Wermuth et al., 0 includes —CH₂OH, —CH₂CH₂OH, and C₁₋₄ hydroxyalkyl. b) Design of Particle 1.

The term "hydroxy-fluoroalkyl" includes both branched and straight-chain saturated alkyl groups substituted with 45 one or more hydroxyl groups and one or more fluorine atoms. For example, "hydroxy-fluoroalkyl" includes —CHFCH $_2$ OH, —CH $_2$ CHFC(CH $_3$) $_2$ OH, and C $_{1-4}$ hydroxy-fluoroalkyl.

The term "cycloalkyl," as used herein, refers to a group 50 derived from a non-aromatic monocyclic or polycyclic hydrocarbon molecule by removal of one hydrogen atom from a saturated ring carbon atom. Representative examples of cycloalkyl groups include, but are not limited to, cyclopropyl, cyclopentyl, and cyclohexyl. When numbers appear 55 in a subscript after the symbol "C", the subscript defines with more specificity the number of carbon atoms that a particular cycloalkyl group may contain. For example, "C₃-C₆ cycloalkyl" denotes cycloalkyl groups with three to six carbon atoms.

The term "alkoxy," as used herein, refers to an alkyl group attached to the parent molecular moiety through an oxygen atom, for example, methoxy group (—OCH $_3$). For example, "C $_{1-3}$ alkoxy" denotes alkoxy groups with one to three carbon atoms.

The terms "fluoroalkoxy" and "—O(fluoroalkyl)" represent a fluoroalkyl group as defined above attached through

76

an oxygen linkage (—O—). For example, " C_{1-4} fluoro-alkoxy" is intended to include C_1 , C_2 , C_3 , and C_4 fluoro-alkoxy groups.

The term "alkoxyalkoxy," as used herein, refers to an alkoxy group attached through its oxygen atom to a carbon atom in a second alkoxy group, which is attached to the parent molecular moiety through an oxygen atom, for example, methoxymethoxy group (—OCH₂OCH₃). For example, "C₂₋₄ alkoxyalkoxy" denotes alkoxyalkoxy groups with two to four carbon atoms, such as —OCH₂OCH₃, —OCH₂CH₂OCH₃, and —OCH₂CH₂OCH₃CH₃.

The phrase "pharmaceutically acceptable" is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.

The compounds of Formula (I) can be provided as amorphous solids or crystalline solids. Lyophilization can be employed to provide the compounds of Formula (I) as amorphous solids.

It should further be understood that solvates (e.g., hydrates) of the compounds of Formula (I) are also within the scope of the present invention. The term "solvate" means a physical association of a compound of Formula (I) with one or more solvent molecules, whether organic or inorganic. This physical association includes hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. "Solvate" encompasses both solution-phase and isolable solvates. Exemplary solvates include hydrates, ethanolates, methanolates, isopropanolates, acetonitrile solvates, and ethyl acetate solvates. Methods of solvation are known in the art.

Various forms of prodrugs are well known in the art and are described in:

- a) The Practice of Medicinal Chemistry, Camille G.
 Wermuth et al., Ch 31, (Academic Press, 1996);
- b) Design of Prodrugs, edited by H. Bundgaard, (Elsevier, 1985);
- c) A Textbook of Drug Design and Development, P. KrogsgaardLarson and H. Bundgaard, eds. Ch 5, pgs 113-191 (Harwood Academic Publishers, 1991); and
- d) Hydrolysis in Drug and Prodrug Metabolism, Bernard Testa and Joachim M. Mayer, (Wiley-VCH, 2003).

In addition, compounds of Formula (I), subsequent to their preparation, can be isolated and purified to obtain a composition containing an amount by weight equal to or greater than 99% of a compound of Formula (I) ("substantially pure"), which is then used or formulated as described herein. Such "substantially pure" compounds of Formula (I) are also contemplated herein as part of the present invention.

"Stable compound" and "stable structure" are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent. The present invention is intended to embody stable compounds.

"Therapeutically effective amount" is intended to include an amount of a compound of the present invention alone or an amount of the combination of compounds claimed or an amount of a compound of the present invention in combination with other active ingredients effective to act as an inhibitor to TLR7/8/9, or effective to treat or prevent auto-

immune and/or inflammatory disease states, such as SLE, IBD, multiple sclerosis (MS), and Sjögren's syndrome, and rheumatoid arthritis.

As used herein, "treating" or "treatment" cover the treatment of a disease-state in a mammal, particularly in a 5 human, and include: (a) preventing the disease-state from occurring in a mammal, in particular, when such mammal is predisposed to the disease-state but has not yet been diagnosed as having it; (b) inhibiting the disease-state, i.e., arresting its development; and/or (c) relieving the disease-state, i.e., causing regression of the disease state.

The compounds of the present invention are intended to include all isotopes of atoms occurring in the present compounds. Isotopes include those atoms having the same atomic number but different mass numbers. By way of 15 general example and without limitation, isotopes of hydrogen include deuterium (D) and tritium (T). Isotopes of carbon include ¹³C and ¹⁴C. Isotopically-labeled compounds of the invention can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described herein, using an appropriate isotopically-labeled reagent in place of the non-labeled reagent otherwise employed. For example, methyl (—CH₃) also includes deuterated methyl groups such as —CD₃.

Utility

The human immune system has evolved to defend the body from micro-organisms, viruses, and parasites that can cause infection, disease or death. Complex regulatory 30 mechanisms ensure that the various cellular components of the immune system target the foreign substances or organisms, while not causing permanent or significant damage to the individual. While the initiating events are not well understood at this time, in autoimmune disease states the 35 immune system directs its inflammatory response to target organs in the afflicted individual. Different autoimmune diseases are typically characterized by the predominate or initial target organ or tissues affected; such as the joint in the case of rheumatoid arthritis, the thyroid gland in the case of 40 Hashimoto's thyroiditis, the central nervous system in the case of multiple sclerosis, the pancreas in the case of type I diabetes, and the bowel in the case of inflammatory bowel

The compounds of the invention inhibit signaling through 45 Toll-like receptor 7, or 8, or 9 (TLR7, TLR8, TLR9) or combinations thereof. Accordingly, compounds of Formula (I) have utility in treating conditions associated with the inhibition of signaling through one or more of TLR7, TLR8, or TLR9. Such conditions include TLR7, TLR8, or TLR9 50 receptor associated diseases in which cytokine levels are modulated as a consequence of intracellular signaling.

As used herein, the terms "treating" or "treatment" encompass the treatment of a disease state in a mammal, particularly in a human, and include: (a) preventing or 55 delaying the occurrence of the disease state in a mammal, in particular, when such mammal is predisposed to the disease state but has not yet been diagnosed as having it; (b) inhibiting the disease state, i.e., arresting its development; and/or (c) achieving a full or partial reduction of the symptoms or disease state, and/or alleviating, ameliorating, lessening, or curing the disease or disorder and/or its symptoms.

In view of their activity as selective inhibitors of TLR7, TLR8, or TLR9, compounds of Formula (I) are useful in treating TLR7, TLR8, or TLR9 family receptor associated 65 diseases, but not limited to, inflammatory diseases such as Crohn's disease, ulcerative colitis, asthma, graft versus host

78

disease, allograft rejection, chronic obstructive pulmonary disease; autoimmune diseases such as Graves' disease, rheumatoid arthritis, systemic lupus erythematosis, lupus nephritis, cutaneous lupus, psoriasis; auto-inflammatory diseases including Cryopyrin-Associated Periodic Syndromes (CAPS), TNF Receptor Associated Periodic Syndrome (TRAPS), Familial Mediterranean Fever (FMF), adult onset stills, systemic onset juvenile idiopathic arthritis, gout, gouty arthritis; metabolic diseases including type 2 diabetes, atherosclerosis, myocardial infarction; destructive bone disorders such as bone resorption disease, osteoarthritis, osteoporosis, multiple myeloma-related bone disorder; proliferative disorders such as acute myelogenous leukemia, chronic myelogenous leukemia; angiogenic disorders such as angiogenic disorders including solid tumors, ocular neovasculization, and infantile haemangiomas; infectious diseases such as sepsis, septic shock, and Shigellosis; neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, cerebral ischemias or neurodegenerative disease caused by traumatic injury, oncologic and viral diseases such as metastatic melanoma, Kaposi's sarcoma, multiple myeloma, and HIV infection and CMV retinitis, AIDS, respectively.

More particularly, the specific conditions or diseases that may be treated with the inventive compounds include, without limitation, pancreatitis (acute or chronic), asthma, allergies, adult respiratory distress syndrome, chronic obstructive pulmonary disease, glomerulonephritis, rheumatoid arthritis, systemic lupus erythematosis, scleroderma, chronic thyroiditis, Graves' disease, autoimmune gastritis, diabetes, autoimmune hemolytic anemia, autoimmune neutropenia, thrombocytopenia, atopic dermatitis, chronic active hepatitis, myasthenia gravis, multiple sclerosis, inflammatory bowel disease, ulcerative colitis, Crohn's disease, psoriasis, graft vs. host disease, inflammatory reaction induced by endotoxin, tuberculosis, atherosclerosis, muscle degeneration, cachexia, psoriatic arthritis, Reiter's syndrome, gout, traumatic arthritis, rubella arthritis, acute synovitis, pancreatic β-cell disease; diseases characterized by massive neutrophil infiltration; rheumatoid spondylitis, gouty arthritis and other arthritic conditions, cerebral malaria, chronic pulmonary inflammatory disease, silicosis, pulmonary sarcoidosis, bone resorption disease, allograft rejections, fever and myalgias due to infection, cachexia secondary to infection, keloid formation, scar tissue formation, ulcerative colitis, pyresis, influenza, osteoporosis, osteoarthritis, acute myelogenous leukemia, chronic myelogenous leukemia, metastatic melanoma, Kaposi's sarcoma, multiple myeloma, sepsis, septic shock, and Shigellosis; Alzheimer's disease, Parkinson's disease, cerebral ischemias or neurodegenerative disease caused by traumatic injury; angiogenic disorders including solid tumors, ocular neovasculization, and infantile haemangiomas; viral diseases including acute hepatitis infection (including hepatitis A, hepatitis B and hepatitis C), HIV infection and CMV retinitis, AIDS, ARC or malignancy, and herpes; stroke, myocardial ischemia, ischemia in stroke heart attacks, organ hypoxia, vascular hyperplasia, cardiac and renal reperfusion injury, thrombosis, cardiac hypertrophy, thrombin-induced platelet aggregation, endotoxemia and/or toxic shock syndrome, conditions associated with prostaglandin endoperoxidase syndase-2, and pemphigus vulgaris. Included in this embodiment are methods of treatment in which the condition is selected from lupus including lupus nephritis and systemic lupus erythematosus (SLE), Crohn's disease, ulcerative colitis, allograft rejection, rheumatoid arthritis, psoriasis, ankylosing spondylitis, psoriatic arthritis, and pemphigus vulgaris. Also included are methods of treatment in

which the condition is selected from ischemia reperfusion injury, including cerebral ischemia reperfusions injury arising from stroke and cardiac ischemia reperfusion injury arising from myocardial infarction. Another method of treatment is one in which the condition is multiple myeloma.

In one embodiment, the compounds of Formula (I) are useful in treating cancer, including Waldenstrom's Macroglobulinemia (WM), diffuse large B cell lymphoma (DLBCL), chronic lymphocytic leukemia (CLL), cutaneous diffuse large B cell lymphoma, and primary CNS lymphoma.

In addition, the TLR7, TLR8, or TLR9 inhibitors of the present invention inhibit the expression of inducible proinflammatory proteins such as prostaglandin endoperoxide synthase-2 (PGHS-2), also referred to as cyclooxygenase-2 (COX-2), IL-1, IL-6, IL-18, chemokines. Accordingly, additional TLR7/8/9 associated conditions include edema, analgesia, fever and pain, such as neuromuscular pain, headache, pain caused by cancer, dental pain and arthritis pain. The inventive compounds also may be used to treat veterinary viral infections, such as lentivirus infections, including, but not limited to equine infectious anemia virus; or retrovirus infections, including feline immunodeficiency virus, bovine immunodeficiency virus, and canine immunodeficiency 25 virus.

The present invention thus provides methods for treating such conditions, comprising administering to a subject in need thereof a therapeutically-effective amount of at least one compound of Formula (I) or a salt thereof. "Therapeutically effective amount" is intended to include an amount of a compound of the present invention that is effective when administered alone or in combination to inhibit autoimmune disease or chronic inflammatory disease.

The methods of treating TLR7, TLR8, or TLR9 associated 35 conditions may comprise administering compounds of Formula (I) alone or in combination with each other and/or other suitable therapeutic agents useful in treating such conditions. Accordingly, "therapeutically effective amount" is also intended to include an amount of the combination of 40 compounds claimed that is effective to inhibit TLR7, TLR8, or TLR9 and/or treat diseases associated with TLR7, TLR8, or TLR9.

Exemplary of such other therapeutic agents include corticosteroids, rolipram, calphostin, cytokine-suppressive anti- 45 inflammatory drugs (CSAIDs), Interleukin-10, glucocortisalicylates. nitric oxide, and immunosuppressants; nuclear translocation inhibitors, such as deoxyspergualin (DSG); non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen, celecoxib and rofecoxib; 50 steroids such as prednisone or dexamethasone; antiviral agents such as abacavir; antiproliferative agents such as methotrexate, leflunomide, FK506 (tacrolimus, PRO-GRAF®); anti-malarials such as hydroxychloroquine; cytotoxic drugs such as azathiprine and cyclophosphamide; 55 TNF-α inhibitors such as tenidap, anti-TNF antibodies or soluble TNF receptor, and rapamycin (sirolimus or RAPA-MUNE®) or derivatives thereof.

The above other therapeutic agents, when employed in combination with the compounds of the present invention, 60 may be used, for example, in those amounts indicated in the Physicians' Desk Reference (PDR) or as otherwise determined by one of ordinary skill in the art. In the methods of the present invention, such other therapeutic agent(s) may be administered prior to, simultaneously with, or following the 65 administration of the inventive compounds. The present invention also provides pharmaceutical compositions

80

capable of treating TLR7/8/9 receptor-associated conditions, including IL-1 family receptor-mediated diseases as described above.

The inventive compositions may contain other therapeutic agents as described above and may be formulated, for example, by employing conventional solid or liquid vehicles or diluents, as well as pharmaceutical additives of a type appropriate to the mode of desired administration (e.g., excipients, binders, preservatives, stabilizers, flavors, etc.) according to techniques such as those well known in the art of pharmaceutical formulation.

Accordingly, the present invention further includes compositions comprising one or more compounds of Formula (I) and a pharmaceutically acceptable carrier.

A "pharmaceutically acceptable carrier" refers to media generally accepted in the art for the delivery of biologically active agents to animals, in particular, mammals. Pharmaceutically acceptable carriers are formulated according to a number of factors well within the purview of those of ordinary skill in the art. These include without limitation the type and nature of the active agent being formulated; the subject to which the agent-containing composition is to be administered; the intended route of administration of the composition; and, the therapeutic indication being targeted. Pharmaceutically acceptable carriers include both aqueous and non-aqueous liquid media, as well as a variety of solid and semi-solid dosage forms. Such carriers can include a number of different ingredients and additives in addition to the active agent, such additional ingredients being included in the formulation for a variety of reasons, e.g., stabilization of the active agent, binders, etc., well known to those of ordinary skill in the art. Descriptions of suitable pharmaceutically acceptable carriers, and factors involved in their selection, are found in a variety of readily available sources such as, for example, Remington's Pharmaceutical Sciences, 17th Edition (1985), which is incorporated herein by reference in its entirety.

Compounds in accordance with Formula (I) can be administered by any means suitable for the condition to be treated, which can depend on the need for site-specific treatment or quantity of Formula (I) compound to be delivered.

Also embraced within this invention is a class of pharmaceutical compositions comprising a compound of Formula (I) and one or more non-toxic, pharmaceuticallyacceptable carriers and/or diluents and/or adjuvants (collectively referred to herein as "carrier" materials) and, if desired, other active ingredients. The compounds of Formula (I) may be administered by any suitable route, preferably in the form of a pharmaceutical composition adapted to such a route, and in a dose effective for the treatment intended. The compounds and compositions of the present invention may, for example, be administered orally, mucosally, or parenterally including intravascularly, intravenously, intraperitoneally, subcutaneously, intramuscularly, and intrasternally in dosage unit formulations containing conventional pharmaceutically acceptable carriers, adjuvants, and vehicles. For example, the pharmaceutical carrier may contain a mixture of mannitol or lactose and microcrystalline cellulose. The mixture may contain additional components such as a lubricating agent, e.g. magnesium stearate and a disintegrating agent such as crospovidone. The carrier mixture may be filled into a gelatin capsule or compressed as a tablet. The pharmaceutical composition may be administered as an oral dosage form or an infusion, for example.

For oral administration, the pharmaceutical composition may be in the form of, for example, a tablet, capsule, liquid capsule, suspension, or liquid. The pharmaceutical composition is preferably made in the form of a dosage unit containing a particular amount of the active ingredient. For 5 example, the pharmaceutical composition may be provided as a tablet or capsule comprising an amount of active ingredient in the range of from about 0.1 to 1000 mg, preferably from about 0.25 to 250 mg, and more preferably from about 0.5 to 100 mg. A suitable daily dose for a human 10 or other mammal may vary widely depending on the condition of the patient and other factors, but, can be determined using routine methods.

Any pharmaceutical composition contemplated herein can, for example, be delivered orally via any acceptable and 15 suitable oral preparations. Exemplary oral preparations, include, but are not limited to, for example, tablets, troches, lozenges, aqueous and oily suspensions, dispersible powders or granules, emulsions, hard and soft capsules, liquid capsules, syrups, and elixirs. Pharmaceutical compositions 20 intended for oral administration can be prepared according to any methods known in the art for manufacturing pharmaceutical compositions intended for oral administration. In order to provide pharmaceutically palatable preparations, a pharmaceutical composition in accordance with the inven- 25 tion can contain at least one agent selected from sweetening agents, flavoring agents, coloring agents, demulcents, antioxidants, and preserving agents.

A tablet can, for example, be prepared by admixing at least one compound of Formula (I) with at least one non- 30 toxic pharmaceutically acceptable excipient suitable for the manufacture of tablets. Exemplary excipients include, but are not limited to, for example, inert diluents, such as, for example, calcium carbonate, sodium carbonate, lactose, calcium phosphate, and sodium phosphate; granulating and 35 disintegrating agents, such as, for example, microcrystalline cellulose, sodium crosscarmellose, corn starch, and alginic acid; binding agents, such as, for example, starch, gelatin, polyvinyl-pyrrolidone, and acacia; and lubricating agents, such as, for example, magnesium stearate, stearic acid, and 40 e.g., ascorbic acid. In addition, dispersible powders and talc. Additionally, a tablet can either be uncoated, or coated by known techniques to either mask the bad taste of an unpleasant tasting drug, or delay disintegration and absorption of the active ingredient in the gastrointestinal tract thereby sustaining the effects of the active ingredient for a 45 longer period. Exemplary water soluble taste masking materials, include, but are not limited to, hydroxypropyl-methylcellulose and hydroxypropyl-cellulose. Exemplary time delay materials, include, but are not limited to, ethyl cellulose and cellulose acetate butyrate.

Hard gelatin capsules can, for example, be prepared by mixing at least one compound of Formula (I) with at least one inert solid diluent, such as, for example, calcium carbonate; calcium phosphate; and kaolin.

Soft gelatin capsules can, for example, be prepared by 55 mixing at least one compound of Formula (I) with at least one water soluble carrier, such as, for example, polyethylene glycol; and at least one oil medium, such as, for example, peanut oil, liquid paraffin, and olive oil.

An aqueous suspension can be prepared, for example, by 60 admixing at least one compound of Formula (I) with at least one excipient suitable for the manufacture of an aqueous suspension. Exemplary excipients suitable for the manufacture of an aqueous suspension, include, but are not limited to, for example, suspending agents, such as, for example, 65 sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethyl-cellulose, sodium alginate, alginic acid, poly-

vinyl-pyrrolidone, gum tragacanth, and gum acacia; dispersing or wetting agents, such as, for example, a naturallyoccurring phosphatide, e.g., lecithin; condensation products of alkylene oxide with fatty acids, such as, for example, polyoxyethylene stearate; condensation products of ethylene oxide with long chain aliphatic alcohols, such as, for example heptadecaethylene-oxycetanol; condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol, such as, for example, polyoxyethylene sorbitol monooleate; and condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, such as, for example, polyethylene sorbitan monooleate. An aqueous suspension can also contain at least one preservative, such as, for example, ethyl and n-propyl p-hydroxybenzoate; at least one coloring agent; at least one flavoring agent; and/or at least one sweetening agent, including but not limited to, for example, sucrose, saccharin, and aspartame.

Oily suspensions can, for example, be prepared by suspending at least one compound of Formula (I) in either a vegetable oil, such as, for example, arachis oil; olive oil; sesame oil; and coconut oil; or in mineral oil, such as, for example, liquid paraffin. An oily suspension can also contain at least one thickening agent, such as, for example, beeswax; hard paraffin; and cetyl alcohol. In order to provide a palatable oily suspension, at least one of the sweetening agents already described hereinabove, and/or at least one flavoring agent can be added to the oily suspension. An oily suspension can further contain at least one preservative, including, but not limited to, for example, an anti-oxidant, such as, for example, butylated hydroxyanisol, and alphatocopherol.

Dispersible powders and granules can, for example, be prepared by admixing at least one compound of Formula (I) with at least one dispersing and/or wetting agent; at least one suspending agent; and/or at least one preservative. Suitable dispersing agents, wetting agents, and suspending agents are as already described above. Exemplary preservatives include, but are not limited to, for example, anti-oxidants, granules can also contain at least one excipient, including, but not limited to, for example, sweetening agents; flavoring agents; and coloring agents.

An emulsion of at least one compound of Formula (I) thereof can, for example, be prepared as an oil-in-water emulsion. The oily phase of the emulsions comprising compounds of Formula (I) may be constituted from known ingredients in a known manner. The oil phase can be provided by, but is not limited to, for example, a vegetable oil, such as, for example, olive oil and arachis oil; a mineral oil, such as, for example, liquid paraffin; and mixtures thereof. While the phase may comprise merely an emulsifier, it may comprise a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil. Suitable emulsifying agents include, but are not limited to, for example, naturally-occurring phosphatides, e.g., soy bean lecithin; esters or partial esters derived from fatty acids and hexitol anhydrides, such as, for example, sorbitan monooleate; and condensation products of partial esters with ethylene oxide, such as, for example, polyoxyethylene sorbitan monooleate. Preferably, a hydrophilic emulsifier is included together with a lipophilic emulsifier which acts as a stabilizer. It is also preferred to include both an oil and a fat. Together, the emulsifier(s) with or without stabilizer(s) make-up the socalled emulsifying wax, and the wax together with the oil and fat make up the so-called emulsifying ointment base which forms the oily dispersed phase of the cream formu-

lations. An emulsion can also contain a sweetening agent, a flavoring agent, a preservative, and/or an antioxidant. Emulsifiers and emulsion stabilizers suitable for use in the formulation of the present invention include Tween 60, Span 80, cetostearyl alcohol, myristyl alcohol, glyceryl monostearate, sodium lauryl sulfate, glyceryl distearate alone or with a wax, or other materials well known in the art.

The compounds of Formula (I) can, for example, also be delivered intravenously, subcutaneously, and/or intramuscularly via any pharmaceutically acceptable and suitable 10 injectable form. Exemplary injectable forms include, but are not limited to, for example, sterile aqueous solutions comprising acceptable vehicles and solvents, such as, for example, water, Ringer's solution, and isotonic sodium chloride solution; sterile oil-in-water microemulsions; and 15 aqueous or oleaginous suspensions.

Formulations for parenteral administration may be in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions. These solutions and suspensions may be prepared from sterile powders or granules using one 20 or more of the carriers or diluents mentioned for use in the formulations for oral administration or by using other suitable dispersing or wetting agents and suspending agents. The compounds may be dissolved in water, polyethylene glycol, propylene glycol, ethanol, corn oil, cottonseed oil, 25 peanut oil, sesame oil, benzyl alcohol, sodium chloride, tragacanth gum, and/or various buffers. Other adjuvants and modes of administration are well and widely known in the pharmaceutical art. The active ingredient may also be administered by injection as a composition with suitable 30 carriers including saline, dextrose, or water, or with cyclodextrin (i.e. Captisol), cosolvent solubilization (i.e. propylene glycol) or micellar solubilization (i.e. Tween 80).

The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally 35 acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending 40 medium. For this purpose any bland fixed oil may be employed, including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.

A sterile injectable oil-in-water microemulsion can, for 45 example, be prepared by 1) dissolving at least one compound of Formula (I) in an oily phase, such as, for example, a mixture of soybean oil and lecithin; 2) combining the Formula (I) containing oil phase with a water and glycerol mixture; and 3) processing the combination to form a 50 microemulsion.

A sterile aqueous or oleaginous suspension can be prepared in accordance with methods already known in the art. For example, a sterile aqueous solution or suspension can be prepared with a non-toxic parenterally-acceptable diluent or 55 solvent, such as, for example, 1,3-butane diol; and a sterile oleaginous suspension can be prepared with a sterile non-toxic acceptable solvent or suspending medium, such as, for example, sterile fixed oils, e.g., synthetic mono- or diglycerides; and fatty acids, such as, for example, oleic acid.

Pharmaceutically acceptable carriers, adjuvants, and vehicles that may be used in the pharmaceutical compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, self-emulsifying drug delivery systems (SEDDS) such as d-alphatocopherol polyethyleneglycol 1000 succinate, surfactants used in pharmaceutical dosage forms such as Tweens, poly-

ethoxylated castor oil such as CREMOPHOR surfactant (BASF), or other similar polymeric delivery matrices, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropyleneblock polymers, polyethylene glycol and wool fat. Cyclodextrins such as alpha-, beta-, and gamma-cyclodextrin, or chemically modified derivatives such as hydroxyalkylcyclodextrins, including 2- and 3-hydroxypropyl-cyclodextrins, or other solubilized derivatives may also be advantageously used to enhance delivery of compounds of the formulae described herein.

The pharmaceutically active compounds of this invention can be processed in accordance with conventional methods of pharmacy to produce medicinal agents for administration to patients, including humans and other mammals. The pharmaceutical compositions may be subjected to conventional pharmaceutical operations such as sterilization and/or may contain conventional adjuvants, such as preservatives, stabilizers, wetting agents, emulsifiers, buffers etc. Tablets and pills can additionally be prepared with enteric coatings. Such compositions may also comprise adjuvants, such as wetting, sweetening, flavoring, and perfuming agents.

The amounts of compounds that are administered and the dosage regimen for treating a disease condition with the compounds and/or compositions of this invention depends on a variety of factors, including the age, weight, sex, the medical condition of the subject, the type of disease, the severity of the disease, the route and frequency of administration, and the particular compound employed. Thus, the dosage regimen may vary widely, but can be determined routinely using standard methods. A daily dose of about 0.001 to 100 mg/kg body weight, preferably between about 0.0025 and about 50 mg/kg body weight and most preferably between about 0.005 to 10 mg/kg body weight, may be appropriate. The daily dose can be administered in one to four doses per day. Other dosing schedules include one dose per week and one dose per two day cycle.

For therapeutic purposes, the active compounds of this invention are ordinarily combined with one or more adjuvants appropriate to the indicated route of administration. If administered orally, the compounds may be admixed with lactose, sucrose, starch powder, cellulose esters of alkanoic acids, cellulose alkyl esters, talc, stearic acid, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, gelatin, acacia gum, sodium alginate, polyvinylpyrrolidone, and/or polyvinyl alcohol, and then tableted or encapsulated for convenient administration. Such capsules or tablets may contain a controlled-release formulation as may be provided in a dispersion of active compound in hydroxypropylmethyl cellulose.

Pharmaceutical compositions of this invention comprise at least one compound of Formula (I) and optionally an additional agent selected from any pharmaceutically acceptable carrier, adjuvant, and vehicle. Alternate compositions of this invention comprise a compound of the Formula (I) described herein, or a prodrug thereof, and a pharmaceutically acceptable carrier, adjuvant, or vehicle.

The present invention also encompasses an article of manufacture. As used herein, article of manufacture is intended to include, but not be limited to, kits and packages. The article of manufacture of the present invention, comprises: (a) a first container; (b) a pharmaceutical composition located within the first container, wherein the composition, comprises: a first therapeutic agent, comprising: a compound of the present invention or a pharmaceutically acceptable salt form thereof; and (c) a package insert stating that the pharmaceutical composition can be used for the treatment of a cardiovascular and/or inflammatory disorder (as defined previously). In another embodiment, the package 15 insert states that the pharmaceutical composition can be used in combination (as defined previously) with a second therapeutic agent to treat cardiovascular and/or inflammatory disorder. The article of manufacture can further comprise: 20 (d) a second container, wherein components (a) and (b) are located within the second container and component (c) is located within or outside of the second container. Located within the first and second containers means that the respec- 25 tive container holds the item within its boundaries.

The first container is a receptacle used to hold a pharmaceutical composition. This container can be for manufacturing, storing, shipping, and/or individual/bulk selling. First container is intended to cover a bottle, jar, vial, flask, syringe, tube (e.g., for a cream preparation), or any other container used to manufacture, hold, store, or distribute a pharmaceutical product.

The second container is one used to hold the first container and, optionally, the package insert. Examples of the second container include, but are not limited to, boxes (e.g., cardboard or plastic), crates, cartons, bags (e.g., paper or plastic bags), pouches, and sacks. The package insert can be physically attached to the outside of the first container via tape, glue, staple, or another method of attachment, or it can rest inside the second container without any physical means of attachment to the first container. Alternatively, the package insert is located on the outside of the second container. When located on the outside of the second container. When located on the outside of the second container it is preferable that the package insert is physically attached via tape, glue, staple, or another method of attachment. Alternatively, it can be adjacent to or touching the outside of the second container without being physically attached.

The package insert is a label, tag, marker, etc. that recites information relating to the pharmaceutical composition located within the first container. The information recited will usually be determined by the regulatory agency governing the area in which the article of manufacture is to be sold (e.g., the United States Food and Drug Administration). In one embodiment, the package insert specifically recites the indications for which the pharmaceutical composition has been approved. The package insert may be made of any material on which a person can read information contained therein or thereon. For example, the package insert is a printable material (e.g., paper, plastic, cardboard, foil, adhe-

86

sive-backed paper or plastic, etc.) on which the desired information has been formed (e.g., printed or applied).

Methods of Preparation

The compounds of the present invention can be prepared in a number of ways well known to one skilled in the art of organic synthesis. The compounds of the present invention can be synthesized using the methods described below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. Preferred methods include, but are not limited to, those described below. All references cited herein are hereby incorporated in their entirety by reference.

The compounds of this invention may be prepared using the reactions and techniques described in this section. The reactions are performed in solvents appropriate to the reagents and materials employed and are suitable for the transformations being effected. Also, in the description of the synthetic methods described below, it is to be understood that all proposed reaction conditions, including choice of solvent, reaction atmosphere, reaction temperature, duration of the experiment and work up procedures, are chosen to be the conditions standard for that reaction, which should be readily recognized by one skilled in the art. It is understood by one skilled in the art of organic synthesis that the functionality present on various portions of the molecule must be compatible with the reagents and reactions proposed. Such restrictions to the substituents that are compatible with the reaction conditions will be readily apparent to one skilled in the art and alternate methods must then be used. This will sometimes require a judgment to modify the 35 order of the synthetic steps or to select one particular process scheme over another in order to obtain a desired compound of the invention. It will also be recognized that another major consideration in the planning of any synthetic route in this field is the judicious choice of the protecting group used for protection of the reactive functional groups present in the compounds described in this invention. An authoritative account describing the many alternatives to the trained practitioner is Greene and Wuts (Protective Groups In Organic Synthesis, Third Edition, Wiley and Sons, 1999).

Compounds of Formula (I) may be prepared by reference to the methods illustrated in the following Schemes. As shown therein the end product is a compound having the same structural formula as Formula (I). It will be understood that any compound of Formula (I) may be produced by the schemes by the suitable selection of reagents with appropriate substitution. Solvents, temperatures, pressures, and other reaction conditions may readily be selected by one of ordinary skill in the art. Starting materials are commercially available or readily prepared by one of ordinary skill in the art. Constituents of compounds are as defined herein or elsewhere in the specification.

As shown in Scheme 1, compounds of Formula (I) can be produced, starting with the substituted 5-bromoindoles (2). 2 can be prepared from the 3-formyl indoles (via reduction) or from the 3-H indoles, via alkylation. Transition metal catalyzed cross coupling of 2 and boronate 3 followed by olefin reduction and Boc deprotection affords 4, which can then be coupled with pyridyl boronic acids and deprotected to give 6. Alkylation of 6 leads to the production of the compounds of Formula I.

SCHEME 1

$$\operatorname{Br}$$
 CH_3
 $\operatorname{R}_{(R_5)_n}$
 R_{H}
 $\operatorname{R}_{(R_5)_n}$
 R_{H}
 R_{2a}

Br

$$(R_5)_n$$

Br

 $(R_5)_n$
 $($

$$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\$$

$$(R_4)_m$$
 $(R_5)_n$
 $(R_5)_n$

90

-continued

$$R_3$$
 $(R_4)_m$
 R_1
 $(R_2)_p$
 $(R_5)_n$
 $(R_5)_n$
 $(R_5)_n$
 $(R_7)_n$
 $(R_8)_n$
 $(R_8)_n$

15

In an alternative preparation, bromoindole 2b can first be coupled with boronate 3 and reduced. Chlorination proceeds selectively on the 3-position, with bromination then providing the di-halogenated compound 7.

Scheme 2

Br
$$(R_{4})_{m}$$
 $(R_{4})_{m}$ $(R_{5})_{n}$ $(R_{5})_{n}$

2b

7

9

EXAMPLES

Preparation of compounds of Formula (I), and intermediates used in the preparation of compounds of Formula (I), can be prepared using procedures shown in the following Examples and related procedures. The methods and conditions used in these examples, and the actual compounds prepared in these Examples, are not meant to be limiting, but are meant to demonstrate how the compounds of Formula (I) can be prepared. Starting materials and reagents used in these examples, when not prepared by a procedure described herein, are generally either commercially available, or are reported in the chemical literature, or may be prepared by using procedures described in the chemical literature.

Abbreviations

Ac acetyl

AcOH acetic acid

ACN acetonitrile

AIBN 2,2-azobisiosbutyronitrile

anhyd. anhydrous

aq. aqueous

BH₃DMS boron dimethyl sulfide

Bn benzyl

Bu butyl

Boc tert-butoxycarbonyl

CV Column Volumes

DBU 1,8-diazabicyclo[5.4.0]undec-7-ene

DCE dichloroethane

DCM dichloromethane

DEA diethylamine

DIPEA diisopropylethylamine

DMF dimethylformamide

DMAP dimethylaminopyridine

DMF-DMA N,N-dimethylformamide dimethyl acetal

DMSO dimethylsulfoxide

Et₂N triethylamine

EtOAc ethyl acetate

Et ethyl

EtOH ethanol

Et₂O diethyl ether

H or H₂ hydrogen

h, hr or hrs hour(s)

HATU O-(7-azabenzotriazol-1-yl)-N,N, N', N'-tetramethyl- 45 uronium hexafluorophosphate

hex hexane

i iso

IPA isopropyl alcohol

HOAc acetic acid

HCl hydrochloric acid

HPLC high pressure liquid chromatography

LAH lithium aluminum hydride

LC liquid chromatography

LCMS Liquid Chromatograph-Mass Spectroscopy

M molar

mM millimolar

Me methyl

MeOH methanol

MHz megahertz

min. minute(s)

mins minute(s) M^{+1} (M+H)+

MOM-C1 chloromethyl methyl ether

MS mass spectrometry

n or N normal

NB S n-bromosuccinimide

NIS N-iodosuccinimide

92

nm nanometer

nM nanomolar

NMP N-methylpyrrolidine

Pd/C palladium on carbon

PdCl₂(dppf) [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II)

Pd₂(dba)₃ tris-(dibenzylideneacetone)dipalladium

Pd(OAc)₂ palladium acetate

Pet ether petroleum ether

10 Ph phenyl

Ret Time retention time

sat. saturated

TEA triethylamine

TFA trifluoroacetic acid

15 THF tetrahydrofuran

TsCl 4-toluenesulfonyl chloride

2nd generation Xphos precatalyst:

(Chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'biphenyl)[2-(2'-amino-1,1'-bi phenyl)]palladium(II)

20 Analytical and Preparative HPLC conditions:

Method QC-ACN-AA-XB: Column: Waters Acquity UPLC BEH C18, 2.1×50 mm, 1.7 μm particles; Mobile Phase A: 5:95 acetonitrile:water with 10 mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile:water with 10 mM

ammonium acetate; Temperature: 50° C.; Gradient: 0-100% B over 3 minutes, then a 0.75-minute hold at 100% B; Flow: 1.0 mL/min; Detection: UV at 220 nm.

OC Method:

Method QC-ACN-TFA-XB: Column: Waters Acquity UPLC BEH C18, 2.1×50 mm, 1.7 μm particles; Mobile Phase A: 5:95 acetonitrile:water with 0.1% trifluoroacetic acid; Mobile Phase B: 95:5 acetonitrile:water with 0.1% trifluoroacetic acid; Temperature: 50° C.; Gradient: 0-100% B over 3 minutes, then a 0.75-minute hold at 100% B; Flow: 1.0 mL/min; Detection: UV at 220 nm.

Method A1: L3 Acquity: Column: (LCMS) BEH C18,

2.1×50 mm, 1.7 μm particles;

Mobile Phase: (A) water; (B) acetonitrile; Buffer: 0.05% TFA; Gradient Range: 2%-98% B (0 to 1 min) 98% B (to 1.5 min) 98%-2% B (to 1.6 min); Gradient Time: 1.6 min; Flow Rate: 0.8 mL/min; Analysis Time: 2.2 min; Detection: Detector 1: UV at 254 nm; Detector 2: MS (Est).

Method B1: L2 Aquity(4); Column: (LCMS) BEH C18, 2.1×50 mm, 1.7 μm particles; Mobile Phase: (A) water; (B) acetonitrile; Buffer: 0.05% TFA; Gradient Range: 2%-98% B (0 to 1 min) 98% B (to 1.5 min) 98%-2% B (to 1.5 min); Gradient Time: 1.8 min; Flow Rate: 0.8 mL/min; Analysis Time: 2.2 min; Detection: Detector 1: UV at 254 nm;

50 Detector 2: MS (Est).

Method C1 SCP: Column: Waters Acquity UPLC BEH C18, 2.1×50 mm, 1.7 µm particles; Mobile Phase A: 5:95 acetonitrile:water with 10 mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile:water with 10 mM ammonium acetate. Temperature: 50° C.; Gradient: 0-100% B over 3 minutes, then a 0.75-minute hold at 100% B; Flow: 1.11 mL/min; Detection: UV at 220 nm.

Method D1 SCP: Column: Waters Acquity UPLC BEH C18, 2.1×50 mm, 1.7 μm particles; Mobile Phase A: 5:95 acetonitrile:water with 0.1% trifluoroacetic acid; Mobile Phase B: 95:5 acetonitrile:water with 0.1% trifluoroacetic acid; Temperature: 50° C.; Gradient: 0-100% B over 3 minutes, then a 0.75-minute hold at 100% B; Flow: 1.11 mL/min; Detection: UV at 220 nm.

65 Method E1 iPAC: Column: Waters Xbridge C18 4.6×50 mm 5 μm particles; Mobile Phase A: 5:95 acetonitrile:water with 10 mM ammonium acetate; Mobile Phase B: 95:5

acetonitrile:water with 10 mM ammonium acetate. Temperature: 50° C.; Gradient: 0-100% B over 1 minute; Flow: 4 mL/min; Detection: UV at 220 nm.

- Method F1 iPAC: Column: Waters Acquity BEH C18 2.1× 50 mm 1.7 μm particles; Mobile Phase A: 5:95 acetonitrile:water with 0.1% trifluoroacetic acid; Mobile Phase B: 95:5 acetonitrile:water with 0.1% trifluoroacetic acid; Temperature: 50° C.; Gradient: 0-100% B over 2.20 minutes; Flow: 0.800 mL/min; Detection: UV at 220 nm.
- (A): Column-Ascentis Express C18 (50×2.1 mm 2.7 μm) Mphase A: 10 mM NH₄COOH in water: ACN-(98:02); Mphase B: 10 mM NH₄COOH in water: ACN (02:98), Gradient: 0-100% B over 3 minutes, Flow=1 mL/min.
- (B): Waters Acquity BEH C18 (2.1×50 mm) 1.7 μm; Buffer: 5 mM ammonium acetate pH 5 adjusted with HCOOH, Solvent A:Buffer:ACN-(95:5), Solvent B:Buffer:ACN (5:95), Method: % B: 0 min-5%: 1.1 min -95%: 1.7 min-95%, Flow: 0.8 mL/min.
- (C): Column-Ascentis Express C18 (50×2.1 mm 2.7 μm) ₂₀ Mobile phase A: 0.1% HCOOH in water; Mobile phase B: ACN. Temperature: 50° C.; Gradient: 0-100% B over 3 minutes; Flow rate: 1.0 mL/min.
- (D): Kinetex XB-C18 (75x3 mm) 2.6 μm; Solvent A: 10 mM ammonium formate in water: acetonitrile (98:02); Mobile ²⁵ Phase B: 10 mM ammonium formate in water: acetonitrile (02:98); Temperature: 50° C.; Gradient: 0-100% B over 3 minutes; Flow rate: 1.1 mL/min; Detection: UV at 220 mm
- (E): Column: Ascentis Express C18 (50×2.1)mm, 2.7 μm; Mobile Phase A: 5:95 acetonitrile: water with 10 mM NH₄OAc; Mobile Phase B: 95:5 acetonitrile: water with 10 mM NH₄OAc; Temperature: 50° C.; Gradient: 0-100% B over 3 minutes; Flow: 1.1 mL/min.
- (F): Column: Ascentis Express C18(50×2.1)mm, 2.7 μm; Mobile Phase A: 5:95 acetonitrile: water with 0.1% TFA; Mobile Phase B: 95:5 acetonitrile: water with 0.1% TFA; Temperature: 50° C.; Gradient: 0-100% B over 3 minutes; ⁴⁰ Flow: 1.1 mL/min.
- (G): Column: Waters Acquity UPLC BEH C18 (2.1×50 mm), 1.7 μm; Solvent A=100% water with 0.05% TFA; Solvent B=100% acetonitrile with 0.05% TFA; gradient=2-98% B over 1 minute, then a 0.5-minute hold at 98% B; Flow rate: 0.8 mL/min; Detection: UV at 220 nm.
- (H): Column: Acentis Express C18 (50×2.1 mm) 1.7 μm,
 Acentis C8 NH₄COOH 5 min. M, Mobile Phase A: -10 mM ammonium formate: ACN-(98:2), Mobile Phase B: -10 mM ammonium formate: ACN-(2:98), Flow: 1 mL/min.
- (I) Column: Sunfire C18 (4.6×150) mm, 3.5 μ m; Mobile Phase A: 5:95 acetonitrile: water with 0.05% TFA; Mobile 55 Phase B: 95:5 acetonitrile: water with 0.05% TFA; Temperature: 50° C.; Gradient: 10-100% B over 12 minutes; Flow: 1 mL/min.
- (J) Column: Sunfire C18 (4.6×150)mm, 3.5 μm; Mobile Phase A: 5:95 acetonitrile: water with 0.05% TFA; Mobile Phase B: 95:5 acetonitrile: water with 0.05% TFA; Temperature: 50° C.; Gradient: 10-100% B over 25 minutes; Flow: 1 mL/min.
- (K): Column: Acquity UPLC BEH C18, 3.0×50 mm, 1.7 μm ₆₅ particles; Mobile Phase A: 5:95 acetonitrile: water with 10 mM ammonium acetate; Mobile Phase B: 95:5 acetoni-

94

trile: water with 10 mM ammonium acetate; Method: % B: O min-20%: 1.1 min -90%: 1.7 min-90%; Flow: 0.7 mL/min.

- (L): Column: Kinetex XB-C18 (75×3 mm-2.6 μm), Mobile Phase A: 10 mM ammonium formate: ACN-(98:2), Mobile Phase B: 10 mM ammonium formate: ACN-(2: 98), Flow: 1 mL/min.
- (M): Column: Acquity BEH C18 (3.0×50 mm) 1.7 μm, Mobile phase A: 0.1% TFA in water: Mobile phase B: 0.1% TFA in ACN,% B: 0 min-20%: 1.0 min -90%: 1.6 min 90%, Flow: 0.7 mL/min.
- (N) Column:)(Bridge BEH XP C18 (50×2.1)mm, 2.5 μm; Mobile Phase A: 5:95 acetonitrile:water with 10 mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 10 mM ammonium acetate; Temperature: 50° C.; Gradient: 0-100% B over 3 minutes, Flow: 1.1 mL/min; Detection: UV at 220 nm.

Intermediates

Intermediate T-1: tert-butyl 4-(2-bromo-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate

$$\begin{array}{c} \text{H}_{3}\text{C} \\ \text{H}_{3}\text{C} \\ \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{O} \\ \end{array} \begin{array}{c} \text{N} \\ \text{H} \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{Br} \\ \end{array}$$

Intermediate T-1A: 5-bromo-3-isopropyl-1H-indole

$$\begin{array}{c} \text{H}_3\text{C}\\ \text{Br}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$$

A 250 mL round bottom flask was charged with triethylsilane (8.90 g, 77 mmol), trichloroacetic acid (6.25 g, 38.3 mmol) and toluene (50 mL). The solution was heated to 70° C., then a solution of 5-bromo-1H-indole (5.0 g, 25.5 mmol) and acetone (2.247 mL, 30.6 mmol) in toluene (30 mL) was added drop wise via an addition funnel. The resulting brown solution was heated at 70° C. for 1.5 h. The solution was cooled to 10° C., quenched with 10% sodium bicarbonate and diluted with diethyl ether. The organic layer was separated, dried and concentrated under vacuum to afford crude compound. The crude compound was purified using silica gel chromatography eluting with 5% ethyl acetate in hexanes to afford 5-bromo-3-isopropyl-1H-indole (5.5 g,

23.10 mmol 95% yield) as an oil. LC retention time 1.42 min [D]. MS (E–) m/z: 238.2 (M+H).

Intermediate T-1B: tert-butyl 4-(3-isopropyl-1H-indol-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate

$$\begin{array}{c} \text{(T-1B)} \\ \text{H}_{3}\text{C} \\ \text{H}_{3}\text{C} \\ \end{array}$$

To a mixture of 5-bromo-3-isopropyl-1H-indole (5.5 g, 23.10 mmol) and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1(2H)-carboxylate (7.50 g, 24.25 mmol) in a 250 mL round bottom flask were added THF (50 mL) followed by an aqueous solution of potassium phosphate, dibasic (12.07 g, 69.3 mmol, 20 mL). The resulting reaction mixture was degassed for 10 minutes with nitrogen gas, then PdCl₂(dppf)-CH₂Cl₂ adduct, (0.472) g, 0.577 mmol) was added. The mixture was degassed again for 5 min. The resulting reaction mixture was heated at 75° C. for 18 hours. The reaction mixture was diluted with ethyl acetate (100 mL), poured into a separate funnel and was washed with water (2×50 mL), brine (50 mL), dried over sodium sulfate, and concentrated to give crude product. The crude material was purified using silica gel chromatography, eluting with 15% ethyl acetate in hexane. The fractions were collected and concentrated to afford tert-butyl 4-(3-isopropyl-1H-indol-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (6.5 g, 83% yield) as an oil. LCMS retention time 1.21 min [B]. MS (E-) m/z: 339 (M-H).

Intermediate T-1C: tert-butyl 4-(3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate

$$\begin{array}{c} \text{CH}_3\text{C} \\ \text{H}_3\text{C} \\ \end{array} \begin{array}{c} \text{CH}_3 \\ \text{O} \\ \end{array} \begin{array}{c} \text{O} \\ \text{N} \\ \text{N} \\ \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array}$$

To a solution of tert-butyl 4-(3-isopropyl-1H-indol-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (7.9 g, 23.20 mmol) in ethyl acetate (150 mL) under a nitrogen atmosphere, was added palladium on carbon (0.617 g, 0.580 mmol). The 60 vessel was pumped/purged three times with nitrogen gas and then evacuated. Hydrogen gas was introduced via a balloon and the mixture was stirred at room temperature for 5 hours. The suspension was filtered through celite and the filtrate was concentrated to give crude compound. The crude residue was purified by silica gel chromatography, eluting with 15% ethyl acetate in hexane. The combined fractions were

collected and concentrated to afford tert-butyl 4-(3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (6.5 g, 82% yield) as a white solid. LCMS retention time 2.48 min [C]. MS (E-) m/z: 341 (M-H).

Intermediate T-1

To a solution of tert-butyl 4-(3-isopropyl-1H-indol-5-yl) piperidine-1-carboxylate (6.3 g, 18.40 mmol) in DCE (60 10 mL) was added NBS (3.27 g, 18.40 mmol) dissolved in DCE (50 mL) drop wise via an addition funnel over 10 min at 0° C. The resulting brown solution was stirred at room temperature for 20 min. The reaction was quenched with sodium sulfite solution (15 mL). The volatiles were removed. The 15 residue was taken up in DCM (50 mL) and the aqueous layer was separated. The organic layer was dried over Na₂SO₄ and concentrated to afford crude compound. The crude compound was purified by silica gel chromatography, the compound was eluted in 15% ethyl acetate in Pet ether, the fractions was collected, and concentrated to afford tert-butyl 4-(2-bromo-3-isopropyl-1H-indol-5-yl) piperidine-1-carboxylate (6.4 g, 83% yield) as a white solid. LCMS retention time 2.58 min [H]. MS (E⁻) m/z: 367.2 (M-H). ¹H NMR (500 MHz, CHLOROFORM-d) δ 7.84 (br. s., 1H), 7.49 (d, J=0.9 Hz, 1H), 7.22 (d, J=8.4 Hz, 1H), 7.02 (dd, J=8.4, 1.5 Hz, 1H), 4.27 (br. s., 2H), 3.23 (quin, J=7.1 Hz, 1H), 2.84 (br. s., 3H), 1.88 (d, J=13.1 Hz, 2H), 1.50 (s, 9H), 1.43 (d, J=7.2 Hz, 6H), 1.24 (s, 2H).

Alternative Preparation of Intermediate T-1

Intermediate T-1A

A 5-liter 4-neck round bottom flask was charged with 35 triethylsilane (489 mL, 3061 mmol), trichloroacetic acid (250 g, 1530 mmol) and toluene (500 mL). The solution was heated to 70° C. Next, 5-bromo-1H-indole (200 g, 1020 mmol) dissolved in acetone (150 mL, 2040 mmol) and toluene (700 mL) was added dropwise over 30 minutes. 40 After the addition was complete, the resulting solution was heated at 90° C. for 3h. The reaction was then quenched by adding 10% NaHCO₃ solution (~2.5 liter) dropwise at 0-10° C. until the pH was basic. The organic layer and the aqueous layer were separated and the aqueous layer was extracted 45 with MTBE (2×1000 mL). The combined organic layers were washed with water and brine solution, dried over Na₂SO₄ and concentrated under vacuum to get a brown color oil. The crude residue was purified by 750 g silica gel chromatography eluting with PE:EtOAc (9:1). The product 50 was eluted at 8% EtOAc in petroleum ether, collected, and concentrated under vacuum at 50° C. A light brown gummy liquid was obtained and hexane (100 mL) was added. The mixture was stirred and cooled to -40° C. to -50° C. After 10 min, a solid was formed which was filtered and washed 55 with a minimal amount cold hexane. The compound was dried under vacuum to afford 5-bromo-3-isopropyl-1H-indole (215 g, 890 mmol, 87% yield) as an off-white solid. LCMS Er: 237.5; HPLC Ret. Time 3.75 min. Method D.

Intermediate T-1B

5-bromo-3-isopropyl-1H-indole (90 g, 378 mmol) and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1(2H)-carboxylate (140 g, 454 mmol) was dissolved in THF (1200 mL) in a 2 L round-bottomed flask. Tripotassium phosphate (241 g, 1134 mmol) was dissolved in water (300 mL). The aqueous solution was

added to the reaction mixture. The reaction mixture was purged with N₂. Then PdCl₂(dppf)-CH₂Cl₂ adduct (7.72 g, 9.45 mmol) was added to the reaction mixture. The reaction mixture was again purged with N₂. The reaction mixture was stirred at 80° C. for 18 h. The reaction mixture was filtered through celite and extracted with EtOAc. The combined organic layers were washed with brine, dried (sodium sulfate), and concentrated to remove the solvent. The crude material was purified by silica gel chromatography. The product was collected by eluting with 30% EtOAc:PE to afford tert-butyl 4-(3-isopropyl-1H-indol-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (125 g, 367 mmol). LCMS MH⁻: 341.2; HPLC Ret. Time 2.90 min.; Method: Column: Zorbax SB-18 (50×4.6 mm-5.0 μm); M. phase A: 10 mM NH₄COOH in H₂O: ACN-(98:2); M. phase B: 10 mM NH₄COOH in H₂O: ACN-(2:98); Flow rate: 1.5/min; Gradient: 30% B-100% B over 4 min. UV 220 nm.

Intermediate T-1C

In a 2 L round-bottomed flask, tert-butyl 4-(3-isopropyl-1H-indol-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (125 g, 367 mmol) was dissolved in ethyl acetate (1200 mL). 25 Pd/C (15.63 g, 14.69 mmol) was added and the reaction mixture was degassed under N2. The reaction mixture was stirred at room temperature for 18 h under H₂. Approximately 80% starting material was converted to product. The 30 reaction mass was filtered through celite and concentrated. The crude material was purified with silica gel chromatography. The product was collected by eluting with 20% EtOAc:PE to afford tert-butyl 4-(3-isopropyl-1H-indol-5-yl) piperidine-1-carboxylate (105 g, 307 mmol, 84% yield). LCMS MH-: 343.4; HPLC Ret. Time 2.61 min.; Method: Column: Zorbax SB-18 (50×4.6 mm-5.0 µm); M. phase A: 10 mM NH₄COOH in H₂O: ACN-(98:2); M. phase B: 10 mM NH₄COOH in H₂O: ACN-(2:98); Flow rate: 1.5/min; 40 Gradient: 30% B-100% B over 4 min.; UV 220 nm.

Intermediate T-1

In a 2 L round-bottomed flask tert-butyl 4-(3-isopropyl-1H-indol-5-vl)piperidine-1-carboxylate (100 g, 292 mmol) was dissolved in 1,2-dichloroethane (1200 mL). NBS (52.0 g, 292 mmol) solution in 1,2-dichloroethane (400 mL) and THF (800 mL) was added dropwise at 0° C. After the 50 addition of NBS solution, the reaction mixture was stirred for 30 min. The reaction mass was guenched with 10% sodium thiosulfate solution at 0° C. and diluted with DCM. The combined organic layers were washed with brine, dried (sodium sulfate), and concentrated. The crude material was 55 purified with silica gel chromatography. The product was collected by eluting with 10% EtOAc:PE. The dibromo product was observed (approximately 5-10%). The material was washed with cooled hexane to remove the dibromo product and afford tert-butyl 4-(2-bromo-3-isopropyl-1H- 60 indol-5-yl)piperidine-1-carboxylate (87 g, 206 mmol, 70.7% yield). LCMS MH+-56: 365.0; HPLC Ret. Time 4.21 min.; Method: Column: Kinetex XB-C18 (75×3 mm-2.6 μm); M. phase A: 10 mM NH₄COOH in H₂O:ACN-(98:02); M. phase B: 10 mM NH₄COOH in H₂O: ACN-(02:98); Flow 65 rate: 1.0/min; Gradient: 20% B-100% B over 4 min. UV 220

Intermediate T-2: tert-butyl 4-(3-isopropyl-2-(4,4,5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-5-yl)piperidine-1-carboxylate

To a mixture of tert-butyl 4-(2-bromo-3-isopropyl-1Hindol-5-yl)piperidine-1-carboxylate (1.0 g, 2.373 mmol), 2-dicyclohexyphosphino-2',6'-dimethoxybiphenyl (0.117 g, 0.285 mmol), and bis(benzonitrile)palladium(II)chloride (0.027 g, 0.071 mmol) in a 50 mL reaction tube was added dioxane (10 mL). The resulting reaction mixture was degassed for 10 min and then pinacolborane (0.456 g, 3.56 mmol) was added followed by the dropwise addition of TEA (0.992 mL, 7.12 mmol). The solution was again degassed for 5 min. The resulting reaction mixture was heated at 85° C. for 3 h. The reaction mixture was concentrated and the crude residue was dissolved in ethyl acetate (100 mL), poured into a separatory funnel and washed thoroughly with water (2×250 mL). The organic layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated under vacuum to afford the crude product. The residue was taken up in DCM (3 mL). The crude material was purified by combiflash system by eluting with 12% EtOAc/Pet ether. Following concentration of the fractions, the product was isolated as a white gummy product (0.75 g, 67.5% yield). LCMS retention time 4.27 min [H]. MS (E-) m/z: 467.3 (M-H). ¹H NMR (400 MHz, CHLOROFORM-d) δ 8.35-8.12 (m, 1H), 7.66-7.59 (m, 1H), 7.11-7.04 (m, 1H), 4.40-4.23 (m, 2H), 3.80-3.63 (m, 1H), 2.99-2.67 (m, 3H), 1.98-1.84 (m, 2H), 1.79-1.64 (m, 2H), 1.54-1.51 (m, 9H), 1.49-1.45 (m, 6H), 1.39-1.35 (m, 12H).

Alternative Preparation of Intermediate T-2

In a 1 L round-bottomed flask, tert-butyl 4-(2-bromo-3isopropyl-1H-indol-5-yl) piperidine-1-carboxylate (85 g, 202 mmol) was dissolved in dioxane (850 mL). Next, 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (9.11 g, 22.19 mmol) and bis(benzonitrile) palladium chloride (3.87 g, 10.09 mmol) were added. Pinacolborane (387 g, 3026 mmol) was added followed by the addition of TEA (84 mL, 605 mmol). The reaction reaction mixture was purged with nitrogen for 15-20 min. The reaction mixture was stirred at 90° C. for 20h. The reaction mixture was filtered through celite and the reaction was quenched with brine solution. Effervescence was observed. The reaction mixture was extracted with EtOAc, dried (sodium sulfate), and concentrated. The crude material was purified with silica gel chromatography. The product was collected by eluting with 10% EtOAc:PE to afford tert-butyl 4-(3-isopropyl-2-(4,4,5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-5-yl) piperidine-1-carboxylate (62.5 g, 133 mmol, 66.1% yield). LCMSEr: 469.4. HPLC Ret. Time 3.04 min.; Method:

15

Intermediate T-4: Tert-butyl 4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-in-dol-5-yl)piperidine-1-carboxylate

100

Column: Zorbax SB-18 (50×4.6 mm-5.0 µm); M. phase A: 10 mM NH₄COOH in H₂O: ACN-(98:2); M. phase B: 10 mM NH₄COOH in H₂O:ACN-(2:98); Flow rate: 1.5/min; Gradient: 30% B-100% B over 4 min.; UV 220 nm.

Intermediate T-3: Tert-butyl 4-(2-(7,8-dimethyl-[1,2, 4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate

To a mixture of tert-butyl 4-(2-bromo-3-isopropyl-1Hindol-5-yl)piperidine-1-carboxylate (60 g, 142 mmol), bis 25 (benzonitrile)palladium(ii) chloride (1.639 g, 4.27 mmol), 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (3.51 g, 8.54 mmol) and anhydrous dioxane (407 ml) under N2 at room temperature were added pinacolborane (62.0 mL, 427 30 mmol) and triethylamine (59.5 mL, 427 mmol). The mixture was heated at 85° C. for 5 min. The starting material was consumed. After the reaction mixture was cooled to room temperature (a water ice bath was used to fasten the cooling), 2 mL of 2 M K₃PO₄ solution was added. After the generation of bubbles diminished, the remainder of the 2 M potassium phosphate tribasic solution (214 mL, 427 mmol) was added, followed by 6-bromo-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (29.9 g, 132 mmol) and PdCl₂(dppf)- 40 CH₂Cl₂ adduct (4.07 g, 4.98 mmol). The reaction mixture was heated at 85° C. for 2h. The reaction went to completion. After the mixture was cooled to room temperature, the organic layer (a suspension) and the aqueous layer was 45 separated. The top organic layer was a suspension. It was concentrated and dissolved in DCM (1.5 L) to give a dark DCM solution and aqueous layer on the top. The water was removed and the DCM extraction was dried over Na₂SO₄, filtered through a Celite pad, washed with DCM and concentrated to give 150 g crude wet mud. The material was purified with silica gel chromatography using a Silica 40 g Gold column. The column was eluted with DCM and ethyl acetate. The product was collected when eluting with 50% 55 ethyl acetate:DCM to afford tert-butyl 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5yl)piperidine-1-carboxylate (56.9 g, 117.0 mmol, 82% yield) as an off-white solid. LCMS MH+: 488.5. HPLC Ret. Time 1.13 min. Method G. ¹H NMR (499 MHz, CHLORO-FORM-d) 8 8.45-8.41 (m, 1H), 8.36-8.33 (m, 1H), 7.90-7.84 (m, 1H), 7.66-7.63 (m, 1H), 7.39-7.34 (m, 1H), 7.17-7.12 (m, 1H), 4.39-4.26 (m, 2H), 3.04-2.94 (m, 1H), 2.92-2.75 (m, 3H), 2.72-2.65 (m, 3H), 2.27-2.21 (m, 3H), 2.00-1.90 $_{65}$ (m, 2H), 1.83-1.71 (m, 2H), 1.54-1.51 (m, 9H), 1.42-1.38 (m, 6H).

Boc
$$H_3C$$
 CH_3 $O-CH_3$ N^-

To a mixture of tert-butyl 4-(2-bromo-3-isopropyl-1Hindol-5-yl)piperidine-1-carboxylate (40 g, 95 mmol), bis (benzonitrile)palladium(ii) chloride (1.092 g, 2.85 mmol), 20 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (2.338 g, 5.70 mmol) and anhydrous dioxane (271 mL) under N₂ at room temperature, were added pinacolborane (41.3 mL, 285 mmol) and triethylamine (39.7 mL, 285 mmol). The mixture was heated at 85° C. for 10 min. The starting material was consumed. After the reaction mixture was cooled to room temperature, 2-5 mL of 2 M K₃PO₄ aqueous solution was added. After bubbling slowed down, the remainder of the 2 M potassium phosphate tribasic solution (142 mL, 285 mmol) was added, followed by 6-bromo-8-methoxy-[1,2,4] triazolo[1,5-a]pyridine (20 g, 88 mmol) and PdCl₂(dppf)-CH₂Cl₂ adduct (3.10 g, 3.80 mmol). The mixture was heated at 70° C. for 1.5 h. After completion of the reaction, 81 g of crude product after concentration was purified by silica gel chromatography (3 kg Gold column) eluting with DCM and ethyl acetate. The product was collected at 35% ethyl acetate:DCM to afford tert-butyl 4-(3-isopropyl-2-(8methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidine-1-carboxylate (52.6 g, 107 mmol, 113% yield). LCMS MH⁻: 490.1. HPLC Ret. Time 1.08 min. Method G.

Intermediate F-1: 6-bromo-[1,2,4]triazolo[1,5-a] pyridine

$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Commercially available reagent: CAS No 356560-80-0

Intermediate F-2: 6-bromo-8-methyl-[1,2,4]triazolo [1,5-a]pyridine

$$(F-2)$$
 N
 N
 N

To a stirred solution of 5-bromo-3-methylpyridin-2-amine (1.75 g, 9.36 mmol) in N,N-dimethylformamide (13.04 mL,

168 mmol) was added DMF-DMA (12.53 mL, 94 mmol). The reaction mixture was heated to 130° C. overnight. After cooling to room temperature, the volatiles were removed under reduced pressure to afford a brown oil. To an icecooled, stirred solution of the crude product in methanol (100 mL) and pyridine (15 mL) was added hydroxylamine-O-sulfonic acid (1.587 g, 14.03 mmol). The reaction mixture was allowed to warm to room temperature and was stirred overnight. The volatiles were removed under reduced pressure, and the residue was partitioned between aqueous sodium bicarbonate solution and ethyl acetate. The aqueous layer was further extracted with ethyl acetate, and the combined organic layers were washed sequentially with water (10 mL) and saturated aqueous brine solution (10 mL), $_{15}$ dried over magnesium sulfate, and concentrated in vacuo to 6-bromo-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (1.98 g). LC-MS: M+1=212/214. Rt=0.80 min, [A1]; ¹H NMR (400 MHz, DMSO-d₆) δ 9.20 (s, 1H), 8.48 (s, 1H), 7.67 (s, 1H), 2.55 (s, 3H).

Intermediate F-3: 6-bromo-7-methyl-[1,2,4]triazolo [1,5-a]pyridine

$$H_3C$$
 N
 N
 N
 N
 N

To a 40 mL vial with a pressure relief septum were added 5-bromo-4-methylpyridin-2-amine (5.00 g, 26.7 mmol), DMF (10 mL) and N,N-dimethylformamide dimethyl acetal (11.99 mL, 90 mmol). The vial was heated to 130° C. for 6 35 hours. The vial was cooled to room temperature, the volatiles were removed under vacuum. The resulting oil was dissolved in MeOH (5 mL) and pyridine (3.24 mL, 40.1 mmol) and cooled to 0° C. Hydroxylamine-O-sulfonic acid (4.53 g, 40.1 mmol) was added over 15 minutes and the 40 mixture was allowed to warm to room temperature overnight. The solution was concentrated under vacuum. The resulting white solid was partitioned between EtOAc and saturated sodium bicarbonate. The organic layer was separated and the bicarbonate layer was extracted with EtOAc 45 (2×50 mL). The combined organics were washed with water (50 mL) and brine (50 mL), dried over magnesium sulfate, filtered and concentrated to afford 6-bromo-7-methyl-[1,2, 4]triazolo[1,5-a]pyridine as a white solid. (4.5 g, 21.22 mmol, 79% yield). LC-MS: M+1=212/214, rt=0.70 min., 50 [A1].

Intermediate F-4: 6-bromo-7,8-dimethyl-[1,2,4]tri-azolo[1,5-a]pyridine

$$\begin{array}{c} CH_3 \\ H_3C \\ \hline \\ Br \end{array}$$

To a 40 mL vial with a pressure relief septum were added 5-bromo-3,4-dimethylpyridin-2-amine (5.00 g, 24.87

102

mmol), DMF (10 mL) and N,N-dimethylformamide dimethyl acetal (11.15 mL, 83 mmol). The vial was heated to 80° C. for 6 hours. The vial was cooled to room temperature. The volatiles were removed under vacuum and the resulting oil was dissolved in MeOH (5 mL) and pyridine (3.02 mL, 37.3 mmol) and cooled to 0° C. Hydroxylamine-O-sulfonic acid (4.22 g, 37.3 mmol) was added over 15 minutes and the mixture allowed to warm to room temperature overnight. The solution was concentrated under vacuum. The resulting white solid was partitioned between EtOAc and 1.5 M potassium phosphate solution. The organic layer was separated and the aqueous layer was extracted with EtOAc (2×50 mL). The combined organics were washed with water (50 mL) and brine (50 mL), dried over magnesium sulfate, filtered and concentrated to give a white solid. The solid was $_{20}\,$ dissolved in DCM and MeOH and charged to an 80G silica gel column which was eluted with 0-100% ethyl acetate/ hexane. Following concentration of the fractions, 6-bromo-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (5.2 g, 23.00 25 mmol, 92% yield) was collected as a whitish solid. LC-MS: M+1=226/228, rt=0.75 min, [A1]; ¹H NMR: ¹H NMR (400 MHz, CHLOROFORM-d) δ 8.68 (s, 1H), 8.26 (s, 1H), 2.68 (s, 3H), 2.50 (s, 3H).

Alternative Preparation of Intermediate F-4

To the suspension of 5-bromo-3,4-dimethylpyridin-2amine (10 g, 49.7 mmol) in DMF (50 mL) was added 1,1-dimethoxy-N,N-dimethylmethanamine (15.32 mL, 114 mmol). The mixture was stirred at 110° C. for 12 h under N₂. All the starting material amine was converted to intermediate imine (M+1, 256) after 12 h. The reaction mixture was concentrated to remove volatiles under high vacuum rotavap. Solvent DMF still remained in the black reaction mixture. The resulting residue was diluted with MeOH (50 mL) and pyridine (6.03 mL, 74.6 mmol). The mixture was cooled to 0° C. and hydroxylamine-O-sulfonic acid (8.88 g, 74.6 mmol) was added over 15 min. The mixture was stirred at room temperature over 24h. The reaction was completed and the desired product was found after 19 h. The crude reaction mixture was concentrated to remove volatiles. The resulting yellow solid was dissolved in 200 mL EtOAc and quenched with saturated NaHCO₃ solution slowly (200 mL) 55 with gas generated during the addition of sodium bicarbonate. The organic layer was separated and the aqueous layer was back-extracted with EtOAc. The combined organic layer was washed with H₂O (30 mL), brine (2×30 mL) and 60 dried over Na₂SO₄. The crude product was purified with silica gel chromatography eluting with EtOAc and hexane to afford 6-bromo-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (8 g, 35.4 mmol, 71.1% yield). LCMS MH⁻: 226.08. HPLC Ret. Time 0.71 min. Method G. ¹H NMR (400 MHz, CHLOROFORM-d) & 8.79-8.63 (m, 1H), 8.39-8.10 (m, 1H), 2.81-2.61 (m, 3H), 2.57-2.48 (m, 3H).

Intermediate F-5: 6-bromo-8-methoxy-[1,2,4]tri-azolo[1,5-a]pyridine

$$H_3C$$
 (F-5)

To a stirred solution of 5-bromo-3-methoxypyridin-2- 15 amine (7.5 g, 36.9 mmol) in DMF (15 mL) was added DMF-DMA (15 mL, 112 mmol). The reaction mixture was heated to 130° C. overnight. After cooling to room temperature, the volatiles were removed under reduced pressure to provide a brown oil. To an ice-cooled, stirred solution of the 20 brown oil in methanol (150 mL) and pyridine (20 mL) was added hydroxylamine-O-sulfonic acid (6.27 g, 55.4 mmol). The reaction mixture was allowed to warm to room temperature and was stirred overnight. The volatiles were removed under reduced pressure, and the residue was par- 25 titioned between aqueous sodium bicarbonate solution and ethyl acetate. The aqueous layer was further extracted with ethyl acetate, and the combined organic layers were washed sequentially with water (10 mL) and saturated aqueous brine solution (10 mL), dried over sodium sulfate, and concentrated in vacuo to afford crude product. The residue was taken up in DCM (3 mL). The crude was purified by combiflash 3% MeOH: 97% CHCl₃. Following concentration of fractions, 6-bromo-8-methoxy-[1,2,4]triazolo[1,5-a] pyridine (5.0 g, 21.93 mmol, 59.4% yield) was collected as a yellow solid. LCMS: M=228.5, R_z=1.06 min., Column: ZORBAX SB C18 (50×4.6 mm, 5.0 μM) Method: 10 mM NH₄COOH in water +ACN; ¹H NMR (400 MHz, DMSOd6) δ=4.01 (s, 3H), 7.26 (s, 1H), 8.45 (s, 1H), 8.95 (s, 1H).

Intermediate F-6: 6-bromo-8-(methoxymethyl)-[1,2, 4]triazolo[1,5-a]pyridine

$$H_3C$$
 N
 N
 N
 N
 N
 N

To a 40 mL reaction vial, were added 6-bromo-8-methyl- [1,2,4]triazolo[1,5-a]pyridine (2.000 g, 9.43 mmol), AIBN- (0.155 g, 0.943 mmol), NBS (1.679 g, 9.43 mmol), and $CCl_4(15 \text{ mL})$. The vial was sealed and heated to 75° C. overnight. The reaction mixture was cooled to room temperature and concentrated to dryness. The residue was used 60 without purification in the subsequent step.

To a 40 mL vial, were added the above residue, THF (15 mL), MeOH (10 mL), and aqueous NaOH (28.3 mL, 28.3 mmol). The reaction vial was capped and heated to 75° C. for 1 hour. LC-MS showed clean conversion to the product. 65 Water and ethyl acetate was added and the layers were separated. The organics were washed with water, then brine,

104

dried over Na_2SO_4 , filtered, and concentrated to give an off-white solid. LC-MS: M+1=242, rt=1.31 min, [A1]. 1H NMR (400 MHz, DMSO-d₆) δ 9.41-9.28 (m, 1H), 8.52 (s, 1H), 7.78-7.65 (m, 1H), 4.84-4.70 (m, 2H), 3.42 (s, 3H).

Intermediate F-7: 6-2-(2-amino-5-bromo-1,2-dihy-dropyridin-3-yl)ethanol

In a 100 mL 2-neck round bottom flask, and under a nitrogen atmosphere, was added 2-(2-aminopyridin-3-yl) acetic acid (0.250 g, 1.622 mmol) and THF (8 mL). At 5° C., LAH was added portion-wise to the solution. The ice bath was removed and the reaction mixture was heated at reflux overnight. After 16 hours, the solvent had evaporated. Diethyl ether was added. Following cooling, the reaction mixture was placed in an ice bath. The LAH was quenched with MeOH, then water. Sodium sulfate was added and the mixture was filtered, and washed with diethyl ether. The filtrate was concentrated and then dissolved in DCM (5 mL) and cooled to 5° C. Next, NBS (0.289 g, 1.622 mmol) in DCM (2 mL) was added. The reaction mixture was warmed to room temperature. The reaction was quenched with 2 mL of a 10% sodium sulfite solution. DCM (20 mL) and water (20 mL) were added and the contents was added to a separatory funnel. The layers were separated. The organics were washed with brine dried over Na2SO4, filtered and concentrated to give crude product. LC-MS: M⁺¹=219, R,=0.49 min, [A1]. This material was carried on similarly as in general procedure for F-2 to afford (6-bromo-[1,2,4] triazolo[1,5-a]pyridin-8-yl)ethanol (0.065 g, 73%). LC-MS: $M^{+1}=242/244$, R_t=0.65 min, [A1].

Intermediate F-8: (6-bromo-[1,2,4]triazolo[1,5-a] pyridin-8-yl)methanol

Intermediate F-8 was prepared according to general procedure for F-6 starting from 6-bromo-8-methyl-[1,2,4]tri-azolo[1,5-a]pyridine and without methanol in the second step. LC-MS: M⁺¹=228/230, R_{*}=0.60 min, [A1].

Intermediate F-9: rac-1-(6-bromo-[1,2,4]triazolo[1, 5-a]pyridin-8-yl)ethan-1-ol

In a 40 mL reaction vial were added 2-amino-5-bromonicotinaldehyde (0.750 g, 3.73 mmol) and under nitrogen gas, THF (10 mL). The mixture was cooled to -20° C. and 3 M methylmagnesium chloride in Et₂O (4.97 mL, 14.92 mmol) was added via syringe over 20 minutes. The reaction mixture 20 was warmed to room temperature and stirred for 3 hours. The reaction mixture was cooled to -20° C. and quenched slowly with saturated ammonium chloride. Water and ethyl acetate were added and the layers were separated. The collected organics were washed with saturated NaCl, dried over Na2SO4, filtered and concentrated to dryness to afford rac-1-(2-amino-5-bromopyridin-3-yl)ethanol. This material was carried on similarly as in general procedure for F-1 to afford rac-1-(6-bromo-[1,2,4]triazolo[1,5-a]pyridin-8-yl) ethan-1-ol (0.53 g, 58%). LC-MS: $M^{+1}=242/244$, $R_{f}=0.58$ min, [A1].

Intermediate F-10: 2-(6-bromo-[1,2,4]triazolo[1,5-a] pyridin-8-yl)propan-2-ol

HO
$$CH_3$$
 (F-10)
$$N N$$

In a 40 mL reaction vial was added methyl 2-amino-5-bromonicotinate (1.240 g, 5.37 mmol) and under a nitrogen atmosphere, THF (10.73 mL). The mixture was cooled to -20° C. and 3 M methylmagnesium chloride in Et₂O (7.16 55 mL, 21.47 mmol) was added via syringe over 20 minutes. The reaction mixture was warmed to room temperature and stirred for 3 hours. The reaction mixture was cooled to -20° C. and the reaction was quenched slowly with the addition of saturated ammonium chloride. Water and ethyl acetate were added and the layers were separated. The collected organics were washed with saturated NaCl, dried over Na₂SO₄, filtered and concentrated to dryness to afford 2-(2-amino-5-bromopyridin-3-yl) propan-2-ol LC-MS: 65 M⁺¹=231.3/233.0, R_x=0.49 min, [A1]. This material was carried on similarly as in general procedure for F-1 to afford

106

2-(6-bromo-[1,2,4]triazolo[1,5-a]pyridin-8-yl)propan-2-ol (0.65 g, 59%). LC-MS: M^{+1} =255.6/257.8, R_t =0.85 min, [D1].

Intermediate F-11: (6-bromo-7-methyl-[1,2,4]tri-azolo[1,5-a]pyridin-8-yl)methanol

$$H_3C$$
 N
 N
 N
 N

Intermediate F-11A: (2-amino-4-methylpyridin-3-yl)methanol

In a 100 mL Schlenk flask (heat gun dried) was added N-(4-methylpyridin-2-yl) pivalamide (0.300 g, 1.560 mmol). Diethyl ether (5.20 mL) was added and the reaction mixture was cooled to -78° C. Next, 1.7 M tert-butyllithium in pentane (2.019 mL, 3.43 mmol) was added via syringe, drop-wise. The reaction mixture was stirred at -78° C. for 3 hours and then chloromethyl methyl ether (0.142 mL, 1.872 mmol) was introduced. The reaction mixture was warmed to 45 room temperature and stirred overnight. The reaction was quenched with water. Ethyl acetate was added to the mixture. The mixture was poured into a separatory funnel and the layers were separated. The organics were washed with water, then brine, dried over Na2SO4, filtered and concentrated. The crude oil was purified on a silica gel using 0-50% ethyl acetate/hexane. Following concentration of the fractions, N-(3-(methoxymethyl)-4-methylpyridin-2-yl)pivalamide was collected as a tan oil. This material was suspended in 4 M aqueous HCl and heated to 110° C. for 48 hours. The reaction mixture was cooled to room temperature, diluted with diethyl ether and the contents poured into a separatory funnel. The layers were separated and the organic layer was discarded. The aqueous layer was basified with 1.5 M potassium phosphate dibasic solution and the suspension was extracted with ethyl acetate (three times extracted). The combined organics were washed with brine, dried over Na2SO4, filtered and concentrated to afford (2-amino-4-methylpyridin-3-yl)methanol (0.1 g, 46%). LC-MS: (M^{-1}) not observed on instrument, R_r=0.39 min by UV only, [A1].

Intermediate F-11B: (2-amino-5-bromo-4-methylpyridin-3-yl)methanol

$$H_3C$$
 H_3C
 NH_2
 NH_2

In a 40 mL reaction vial was added (2-amino-4-methylpyridin-3-yl)methanol (0.200 g, 1.448 mmol), DCM, and NBS (0.258 g, 1.448 mmol) as a suspension in 5 mL of DCM. The reaction mixture was stirred for 15 minutes. The reaction was quenched with a 10% sodium sulfite solution (1 mL). The reaction mixture was diluted with water and DCM, and transferred to a separatory funnel. The layers were separated and the organics were washed with brine, dried over Na₂SO₄, filtered and concentrated to afford (2-amino-5-bromo-4-methylpyridin-3-yl)methanol (0.08 g, 26%). LC-MS: M^{+1} =217/219, R_z =0.45 min, [A1].

Intermediate F-11

Intermediate F-11 was prepared from Intermediate F-11B according to the general procedure for F-2 to afford (6-bromo-7-methyl-[1,2,4]triazolo[1,5-a]pyridin-8-yl) methanol LC-MS: M^{+1} =242/244, R_r =0.60 min, [A1].

Intermediate F-12: 6-bromo-8-(methoxymethyl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine

$$H_3C$$
 N
 N
 N
 N

Intermediate F-12A 6-bromo-8-(methoxymethyl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine

$$H_3C$$
 O CH_3 NH_2

In a 40 mL reaction vial were added N-(3-(methoxymethyl)-4-methylpyridin-2-yl) pivalamide (0.100 g, 0.423 mmol) and 6 N aqueous HCl (2.116 mL, 2.116 mmol). The vial was capped and heated to 80° C. overnight. The mixture was basified with a 1.5 M dibasic potassium phosphate solution. The aqueous layer was extracted with ethyl acetate (2×50 mL). The combined organics were washed with a saturated NaCl solution, dried over Na₂SO₄, filtered and

108

concentrated to afford 3-(methoxymethyl)-4-methylpyridin-2-amine (R_z =0.44 min.) [A1]. This material was suspended in DCM (4 mL). NBS (0.075 g, 0.423 mmol) was dissolved in 1 mL of DCM and added to the reaction mixture dropwise via a pipet over 5 minutes. The reaction was quenched with the addition of 1 mL of a 10% sodium sulfite solution. The organic layer was pipetted off and concentrated. The residue was purified on silica gel using O-10% MeOH/DCM. Following concentration of the fractions, 5-bromo-3-(methoxymethyl)-4-methylpyridin-2-amine was collected as a tan oil. LC-MS: M^{+1} =231/233, R_z =0.53 min. 0.60 min, [D1].

Intermediate F-12

Intermediate F-12 was prepared from Intermediate F-12A according to the general procedure for F-1 to afford 6-bromo-8-(methoxymethyl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (0.03 g, 30%). LC-MS: $M^{+1}=256/258$, $R_t=1.07$ min. 0.60 min, [A1].

Intermediate F-13: 2-(6-bromo-[1,2,4]triazolo[1,5-a] pyridin-8-yl)acetonitrile

To a 40 mL reaction vial was added (6-bromo-[1,2,4] triazolo[1,5-a]pyridin-8-yl) methanol (0.500 g, 2.193 mmol) followed by the slow addition of SOCl₂ (1.600 mL, 21.93 mmol). The reaction mixture was stirred at 50° C. overnight. The reaction mixture was concentrated and placed under vacuum to remove the excess thionyl chloride. Next, acetonitrile, water and KCN-(0.714 g, 10.96 mmol) in water 45 (1 mL) were added. The reaction vessel was sealed and heated to 50° C. overnight. The reaction mixture was diluted with 1.5 M dibasic potassium phosphate solution and ethyl acetate was added. The reaction mixture was poured into a separatory funnel and the layers were separated. The organ-50 ics were washed with brine, then dried over Na₂SO₄, filtered and concentrated to afford 2-(6-bromo-[1,2,4]triazolo[1,5alpyridin-8-yl)acetonitrile as a tan solid (0.21 g, 40%). LC-MS: M⁺¹=236/238, R₂=0.60 min, [A1].

Intermediate F-14: 6-bromo-8-fluoro-7-methyl-[1,2, 4]triazolo[1,5-a]pyridine

$$H_3C$$
 N
 N
 N
 N

20

25

In a 40 mL reaction vial was added 3-fluoro-4-methylpyridin-2-amine (0.250 g, 1.982 mmol) in DCM (5 mL). To this was added a suspension of NBS (0.353 g, 1.982 mmol) in DCM (2 mL). The reaction mixture was stirred for 30 minutes. The reaction was quenched with the addition of 5 mL of a 10% sodium sulfite solution. DCM and water were added and the reaction mixture was poured into a separatory funnel. The layers were separated. The collected organics were washed with brine, dried over Na₂SO₄, filtered and concentrated to afford 5-bromo-3-fluoro-4-methylpyridin-2-amine. This material was carried on similarly as in general

Intermediate F-15: (6-bromo-[1,2,4]triazolo[1,5-a] pyridin-7-yl)methanol

procedure for F-2 to afford 6-bromo-8-fluoro-7-methyl-[1, 2,4]triazolo[1,5-a]pyridine (0.45 g, 49%). LC-MS:

 $M^{+1}=230/232$, $R_{\star}=0.71$ min. 0.60 min, [A1].

$$\begin{array}{c} \text{HO} \\ \\ \text{Br} \end{array} \begin{array}{c} N \\ \\ N \end{array}$$

Intermediate F-15A: 6-bromo-7-(bromomethyl)-[1, 2,4]triazolo[1,5-a]pyridine

$$\begin{array}{c} \text{(F-15A)} \\ \text{Br} \\ \text{N} \\ \text{N} \end{array}$$

In a 40 mL reaction vial were added 6-bromo-7-methyl- [1,2,4]triazolo[1,5-a]pyridine (0.670~g,3.16~mmol), carbon tetrachloride (6.32~mL), NBS (0.562~g,3.16~mmol) and AIBN-(0.052~g,0.316~mmol). The reaction vial was capped and heated at 75° C. for 5 hours. The reaction mixture was cooled to room temperature, filtered and the precipitate was 45 washed with CCl₄. The filtrate was concentrated to afford 6-bromo-7-(bromomethyl)-[1,2,4]triazolo [1,5-a]pyridine as a light yellow residue (0.72~g,78%). LC-MS: M^{+1} =290/292/294, R_s =0.75 min., [A1].

Intermediate F-15

To a 40 mL vial were added 6-bromo-7-(bromomethyl)-[1,2,4]triazolo[1,5-a]pyridine (1.000 g, 3.44 mmol), acetone (11 mL), sodium iodide (0.515 g, 3.44 mmol) and potassium 55 acetate (0.675 g, 6.87 mmol). The reaction mixture was capped and heated to 55° C. for 17 hours. The volatiles were removed under a stream of nitrogen gas and to the residue were added THF (10 mL), 1 mL of water, and sodium hydroxide (2.58 mL, 10.31 mmol). The vial was capped and 60 heated at 65° C. for 8 hours. The mixture was treated with 1 N HCl to approximately pH 7. Ethyl acetate was added and the layers were separated. The organics were washed with brine, dried over Na₂SO₄, filtered and concentrated to afford (6-bromo-[1,2,4]triazolo[1,5-a]pyridin-7-yl)methanol as a 65 whitish solid (0.35 g, 44%). LC-MS: M⁺¹=228/230, R_r=0.54 min., [A1].

110

Intermediate F-16: 2-((6-bromo-[1,2,4]triazolo[1,5-a]pyridin-8-yl)oxy)ethyl acetate

Intermediate F-16A: 2-((2-amino-5-bromopyridin-3-yl)oxy)ethyl acetate

In a 40 mL reaction vial under nitrogen gas, was added 2-amino-5-bromopyridin-3-ol (0.320 g, 1.693 mmol) and DMF (5 mL). The mixture was cooled to 5° C. and NaH (0.102 g, 2.54 mmol) was added. The reaction mixture was stirred at 5° C. for 1 hour. Next, 2-bromoethyl acetate (0.283 mL, 2.54 mmol) was introduced neat via a syringe. The reaction mixture was stirred at 5° C. and slowly warmed to room temperature overnight. The mixture was cooled to 5° C. and carefully diluted with water. Ethyl acetate was added and the mixture was transferred to a separatory funnel. The layers were separated and the organics were washed with brine, dried over sodium sulfate, filtered and concentrated to afford 2-((2-amino-5-bromopyridin-3-yl)oxy)ethyl acetate as a tan oil (0.45 g, 97%). LC-MS: M⁺¹=275/277, rt=0.52 min, [A1].

Intermediate F-16

Intermediate F-16A carried on similarly to general procedure for F-1 to afford 2-((6-bromo-[1,2,4]triazolo[1,5-a] pyridin-8-yl)oxy)ethyl acetate as a tan solid. LC-MS: M⁺¹=300/302, R_t=0.69 min, [A1].

Intermediate F-17: 6-bromo-8-(ethoxymethyl)-[1,2, 4]triazolo[1,5-a]pyridine

$$H_3C$$
 O N N N N

Intermediate F-17A: 6-bromo-8-(bromomethyl)-[1, 2,4]triazolo[1,5-a]pyridine

To a 40 mL reaction vial were added 6-bromo-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (2.000 g, 9.43 mmol), AIBN-(0.155 g, 0.943 mmol), NBS (1.679 g, 9.43 mmol), and $CCl_4(15$ mL). The vial was sealed and heated to 75° C. overnight. The reaction mixture was cooled to room temperature, filtered and the precipitate was washed with CCl_4 . The filtrate was concentrated to dryness to afford 6-bromo-

112

8-(bromomethyl)-[1,2,4]triazolo[1,5-a]pyridine, as a light yellow residue (1.9 g, 69%). LC-MS: $M^+=290/292/294$, $R_z=0.73$ min., [A1].

Intermediate F-17

To a 40 mL reaction vial were added 6-bromo-8-(bromomethyl)-[1,2,4]triazolo[1,5-a]pyridine (0.300 g, 1.031 mmol), ethanol (3.44 mL), sodium iodide (0.015 g, 0.103 mmol) and potassium acetate (0.051 g, 0.516 mmol). The reaction vial was capped and heated to 55° C. overnight. The reaction mixture was cooled to room temperature and concentrated to dryness. Water and ethyl acetate were added and the mixture was transferred to a separatory funnel. The layers were separated and the organics were washed with water, then brine, dried over Na₂SO₄, filtered, and concentrated to afford 6-bromo-8-(ethoxymethyl)-[1,2,4]triazolo[1, 5-a]pyridine (0.2 g, 72%). LC-MS: M^{+1} =256/258, R_r =0.79 min, [A1].

The following Fragments were prepared in a fashion similar to the synthetic methods described above.

TABLE 1

		TABLE 1			
Interm. No.	Starting Material	Structure	LCMS MH ⁺	Ret Time	HPLC Method
F-18	5-bromo-3,6-dimethyl- pyridin-2-amine	B_1 CH_3 N N CH_3	226/228	0.77	[TS1]
F-19	2-amino-5-bromo- nicotinonitrile	Br CN N	222.9	0.60	[TS1]
F-20	5-bromo-3-fluoro- pyridin-2-amine	Br N	216/218	0.62	[A1]
F-21	5-bromo-4-methyl pyridin-2-amine	Br N CH ₃	212/214	1.40	D
F-22	5-bromo-6-methyl pyridin-2-amine	B_{r} N N N N	212/214	1.47	D
F-23	5-bromo-3-methyl pyridin-2-amine	Br CH ₃ CCH ₃ CCH ₃	226/228	1.46	D

TABLE 1-continued

Interm.	Starting Material	Structure	LCMS MH ⁺	Ret Time	HPLC Method
F-24	5-bromo-4-methyl- pyridin-2-amine	Br N CH ₃	226/228	1.45	D
F-25	5-bromo-3-fluoro- pyridin-2-amine	$Br \longrightarrow F$ N CH_3	230/232	1.22	D
F-26	5-bromo-4-fluoro- pyridin-2-amine	Br N CH_3	230/232	1.12	D
F-27	5-bromo-3-(trifluoro- methyl)pyridin-2- amine	CF ₃ N N N	266/268	1.73	D
F-28	5-bromo-4-methoxy- pyridin-2-amine	H ₃ C O N N N	228/230	1.39	D
F-29	5-bromo-3-ethoxy- pyridin-2-amine	O CH ₃	242/244	0.99	D
F-30	5-bromo-3-ethoxy- pyridin-2-amine	O CH_3 N CH_3 N CH_3	256/258	1.93	D
F-31	5-bromo-3-methoxy- pyridin-2-amine	O CH_3 N CH_3 CH_3	242/244	1.55	D

TABLE 1-continued

		TABLE 1-continued			
Interm. No.	Starting Material	Structure	LCMS MH+	Ret Time	HPLC Method
F-32	5-bromo-3-(difluoro- methoxy)pyridin-2- amine	r r r r r r r r r r	278/280	2.06	D
F-33	5-bromo-4-isobutoxy- pyridin-2-amine	H ₃ C CH ₃	270/272	2.06	D
F-34	5-bromo-3-chloro- 4-methylpyridin-2- amine	H_3C N N CH_3	260/262	1.41	В
F-35	3,5-dibromo-4-methyl- pyridin-2-amine	H ₃ C N N	242/244	1.1	В
F-36	5-bromo-3-chloro- 4-methylpyridin-2- amine	H_3C N N N	246/248	9.9	A
F-37	5-bromo-6-methyl pyridin-2-amine	Br CH_3 CH_3	226/228	0.55	A
F-38	5-bromo-3-chloro- pyridin-2-amine	N N N N N N	246/248	0.55	A

30

45

50

TABLE 1-continued

Interm. No.	Starting Material	Structure	LCMS MH ⁺	Ret Time	HPLC Method
F-39	5-bromo-3-chloro- pyridin-2-amine	Br N N	232/234	0.48	A
F-40	5-bromo-4-(trifluoro- methyl)pyridin-2- amine	CF_3 N CH_3	280/282	0.67	K

Intermediate F-41: 4-(6-bromo-[1,2,4]triazolo[1,5-a] pyridin-8-yl)morpholine

(F-41)

Intermediate F-41A: 5-bromo-3-iodopyridin-2-amine

$$\begin{array}{c} \text{Br} & \text{(F-41A)} \\ \\ \text{N} & \text{NH}_2 \end{array}$$

To a stirred solution of 5-bromopyridin-2-amine (4.0 g, 23.12 mmol), TFA (2.316 mL, 30.1 mmol) in DMF (100 mL) at 0° C. were added portion wise NIS (6.76 g, 30.1 mmol). The reaction mixture was stirred at 50° C. for 16 h. The reaction mixture was quenched with ice cold water and sodium thiosulphate solution (3:1), the product was precipitated by adding the saturated NaHCO₃ solution (adjust pH-8), stirred for 10 min at 0° C. The resulting solid compound was collected by filtration to afford 5-bromo-3-iodopyridin-2-amine (5.1 g, 17.06 mmol, 73.8% yield) as a brown solid. MS (E⁺) m/z: 298.9 (M). Retention time: 1.16 min. [K].

Intermediate F-42B: (E)-N'-(5-bromo-3-iodopyridin-2-yl)-N,N-dimethylformimidamide

$$\begin{array}{c} \text{Br} & \text{ (F-42B)} \\ & \text{ N} & \text{ N} \\ & \text{ CH}_3 \end{array}$$

A solution of DMF-DMA (11.42 mL, 85 mmol) and 5-bromo-3-iodopyridin-2-amine (5.1 g, 17.06 mmol) in DMF (20.0 mL) was stirred at 130° C. for 16 h. The reaction mixture was cooled to room temperature and the volatiles were evaporated. The mixture was dried in high vacuum to afford (E)-N'-(5-bromo-3-iodopyridin-2-yl)-N,N-dimethylformimidamide (6.2 g, 17.51 mmol, 103% yield) as a brown semi-solid. MS (E⁺) m/z: 355.8 (M+2H). Retention time: 1.51 min. [K].

Intermediate F-43C: 6-bromo-8-iodo-[1,2,4]triazolo [1,5-a]pyridine

To a stirred solution of (E)-N'-(5-bromo-3-iodopyridin-2-yl)-N,N-dimethylformimidamide (6.1 g, 17.23 mmol) and pyridine (6.97 mL, 86 mmol) in MeOH (80.0 mL) at 0° C. was added hydroxylamine-O-sulfonic acid (3.89 g, 34.5 mmol). The reaction mixture was stirred at room temperature for 16 h. The reaction mixture was quenched with ice cold water and volatiles were evaporated. The mixture was dried in high vacuum. The residue was dissolved in saturated NaHCO₃ solution and extracted with chloroform (2×200 mL) and washed with brine. The organic layer was dried over sodium sulphate and concentrated. The resulting mate-

35

40

45

50

55

rial was purified by silica gel chromatography. The compound was eluted with 65% ethyl acetate and petroleum ether to afford 6-bromo-8-iodo-[1,2,4]triazolo[1,5-a]pyridine (1.8 g, 5.56 mmol, 32.2% yield) as a light yellow solid. MS (E⁺) m/z: 325.8, Retention time: 1.577 min. [L].

Intermediate F-43

A stirred mixture of 6-bromo-8-iodo-[1,2,4]triazolo[1,5a]pyridine (0.300 g, 0.926 mmol), morpholine (0.403 g, 4.63 mmol), and Cs2CO₃ (0.905 g, 2.78 mmol) in DMF (10.0 mL) was degassed for 5 min. Next, Pd₂(dba)₃ (0.085 g, 0.093 mmol) and Xantphos (0.054 g, 0.093 mmol) were added. The reaction mixture was stirred at 120° C. for 2.5 h in a microwave system. The reaction mixture was diluted with ethyl acetate, filtered and washed with excess ethyl acetate. The combined organic layers were washed with water, brine, dried over sodium sulphate and evaporated to afford crude material. The crude material was purified using a 24 g silica gel column, compound was eluted with 35% ethyl acetate and petroleum ether to afford 4-(6-bromo-[1, 20 2,4]triazolo[1,5-a]pyridin-8-yl)morpholine (0.180 g, 0.636 mmol, 68.6% yield) as a light yellow solid. MS (E⁺) m/z: 285.0, R_t: 1.60 min. [L].

The following examples were prepared according to the general procedure described above for Intermediate F-43. 25

TABLE 2

	11 10 12 2	,		
Intermediate No.	Structure	LCMS [M + 2H]	R _t (min)	HPLC Method
F-44	CH ₃	298.0	0.78	К
F-45	HN CH ₃	243.0	1.05	K
F-46	HN CF ₃	297.0	1.06	K
F-47	Br CH ₃ CH ₃ OH	287.0	0.90	K

120 TABLE 2-continued

	TABLE 2-com	mucu		
Intermediate No.	Structure	LCMS [M + 2H]	R _t (min)	HPLC Method
F-48	HN S O	319.0	0.76	K
F-49		333.0	0.75	K
F-50	Br N N	271.0	0.79	K
F-51	Br N N N N N N N N N N N N N N N N N N N	305.8	1.350	K

Intermediate F-52: 6-bromo-8-cyclopropyl-[1,2,4] triazolo[1,5-a]pyridine

A solution of 6-bromo-8-iodo-[1,2,4]triazolo[1,5-a]pyridine (0.400 g, 1.235 mmol) and cyclopropylboronic acid (0.318 g, 3.70 mmol) in a mixture of toluene (10.0 mL) and water (2.0 mL) was degassed for 5 min. Next, tricyclohexylphosphine (0.069 g, 0.247 mmol), Pd(OAc)₂ (0.028 g, 0.123 mmol) and Na₂CO₃ (1.852 mL, 3.70 mmol) were added. The resultant reaction mixture was stirred at 100° C. for 14 h in a sealed tube. The reaction mixture was cooled to room temperature, diluted with ethyl acetate, filtered, and washed with excess ethyl acetate. The combined organic layers were washed with water, brine, dried over sodium

121

sulphate, and evaporated to afford the crude compound. The crude compound was purified using a 40 g silica column. The compound was eluted with 35% ethyl acetate and pet ether to afford 6-bromo-8-cyclopropyl-[1,2,4]triazolo[1,5-a] pyridine (0.240 g, 1.008 mmol, 82% yield) as a light yellow solid. MS (E⁺) m/z: 240.0, R,: 1.05 min. [M].

Intermediate F-53: 4-(6-bromo-2-methyl-[1,2,4] triazolo[1,5-a]pyridin-8-yl)morpholine

$$\begin{array}{c} O \\ N \\ N \\ N \end{array}$$

Intermediate F-53A: (E)-N-(5-bromo-3-iodopyridin-2-yl)-N,N-dimethylacetimidamide

Br
$$CH_3$$
 CH_3 CH_3

A solution of 1,1-dimethoxy-N,N-dimethylpropan-2-amine (24.63 g, 167 mmol) and 5-bromo-3-iodopyridin-2-amine (5.0 g, 16.73 mmol) in DMF (20.0 mL) was stirred at 40 130° C. for 16 h. The reaction mixture was cooled to room temperature. The volatiles were evaporated and the material was dried in high vacuum to afford (E)-N'-(5-bromo-3-iodopyridin-2-yl)-N,N-dimethylacetimidamide (5.8 g, 15.76 mmol, 94% yield) as a brown semi-solid. MS (E⁺) m/z: 45 370.0, R_t: 0.68 min. [M].

Intermediate F-53B: 6-bromo-8-iodo-2-methyl-[1,2, 4]triazolo[1,5-a]pyridine

$$\begin{array}{c} I \\ \text{(F-53B)} \\ \\ \text{N} \\ \text{N} \end{array}$$

To a stirred solution of (E)-N'-(5-bromo-3-iodopyridin-2-yl)-N,N-dimethylacetimidamide (4.5 g, 12.23 mmol) and pyridine (4.94 mL, 61.1 mmol) in methanol (80.0 mL) at 0° C. was added hydroxylamine-O-sulfonic acid (2.76 g, 24.46 mmol). The reaction mixture was stirred at room temperature for 16 h. The reaction was quenched with ice cold water. 65 The volatiles were evaporated and the resulting material was dried in high vacuum. The residue was dissolved in saturated

122

NaHCO₃ solution, extracted with chloroform (2×200 mL) and washed with brine. The organic layer was dried over sodium sulphate and concentrated to afford crude material. The crude material was purified using a 40 g silica column. The compound was eluted with 50% ethyl acetate and pet ether to afford 6-bromo-8-iodo-2-methyl-[1,2,4]triazolo[1, 5-a]pyridine (2.2 g, 6.51 mmol, 53.2% yield) as a light yellow solid. MS (E⁺) m/z: 337.9 (M), R,: 1.04 min. [L].

Intermediate F-53

A stirred mixture of 6-bromo-8-iodo-2-methyl-[1,2,4]triazolo[1,5-a]pyridine (0.300 g, 0.888 mmol), morpholine (0.232 g, 2.66 mmol), and Cs₂CO₃ (0.723 g, 2.219 mmol) in DMF (10.0 mL) was degassed for 5 min. Next, Xantphos (0.051 g, 0.089 mmol) and Pd₂(dba)₃ (0.081 g, 0.089 mmol) were added. The reaction mixture was stirred at 120° C. for 2.5 h in a microwave system. The reaction mixture was diluted with ethyl acetate, filtered and washed with excess ethyl acetate. The combined organic layers were washed with water, brine, dried over sodium sulphate, and evapo-25 rated to obtain crude material. The crude material was purified using a 24 g silica column. The compound was eluted with 80% ethyl acetate and pet ether to afford 4-(6-bromo-2-methyl-[1,2,4]triazolo[1,5-a]pyridin-8-yl) (F-53A) 30 morpholine (0.180 g, 0.606 mmol, 68.2% yield) as a light yellow solid. MS (E⁺) m/z: 298.8, R_t: 1.08 min. [K].

Intermediate F-54: 6-bromo-8-cyclopropyl-2-methyl-[1,2,4]triazolo[1,5-a]pyridine

(F-54)
$$N \longrightarrow CH_3$$

A solution of 6-bromo-8-iodo-2-methyl-[1,2,4]triazolo[1, 5-a]pyridine (0.400 g, 1.184 mmol) and cyclopropylboronic acid (0.305 g, 3.55 mmol) in a mixture of toluene (10.0 mL) and water (2.0 mL) was degassed for 5 min. Next, tricyclohexylphosphine (0.066 g, 0.237 mmol), Pd(OAc), (0.027 g, 0.118 mmol) and Na₂CO₃ (1.775 mL, 3.55 mmol) were 55 added. The reaction mixture was stirred at 100° C. for 14 h in a sealed tube. The reaction mixture was cooled to room temperature. The mixture was diluted with ethyl acetate, filtered, and washed with excess ethyl acetate. The combined organic layers were washed with water, brine, dried over sodium sulphate, and evaporated to afford the crude compound. The crude compound was purified using a 24 g silica column. The compound was eluted with 35% ethyl acetate and pet ether to afford 6-bromo-8-cyclopropyl-2methyl-[1,2,4]triazolo[1,5-a]pyridine (0.220 g, 0.873 mmol, 73.7% yield) as a light yellow solid. MS (E⁺) m/z: 254.0, R_z: 1.12 min. [K].

124
Intermediate F-55C: 6-bromo-8-iodo-7-methyl-[1,2, 4]triazolo[1,5-a]pyridine

$$H_3C$$
 N
 N
 N
 N
 N

Intermediate F-55A: 5-bromo-3-iodo-4-methylpyridin-2-amine

$$CH_3$$
 (F-55A)

 NH_2

To a stirred solution of 5-bromo-4-methylpyridin-2-amine (5.0 g, 26.7 mmol), TFA (2.471 mL, 32.1 mmol) in DMF (100 mL) at 0° C. was added portion-wise NIS (9.02 g, 40.1 mmol). The reaction mixture was stirred at 55° C. for 2 h. The reaction was quenched with ice cold water and sodium thiosulphate solution (3:1). The product was precipitated by adding saturated NaHCO₃ solution (adjust pH-8) and stirring for 10 min at 0° C. The solid compound was collected by filtration to afford 5-bromo-3-iodo-4-methylpyridin-2-amine (8 g, 25.6 mmol, 96% yield) as a brown solid. MS 40 (E+) m/z: 314.9, R_r: 0.92 min. [M].

Intermediate F-55B (E)-N'-(5-bromo-3-iodo-4-methylpyridin-2-yl)-N,N-dimethylformimidamide

$$CH_3$$
 (F-55B)

 N
 CH_3
 CH_3
 CH_3

55

A solution of DMF-DMA (10.70 mL, 80 mmol) and 5-bromo-3-iodo-4-methylpyridin-2-amine (2.5 g, 7.99 mmol) in DMF (15.0 mL) was stirred at 130° C. for 16 h. The reaction mixture was cooled to room temperature and the volatiles were evaporated. The material was dried in high vacuum to afford crude (E)-N'-(5-bromo-3-iodo-4-methylpyridin-2-yl)-N,N-dimethylformimidamide (2.8 g, 7.61 65 mmol, 95% yield) as a brown semi-solid. MS (E⁺) m/z: 370.1, R_t: 1.59 min. [K].

$$H_3C$$
 N
 N
 N
 N

To a stirred solution of (E)-N'-(5-bromo-3-iodo-4-methylpyridin-2-yl)-N,N-dimethyl formimidamide (2.8 g, 7.61 mmol) and pyridine (3.08 mL, 38.0 mmol) in methanol (60.0 mL) at 0° C. was added hydroxylamine-O-sulfonic acid (1.290 g, 11.41 mmol). The reaction mixture was stirred at $_{20}\,$ room temperature for 16 h. The reaction was quenched with ice cold water. The volatiles were evaporated and the mixture was dried in high vacuum. The residue was dissolved in saturated NaHCO₃ solution, extracted with chloroform (2×150 mL), and washed with brine. The organic 25 layer was dried over sodium sulphate and concentrated to afford crude product. The crude product was purified by silica gel chromatography. The compound eluted with 65% ethyl acetate and pet ether to afford 6-bromo-8-iodo-7methyl-[1,2,4]triazolo[1,5-a]pyridine (1.5 g, 4.44 mmol, 58.3% yield) as a light yellow solid. MS (E+) m/z: 338.2 (M), Retention time: 1.11 min. [K].

Intermediate F-55

A solution of 6-bromo-8-iodo-7-methyl-[1,2,4]triazolo[1, 5-alpyridine (0.400 g, 1.184 mmol) and cyclopropylboronic acid (0.305 g, 3.55 mmol) in mixture of toluene (15.0 mL) and water (3.0 mL) was degassed for 5 min. Next, tricyclohexylphosphine (0.066 g, 0.237 mmol), Pd(OAc)₂ (0.027 g, 0.118 mmol) and Na₂CO₂ (1.775 mL, 3.55 mmol) were added. The reaction mixture was stirred at 100° C. for 14 h in a sealed tube. The reaction mixture was cooled to room temperature, diluted with ethyl acetate, filtered, and washed with excess ethyl acetate. The combined organic layers were washed with water, brine, dried over sodium sulphate, and evaporated to afford crude compound. The crude compound was purified by silica gel chromatography. The compound 50 eluted with 35% ethyl acetate and pet ether to afford 6-bromo-8-cyclopropyl-7-methyl-[1,2,4]triazolo[1,5-a] pyridine (0.280 g, 1.111 mmol, 94% yield) as a light yellow solid. MS (E⁺) m/z: 254.0, R_t: 2.11 min. [L]

Intermediate F-56: 6-bromo-8-methyl-2-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridine

$$CH_3$$
 N
 CF_3
 CF_3

126Intermediate F-57A: 3,5-dibromo-1λ⁴-pyridine-1,2-diamine 2,4,6-trimethylbenzenesulfonate

Br
$$CH_3$$
 H_3C CH_3 $(F-56A)$ NH_3^+ O_3S CH_3 O

To a stirred solution of ethyl o-mesitylsulfonylacetohydroxamate (3.05 g, 10.69 mmol) in dioxane (20 mL) cooled to 0° C. was added perchloric acid (1.074 g, 10.69 mmol). The mixture was stirred at ambient temperature for 30 min. The reaction mass was quenched with ice cold water, extracted with dichloromethane (100 mL), dried over sodium sulphate, and concentrated to afford crude 1-amino-5-bromo-3-methyl- $1\lambda^4$ -pyridin-2-aminium 2,4,6-trimethylbenzenesulfonate. To a stirred solution of 5-bromo-3-methylpyridin-2-amine (2 g, 10.69 mmol) in DCM (10 mL) was added 1-amino-5-bromo-3-methyl- $1\lambda^4$ -pyridin-2-aminium 2,4,6-trimethylbenzenesulfonate at 0° C. The reaction mixture was stirred at ambient temperature for 1 h. The reaction $^{\,\,25}$ mixture was diluted with water (25 mL), extracted with DCM (2×100 mL), dried over sodium sulphate, and concentrated to afford 1,2-diamino-5-bromo-3-methylpyridin-1-ium, 2, 4, 6-trimethylbenzenesulfonate as a white solid (2.1 g, 93%). ¹H NMR (300 MHz, CHLOROFORM-d) δ =7.91 30 (br. s., 1H), 7.63 (d, J=15.9 Hz, 1H), 7.28 (s, 2H), 6.89 (s, 1H), 3.72 (s, 1H), 2.81-2.47 (m, 6H), 2.36-2.02 (m, 6H), 1.23 (t, J=7.0 Hz, 2H).

Intermediate F-56

To a stirred solution of 1,2-diamino-5-bromo-3-methylpyridin-1-ium, 2,4,6-trimethylbenzenesulfonate 2.141 mmol) in MeOH (25 mL) at 0° C. was added trifluoroacetic anhydride (0.351 mL, 2.486 mmol). The reaction 40 mixture was stirred for 10 min at the same temperature. Next, Et₃N (0.346 mL, 2.486 mmol) was added and the reaction mixture was stirred at ambient temperature for 16 h. The reaction mixture was concentrated. The reaction was quenched with water (25 mL). The reaction mixture was 45 extracted with EtOAc (2×100 mL), dried over sodium sulphate, and concentrated to afford 6-bromo-8-methyl-2-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridine. The crude mass was purified by silica gel chromatography and eluted in 40% EtOAc in hexane to afford 6-bromo-8-methyl-2- 50 (trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridine (500 mg, 71.8%) as off white solid. LC retention time=1.28 min [K]. $MS (E^-) m/z: 280.0 (M+H).$

Intermediate F-57: 6-bromo-8-methoxy-2-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridine

To a stirred solution of ethyl o-mesitylsulfonylacetohydroxamate (2.266 g, 7.94 mmol) in dioxane (20 mL) cooled to 0° C. was added perchloric acid (1.074 g, 10.69 mmol). The reaction mixture was stirred at ambient temperature for 30 min. The reaction was quenched with ice cold water. The reaction mixture was extracted with dichloromethane (100 mL), dried over sodium sulphate, and concentrated to afford crude 1-amino-3,5-dibromo-1λ⁴-pyridin-2-aminium 2,4,6trimethylbenzenesulfonate. To a stirred solution of 3,5dibromopyridin-2-amine (2 g, 7.94 mmol) in DCM (10 mL) was added 1-amino-3,5-dibromo- $1\lambda^4$ -pyridin-2-aminium 2,4,6-trimethylbenzenesulfonate at 0° C. The reaction mixture was stirred at ambient temperature for 1 h. The reaction mixture was diluted with water (25 mL), extracted with DCM (2×100 mL), dried over sodium sulphate, and concentrated to afford 1,2-diamino-3,5-dibromopyridin-1-ium, 2,4,6-trimethylbenzenesulfonate as a white solid (2.1 g, 93.5%). ¹H NMR (400 MHz, DMSO-d6) δ =7.88 (d, J=2.0 Hz, 1H), 7.70 (d, J=2.0 Hz, 1H), 7.12 (s, 1H), 6.70 (s, 4H), 3.56 (s, 1H), 2.10 (s, 6H).

Intermediate F-57B: 6,8-dibromo-2-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridine

$$\begin{array}{c} \text{Br} \\ \\ \text{N} \\ \\ \text{N} \end{array}$$

To a stirred solution of 1,2-diamino-3,5-dibromopyridin1-ium, 2,4,6-trimethylbenzenesulfonate (1 g, 2.141 mmol)
in MeOH (25 mL) cooled to 0° C. was added trifluoroacetic
anhydride (0.351 mL, 2.486 mmol). The reaction mixture
was stirred for 10 mins. After Et₃N-(0.346 mL, 2.486 mmol)
was added, the reaction mixture was stirred at ambient
temperature for 16 h. The reaction mixture was concentrated, quenched with water (25 mL), extracted with EtOAc
(2×100 mL), dried over sodium sulphate, and concentrated
to afford 6,8-dibromo-2-(trifluoromethyl)-[1,2,4]triazolo[1,
5-a]pyridine. The crude mass was purified by silica gel
chromatography, and eluted with 40% EtOAc in hexane to
afford 6,8-dibromo-2-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridine (650 mg, 73.8%) as off white solid. LC retention
time=1.37 min [K]. MS (E⁻) m/z: 344.0 (M+H).

Intermediate F-57

To a solution of 6,8-dibromo-2-(trifluoromethyl)-[1,2,4] triazolo[1,5-a]pyridine (350 mg, 1.015 mmol) in acetonitrile

30

35

(15 mL) was added sodium methoxide (54.8 mg, 1.015 mmol). The resulting mixture was stirred at 85° C. for 1 h. The reaction mixture was quenched with water (20 mL), extracted with EtOAc (2×50 mL), dried over sodium sulphate, and concentrated to afford 6-bromo-8-methoxy-2-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridine. The crude mass was purified by silica gel chromatography, and was eluted with 50% EtOAc in hexane to afford 6-bromo-8-methoxy-2-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridine (160 mg, 53.5%) as white solid. LC retention time=1.26 min [K]. MS (E $^-$) m/z: 294.0 (M–H).

Intermediate F-58: 6-bromo-[1,2,4]triazolo[1,5-a] pyridin-2-amine

$$N = N$$
 NH₂ NH₂

Commercially available reagent: CAS No 356560-80-0.

Intermediate F-59: 6-chloro-8-trideuteromethyl-[1,2, 4]triazolo[1,5-a]pyridine

$$(F-59)$$

$$N$$

$$N$$

8-bromo-6-chloro-[1,2,4]triazolo[1,5-a]pyridine was prepared following the general procedure for F-2 starting from 3-bromo-5-chloropyridin-2-amine. LC retention time 0.67 min [TS1]. MS (ES⁺) m/z: 233.9 (M+H).

A solution of 8-bromo-6-chloro-[1,2,4]triazolo[1,5-a] pyridine (150 mg, 0.645 mmol) in THF (5.0 mL) was degassed with nitrogen gas for 5 minutes. Iron(III) acetylacetonate (22.79 mg, 0.065 mmol) was added. The light yellow solution became red and was degassed again, and then evacuated and backfilled with nitrogen gas three times. Trideuteromethylmagnesium iodide (0.97 mL, 0.97 mmol) was added and the reaction mixture was stirred for 30 minutes at room temperature. Upon completion, the reaction mixture was diluted with dichloromethane (20 mL), ammonium chloride (10 mL) and water (10 mL). The layers were separated, and the aqueous layer was extracted with dichloromethane (2×15 mL). The combined organic layers were dried over sodium sulfate, filtered, and concentrated to afford a crude residue, which was purified using silica gel chromatography eluting with hexanes/ethyl acetate 0-70% to afford 6-chloro-8-trideuteromethyl-[1,2,4]triazolo[1,5-a] pyridine (41 mg, 0.240 mmol, 37.2% yield). LC retention time 0.64 min [TS1]. MS (ES⁺) m/z: 171.08 (M+H). ¹H NMR (400 MHz, CHLOROFORM-d) δ 8.50 (d, J=2.0 Hz, 1H), 8.30 (s, 1H), 7.29 (d, J=2.0 Hz, 1H).

6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1, 2,4|triazolo[1,5-a]pyridine

Intermediate 1A: tert-butyl 4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate

$$\begin{array}{c} H_3C \\ H_3C \\ \end{array} \begin{array}{c} CH_3 \\ \\ H_3C \\ \end{array} \begin{array}{c} CH_3 \\ \\ \\ N \\ \end{array}$$

To a stirred solution of tert-butyl 4-(3-isopropyl-2-(4,4,5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-5-yl)piperidine-1-carboxylate (50 mg, 0.107 mmol), 6-bromo-[1,2, 4]triazolo[1,5-a]pyridine (31.7 mg, 0.160 mmol) in tetrahydrofuran (5 mL), and water (0.5 mL) was added potassium phosphate tribasic (68.0 mg, 0.320 mmol). The solution was degassed with nitrogen for 10 mins. Next, PdCl₂(dppf) (7.81 mg, 10.67 µmol) was added and the solution was degassed again for 10 mins. The reaction mixture was heated to 75° C. for 16 h. The reaction progress was monitored by LCMS. The reaction mass was filtered through a celite bed, washed with EtOAc, and concentrated to afford tert-butyl 4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidine-1-carboxylate (50 mg, 0.109 mmol). The material was carried on directly into the subsequent step without further purification.

Example 1

To a stirred solution of tert-butyl 4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxy late (50 mg, 0.109 mmol) in DCM (2 mL) was added 1,4-dioxane (4N HCl) (0.2 mL). The reaction mixture was stirred at room temperature for 16 h. The progress of the reaction was monitored by LCMS. The reaction mixture was concentrated and the crude material was purified by preparative LC/MS with the following conditions: Waters Xbridge C18,19×150 mm, 5 μm; Guard Column: Water XBridge C18,19×10 mm, 5 μm; Mobile Phase A: 5:95 acetonitrile:water with 0.1% TFA; Mobile Phase B: 95:5 acetonitrile:water with 0.1% TFA; Gradient: 2-20% B over 25 minutes, followed by a 10 minute hold at 20% B and 5

minute hold at 100% B; Flow:15 mL/min. Fractions containing the product were combined and dried using a Genevac centrifugal evaporator. The yield of the product was 5.4 mg, and its estimated purity by LCMS analysis was 100%. Two analytical LC/MS injections were used to determine the final purity. Injection 1 conditions: Column: Ascentis Express C18(50×2.1)mm, 2.7 um; Mobile Phase A: 5:95 Acetonitrile:water with 10 mM NH₄OAc; Mobile Phase B: 95:5 Acetonitrile:water with 10 mM NH₄OAc; Temprature: 50° C.; Gradient: 0-100% B over 3 minutes; Flow: 1.1 mL/min. Injection 2 conditions: Column: Ascentis Express C18(50×2.1)mm, 2.7 µm; Mobile Phase A: 5:95 acetonitrile: water with 0.1% TFA; Mobile Phase B: 95: 5 Acetonitrile: water with 0.1% TFA; Temperature: 50° C.; Gradient:0-100% B over 3 minutes; Flow:1.1 mL/min. LCMS MH+=360 Ret. Time=0.66 min [A1]; Proton NMR was acquired in deuterated DMSO. ¹H NMR (400 MHz, DMSO d_6) δ =11.24 (s, 1H), 9.01 (d, J=1.0 Hz, 1H), 8.66-8.55 (m, 1H), 8.03-7.96 (m, 1H), 7.79 (dd, J=9.0, 1.5 Hz, 1H), 7.57 (s, 1H), 7.35 (d, J=8.5 Hz, 1H), 7.02 (dd, 1.3 Hz, 1H), 3.41 (d, J=12.0 Hz, 2H), 3.30-3.23 (m, 1H), 3.10-3.00 (m, 2H), 2.96-2.90 (m, 1H), 2.03-1.94 (m, 2H), 1.91-1.84 (m, 2H), 1.45 (d, J=7.0 Hz, 6H).

Example 2

6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine hydrochloride

$$\begin{array}{c} HN \\ HCI \\ \end{array}$$

Intermediate 2A: tert-butyl 4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidine-1-carboxylate

$$\begin{array}{c} \text{CH}_{3} \\ \text{H}_{3} \\ \text{C} \\ \text{H}_{3} \\ \text{C} \\ \text{O} \\ \text{N} \\ \text{N$$

The preparation was performed in two batches and combined for workup.

Batch #1: To a mixture of tert-butyl 4-(2-bromo-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (10 g, 23.73 mmol), bis(benzonitrile)palladium(II) chloride (0.182 g, 0.475 mmol), 2-dicyclohexylphosphino-2',6'-dime-65 thoxybiphenyl (0.390 g, 0.949 mmol) in dioxane (80 mL) under nitrogen were added pinacolborane (8.61 mL, 59.3

mmol) and triethylamine (6.62 mL, 47.5 mmol). The mixture was heated at 85° C. for 5 min. After cooling down to room temperature, 2 M potassium phosphate tribasic solution (35.6 mL, 71.2 mmol) was added slowly. Next, 6-bromo-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (4.53 g, 21.36 mmol) was added, followed by PdCl₂ (dppf)-CH₂Cl₂ adduct (0.775 g, 0.949 mmol). The reaction mixture was stirred for 30 min at 65° C.

Batch #2: In a 1 L round bottom flask, pinacolborane (25.8) mL, 178 mmol) and triethylamine (19.85 mL, 142 mmol) were added to a mixture of tert-butyl 4-(2-bromo-3isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (30 g, 71.2 mmol), bis(benzonitrile) palladium(II) chloride (0.546 g, 1.424 mmol), and 2-dicyclohexylphosphino-2', 6'-dimethoxybiphenyl (1.169 g, 2.85 mmol) in dioxane (240 mL) under nitrogen. The mixture was heated at 85° C. for 5 min. After cooling down to room temperature, 2 M potassium phosphate tribasic solution (107 mL, 214 mmol) was added very slowly first for the first 10 mL. When there were no more bubbles, the remainder of the K₃PO₄ solution was rapidly added, followed by the additions of 6-bromo-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (13.59 g, 64.1 mmol) and PdCl₂(dppf)-CH₂Cl₂ adduct (2.326 g, 2.85 mmol). The reaction mixture was stirred for 1 h at 65° C.

The two batches were combined for workup. The aqueous layer was removed and the organic layer was washed with brine, dried over Na₂SO₄, filtered through a Celite pad, and concentrated to give a dark oil (87 g). The material was purified by silica gel chromatography (hexanes/ethyl acetate as eluent) affording 29 grams of the product. LCMS MH⁺=430.1 Ret. Time=0.63 min [C1]; ¹H NMR (400 MHz, DMSO-d₆) δ 11.11 (s, 1H), 8.80 (d, J=0.7 Hz, 1H), 8.53 (s, 1H), 7.65-7.52 (m, 2H), 7.30 (d, J=8.4 Hz, 1H), 7.02 (dd, J=8.4, 1.5 Hz, 1H), 4.19-4.04 (m, 2H), 3.28-3.19 (m, 1H), 2.96-2.70 (m, 3H), 2.63 (s, 6H), 2.38-2.26 (m, 1H), 1.80 (d, J=12.6 Hz, 2H), 1.56 (qd, J=12.4, 4.0 Hz, 2H), 1.47-1.38 (m, 12H).

Alternative Preparation of Intermediate 2A

To a 500 mL round bottle flask were added tert-butyl 4-(2-bromo-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (11 g, 26.1 mmol), bis(benzonitrile)palladium(II) 45 chloride (0.200 g, 0.522 mmol), 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (0.429 g, 1.044 mmol) and dioxane (87 mL). Nitrogen was bubbled through the reaction mixture for 5 min. Next, pinacolborane (9.47 ml, 65.3 mmol) and triethylamine (9.10 ml, 65.3 mmol) were added to the 50 reaction mixture. The triethylamine was added in small portions slowly for the first 1/3 and then the rest 2/3 was added quickly. The reaction mixture was heated at 85° C. for 10 min under N₂. The reaction temperature reached 100° C. The reaction mixture was cooled to room temperature with an ice-water bath. Next, 2 M potassium phosphate tribasic solution (39.2 mL, 78 mmol) was added. The first 1/10 was added slowly. When there was no more bubbles, the remainder of the K₃PO₄ solution was added, followed by 6-bromo-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (4.98 g, 23.49 mmol), PdCl₂(dppf)-CH₂Cl₂ adduct (0.853 g, 1.044 mmol) washed in with dioxane (10 mL). The mixture was heated at 65° C. for 1 h under N₂. After the mixture was cooled to room temperature, the organic layer and the aqueous layer was separated. EtOAc was used to wash the flask during the transfer. The organic layer was washed with brine, dried over Na2SO4, filtered through a Celite pad and concentrated to give 44.4 g crude oil. It was purified with silica gel

chromatography using a 1.5 kg silica column. The column was eluted with hexane and ethyl acetate. The product was eluted at 60% ethyl acetate:hexane to afford tert-butyl 4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidine-1-carboxylate (9.27 g, 19.58 5 mmol, 75% yield) as a lighted tinted foam. LCMS 474.3; HPLC Ret. Time 1.15 min. Method G. ¹H NMR (400 MHz, CHLOROFORM-d) & 8.61-8.54 (m, 1H), 8.43-8.38 (m, 1H), 7.96-7.88 (m, 1H), 7.70-7.64 (m, 1H), 7.48-7.44 (m, 1H), 7.40-7.35 (m, 1H), 7.17-7.09 (m, 1H), 4.40-4.23 (m, 2H), 3.40-3.26 (m, 1H), 2.75 (s, 6H), 1.98-1.89 (m, 2H), 1.85-1.67 (m, 2H), 1.53 (m, 12H), 1.52-1.49 (s, 3H).

Example 2

To a stirred solution of tert-butyl 4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidine-1-carboxylate (29 g, 61.2 mmol) in DCM (102 mL), was added 4 M HCl in dioxane (77 mL, 306 mmol) through a syringe. The temperature was observed to increased several degrees. The solution turned into a suspension during the addition, then a clear solution, then a heavy suspension again. MeOH (306 mL) was added to give a clear solution. LCMS showed the reaction was close to completion after 2.5 hr at room temperature. The reaction mixture was concentrated under reduced pressure with a water bath (T=45° C.) and then diluted with diethyl ether (200 mL). The product was collected by filtration to afford

Alternative Preparation of Example 2

To a stirred solution of tert-butyl 4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)
piperidine-1-carboxylate (7.45 g, 15.73 mmol) in DCM (40 mL) was added 4 M HCl in dioxane (35.4 mL, 142 mmol) through a syringe at room temperature. The solution turned to a suspension during the addition, then a clear solution, then a heavy suspension again. MeOH (100 mL) was added to give a clear solution. The reaction was complete in 2 h. The reaction mixture was concentrated under reduced pressure and then diluted with diethyl ether (200 mL). The desired product HCl salt was collected by filtration to afford 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine hydrochloride (6.4 g, 15.64 mmol, 99.4% yield) as a yellow. LCMS MH+: 374.1; HPLC Ret. Time 0.64 min. Method G.

The following examples were prepared according to the general procedures disclosed in Examples 1 and 2.

TABLE 3

Ex. No.	Structure	Interm.	LCMS [M + H]	Rt (min)	Method
3	$\begin{array}{c} HN \\ \\ H_3C \\ \\ H_3C \\ \\ H_3C \\ \\ N \\ \\ N \\ \\ N \end{array}$	F-3	374.3	1.07	QC- ACN- TFA- XB
4	$\begin{array}{c} HN \\ \\ H_3C \\ \\ \\ H \end{array} \begin{array}{c} CH_3 \\ \\ H_3C \\ \\ \\ N \end{array} \begin{array}{c} CH_3 \\ \\ \\ N \end{array}$	F-4	388.3	1.26	QC- ACN- AA- XB
5	H_3C CH_3 N N	F-5	390.3	1.02	Method E
6	$\begin{array}{c} \text{HN} \\ \\ \text{HN} \\ \\ \text{N} \\ \\ \text{N} \\ \\ \text{N} \\ \\ \text{N} \\ \\ \\ \text{N} \\ \\ \\ \text{N} \\ \\ \\ \text{N} \\ \\ \\ \\ \text{N} \\ \\ \\ \\ \text{N} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	F-6	404.3	1.21	QC- ACN- AA- XB

Example 4

6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-7,8dimethyl-[1,2,4]triazolo[1,5-a]pyridine dihydrochloride

$$H_3C$$
 CH_3
 HCI
 H_4C
 CH_3
 HCI

To a stirred suspension of tert-butyl 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5yl)piperidine-1-carboxylate (37.8 g, 78 mmol) in DCM (97 ml) and MeOH (291 ml) was added 4 M HCl in dioxane (97 mL, 388 mmol) at room temperature to give a clear solution. 25 After a few hours, the reaction mixture became a white suspension. The reaction was complete after 4 h. The reaction mixture was concentrated under reduced pressure and then diluted with diethyl ether (250 mL). The product 30 bis-HCl salt was collected by filtration to afford 6-(3isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine, 2 HCl (34.66 g, 75 mmol, 97% yield) as an off-white solid. LCMS MH+: 388.3; HPLC 35 Ret. Time 1.26 min. Method QC-ACN-AA-XB. ¹H NMR (500 MHz, DMSO-d₆) δ 11.08-10.95 (m, 1H), 8.77-8.67 (m, 1H), 8.55-8.41 (m, 1H), 7.64-7.48 (m, 1H), 7.39-7.27 (m, 2H), 2.98-2.82 (m, 2H), 2.61-2.57 (m, 3H), 2.56-2.54 (m, 1H), 2.18-2.13 (m, 3H), 2.03-1.83 (m, 4H), 1.39-1.26 (m, 6H).

Example 5

6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8methoxy-[1,2,4]triazolo[1,5-a]pyridine dihydrochloride

$$\begin{array}{c} \text{HN} \\ \text{HCI} \\ \end{array} \begin{array}{c} \text{H}_{3}\text{C} \\ \text{N} \\ \text{H} \\ \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{N} \\ \text{N} \end{array} \begin{array}{c} \text{(5)} \\ \text{N} \\ \end{array}$$

To a stirred suspension of tert-butyl 4-(3-isopropyl-2-(8methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidine-1-carboxylate (46.5 g, 95 mmol) in DCM (47.5

134

mL) and MeOH (190 mL), was added 4M HCl in dioxane (119 mL, 475 mmol) at room temperature. After 1 h, the clear solution became a white suspension. MeOH (50 mL) was added and the suspension was stirred for another hour. The reaction mixture was concentrated under reduced pressure and then diluted with diethyl ether (300 mL). The desired product HCl salt was collected by filtration and dried (4) 10 for two days to afford 6-(3-isopropyl-5-(piperidin-4-yl)-1Hindol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine dihydrochloride (33.6 g, 72.7 mmol, 76% yield) as an off-white solid. LCMS MH₊: 390.1. HPLC Ret. Time 0.64 min. 15 Method G.

Example 7

2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-Nmethylacetamide

$$H_3C$$
 N
 H_3C
 CH_3
 CH_3
 N
 N
 N
 N

Triethylamine (9.70 mL, 69.6 mmol) and 2-chloro-Nmethylacetamide (2.246 g, 20.88 mmol) were added to a solution of 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-1H), 7.05-6.94 (m, 1H), 3.47-3.34 (m, 1H), 3.11-2.99 (m, 40 yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (2.6 g, 6.96 mmol) in THF (50 mL). The reaction mixture was stirred at room temperature for 12 h. The reaction mass was concentrated under vacuum and the residue obtained was quenched with 150 mL ice cold water resulting in the formation of a 45 precipitate. The solids were collected by vacuum filtration and air dried. The collected solids were further dried under vacuum for 15 h to afford 2-(4-(3-isopropyl-2-(8-methyl-[1, 2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1yl)-N-methylacetamide (1.5 g) as an off-white solid. ¹H 50 NMR (400 MHz, DMSO-d₆) δ1.42 (d, J=7.20 Hz, 6H), 1.69-1.72 (m, 4H), 1.75-1.81 (m, 1H), 2.78-2.82 (m, 6H), 2.85-2.88 (m, 4H), 3.25-3.31 (m, 2H), 7.05 (dd, J=1.60, 8.40 Hz, 1H), 7.31 (d, J=8.40 Hz, 1H), 7.59 (d, J=10.00 Hz, 2H), 7.72-7.73 (m, 1H), 8.54 (s, 1H), 8.81 (s, 1H), 11.12 (s, 1H). $^{(5)}$ 55 LCMS for molecular formula $C_{26}H_{32}N_6O$ was 444.264; found 445 (M⁻). Waters Xbridge C18,19×150 mm, 5 μm; Guard Column: Water XBridge C18,19×10 mm, 5 μm; Mobile Phase A:5:95 Acetonitrile:water with 10 mM NH₄OAc; Mobile Phase B: 95:5 Acetonitrile:water with 10 60 mM NH₄OAc; Gradient:10-50% B over 25 minutes, followed by a 10 minute hold at 50% B and 5 minute hold at 100% B; Flow: 15 mL/min. RT Min: 1.91, Wave length: 220 nm. HPLC:)(Bridge Phenyl (4.6×150)mm, 3.5 μm SC/749 Buffer: 0.05% TFA in water pH 2.5 Mobile Phase A: Buffer: ACN-(95:5) Mobile Phase B:ACN: Buffer (95:5) FLOW:1 mL\min TIME B % 0 10, 12 100, 15 100. Retention Time: 6.19 minutes.

The following examples were prepared according to the general procedures disclosed in Example 7.

TABLE 4

	TABLE 4			
Ex. No.	Structure	LCMS MH ⁺	R _t (min)	Method
8	NC N CH ₃ CH ₃ CH ₃	413.3	1.28	QC- ACN- TFA- XB
9	CN H_3C CH_3 CH_3 N N N N N	427.2	1.82	QC- ACN- AA- XB
10	CH_3 CH_3 CH_3 N N N N	430	1.57	QC- ACN- AA- XB
11	H_3C CH_3 CH_3 N N N	431.4	1.24	QC- ACN- AA- XB
12	$\begin{array}{c} \text{HO} \\ \begin{array}{c} \text{CH}_3 \\ \\ \text{CH}_3 \end{array} \end{array} \begin{array}{c} \text{CH}_3 \\ \\ \begin{array}{c} \text{CH}_3 \\ \\ \text{N} \end{array} \end{array} \begin{array}{c} \text{CH}_3 \\ \\ \text{N} \end{array}$	446.3	1.707	Method E
13	NC NG CH ₃ H ₃ C CH ₃ H ₃ C CH ₃ N N N N N N N N N N N N N N N N N N N	427.3	1.46	QC- ACN- TFA- XB
14	CN H_3C CH_3 H_3C CH_3 N N N N	441.3	1.27	QC- ACN- TFA- XB

TABLE 4-continued

Ex.	TABLE 4-continued	LCMS	R_t	
No. 15	H ₂ N H ₃ C CH ₃	MH ⁺	(min) 1.19	QC- ACN- TFA- XB
16	H ₃ C CH ₃ CH ₃ H ₃ C CH ₃ H ₃ C CH ₃ N H ₃ C CH ₃	459.5	1.71	QC- ACN- AA- XB
17	H_3C CH_3 H_3C CH_3 H_3C CH_3	460	1.7	QC- ACN- AA- XB
18	$O = S = O$ CH_3 N	494.3	1.71	QC- ACN- AA- XB
19	$O = S = O$ NH_2 H_3C H_3C H_3C H_3C N N N N	495.2	1.62	QC- ACN- AA- XB
20	$O = S$ N H_3C H_3C CH_3 H_3C CH_3 N N N	520.5	1.31	QC- ACN- TFA- XB

TABLE 4-continued

Ex. No.	Structure	LCMS MH+	R _t (min)	Method
21	H_3C CH_3 O CH_3 N N N N N N N	429.2	1.94	Method E

23
$$H_{3}C$$
 $H_{3}C$ $H_{3}C$

25
$$H_3C$$
 475.4 1.37 Method E H_3C H_3C

Example 13

2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)acetonitrile

To a 1 dram vial were added 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridine hydrochloride (0.050 g, 0.118 mmol), NMP, and DBU (0.025 ml, 0.164 mmol). The material went into solution and 2-bromoacetonitrile (0.014 g, 0.118 mmol) was added. The reaction vial was capped. The reaction mixture was stirred overnight at room temperature. The sample was 25 diluted with solvent (90:10:0.1 CH₃CN:water:TFA), filtered, and purified with preparative HLPC. The crude material was purified via preparative LC/MS with the following conditions: Column:)(Bridge C18, 19×200 mm, 5 µm particles; Mobile Phase A: 5:95 acetonitrile:water with 10 mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile:water with 10 mM ammonium acetate; Gradient: 30-70% B over 20 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation to afford 2-(4-(2-(7,8dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)acetonitrile (16.8 mg, 0.039 mmol, 32.7% yield). LCMS MH+: 427.1. HPLC Ret. Time 1.30 min. Method QC-ACN-TFA-XB. ¹H NMR (500 MHz, DMSO-d₆) δ 8.77-8.69 (m, 1H), 8.50-8.35 (m, 1H), 7.61-7.51 (m, 1H), 7.33-7.23 (m, 1H), 7.08-6.93 (m, 1H), 3.44-3.34 (m, 1H), 2.98-2.83 (m, 3H), 2.63-2.56 (m, 4H), 2.56-2.53 (m, 2H), 2.39-2.28 (m, 2H), 2.21-2.12 (m, 3H), 1.90-1.69 (m, 4H), 1.37-1.26 (m, 6H).

Example 15

2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)acetamide

$$H_2N$$
 O
 N
 H_3C
 CH_3
 N
 N
 H_3C
 CH_3

To a reaction flask were added 6-(3-isopropyl-5-(piperi- 65 din-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridine, 2 HCl (47.66 g, 104 mmol), DCE (220 mL), DBU

142

(62.4 mL, 414 mmol), and 2-bromoacetamide (17.14 g, 124 mmol). The reaction flask was capped. The reaction mixture was stirred overnight at room temperature. The reaction mixture was concentrated, diluted with water, and stirred for 30 minutes then filtered. The solid was recrystallized using ethanol to afford 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5alpyridin-6-vl)-3-isopropyl-1H-indol-5-vl)piperidin-1-vl) acetamide (42.3 g, 93 mmol, 90% yield) as a white solid. LCMS MH+: 445. HPLC Ret. Time 1.20 min. Method QC-ACN-TFA-XB. ¹H NMR (400 MHz, DMSO-d₆) δ 10.97-10.86 (m, 1H), 8.78-8.69 (m, 1H), 8.54-8.40 (m, 1H), 7.64-7.49 (m, 1H), 7.30-7.21 (m, 2H), 7.17-7.09 (m, 1H), 7.06-6.93 (m, 1H), 2.99-2.82 (m, 5H), 2.62-2.54 (m, 4H), 2.24-2.12 (m, 5H), 1.92-1.72 (m, 4H), 1.37-1.29 (m, 6H).

Example 18

6-(3-isopropyl-5-(1-(2-(methylsulfonyl)ethyl)piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo [1,5-a]pyridine

35 Preparation 1:

To a 40 ml vial was added 6-(3-isopropyl-5-(piperidin-4yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (0.800 g, 2.064 mmol), DCM (5 mL) and DBU (0.622 mL, 4.13 mmol). The material went into solution and 2-bromoacetamide (0.299 g, 2.168 mmol) was added. The reaction vial was capped. The reaction mixture was stirred overnight at room temperature. The reaction mixture was diluted with water and extracted with DCM. The organics were washed with brine, dried over Na2SO4, filtered and 45 concentrated. The residue was dissolved in minimal DCM and purified by silica gel chromatography, eluting with 0-10% MeOH/DCM. Following concentration of the fractions, the product was collected as a white solid (0.6 g). To this was added 40 mL of a 10% MeOH/ethyl acetate solution 50 and the suspension was taken to a boil. The solids were filtered off and rinsed with hot MeOH/ethyl acetate (1:10). The filtrate was reheated and capped to recrystallize. After 3 days, the white solid was filtered off and washed with ethyl acetate, then ether, and dried on the vacuum pump overnight 55 to afford 2-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)acetamide (480 mg, 1.07 mmol, 51.8% yield). MS (M⁺¹) m/z: 445.3 (MH⁺). LC retention time 0.69 min [G]. ¹H NMR (400 MHz, DMSO- d_6) δ 11.00-10.85 (m, 1H), 8.79-8.69 (m, 1H), 8.53-8.43 (m, 1H), 7.60-7.49 (m, 1H), 7.32-7.21 (m, 2H), 7.18-7.11 (m, 1H), 7.06-6.99 (m, 1H), 3.00-2.83 (m, 5H), 2.63-2.55 (m, 4H), 2.24-2.12 (m, 5H), 1.92-1.72 (m, 4H), 1.40-1.24 (m, 6H). Preparation 2:

To a reaction vial were added 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridine, 2 HCl (40 g, 87 mmol), DCE (280 mL), and DBU

30

143

(45.8 mL, 304 mmol). The material went into solution and 1-bromo-2-(methylsulfonyl) ethane (18.46 g, 99 mmol) was added. The reaction mixture was stirred overnight at room temperature under N2. The sample was concentrated, diluted with water, stirred for 30 minutes, and then filtered. The 5 solid was recrystallized using EtOH to afford 6-(3-isopropyl-5-(1-(2-(methylsulfonyl)ethyl)piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (40 g, 81 mmol, 93% yield) as a white solid. LCMS MH+: 494.3; HPLC Ret. Time 1.70 min. Method QC-ACN-AA-XB. ¹H ¹⁰ NMR (400 MHz, CHLOROFORM-d) δ 8.45-8.38 (m, 1H), 8.37-8.30 (m, 1H), 8.18-8.12 (m, 1H), 7.69-7.62 (m, 1H), 7.43-7.35 (m, 1H), 7.19-7.12 (m, 1H), 3.29-3.20 (m, 2H), 3.16-3.07 (m, 5H), 3.02-2.92 (m, 3H), 2.74-2.67 (m, 1H), 2.66-2.60 (m, 3H), 2.31-2.22 (m, 2H), 2.21-2.17 (m, 3H), 15 2.07-1.79 (m, 4H), 1.42-1.35 (m, 6H).

Example 25

2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5a|pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,Ndimethylacetamide

Preparation 1:

To a solution of 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (0.05 g, 0.128 mmol) in THF (2 mL) and DMF (1 mL) solvent mixture were added 2-chloro-N,N-dimethylacetamide 40 (0.023 g, 0.193 mmol) and TEA (0.179 mL, 1.284 mmol) at room temperature. The reaction mixture was stirred at room temperature for 24 h. The reaction mixture was concentrated under vacuum. To the solid material was added water (5 mL) and extracted with ethyl acetate. The organic layer was dried 45 over Na₂SO₄, filtered and concentrated under vacuum. The crude material was purified via preparative LC/MS with the following conditions: Column: Water XBridge C18, 19×150 mm, 5 µm particles; Mobile Phase A: 10 mM ammonium acetate; Mobile Phase B: methanol; Gradient: 10-50% B 50 over 30 minutes, then a 5-minute hold at 100% B; Flow: 15 mL/min. Fractions containing the product were combined and dried via centrifugal evaporation to afford 2-(4-(3isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)in-1-yl)-N,N-dimethylacetamide 55 1H-indol-5-yl)piperid (14.2 mg, 0.03 mmol, 23.31% yield). MS (M⁻) m/z: 475.4 (Mift). LC retention time 1.38 min [A]. ¹H NMR (400 MHz, DMSO- d_6) δ 11.38 (s, 1H), 8.83-8.75 (m, 2H), 7.83 (s, 1H), 7.57 (d, J=8.3 Hz, 1H), 7.41 (d, J=1.2 Hz, 1H), 7.30 (dd, J=8.4, 1.6 Hz, 1H), 4.34 (s, 3H), 3.43 (d, J=5.9 Hz, 3H), 3.34 60 1.99-1.59 (m, 7H), 1.41 (d, J=6.8 Hz, 6H). (s, 4H), 3.22 (d, J=11.0 Hz, 4H), 3.09 (s, 3H), 2.79 (d, J=1.7 Hz, 3H), 2.48-2.38 (m, 2H), 2.15 (s, 5H), 2.08-1.95 (m, 4H), 1.72 (d, J=7.1 Hz, 6H). Preparation 2:

To a solution of 6-(3-isopropyl-5-(piperidin-4-yl)-1H-in- 65 dol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine dol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine, (30.6 g, 71.8 mmol) in a DMF (700 mL) solvent mixture

144

were added 2-chloro-N,N-dimethylacetamide (9.62 mL, 93 mmol) and TEA (50.1 mL, 359 mmol) at room temperature. The reaction mixture was stirred at room temperature for 12 h. The starting material was converted to product. Next, water (2 L) was added to the above solution, the upper layer and the lower layer were extracted with ethyl acetate. The combination of the organic layers was washed with brine. dried and concentrated to give a solid, which was purified by recrystallization from ethanol to afford 2-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5yl)piperidin-1-yl)-N,N-dimethylacetamide (28.3 g, 59.3 mmol, 83% yield). LCMS MiEr: 475.2. HPLC Ret. Time 0.66 min. Method G. C: 68.28%, H: 7.19%, N: 17.63%.

Example 26

6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1Hindol-2-yl)-8-methyl-[1,2,4]triazolo [1,5-a]pyridine

To a solution of 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine chloride (24.5 g, 59.8 mmol) in DCM (610 mL) were added triethylamine (24.19 g, 239 mmol), oxetan-3-one (17.23 g, 239 mmol), acetic acid (7.18 g, 120 mmol), and sodium triacetoxyborohydride (50.7 g, 239 mmol). The solution was stirred at room temperature. After 5 min, LCMS showed 20% conversion; and after overnight, HPLC showed no starting material. The solvent was removed under vacuum. The residue was dissolved in 500 mL ethyl acetate and washed with saturated NaHCO₃ solution (4×300 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by recrystallization from a mixture of EtOH/water(20/80), dried to afford 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2, 4]triazolo [1,5-a]pyridine (24.6 g, 57.0 mmol, 95% yield) as a white solid. LCMS Mft=430.1 Ret. Time=0.63 min; Column: BEH C18 2.1×50 mm 1.7 μm Via1:3:1; HPLC Ret. Time 7.86 min. Waters XSelect CSH C18 2.5 µM 4.6 μM×7.5 mm. Solvent A: H₂O w/0.1% TFA. Solvent B ACN w/0.1% TFA. Gradient Complex Start % B 10% 16 min 45% B 20 min 90% 24 min 90% 25 min 10% Stop time 25 min Flow Rate 1.5 mL/min. ¹H NMR (500 MHz, DMSO-d₆) δ 11.11 (s, 1H), 8.75 (s, 1H), 8.51 (s, 1H), 7.56 (d, J=16.5 Hz, 2H), 7.30 (d, J=8.4 Hz, 1H), 7.03 (d, J=8.3 Hz, 1H), 4.64-4.33 (m, 4H), 4.72-4.27 (m, 4H), 3.65 (br. s., 2H), 3.47-3.12 (m, 2H), 2.79 (d, J=10.4 Hz, 2H), 2.61 (s, 3H),

Alternative Preparation of Example 26

To a solution of 6-(3-isopropyl-5-(piperidin-4-yl)-1H-inchloride (24.5 g, 59.8 mmol) in DCM (610 ml) were added triethylamine (24.19 g, 239 mmol), oxetan-3-one (17.23 g,

146

239 mmol), acetic acid (7.18 g, 120 mmol) and sodium triacetoxyborohydride (50.7 g, 239 mmol). The solution was stirred at room temperature, after 5 min the reaction progressed 20%. The reaction went to completion overnight. The solvent was removed under reduced pressure. The 5 residue was dissolved in 500 mL ethyl acetate and washed with saturated NaHCO3 solution (300 mL×4), dried over Na₂SO₄, and concentrated under reduced pressure to afford the crude product. The crude material was purified to remove Pd in the treatment described below and recrystal- 10 lized from a mixture of EtOH/water (20/80) and dried to afford 6-(3-isopropyl-5-(1-(oxetan-3-yl) piperidin-4-yl)-1Hindol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (24.6 g, 57.0 mmol, 95% yield) as a solid. LCMS MH+: 430.1; HPLC Ret. Time 0.63 min. Method G; ¹H NMR (400 MHz, 15 DMSO-d₆) δ 11.18-11.05 (m, 1H), 8.88-8.76 (m, 1H),

8.58-8.47 (m, 1H), 7.64-7.54 (m, 2H), 7.34-7.26 (m, 1H), 7.09-6.96 (m, 1H), 4.61-4.53 (m, 2H), 4.51-4.42 (m, 2H), 3.48-3.37 (m, 1H), 3.31-3.20 (m, 1H), 2.86-2.78 (m, 2H), 2.68-2.63 (m, 3H), 2.63-2.55 (m, 1H), 1.96-1.68 (m, 6H), 1.49-1.38 (m, 6H).

Pd Removal Procedure: The sample was treated to remove Pd using the following steps: 1. The crude sample was dissolved in 500 mL THF and treated with SiliaMetS@DMT (40 g, from SiliCycle). The solution was stirred overnight at room temperature under N_2 . 2. After filtration, the solvent was removed and the residue was dissolved in AcOEt and washed with brine and dried. 3. After concentration, the residue was recrystallized from EtOH-water (20/80) to afford the product.

The following examples were prepared according to the general procedure of Examples 26.

TABLE 5

Ex. No.	Structure	LCMS MH ⁺	R _t (min)	Method
27	H_3C CH_3 CH_3 N N N N	416.4	2.39	Method F
28	CH_3 CH_3 CH_3 CH_3 CH_3 N N N N	416	1.43	QC- ACN- AA- XB
29	H_3C CH_3 CH_3 N N N N	430.1	1.7	QC- ACN- AA- XB
30	H_3C CH_3 N	454.2	1.29	QC- ACN- TFA- XB
31	$O \longrightarrow N \longrightarrow H_3C \longrightarrow CH_3 \longrightarrow CH_3$	455.3	1.54	QC- ACN- AA- XB

TABLE 5-continued

	TABLE 5-continued			
Ex. No.	Structure	LCMS MH+	R _t (min)	Method
32	H ₃ C CH ₃ CH ₃	455.2	1.22	QC- ACN- TFA- XB
33	H_3C CH_3 CH_3 N	455.4	1.11	QC- ACN- TFA- XB
34	H_3C CH_3 N	455.9	1.13	QC- ACN- AA- XB
35	$\begin{array}{c} C \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	458.4	1.33	QC- ACN- AA- XB
36	H_3C CH_3 CH_3 CH_3 CH_3 CH_3	459.3	1.37	Method A
37	O H ₃ C CH ₃ CH ₃	506.3	1.43	QC- ACN- AA- XB

TABLE 5-continued

Ex. No.	Structure	LCMS MH ⁺	R, (min)	Method
38	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ \end{array}$	444.3	1.24	QC- ACN- TFA- XB
39	H_3C CH_3 H_3C CH_3	469.2	1.46	QC- ACN- AA- XB
40	$\begin{array}{c} C \\ \\ N \\ \\ N \\ \\ N \\ \end{array}$	471.9	1.47	QC- ACN- AA- XB
41	$\begin{array}{c} CH_3 \\ H_3C \\ \end{array} \begin{array}{c} CH_3 \\ H_3C \\ \end{array} \begin{array}{c} CH_3 \\ H_3C \\ \end{array} \begin{array}{c} CH_3 \\ \end{array}$	473.4	1.41	QC- ACN- AA- XB
42	H_3C CH_3 H_3C CH_3	483	1.52	QC- ACN- AA- XB
43	H_3C CH_3 H_3C CH_3 C CH_3 C CH_3 C	483	1.68	QC- ACN- AA- XB

TABLE 5-continued

Ex. No.	Structure	LCMS MH ⁺	R _t (min)	Method
44	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ \end{array}$	446.2	1.91	Method E
45	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	474.4	1.31	Method E

Example 44

6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1Hindol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine 3.42-3.25 (m, 1H), 3.02-2.87 (m, 2H), 2.73-2.58 (m, 1H), 2.10-1.85 (m, 6H), 1.55-1.44 (m, 6H).

Example 46

2-(dimethylamino)-1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)ethan-1-one

$$^{(44)}$$
 35
 $^{(5)}$ $^{(5)$

To a solution of 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine dihydrochloride (39.7 g, 86 mmol) in DCM (859 ml) was added 343 mmol), acetic acid (10.31 g, 172 mmol) and sodium triacetoxyborohydride (72.8 g, 343 mmol). The solution was stirred at room temperature. After 9h, the starting material was no longer detected. The solvent was removed by rotavapor. The residue was dissolved in 1500 mL ethyl acetate 55 and washed with saturated NaHCO₃ solution (500 mL×4), dried over Na₂SO₄, and concentrated under reduced pressure to give residue. The residue was purified by recrystallization from a mixture of EtOH/water(60/40) two times, dried to give 6-(3-isopropyl-5-(1-(oxetan-3-yl) piperidin-4- 60 yl)-1H-indol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (32.3 g, 72.2 mmol, 84% yield) as a white solid. LCMS MH+: 446.1. HPLC Ret. Time 0.63 min. Method G. ¹H NMR (400 MHz, CHLOROFORM-d) δ 8.42-8.31 (m, 2H), 8.20-8.10 (m, 1H), 7.77-7.67 (m, 1H), 7.44-7.36 (m, 1H), 65 7.31-7.26 (m, 1H), 7.21-7.12 (m, 1H), 6.95-6.85 (m, 1H), 4.80-4.63 (m, 4H), 4.12-4.03 (m, 3H), 3.62-3.51 (m, 1H),

(46)·CH₃ H_3C

To a solution of 6-(3-isopropyl-5-(piperidin-4-yl)-1H-intriethylamine (34.8 g, 343 mmol), oxetan-3-one (24.75 g, 50 dol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (75 mg, 0.201 mmol) in DMF (1 mL) were added TEA (0.140 mL, 1.004 mmol), 2-(dimethylamino)acetic acid (20.71 mg, 0.201 mmol), and HATU (76 mg, 0.201 mmol). The reaction mixture was stirred at room temperature for 12 h. The reaction mass was diluted with methanol (2 mL) and passed through a syringe pad to filter away inorganics, and then purified by reverse phase preparative chromatography. The crude material was purified via preparative LC/MS with the following conditions: Column: Water XBridge C18, 19×150 mm, 5-µm particles; Mobile Phase A: 10-mM ammonium acetate; Mobile Phase B: acetonitrile; Gradient: 20-60% B over 30 minutes, then a 5-minute hold at 100% B; Flow: 15 mL/min. Fractions containing the product were combined and dried via centrifugal evaporation. The yield of the product was 11.7 mg, and its estimated purity by LCMS analysis was 96%. Two analytical LC/MS injections were used to determine the final purity. Injection 1 conditions:

Column: Ascentis Express C18(50×2.1)mm, 2.7 µm; Mobile Phase A: 5:95 Acetonitrile:water with 10 mM NH₄OAc; Mobile Phase B: 95:5 Acetonitrile:water with 10 mM NH₄OAc; Temperature: 50° C.; Gradient:0-100% B over 3 minutes; Flow: 1.1 mL/min. Injection 2 conditions: Column: 5 Ascentis Express C18 (50×2.1) mm, 2.7 µm; Mobile Phase A: 5:95 Acetonitrile:water with 0.1% TFA; Mobile Phase B: 95:5 acetonitrile: water with 0.1% TFA; Temperature: 50° C.; Gradient:0-100% B over 3 minutes; Flow:1.1 mL/min. 1 H-NMR (400 MHz, DMSO-d₆): δ 1.12 (d, J=6.00 Hz, 3H), 10 1.44 (d, J=6.80 Hz, 6H), 1.69-1.72 (m, 2H), 1.75-1.81 (m, 2H), 2.32-2.34 (m, 1H), 2.50 (s, 3H), 2.62-2.71 (m, 4H), 2.80-2.94 (m, 1H), 3.25-3.32 (m, 2H), 3.54-3.58 (m, 2H), 4.00-4.07 (m, 1H), 4.60 (d, J=11.20 Hz, 1H), 7.04 (dd, J=1.20, 8.40 Hz, 1H), 7.30 (d, J=8.40 Hz, 1H), 7.58 (d, 15 J=8.80 Hz, 1H), 8.53 (s, 1H), 8.80 (s, 1H), 11.11 (s, 1H). LCMS for molecular formula $C_{26}H_{32}N_6O$ was 444.264, found 445 (M⁺). Waters Xbridge C18, 19×150 mm, 5 μ m; Guard Column: Water XBridge C18,19×10 mm, 5 μm; Mobile Phase A:5:95 Acetonitrile:water with 10 mM 20 NH₄OAc; Mobile Phase B: 95:5 acetonitrile:water with 10 mM NH₄OAc; Gradient:10-50% B over 25 minutes, followed by a 10 minute hold at 50% B and 5 minute hold at 100% B; Flow: 15 mL/min. R, Min: 1.91, Wave length: 220

Example 47

1-(4-(2-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-2-(methylamino) ethan-1-one

$$H_3C$$
 N
 H_3C
 N
 N
 N
 N
 N
 N
 N

To a 1 dram vial were added 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (0.035 g, 0.091 mmol), CH₃CN, TEA (0.038 mL, 0.273 mmol), and HATU (0.036 g, 0.091 mmol). The material went into 50 solution and 2-((tert-butoxycarbonyl)(methyl)amino)acetic

acid (0.034 g, 0.182 mmol) was added. The reaction vial was capped and allowed to stir overnight at room temperature. After 18 hrs LC-MS showed product had formed. The samples were diluted with ethyl acetate and washed with water. The combined organics were washed with brine, dried over Na₂SO₄ filtered, and concentrated. To this was added 1 mL of DCM and 1 mL of 4 M HCl in dioxane. The reaction mixture was stirred for 30 minutes at room temperature, concentrated, diluted with Solvent B (90:10:0.1 CH₂CN: Water: TFA, filtered and purified by preparative reverse phase chromatography. The crude material was purified via preparative LC/MS with the following conditions: Column: XBridge C18, 19×200 mm, 5-µm particles; Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 10-mM ammonium acetate; Gradient: 10-50% B over 20 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the product were combined and dried via centrifugal evaporation. The yield of the product was 7.4 mg, and its estimated purity by LCMS analysis was 96%. Two analytical LC/MS injections were used to determine the final purity. Injection 1 conditions: Column: Waters Acquity UPLC BEH C18, 2.1×50 mm, 1.7-μm particles; Mobile Phase A: 5:95 acetonitrile:water with 10 mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile:water with 10 mM ammonium acetate; Temperature: 50° C.; Gradient: 0-100% B over 3 minutes, then a 0.75-minute hold at 100% B; Flow: 1.0 mL/min; Detection: UV at 220 nm. Injection 2 conditions: Column: Waters Acquity UPLC BEH C18, 2.1× 50 mm, 1.7-μm particles; Mobile Phase A: 5:95 acetonitrile: (47) 35 water with 0.1% trifluoroacetic acid; Mobile Phase B: 95:5 acetonitrile:water with 0.1% trifluoroacetic acid; Temperature: 50° C.; Gradient: 0-100% B over 3 minutes, then a 0.75-minute hold at 100% B; Flow: 1.0 mL/min; Detection: UV at 220 nm. Proton NMR was acquired in deuterated DMSO. LC-MS: M+1=431, rt=1.127 min., [D1]. Proton NMR was acquired in deuterated DMSO. ¹H NMR (500 MHz, DMSO-d6) δ 11.19 (s, 1H), 8.97 (s, 1H), 8.58 (s, 1H), 7.98 (d, J=9.2 Hz, 1H), 7.79 (d, J=10.4 Hz, 1H), 7.56 (s, 1H), 7.33 (d, J=8.3 Hz, 1H), 7.03 (d, J=8.8 Hz, 1H), 4.55 (d, J=13.0 Hz, 1H), 3.88 (d, J=13.2 Hz, 1H), 3.58 (s, 1H), 3.33-3.21 (m, 1H), 3.16-3.06 (m, 1H), 2.88 (d, J=7.5 Hz, 2H), 2.77-2.63 (m, 2H), 2.38 (s, 5H), 1.73-1.59 (m, 2H), 1.43 (d, J=7.0 Hz, 6H).

The following examples were prepared according to the general methods disclosed in Examples 46 or 47.

TABLE 6

Ex. No.	Structure	LCMS MH+	R _t (min)	Method
48	H_3C N H_3C CH_3 N N N	415.9	1.62	QC- ACN- AA- XB

TABLE 6-continued

TABLE 6-continued						
Ex. No.	Structure	LCMS MH ⁺	R _t (min)	Method		
49	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	441.3	1.46	QC- ACN- TFA- XB		
50	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	445.3	1.47	Method A		
51	H_3C N CH_3 N	445.1	1.21	QC- ACN- AA- XB		
52	$\begin{array}{c} O \\ \\ O \\ \\ CH_3 \end{array}$	446.4	1.57	Method E		
53	H_3C H_3C CH_3 N N N	446.2	1.70	Method E		
54	$\begin{array}{c} O \\ \\ \\ CN \end{array}$	455.3	1.74	QC- ACN- AA- XB		

TABLE 6-continued

Ex. No.	Structure	LCMS MH ⁺	R _t (min)	Method
55	H_3C CH_3 CH_3 N N N N N	456.4	1.85	Method E
56	$\begin{array}{c} O \\ NH \end{array}$	457.4	1.27	Method F
57	H_3C CH_3 CH_3 N N N N	459.5	1.16	QC- ACN- TFA- XB
58	H_3C CH_3 CH_3 N N N N	459.4	1.29	Method F
59	$H_3C_{N_{1}}$ CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	459.4	1.29	Method F
60	HO CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	460.3	1.79	A

TABLE 6-continued

Ex.	TABLE 6-continued	LCMS MH+	R _t	
No.	Structure O 	MH ⁺ 460.4	(min) 1.66	Method F
	CH_3 CH_3 CH_3 CH_3 CH_3			
62	H_3C CH_3 O CH_3 N N N	461.3	1.43	Method E
63	$\begin{array}{c} O \\ O \\ CH_3 \end{array}$	462.3	1.52	Method E
64	H_3C CH_3 CH_3 N N N	472.4	1.56	Method E
65	H_3C H_3C CH_3 CH_3 N N N	472.4	2.12	Method E
66	H_3C N CH_3 H_3C CH_3 H_3C CH_3 N N	473	1.65	QC- ACN- AA- XB

TABLE 6-continued

Ex. No.	Structure	LCMS MH ⁺	R, (min)	Method
67	H_3C CH_3 CH_3 N N N N N	475.3	1.50	Method E

Example 68

1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)-2-morpholinoethan-1-one

 $6\text{-}(3\text{-}Isopropyl\text{-}5\text{-}(piperidin\text{-}4\text{-}yl)\text{-}1H\text{-}indol\text{-}2\text{-}yl)\text{-}8\text{-}}$ methyl-[1,2,4]triazolo[1,5-a]pyridine hydrochloride (0.250 g, 0.610 mmol) was dissolved in NMP (5 mL). Et_3N (0.255 mL, 1.829 mmol) and 2-chloroacetyl chloride (0.073 mL, 0.915 mmol) were added sequentially. The reaction was 40 monitored by LCMS. After stirring for 1.5 hours, the reaction mixture was diluted with NMP and used as a solution in the next step.

2-Chloro-1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)ethanone (0.035 g, 0.078 mmol) was dissolved in NMP (1 mL). DBU (0.059 mL, 0.389 mmol) and morpholine (0.020 mL, 0.233 mmol) were added sequentially. The reaction was monitored by LCMS. The reaction mixture was stirred overnight. The reaction mixture was diluted with solvent (90:10 ACN: 50 water, 0.1% TFA) and the crude material was purified via

preparative LC/MS with the following conditions: Column:) (Bridge C18, 19×200 mm, 5-µm particles; Mobile Phase A: 5:95 acetonitrile: water with 0.1% trifluoroacetic acid; Mobile Phase B: 95:5 acetonitrile: water with 0.1% trifluoroacetic acid; Gradient: 10-50% B over 30 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the product were combined and dried via centrifugal evaporation.

The yield of the product was 37.9 mg, and its estimated purity by LCMS analysis was 100%. Two analytical LC/MS injections were used to determine the final purity. Injection 1 conditions: Column: Waters Acquity UPLC BEH C18, 2.1×50 mm, 1.7-µm particles; Mobile Phase A: 5:95 acetonitrile: water with 10 mM ammonium acetate: Mobile Phase B: 95:5 acetonitrile:water with 10 mM ammonium acetate; Temperature: 50° C.; Gradient: 0-100% B over 3 minutes, then a 0.75-minute hold at 100% B; Flow: 1.0 mL/min; Detection: UV at 220 nm. Injection 2 conditions: Column: Waters Acquity UPLC BEH C18, 2.1×50 mm, 1.7-µm particles; Mobile Phase A: 5:95 acetonitrile:water with 0.1% trifluoroacetic acid; Mobile Phase B: 95:5 acetonitrile:water with 0.1% trifluoroacetic acid; Temperature: 50° C.; Gradient: 0-100% B over 3 minutes, then a 0.75-minute hold at 100% B; Flow: 1.0 mL/min; Detection: UV at 220 nm. LC-MS: M+1=501, rt=1.157 min., [D1]. Proton NMR was acquired in deuterated DMSO. ¹H NMR (400 MHz, DMSO d_6) δ =11.12 (s, 1H), 8.79 (d, J=0.8 Hz, 1H), 8.53 (s, 1H), 7.59 (d, J=6.4 Hz, 2H), 7.29 (d, J=8.4 Hz, 1H), 7.02 (dd, J=8.4, 1.2 Hz, 1H), 4.88-4.82 (m, 2H), 4.52-4.48 (m, 1H), 4.28-4.22 (m, 2H), 4.09-4.04 (m, 1H), 3.28-3.21 (m, 1H), 3.19-3.02 (m, 6H), 2.85-2.76 (m, 1H), 2.68-2.59 (m, 2H), 2.58 (s, 3H), 1.88-1.80 (m, 2H), 1.69-1.50 (m, 2H), 1.43 (d, J=7.2 Hz, 6H).

The following examples were prepared according to the general process disclosed in Example 68.

TABLE 7

Ex. No.	Structure	LCMS MH+	R _t (min)	Method
69	$\begin{array}{c} O \\ \\ NH \\ \\ CH_3 \\ \\ \\ N \\ \\ N \\ \\ \end{array}$	487.4	1.28	Method F

TABLE 7-continued

Ex. No.	Structure	LCMS MH ⁺	R _t (min)	Method
70	H_3C CH_3 CH_3 N N N N N N	473.4	1.35	Method E
71	$\begin{array}{c} O \\ HN \\ O \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ CH_3 \\ N \\ N \end{array}$	489.4	1.40	Method E
72	$\begin{array}{c} O \\ HN \\ \hline \\ CH_3 \\ \hline \\ CH_3 \\ \hline \\ \\ N \\ \hline \\ \\ N \\ \end{array}$	473.4	1.39	Method E
73	H_3C CH_3 CH_3 CH_3 N N N	487.4	1.25	Method F

55

60

Example 74

 $\begin{array}{l} 1\hbox{-}(1,1\hbox{-}dioxido\hbox{-}1,2,4\hbox{-}thiadiazinan\hbox{-}4\hbox{-}yl)\hbox{-}2\hbox{-}(4\hbox{-}(3\hbox{-}iso-propyl\hbox{-}2\hbox{-}(8\hbox{-}methyl\hbox{-}[1,2,4]triazolo[1,5\hbox{-}a]pyridin\hbox{-}6-yl)\hbox{-}1H-indol-5\hbox{-}yl)piperidin\hbox{-}1\hbox{-}yl)ethan\hbox{-}1\hbox{-}one \end{array}$

Intermediate 74A 2-(4-(3-isopropyl-2-(8-methyl-[1, 2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)acetic acid

(74A)

$$O = S$$

$$HN$$

$$O = N$$

 H_3C CH_3 N N N N

In a glass vial, 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (0.580 g, 1.233 mmol) was dissolved in $\mathrm{CH_2Cl_2}$ (8.22 mL) and

N,N-diisopropylethylamine (1.074 mL, 6.16 mmol). Methyl 2-bromoacetate (0.141 mL, 1.479 mmol) was added to the vial, resulting in a clear, bright yellow solution. The reaction mixture was stirred for 1.5 h at room temperature. Excess solvent was evaporated from the reaction mixture under a 5 nitrogen stream. The material was purified by silica gel chromatography using hexane and ethyl acetate as eluents (0%-100% Ethyl acetate gradient). The product fractions were combined and evaporated to dryness. The material was dissolved in 2 mL THF and 2 mL MeOH and treated with 2 mL of 4 M NaOH. Next, 1 mL of water was added and the mixture was stirred at 45° C. overnight. The mixture was diluted with water and acidified to pH=5 with 1 N HCl. Ethyl acetate was added and the layers were separated. The 15 combined organics were washed with dried over Na₂SO₄, filtered and concentrated to afford 2-(4-(3-isopropyl-2-(8methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)acetic acid.

Example 74

In a 2 dram vial were added 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidin-1-yl)acetic acid (0.025 g, 0.058 mmol), ${\rm CH_3CN}$ and TEA (0.024 mL, 0.174 mmol). The sample went into solution and HATU (0.033 g, 0.087 mmol) was added. The reaction vial was capped and allowed to stir overnight at room temperature. The sample was diluted with solvent

(90:10:0.1 CH₃CN:water: TFA), filtered and then purified by preparative reverse phase HPLC.

The crude material was purified via preparative LC/MS with the following conditions: Column:)(Bridge Phenyl, 19×200 mm, 5-μm particles; Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate: Mobile Phase B: 95:5 acetonitrile: water with 10-mM ammonium acetate; Gradient: 20-60% B over 20 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the product were combined and dried via centrifugal evaporation. The yield of the product was 0.8 mg and its estimated purity by LCMS analysis was 99%. Two analytical LC/MS injections were used to determine the final purity. Injection 1 conditions: Column: Waters Acquity UPLC BEH C18, 2.1×50 mm, 1.7-μm particles; Mobile Phase A: 5:95 acetonitrile:water with 10 mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 10 mM ammonium acetate; Temperature: 50° C.; Gradient: 0-100% B over 3 minutes, then a 0.75-minute hold at 100% B; Flow: 1.0 mL/min; Detection: UV at 220 nm. Injection 2 conditions: Column: Waters Acquity UPLC BEH C18, 2.1×50 mm, 1.7-μm particles; Mobile Phase A: 5:95 acetonitrile:water with 0.1% trifluoroacetic acid; Mobile Phase B: 95:5 acetonitrile:water with 0.1% trifluoroacetic acid; Temperature: 50° C.; Gradient: 0-100% B over 3 minutes, then a 0.75-minute hold at 100% B; Flow: 1.0 mL/min; Detection: UV at 220 nm. Proton NMR was acquired in deuterated DMSO.

The following examples were prepared according to the general process described in Example 74.

TABLE 8

Ex. No.	Structure	LCMS MH ⁺	R_t (min)	Method
75	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	471.4	1.72	Method E
76	$\begin{array}{c} CH_3 \\ N \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ N \\ N \end{array}$	473.4	1.56	Method E
77	HO N O N	515.4	1.40	Method E

TABLE 8-continued

	TABLE 8-continued			
Ex. No.	Structure	LCMS MH ⁺	R _t (min)	Method
78	H_3C CH_3 CH_3 N N N N	485.4	1.25	Method F
79	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	513.4	1.08	Method F
80	H_3C N O H_3C CH_3 CH_3 N N N	487.4	1.29	Method F
81	CH_3 CH_3 CH_3 CH_3	473.4	1.83	Method E
82	$HO^{M^{\prime\prime\prime}}$ O N H_3C CH_3 CH_3 N N N	515.4	1.10	Method F
83	HO N O	501.4	1.06	Method F

TABLE 8-continued

	TABLE 8-continued			
Ex. No.	Structure	LCMS MH ⁺	R _t (min)	Method
84	HOwhere N	501.4	1.05	Method F
85	$\bigcap_{CH_3} \bigcap_{N} \bigcap_{N} \bigcap_{N} \bigcap_{H_3C} \bigcap_{CH_3} \bigcap_{N} \bigcap$	558.5	0.96	Method F
86	H_3C CH_3 CH_3 N N N N N N N	471.4	1.13	Method F
87	H_3C CH_3 H_3C CH_3 CH_3 CH_3 CH_3	473.4	1.23	Method F
88	$0 \longrightarrow N \longrightarrow H_3C \longrightarrow CH_3 \longrightarrow CH_3$ $0 \longrightarrow N \longrightarrow N$ $N \longrightarrow N$ $N \longrightarrow N$	501.4	1.11	Method F
89	$\bigcap_{N} \bigcap_{N} \bigcap_{N$	499.4	1.3	Method F

TABLE 8-continued

Ex. No.	Structure	LCMS MH ⁺	R _r (min)	Method
90	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	485.4	1.59	Method E
91	$O = \bigcup_{N = 1}^{N} \bigcup_{N = 1}^{N} \bigcup_{N = 1}^{H_3C} \bigcup_{N = 1}^{CH_3} \bigcup_{N = 1}^{CH_3} \bigcup_{N = 1}^{CH_3} \bigcup_{N = 1}^{N} \bigcup_{N = 1}^{N$	549.4	1.52	Method E
92	CH_3 H_3C CH_3 CH_3	501.4	1.66	Method E
93		485.4	1.58	Method E
	H_3C N			

55

Example 94

Intermediate 94A: 6-bromo-8-iodo-[1,2,4]triazolo[1, 5-a]pyridine

 $8-ethyl-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-\\2-yl)-[1,2,4]triazolo[1,5-a]pyridine$

$$H_3C$$
 CH_3
 H_3C
 $O(94)$
 $O(94)$

(94A) Br N

To a stirred solution of 6-bromo-8-iodo-[1,2,4]triazolo[1, 5-a]pyridine (100 mg, 0.309 mmol) in EtOH (20 mL) was added vinylboronic acid pinacol ester (62.0 mg, 0.463

50

173

mmol). The mixture was degassed for 10 min using N_2 . Next, $PdCl_2(dppf)$ - CH_2Cl_2 (12.61 mg, 0.015 mmol) and Et_3N (0.129 mL, 0.926 mmol) were added and the reaction mixture was heated to 80° C. for 16 h. The reaction mixture was filtered through pad of celite, washed with EtOAc, and concentrated organic layer to afford 6-bromo-8-vinyl-[1,2, 4]triazolo[1,5-a]pyridine (70 mg, 95%). LC retention time 1.0.4 min [K]. MS (E–) m/z: 226 (M+H).

Intermediate 94B: tert-butyl 4-(3-isopropyl-2-(8-vinyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidine-1-carboxylate

Boc
$$H_3C$$
 CH_3 N N N

To a stirred solution of tert-butyl 4-(3-isopropyl-2-(4.4.5, 5-tetramethyl-1,3,2-dioxaborolan-2-vl)-1H-indol-5-vl)piperidine-1-carboxylate (300 mg, 0.640 mmol), and 6-bromo-8-vinyl-[1,2,4]triazolo[1,5-a]pyridine (215 mg, 0.961 mmol) in dioxane (15 mL) and water (2 mL) was added potassium phosphate tribasic (408 mg, 1.921 mmol). The mixture was degassed with N₂ for 10 min. Next, PdCl₂(dppf) (46.9 mg, 0.064 mmol) was added the mixture was degassed for 10 min. The reaction mixture was heated 80° C. for 16 h. The reaction mass was filtered through pad of celite, washed with EtOAc, and concentrated to afford tert-butyl 4-(3-isopropyl-2-(8-vinyl-[1,2,4]triazolo[1,5-a]pyridin-6yl)-1H-indol-5-yl) piperidine-1-carboxylate. The crude mass was purified by silica gel chromatography to afford 4-(3-isopropyl-2-(8-vinyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl)piperidine-1-carboxylate (230 mg, 74%) as white solid. LC retention time 1.74 min [K]. MS (E-) m/z: 486 (M+H).

Intermediate 94C: tert-butyl 4-(2-(8-ethyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate

Boc
$$H_3C$$
 CH_3 H_3C N N N N N

A solution of tert-butyl 4-(3-isopropyl-2-(8-vinyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidine-1-carboxylate (180 mg, 0.371 mmol) in ethyl acetate (15 mL) was purged with nitrogen (N_2). Palladium on carbon (39.4 mg, 0.371 mmol)) was added and the mixture was purged with 65 N_2 three times. Hydrogen gas (N_2) was introduced via a balloon to the mixture. The reaction mixture was stirred at

174

room temperature for 5 h. The suspension was filtered through celite, the filtrate was collected and concentrated to afford crude compound. The crude was purified by silica gel chromatography. The compound was eluted in 15% ethyl acetate in hexane, the fractions were collected and concentrated to afford to afford tert-butyl 4-(2-(8-ethyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (150 mg, 83% yield) as a white solid. LCMS retention time 1.70 min [K]. MS (E-) m/z: 488 (M+H).

Example 94

To a solution of tert-butyl 4-(2-(8-ethyl-[1,2,4]triazolo[1, 5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1carboxylate (140 mg, 0.287 mmol) in DCM (10 mL) was added 4 M HCl in dioxane (3.05 µl, 0.100 mmol at ambient temperature. The mixture was stirred at the same tempera-20 ture for 1 h. The solution was concentrated to afford crude product. The crude material was purified by prep LCMS with the following conditions: Waters Xbridge C18,19×150 mm, 5 μm; Guard Column: Water XBridge C18,19×10 mm, 5 μm; Mobile Phase A:5:95 methanol:water with 10 mM NH₄OAc; Mobile Phase B: 95:5 methanol:water with 10 mM NH₄OAc; Gradient:15-65% B over 25 minutes, followed by a 10 minute hold at 65% B and 5 minute hold at 100% B; Flow:15 mL/min. Fractions containing the product were combined and dried using a Genevac centrifugal evaporator to provide 8-ethyl-6-(3-isopropyl-5-(piperidin-4yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (5.4 mg, 8.5%) as a white solid. LC retention time=1.38 min [E]. MS (E^{-}) m/z: 388 (M+H).

Example 95

8-isopropyl-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine

Intermediate 95A: 6-bromo-8-(prop-1-en-2-yl)-[1,2, 4]triazolo[1,5-a]pyridine

$$H_3C$$
 (95A)

To a stirred solution of 6-bromo-8-iodo-[1,2,4]triazolo[1,5-a]pyridine (300 mg, 0.926 mmol) and 4,4,5,5-tetramethyl-

(95B)

25

50

55

Intermediate 95B: tert-butyl 4-(3-isopropyl-2-(8-(prop-1-en-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidine-1-carboxylate

retention time 1.19 min [K]. MS (E⁻) m/z: 240 (M+H).

To a stirred solution of tert-butyl 4-(3-isopropyl-2-(4,4,5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-5-yl)piperidine-1-carboxylate (300 mg, 0.640 mmol), 6-bromo-8-(prop-1-en-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (229 mg, 35 0.961 mmol) in dioxane (15 mL), and water (2 mL) was added potassium phosphate tribasic (408 mg, 1.921 mmol) degassed with N₂ for 10 mins, then PdCl₂(dppf) (46.9 mg, 0.064 mmol) was added. The reaction mixture was heated 100° C. for 16 h. Reaction mass filtered through celite bed 40 washed with EtOAc and concentrated to afford crude material. This material was purified by silica gel chromatography to afford tert-butyl 4-(3-isopropyl-2-(8-(prop-1-en-2-yl)-[1, 2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidine-1carboxylate. The crude mass was purified by ISCO silica 45 column to afford tert-butyl 4-(3-isopropyl-2-(8-(prop-1-en-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidine-1-carboxylate (260 mg, 81% yield) as a brown liquid. LC retention time 1.87 min [K]. MS (E-) m/z: 500 (M+H).

Intermediate 95C: tert-butyl 4-(3-isopropyl-2-(8isopropyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1Hindol-5-yl)piperidine-1-carboxylate

Boc
$$H_3C$$
 CH_3 $CH_$

176

A solution of tert-butyl 4-(3-isopropyl-2-(8-(prop-1-en-2yl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidine-1-carboxylate (180 mg, 0.360 mmol) in ethyl acetate (15 mL), was purged with nitrogen (N₂). Next, palladium on carbon (38.3 mg, 0.360 mmol) was added and the mixture was purged with N₂ three times. Hydrogen gas (H₂) was introduced via a balloon to the mixture. The reaction mixture was stirred at room temperature for 5 h. The suspension was filtered through celite and the filtrate was collected and concentrated to afford the crude compound. The crude material was purified by silica gel chromatography and the compound eluted in 15% ethyl acetate in hexane. The fractions were collected and concentrated to afford tert-butyl 4-(3-isopropyl-2-(8-isopropyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidine-1-carboxylate (160 mg, 89% yield). LCMS retention time 1.81 min [K]. MS (E⁻) m/z: 502 (M+H).20

Example 95

To a solution of tert-butyl 4-(3-isopropyl-2-(8-isopropyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidine-1-carboxylate (140 mg, 0.279 mmol) in DCM (10 mL) was added 4 M HCl in dioxane (5 mL) at ambient temperature. The mixture was stirred at the same temperature for 1 h. The solution was concentrated to afford crude product. The crude sample was purified by preparative LCMS with the following conditions: Waters Xbridge C18,19×150 mm, 5 Ilm; Guard Column: Water XBridge C18,19×10 mm, 5 μm; Mobile Phase A:5:95 Methanol:water with 10 mM NH₄OAc; Mobile Phase B: 95:5 Methanol:water with 10 mM NH₄OAc; Gradient:15-65% B over 25 minutes, followed by a 10 minute hold at 65% B and 5 minute hold at 100% B; Flow:15 mL/min. Fractions containing the product were combined and dried using a Genevac centrifugal evaporator to provide 8-isopropyl-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (1.5 mg, 1.3%) as a white solid. LC retention time=1.49 min [E]. $MS (E^-) m/z: 402 (M+H).$

Example 96

8-chloro-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-2-methyl-[1,2,4]triazolo[1,5-a]pyridine

$$H_3$$
C CH_3 CH_3 CH_3 CH_3

15

60

177

Intermediate 96A: tert-butyl 4-(2-(8-chloro-2methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate

Boc
$$H_3C$$
 CH_3 CI N N CH_3

A solution of tert-butyl 4-(3-isopropyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-5-yl)piperidine-1carboxylate (2.0 g, 4.27 mmol), 6-bromo-8-chloro-2methyl-[1,2,4]triazolo[1,5-a]pyridine (1.158 g, 4.70 mmol) and potassium phosphate, tribasic (2.231 g, 12.81 mmol) in dioxane (60 mL) and water (4 mL) was degassed with N2 for 10 min. Next, PdCl₂(dppf)-CH₂Cl₂ adduct (0.174 g, 0.213 ²⁵ mmol) was added and the mixture was degassed for 5 min. The resulting reaction mixture was heated at 90° C. for 12 h. The reaction mixture was concentrated. The residue was dissolved in ethyl acetate and the solution was washed with 30 water. The organic layer was collected, dried over Na₂SO₄ and concentrated to afford crude compound. The residue was taken up in DCM (1 mL) and recrystallized with pet ether (3×10 mL). The brown solid formed was filtered and dried to afford tert-butyl 4-(2-(8-chloro-2-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (1.4 g, 2.76 mmol, 64.5%) as a pale yellow solid. LCMS retention time 3.74 min [D]. MS (E⁻) m/z: 508.3 (M+H).

Example 96

To a stirred solution of tert-butyl 4-(2-(8-chloro-2methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1Hindol-5-yl)piperidine-1-carboxylate (250 mg, 0.492 mmol) in CH₂Cl₂ (2 mL) was added TFA (0.2 mL) at room temperature. The reaction mixture was stirred at the same temperature 2 h. The reaction mass was concentrated to 50 afford crude compound. The crude material was purified via preparative LC/MS with the following conditions: Column: Water XBridge C18, 19×150 mm, 5-µm particles; Mobile Phase A: 0.1% trifluoroacetic acid; Mobile Phase B: acetoni- 55 trile; Gradient: 10-35% B over 25 minutes, then a 5-minute hold at 100% B; Flow: 15 mL/min. Fractions containing the product were combined and dried via centrifugal evaporation to afford 8-chloro-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-2-methyl-[1,2,4]triazolo[1,5-a]pyridine (0.200 g, 99% yield) as a pale solid. LC retention time=2.31 min [E]. MS (E⁻) m/z: 409.4 (M+H). ¹H NMR (400 MHz, DMSO-d₆) δ ppm 1.32-1.52 (m, 7H) 1.80-1.96 (m, 3H) 2.07 (s, 1H) 2.28-2.40 (m, 1H) 2.61-2.72 (m, 1H) 2.88-3.04 (m, 65 2H) 3.17 (d, J=5.02 Hz, 2H) 3.21-3.28 (m, 2H) 4.10 (q, J=5.02 Hz, 1H) 7.02 (dd, J=8.53, 1.51 Hz, 1H) 7.35 (d,

178

J=8.03 Hz, 1H) 7.57 (s, 1H), 8.02 (d, J=1.51 Hz, 1H) 8.77-8.94 (m, 1H) 11.24 (s, 1H).

Example 97

8-ethyl-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-2-methyl-[1,2,4]triazolo[1,5-a]pyridine

$$H_3C$$
 CH_3
 N
 CH_3
 CH_3

Intermediate 97A: tert-butyl 4-(2-(8-ethyl-2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1Hindol-5-yl)piperidine-1-carboxylate

A solution of tert-butyl 4-(2-(8-chloro-2-methyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (0.1 mg, 0.197 µmol), ethylboronic acid (0.015 mg, 0.197 µmol), and potassium phosphate, dibasic (0.086 mg, 0.492 µmol) in toluene (2 mL) and water (0.5 mL) was degassed with N₂ for 10 min. Next, Pd(OAc)₂ (4.42 μg, 0.020 μmol) and tricyclohexylphosphine (2.76 μg, 0.0098 µmol) were added and the reaction mixture was degassed for 5 min. The reaction mixture was heated at 100° C. for 12 h. The reaction mixture was concentrated. The residue was dissolved in ethyl acetate and the solution was washed with water. The organic layer was collected, dried over Na₂SO₄, and concentrated to afford tert-butyl 4-(2-(8ethyl-2-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidine-1-carboxylate (80 mg, 1.59 mmol, 81%) as a pale yellow solid. LCMS retention time 3.93 min [D]. MS (E-) m/z: 502.3 (M+H).

Example 97

To a solution of tert-butyl 4-(2-(8-ethyl-2-methyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (0.08 g, 0.159 mmol) in DCM (2 mL) was added 4 M HCl in dioxane (0.399 mL, 1.595 mmol) drop wise. The reaction mixture was stirred at 25° C. for 1 h. The reaction mass was concentrated to afford crude (98)

40

Intermediate 98B: tert-butyl 4-(3-isopropyl-2-(7-methyl-8-vinyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidine-1-carboxylate

compound. The crude material was purified via preparative LC/MS with the following conditions: Column: Water XBridge C18, 19×150 mm, 5-µm particles; Mobile Phase A: 10-mM ammonium acetate; Mobile Phase B: acetonitrile; Gradient: 8-38% B over 25 minutes, then a 5-minute hold at 100% B; Flow: 15 mL/min. Fractions containing the product were combined and dried via centrifugal evaporation to afford 8-ethyl-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-2-methyl-[1,2,4]triazolo[1,5-a]pyridine (0.0013 g, 2% 10 yield) as a pale solid. LC retention time=1.369 min [D1]. MS (E⁻) m/z: 402 (M+H). ¹H NMR (400 MHz, DMSO-d₆) δ ppm 11.17 (s, 1H), 8.69 (s, 1H), 7.54 (d, J=18.6 Hz, 2H), 7.41-7.30 (m, 1H), 7.01 (d, J=9.0 Hz, 1H), 3.19-3.16 (m, 5H), (3.08-2.95 (m, 8H), 2.08 (s, 1H), 1.99 (d, J=13.2 Hz, 6H), 1.87 (d, J=12.2 Hz, 7H), 1.45 (d, J=7.1 Hz, 9H), 1.40-1.34 (m, 3H).

180

Example 98

tert-butyl 4-(2-(8-ethyl-7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate

A solution of tert-butyl 4-(3-isopropyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-5-yl)piperidine-1carboxylate (0.4 g, 0.854 mmol), 6-bromo-7-methyl-8-vinyl-[1,2,4]triazolo[1,5-a]pyridine (0.224 g, 0.939 mmol), and potassium phosphate tribasic (0.446 g, 2.56 mmol) in dioxane (5 mL) and water (1 mL) was degassed with N₂ for 10 min. Next, PdCl₂(dppf)-CH₂Cl₂ adduct (0.035 g, 0.043 25 mmol) was added and the mixture was again degassed for 5 min. The resulting reaction mixture was heated at 90° C. for 12 h. The reaction mixture was concentrated. The residue was dissolved in ethyl acetate and the solution was washed with water. The organic layer was collected, dried over 30 Na₂SO₄, and concentrated to afford crude compound. The residue was taken up in DCM (1 mL) and recrystallized with pet ether (3×10 mL). The crude material was purified by combiflash 5% MeOH/CHCl₃. Concentration of fractions provided tert-butyl 4-(3-isopropyl-2-(7-methyl-8-vinyl-[1,2, ³⁵ 4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidine-1carboxylate (0.35 g, 0.700 mmol, 82%) as a yellow solid. LCMS retention time 3.11 min [D]. MS (E⁻) m/z: 500.3 (M+H).

$$H_3C$$
 CH_3
 N
 H_3C
 CH_3
 CH_3

Intermediate 98A: 6-bromo-7-methyl-8-vinyl-[1,2,4] triazolo[1,5-a]pyridine

Intermediate 98C: tert-butyl 4-(2-(8-ethyl-7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate

A solution of 6-bromo-8-iodo-7-methyl-[1,2,4]triazolo[1, 5-a]pyridine (0.25 g, 0.740 mmol) and potassium vinyltrifluoroborate (0.099 g, 0.740 mmol) in ethanol (5 mL) was degassed with N₂ for 10 min. Next, PdCl₂(dppf)-CH₂Cl₂ adduct (0.030 g, 0.037 mmol) was added and the reaction mixture was degassed for 5 min followed by the addition of TEA (0.412 mL, 2.96 mmol). The resulting reaction mixture was heated at 85° C. for 12 h. The reaction mixture was concentrated. The residue was dissolved in ethyl acetate and the solution was washed with water. The organic layer was collected, dried over Na₂SO₄, and concentrated to afford 6-bromo-7-methyl-8-vinyl-[1,2,4]triazolo[1,5-a]pyridine (0.25 g, 0.473 mmol, 63.9% yield) as a yellow solid. LCMS retention time 1.42 min [H]. MS (E⁻) m/z: 240.3 (M+2H).

A solution of tert-butyl 4-(3-isopropyl-2-(7-methyl-8-vi-nyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidine-1-carboxylate (0.35 g, 0.700 mmol) in methanol (10 mL) was purged with nitrogen (N2). Next, Pd/C (0.019 g, 0.018 mmol) was added and the mixture was purged with N2 three times. Hydrogen gas (H2) was introduced via a balloon to the mixture. The reaction mixture was stirred at room temperature for 5 h. The suspension was filtered through celite bed, the filtrate was collected, and concentrated to afford tert-butyl 4-(2-(8-ethyl-7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidine-1-

carboxylate (250 mg, 0.498 mmol, 72%) as a white solid. LCMS retention time 4.45 min [H]. MS ($\rm E^-$) m/z: 502.3 (M+H).

Example 98

To a solution of tert-butyl 4-(2-(8-ethyl-7-methyl-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (0.25 g, 0.498 mmol) in DCM (2 mL) was added 4 M HCl in dioxane (0.249 mL, 0.997 mmol) 10 drop wise. The reaction mixture was stirred at 25° C. for 1 h. The crude material was purified via preparative LC/MS

182

with the following conditions: Column: Water XBridge C18, 19×150 mm, 5-µm particles; Mobile Phase A: 10-mM ammonium acetate; Mobile Phase B: methanol; Gradient: 20-60% B over 20 minutes, then a 5-minute hold at 100% B; Flow: 15 mL/min. Fractions containing the product were combined and dried via centrifugal evaporation to afford 8-ethyl-6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (180 mg, 90%) as a pale solid. LCMS retention time 1.368 min [E]. MS (E⁻) m/z: 402.2 (M+H).

The following examples were prepared according to the general procedures disclosed in Examples 1 and 2.

TABLE 9

	Fragment Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
99	F-17	H_3C CH_3 N N N N N N N	418.2	1.33	QC- ACN- AA- XB
100	F-10	HN H_3C CH_3 CH_3 CH_3 N N	417.9	1.18	QC- ACN- AA- XB
101	F-12	H_3C CH_3 N N N CH_3 CH_3	418.0	0.65	A1
102	F-14	$\begin{array}{c} \text{HN} \\ \text{H}_{3}\text{C} \\ \text{N} \\ \text{H}_{3}\text{C} \\ \end{array}$	392.0	1.2	QC- ACN- AA- XB
103	F-9	H_3C CH_3 OH N N	403.9	1.14	QC- ACN- TFA- XB

Ex. No.	Fragment Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
104	F-11	H_3 C CH_3 N N N H_3 C OH	404.2	0.99	QC- ACN- AA- XB
105	F-13	HN H_3C CH_3 CN N N	399.1	1.21	QC- ACN- AA- XB
106	F-14	H_3 C CH_3 N	392.0	1.2	QC- ACN- TFA- XB
107	F-14	H_3C CH_3 N	392.0	1.42	QC- ACN- AA- XB
108	F-8	HN H_3C CH_3 N	389.9	0.88	QC- ACN- AA- XB
109	F-58	HN H_3C N N N N N	361.3	0.71	QC- ACN- AA- XB
110	F-18	H_3 C CH_3 CH_3 N	388.2	1.25	QC- ACN- TFA- XB

	Fragment Starting Material	Structure	LCMS MH+	R, (min)	HPLC Method
111	F-19	H_3 C CH_3 CN	385.2	1.19	QC- ACN- TFA- XB
112	F-20	H_3C CH_3 F N N	378.0	1.148	QC- ACN- AA- XB
113	F-8	HN H_3C CH_3 OH N N	390.2	0.61	A1
114	F16	HN H_3C CH_3 N N N	420.2	0.61	A1
115	F-7	H_3 C CH_3 N N N	_	0.63	A1
116	F-16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	462.2	0.67	A1
117	F-59	HN H_3C CD_3 N N N	377.2	0.66	TS1

TABLE 10

Ex. No.	Fragment Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
118	F-39	H_3C CH_3 CI N N N	395.3	2.01	Е
119	F-36	H_3C CH_3 N	409.1	1.37	E
120	F-40	H_3C CH_3 CH_3 CH_3 CF_3	443.2	1.78	E
121	F-1	H_3 C N N N	346.6	0.81	E
122	F-21	$\begin{array}{c} HN \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	375.3	1.06	Е
123	F-22	H_3C CH_3 H_3C N	375.2	1.28	E
124	F-23	H_3C CH_3 CH_3 CH_3 CH_3	389.3	1.22	F

		TABLE To continued			
	Fragment Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
125	F-24	HN H_3C CH_3 H_3C H_3C	389.2	1.30	F
126	F-25	HN H_3C CH_3 F CH_3	392.3	1.39	F
127	F-26	HN H_3C CH_3 N N CH_3 N	391.3	1.13	Е
128	F-27	H_3C CH_3 CF_3 N N	428.2	1.46	F
131	F-28	$\begin{array}{c} HN \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	391.3	0.95	Е
132	F-29	H_3C CH_3 CH_3 N N N	405.3	1.16	Е

Fragment Ex. Starting No. Material	Structure	LCMS MH ⁺	R, (min)	HPLC Method
133 F-31	H_3C CH_3 N CH_3 CH_3	405.2	1.37	Е
134 F-32	H_3C CH_3 CH_2 N N CH_3	441.2	1.43	E
135 F-30	H_3C CH_3 N N CH_3	419.3	1.39	Е
136 F-33	H_3C CH_3 N N N N	433.4	1.41	E
138 F-34	$\begin{array}{c} HN \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	423.2	1.42	E
140 F-35	HN H_3C CH_3 N	405.2	1.36	Е
141 F-54	H_3C CH_3 N CH_3	415.1	1.40	F

	Fragment Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
142	F-21	$\begin{array}{c} \text{HN} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	396.3	0.88	Е
143	F-41	H_3C CH_3 N N N	446.3	1.37	Е
144	F-45	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	404.2	1.43	F
145	F-46	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	458.2	1.49	F
146	F-47	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	448.3	1.32	F
147	F-48	$\begin{array}{c c} HN & O & O \\ H_3C & CH_3 & HN - S \\ \hline \\ N & N \\ \end{array}$	480.2	1.28	F

		TABLE TO COMMICCO			
	Fragment Starting Material	Structure	LCMS MH+	R _r (min)	HPLC Method
148	F-49	H_3C CH_3 N	493.2	1.28	F
149	F-44	HN CH ₃ C CH ₃ N N N N N N N N N N N N N N N N N N N	459.3	1.07	F
150	F-41	$\begin{array}{c c} H_3C & & \\ \hline \\ H_3C & \\ \hline \\ N & \\ \end{array}$	460.3	1.42	F
151	F-52	HN H_3C CH_3 N N N	401.3	1.21	F
152	F-55	HN H_3C CH_3 N	414.2	1.36	F
153	F-40	$\begin{array}{c} HN \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	443.2	1.33	E

Fra Ex. Sta No. Ma		LCMS MH ⁺	R, (min)	HPLC Method
154 F-5	H_3C CH_3 N N CF_3	459.2	1.68	Е
155 F-3		389.2	1.15	F
156 F-5	HN CHF_2 $O-CH_3$ N N	412.2	0.92	Е
157 F-5	HN N N N N N N N	376.4	1.34	D
158 F-2	HN CH ₃ CH ₃ N N N N N N N N N N N N N N N N N N N	360.2	1.40	D
159 F-5	H_3C CH_3 H_N N N	465.3	1.54	N
160	H_3 C CH_3 O CHF_2 N N N	426.2	1.35	N

20

50

6-(3-(2,2-difluoroethyl)-5-(piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine

Intermediate 161A: 5-bromo-1-tosyl-1H-indole

To a stirred solution of 5-bromo-1H-indole (5.0 g, 25.5 mmol), TsCl (6.03 g, 31.6 mmol), and tetrabutylammonium hydrogen sulfate (0.63 g, 1.855 mmol) in toluene (100 mL) was added NaOH (50% solution in water, 10.20 g, 255 mmol) dropwise. The reaction mixture was stirred for 16 h at room temperature. The reaction was quenched with water (20 mL). The layers were separated, the aqueous layer was extracted with EtOAc (2×50 mL), the combined organic extracts were dried (Na₂SO₄) and concentrated to yield crude material. The crude material was purified by silica gel chromatography. The compound was eluted in 4% EA in hexanes, the fractions was collected and concentrated to afford 5-bromo-1-tosyl-1H-indole (7.1 g, 20.27 mmol) as a white solid. LC retention time=2.230 min [A]. MS (E) m/z: 45 393.3 (M–H).

Intermediate 161B: 1-(5-bromo-1-tosyl-1H-indol-3-yl)-2,2-difluoroethan-1-one

To a suspension of AlCl₃ (6.85 g, 51.4 mmol) in DCM (50 mL) was added difluoroacetic anhydride (4.47 g, 25.7 mmol). The reaction mixture was stirred for 15 min, then a 65 solution of 5-bromo-1-tosyl-1H-indole (3 g, 8.57 mmol)) in DCM (30 mL) was added. The reaction mixture was stirred

200

for 1 h at ambient temperature. The reaction was quenched with ice-water. The mixture was extracted with DCM (2×50 mL), combined extracts was washed with aqueous NaHCO₃, brine, dried over MgSO₄, filtered and concentrated to yield crude material. The crude material was purified by silica gel chromatography, the compound was eluted in 10% EtOAc in hexane, the fraction was collected and concentrated to afford 1-(5-bromo-1-tosyl-1H-indol-3-yl)-2,2-difluoroethanone (2.21 g, 4.1 mmol) as a crystalline solid. LC retention time=2.732 min [A]. MS (E⁻) m/z: 428.0 (M+H).

Intermediate 161C: 1-(5-bromo-1H-indol-3-yl)-2,2-difluoroethan-1-one

$$F_2HC$$
 O (161C)

To a solution of 1-(5-bromo-1-tosyl-1H-indol-3-yl)-2,2-difluoroethanone (0.2 g, 0.467 mmol) in THF (4 mL) and MeOH (4.00 mL) solvent mixture was added $\mathrm{Cs_2CO_3}$ (0.45 g, 1.381 mmol) at room temperature. The mixture was stirred at room temperature for 12 h. The reaction mixture was concentrated, the residue was diluted with minimum amount of water and undissolved solids were filtered and dried under vacuum to afford 1-(5-bromo-1H-indol-3-yl)-2, 2-difluoroethanone (105 mg, 0.244 mmol) as a white solid. LC retention time=2.233 min [A]. MS (E⁻) m/z: 276 (M+2H).

Intermediate 161D: 5-bromo-3-(2,2-difluoroethyl)-1H-indole

$$\begin{array}{c} \text{CHF}_2 \\ \\ \text{N} \\ \\ \text{H} \end{array}$$

To the stirred solution of 1-(5-bromo-1H-indol-3-yl)-2,2-difluoroethanone (0.25 g, 0.912 mmol) in THF (10 mL) was added BH₃DMS (1.368 mL, 2.74 mmol) at 0° C. under nitrogen. The reaction mixture was stirred at 80° C. for 20 h. The reaction was quenched with water (2 mL) at 0° C. The reaction mixture was diluted with ethyl acetate (100 mL), washed with sodium bicarbonate (2×25 mL) and water (2×25 mL), combined organic extracts was dried over anhydrous sodium sulphate, filtered and concentrated to yield crude compound. The crude material was purified on silica gel chromatography, the compound was eluted at 8% ethyl acetate/hexane, the fractions was collected and concentrated to afford 5-bromo-3-(2,2-difluoroethyl)-1H-indole (120 mg, 0.438 mmol) as an oil. LC retention time=2.802 min [D]. MS (E⁻) m/z: 260 (M+H).

15

45

50

Intermediate 161E: tert-butyl 4-(3-(2,2-difluoroethyl)-1H-indol-5-yl)-3,6-dihydropyridine-1(2H)carboxylate

Boc
$$F_2HC$$
 (161E)

Tert-butyl 4-(3-(2,2-difluoroethyl)-1H-indol-5-yl)-5,6-di-hydropyridine-1(2H)-carboxylate was prepared according to the general procedure described in Intermediate T-1B using 5-bromo-3-(2,2-difluoroethyl)-1H-indole as the starting intermediate (0.14 g, 80% yield). LC retention time 3.075 ²⁰ min [D]. MS (E⁻) m/z: 361.2 (M–H).

Intermediate 161F: tert-butyl 4-(3-(2,2-difluoro-ethyl)-1H-indol-5-yl)piperidine-1-carboxylate

Box
$$F_2HC$$
 (161F)

Tert-butyl 4-(3-(2,2-difluoroethyl)-1H-indol-5-yl)piperidine-1-carboxylate was prepared according to the general procedure described in Intermediate T-1C using tert-butyl 4-(3-(2,2-difluoroethyl)-1H-indol-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate as the starting intermediate (0.9 g, 88% yield). LC retention time 3.282 min [D]. MS (E $^-$) m/z: 265.0 (M+H-Boc).

Intermediate 161G: tert-butyl 4-(2-bromo-3-(2,2-difluoroethyl)-1H-indol-5-yl)piperidine-1-carboxy-late

Boc
$$F_2HC$$
 Br H

Tert-butyl 4-(2-bromo-3-(2,2-difluoroethyl)-1H-indol-5-yl)piperidine-1-carboxylate was prepared according to the general procedure described in Intermediate 194D using tert-butyl 4-(3-(2,2-difluoroethyl)-1H-indol-5-yl)piperidine-1-carboxylate as the starting intermediate (0.3 g, 52% yield). LC retention time 1.10 min [G]. MS (E⁻) m/z: 389.0 (M+2H-tBu).

202

Intermediate 161H: tert-butyl 4-(3-(2,2-difluoro-ethyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-5-yl)p iperidine-1-carboxylate

Boc
$$F_2HC$$
 H_3C CH_3 CH_3 CH_3

A mixture of pinacolborane (1.444 g, 11.28 mmol), tertbutyl 4-(2-bromo-3-(2,2-difluoroethyl)-1H-indol-5-yl)piperidine-1-carboxylate (1.0 g, 2.256 mmol), bis(benzonitrile) palladium(II) chloride (0.086 g, 0.226 mmol), TEA (0.683 g, 6.77 mmol), and 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (0.092 g, 0.226 mmol) in dioxane (20 mL) was degassed with nitrogen for 10 min. The reaction mixture was stirred at 80° C. for 1 h in a sealed tube. The reaction 25 was quenched with ice cold water. The reaction mixture was diluted with ethyl acetate, filtered and washed with excess ethyl acetate, combined organic layers was washed with water, brine, dried over sodium sulphate and evaporated to afford crude compound. The crude material was purified by 30 silica gel chromatography, the compound was eluted with 25% ethyl acetate in hexane, the fractions were collected and concentrated to afford tert-butyl 4-(3-(2,2-difluoroethyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-5yl)piperidine-1-carboxylate (0.650 g, 1.325 mmol, 58.8% 35 yield) as an off-white solid. LC retention time 3.282 min [D]. MS (E⁻) m/z: 435.4 (M+H-tBu).

Intermediate 161I: tert-butyl 4-(3-(2,2-difluoro-ethyl)-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidine-1-carboxylate

A mixture of tert-butyl 4-(3-(2,2-difluoroethyl)-2-(4,4,5,55 5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-5-yl)piperidine-1-carboxylate (0.300, 0.612 mmol), 6-bromo-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (0.156 g, 0.734 mmol), PdCl₂(dppf)-CH₂Cl₂ adduct (0.050 g, 0.061 mmol), and tripotassium phosphate (0.390 g, 1.835 mmol) in a solvent mixture of dioxane (20 mL) and water (2.5 mL) was degassed with nitrogen for 10 min. Next, the resulting slurry was stirred at 95° C. for 3 h in a sealed tube. The reaction mixture was diluted with ethyl acetate, filtered and washed with excess ethyl acetate, combined organic layers were washed with water, brine, dried over sodium sulphate and evaporated to afford crude compound. The crude material was purified by silica gel chromatography, the compound

Intermediate 162A: tert-butyl 4-(3-(2,2-difluoro-ethyl)-2-(2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidine-1-carboxylate

204

was eluted with 85% ethyl acetate and pet ether to afford tert-butyl 4-(3-(2,2-difluoroethyl)-2-(8-methyl-[1,2,4]tri-azolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidine-1-car-boxylate (0.210 g, 0.424 mmol, 69.3% yield) as a light yellow solid. LC retention time 1.42 min [G]. MS (E $^-$) m/z: $_5$ 496.4 (M+H).

Example 161

To a solution of tert-butyl 4-(3-(2,2-difluoroethyl)-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidine-1-carboxylate (0.210 g, 0.424 mmol) in dioxane (5.0 mL) was added 4 M HCl in dioxane (1.059 mL, 4.24 mmol) at room temperature. The mixture was stirred at the same temperature for 2 h. The volatiles were evaporated and dried under vacuum to afford crude compound. The crude 15 material was triturated with diethyl ether, dried under vacuum to afford 6-(3-(2,2-difluoroethyl)-5-(piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a] pyridine (0.165 g, 0.417 mmol, 98% yield) as a light yellow solid. LCMS retention time 1.021 min [E]. MS (E⁻) m/z: 396.2 20 (M+H).

Example 162

6-(3-(2,2-difluoroethyl)-5-(piperidin-4-yl)-1H-indol-2-yl)-2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine

Boc
$$F_2HC$$
 CH_3

Tert-butyl 4-(3-(2,2-difluoroethyl)-2-(2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidine-1-carboxylate was prepared according to the general procedure described for Intermediate 161I using tert-butyl 4-(3-(2,2-difluoroethyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-5-yl)piperidine-1-carboxylate (0.250 g, 0.510 mmol). LC retention time 3.102 min [D]. MS (E⁻) m/z: 510.2 (M+H).

Example 162

6-(3-(2,2-difluoroethyl)-5-(piperidin-4-yl)-1H-indol-2-yl)-2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine was prepared according to the general procedure described in Example 161 using tert-butyl 4-(3-(2,2-difluoroethyl)-2-(2, 8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidine-1-carboxylate (0.200 g, 0.392 mmol). LC retention time 1.831 min [D]. MS (E⁻) m/z: 410.2 (M+H).

The following examples were prepared according to the general procedures disclosed in Example 7.

 $\begin{array}{c} \text{(162)} \\ \text{30} \\ \text{HN} \\ \text{N} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array}$

Template

TABLE 11

	Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
163	EX-99	H_3C N	503.2	1.31	QC-ACN-TFA-XB
164	EX-1	H_3C N	445.4	1.31	QC-ACN-AA-XB

Template Ex. Starting No. Material	Structure	LCMS MH+	R _t (min) HPLC Method
165 EX-2	H_3C CH_3 H_3C CH_3 CH_3 N N	444.4	1.7 QC-ACN-AA-XB
166 EX-2	H_3C CH_3 CH_3 N N N	431.9	1.33 QC-ACN-TFA-XB
167 EX-2	ON NO H ₃ C CH ₃ CH ₃	550.9	1.75 QC-ACN-AA-XB
168 EX-2	H_2N S N H_3C CH_3 N N N N N	481.2	1.48 QC-ACN-AA-XB
169 EX-2	H_3C N CH_3 CH_3 CH_3 CH_3 N	484.0	1.85 QC-ACN-AA-XB
170 EX-2	$\begin{array}{c} CH_{3} \\ NC \\ \hline \\ N \\ \hline \\ N \\ \hline \\ N \\ \hline \\ N \\ N \\ \hline \\ N \\ N$	427.1	1.17 QC-ACN-TFA-XB

Template Ex. Starting No. Material	Structure	LCMS MH ⁺	R _r (min) HPLC Method
171 EX-2	NC NC H ₃ C CH ₃ CH ₃	453.0	1.97 QC-ACN-AA-XB
172 EX-2	$\begin{array}{c} \text{NC} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	453.0	2.09 QC-ACN-AA-XB
173 EX-2	$\begin{array}{c c} O & & \\ \hline \\ O & \\ \hline \\ O & \\ \hline \\ \\ \end{array}$	542.0	2.16 QC-ACN-AA-XB
174 EX-2	$O = S = O$ H_3C CH_3 CH_3 N N N N	495.1	1.58 QC-ACN-AA-XB
175 EX-2	$O = S = O$ H_3C CH_3 CH_3 N N N N N	509.0	1.76 QC-ACN-AA-XB
176 EX-2	$O = S = O$ CH_3 CH_3 N	495.0	1.34 QC-ACN-TFA-XB
177 EX-2	$O = S = O$ CH_3 CH_3 N N N N N	480.1	1.08 QC-ACN-TFA-XB

		17 ADEL 11 COMMICC			
	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
178	EX-2	H_3C CH_3 CH_3 N N N N	495.1	1.25	QC-ACN-AA-XB
179	EX-2	H_3C N H_3C CH_3 CH_3 N N N N N N N	499.4	1.23	QC-ACN-AA-XB
180	EX-3	$O = S = O$ CH_3 H_3C N N N H_3C	480.1	1.56	QC-ACN-AA-XB
181	EX-3	H_3C CH_3 N	412.9	1.84	QC-ACN-AA-XB
182	EX-3	H_3C H_3C CH_3 N N N H_3C N	446.0	1.41	QC-ACN-AA-XB
183	EX-3	$O = S = O$ NH_2 NH_3C N	481.0	0.98	QC-ACN-TFA-XB

		TABLE 11-continued			
	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
184	EX-3	$O = S = O$ HN CH_3 H_3C N N H_3C N	495.0	1.47	QC-ACN-AA-XB
185	EX-3	$O = S = O$ H_3C CH_3 H_3C N H_3C N H_3C N	509.1	1.71	QC-ACN-AA-XB
186	EX-3	CN H_3C CH_3 N N H_3C	453.0	2.19	QC-ACN-AA-XB
187	EX-3	H_3C CH_3 H_3C H_3C	453.3	1.32	QC-ACN-TFA-XB
188	EX-3	H_3C CH_3 H_3C H_3C	427.0	1.73	QC-ACN-AA-XB
189	EX-3	H_3C CH_3 H_3C H_3C H_3C	494.9	1.42	QC-ACN-AA-XB

	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
190	EX-3	H_3C N	445.4	1.05	QC-ACN-TFA-XB
191	EX-3	H_3C N H_3C N H_3C N	459.4	1.33	QC-ACN-AA-XB
192	EX-3	H_2N O H_3C CH_3 N H_3C H_3C	431.1	1.35	QC-ACN-AA-XB
193	EX-112	H_3C N	463.3	1.27	QC-ACN-TFA-XB
194	EX-112	$O = S \qquad \qquad H_3C \qquad CH_3 \qquad F \qquad \qquad N \qquad$	484.0	1.71	QC-ACN-AA-XB
195	EX-112	NC NG CH ₃ CH ₃ F	417.2	1.88	QC-ACN-AA-XB

	TABLE II commune		
Template Ex. Starting No. Material	Structure	LCMS MH+	R, (min) HPLC Method
196 EX-112	H_2N O N H_3C CH_3 F N N N N N	435.1	1.42 QC-ACN-AA-XB
197 EX-112	H_3C N	449.2	1.40 QC-ACN-AA-XB
198 EX-6	H_3C N N H_3C N N N N N N	489.4	1.44 QC-ACN-AA-XB
199 EX-6	H_2N O CH_3 N N N N N N N	461.1	1.38 QC-ACN-AA-XB
200 EX-6	$O = \bigcup_{CH_3}^{O} \bigcup_{CH_3}^{H_3C} \bigcup_{N}^{CH_3}$	510.2	1.25 QC-ACN-TFA-XB
201 EX-6	H_3C CH_3 CH_3 N	443.0	1.84 QC-ACN-AA-XB
202 EX-6	H_3C N CH_3 CH_3	475.0	1.25 QC-ACN-TFA-XB

		17 ADEL 11 Continued		
Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min) HPLC Method
203	EX-6	$O = S = O$ NH_2 NH_2 NH_3 NH	511.3	1.54 QC-ACN-AA-XB
204	EX-4	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	509.2	1.47 QC-ACN-AA-XB
205	EX-4	$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	523.0	1.73 QC-ACN-AA-XB
206	EX-4	$O = S = O$ H_3C CH_3 H_3C CH_3 H_3C CH_3	523.0	1.37 QC-ACN-TFA-XB
207	EX-110	H_3C N	473.0	1.35 QC-ACN-TFA-XB
208	EX-110	H_3C	483.4	1.46 QC-ACN-AA-XB
209	EX-110	H_3C S O N H_3C CH_3 CH_3 N	494.3	1.65 QC-ACN-AA-XB

		TABLE II commune			
Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R, (min)	HPLC Method
210	EX-110	H_3C CH_3 H_3C N	427.35, 427.35		QC-ACN-TFA-XB
211	EX-100	NC H_3C CH_3 CH_3 CH_3 N N N	470.9	1.32	QC-ACN-TFA-XB
212	EX-100	H_3C CH_3 CH_3 CH_3	457.3	1.33	QC-ACN-TFA-XB
213	EX-100	H_2N O H_3C CH_3 CH_3 O N N N N	475.1	1.47	QC-ACN-AA-XB
214	EX-100	$O = S = O$ CH_3 H_3C CH_3 CH_3 CH_3 N N N N	524.3	1.63	QC-ACN-AA-XB
215	EX-100	H ₃ C CH ₃ CH ₃ CH ₃ N N N N N N N N N N N N N	539.0	1.63	QC-ACN-AA-XB
216	EX-100	$\begin{array}{c} O \\ \\ HN \\ \\ CH_3 \end{array} \begin{array}{c} HO \\ \\ CH_3 \\ \\ CH_3 \end{array} \begin{array}{c} HO \\ \\ CH_3 \\ \\ N \end{array}$	489.4	1.52	QC-ACN-AA-XB

	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
217	EX-100	H_3C CH_3 H_3C CH_3 CH_3 CH_3	503.1	1.3	QC-ACN-TFA-XB
218	EX-100	$O = S = O$ NH_2 H_3C CH_3 CH_3 N N N	525.1	1.15	QC-ACN-TFA-XB
219	EX-101	H_3C CH_3 H_3C CH_3 H_3C CH_3	503.2	1.22	QC-ACN-TFA-XB
220	EX-111	$O = \bigcup_{CH_3}^{N} \bigcup_{NH} \bigcup_{N} \bigcup_{H} \bigcup_{N} \bigcup_{N$	506.2	1.24	QC-ACN-AA-XB
221	EX-111	H_3 C CH_3 CH_3 CN N N N N N N N N N	457.0	1.31	QC-ACN-TFA-XB
222	EX-111	H_3C S O	491.2	1.66	QC-ACN-AA-XB
223	EX-111	H_3C CH_3 N	424.3	1.93	QC-ACN-AA-XB

	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
224	EX-111	H_3C N	470.0	1.27	QC-ACN-TFA-XB
225	EX-102	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	489.4	1.1	QC-ACN-TFA-XB
226	EX-104	H_3C CH_3 H_3C CH_3 N	489.0	1.18	QC-ACN-AA-XB
227	EX-104	H_3C CH_3 N	442.9	1.21	QC-ACN-TFA-XB
228	EX-105	H_3C N O N H_3C CH_3 CH_3 N	484.3	1.43	QC-ACN-AA-XB
229	EX-103	H_3C CH_3 OH N	443.0	1.27	QC-ACN-TFA-XB

	T 1.				
	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
230	EX-108	H_3C CH_3 N	429.1	1.16	QC-ACN-TFA-XB
231	EX-113	H_3C N O N	475.1	1.0	QC-ACN-TFA-XB
232	EX-113	H_3C CH_3 OH N	429.2	1.53	QC-ACN-AA-XB
233	EX-113	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	496.0	1.12	QC-ACN-TFA-XB
234	EX-113	$_{\rm HN}$ $_{\rm O}$ $_{\rm H_3C}$ $_{\rm CH_3}$ $_{\rm OH}$ $_{\rm N}$ $_{\rm N}$	461.3	0.97	QC-ACN-TFA-XB
235	EX-113	$\begin{array}{c} CN \\ N \\ N \\ N \\ N \end{array}$	471.1	1.63	QC-ACN-TFA-XB

227		228
	TABLE 11-continued	

	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
236	EX-114	H_3C N	505.2 H	1.19	QC-ACN-AA-XB

		TABLE 12			
Ex.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
237	EX-122	$\begin{array}{c} O \\ \\ HN \\ \\ CH_3 \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	445.3	1.76	E
238	EX-122	H_3C N H_3C N	459.3	1.62	E
239	EX-122	H_3C OH OH OH OH OH OH OH OH	446.3	1.59	Е
240	EX-1	H_3C N H_3C CH_3 N N N N N	431.2	1.71	E

TABLE 12-continued

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
241	EX-1	H_3C CH_3 H_3C CH_3 N N N N	432.3	1.51	Е
242	EX-1	H_3C N	431.2	1.75	E
243	EX-2	H_3C N H_3C CH_3 CH_3 N N N	499.3	2.1	D
244	EX-124	$\begin{array}{c} O \\ \\ HN \\ \\ CH_3 \\ \end{array} \begin{array}{c} CH_3 \\ \\ N \\ \\ N \\ \end{array} \begin{array}{c} CH_3 \\ \\ N \\ \\ CH_3 \\ \end{array}$	459.3	1.74	E
245	EX-124	$\begin{array}{c} O \\ \\ H_3C \\ \end{array} \\ \begin{array}{c} CH_3 \\ \\ N \\ \end{array} \\ CH_3 \\ \\ CH_3 \\ \end{array} \\ CH_3$	473.3	2.09	D
246	EX-124	$\begin{array}{c} HO \\ H_3C \\ \hline \\ CH_3 \\ \hline \\ N \\ CH_3 \\ \hline \\ N \\ CH_3 \\ \end{array}$	460	1.74	E

TABLE 12-continued

Ex.	Template Starting Material	Structure	LCMS MH ⁺	R, (min)	HPLC Method
247	EX-125	$\begin{array}{c} O \\ \\ H_3C \\ \end{array} \\ \begin{array}{c} C\\ \\ H_3C \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ H_3C \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	473.3	1.56	Е
248	EX-125	$\begin{array}{c} O \\ \\ HN \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ \\ H \\ H_3C \end{array} \begin{array}{c} CH_3 \\ \\ H_3C \end{array}$	459.2	1.72	Е
249	EX-125	H_3C CH_3 H_3C CH_3 H_3C H_3C H_3C	460	1.66	Е
250	EX-128	CH_3 HN O N H_3C CH_3 CF_3 N N N N	499.3	2.08	Е
251	EX-128	H_3C N N H_3C CH_3 CF_3 N N N	513	1.65	E
252	EX-128	H_3C CH_3 CF_3 N N N N	500	1.74	E

Ex.	Template Starting Material	Structure	LCMS MH ⁺	R, (min)	HPLC Method
253	EX-128	H_3C CH_3 CF_3 N N N N N N N	467.2	2.26	Е
254	EX-128	H_3C CH_3 CF_3 N N N N	534.1	2.07	E
255	EX-142	$\begin{array}{c} CH_3 \\ HN \\ O \end{array}$	467.2	1.41	Е
256	EX-142	$\begin{array}{c} CH_3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	481.2	1.26	E
257	EX-155	$\begin{array}{c} CH_3 \\ H_3C \\ \end{array} \\ \begin{array}{c} H_3C \\ \end{array} \\ \begin{array}{c} H_3C \\ \end{array} \\ \begin{array}{c} CH_3 \\ \\ H_3C \\ \end{array} \\ \begin{array}{c} CH_3 \\ \end{array} \\ CH_3 \\ \end{array}$	473	1.65	Е
258	EX-155	$\begin{array}{c} CH_3 \\ HN \\ O \\ \end{array}$	459	1.83	E

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
259	EX-153	$\begin{array}{c} CH_3 \\ H_3C \\ \end{array} \\ \begin{array}{c} H_3C \\ \end{array} \\ \begin{array}{c} CH_3 \\ \\ N \\ \end{array} \\ CF_3 \\ \\ CH_3 \\ \end{array} \\ CH_3 \\ CH_3 \\ \end{array}$	527.3	1.91	Е
260	EX-96	$\begin{array}{c} CH_3 \\ H_3C \\ \end{array} \\ \begin{array}{c} H_3C \\ \end{array} \\ \begin{array}{c} CH_3 \\ \\ H \end{array} \\ \begin{array}{c} CH_3 \\ \\ \\ N \end{array} \\ CH_3 \\ \end{array}$	493	1.73	Е
261	EX-96	$\begin{array}{c} CH_3 \\ HN \\ O \\ N \\ CH_3 \\ CH_4 \\ CH_3 \\ CH_3 \\ CH_4 \\ CH_5 \\ CH_$	479	1.94	E
262	EX-96	H_3C CH_3 CH_3 CH_3 CH_3 CH_3	480.3	1.61	E
263	EX-5	H_3C N H_3C CH_3 N N N N	496.2	1.81	Е
264	EX-5	H_3C CH_3	510.2	5.65	I

TABLE 12-continued

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R, (min)	HPLC Method
265	EX-5	H_3C S CH_3 H_3C CH_3 CH_3 N N N	510.1	5.63	I
266	EX-5	$\begin{array}{c c} & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	448.2	1.87	E
267	EX-131	H_3C CH_3 CH_3 CH_3 CH_3	475.3	1.58	E
268	EX-132	H_3C N	489	1.55	E
269	EX-132	CH_3 HN O N H_3C CH_3 N	475.3	1.95	E
270	EX-132	H_3C CH_3	476.2	1.76	Е

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
271	EX-133	H_3C CH_3 CH_3 CH_3 CH_3 CH_3	489.3	1.71	Е
272	EX-133	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	475.3	1.84	Е
273	EX-133	H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	476.3	1.7	Е
274	EX-134	H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	525.3	1.93	Е
275	EX-134	$\begin{array}{c} O \\ \\ HN \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ \\ N \\ \\ N \end{array} \begin{array}{c} O - CHF_2 \\ \\ N \\ \\ CH_3 \end{array}$	511.3	1.98	Е
276	EX-135	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	503.3	1.84	Е

TABLE 12-continued

Ex.	Template Starting Material	Structure	LCMS MH ⁺	R, (min)	HPLC Method
277	EX-135	$\begin{array}{c} CH_3 \\ CH_4 \\ CH_3 \\ CH_4 \\ CH_5 \\ CH$	489.3	2.09	Е
278	EX-136	$\begin{array}{c} H_3C \\ \\ H_3C \\ \\ H_3C \\ \end{array} $	517.2	2.02	Е
279	EX-136	$\begin{array}{c} H_3C \\ CH_3 \\ CH_3 \\ \end{array}$	503.4	1.93	Е
280	EX-118	H_3C N CH_3 N N N N N N N N	479	1.68	Е
281	EX-118	$\begin{array}{c} O \\ \\ HN \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ \\ N \\ \end{array} \begin{array}{c} CI \\ \\ N \\ \end{array}$	465	1.85	E
282	EX-118	H_3C CH_3	466	1.74	Е

TABLE 12-continued

Ex.	Template Starting Material	Structure	LCMS MH ⁺	R, (min)	HPLC Method
283	EX-137	$\begin{array}{c} O \\ \\ H_3C \\ \end{array} \\ \begin{array}{c} C\\ \\ H_3 \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \end{array} \\ CH_3 \\ \\ \begin{array}{c} C\\ \\ \\ \\ \\ \end{array} \\ CH_3 \\ \\ \begin{array}{c} C\\ \\ \\ \\ \\ \end{array} \\ CH_3 \\ \\ \begin{array}{c} C\\ \\ \\ \\ \\ \end{array} \\ CH_3 \\ \\ \begin{array}{c} C\\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	487.2	1.81	Е
284	EX-137	H_3C CH_3 CH_3 CH_3 CH_3 CH_3	474.1	1.95	E
285	EX-137	$\begin{array}{c} CH_3 \\ HN \\ O \\ \end{array}$	473.2	1.98	Е
286	EX-119	H_3C CH_3 H_3C CH_3 H_3C CH_3 C	493.1	1.75	E
287	EX-119	H_3C CH_3 H_3C CH_3 H_3C CH_3	480.1	1.47	Е
288	EX-119	$\begin{array}{c} O \\ \\ HN \\ \\ CH_3 \end{array} \begin{array}{c} H_3C \\ \\ CH_3 \\ \\ H \\ \\ H_3C \end{array} \begin{array}{c} CH_3 \\ \\ \\ CI \end{array}$	479.1	1.91	Е

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
289	EX-119	$\begin{array}{c} O \\ \\ HN \\ \\ CH_3 \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	479.2	1.91	Е
290	EX-119	G G G G G G G G G G	514.2	1.97	Е
291	EX-143	$\begin{array}{c} O \\ \\ HN \\ CH_3 \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} $	516.3	1.88	Е
292	EX-143	H_3C CH_3 N N N N N N N	530.3	1.69	Е
293	EX-94	$\begin{array}{c} O \\ \\ H_3C \\ \end{array} \begin{array}{c} CH_3 \\ \\ N \\ \end{array} \begin{array}{c} CH_3 \\ \\ N \\ \end{array}$	473.3	1.75	E
294	EX-94	$\begin{array}{c} O \\ \\ HN \\ \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ \\ N \end{array} \begin{array}{c} CH_3 \\ \\ N \end{array}$	459.2	1.95	E
295	EX-95	$\begin{array}{c} O \\ \\ H_3C \\ \end{array} \begin{array}{c} CH_3 \\ \\ N \\ \end{array} \begin{array}{c} H_3C \\ \\ CH_3 \\ \end{array} $	487.3	1.91	E

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R, (min)	HPLC Method
296	EX-95	$\begin{array}{c} O \\ \\ HN \\ CH_3 \end{array} \begin{array}{c} H_3C \\ \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ \\ N \\ \end{array} $	473.3	2.1	Е
297	EX-144	$\begin{array}{c} O \\ \\ HN \\ \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ \\ HN \\ \\ N \end{array} \begin{array}{c} CH_3 \\ \\ N \\ \\ N \end{array}$	474.3	1.97	E
298	EX-145	H_3C CH_3 H_3C CH_3 H_3 C N N N N	542.3	1.83	E
299	EX-145	$\begin{array}{c} O \\ \\ HN \\ CH_3 \end{array} \begin{array}{c} H_3C \\ \\ CH_3 \\ \\ H \end{array} \begin{array}{c} CF_3 \\ \\ N \\ \\ N \end{array}$	528.3	2.01	Е
300	EX-146	$\begin{array}{c} O \\ \\ H_3C \\ \\ CH_3 \\ \\ CH_4 \\ \\ CH_3 \\ \\ CH_3 \\ \\ CH_4 \\ \\ CH_5 \\ \\$	532.3	1.62	Е
301	EX-146	O H_3 C CH_3 H_3 C CH_3 H_3 C CH_3 H_4 C H_5 H_5 C H_5 H_5 C H_5 H_5 C H	518.3	1.79	E
302	EX-98	H_3C CH_3 H_3C CH_3 H_3C CH_3 CH_3	487.3	1.76	Е

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
303	EX-140	$\begin{array}{c} O \\ HN \\ CH_3 \end{array}$	475.3	1.9	E
304	EX-140	H_3C CH_3 H_3C CH_3 H_3C O CH_3	489.3	1.69	E
305	EX-140	HO CH_3 H_3C CH_3 N	476.3	1.72	E
306	EX-140	$O = S \xrightarrow{\text{CH}_3} N \xrightarrow{\text{H}_3\text{C}} C\text{H}_3$ $H_3\text{C} \xrightarrow{\text{N}_1} N \xrightarrow{\text{N}_2\text{N}_3} N \xrightarrow{\text{N}_3\text{N}_3\text{N}_3} N \xrightarrow{\text{N}_3\text{N}_3\text{N}_3\text{N}_3\text{N}_3} N \xrightarrow{\text{N}_3\text{N}_$	510.3	1.72	Е
307	EX-147	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	550.3	1.32	F
308	EX-148	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	564.3	1.73	Е

TABLE 12-continued

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
309	EX-148	$\begin{array}{c} O \\ \\ O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	578.3	1.56	Е
310	EX-149	CH ₃ CH ₃ CH ₃ N N N N N N N N N N N N N N N N N N N	564.3	1.71	Е
311	EX-149	$\begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ N \\ N \\ N \end{array}$	529.3	1.64	Е
312	EX-120	H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	527.3	2.17	E
313	EX-120	$\begin{array}{c} O \\ \\ HN \\ \\ CH_3 \end{array} \\ \begin{array}{c} CH_3 \\ \\ N \\ \\ CF_3 \end{array}$	513.2	2.38	Е

TABLE 12-continued

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R, (min)	HPLC Method
314	EX-120	H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	514.2	2.26	Е
315	EX-150	$\begin{array}{c} O \\ \\ H_3C \\ \end{array} \\ \begin{array}{c} C\\ \\ H_3C \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} C\\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} C\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	544.3	1.72	Е
316	EX-150	$\begin{array}{c} O \\ \\ HN \\ CH_3 \end{array} \\ \begin{array}{c} H_3C \\ \\ CH_3 \end{array} \\ \begin{array}{c} O \\ \\ N \\ \end{array} \\ \begin{array}{c} O \\ \\ N \\ \end{array} \\ CH_3 \end{array}$	530.3	1.91	E
317	EX-154	$\begin{array}{c} O \\ \\ HN \\ CH_3 \end{array} \\ \begin{array}{c} CH_3 \\ \\ N \\ \end{array} \\ \begin{array}{c} O \\ \\ CH_3 \\ \\ N \\ \end{array} \\ CF_3 \end{array}$	529.2	2.25	Е
318	EX-154	H_3C N CH_3 N N N N N CF_3	543.2	2.08	Е
319	EX-151	$\begin{array}{c} O \\ \\ HN \\ \\ CH_3 \end{array} $	471.3	1.75	Е

TABLE 12-continued

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R, (min)	HPLC Method
320	EX-151	H_3C CH_3 N N N N N N N N N	485.3	1.27	F
321	EX-151	O CH ₃ CH ₃ CH ₃	506.1	2.03	Е
322	EX-151	H_3C CH_3 N N N N	472.2	1.86	E
323	EX-141	$\begin{array}{c} O \\ \\ HN \\ \\ CH_3 \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	485.2	2.02	Е
324	EX-141	H_3C CH_3 N N CH_3 CH_3	486.2	1.89	Е
325	EX-141	H_3C CH_3 N CH_3 N CH_3	499.2	1.81	Е

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
326	EX-152	$\begin{array}{c} O \\ \\ HN \\ \\ CH_3 \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	485.1	2.05	Е
327	EX-152	H_3C CH_3 H_3C N	499.2	1.86	Е
328	EX-152	H_3C CH_3 H_3C CH_3 H_3C H_3C	486.2	1.92	Е
329	EX-156	H_3C N CH_3 N N N N N N	497.3	1.4	E
330	EX-156	$\begin{array}{c} O \\ \\ HN \\ \\ CH_3 \end{array} \begin{array}{c} CHF_2 \\ \\ N \\ \\ N \end{array} \begin{array}{c} CH_3 \\ \\ N \\ \\ N \end{array}$	483.2	1.55	Е
331	EX-157	O CH_3 CH_3 O CH_3 N	447.3	1.38	Е

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R, (min)	HPLC Method
332	EX-157	H ₃ C O CH ₃ O CH ₃	482.3	1.44	Е
333	EX-157	O CH ₃ O CH ₃ N N N N N N N N N N N N N N N N N N N	433.3	1.28	E
334	EX-157	H_3C CH_3	448.3	1.26	Е
335	EX-157	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	461.3	1.24	E
336	EX-157	H_3C O CH_3 N	434.3	1.22	E
337	EX-158	CH_3 CH_3 CH_3 CH_3	445.3	1.04	F
338	EX-158	$\begin{array}{c} O \\ \\ HN \\ \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ \\ \\ H \end{array} \begin{array}{c} CH_3 \\ \\ \\ N \end{array}$	431.3	1.44	E

TABLE 12-continued

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
339	EX-158	H_3C O	455.3	1.5	E
340	EX-158	$\begin{array}{c} O \\ \\ NH_2 \end{array}$	417.3	1.33	E
341	EX-158	H_3 C C H $_3$ C H $_4$ C H $_5$ C H	418.3	1.26	E
342	EX-158	H_3C CH_3 CH_3 CH_3 CH_3 CH_3	432.3	1.31	E
343	EX-161	CH_3 CH_3 CH_3 CH_3	481.3	1.45	E
344	EX-161	$\begin{array}{c} O \\ \\ HN \\ \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ \\ N \\ \end{array} \begin{array}{c} CH_3 \\ \\ N \\ \end{array}$	467.2	1.58	E
345	EX-162	$\begin{array}{c} CH_3 \\ CH_4 \\ CH_3 \\ CH_4 \\ CH_5 \\ CH$	495.2	1.53	E

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R, (min)	HPLC Method
346	EX-162	$\begin{array}{c} O \\ \\ HN \\ \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ \\ N \\ \\ N \end{array} \begin{array}{c} CH_3 \\ \\ CH_3 \end{array}$	481.2	1.68	Е
347	EX-160	CH_3 CH_3 CH_3 CH_3 N N N N N N	511.3	1.17	Е
348	EX-159	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	550.3	1.97	Е
349	EX-156	H_3C CH_3 CH_3 CH_3 N N N	484.2	1.42	Е

50

The following examples were prepared according to the general procedure of Example 26.

TABLE 13

Ex. No.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
350	EX-1	H ₃ C CH ₃	374.0	1.05	QC-ACN- TFA- XB

Ex. No.	Template Starting Material	Structure	LCMS MH+	R, (min)	HPLC Method
351	EX-1	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	444.4	1.53	QC-ACN- AA- XB
352	EX-1	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	416.4	1.02	QC-ACN- TFA- XB
353	EX-1	H_3C CH_3 H_3C N N N N N N N N	455.2	1.06	QC-ACN- TFA- XB
354	EX-1	H ₃ C CH ₃	444.4	1.17	QC-ACN- TFA- XB
355	EX-1	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	430.4	1.24	QC-ACN- AA- XB
356	EX-1	HO N H_3C CH_3 N N N	404.4	1.09	QC-ACN- AA- XB

Ex.	Template Starting		LCMS	R_t	HPLC
No. 357	Material EX-117	Structure O H ₃ C CH ₃ CD ₃	MH+ 433.2	(min) 0.66	Method TS1
358	EX-1	H ₃ C CH ₃	430.4	1.13	QC-ACN- TFA- XB
359	EX-1	H_3C CH_3 N	481.9	1.79	QC-ACN- AA- XB
360	EX-1	H_2N O N H_3C CH_3 N	417.04, 416.86	0.92	QC-ACN- TFA- XB
361	EX-1	H_3C CH_3 N	455.2	1.89	QC-ACN- AA- XB
362	EX-1	H_3C CH_3 H_3C CH_3 N N N N N	499.2	1.96	QC-ACN- AA- XB
363	EX-1	N N N N N N N N N N	482.4	1.44	QC-ACN- AA- XB

Ex. No.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
364	EX-1	H_3C N CH_3 N	468.4	1.15	QC-ACN- TFA- XB
365	EX-1	HN N N N N N N N N N	441.3	1.09	QC-ACN- TFA- XB
366	EX-1	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	494.2	1.45	QC-ACN- TFA- XB
367	EX-1	H_3C	455.0	1.31	QC-ACN- AA- XB
368	EX-1	H_3C H_3C H_3C N	498.4	1.41	QC-ACN- AA- XB
369	EX-1	H_3C CH_3 N CH_3 N	485.2	1.96	QC-ACN- AA- XB
370	EX-1	H_3C CH_3 CH_3 N	469.3	1.85	QC-ACN- AA- XB

Ex.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
371	EX-1	H_3C-N N CH_3 N	468.4	1.21	QC-ACN- TFA- XB
372	EX-1	H_3C CH_3 H_3C CH_3 N N N N	469.0	1.54	QC-ACN- AA- XB
373	EX-1	H_3C N CH_3 N	468.0	1.87	QC-ACN- AA- XB
374	EX-1	$\begin{array}{c c} S & & \\ &$	456.9	1.96	QC-ACN- AA- XB
375	EX-1	H_3C N	482.4	1.42	QC-ACN- AA- XB
376	EX-1	H_3C CH_3 N	454.0	1.25	QC-ACN- AA- XB
377	EX-1	S N H_3C CH_3 N N N N N N	457.2	1.16	QC-ACN- TFA- XB

Ex. No.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
378	EX-1	H_3C CH_3 N	455.4	1.25	QC-ACN- TFA- XB
379	EX-1	$H_{3}C$ CH_{3} N	440.2	1.14	QC-ACN- TFA- XB
380	EX-1	HN N CH_3 H_3C CH_3 N N N N N N	454.3	1.19	QC-ACN- AA- XB
381	EX-1	H_3C CH_3 N	454.4	1.32	QC-ACN- AA- XB
382	EX-1	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	468.4	1.33	QC-ACN- AA- XB
383	EX-1	H_3C H_3C CH_3 N N N N N N N	471.3	2.04	QC-ACN- AA- XB
384	EX-1	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	221.2	1.45	QC-ACN- AA- XB

Ex. No.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
385	EX-2	F_2HC N CH_3 CH_3 N N N N N	438.2	1.21	QC-ACN- TFA- XB
386	EX-2	H_3C CH_3 CH_3 N	469.4	1.2	QC-ACN- TFA- XB
387	EX-2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	496.1	1.79	QC-ACN- AA- XB
388	EX-2	HO N H_3C CH_3 N N N	418.0	1.16	QC-ACN- AA- XB
389	EX-2	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	468.2	1.9	QC-ACN- AA- XB
390	EX-2	$O = \begin{pmatrix} N & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ $	456.4	1.86	QC-ACN- AA- XB
391	EX-2	HO N H_3C CH_3 CH_3 N N N N N N N	432.4	1.19	QC-ACN- AA- XB

Ex. No.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
392	EX-2	N CH ₃ CH ₃ CH ₃	469.2	1.52	QC-ACN- AA- XB
393	EX-2	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ N \\ \end{array}$	444.0	1.58	QC-ACN- AA- XB
394	EX-2	H_3C CH_3 N N N N N	458.0	1.58	QC-ACN- AA- XB
395	EX-2	OS CH ₃ CH ₃	492.1	1.63	QC-ACN- AA- XB
396	EX-2	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	466.0	1.5	QC-ACN- AA- XB
397	EX-2	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	446.0	1.1	QC-ACN- TFA- XB

Ex. No.	Template Starting Material	Structure	LCMS MH+	R, (min)	HPLC Method
398	EX-2	$\begin{array}{c} F \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	500.0	2.37	QC-ACN- AA- XB
399	EX-2	H_3C CH_3 CH_3 CH_3 CH_3 CH_3	482.0	1.31	QC-ACN- AA- XB
400	EX-2	$\bigcap_{OH} \bigcap_{F} \bigcap_{N} \bigcap_{H_3C} \bigcap_{CH_3} \bigcap_{N} \bigcap_{$	530.0	1.92	QC-ACN- AA- XB
401	EX-2	H_3C CH_3 CH_3 N N N	525.1	2.35	QC-ACN- AA- XB
402	EX-2	H_3C CH_3 CH_3 N N N N	455.4	1.72	QC-ACN- AA- XB
403	EX-2	HO H_3 C CH_3 CH_3 N N N	472.4	1.24	QC-ACN- AA- XB

Ex. No.	Template Starting Material	Structure	LCMS MH+	R _r (min)	HPLC Method
404	EX-2	N CH ₃ CH ₃ CH ₃ CH ₃	469.0	1.77	QC-ACN- AA- XB
405	EX-2	H_3C N H_3C CH_3 CH_3 N	482.0	1.96	QC-ACN- AA- XB
406	EX-2	H_3C CH_3 CH_3 N	471.0	1.6	QC-ACN- AA- XB
407	EX-2	$\begin{array}{c} N \\ S \\ \end{array} \begin{array}{c} CH_3 \\ \end{array}$	485.3	1.99	QC-ACN- AA- XB
408	EX-2	H_3C CH_3 CH_3 N	471.0	2.18	QC-ACN- AA- XB
409	EX-2	$H_{3}C$ CH_{3} CH_{3} N	468.0	1.4	QC-ACN- AA- XB
410	EX-2	H_3C N	482.2	1.52	QC-ACN- AA- XB

Ex.	Template Starting Material	Structure	LCMS MH+	R, (min)	HPLC Method
411	EX-2	N N CH ₃ C CH ₃ CH ₃	472.1	1.36	QC-ACN- TFA- XB
412	EX-2	$\begin{array}{c} N \\ N $	466.4	1.28	QC-ACN- TFA- XB
413	EX-2	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	496.4	1.38	QC-ACN- AA- XB
414	EX-2	H_3C N	480.0	1.76	QC-ACN- AA- XB
415	EX-2	H_3C CH_3 CH_3 N	480.2	1.77	QC-ACN- AA- XB
416	EX-2	H_3C N	481.0	1.32	QC-ACN- TFA- XB

Ex. No.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
417	EX-2	H_3C N	481.0	1.32	QC-ACN- TFA- XB
418	EX-2	H_3C	493.9	1.69	QC-ACN- AA- XB
419	EX-2	H_3C H_3C CH_3 CH_3 CH_3 CH_3	482.4	1.26	QC-ACN- AA- XB
420	EX-2	H_3 C CH_3 CH_3 CH_3	468.2	1.22	QC-ACN- TFA- XB
421	EX-2	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	480.5	1.47	QC-ACN- AA- XB
422	EX-2	H_3C H_3C CH_3 CH_3 CH_3	494.1	1.87	QC-ACN- AA- XB

Ex. No.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
423	EX-2	H_3C H_3C CH_3 CH_3 CH_3	441.0	1.36	QC-ACN- TFA- XB
424	EX-2	H_3C N	480.0	1.83	QC-ACN- AA- XB
425	EX-2	$_{\rm N}$ $_{\rm H_3C}$ $_{\rm CH_3}$ $_{\rm CH_3}$ $_{\rm N}$ $_{\rm N}$	474.1	1.67	QC-ACN- AA- XB
426	EX-2	H_3 C CH_3	484.1	1.15	QC-ACN- AA- XB
427	EX-2	$O = S = O$ CH_3 CH_3 CH_3 N N N N	551.1	2.25	QC-ACN- AA- XB
428	EX-2	$O = S = O$ CH_3 CH_3 N N N N N N N N N	536.5	1.53	QC-ACN- TFA- XB

Template

Ex. No.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
429	EX-2	N H ₃ C CH ₃ CH ₃	466.3	1.25	QC-ACN- TFA- XB
430	EX-2	O = S = O N	565.4	1.89	QC-ACN- AA- XB
431	EX-2	O = S = O N	563.4	2.17	QC-ACN- AA- XB
432	EX-2	HO H_3C CH_3 CH_3 N N N N	476.3	1.25	QC-ACN- AA- XB
433	EX-2	H_3C CH_3 CH_3 N	470.3	1.92	QC-ACN- AA- XB
434	EX-2	H_3C H_3C CH_3 N	469.2	1.27	QC-ACN- TFA- XB

Ex. No.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
435	EX-2	H_3C CH_3 CH_3 N	469.2	1.9	QC-ACN- AA- XB
436	EX-2	H ₃ C CH ₃ CH ₃	471.1	1.93	QC-ACN- AA- XB
437	EX-2	H_3C CH_3 CH_3 N N N	468.2	1.49	QC-ACN- AA- XB
438	EX-2	$\begin{array}{c} CH_3 \\ O \\ \\ O \\ CH_3 \end{array}$	526.2	1.54	QC-ACN- TFA- XB
439	EX-2	H_3C CH_3 N	496.2	1.34	QC-ACN- TFA- XB
440	EX-2	$\begin{array}{c c} O & & \\ &$	455.2	1.28	QC-ACN- TFA- XB
441	EX-3	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ H \\ \end{array}$	430.4	1.66	QC-ACN- AA- XB

TABLE 13-continued

Ex. No.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
442	EX-3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	496.2	1.08	QC-ACN- TFA- XB
443	EX-3	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ N \\ \\ N \\ N$	458.2	1.05	QC-ACN- TFA- XB
444	EX-3	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	468.4	1.81	QC-ACN- AA- XB
445	EX-3	H_3C CH_3 H_3C H_3C	468.3	1.1	QC-ACN- TFA- XB
446	EX-3	$\begin{array}{c} N \\ N \\ O \end{array}$	455.4	1.78	QC-ACN- AA- XB
447	EX-3	$\begin{array}{c} N \\ N \\ CH_3 \end{array}$	469.3	0.98	QC-ACN- TFA- XB

Ex. No.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
448	EX-3	H ₃ C CH ₃	454.0	1.3	QC-ACN- AA- XB
449	EX-3	H_3C H_3C H_3C H_3C H_3C	469.4	1.33	QC-ACN- AA- XB
450	EX-3	$\begin{array}{c c} S & & \\ N & &$	471.0	1.79	QC-ACN- AA- XB
451	EX-3	H_{3C} CH_{3} N H_{3C} H_{3C}	455.0	1.5	QC-ACN- AA- XB
452	EX-3	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	465.9	1.69	QC-ACN- AA- XB
453	EX-3	$\begin{array}{c} N \\ O \\ CH_3 \end{array}$	469.0	1.95	QC-ACN- AA- XB

Ex.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
454	EX-3	H_3C H_3C H_3C H_3C	466.2	1.46	QC-ACN- AA- XB
455	EX-3	$O = \bigcup_{N=1}^{O} \bigcup_{M_3C} \bigcup_{$	506.0	1.69	QC-ACN- AA- XB
456	EX-3	H_3C O	526.0	2.05	QC-ACN- AA- XB
457	EX=3	H_3C N	469.1	1.42	QC-ACN- AA- XB
458	EX-3	$\begin{array}{c} O \\ N \\ N \end{array}$	456.2	1.77	QC-ACN- AA- XB
459	EX-3	HN N H_3C CH_3 N N H_3C	455.4	1.05	QC-ACN- TFA- XB

TABLE 13-continued

Ex. No.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
460	EX-3	O O O O O O O O O O O O O O O O O O O	492.4	1.21	QC-ACN- TFA- XB
461	EX-3	H_3C H_3C H_3C H_3C	466.1	1	QC-ACN- TFA- XB
462	EX-3	NC H_3 H_3 C CH_3 N H_3 C H_3 C	441.0	1.84	QC-ACN- AA- XB
463	EX-3	H_3C N	480.1	1.05	QC-ACN- TFA- XB
464	EX-3	$O = S = O$ CH_3 N H_3C N	494.1	1.73	QC-ACN- AA- XB
465	EX-3	H_3C CH_3 H_3C H_3C H_3C H_3C	480.4	1.71	QC-ACN- AA- XB

Ex. No.	Template Starting Material	Structure	LCMS MH+	R, (min)	HPLC Method
466	EX-3	H_3C N	480.0	1.33	QC-ACN- TFA- XB
467	EX-3	$\begin{array}{c c} N & & & \\ N & & \\$	466.0	1.85	QC-ACN- AA- XB
468	EX-112	$\bigcap_{N} \bigcap_{CH_3} \bigcap_{N} \bigcap_{H_3C} \bigcap_{CH_3} \bigcap_{N} \bigcap$	473.0	1.31	QC-ACN- TFA- XB
469	EX-112	H_3C CH_3 F N N N N	434.1	1.18	QC-ACN- TFA- XB
470	EX-6	H_3C H_3C CH_3 N	499.1	1.37	QC-ACN- AA- XB
471	EX-6	H_3C CH_3 CH_3 N	510.1	1.75	QC-ACN- AA- XB

Ex.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
472	EX-6	H_3C N H_3C CH_3 N N N N N	488.1	1.74	QC-ACN- AA-XB
473	EX-6	H_3C CH_3 N N N N N	460.1	1.65	QC-ACN- AA- XB
474	EX-6	O S N N CH3 CH3	551.0	1.69	QC-ACN- AA- XB
475	EX-4	$\begin{array}{c} O \\ O \\ \end{array} \\ S \\ \end{array} \\ \begin{array}{c} N \\ \\ N \\ \\ H \\ \end{array} \\ \begin{array}{c} C \\ \\ C \\ \\ C \\ \\ C \\ \end{array} \\ \begin{array}{c} N \\ \\ \\ \\ C \\ \\ C \\ \\ \end{array} \\ \begin{array}{c} N \\ \\ \\ \\ C \\ \\ C \\ \\ \end{array} \\ \begin{array}{c} N \\ \\ \\ \\ \\ C \\ \end{array} \\ \begin{array}{c} N \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} N \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} N \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} N \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} N \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} N \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} N \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} N \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} N \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} N \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	535.4	1.43	QC-ACN- AA- XB
476	EX-4	$\begin{array}{c} \begin{array}{c} \begin{array}{c} CN \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ CH_{3} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ CH_{3} \\ \end{array}$	497.4	1.94	QC-ACN- TFA- XB
477	EX-4	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	515.0	1.29	QC-ACN- TFA- XB

Ex. No.	Template Starting Material	Structure	LCMS MH+	R_t (min)	HPLC Method
478	EX-4	H ₃ C CH ₃ N N N N	444.1	1.74	QC-ACN- AA- XB
479	EX-4	H_3C CH_3 H_3C CH_3 H_3C CH_3 H_3C CH_3 CH_3 CH_3	458.4	1.58	QC-ACN- TFA- XB
480	EX-4	H_3C N H_3C CH_3 N	416.1	1.32	QC-ACN- AA- XB
481	EX-4	H_3C N H_3C CH_3 N	430.0	1.62	QC-ACN- AA- XB
482	EX-4	H_3C CH_3 N	416.1	1.54	QC-ACN- TFA- XB
483	EX-4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	485.2	1.44	QC-ACN- AA- XB
484	EX-4	CF_3 H_3C CH_3 N	484.3	2.29	QC-ACN- AA- XB

Ex.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
485	EX-4	H ₃ C CH ₃ N N N N N N N N N N N N N N N N N N N	402.2	1.29	QC-ACN- AA- XB
486	EX-4	H_3C CH_3 H_3C CH_3 H_3C CH_3 H_3C CH_3	446.2	1.38	QC-ACN- AA- XB
487	EX-110	$\begin{array}{c} O \\ \\ N \\ \\ H \\ \end{array}$	444.3	1.77	QC-ACN- AA- XB
488	EX-110	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	471.9	1.28	QC-ACN- AA- XB
489	EX-110	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	520.4	1.23	QC-ACN- TFA- XB
490	EX-100	H_3C N	524.2	1.8	QC-ACN- AA- XB

Ex.	Template Starting Material	Structure	LCMS MH+	R, (min)	HPLC Method
491	EX-100	H_3C N	512.2	1.53	QC-ACN- AA- XB
492	EX-100	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ \end{array}$	474.4	1.15	QC-ACN- TFA- XB
493	EX-100	$\begin{array}{c} O \\ \\ N \\ \\ N \end{array} \begin{array}{c} H_3C \\ \\ CH_3 \\ \\ CH_3 \\ \\ N \end{array} \begin{array}{c} CH_3 \\ \\ CH_3 \\ \\ N \end{array}$	502.1	1.35	QC-ACN- AA- XB
494	EX-100	H_3C CH_3 CH_3 CH_3	510.4	1.22	QC-ACN- TFA- XB
495	EX-100	H_3C H_3C CH_3 CH_3 N N N N N N N	513.4	1.15	QC-ACN- TFA- XB
496	EX-100	$\begin{array}{c c} O & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	550.1	1.46	QC-ACN- AA- XB

Ex. No.	Template Starting Material	Structure	LCMS MH+	R, (min)	HPLC Method
497	EX-100	HN HO CH ₃ CH ₃ CH ₃	499.1	1.38	QC-ACN- AA- XB
498	EX-100	H_3C CH_3 CH_3 CH_3 CH_3	565.3	1.38	QC-ACN- AA- XB
499	EX-101	$\begin{array}{c} O \\ \\ N \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	474.1	1.09	QC-ACN- TFA- XB
500	EX-111	$\begin{array}{c} O \\ \\ N \\ \\ \end{array}$	469.2	1.42	QC-ACN- AA- XB
501	EX-111	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ \end{array} \begin{array}{c} H_3C \\ \\ CH_3 \\ \\ CN \\ \\ N \\ \end{array}$	441.2	1.18	QC-ACN- AA- XB
502	EX-102	H_3C H_3C H_3C OH N	499.3	1.08	QC-ACN- TFA- XB

Ex.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
503	EX-102	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	460.3	1.06	QC-ACN- TFA- XB
504	EX-104	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ \\ N \\ \\ \\ \\ \\ \\ \\ \\ \\$	460.2	1.49	QC-ACN- AA- XB
505	EX-104	H_3C CH_3 N N H_3C OH	485.3	0.97	QC-ACN- TFA- XB
506	EX-105	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ \end{array}$	483.2	1.26	QC-ACN- TFA- XB
507	EX-107	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ H \\ \\ H_3C \\ \\ F \end{array}$	447.9	1.35	QC-ACN- AA- XB
508	EX-108	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ N \\ \\ OH \\ \end{array}$	446.3	1.53	QC-ACN- AA- XB

Ex.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
509	EX-108	N N N N N N N N N N N N N N N N N N N	485.1	0.92	QC-ACN- TFA- XB
510	EX-113	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \end{array}$	446.0	1.39	QC-ACN- AA- XB
511	EX-113	H_3C CH_3 OH H_3C CH_3 OH	485.3	1.16	QC-ACN- AA- XB
512	EX-113	H_3C N	496.4	1.04	QC-ACN- TFA- XB
513	EX-113	H_3C CH_3 N	471.1	1	QC-ACN- TFA- XB
514	EX-113	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	522.4	1.34	QC-ACN- AA- XB

Ex. No.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
515	EX-113	$\bigcap_{CH_3}^{N}\bigcap_{N}\bigcap_{H_3C}^{CH_3}OH$	512.4	1.56	QC-ACN- AA- XB
516	EX-113	H_3C N	484.1	1.27	QC-ACN- AA- XB
517	EX-113	H_3C CH_3 OH N	482.1	1.45	QC-ACN- AA- XB
518	EX-113	H_3C CH_3 N	488.0	1.26	QC-ACN- TFA- XB
519	EX-113	H_3C CH_3 N	496.4	1.55	QC-ACN- AA- XB
520	EX-113	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	482.1	1.31	QC-ACN- AA- XB
521	EX-113	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ N \\ \\ N \\ N \\ \\ N \\ \\ N \\$	474.3	1.03	QC-ACN- TFA- XB

Ex. No.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
522	EX-113	H_3C CH_3 OH H_3C N	486.1	1.46	QC-ACN- AA- XB
523	EX-113	H_3C CH_3 OH H_3C N	485.2	1.01	QC-ACN- TFA- XB
524	EX-113	H_3C N	496.0	1.39	QC-ACN- AA- XB
525	EX-114	H_3C CH_3 N N N N N N N	460.3	1.44	QC-ACN- AA- XB
526	EX-114	H_3C CH_3 N	510.0	1.48	QC-ACN- AA- XB
527	EX-114	H_3C CH_3 OH H_3C CH_3 N N N	499.3	1.02	QC-ACN- TFA- XB
528	EX-116	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ \end{array}$	518.0	1.71	QC-ACN- AA- XB

TABLE 13-continued

Ex.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
529	EX-116	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	475.9	1.11	QC-ACN- TFA- XB
530	EX-116	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ N \\ \end{array}$	476.0	1.3	QC-ACN- AA- XB

TABLE 14

		IABLE 14			
Ex. No.	Fragment Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
531	EX-122	H_3C N	431.3	0.93	Е
532	EX-122	H_3C CH_3 H_3C CH_3 CH_3	467.3	1.56	Е
533	EX-122	H_3C CH_3 H_3C CH_3 N CH_3	416.3	1.48	Е

Ex.	Fragment Starting Material	Structure	LCMS MH+	R, (min)	HPLC Method
534	EX-122	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	430.3	1.8	Е
535	EX-122	$\begin{array}{c} O \\ \\ N \\ \\ \end{array}$	458.3	1.45	E
536	EX-1	H_3C CH_3 H_3C CH_3 N N N	402.3	1.47	E
537	EX-2	F_3C N	470.2	2.5	E
538	EX-2	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	543	2.12	Е
539	EX-2	$\begin{array}{c} O \\ O \\ CH_3 \end{array}$	500	2.11	E

Ex. No.	Fragment Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
540	EX-2	O H ₃ C CH ₃ N N N N N N N N N N N N N N N N N N N	444.2	1.71	Е
541	EX-2	O H ₃ C CH ₃ CH ₃	444.2	1.72	Е
542	EX-124	H_3C CH_3 CH_3 CH_3 CH_3	444.3	1.74	Е
543	EX-124	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ N \\ \\ CH_3 \\ \\ N \\ \\ CH_3 \\ \\ \\ CH_3 \\ \\ \\ \\ CH_3 \\ \\ \\ \\ \\ \\ \end{array}$	473.3	1.71	Е
544	EX-124	H_3C CH_3 CH_3 CH_3 CH_3	444	1.82	Е
545	EX-124	O S H ₃ C CH ₃ CH ₃	520.3	1.93	Е

TABLE 14-continued

		17 ADDD 14 Continued			
Ex. No.	Fragment Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
546	EX-125	$\begin{array}{c} O \\ \\ N \\ \\ CH_3 \\ \\ \\ N \\ \\ \\ N \\ \\ \\ \\ N \\ \\ \\ \\ \\ N \\$	472.3	1.56	Е
547	EX-125	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	444.4	1.69	Е
548	EX-125	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	520	1.58	Е
549	EX-128	H_3C CH_3 CF_3 N N N	484	2.03	Е
550	EX-128	O H ₃ C CH ₃ CF ₃	560	1.88	E

Ex.	Fragment Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
551	EX-128	H_3C H_3C CH_3 CF_3 N N N	470	1.56	Е
552	EX-128	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ \end{array}$	512	2.5	D
553	EX-128	H_3C CH_3	484.2	2.24	Е
554	EX-128	$\begin{array}{c} & & & \\ & &$	512.1	2.13	Е
555	EX-128	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	512.3	2.15	Е
556	EX-128	O H_3C CH_3 CF_3 N N N	498.2	1.51	F

TABLE 14-continued

Ex. No.	Fragment Starting Material	Structure	LCMS MH ⁺	R _r (min)	HPLC Method
557	EX-128	O N H_3C CH_3 CF_3 N N N	498.2	2.03	E
558	EX-155	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	444.3	1.65	E
559	EX-155	H_3C	430.3	1.53	Е
560	EX-155	H_3C	482.3	1.5	E
561	EX-5	ON H3C CH3 O—CH3	522.4	1.51	Е
562	EX-5	H_3C CH_3 N N N N N N	502.3	1.71	Е

Ex.	Fragment Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
563	EX-5	H_3C CH_3 CH_3 O CH_3 O CH_3	502.2	6.03	I
564	EX-5	H_3C CH_3	502.4	6.06	I
565	EX-5	H_3 C CH_3 O CH_3 N	489.3	1.55	Е
566	EX-5	$O \longrightarrow CH_3$ $O \longrightarrow CH_3$ $O \longrightarrow CH_3$ N N N N	474.3	1.86	Е
567	EX-5	NC H_3C CH_3 $O-CH_3$ N N N	469.2	1.89	Е
568	EX-5	O H_3C CH_3 $O-CH_3$ N N N N	460.2	1.87	D

TABLE 14-continued

Ex. No.	Fragment Starting Material	Structure	LCMS MH+	R_t (min)	HPLC Method
569	EX-5	O H_3C CH_3 O CH_3 N	460.1	1.73	Е
570	EX-5	H_3C CH_3 N	447.1	1.44	Е
571	EX-132	$H_{3}C$ CH_{3} N N N N	488	1.66	Е
572	EX-132	$\begin{array}{c} O \\ \\ N \\ \\ \end{array}$	460.1	1.34	F
573	EX-132	$\begin{array}{c} O \\ S \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	536	1.9	Е
574	EX-133	H_3C CH_3 N N N CH_3	460.2	1.94	Е

Ex. No.	Fragment Starting Material	Structure	LCMS MH ⁺	R_t (min)	HPLC Method
575	EX-133	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	474.2	1.92	D
576	EX-133	H_3C CH_3 N CH_3 N CH_3 N N CH_3	474.2	1.94	D
577	EX-137	$\begin{array}{c} O \\ \\ N \\ \\ N \end{array} \begin{array}{c} CH_3 \\ \\ N \\ CH_3 \end{array}$	486.2	1.8	Е
578	EX-137	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ \end{array} \begin{array}{c} CH_3 \\ \\ \\ N \\ \\ \end{array} \begin{array}{c} CH_3 \\ \\ \\ \\ \end{array} \begin{array}{c} CH_3 \\ \\ \\ \end{array} $	458.3	1.96	Е
579	EX-119	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ N \\ \\ H \\ \end{array}$	492.2	1.7	E
580	EX-119	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ \\ H \\ \\ \\ H_3C \\ \\ C_I \\ \end{array}$	464.2	2.1	Е

Ex. No.	Fragment Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
581	EX-143	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	501.3	2.01	Е
582	EX-94	H_3C CH_3 N	444.3	2.07	Е
583	EX-94	H_3C CH_3 N N N N N N	444.3	2.08	Е
584	EX-95	H_3C CH_3 H_3C CH_3 CH_3 CH_3 CH_3	458.3	2.25	Е
585	EX-95	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ \end{array}$	458.2	2.24	E
586	EX-145	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	513.2	2.15	Е

Ex. No.	Fragment Starting Material	Structure	LCMS MH ⁺	R _r (min)	HPLC Method
587	EX-98	H ₃ C CH ₃	458.3	2.11	Е
588	EX-140	H_3C CH_3 H_3C CH_3 N	460.2	2.04	Е
589	EX-140	$\begin{array}{c} H_3C \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	488.3	2.05	Е
590	EX-147	H_3C CH_3 H_3 N N N N N N	535.2	1.32	F
591	EX-148	O H ₃ C CH ₃ N N N N N N N N N N N N N N N N N N N	549.2	1.87	Е
592	EX-149	$\begin{array}{c} O \\ \\ N \\ \\ \end{array}$	514.3	1.76	Е

Ex.	Fragment Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
593	EX-151	O H ₃ C CH ₃	456.3	1.88	Е
594	EX-141	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ \end{array}$	470.3	1.92	Е
595	EX-152	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ H_{3}C \\ \\ \end{array}$	470.1	2.21	Е
596	EX-158	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ \end{array}$	416.3	1.54	Е
597	EX-161	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ \end{array}$	452.2	1.67	Е
598	EX-156	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$	468.2	1.67	Е

Ex. No.	Fragment Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
599	EX-124	H_3C CH_3 CH_3 CH_3 CH_3 CH_3	430.3	1.49	Е
600	EX-157	OCH ₃ OCH ₃ OCH ₃ N N N	432.3	1.49	Е

The following examples were prepared according to the general methods disclosed in Examples 46 and 47.

TABLE 15

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R, (min)	HPLC Method
601	EX-1	H_3C N	484.9	1.43	QC-ACN-AA- XB
602	EX-2	$F = \begin{pmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & $	535.2	1.95	QC-ACN-AA- XB
603	EX-2	H ₃ C CH ₃ CH ₃	494.2	1.65	QC-ACN-AA- XB

Ex.	Template Starting Material	Structure	LCMS MH ⁺	R, (min)	HPLC Method
604	EX-2	H_3C CH_3 CH_3 N	520.3	1.78	QC-ACN-TFA- XB
605	EX-2	H_3C N	498.0	1.63	QC-ACN-TFA- XB
606	EX-2	H_3C O S O N	494.2	1.68	QC-ACN-AA- XB
607	EX-2	H_3 C CH_3 CH_3 CH_3 N N N	509.4	1.66	QC-ACN-AA- XB
608	EX-2	OS CH ₃ CH ₃ CH ₃ CH ₃ N N N	508.2	1.64	QC-ACN-AA- XB
609	EX-4	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	488.0	2.39	QC-ACN-AA- XB

TABLE 15-continued

Ex. No.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
610	EX-4	$\begin{array}{c} O \\ N \\ N \\ \end{array}$	529.4	1.63	QC-ACN-AA- XB
611	EX-110	H_3C	473.4	1.37	QC-ACN-AA- XB

TABLE 16

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R_t (min)	HPLC Method
612	EX-122	H_3C N	459.3	2.76	D
613	EX-122	H_3C CH_3 N N CH_3	460.3	1.64	Е
614	EX-122	H_3C CH_3 H_3C CH_3	474.3	1.83	Е

Ex.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
615	EX-122	HO N H_3C CH_3 N CH_3	487.3	1.36	Е
616	EX-122	HOIIIIII N	487.3	1.3	Е
617	EX-122	H_3C H_3C CH_3 CH_3	460.3	1.67	Е
618	EX-122	H_3C N H_3C CH_3 N CH_3	445.2	1.38	Е
619	EX-1	H_3C S O	480.2	1.67	Е
620	EX-2	H_3C N	468.3	1.23	F

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
621	EX-2	H_3C H_3C CH_3 CH_3 CH_3 CH_3	498.5	2.29	Е
622	EX-2	HOIIIII NH H_3C CH_3 CH_3 N	487.3	1.42	F
623	EX-2	HO NH N	487.3	1.4	Е
624	EX-2	HO NH H_3C CH_3 CH_3 N N N	487.3	1.3	F
625	EX-2	HOIM NH NH NH NH NH NH NH NH	487	1.4	Е
626	EX-2	$H_{3}C$ $H_{3}C$ CH_{3} N	501.2	1.46	F

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
627	EX-2	FINAL CH3 CH3 CH3 N N N N N N N N N N N N N	489.1	1.74	Е
628	EX-2	HOIIIIII CH_3	529.3	1.5	Е
629	EX-124	H_3C H_3C CH_3 CH_3 CH_3	459.3	1.95	D
630	EX-124	H_3C N	473.3	2.35	D
631	EX-124	H_3C W	474.3	1.85	Е
632	EX-124	H_3C CH_3 O H_3C CH_3 CH_3 O	488.3	1.96	E

TABLE 16-continued

Ex.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
633	EX-124	H_3C CH_3 CH_3 CH_3 CH_3	474.3	1.82	Е
634	EX-124	H_3C CH_3 CH_3 CH_3 CH_3 CH_3	601	1.92	Е
635	EX-124	$\begin{array}{c} \text{HN} \\ \text{OH} \\ \text{OH} \\ \text{N} \\ \text{CH}_{3} \\ \text{CH}_{4} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{4} \\ \text{CH}_{5} \\ CH$	501.3	1.36	Е
636	EX-124	$\begin{array}{c} \text{HN} \\ \text{O} \\ \text{N} \\ \text{O} \\ \text{N} \\ \text{CH}_{3} \\ \text{CH}_{4} \\ \text{CH}_{3} \\ \text{CH}_{5} \\ \text{CH}_{5} \\ \text{CH}_{5} \\ \text{CH}_{6} \\ \text{CH}_{6} \\ \text{CH}_{6} \\ \text{CH}_{7} \\ \text{CH}_{8} \\$	501.3	1.88	D
637	EX-125	HO HO H_3C CH_3 CH_3 N CH_3 N	474.3	1.71	E

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
638	EX-125	H_3C N H_3C CH_3 N CH_3 N N CH_3 N	473	1.54	Е
639	EX-125	H_3 C	459	1.21	Е
640	EX-112	H_3C N H_3C N	463.4	1.06	F
641	EX-128	HN H_3C CH_3 CF_3 N N N	499.3	1.59	Е
642	EX-128	H_3C N H_3C CH_3 CF_3 N N N N	513.3	1.75	Е
643	EX-128	H_3C O N H_3C CH_3 CF_3 N N N	500.3	1.83	Е

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R_t (min)	HPLC Method
644	EX-128	H ₃ C CH ₃ CF ₃	567.4	1.7	Е
645	EX-128	$\bigcap_{O} \bigvee_{N} \bigvee_{H_3C} CH_3 \bigvee_{N} \bigvee_$	526.4	1.9	Е
646	EX-128	H_3C CH_3 CF_3 N N N	514.4	1.88	Е
647	EX-128	HO N H_3C CH_3 CF_3 N N N N	500.3	1.64	Е
648	EX-128	F_3C N H_3C CH_3 CF_3 N N N	538.3	2.07	Е
649	EX-128	H_3C CH_3	527.4	1.48	Е

Ex. No.	Template Starting Material	Structure	LCMS MH+	R, (min)	HPLC Method
650	EX-128	H_3C CH_3 CF_3 N N N N N N N	567.3	1.95	Е
651	EX-128	HO H_3C CH_3 CF_3 N N N	528.2	1.92	Е
652	EX-128	H_3C OH N	500.2	1.77	Е
653	EX-128	F_3C N H_3C CH_3 CF_3 N N N	564.3	2.22	E
654	EX-128	$\begin{array}{c} O \\ O \\ O \\ \end{array}$	512.3	1.68	E
655	EX-128	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	555.4	1.82	Е

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R_t (min)	HPLC Method
656	EX-142	H_3 C N	481.3	1.49	Е
657	EX-142	$_{\mathrm{H_{3}C}}$ $_{\mathrm{C}}$ $_{\mathrm{N}}$ $_{\mathrm{CH_{3}}}$ $_{\mathrm{CH_{3}}}$	482.2	1.7	Е
658	EX-142	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	496.2	1.72	Е
659	EX-142	$_{\rm H_3C}$ $^{\rm H}$ $^{\rm C}$ $^{\rm CHF_2}$ $^{\rm CH_2}$ $^{\rm N}$ $^{\rm N}$ $^{\rm CH_3}$	467.3	1.4	E
660	EX-155	H_3C CH_3 N H_3C CH_3 N	473	1.6	E
661	EX-155	H_3C H_3C CH_3 H_3C N	459	1.49	Е

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _r (min)	HPLC Method
662	EX-96	H_3C N	493.3	1.46	Е
663	EX-5	H_3C CH_3 O CH_3 N N N N	488.4	1.62	Е
664	EX-5	$\begin{array}{c} O \\ CH_3 \end{array}$	476.4	1.59	E
665	EX-5	$O = S = O$ NH_2 NH_3C NH_3C N N N N	539.4	1.38	Е
666	EX-5	$\begin{array}{c} O \\ O \\ O \\ N \\ O \\ O \\ CH_3 \\ O \\ O \\ CH_3 \\ O \\ $	516.4	1.69	E
667	EX-5	H_3C CH_3 CH_3 C N N N N N	489.4	1.32	Е

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
668	EX-5	H ₃ C O O O CH ₃ N O CH ₃ N O CH ₃ N N N N N N N N N N N N N N N N N N N	510.3	1.43	Е
669	EX-5	H_3 C H_3 C H_3 C H_4 C H_5 C	490.4	1.64	Е
670	EX-5	H_3C O	529.4	1.46	Е
671	EX-5	$\begin{array}{c} O \\ N \\ O \end{array}$	529.3	1.46	Е
672	EX-5	H_3C N H_3C CH_3 O CH_3 N N N	501.1	1.16	Е
673	EX-5	$\begin{array}{c c} O & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	517.4	1.55	Е

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
674	EX-5	HOWING NH NH NH NH NH NH NH NH	503.1	1.37	E
		H_3C CH_3 N			
676	EX-5	H_3C CH_3 N N N N N N	501.3	1.43	Е
677	EX-5	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	515.2	7.94	I
678	EX-5	O H_3C CH_3 O CH_3 N N N	515.2	7.95	I
679	EX-5	H_3C CH_3 O CH_3 N N N N	501.3	1.43	Е

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R_t (min)	HPLC Method
680	EX-132	H_3C N H_3C CH_3 CH_3 N N N N	489.1	1.62	E
681	EX-132	$_{\mathrm{HN}}^{\mathrm{CH_{3}}}$ $_{\mathrm{N}}^{\mathrm{CH_{3}}}$ $_{\mathrm{N}}^{\mathrm{CH_{3}}}$ $_{\mathrm{N}}^{\mathrm{CH_{3}}}$	475.1	1.48	E
682	EX-133	H_3C N H_3C N	489.3	1.6	Е
683	EX-133	$\begin{array}{c} CH_3 & O \\ HN & \\ \end{array}$	475.3	1.42	Е
684	EX-136	H_3C CH_3 O H_3C CH_3 O CH_3 O	517.4	1.65	Е
685	EX-118	HO H_3C CH_3 CH	480.2	1.02	E

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R_t (min)	HPLC Method
686	EX-118	H_3C N	479.2	1.6	Е
687	EX-137	H_3C N H_3C CH_3 CH_3 CH_3 CH_3	487.4	1.64	Е
688	EX-137	CH_3 O H_3C CH_3 CH_3 O	473.3	1.59	E
689	EX-119	H_3C N H_3C CH_3 N	493.1	1.68	E
690	EX-143	H_3C N H_3C N N N N N N	530.4	1.4	Е
691	EX-148	$H_{3}C$ CH_{3} N	578.3	1.52	Е

		TIBBE 10 continued			
Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _r (min)	HPLC Method
692	EX-120	H_3C CH_3 CH_3 N CH_3 N N CH_3	527.3	2.08	Е
693	EX-120	H_3C CH_3 CH_3 CH_3 CH_3	513.3	1.93	E
694	EX-120	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	567.3	1.97	Е
695	EX-154	H_3C N	543.2	1.98	Е
696	EX-151	H_3C N H_3C N N N N N N N	485.3	1.5	Е
697	EX-151	HN H_3C CH_3 N N N N N N N	471.2	1.56	Е

Ex. No.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
698	EX-141	H_3C N	499.2	1.75	Е
699	EX-152	H_3C N H_3C N	499.2	1.77	Е
700	EX-152	CH_3 O H_3C CH_3 N	485.2	1.62	Е
701	EX-157	H_3C N	461.3	1.19	Е
702	EX-157	H_3C N CH_3 N N N N N N N N	447.3	1.08	Е

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R_t (min)	HPLC Method
703	EX-158	H_3C N CH_3 CH_3 CH_3 CH_3 N N N N	445.3	1.24	Е
704	EX-158	H_3C N N N N N N N	431.3	1.12	Е
705	EX-161	H_3C N N N N N N N	482.2	1.57	Е
706	EX-161	H_3C N	467.2	1.27	E
707	EX-161	H_3C N N N N N N N	482.2	1.58	Е
708	EX-161	$_{\mathrm{H_{3}C}}$ $_{\mathrm{N}}$ $_{\mathrm{N}}$ $_{\mathrm{CH_{3}}}$ $_{\mathrm{CH_{3}}}$ $_{\mathrm{CH_{3}}}$	495.2	1.48	Е

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
709	EX-161	H_3C N N N N N N N	496.2	1.68	Е
710	EX-161	H_3C CH_3 CH_2 CH_3 CH_3 CH_3 CH_3	510.3	1.82	Е
711	EX-161	$_{\mathrm{H_{3}C}}$ $_{\mathrm{N}}$ $_{\mathrm{CHF_{2}}}$ $_{\mathrm{CH_{3}}}$ $_{\mathrm{CH_{3}}}$	481.3	1.37	Е
712	EX-161	H_3C N	481.2	1.41	Е

The following examples were prepared according to the general process disclosed in Example 68.

TABLE 17

	Template Starting Material	Structure	LCMS MH ⁺	R, (min)	HPLC Method
713	EX-1	H_3C CH_3 N N N N N	487.2	1.17	QC- ACN- TFA- XB

	Template Starting Material	Structure	LCMS MH ⁺	R, (min)	HPLC Method
714	EX-2	H_3C CH_3 CH_3 N	489.1	1.26	QC- ACN- TFA- XB
715	EX-2	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	515.2	2.36	QC- ACN- AA- XB
716	EX-2	$F = F$ H_3C CH_3 CH_3 N N N	520.9	2.55	QC- ACN- AA- XB
717	EX-2	O S O H ₃ C CH ₃ CH ₃	549.1	2.08	QC- ACN- AA- XB
718	EX-4	$\begin{array}{c} O \\ N \\ O \\ CH_3 \end{array}$	561.4	1.46	QC- ACN- TFA- XB
719	EX-4	H_3C CH_3 N	258.1	1.22	QC- ACN- TFA- XB

		17 DEE 17 Continued			
	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
720	EX-4	H_3C CH_3 H_3C CH_3 H_3C CH_3 CH_3	543.1	1.97	QC- ACN- AA- XB
721	EX-4	H_3C CH_3 CH_3 CH_3 CH_3	612.2	1.83	QC- ACN- AA- XB
722	EX-4	$\begin{array}{c} CH_3 \\ N \\ $	543.3	1.78	QC- ACN- AA- XB
723	EX-4	H_3C CH_3 H_3C CH_3 H_3C CH_3 CH_3	258.4	1.44	QC- ACN- TFA- XB
724	EX-4	$\begin{array}{c} O \\ N \\$	556.3	1.2	QC- ACN- TFA- XB

		TABLE 17-continued			
	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
725	EX-4	$\bigcap_{N \to \infty} \bigcap_{N \to \infty} \bigcap_{N$	528.2	1.68	QC- ACN- AA- XB
726	EX-4	H_3C N H_3C CH_3 N	512.1	1.87	QC- ACN- AA- XB
727	EX-4	$\begin{array}{c} O \\ \\ HN \\ \\ H \end{array}$	513.2	1.53	QC- ACN- TFA- XB
728	EX-4	H_3C CH_3 H_3C CH_3 CH_3	527.2	1.77	QC- ACN- AA- XB
729	EX-4	$\begin{array}{c} O \\ HN \\ OH \\ \end{array}$	543.3	1.39	QC- ACN- AA- XB

TABLE 17-continued

		TABLE 17-continued			
Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
730	EX-4	H_3C CH_3 H_3C CH_3 CH_3 CH_3	271.4	1.59	QC- ACN- TFA- XB
731	EX-4	H_3C CH_3 N	529.3	1.6	QC- ACN- AA- XB
732	EX-4	$\begin{array}{c} O \\ \\ HN \\ \\ H_3C \\ \\ CH_3 \\ \\ CH_3 \\ \\ CH_3 \\ \\ \\ H_3C \\ \\ CH_3 \\ \\ \\ CH_3 \\ \\ \end{array}$	501.2	1.49	QC- ACN- AA- XB
733	EX-4	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	515.3	1.84	QC- ACN- AA- XB
734	EX-4	$\begin{array}{c} O \\ NH \\ CH_3 \\ \end{array}$	244.2	1.33	QC- ACN- TFA- XB
735	EX-4	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	515.1	1.41	QC- ACN- TFA- XB

TABLE 17-continued

Template Ex. Starting No. Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
736 EX-4	H ₃ C CH ₃	515.1	1.54	QC- ACN- AA- XB
737 EX-4	H_3C CH_3 H_3C CH_3 H_3C CH_3 CH_3 CH_3 CH_3 CH_3	487.1	1.54	QC- ACN- AA- XB
738 EX-4	H_3C CH_3 N	259.4	1.29	QC- ACN- TFA- XB
739 EX-4	$\begin{array}{c} O \\ NH \\ CH_2F \end{array}$	246.4	1.24	QC- ACN- TFA- XB
740 EX-4	$\begin{array}{c} O \\ NH \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ N \\ H_3C \end{array} \begin{array}{c} CH_3 \\ CH_3 \end{array}$	473.2	1.37	QC- ACN- AA- XB
741 EX-4	H_3C CH_3 N	549.0	2.01	QC- ACN- AA- XB

		TABLE 17 Continued			
	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
742	EX-4	H_3 C C H $_3$ N	485.1	1.76	QC- ACN- AA- XB
743	EX-4	H_3C CH_3 H_3C CH_3 H_3C CH_3 H_3C CH_3	503.0	1.57	QC- ACN- AA- XB
744	EX-4	H_3C CH_3 N	513.4	1.73	QC- ACN- AA- XB
745	EX-4	$\begin{array}{c} O \\ N \\ N \\ \end{array}$	250.3	1.3	QC- ACN- TFA- XB
746	EX-4	H_3C CH_3 H_3C CH_3 H_3C CH_3 CH_3	501.4	1.41	QC- ACN- TFA- XB
747	EX-4	$\begin{array}{c} O \\ N \\ CH_3 \\ CH_3 \\ CH_3 \\ \end{array}$	541.1	2.28	QC- ACN- AA- XB

TABLE 17-continued

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
748	EX-4	$\begin{array}{c} O \\ \\ HN \\ \\ O \\ \\ NH_2 \end{array}$	502.4	1.37	QC- ACN- TFA- XB
749	EX-4	H_3C CH_3 N	529.0	1.34	QC- ACN- TFA- XB
750	EX-4	H_3C CH_3 H_3C CH_3	543.1	1.76	QC- ACN- AA- XB
751	EX-4	H_3C N H_3C CH_3 N	541.14 541.14		QC- ACN- TFA- XB
752	EX-4	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	484.4	1.47	QC- ACN- TFA- XB

		17 IDEL 17 Continued			
Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
753	EX-4	$\begin{array}{c} O \\ HN \\ CH_3 \end{array} \\ \begin{array}{c} H_3C \\ CH_3 \end{array} \\ \begin{array}{c} N \\ N \\ H_3C \end{array} \\ CCH_3 \end{array}$	459.0	1.4	QC- ACN- AA- XB
754	EX-4	H_3C CH_3 H_3C CH_3 N	264.4	1.41	QC- ACN- TFA- XB
755	EX-4	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	529.3	1.46	QC- ACN- AA- XB
756	EX-4	H_3C CH_3 N	252.3	1.22	QC- ACN- TFA- XB
757	EX-4	$\begin{array}{c} O \\ HN \\ OH \\ \end{array}$	489.2	1.28	QC- ACN- AA- XB
758	EX-4	$\begin{array}{c} O \\ \\ HN \\ \\ \end{array}$	250.3	1.35	QC- ACN- TFA- XB

TABLE 17-continued

	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
759	EX-4	H_3C CH_3 H_3C CH_3 H_3C CH_3	544.1	1.64	QC- ACN- AA- XB
760	EX-4	H_3C N H_3C CH_3 H_3C CH_3 H_3C CH_3 CH_3 CH_3	517.5	1.32	QC- ACN- TFA- XB
761	EX-4	$\begin{array}{c} O \\ HN \\ CF_3 \end{array}$	527.2	1.86	QC- ACN- AA- XB
762	EX-4	H_3C CH_3 H_3C CH_3 H_3C CH_3 CH_3	501.1	1.74	QC- ACN- AA- XB
763	EX-4	H_3C CH_3 H_3C CH_3 H_3C CH_3 CH_3	501.2	1.58	QC- ACN- AA- XB
764	EX-4	$\begin{array}{c} O \\ HIN \\ \hline \\ HIN \\ \hline \\ H_3C \\ \hline \\ CH_3 \\ \hline \\ H_3C \\ \hline \\ CH_3 \\ \hline \\ CH_3 \\ \hline \\ \\ CH_3 \\ \hline \\ \\ \end{array}$	499.5	1.37	QC- ACN- TFA- XB

Template

TABLE 17-continued

Ex. No.	Template Starting Material	Structure	LCMS MH+	R _r (min)	HPLC Method
765	EX-4	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	485.4	1.35	QC- ACN- AA- XB
766	EX-4	H_3C CH_3 H_3C CH_3 H_3C CH_3 CH_3	487.5	1.32	QC- ACN- TFA- XB
767	EX-4	H_3C CH_3 CH_3 CH_3 H_3C CH_3 H_3C CH_3	501.4	1.37	QC- ACN- TFA- XB

TABLE 18

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R_t (min)	HPLC Method
768	EX-2	H_3C CH_3 CH_3 N N N N	485.4	1.72	Е
769	EX-2	$\begin{array}{c} O \\ N \\ \end{array}$	499.4	1.62	E

Ex.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
770	EX-2	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \end{array}$	485.4	1.35	Е
771	EX-2	$\begin{array}{c} O \\ \\ N \\ \\ \end{array}$	513.4	1.37	E
772	EX-2	H_3C CH_3 CH_3 N	558.5	1.53	Е
773	EX-2	H_3C CH_3 CH_3 CH_3	529.4	1.65	E
774	EX-2	HO N	501.4	1.29	E

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
775	EX-2	H_3 C CH_3 CH_3 N	515.4	1.47	Е
776	EX-2	HOIIIIII N N N N N N N N	501.4	1.29	Е
777	EX-128	H_3C CH_3	541.4	1.51	F
778	EX-128	CH_3	527.4	1.44	F
779	EX-128	$\begin{array}{c} O \\ \\ N \\ \\ CH_3 \end{array} \\ \begin{array}{c} CH_3 \\ \\ N \\ \end{array} \\ \begin{array}{c} CF_3 \\ \\ N \\ \end{array}$	539.4	2.14	Е
780	EX-5	$\begin{array}{c} O \\ NH \\ O \\ CH_3 \end{array}$	505.3	1.55	Е

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
781	EX-5	$\begin{array}{c c} O \\ \hline \\ O \\ \hline \\ CH_3 \end{array} \begin{array}{c} O \\ \hline \\ NH \end{array} \begin{array}{c} O \\ \hline \\ N \\ \hline \\ N \end{array} \begin{array}{c} O \\ \hline \\ N \\ N \end{array} \begin{array}{c} O \\ \hline \\ N \\ N \end{array} \begin{array}{c} O \\ \hline \\ N \\ N \end{array} \begin{array}{c} O \\ \hline \\ N \\ N \end{array} \begin{array}{c} O \\ \hline \\ N \\ N \end{array} \begin{array}{c} O \\ \hline \\ N \\ N \end{array} \begin{array}{c} O \\ \hline \\ N \\ N \\ N \end{array} \begin{array}{c} O \\ \hline \\ N \\ N \\ N \\ N \\ N \end{array} \begin{array}{c} O \\ \hline \\ N \\ N$	517.3	1.69	Е

The following examples were prepared according to the general process described in Example 74.

TABLE 19

		IADLE 19			
Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
782	EX-2	$O = S = O$ CH_3 CH_3 N	549.2	1.29	QC- ACN- TFA- XB
783	EX-2	O S N N N CH ₃ CH ₃	535.4	1.31	QC- ACN- TFA- XB
784	EX-2	$\begin{array}{c c} O & & & \\ & & & \\ O & & & \\ & & & \\ O & & & \\$	535.32	1.64	QC- ACN- AA- XB
785	EX-2	$\begin{array}{c c} & H \\ & N \\ & \\ & CH_3 \end{array}$	505.1	1.77	QC- ACN- AA- XB

	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
786	EX-2	H_3C O N	545.2	1.55	QC- ACN- AA- XB
787	EX-2	HO CH_3 N H_3C CH_3 CH_3 N	511.1	1.21	QC- ACN- TFA- XB
788	EX-2	$\begin{array}{c} O \\ \\ O \\ \\ C \\ \\ O \\ \\ \end{array}$	503.2	1.26	QC- ACN- TFA- XB
789	EX-2	$\begin{array}{c} O \\ \\ N \\ \\ OH \end{array} \begin{array}{c} CH_3 \\ \\ N \\ \\ N \end{array} \begin{array}{c} CH_3 \\ \\ N \\ \\ N \end{array}$	517.4	1.35	QC- ACN- TFA- XB
790	EX-2	OH N H ₃ C CH ₃ CH ₃ N N N N N N N N N N N N N	515.2	1.54	QC- ACN- AA- XB
791	EX-2	$\begin{array}{c c} O & & & \\ \hline \\ O & & \\ \hline \\ O & & \\ \end{array}$	529.4	1.58	QC- ACN- AA- XB

		TABLE 17 COMMICC			
	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
792	EX-2	$\begin{array}{c} CH_3 \\ N \\ OH \end{array}$	503.2	1.49	QC- ACN- AA- XB
793	EX-2	CH_3 N H_3C CH_3 CH_3 N	515.2	1.33	QC- ACN- TFA- XB
794	EX-2	$\begin{array}{c} CH_3 \\ N \\ OH \end{array}$	579.2	1.44	QC- ACN- TFA- XB
795	EX-2	OH H_3C CH_3 CH_3 N	531.2	1.22	QC- ACN- TFA- XB
796	EX-2	H_3C H_3C CH_3 CH_3 N N N N N	517.2	1.6	QC- ACN- AA- XB
797	EX-2	O N O H ₃ C CH_3 CH_3 N	531.2	1.25	QC- ACN- TFA- XB

	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
798	EX-2	H_3C N H_3C CH_3 CH_3 N N N N	515.2	1.63	QC- ACN- AA- XB
799	EX-2	H_3C	529.3	1.7	QC- ACN- AA- XB
800	EX-2	H_3C CH_3 CH_3 CH_3 N N N	545.2	1.56	QC- ACN- TFA- XB
801	EX-2	$\begin{array}{c} O \\ N \\ O \\ O \\ \end{array}$	515.4	1.24	QC- ACN- TFA- XB
802	EX-3	$\begin{array}{c} O \\ N \\ N \\ \end{array}$	485.0	1.33	QC- ACN- TFA- XB
803	EX-3	H_3C CH_3 H_3C NH N	473.1	1.76	QC- ACN- AA- XB

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R_t (min)	HPLC Method
804	EX-3	H_3C CH_3 H_3C N	473.0	1.63	QC- ACN- AA- XB
805	EX-3	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ \\ H \\ \\ \\ \\ H_3C \\ \end{array} \begin{array}{c} CH_3 \\ \\ \\ N \\ \\ \\ N \\ \\ \\ \\ \end{array}$	499.2	1.42	QC- ACN- TFA- XB
806	EX-3	$\begin{array}{c} O \\ \\ HN \end{array} \begin{array}{c} H_3C \\ \\ N \end{array} \begin{array}{c} CH_3 \\ \\ N \end{array} \begin{array}{c} N \\ \\ N \end{array}$	471.4	1.59	QC- ACN- AA- XB
807	EX-3	$\begin{array}{c} O \\ \\ HN \\ \\ CH_3 \end{array}$	459.1	1.25	QC- ACN- TFA- XB
808	EX-3	CH_3	487.4	1.35	QC- ACN- TFA- XB
809	EX-3	$\begin{array}{c} O \\ N \\ \end{array}$	501.3	1.5	QC- ACN- AA- XB
810	EX-3	H_3C OH H_3C OH H_3C OH OH OH OH OH OH OH OH	489.3	1.23	QC- ACN- TFA- XB

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R_t (min)	HPLC Method
811	EX-6	$\begin{array}{c} O \\ \\ H_3C \\ \\ CN \\ \end{array}$	528.0	1.46	QC- ACN- AA- XB
812	EX-6	$\begin{array}{c} & & & \\ & &$	545.0	1.31	QC- ACN- TFA- XB
813	EX-6	O N	580.1	1.58	QC- ACN- AA- XB
814	EX-6	H_3C N H_3C CH_3 N	533.2	1.48	QC- ACN- AA- XB
815	EX-6	$\begin{array}{c} O \\ N \\ CH_3 \end{array} \begin{array}{c} H_3C \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ N \\ N \end{array}$	558.9	1.53	QC- ACN- AA- XB
816	EX-6	$\begin{array}{c c} H \\ \hline \\ CH_3 \end{array} \begin{array}{c} N \\ \hline \\ O \end{array} \begin{array}{c} H_3C \\ \hline \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ \hline \\ N \end{array} \begin{array}{c} CH_3 \\ \hline \\ N \end{array}$	489.0	1.63	QC- ACN- AA- XB
817	EX-6	CH_3	517.0	1.58	QC- ACN- AA- XB

	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
818	EX-6	H_3C CH_3 O	519.0	1.28	QC- ACN- AA- XB
819	EX-6	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	503.0	1.44	QC- ACN- TFA- XB
820	EX-6	$\begin{array}{c} O \\ N \\ CH_3 \\ O - CH_3 \\ \end{array}$	532.9	1.37	QC- ACN- TFA- XB
821	EX-6	H_3C CH_3 CH_3 CH_3 CH_3	503.0	1.3	QC- ACN- TFA- XB
822	EX-6	H_3C O N O N O N O	575.0	1.39	QC- ACN- AA- XB
823	EX-6	$\bigcap_{O} \bigcap_{M} \bigcap_{N} \bigcap_{N} \bigcap_{M} \bigcap_{N} \bigcap_{M} \bigcap_{N} \bigcap_{N} \bigcap_{M} \bigcap_{N} \bigcap_{M} \bigcap_{N} \bigcap_{M} \bigcap_{M$	545.0	1.43	QC- ACN- AA- XB

	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
824	EX-6	F_3 CIIII OH $\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & $	613.3	1.62	QC- ACN- AA- XB
825	EX-6	$\begin{array}{c} O \\ \\ O \\ \\ O \\ \end{array}$	533.0	1.4	QC- ACN- AA- XB
826	EX-6	$\begin{array}{c} O \\ \\ N \\ \\ O = S = O \\ \\ CH_3 \end{array}$	578.9	1.46	QC- ACN- AA- XB
827	EX-6	ON CH ₃ CCH ₃ OCH ₃ OCH ₃	579.0	1.45	QC- ACN- AA- XB
828	EX-6	H_3C CH_3 CH_3 N N N N N N N	547.0	1.34	QC- ACN- TFA- XB
829	EX-6	OH H_3C CH_3 N	561.0	1.27	QC- ACN- TFA- XB

Ex. No.	Template Starting Material	Structure	LCMS MH+	R_t (min)	HPLC Method
830	EX-6	$\begin{array}{c} O \\ N \\ N \\ \end{array}$	565.1	1.66	QC- ACN- AA- XB
831	EX-6	H_3C CH_3 H_3C CH_3 N N N N	529.3	1.69	QC- ACN- AA- XB
832	EX-6	$\begin{array}{c} O \\ HN \\ CF_3 \end{array}$	557.0	1.85	QC- ACN- AA- XB
833	EX-6	$F \longrightarrow N \longrightarrow N \longrightarrow H_3C \longrightarrow CH_3 \longrightarrow N \longrightarrow $	551.0	1.63	QC- ACN- AA- XB
834	EX-6	$\begin{array}{c} O \\ NH \\ OH \\ \end{array}$	559.1	1.63	QC- ACN- AA- XB
835	EX-6	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	545.0	1.31	QC- ACN- TFA- XB
836	EX-6	H_3C N	569.1	1.3	QC- ACN- AA- XB

TABLE 19-continued

	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
837	EX-6	H_3C	559.1	1.31	QC- ACN- TFA- XB
838	EX-6	NC H_3C CH_3 N	526.0	1.8	QC- ACN- AA- XB
839	EX-6	H_3C N H_3C CH_3 N N N N N N	545.0	1.59	QC- ACN- AA- XB
840	EX-6	$\begin{array}{c c} F & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	537.1	1.74	QC- ACN- AA- XB
841	EX-6	F_3C OH H_3C CH_3 CH_3 N	613.0	1.79	QC- ACN- AA- XB

TABLE 19-continued

Template Ex. Starting No. Material	Structure	LCMS MH+	R_t (min)	HPLC Method
842 EX-6	$\begin{array}{c} O \\ \\ HN \\ \\ CN \end{array}$	514.2	1.57	QC- ACN- AA- XB
843 EX-4	$\begin{array}{c} O \\ \\ O \\ \\ O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	515.2	1.32	QC- ACN- TFA- XB
844 EX-4	$\begin{array}{c} O \\ N \\ N \\ \end{array}$	485.4	1.74	QC- ACN- AA- XB
845 EX-4	$O = S = O$ H_3C CH_3 N H_3C CH_3	563.3	1.56	QC- ACN- AA- XB
846 EX-4	$\begin{array}{c} CH_3 \\ O \\ O \\ CH_3 \end{array}$	515.1	1.32	QC- ACN- TFA- XB
847 EX-4	O N H_3C CH_3 N	563.1	1.45	QC- ACN- AA- XB
848 EX-4	H_3C OH H_3C CH_3 OH H_3C CH_3 OH OH OH OH OH OH OH OH	503.2	1.29	QC- ACN- TFA- XB

TABLE 19-continued

	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
849	EX-4	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \\ \end{array}$	527.2	1.67	QC- ACN- AA- XB
850	EX-100	$\begin{array}{c c} O & & H_3C & CH_3 \\ \hline N & & CH_3 & OH \\ \hline N & & N & N \\ \hline \end{array}$	545.0	1.3	QC- ACN- TFA- XB

TABLE 20

Ex. No.	Fragment Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
851	EX-124	$\begin{array}{c} O \\ N \\ N \\ \end{array}$	499	1.83	Е
852	EX-124	H_3C CH_3 CH_3 CH_3 CH_3	515	1.75	Е
853	EX-124	$\begin{array}{c} O \\ N \\ O \\ \end{array}$	563.3	1.76	Е
854	Ex-5	H_3C O	517.2	1.86	Е

TABLE 20-continued

Ex.	Fragment Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
855	EX-5	$\begin{array}{c} O \\ HN \\ H_3C \\ H_3C \\ \end{array}$	602.4	1.89	Е
856	EX-5	H_3C	545.4	1.72	Е
857	EX-5	H_3C CH_3 N	519.3	1.49	Е
858	EX-5	$\begin{array}{c} O \\ \\ N \\ \\ O \end{array}$	565.3	1.44	Е
859	EX-5	H_3C N H_3C CH_3 CH_3 O CH_3 N N N N N	489.3	1.46	Е
860	EX-5	H_3C	515.3	1.92	Е

Ex. No.	Fragment Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
861	EX-5	$\begin{array}{c} O \\ \\ HN \\ \\ CH_3 \\ \end{array} \begin{array}{c} CH_3 \\ \\ \\ H \\ \end{array} \begin{array}{c} O - CH_3 \\ \\ \\ N \\ \end{array}$	545.3	1.9	Е
862	EX-5	H_3C O	531.3	1.79	Е
863	EX-5	HOIMING N	517.3	1.21	Е
864	EX-5	$\begin{array}{c} O \\ \\ N \\ \\ \end{array}$	505.3	1.56	Е
865	EX-5	$\begin{array}{c} O \\ \\ N \\ \\ \end{array}$	523.3	1.18	F
866	EX-5	HN O N H_3C CH_3 O CH_3 N N N	530.3	1.23	Е

Ex. No.	Fragment Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
867	EX-5	HO N	503.3	1.26	Е
868	EX-5	Final N	519.3	1.15	F
869	EX-5	H_3C CH_3	545.4	1.69	Е
870	EX-5	$\begin{array}{c} O \\ \\ N \\ \\ N \\ \end{array}$	487.3	1.5	E
871	EX-5	$\begin{array}{c} O \\ \\ O \\ \\ O \\ \\ \end{array}$	531.3	1.16	F
872	EX-5	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$	537.3	1.71	E

Ex. No.	Fragment Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
873	EX-5	H_3C O H_3C O CH_3 O CH_3 O CH_3 O	529.4	1.77	Е
874	EX-5	HO N O N H_3C CH_3 O CH_3 N N N	517.3	1.02	F
875	EX-5	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	519.3	1.51	Е
876	EX-140	$\begin{array}{c} O \\ \\ HN \\ \\ H_3C \\ \\ O \\ \end{array}$	545.3	1.73	Е
877	EX-140	$\begin{array}{c c} O & & & \\ \hline \\ NH & & & \\ CH_3 & & & \\ \hline \\ N & & \\ \end{array}$	531.3	1.73	Е
878	EX-140	H_3C $O-CH_3$ H_3C $O-CH_3$ H_3C $O-CH_3$	501.4	1.21	F

Ex. No.	Fragment Starting Material	Structure	LCMS MH ⁺	R_t (min)	HPLC Method
879	EX-140	H_3C CH_3 H_3C CH_3 H_3C O CH_3	503.4	1.29	F
880	EX-140	$\begin{array}{c} O \\ N \\ N \\ N \\ N \\ M \\ H_3C \\ O - CH_3 \\ \end{array}$	579.3	1.6	Е
881	EX-140	$\begin{array}{c} O \\ N \\ N \\ \end{array}$	531.3	1.56	Е

Example 882

1-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl)piperidi n-1-yl)-3-morpholinopropan-1-one

To a two dram vial were added the TFA salt of 6-(3- 60 isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2, 4 triazolo[1,5-a]pyridine (0.025 g, 0.053 mmol), CH₃CN, HATU (1.0 equiv.), TEA (3.0 equiv.), and 3-morpholinopropanoic acid (0.250 g, 1.570 mmol). The reaction vial was capped and stirred overnight at room temperature. The mixture was diluted with solvent (90:10:0.1 CH₃CN: Water:

40 TFA) and filtered. The crude material was purified via preparative LC/MS with the following conditions: Column:) (Bridge C18, 19×200 mm, 5-µm particles; Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate; 45 Mobile Phase B: 95:5 acetonitrile: water with 10-mM ammonium acetate; Gradient: 10-70% B over 19 minutes, then a 3-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the product were combined and dried via 50 centrifugal evaporation to afford 1-(4-(3-isopropyl-2-(8methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl) piperidi n-1-yl)-3-morpholinopropan-1-one (21.2 mg, 0.041 mmol, 78% yield). LCMS MH+: 515.2 HPLC Ret. Time 55 1.52 min. Method QC-ACN-AA-XB. ¹H NMR (500 MHz, DMSO-d₆) δ 8.85-8.72 (m, 1H), 8.55-8.48 (m, 1H), 7.63-7.50 (m, 2H), 7.36-7.22 (m, 1H), 7.06-6.94 (m, 1H), 4.63-4.51 (m, 1H), 4.06-3.98 (m, 1H), 3.63-3.56 (m, 5H), 3.30-3.20 (m, 1H), 2.70-2.53 (m, 11H), 2.46-2.39 (m, 3H), 1.89-1.79 (m, 2H), 1.70-1.59 (m, 1H), 1.53-1.46 (m, 1H), 1.45-1.39 (m, 6H).

The following examples were prepared according to the general process described in Example 882.

TABLE 21

		IADLE 21			
Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
883	EX-2	$\bigcap_{\mathrm{OH}} \bigcap_{\mathrm{N}} \bigcap_{\mathrm{N}} \bigcap_{\mathrm{H}_3\mathrm{C}} \bigcap_{\mathrm{CH}_3} \bigcap_{\mathrm{N}} $	529.0	1.63	QC-ACN- AA-XB
884	EX-2	O S N H ₃ C CH ₃ CH ₃	563.2	1.29	QC-ACN- TFA-XB
885	EX-3	$\bigcap_{N} \bigcap_{H_3C} CH_3$ $\bigcap_{N} \bigcap_{H_3C} CH_3$ $\bigcap_{N} \bigcap_{N} \bigcap_{N} CH_3$	515.5	1.56	QC-ACN- AA-XB
886	EX-4	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	557.2	1.28	QC-ACN- TFA-XB
887	EX-4	H_3 C CH_3 H_3 C CH_3 H_4 C CH_3	543.2	1.44	QC-ACN- AA-XB

TABLE 21-continued

	Template				
Ex. No.	Starting Material	Structure	LCMS MH ⁺	R_t (min)	HPLC Method
888	EX-4	$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	531.2	1.32	QC-ACN- TFA-XB
889	EX-4	$\begin{array}{c} O \\ N \\$	503.1	1.3	QC-ACN- AA-XB
890	EX-4	$\begin{array}{c} O \\ \\ NH \\ \\ CH_3 \end{array}$	501.2	1.42	QC-ACN- AA-XB
891	EX-4	$\begin{array}{c c} O \\ N \\ NH \\ NH_2 \\ NH_2 \\ NH_3C \\ CH_3 \\ N \\ N \\ N \\ N \\ CH_3 \\ CH_4 \\ CH_3 \\ CH_5 $	516.1	1.33	QC-ACN- AA-XB
892	E X-4	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	513.1	1.44	QC-ACN- AA-XB

Ex. No.	Template Starting Material	Structure	LCMS MH+	R, (min)	HPLC Method
893	EX-4	$\begin{array}{c} O \\ N \\ N \\ N \\ M \\ H_{3}C \\ CH_{3} \\ N \\ N \\ N \\ N \\ N \\ CH_{3} \\ C$	499.2	1.28	QC-ACN- TFA-XB
894	EX-4	H_3C CH_3 H_3C CH_3 H_3C CH_3 CH_3	501.2	1.31	QC-ACN- TFA-XB
895	EX-4	H_3C CH_3 H_3C CH_3 H_3C CH_3	515.2	1,45	QC-ACN- AA-XB
896	EX-4	H_3C CH_3 H_3C CH_3 H_3C CH_3 CH_3 CH_3 CH_3	515.2	1.35	QC-ACN- TFA-XB
897	EX-4	H_3C CH_3	558.2	1.42	QC-ACN- AA-XB
898	EX-4	H_3C CH_3 H_3C CH_3 H_3C CH_3	531.2	1.35	QC-ACN- TFA-XB

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
899	EX-4	HO N H_3C CH_3 N N H_3C CH_3	529.2	1.32	QC-ACN- AA-XB
900	EX-4	$F = \begin{bmatrix} O & & & & \\ & & & & \\ & & & & \\ & & & &$	563.2	1.37	QC-ACN-TFA-XB
901	EX-4	$\bigcap_{NH} \bigcap_{CH_3} \bigcap_{$	517.2	1.32	QC-ACN-TFA-XB
902	EX-4	H_3C CH_3 N	501.2	1.33	QC-ACN- TFA-XB
903	EX-4	$\begin{array}{c} O \\ \\ N \\ \\ CH_3 \end{array}$	487.1	1.29	QC-ACN- TFA-XB

TABLE 21-continued

		TABLE 21 Continued			
Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
904	EX-4	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	527.0	1.35	QC-ACN- TFA-XB
905	EX-4	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	473.1	1.31	QC-ACN- AA-XB
906	EX-4	H_3C CH_3 H_3C CH_3 H_3C CH_3 CH_3	557.2	1.65	QC-ACN- AA-XB
907	EX-4	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	626.2	1.56	QC-ACN- AA-XB
908	EX-4	H_3C CH_3 N	555.2	1.62	QC-ACN- AA-XB

TABLE 21-continued

Ex.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
909	EX-4	H_3 C CH_3 H_3 C CH_3 H_3 C CH_3	543.2	1.32	QC-ACN- AA-XB
910	EX-4	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	541.2	1.5	QC-ACN- AA-XB
911	EX-4	$\begin{array}{c} O \\ N \\ N \\ N \\ N \\ N \\ N \\ H \\ H_3C \\ CH_3 \\ \end{array}$	557.2	1.48	QC-ACN- AA-XB
912	EX-4	$\begin{array}{c} O \\ N \\ N \\ \end{array}$	570.2	1.31	QC-ACN- AA-XB
913	EX-4	$\begin{array}{c c} O & & & \\ \hline \\ N & & \\ \hline \\ N & & \\ \hline \\ N & \\ \end{array}$	542.2	1.44	QC-ACN- AA-XB

TABLE 21-continued

Ex. No.	Template Starting Material	Structure	LCMS MH ⁺	R _r (min)	HPLC Method
914	EX-4	H_3C OH H_3C CH_3 H_3C CH_3 CH_3	517.2	1.32	QC-ACN- AA-XB
915	EX-4	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	557.2	1.43	QC-ACN- AA-XB
916	EX-4	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	513.1	1.38	QC-ACN- AA-XB
917	EX-4	N H ₃ C CH ₃ N N N N N H ₃ C CH ₃	543.2	1.35	QC-ACN- AA-XB
918	EX-4	$\begin{array}{c} O \\ N \\ NH \\ \end{array}$	513.2	1.39	QC-ACN- TFA-XB
919	EX-4	$\begin{array}{c} O \\ N \\ NH \\ NH \\ NH \\ NH \\ NH_{3}C \\ CH_{3} \\ CH_{4} \\ CH_{3} \\ CH_{4} \\ CH_{5} \\ CH_$	527.2	1.42	QC-ACN- TFA-XB

		17 IDEE 21 Continued			
Ex. No.	Template Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
920	EX-4	$\bigcap_{NH} \bigcap_{NH} \bigcap_{H_3C} \bigcap_{CH_3} \bigcap_{N} \bigcap_{CH_3} \bigcap_{CH_3}$	541.2	1.49	QC-ACN- TFA-XB
921	EX-4	Final N	531.2	1.49	QC-ACN- AA-XB
922	EX-4	HOm $ \begin{array}{c} $	529.2	1.32	QC-ACN- AA-XB
923	EX-4	$\begin{array}{c} O \\ N \\ N \\ OH \end{array}$	529.2	1.32	QC-ACN- AA-XB
924	EX-4	H_3C N H_3C CH_3 H_3C CH_3	555.2	1.52	QC-ACN- TFA-XB

TABLE 21-continued

Ex. No.	Template Starting Material	Structure	LCMS MH+	R, (min)	HPLC Method
925	EX-4	$\begin{array}{c} O \\ NH \\ CH_2F \end{array}$	505.2	1.31	QC-ACN- TFA-XB
926	EX-4	$\begin{array}{c} O \\ N \\ NH \\ CH_3 \\ CH_3 \\ CH_3 \\ \end{array}$	529.3	1.54	QC-ACN- TFA-XB

Example 927

Azetidin-3-yl 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate

HN O N H₃C
$$CH_3$$
 N N N H_3 C CH_3

1-(tert-butoxycarbonyl)azetidin-3-yl 4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (15 mg, 0.026 mmol) and 2:1 trifluoroacetic acid:dichloromethane (1.2 mL, 0.026 mmol)

were combined in a 1-dram vial containing a stir bar. The resulting clear, yellow solution was stirred at room temperature for 30 min. After completion of the reaction, toluene $(150 \ \mu L)$ was added to the reaction mixture. The reaction mixture was stirred briefly and excess solvent was evaporated. The residue was taken up in DMF (1.5 mL) and purified by semi-preparative HPLC on a C-18 column on the Shimadzu instrument, eluting with water/acetonitrile/TFA. Excess solvent was evaporated from product-containing fractions to afford azetidin-3-yl 4-(2-(7,8-dimethyl-[1,2,4] triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-1 H-indol-5-yl) piperidine-1-carboxylate, TFA (14.9 mg, 0.025 mmol, 96% yield) as a white solid. LCMS MH+: 487.3. HPLC Ret. Time 1.40 min. Method QC-ACN-TFA-XB. ¹H NMR (400 MHz, METHANOL-d₄) δ 8.68 (s, 1H), 8.58 (s, 1H), 7.60 (s, 1H), 7.33 (d, J=8.3 Hz, 1H), 7.08 (dd, J=8.4, 1.5 Hz, 1H), 5.33-5.24 (m, 1H), 4.45 (dd, J=12.7, 7.0 Hz, 2H), 4.38-4.25 (m, 2H), 4.21 (br. s., 2H), 3.17-3.06 (m, 1H), 2.98 (dq, J=13.6, 6.8 Hz, 4H), 2.88 (tt, J=12.0, 3.3 Hz, 1H), 2.67 (s, 3H), 2.30 (s, 3H), 1.96 (d, J=12.0 Hz, 2H), 1.75 (br. s., 2H), 1.40 (d, J=7.1 Hz, 6H).

The following examples were prepared according to the general process described in Example 929.

TABLE 22

Ex. No.	Structure	LCMS MH+	R _t (min)	HPLC Method
928	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	475.1	1.45	QC-ACN- TFA-XB

TABLE 22-continued

	Tribes 22 continued			
Ex. No.	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
929	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	501.4	1.48	QC-ACN- TFA-XB
930	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	515.4	1.42	QC-ACN- TFA-XB
931	$\begin{array}{c} \text{HN} \\ \text{H}_{3}\text{C} \\ \text{H}_{3}\text{C} \\ \text{CH}_{3} \\ \text{H}_{3}\text{C} \\ \text{CH}_{3} \\ \end{array}$	501.4	1.37	QC-ACN- TFA-XB
932	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	529.3	1.54	QC-ACN- AA-XB
933	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	515.4	1.4	QC-ACN- TFA-XB

	TABLE 22-continued			
Ex. No.	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
934	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	489.4	1.36	QC-ACN- TFA-XB
935	$\bigcap_{N} \bigcap_{N} \bigcap_{H_3C} \bigcap_{CH_3} \bigcap_{N} \bigcap_{N} \bigcap_{N} \bigcap_{N} \bigcap_{CH_3} \bigcap_{N} \bigcap$	515.4	1.4	QC-ACN- TFA-XB
936	$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	529.4	1.52	QC-ACN- AA-XB
937	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	515.0	1.52	QC-ACN- TFA-XB
938	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$	515.0	1.58	QC-ACN- AA-XB

	TABLE 22-continued			
Ex. No.	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
939	$\begin{array}{c} HN \\ O \\ N \\ N \\ H_3C \\ CH_3 \\ N \\ N \\ H_3C \\ CH_3 \end{array}$	515.1	1.52	QC-ACN- TFA-XB
940	H_3C CH_3 H_3C CH_3 H_3C CH_3	501.1	1.55	QC-ACN- AA-XB
941	$\begin{array}{c c} O & & \\ & & \\ O & & \\ & & \\ NH & & \\ NH & & \\ & & \\ & & \\ NH & & \\ & $	501.4	1.37	QC-ACN-TFA-XB
942	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	528.9	1.64	QC-ACN- AA-XB
943	H_3C CH_3 H_3C CH_3 N N N	503.4	1.35	QC-ACN- TFA-XB

TABLE 22-continued

Ex. No.	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
944	$\begin{array}{c c} & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	526.3	1.37	QC-ACN- TFA-XB
945	$\begin{array}{c} O \\ O \\ N \\ N \\ CH_3 \end{array}$	543.5	1.45	QC-ACN- TFA-XB
946	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	593.4	1.45	QC-ACN- TFA-XB
947	$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	543.5	1.45	QC-ACN- TFA-XB
948	$\begin{array}{c} O \\ N \\ N \\ \end{array}$	529.5	1.41	QC-ACN-TFA-XB
949	$\begin{array}{c c} & & & \\ & & & \\$	531.3	1.47	QC-ACN- TFA-XB

	409			4/0
	TABLE 22-continued			
Ex. No.	Structure	LCMS MH ⁺	R_t (min)	HPLC Method
950	CH ₃ CH ₃ CH ₃ N N N N N N N N N N N N N N N N N N N	573.1	1.55	QC-ACN-AA-XB
951	O N H_3C CH_3 N H_3C CH_3	558.1	1.48	QC-ACN- AA-XB
952	$\begin{array}{c} O \\ \\ O \\ \\ N \\ \\ N \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	545.0	1.8	QC-ACN- AA-XB
953	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	265.2	1.52	QC-ACN- TFA-XB
954	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	515.1	1.67	QC-ACN-AA-XB

TABLE 22-continued

Ex. No.	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
955	$\begin{array}{c} O \\ O \\ O \\ CH_3 \end{array}$	545.1	1.76	QC-ACN- AA-XB
956	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$	529.1	1.59	QC-ACN- TFA-XB

Example 957

(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)(4-methylpiperazin-1-yl)methanone

$$\begin{array}{c} O \\ H_3C \\ \end{array} \begin{array}{c} O \\ H_3C \\ \end{array} \begin{array}{c} CH_3 \\ N \\ H_3C \\ \end{array} \begin{array}{c} CH_3 \\ CH_3 \\ \end{array}$$

 $6\text{-}(3\text{-}isopropyl\text{-}5\text{-}(piperidin\text{-}4\text{-}yl)\text{-}1H\text{-}indol\text{-}2\text{-}yl)\text{-}7,8\text{-}dimethyl\text{-}[1,2,4]triazolo[1,5\text{-}a]pyridine}~(10~mg,~0.026~mmol)$ was dissolved in THF (0.25 mL). Phenyl carbonochloridate (6.06 mg, 0.039 mmol) was added to the solution. The

reaction mixture was stirred overnight at room temperature. The reaction mixture was blown down on a ZYmark Turbovap at 45° C. for 1 h. The residue was dissolved in NMP (0.25 mL). Next, 1-methylpiperazine (7.75 mg, 0.077 mmol) and DIPEA (6.76 µl, 0.039 mmol) were added to the NMP 35 solution of the intermediate. The reaction mixture was stirred at 100° C. overnight. Crude samples with final volume of 1.8 mL in DMF/NMP in a stubby tube were purified via preparative LC/MS with the following conditions: Column:)(Bridge C18, 19×200 mm, 5-µm particles; Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 10-mM ammonium acetate; Gradient: 20-60% B over 20 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the product were combined and dried via centrifugal evaporation to afford (4-(2-(7,8dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)(4-methylpiperazin-1-yl) methanone (4 mg, 7.63 µmol, 29.6% yield). LCMS MH+: 514.4. HPLC Ret. Time 1.29 min. Method QC-ACN-TFA-XB.

The following examples were prepared according to the general process described in Example 957.

TABLE 23

Ex.	Starting	Structure	LCMS	R,	HPLC
No.	Material		MH+	(min)	Method
958	EX-4	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	565.9	1.57	QC-ACN- AA-XB

TABLE 23-continued

Ex. No.	Starting Material	Structure	LCMS MH ⁺	R_t (min)	HPLC Method
959	EX-4	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	488.3	1.27	QC-ACN- TFA-XB
960	EX-4	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\$	540.5	1.46	QC-ACN- TFA-XB
961	EX-4	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	500.0	1.31	QC-ACN- AA-XB
962	EX-4	H_3C CH_3 N	474.4	1.27	QC-ACN- AA-XB
963	EX-4	H_3C N	528.5	1.56	QC-ACN- AA-XB
964	EX-4	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	514.2	1.36	QC-ACN- AA-XB

Ex. No.	Starting Material	Structure	LCMS MH+	R _t (min)	HPLC Method
965	EX-4	H_3C CH_3 H_3C CH_3 H_3C CH_3	542.6	1.83	QC-ACN- AA-XB
966	EX-4	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	528.5	1.39	QC-ACN- TFA-XB
967	EX-4	H_2N H_3C CH_3 N	486.0	1.55	QC-ACN- AA-XB
968	EX-4	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	500.5	1.31	QC-ACN- AA-XB
969	EX-4	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	577.6	1.45	QC-ACN- TFA-XB
970	EX-4	HN N H_3C CH_3 N	528.5	1.33	QC-ACN- TFA-XB

TABLE 23-continued

Ex.	Starting Material	Structure	LCMS MH ⁺	R, (min)	HPLC Method
971	EX-4	$\begin{array}{c} O \\ HN \\ \hline \\ NH \end{array}$	500.3	1.3	QC-ACN- TFA-XB
972	EX-4	H_3C N	488.0	1.43	QC-ACN- TFA-XB
973	EX-4	H_3C CH_3 H_3C CH_3 H_3C CH_3 CH_3	542.0	1.68	QC-ACN- AA-XB
974	EX-4	HN N H_3C CH_3 N	528.4	1.32	QC-ACN- TFA-XB
975	EX-4	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	572.5	1.45	QC-ACN- TFA-XB

TABLE 23-continued

Ex. No.	Starting Material	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
976	EX-4	HN N H_3C CH_3 H_3C CH_3 CH_3	557.3	1.3	QC-ACN- AA-XB
977	EX-4	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	528.4	1.36	QC-ACN- TFA-XB
978	EX-4	H_3C CH_3 H_3C CH_3 H_3C CH_3 CH_3	502.4	1.33	QC-ACN- AA-XB
979	EX-4	HN N H_3C CH_3 N	544.5	1.3	QC-ACN- TFA-XB
980	EX-4	HN N H_3C CH_3 N	542.6	1.41	QC-ACN-TFA-XB

2-(3-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)-8-a zabicyclo [3.2.1]octan-8-yl)acetonitrile

Intermediate 981A: 3-isopropyl-1H-indole

To a 500 mL round bottom flask were added 2,2,2trichloroacetic acid (23.60 g, 144 mmol), toluene (150 mL), and triethylsilane (46.1 mL, 289 mmol). With stirring, the solution was heated to 70° C. and a solution of 1H-indole (11.28 g, 96 mmol) and acetone (8.48 mL, 116 mmol) in 75 mL of toluene was added drop-wise via an addition funnel. The reaction mixture was heated to 90° C. for 2.5 hours. The reaction mixture was cooled to room temperature, then to 5° C. To this were added 1.5 M dibasic potassium phosphate solution and diethyl ether. The layers were separated and the organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified on silica gel using ethyl acetate/hexane as the eluent to afford 3-isopropyl-1H-indole (12 g, 78%) as a white solid. LC retention time=1.04 min [A1]. MS (E+) m/z: 160.2 (M+H). ¹H NMR (400 MHz, CHLOROFORM-d) δ 7.72-7.65 (m, 1H), 7.41-7.36 (m, 1H), 7.21 (d, J=0.9 Hz, 1H), 7.14 (s, 1H), 6.99 (dd, J=2.2, 0.7 Hz, 1H), 3.31-3.17 (m, 1H), 1.40 (d, J=6.8 Hz, 6H).

Intermediate 981B: 6-(3-isopropyl-1H-indol-2-yl)-7, 8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine

482

To a 100 mL round bottom flask were added 3-isopropyl-1H-indole (1.000 g, 6.28 mmol) and DCE (10 mL). NBS (1.062 g, 5.97 mmol) was dissolved in 10 mL of DCE and added to the reaction mixture drop-wise via an addition funnel over 15 minutes. The reaction was guenched with 5 mL of a 10% sodium sulfite solution. The volatiles were removed. Next. THF (10 mL), 7.8-dimethyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,2,4]triazolo[1,5-a] pyridine (1.54 g, 5.56 mmol), PdCl₂(dppf)-CH₂Cl₂ adduct (0.25 g, 0.314 µmol), and 3 M tribasic potassium phosphate solution (6.3 mL, 18.8 mmol) were added. The reaction vessel was capped and pump/purged with nitrogen gas three times. The reaction mixture was set to heat at 70° C. for 1 hour. The mixture was cooled to room temperature and concentrated. The crude residue was taken up in DCM (3 mL), filtered and purified on silica gel using ethyl acetate/ hexane to afford 6-(3-isopropyl-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (0.8 g, 41.8%) as a 20 white foam. LC retention time=2.04 min [D1]. MS (E⁺) m/z: 305.0 (M+H). ¹H NMR (400 MHz, METHANOL- d_{\perp}) δ 8.54-8.44 (m, 1H), 8.38-8.28 (m, 1H), 7.56 (d, J=1.1 Hz, 1H), 7.45 (d, J=8.4 Hz, 1H), 7.13-7.01 (m, 2H), 3.28-3.16 (m, 1H), 2.66 (s, 3H), 2.32 (s, 3H), 1.38 (d, J=6.8 Hz, 6H).

Intermediate 981C: tert-butyl 5-bromo-2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indole-1-carboxylate

To a 40 mL reaction vial were added 6-(3-isopropyl-1Hindol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (0.450 g, 1.478 mmol), AcOH (4 mL), water (0.5 mL), and NBS (0.263 g, 1.478 mmol). The vial was sealed and stirred at 80° C. for 30 minutes. The reaction mixture was cooled to room temperature and 1 mL of a 10% sodium sulfite was added. This mixture was concentrated, dissolved in DCM/ MeOH, filtered, and purified on silica gel using ethyl acetate/hexane to afford 5-bromo-2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indole as a tan solid. LC retention time=1.01 min [A1]. MS (E+) m/z: 83/385 (M+H). ¹H NMR (400 MHz, DMSO-d₆) δ 11.26 (s, 1H), 8.82 (s, 1H), 8.48 (s, 1H), 7.70 (d, J=8.4 Hz, 1H), 7.52 55 (d, J=1.5 Hz, 1H), 7.16 (dd, J=8.6, 1.8 Hz, 1H), 2.88 (br d, J=14.1 Hz, 1H), 2.60 (s, 3H), 2.15 (s, 3H), 1.43-1.15 (m, 5H), 1.18-1.09 (m, 1H).

To this material were added DMAP (0.010 g, 0.0148 mmol), THF (10 mL), and BOC-anhydride (0.59 g, 2.95 mmol). The reaction mixture was stirred for 2 hours at room temperature, concentrated to a viscous oil, diluted with DCM, and washed with dilute 1N HCl. The organic was washed with water and then brine. The solution was dried over Na₂SO₄, filtered, and concentrated. The residue was purified on silica gel using ethyl acetate/hexane to afford tert-butyl 5-bromo-2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-1H-indole-1-car boxylate (0.45 g,

20

Intermediate 981D: tert-butyl 5-(8-(tert-butoxycarbonyl)-8-azabicyclo[3.2.1]oct-2-en-3-yl)-2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-iso-propyl-1H-indole-1-carboxylate

To a mixture of tert-butyl 5-bromo-2-(7,8-dimethyl-[1,2, 4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indole-1-carboxylate (0.130 g, 0.269 mmol), PdCl₂(dppf)-CH₂Cl₂ adduct (10.98 mg, 0.013 mmol), and (8-(tert-butoxycarbonyl)-8-azabicyclo[3.2.1]oct-3-en-3-yl) boronic acid (0.071 25 g, 0.282 mmol) in a screw cap vial was added THF (2 mL) followed by 3 M aqueous solution of tripotassium phosphate (0.269 mL, 0.807 mmol). The vial was fitted with a Teflon lined septum cap. The system was evacuated under vacuum and backfilled with nitrogen gas. The procedure was repeated three times. The vial was sealed and heated at 75° C. for 18 hours. The reaction mixture was diluted with EtOAc (100 mL) and poured into a separatory funnel. The organic layer was washed with water (2×50 mL), saturated aqueous NaCl solution (50 mL), dried (Na2SO4), filtered and concentrated in vacuo to afford crude product. The crude product was purified on silica gel using 0-100% ethyl acetate/hexane. Following concentration of the fractions, the product was collected as a tan oil (0.11 g, 65%). LC retention time=1.19 min [A1]. MS (E⁺) m/z: 612.2 (M+H).

Intermediate 981E: tert-butyl 5-(8-(tert-butoxycarbonyl)-8-azabicyclo[3.2.1]octan-3-yl)-2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indole-1-carboxylate

In a Parr bottle, tert-butyl 5-(8-(tert-butoxycarbonyl)-8-60 azabicyclo[3.2.1]oct-2-en-3-yl)-2-(7,8-dimethyl-[1,2,4]tri-azolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indole-1-car-boxylate (0.11 g, 0.18 mmol) was suspended in ethyl acetate (3 mL) and treated with 10 mol % of 5% Pd/C (0.057 g, 0.027 mmol). Following degassing, the reaction mixture was 65 placed under a hydrogen gas atmosphere (50 psi) and shaken for 16 hours at room temperature. Following the removal of

484

the hydrogen atmosphere and back-filling with nitrogen gas, the reaction mixture was diluted with MeOH, filtered through celite, and concentrated to afford tert-butyl 5-(8-(tert-butoxycarbonyl)-8-azabicyclo[3.2.1]octan-3-yl)-2-(7, 8-dimethyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl-1H-indole-1-carboxylate (0.11 g, 100%) as a mixture of isomers. LC retention time=1.20 min [A1]. MS (E+) m/z: 614.4 (M+H).

Intermediate 981F: 6-(5-(8-azabicyclo[3.2.1]octan-3-yl)-3-isopropyl-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine TFA salt

$$\begin{array}{c|c} HN & H_3C & CH_3 \\ \hline \\ TFA & N & N \\ \hline \\ H_4C & CH_3 \end{array}$$

To a solution of tert-butyl 5-(8-(tert-butoxycarbonyl)-8-azabicyclo[3.2.1]octan-3-yl)-2-(7,8-dimethyl-[1,2,4]tri-azolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indole-1-carboxylate (0.025 g, 0.041 mmol) was added DCM (0.5 mL) in a 2 dram reaction vial. To this was added TFA (1 mL) and the reaction vial was capped. The reaction mixture was stirred for 2 hours at room temperature. The volatiles were removed under a stream of nitrogen gas. The yield was considered quantitative. This material was used as is for final derivatization to prepare the compounds shown in Table 24. One example is described below for Example 981.

Example 981

In a 2 dram reaction vial were added 6-(5-(8-azabicyclo [3.2.1]octan-3-yl)-3-isopropyl-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine, TFA salt (0.021 g, 0.041 mmol), NMP, DBU (0.025 mL, 0.164 mmol), and 45 drop-wise, bromoacetonitrile (0.017 g, 0.15 mmol). The reaction mixture was stirred for 1 hour at room temperature, then diluted with water, and filtered through a 0.45 micron syringe filter. The crude material was purified via preparative LC/MS with the following conditions: Column:)(Bridge 50 C18, 19×200 mm, 5-μm particles; Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 10-mM ammonium acetate; Gradient: 40-80% B over 25 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing 55 the product were combined and dried via centrifugal evaporation. The material was further purified via preparative LC/MS with the following conditions: Column:)(Bridge C18, 19×200 mm, 5-µm particles; Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 10-mM ammonium acetate; Gradient: 35-75% B over 20 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the product were combined and dried via centrifugal evaporation.

2-(3-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)-8-azabicyclo[3.2.1]octan-8-yl) acetonitrile (0.0021 g, 6.4% yield) was collected as a mix-

ture of isomers. Two analytical LC/MS injections were used to determine the final purity. LC retention time 2.18 min [C1]. MS (E⁺) m/z: 453.0 (M+H). 1 H NMR (500 MHz, DMSO-d₆) δ 10.95 (br d, J=18.2 Hz, 1H), 8.73-8.64 (m, 1H), 8.69 (br s, 1H), 8.52-8.39 (m, 1H), 8.46 (s, 1H), 7.62 (s, 1H), 7.62 (br d, J=18.2 Hz, 1H), 7.19 (s, 1H), 7.23 (br s, 1H), 7.01-6.88 (m, 1H), 7.05-6.84 (m, 1H), 3.34 (br s, 1H),

 $3.17~(s,\,1H),\,3.13\text{-}3.01~(m,\,1H),\,2.99\text{-}2.93~(m,\,1H),\,2.88\text{-}2.76~(m,\,1H),\,2.57~(s,\,2H),\,2.15~(s,\,2H),\,2.02\text{-}1.94~(m,\,1H),\,1.90~(br~d,\,J=8.2~Hz,\,1H),\,1.75~(br~s,\,4H),\,1.68\text{-}1.57~(m,\,1H),\,1.29~(br~s,\,5H).$

The following examples were prepared according to the general procedures disclosed in Example 981.

TABLE 24

Ex. No.	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
982	$\begin{array}{c} O \\ \\ H_3C \\ \end{array} \\ CH_3 \\ CH_3 \\ \end{array} \\ CH_3 \\ N \\ N \\ H_3C \\ CH_3 \\ \end{array}$	499.1	1.57	C1

984
$$H_{3}C \longrightarrow S \longrightarrow O$$

$$H_{3}C \longrightarrow N$$

$$H_{3}C \longrightarrow N$$

$$H_{3}C \longrightarrow CH_{3}$$

$$H_{3}C \longrightarrow CH_{3}$$

$$H_{3}C \longrightarrow CH_{3}$$

6-(3-isopropyl-5-(1-(pyridin-2-yl)piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridine

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (19.4 mg, 0.050 mmol), 2-chloropyridine (6.2 mg, 0.055 mmol), 4,5-bis 25 (diphenylphosphino)-9,9-dimethylxanthene (5.8 mg, 10.00 μ mol), Pd2(dba)3 (4.6 mg, 5.00 μ mol) and Cs2CO3 (48.9 mg, 0.150 mmol) were suspended in dioxane (0.5 mL). The mixture was degassed with nitrogen gas for 5 minutes. The

488

reaction vessel was sealed and heated to 90° C. for 2 hours. Upon completion, the reaction mixture was filtered, concentrated, dissolved in DMF, and purified via preparative LCMS using the following conditions: Column:)(Bridge C18, 19×200 mm, 5-µm particles; Mobile Phase A: 5:95 acetonitrile: water with 0.1% trifluoroacetic acid; Mobile Phase B: 95:5 acetonitrile: water with 0.1% trifluoroacetic $_{(986)}$ $_{10}$ acid; Gradient: 10-50% B over 19 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the product were combined and dried via centrifugal evaporation to afford 6-(3-isopropyl-5-(1-(pyridin-2-yl)piperidin-4yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine, TFA (10.1 mg, 0.017 mmol, 35% yield). LCMS retention time 1.25 [QC-ACN-TFA-XB]. MS (ES⁺) m/z: 465.4 (M+H). ¹H NMR (500 MHz, DMSO-d₆) δ 8.81 (s, 1H), 8.63 (br d, J=7.9 Hz, 1H), 8.44-8.38 (m, 2H), 8.36 (br d, J=9.5 Hz, 1H), 7.82-7.73 (m, 1H), 7.67 (s, 1H), 7.48 (d, J=8.5 Hz, 1H), 7.28-7.24 (m, 1H), 7.22 (d, J=7.9 Hz, 1H), 7.12 (br d, J=8.5 Hz, 1H), 3.41 (br d, J=11.3 Hz, 2H), 3.11-2.93 (m, 3H), 2.85 (dt, J=14.0, 7.0 Hz, 1H), 2.42 (s, 3H), 2.06-1.96 (m, 2H), 1.96-1.82 (m, 5H), 1.35 (dd, J=16.5, 7.0 Hz, 6H).

The following examples were prepared in a manner similar to Example 986.

TABLE 25

Ex.	Structure	LCMS MH ⁺	R _t (min)	HPLC Method
987	H_3C CH_3 N H_3C CH_3 N	522.5	0.96	QC-ACN- TFA-XB

45

50

Example 989

6-(3-isopropyl-5-(1-(pyrimidin-2-yl))piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridine

6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (19.4 mg, 0.050 mmol) and Et₃N-(0.021 mL, 0.150 mmol) were mixed in DMSO (1 mL). Next, 2-chloropyrimidine (6.9 mg, 0.060 25 mmol) was added. The reaction vial was sealed and heated to 90° C. for 2 hours. Upon completion, the reaction mixture was cooled to room temperature, diluted with water (0.05 mL) and 1 mL of DMSO, and purified on preparative LCMS via the following conditions: Column:) (Bridge C18, 30 19×200 mm, 5-µm particles; Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 10-mM ammonium acetate; Gradient: 45-100% B over 20 minutes, then a 10-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the 35 product were combined and dried via centrifugal evaporation to provide 6-(3-isopropyl-5-(1-(pyrimidin-2-yl)piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a] pyridine (5.0 mg, 10.2 µmol, 20.4% yield). LCMS retention time 1.71 [QC-ACN-TFA-XB]. MS (ES+) m/z: 466.3 40 (M+H).

Example 990

2-(4-(2-(8-amino-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide

$$\begin{array}{c} CH_3 \\ H_3C \\ \end{array} \begin{array}{c} CH_3 \\ \\ N \\ \end{array} \begin{array}{c} H_3C \\ \\ N \\ \end{array} \begin{array}{c} CH_3 \\ \\ N \\ \end{array} \begin{array}{c} NH_2 \\ \\ N \\ \end{array}$$

To a solution of 2-(4-(2-(8-(benzylamino)-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-3-isopropyl -1H-indol-5-yl) piperidin-1-yl)-N,N-dimethylacetamide (0.040 g, 0.073 mmol) in methanol (10.0 mL) was added Pd/C (0.023 g, 0.218 mmol). The reaction mixture was stirred at room temperature for 6 h under hydrogen. The reaction mixture was diluted with

490

ethyl acetate:methanol (1:1) filtered and washed with excess ethyl acetate. The combined organic layers were evaporated to afford crude compound. The crude material was purified via preparative LC/MS with the following conditions: Column: Water XBridge C18, 19×150 mm, 5-μm particles; Mobile Phase A: 0.05% TFA; Mobile Phase B: acetonitrile; Gradient: 15-50% B over 20 minutes, then a 5-minute hold at 100% B; Flow: 15 mL/min. Fractions containing the product were combined and dried via centrifugal evaporation to afford 2-(4-(2-(8-amino-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl) piperidin-1-yl)-N,Ndimethylacetamide (7.3 mg). LCMS retention time 1.44 min [E]. MS (E-) m/z: 460.3 (M-H). ¹H NMR (400 MHz, METHANOL-d₄) δ ppm 8.31-8.39 (m, 1H) 8.16 (d, J=1.47 Hz, 1H) 7.66 (s, 1H) 7.36 (d, J=8.31 Hz, 1H) 7.08 (d, J=8.80 Hz, 1H) 6.84-6.97 (m, 1H) 4.26 (s, 2H) 3.76 (d, J=13.21 Hz, 2H) 3.33-3.43 (m, 2H) 3.25 (br. s., 2H) 2.94-3.12 (m, 8H) 2.19 (br. s., 4H) 1.50 (d, J=7.09 Hz, 7H) 1.28 (br. s., 1H).

Example 991

2-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4] triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N,N-dimethylacetamide

Intermediate 991A: 4-fluoro-3-isopropyl-1H-indole

$$\begin{array}{c} H_3C \\ \hline \\ F \\ \hline \\ N \\ H \end{array}$$

To a 40 mL vial with a red pressure-release cap were added 2,2,2-trichloroacetic acid (0.907 g, 5.55 mmol), toluene (7.40 mL) and triethylsilane (1.773 mL, 11.10 mmol). With stirring, the solution was heated to 70° C. and a solution of 4-fluoro-1H-indole (0.500 g, 3.70 mmol) and acetone (0.326 mL, 4.44 mmol) in 1 mL of toluene was added drop-wise via a syringe. The reaction mixture was stirred and heated to 90° C. for 3h, venting with a nitrogen line. The reaction mixture was allowed to cool to 5° C., and to the reaction mixture were added 1 M aqueous K₃PO₄ solution (~4 mL) and ethyl acetate (4 mL). The layers were separated and the aqueous phase was extracted with EtOAc (2×5 mL). The combined organic extracts were dried over sodium sulfate and filtered, and excess solvent was evaporated off. The resulting red oil was taken up in DCM (~2 mL) and purified by flash chromatography to afford 4-fluoro-3isopropyl-1H-indole as a yellow liquid (483.2 mg, 2.67 mmol, 72.2% yield). ¹H NMR (400 MHz, CHLOROFORM-

d) δ 7.97 (br s, 1H), 7.16-7.07 (m, 2H), 6.95 (d, J=2.2 Hz, 1H), 6.77 (ddd, J=11.3, 7.4, 1.1 Hz, 1H), 3.38 (dt, J=13.7, 6.8 Hz, 1H), 1.38 (dd, J=6.8, 0.6 Hz, 6H). HPLC Ret. Time 0.99 min. Method G.

Intermediate 991B: 4-fluoro-3-isopropyl-1-(triisopropylsilyl)-1H-indole

$$\begin{array}{c} F \\ H_3C \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \end{array}$$

4-fluoro-3-isopropyl-1H-indole (0.475 g, 2.68 mmol) was dissolved in THF (10.72 mL) in a 40 mL vial. The solution 25 was cooled to 0° C. under a nitrogen atmosphere with an ice bath, and sodium hydride (0.214 g, 5.36 mmol) was added to the reaction mixture. The reaction mixture was allowed to warm to room temperature, then triisopropylsilyl chloride $(0.860 \, \mathrm{mL}, 4.02 \, \mathrm{mmol})$ was added dropwise via syringe. The 30 reaction mixture was then stirred at 50° C. for 1 h. The reaction completed. The reaction mixture was cooled to 0° C. and quenched by addition of 1 M KHSO₄ (~4 mL) and water (4 mL). Ethyl acetate (4 mL) was added, and the phases were separated. The aqueous phase was extracted with ethyl acetate (2×3 mL). The combined organic phases were extracted with brine (1×4 mL), and excess solvent was evaporated off. The resulting yellow oil was taken up in DCM (~3.5 mL total volume) and purified by flash chromatography on a 24 g silica column, eluting with ethyl acetate and hexanes. The product 4-fluoro-3-isopropyl-1-(triisopropylsilyl)-1H-indole was obtained as a clear, colorless liquid (0.92 g, 2.48 mmol, 92% yield). ¹H NMR (400 MHz, CHLOROFORM-d) δ 7.24 (d, J=8.3 Hz, 1H), 7.03 (td, J=8.1, 5.4 Hz, 1H), 6.94 (s, 1H), 6.76 (dd, J=11.0, 7.8 Hz, 1H), 3.36 (spt, J=6.8 Hz, 1H), 1.36 (d, J=6.8 Hz, 6H), 1.16 (d, J=7.6 Hz, 18H). LCMS MH⁻: 334.3. HPLC Ret. Time 1.43 min. Method G.

Intermediate 991C: 5-bromo-4-fluoro-3-isopropyl-1-(triisopropylsilyl)-1H-indole

$$H_3C$$
 CH_3
 H_3C
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

Sec-butyllithium (2.144 mL, 3.00 mmol, 90% purity) was added to a -75° C. (dry ice/methanol bath) solution of 4-fluoro-3-isopropyl-1-(triisopropylsilyl)-1H-indole (0.910 g, 2.73 mmol) and 1,1,4,7,7-pentamethyldiethylenetriamine (0.572 mL, 2.73 mmol) in THF (13.64 mL) in an oven-dried 50 mL recovery flask under a nitrogen atmosphere. The solution was stirred for 6.5 h at -75° C. for 6 h. Next. 1,2-dibromotetrafluoroethane (0.325 mL, 2.73 mmol) was added to the reaction mixture. The solution was stirred for 10 min at -75° C., then allowed to warm to room temperature. The reaction progressed 50%. Excess solvent was evaporated from the reaction mixture. The resulting orange oil was taken up in DCM (total volume ~4 mL) and purified by flash chromatography on a 24 g silica column, eluting with hexanes. The product and remaining starting indole coeluted. Fractions were pooled and excess solvent was evaporated off to yield 5-bromo-4-fluoro-3-isopropyl-1-(triisopropylsilyl)-1H-indole (1.07 g, 1.68 mmol, 65% yield) and 4-fluoro-3-isopropyl-1-(triisopropylsilyl)-1H-indole as a mixture in a clear, colorless liquid. The mixed products were taken forward directly. LCMS MH-: 412.08. HPLC Ret. Time 1.50 min. Method G.

Intermediate 991D: tert-butyl 4-(4-fluoro-3-isopropyl-1-(triisopropylsilyl)-1H-indol-5-yl)-3,6-dihydropyridine-1(2H)-carboxylate

$$\begin{array}{c} \text{H}_{3}\text{C} \\ \text{H}_{3}\text{C} \\ \text{H}_{3}\text{C} \\ \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array}$$

5-bromo-4-fluoro-3-isopropyl-1-(triisopropylsilyl)-1Hindole (650 mg, 1.576 mmol) was dissolved in THF (7880 μl) in a 40 mL scintillation vial with a red pressure-release cap and containing a Teflon-covered stir bar. Tert-butyl 50 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1(2H)-carboxylate (585 mg, 1.891 mmol) was added to the vial, followed by tripotassium phosphate (2364 μl, 4.73 mmol). The reaction mixture was degassed by bubbling nitrogen through the solution for 5 min, then 2nd (991C) 55 generation XPhos precatalyst (31.0 mg, 0.039 mmol) was added to the reaction mixture. The clear, yellow reaction mixture was placed under a nitrogen atmosphere and heated to 60° C. with stirring for 6 h. The reaction mixture was allowed to cool to room temperature. The aqueous phase was removed, and excess THF was evaporated from the reaction. The resulting oil residue was taken up in DCM (~4 mL total volume) and purified by flash chromatography eluting with ethyl acetate and hexanes. The product fractions was concentrated and vacuumed to afford tert-butyl 4-(4-65 fluoro-3-isopropyl-1-(triisopropylsilyl)-1H-indol-5-yl)-5,6dihydropyridine-1(2H)-carboxylate as a pale yellow sticky solid (0.65 g, 1.14 mmol, 72.6% yield). ¹H NMR (400 MHz,

LCMS MH+: 515.5. HPLC Ret. Time 1.53 min. Method G. 5

Intermediate 991E: tert-butyl 4-(4-fluoro-3-isopropyl-1-(triisopropylsilyl)-1H-indol-5-yl) piperidine-1carboxylate

$$\begin{array}{c} \text{(991E)} \\ \text{H}_{3}\text{C} \\ \text{H}_{3}\text{C} \\ \text{H}_{3}\text{C} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array}$$

5% Pd on Carbon (100 mg, 1.271 mmol) was weighed into a 20 mL scintillation vial containing a Teflon-coated stir bar with a red pressure-release cap. Tert-butyl 4-(4-fluoro- 30 3-isopropyl-1-(triisopropylsilyl)-1H-indol-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (654.4 mg, 1.271 mmol) was dissolved in MeOH (12.71 mL) and transferred into the vial containing the Pd on C while under a nitrogen atmosphere. Ammonium formate (401 mg, 6.36 mmol) was added to the 35 reaction mixture, and the vial was capped. The reaction mixture was stirred at 50° C. for 4 h. Additional ammonium formate (401 mg, 6.36 mmol) was added to the reaction mixture, and the reaction mixture was stirred at 60° C. for 3 h but did not reach completion. The reaction mixture was $\,^{40}$ stirred at 50° C. overnight. The reaction mixture was filtered through celite to remove Pd/C. Excess methanol was evaporated from the reaction mixture to afford tert-butyl 4-(4fluoro-3-isopropyl-1-(triisopropylsilyl)-1H-indol-5-yl) piperidine-1-carboxylate (654 mg, 1.271 mmol, 100% yield, 30% purity) a clear, pale yellow oil. Product was checked by ¹H NMR and was approximately 30% reduced and 70% starting material alkene. LCMS MH+: 517.5. HPLC Ret. Time 1.53 min. Method G.

Intermediate 991F: tert-butyl 4-(4-fluoro-3-isopropyl-1H-indol-5-yl)-3,6-dihydropyridine-1(2H)-carboxylate

$$H_3C$$
 CH_3
 O
 H_3C
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

494

Tert-butyl 4-(4-fluoro-3-isopropyl-1-(triisopropylsilyl)-1H-indol-5-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.650 g, 1.263 mmol) (7:3 mix of piperidine alkene and piperidine alkane) and tetra-n-butylammonium fluoride (0.660 g, 2.53 mmol) were dissolved in THF (6.31 mL) in a 20 mL scintillation vial. The reaction mixture was stirred for 10 min at room temperature. The reaction was complete with 2 peaks corresponding to the product alkene (1.15 min, $M+H^+=359.3$) and alkane (1.16 min, $M+H^+=359.3$, 361.3). The reaction mixture was partitioned between brine and ethyl acetate (1:1, total volume ~16 mL). The phases were separated, and the aqueous phase was extracted with ethyl acetate (2×4 mL). The combined organic phases were washed with brine (2×5 mL), dried over sodium sulfate, and filtered. Excess solvent was evaporated from the organic phase to afford tert-butyl 4-(4-fluoro-3-isopropyl-1H-indol-5-yl)-3,6-dihydropyridine-1(2H)-carboxylate (0.476 1.263 mmol) as a pale yellow oil. LCMS MH+: 359.3. HPLC Ret. Time 1.15 min. Method G.

> Intermediate 991G: tert-butyl 4-(4-fluoro-3-isopropyl-1H-indol-5-yl)-3,6-dihydropyridine-1(2H)-carboxylate

5% Pd on Carbon (150 mg, 1.264 mmol) was weighed into a 20 mL scintillation vial containing a Teflon-coated stir bar with a red pressure-release cap. Tert-butyl 4-(4-fluoro-3-isopropyl-1H-indol-5-yl)-5,6-dihydropyridine-1(2H)-carboxylate (453 mg, 1.264 mmol) was dissolved in MeOH (6.32 mL) and transferred into the vial containing the Pd on ⁵⁰ C while under a nitrogen atmosphere. Ammonium formate (797 mg, 12.64 mmol) was added to the reaction mixture, and the vial was capped. The reaction mixture was stirred at 60° C. for 30 min. The reaction completed. The reaction 55 mixture was filtered through celite to remove Pd/C. Excess methanol was evaporated from the reaction mixture. The resulting yellow oil was taken up in DCM (3 mL) and purified by flash chromatography on a 24 g silica column, 60 eluting with ethyl acetate and hexanes to afford tert-butyl 4-(4-fluoro-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate as a white crystalline solid (370.3 mg, 1.017 mmol, 80% yield). ¹H NMR (400 MHz, CHLOROFORM-d) δ 7.96 (br s, 1H), 7.10 (d, J=8.4 Hz, 1H), 7.02-6.97 (m, 1H), 6.93 (d, J=2.1 Hz, 1H), 4.28 (br s, 2H), 3.37 (spt, J=6.8 Hz, 1H), 3.17 (tt, J=12.0, 3.6 Hz, 1H), 2.88 (br t, J=11.3 Hz, 2H),

55

1.89-1.81 (m, 2H), 1.81-1.68 (m, 2H), 1.52 (s, 9H), 1.36 (d, J=6.8 Hz, 6H). LCMS MH $^-$: 361.3. HPLC Ret. Time 1.16 min. Method G.

Intermediate 991H: tert-butyl 5-(1-(tert-butoxycar-bonyl)piperidin-4-yl)-4-fluoro-3-isopropyl-1H-in-dole-1-carboxylate

$$H_{3}C$$
 CH_{3}
 $H_{3}C$
 CH_{3}
 CH_{3}

Tert-butyl 4-(4-fluoro-3-isopropyl-1H-indol-5-yl)piperidine-1-carboxylate (370 mg, 1.026 mmol) and di-tert-butyl dicarbonate (540 µl, 2.258 mmol) were dissolved in THF (5132 µl) in a 20 mL vial containing a Teflon-covered stir bar. Next, 4-dimethylaminopyridine (12.54 mg, 0.103 mmol) was added. The vial was capped and the clear, pale yellow solution was stirred at room temperature for 2 h. The reaction finished. Excess solvent was evaporated from the reaction mixture. The residue was taken up in DCM (~2 mL) and purified by flash chromatography on a 24 g silica column, eluting with ethyl acetate and hexanes to afford 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4fluoro-3-isopropyl-1H-indole-1-carboxylate as a white foam (4.57 g, 0.98 mmol, 99% yield). ¹H NMR (400 MHz, CHLOROFORM-d) δ 7.85 (br s, 1H), 7.28 (br s, 1H), 7.12 (dd, J=8.4, 7.2 Hz, 1H), 3.29 (spt, J=6.8 Hz, 1H), 3.14 (tt, 40 J=12.0, 3.5 Hz, 1H), 2.87 (br t, J=11.4 Hz, 2H), 1.88-1.79 (m, 2H), 1.51 (s, 9H), 1.34 (d, J=6.8 Hz, 6H). LCMS MH⁻: 461.4. HPLC Ret. Time 1.36 min. Method G.

Intermediate 9911: tert-butyl 5-(1-(tert-butoxycar-bonyl)piperidin-4-yl)-4-fluoro-3-isopropyl-2-(4,4,5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole-1-carboxylate

$$\begin{array}{c} \text{H}_{3}\text{C} \\ \text{H}_{3}\text{C} \\ \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{O} \\ \text{O} \\ \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array}$$

Tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4fluoro-3-isopropyl-1H-indole-1-carboxylate (456.7 mg, 0.992 mmol) and 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2dioxaborolane (324 µl, 1.587 mmol) were dissolved in THF (7933 µl) in a 20 mL vial containing a Teflon-covered stir bar. The vial was cooled to -20° C. (dry ice/NMP bath) under a nitrogen atmosphere. Lithium diisopropylamide $_{(991H)}$ 10 (992 µl, 1.983 mmol) was added dropwise to the vial (via a syringe through the septum cap) over ~5 min. The reaction mixture was stirred at -20° C. for 1 h, then allowed to slowly warm to 0° C. Most starting material (~75%) converted to 15 product. The reaction mixture was allowed to warm to 10° C., then quenched by addition of 1 M KHSO₄-(5 mL). The resulting mixture was extracted with EtOAc (2×3 mL). The combined organic extracts were washed with brine (2×3 $_{20}\,$ mL), and excess solvent was evaporated off. The residue was taken up in DCM (2 mL) and purified by flash chromatography on a 24 g silica column, eluting with ethyl acetate and hexane to afford tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-fluoro-3-isopropyl-2-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)-1H-indole-1-carboxylate as a white solid (468.9 mg, 0.72 mmol, 72.6% yield, 90% purity). ¹H NMR (400 MHz, CHLOROFORM-d) δ 7.61 (d, J=8.6 Hz, 1H), 7.06 (dd, J=8.4, 7.1 Hz, 1H), 4.28 (br s, 2H), 3.35-3.26 (m, 1H), 3.14 (br s, 1H), 2.87 (br t, J=11.9 Hz, 2H), 1.88-1.81 (m, 2H), 1.71 (br s, 2H), 1.67 (s, 9H), 1.44 (s, 12H). LCMS MH+-56: 531.4. HPLC Ret. Time 1.39 min. Method G.

Intermediate 991J: tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-2-(8-ethyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-4-fluoro-3-isopropyl-1H-indole-1-carboxylate

$$\begin{array}{c} \text{H}_{3}\text{C} \\ \text{H}_{3}\text{C} \\ \text{H}_{3}\text{C} \\ \text{CH}_{3} \\ \text{C} \\ \text{C}$$

Tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-60 fluoro-3-isopropyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole-1-carboxylate (100 mg, 0.170 mmol) and 6-bromo-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (42.8 mg, 0.188 mmol) were weighed into a 1-dram vial with a red pressure-release cap and containing a Teflon-65 coated stir bar. THF (852 μl) and tripotassium phosphate (170 μl, 0.511 mmol) were added to the vial, and the reaction mixture was degassed by bubbling nitrogen through the

reaction mixture for 3 min. 2ND generation XPhos precatalyst (4.02 mg, 5.11 µmol) was added to the vial, and the reaction mixture was placed under a nitrogen atmosphere and stirred at 60° C. overnight. The reaction was completed. The aqueous phase was removed, and excess solvent was 5 evaporated from the organic phase. The resulting orange residue was taken up in DCM (~3 mL) and purified by flash chromatography on a 12 g silica column, eluting with ethyl acetate and hexanes to afford tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-fluoro-3-isopropyl-2-(8methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indole-1carboxylate as a cloudy colorless glass (100.7 mg, 0.124 mmol, 72.9% yield, 75% purity). ¹H NMR (400 MHz, CHLOROFORM-d) δ 8.36 (s, 1H), 8.22 (d, J=1.1 Hz, 1H), 8.04 (d, J=8.7 Hz, 1H), 7.28 (s, 1H), 7.23 (dd, J=8.6, 7.2 Hz, 15 1H), 6.72 (d, J=1.0 Hz, 1H), 4.39-4.22 (m, 2H), 4.04 (s, 3H), 3.19 (tt, J=12.0, 3.3 Hz, 1H), 2.99 (dtd, J=14.1, 7.0, 3.0 Hz, 1H), 2.88 (br t, J=11.2 Hz, 2H), 1.91-1.82 (m, 2H), 1.74 (br dd, J=12.5, 3.8 Hz, 2H), 1.50 (s, 9H), 1.24 (d, J=2.0 Hz, 15H). LCMS MH+: 608.6. HPLC Ret. Time 1.22 min. 20 Method G.

Example 991

Tert-butyl 5-(1-(tert-butoxycarbonyl)piperidin-4-yl)-4-25 fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indole-1-carboxylate (25 mg, 0.041 mmol) was Boc-deprotected by reacting with 2:1 trifluoroacetic acid/dichloromethane (1.2 mL, 0.041 mmol) in a 1-dram vial for 30 min. Toluene (~0.15 mL) was added, and excess solvent was then evaporated from the reaction mixture. The

498

resulting residue was stirred with 2-chloro-N,N-dimethylacetamide (10.00 mg, 0.082 mmol) and potassium carbonate (28.4 mg, 0.206 mmol) in NMP (0.411 mL) at 22° C. for 1.5 h. The reaction did not finish. The reaction mixture was stirred at 22° C. over the weekend. The reaction was completed. The reaction mixture was partitioned between water and ethyl acetate (3 mL total volume), and the aqueous phase was extracted with ethyl acetate (2×1 mL). Excess solvent was evaporated from the combined organic extracts. DMF (~1.5 mL) was added to the resulting residue. The crude material was purified via preparative LC/MS with the following conditions: Column:)(Bridge C18, 19×200 mm, 5-µm particles; Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 10-mM ammonium acetate; Gradient: 15-55% B over 20 minutes, then a 4-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the product were combined and dried via centrifugal evaporation to afford 2-(4-(4-fluoro-3-isopropyl-2-(8-methoxy-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-N, N-dimethylacetamide (8.5 mg, 0.017 mmol, 42.1% yield). ¹H NMR (500 MHz, DMSO-d₆) δ 11.44 (br s, 1H), 8.58 (s, 1H), 8.54-8.47 (m, 1H), 7.18 (br d, J=8.5 Hz, 1H), 7.13 (s, 1H), 7.09 (t, J=7.0 Hz, 1H), 4.06 (s, 3H), 3.30 (br s, 1H), 3.17 (s, 2H), 3.07 (s, 3H), 3.01-2.88 (m, 3H), 2.88-2.78 (m, 3H), 2.20 (br t, J=10.5 Hz, 3H), 1.83-1.75 (m, 3H), 1.73 (br s, 4H), 1.36 (br d, J=6.4 Hz, 6H). LCMS MH+: 493. HPLC Ret. Time 1.30 min. Method QC-ACN-AA-XB.

The following examples were prepared in a manner similar to that described in Example 991.

TABLE 26

Ex. No.	Structure	LCMS MH+	R _t (min)	HPLC Method
992	H_3C CH_3 CH_3 CH_3 N N N N N	464.5	1.5	QC-ACN- AA-XB

993
$$H_3C$$
 H_3C
 H_3C

15

45

Example 994

4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl)piperidine-1-carboximidamide

incubation at 37° C., 5% CO₂, SEAP levels are determined with the addition of HEK-BlueTM Detection reagent (Invivogen), a cell culture medium that allows for detection of SEAP, according to manufacturer's specifications. The percent inhibition is determined as the % reduction in the HEK-Blue signal present in wells treated with agonist plus DMSO alone compared to wells treated with a known inhibitor.

20 6-(3-isopropyl-5-(piperidin-4-yl)-1H-indol-2-yl)-8methyl-[1,2,4]triazolo[1,5-a]pyridine (15.77 mg, 0.042 mmol) was stirred with 1H-pyrazole-1-carboximidamide (5.81 mg, 0.053 mmol) and DIPEA (0.037 mL, 0.211 mmol) in DMF (0.422 mL) at 75° C. for 8 h. DMF (1 mL) was 25 added to the reaction mixture and the reaction mixture was purified via preparative LC/MS with the following conditions: Column:)(Bridge C18, 19×200 mm, 5-µm particles; Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate: Mobile Phase B: 95:5 acetonitrile: water 30 with 10-mM ammonium acetate; Gradient: 15-55% B over 19 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min. Fractions containing the product were combined and dried via centrifugal evaporation to afford 4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidine-1-carboximidamide (8.4 mg, 0.019 mmol, 45.0% yield). LCMS MH+: 416.2 HPLC Ret. Time 1.23 min. Method QC-ACN-AA-XB. ¹H NMR (500 MHz, DMSO-d₆) δ 9.29 (s, 1H), 8.39 (s, 1H), 7.99 (s, 1H), 7.33-7.33 (m, 1H), 7.31 (d, J=7.9 Hz, 1H), 7.15 (s, 1H), 7.11 40 (br d, J=8.1 Hz, 1H), 2.99-2.88 (m, 3H), 2.79 (s, 2H), 2.77-2.70 (m, 1H), 2.16-2.06 (m, 1H), 1.74-1.64 (m, 2H), 1.51 (s, 4H), 1.50-1.40 (m, 2H), 1.08-0.98 (m, 6H).

BIOLOGICAL ASSAYS

The pharmacological properties of the compounds of this invention may be confirmed by a number of biological assays. The exemplified biological assays, which follow, have been carried out with compounds of the invention. TLR7/8/9 Inhibition Reporter Assays

HEK-BlueTM-cells (Invivogen) overexpressing human TLR7, TLR8 or TLR9 receptors were used for screening inhibitors of these receptors using an inducible SEAP (secreted embryonic alkaline phosphatase) reporter gene under 55 the control of the IFN-\beta minimal promoter fused to five NF-κB and AP-1-binding sites. Briefly, cells are seeded into Greiner 384 well plates (15000 cells per well for TLR7, 20,000 for TLR8 and 25,000 for TLR9) and then treated with test compounds in DMSO to yield a final dose response 60 concentration range of 0.05 nM-50 µM. After a 30 minute compound pre-treatment at room temperature, the cells are then stimulated with a TLR7 ligand (gardiquimod at a final concentration of 7.5 µM), TLR8 ligand (R848 at a final concentration of 15.9 $\mu M)$ or TLR9 ligand (ODN $_{2006}$ at a $\,$ 65 final concentration of 5 nM) to activate NF-κB and AP-1 which induce the production of SEAP. After a 22 hour

TABLE 27

TLR7/8/9 Reporter Assay Data							
	TLR7	TLR8	TLR9				
Ex.	IC ₅₀	IC ₅₀	IC ₅₀				
No.	(nM)	(nM)	(nM)				
1	34.5	69	3177				
2	3.7	5.1	9015				
3	3.9	2.2	1912				
4	0.3	0.7	1589				
5	0.5	2.7	818				
6	1.1	9.8	1193				
7	0.7	4.7	6636				
8	0.3	2.2	1172				
9		0.5	21167				
10	0.5	1.7	479				
11	0.3	2.4	5385				
12	0.8	1.9	3063				
13 14	1 2.4	2.5 1.5	4778 23273				
15	1.4	1.4	5113				
16	1	1.6	6321				
17	1.9	0.5	2501				
18	1.5	1.5	15008				
19	1	0.9	4802				
20	2.1	0.8	2694				
21	0.7	7.6	_				
22	_	2	1845				
23	0.4	3.3	4811				
24	0.4	0.8	2865				
25	0.3	3	2425				
26	0.9	6.8	11110				
27	0.8	3.4	1767				
28 29	0.9 0.3	3.7 1.8	3052				
30	0.8	1.2	1159 1534				
31	0.7	1.5	1998				
32	0.5	1.8	2399				
33	8.5	22.9	13118				
34	18.6	136.1	50000				
35	0.5	2.2	1426				
36	0.6	3.9	3545				
37	0.6	1.2	1907				
38	1.8	3.3	29477				
39	1.1	0.8	4245				
40	0.7	0.5	2462				
41	0.5	1.2	4334				
42	1.6	0.7	3114				
43 44	2.3 0.8	1.1 7	7816 11301				
45	0.3	1.1	1757				
46	0.5	5.5	3032				
47	4.8	45.5	10643				
48	2.1	83.7	9585				
49	14.2	56.8	50000				
50	0.8	6.2	3409				
51	12.2	61.4	4680				
52	1.8	50.4	44293				
53	32.2	210.6	50000				
54	0.6	34.6	30085				
55	3.1	86.3	6521				
56 57	1.5	23.9	1602				
57 58	4.7	7.4	3749				
58 59	2.7 4.3	41.6 65.9	2939 3116				
60	4.3 1.2	65.9 42.5	40436				
61	1.6	78.8	42221				
62	0.7	4.5	644				
63	1.8	46.5	37047				

501TABLE 27-continued

502
TABLE 27-continued

	TABLE 27-continued					TABLE 27-continued						
	TLR7/8/9 Reporter Assay Data				TLR7/8/9 Reporter Assay Data							
Ex. No.	TLR7 IC ₅₀ (nM)	TLR8 IC ₅₀ (nM)	TLR9 IC ₅₀ (nM)	5	Ex. No.	TLR7 IC ₅₀ (nM)	TLR8 IC ₅₀ (nM)	TLR9 IC ₅₀ (nM)				
64	1.4	61.6	_		147	92.1	730.8	19901				
65	10.1	175.6	11138		148	12.8	4.2	602				
66	0.7	3.7	2659		149	47.3	709.4	214				
67 68	1.1 1.4	9.2 29	5849 42823	10	150 151	142.1 0.3	338.2 5.0	692 1567				
69	2.1	13.1	3833		152	0.8	3.7	1148				
70	82.4	558.7	50000		153	6.4	144.5	3429				
71 72	1.1 0.4	10.7 7.5	2476 1383		154 155	10.4 599.7	35.4 191.0	1064 862				
73	0.9	6	1270	15	156	2.8	17.2	2267				
74	2.9	3.3	6631	13	157	0.8	3.0	1149				
75 76	1 0.8	3.9 3.7	7158 2587		158 159	0.7 7.0	2.9 63.2	1927 8794				
77 77	0.6	2.5	1579		160	0.7	5.4	4991				
78	0.7	5.8	7303		161	1.8	13.4	1402				
79 80	1.4 1	3.5 6.1	6255 2209	20	162 163	3.2 86.4	45.3 73.6	1711 4947				
81	0.8	7	29110		164	9.0	15.0	3664				
82	0.5	4.7	1654		165	2.1	7.4	1816				
83 84	0.9 0.6	4 3.8	1958 974		166 167	2.7 0.8	17.8 4.3	3220 2471				
85	0.6	2.9	481		168	0.4	1.9	3414				
86	1	2.5	2326	25	169	1.2	12.5	7752				
87 88	1 1.2	5.7 3.7	36053 2005		170 171	1.2 1.3	4.4 3.7	8087 11528				
89	0.9	6.1	1594		172	0.4	4.1	5243				
90	0.2	3.4	1388		173	2.3	14.6	2860				
91 92	1 1.2	1.3 3.3	2784 6613	•	174 175	0.5 0.8	2.1 5.8	3681 23314				
93	1.2	5.6	2645	30	176	0.5	1.9	1708				
94	0.3	5.7	3200		177	1.0	2.3	10674				
95 96	0.4	18.9 19.7	1964		178 179	0.8	3.5	1802				
96 97	0.6 3.5	5.2	1281 1549		179	1.3 33.6	3.9 5.9	2038 12825				
98	0.8	2.0	1756	35	181	1.9	2.6	1770				
99 100	29.3	33.5	4652	33	182	12.6	0.8	4939				
101	8.6 10.9	169.4 16.8	1721 11330		183 184	8.4 3.3	2.0 2.0	5208 5470				
102	116.8	3125.0	13829		185	7.7	3.3	6266				
103 104	5.3 7.0	174.1 10.0	2192		186 187	5.2	8.3 3.0	14248				
105	0.8	27.1	1722 813	40	188	12.0 6.5	1.9	14559 17971				
106	126.2	3125.0	12485		189	6.5	1.7	2760				
107 108	2.1 79.7	5.3 29.0	2330		190 191	2.3	11.0	12310 6359				
109	153.0	699.9	4236 427		191	14.8 8.7	6.8 3.3	9593				
110	1.5	4.5	1516		193	5.7	44.0	4975				
111	1.0	16.6	1129 1974	45	194 195	5.0 1.6	22.3 35.9	15692 3957				
112 118	1.1 0.8	3.3	2382		196	1.3	25.1	8048				
119	0.2	0.6	2487		197	2.9	79.6	15694				
120	3.4	47.5 15.5	2015 519		198 199	2.7	9.8	4107 8321				
121 122	20.1 9.6	13.3 89.5	663	50	200	1.8 8.0	12.8 17.1	34036				
123	28.9	32.0	2091	30	201	1.8	9.6	1952				
124	4.6	33.7	5036		202	1.4	16.7	15339				
125 126	5.0 18.7	67.2 312.9	1695 605		203 204	2.3 0.7	6.9 0.7	6028 2020				
127	81.5	21.6	1339		205	0.6	0.9	2764				
128	0.4	12.1	2648	55	206	0.9	1.5	5737				
131 132	109.2 2.6	16.6 8.2	1605 844		207 208	10.8 14.2	8.8 4.0	4618 5041				
133	1.1	9.5	1436		209	3.9	5.9	8219				
134 135	1.0 3.2	10.3 30.0	1076 291		210	3.4	6.2	4283 14365				
135 136	42.1	189.3	291		211 212	14.8 10.6	211.6 347.6	14365 2855				
138	0.3	19.6	760	60	213	5.0	103.3	7241				
140 141	0.7 0.9	7.2 13.2	2512 1331		214 215	5.2 15.5	111.2 142.8	16506 7579				
141	58.4	1543.0	343		215	3.2	243.5	19247				
143	5.7	_	424		217	8.2	238.7	8148				
144 145	2.0 9.9	7.8 92.0	779 2127	65	218 219	5.2 34.0	103.9 18.3	11257 10959				
145 146	27.1	92.0 178.6	1487	0.5	219	0.7	3.2	672				
1.0	2,	27010	2.107			V.,	3.2	J. 2				

503
TABLE 27-continued

504 TABLE 27-continued

	TLR7/8/9 Reporter Assay Data					TABLE 27-continued						
						TLR7/8/9 Reporter Assay Data						
	TLR7	TLR8	TLR9			TLR7	TLR8	TLR9				
Ex. No.	IC ₅₀ (nM)	IC ₅₀ (nM)	IC ₅₀ (nM)	5	Ex. No.	IC ₅₀ (nM)	IC ₅₀ (nM)	IC ₅₀ (nM)				
221	0.4	1.3	5315		295	1.9	45.6	2449				
222	1.0	6.2	18169		296	3.1	47.4	10442				
223 224	0.8 1.5	12.0 9.5	1074 6973	10	297 298	5.0 10.8	26.3 45.7	2153 625				
225	9.9	249.7	12206	10	299	26.3	139.7	3432				
226	8.9	8.9	18002		300	29.0	113.1	2658				
227 228	11.6 78.3	20.8 962.0	5074 38220		301 302	54.5 4.3	252.5 6.1	6442 2971				
229	2.0	43.5	1047		303	1.6	7.0	17114				
230	68.1	51.4	7285	15	304	0.9	3.3	4541				
231 232	2.4 2.3	6.0 7.0	6641 1099		305 306	2.7 1.2	1.8 2.7	7034 16966				
233	1.0	1.5	15605		307	48.2	103.0	5320				
234	0.6	6.2	7219		308	40.0	2.1	1533				
235 236	1.7 19.6	10.4 9.1	3087 1180		309 310	43.1 181.4	2.0 307.2	709 112				
237	10.8	588.3	5935	20	311	90.5	352.3	155				
238	8.9	347.5	2625		312	5.7	55.6	4305				
239 240	22.5 6.6	96.7 22.9	6003		313 314	5.4 11.9	80.6 18.3	3132 1640				
241	18.9	4.9	2988		315	268.6	557.9	1931				
242	2.9	5.6	3600	2.5	316	318.9	491.7	3692				
243 244	2.8 1.0	33.5 10.0	44062 6270	25	317 318	19.8 6.8	71.8 25.5	8575 2227				
245	1.2	10.5	2648		319	0.2	7.9	10520				
246	0.2	2.3	2259		320	0.3	14.2	3024				
247 248	7.4 4.2	48.5 65.7	4394 4582		321 322	0.7 2.0	4.6 7.7	6178 2086				
249	11.5	20.1	1823	30	323	2.6	35.3	5189				
250	0.7	8.6	3422	50	324	1.6	2.9	1001				
251 252	0.5 0.5	7.8 2.0	6316 2551		325 326	1.4 1.2	12.4 6.7	1114 2187				
252 253	0.3	13.6	1001		327	0.9	4.1	1453				
254	0.6	6.1	16008		328	4.3	4.3	1901				
255	95.0	1125.6	3771	35	329	3.2	18.5	1051				
256 257	178.6 1703.8	1881.8 435.7	2121 995		330 331	1.0 2.5	14.4 6.4	1121 5294				
258	1235.5	404.7	5885		332	3.6	4.1	3165				
259	12.2	137.1	1355		333	3.3	5.3	3183				
260 261	0.4 2.1	13.9 28.3	2603 8114		334 335	2.9 1.1	1.9 6.3	2092 1501				
262	0.6	5.3	1895	40	336	4.9	4.7	2835				
263	1.1	2.8	5301		337	2.0	5.2	2106				
264 265	0.5 0.7	2.3 9.3	3949 7028		338 339	1.6 4.1	5.8 5.6	8874 14877				
266	560.4	448.9	7984		340	1.5	6.5	5866				
267	102.9	30.8	7300	45	341	1.9	4.2	2860				
268 269	2.8 4.2	15.7 37.1	1894 12314	43	342 343	3.7 3.6	3.0 19.0	1785 330				
270	5.2	4.6	1573		344	1.5	13.4	5474				
271	0.6	12.8	1346		345	5.1	37.6	1412				
272 273	0.6 2.1	11.7 4.7	2416 973		346 347	4.2 1511.5	66.6 2255.2	4614 8618				
274	1.1	19.0	3731	50	348	5.5	_	1145				
275	3.1	25.5	10188		349	1.5	3.9	1787				
276 277	5.4 10.4	52.0 61.2	1824 2442		350 351	5.6 39.9	12.5 18.4	4809 5322				
278	100.6	70.6	2134		352	29.5	56.5	11409				
279	61.7	58.7	3164		353	38.5	44.2	24690				
280 281	0.6 0.7	12.4 15.0	4300 6153	55	354 355	18.2 8.3	12.5 107.0	2258 6231				
282	1.7	5.9	10082		358	13.6	29.7	6035				
283	4.9	6.3	2430		359	6.8	8.9	1819				
284 285	3.3 1.5	8.0 15.1	1900 6012		360 361	3.5 14.4	22.3 9.9	3619 9225				
286	0.5	0.8	3147	CO	362	325.0	149.2	15799				
287	1.0	0.5	3056	60	363	19.4	10.1	822				
288 289	0.6 1.0	1.4 25.9	14105 6126		364 365	9.2 5.6	7.0 10.6	1523 3587				
290	1.8	35.6	6254		366	29.0	8.7	1917				
291	8.2	2.1	1568		367	16.3	3.8	4404				
292 293	18.3 0.5	1.4 15.8	1303 5709	65	368 369	57.0 19.2	19.1 4.7	2067 1839				
293 294	0.8	21.1	19539	0.5	370	23.4	15.8	2260				
	•••					20						

505TABLE 27-continued

506
TABLE 27-continued

	TABLE 27	-continued				TABLE 27	-continued			
	TLR7/8/9 Reporter Assay Data					TLR7/8/9 Reporter Assay Data				
	TLR7	TLR8	TLR9			TLR7	TLR8	TLR9		
Ex. No.	IC ₅₀ (nM)	IC ₅₀ (nM)	IC ₅₀ (nM)	5	Ex. No.	IC ₅₀ (nM)	IC ₅₀ (nM)	IC ₅₀ (nM)		
371	17.0	6.1	1927		445	13.6	1.6	3324		
372	37.1	21.1	3472		446	41.5	6.3	43852		
373 374	21.4 32.2	6.5 17.2	2329 10078	10	447 448	55.8 7.8	10.8 0.5	50000 2338		
375	11.6	10.3	2104	10	449	13.6	4.4	7125		
376	9.5	5.2	1996		450	15.8	2.0	11508		
377	9.0	3.0			451	14.5	2.5	5148		
378 379	11.1 2.7	8.6 1.2	5732 990		452 453	11.0 20.9	2.8 3.4	996 18886		
380	6.7	12.1	1195	1.5	454	38.9	3.1	10042		
381	7.8	2.4	764	15	455	7.3	1.4	2198		
382	19.9	3.8	1894		456	98.6	27.6	15101		
383 384	79.8 5.9	59.6 7.0	18177 2266		457 458	16.4 7.8	1.6 8.1	6631 30283		
385	7.8	62.9	31598		459	14.4	6.4	13406		
386	0.9	9.3	5157	20	460	7.3	6.0	50000		
387	1.4	6.1	3362	20	461	4.3	1.1	_		
388 389	1.6 2.8	7.1 2.1	6145 7128		462 463	3.0 41.4	2.2 3.6	— 6221		
390	33.2	151.4	50000		464	3.1	3.8	13473		
391	0.2	0.9	1904		465	18.5	1.8	4038		
392	1.7	6.0	50000	25	466	21.7	3.1	8713		
393 394	2.7 1.2	1.5 2.7	1484 1379	25	467 468	14.1 3.7	2.2 11.4	4589 2776		
395	2.3	10.4	44660		469	4.5	37.1	10275		
396	2.6	8.9	5113		470	8.2	10.0	3881		
397	0.6	2.9	2183		471	8.5	14.7	5311		
398 399	6.3 1.1	41.9 3.8	12558 857	20	472 473	5.3 6.0	2.6 16.9	2659 25227		
400	2.5	13.5	2003	30	474		13.6	2095		
401	5.9	98.5	21445		475	0.5	1.8	4172		
402	2.5	8.6	6271		476	0.4	0.8	1355		
403 404	5.5 1.3	12.9 7.2	1662 50000		477 478	6.1 1.7	49.1 0.7	50000 2435		
405	2.1	1.9	2379	35	479	2.9	3.7	3906		
406	0.6	1.8	747	33	480	0.6	1.0	4213		
407	1.5	1.9	2290		481	0.7	0.8	2203		
408 409	2.0 0.5	4.9 1.1	9828 658		482 483	2.1 5.2	11.8 1.6	4192 28163		
410	1.5	1.0	1150		484	6.5	6.3	50000		
411	1.7	7.8	45491	40	485	0.8	1.4	3415		
412 413	0.5 1.2	1.8 33.5	2865 632	40	486 487	1.3 7.1	1.0	3158 17398		
414	1.4	33.3 4.9	3627		488	3.6	11.2 2.1	4172		
415	2.7	4.9	2503		489	_	2.7	4570		
416	5.4	16.4	22305		490	10.3	156.9	9234		
417 418	10.1 5.4	46.9 11.8	26022 7590	45	491 492	11.5 5.6	49.9 173.4	2983 16217		
419	1.1	2.6	279	75	493	7.1	76.4	3973		
420	1.0	1.5	725		494	5.5	82.8	6106		
421	2.2	5.2	3405		495	14.4	186.5	10106		
422 423	0.6 0.9	3.3 3.3	7855 8387		496 497	6.4 2.2	104.3 97.2	8003 4370		
424	1.0	4.3	3152	50	498	6.5	154.2	9516		
425	3.7	5.1	1149	• •	499	55.0	31.2	50000		
426 427	9.8 1.6	877.3	50000 3650		500 501	0.7	6.8	1348 8063		
427	1.3	5.9 9.1	9034		502	1.5 11.9	11.4 47.9	3449		
429	1.6	5.3	2074		503	_	143.5	50000		
430	0.7	3.1	3572	55	504	12.4	7.1	47457		
431 432	2.6 0.1	9.0 1.8	5462 1552		505 506	4.4 4.0	2.5 28.4	3098 6661		
433	6.3	6.6	32563		507	645.6	3125.0	25265		
434	1.4	3.7	5273		508	51.0	14.0	48633		
435	7.7	11.8	24316		509	59.8	5.9	2801		
436 437	3.0 0.8	3.3 0.7	6254 1186	60	510 511	1.4 5.2	4.6 6.2	15300 5624		
438	2.7	5.7	2205		512	2.8	1.2	2568		
439	7.7	17.3	23290		513	2.6	2.6	4138		
440	3.4	5.7	24466		514	3.1	1.9	3749		
441 442	8.5 9.1	10.0 3.9	41305 2823		515 516	1.5 3.3	1.2 1.4	1675 3510		
443	19.7	3.4	5143	65	517	5.7	1.5	6413		
444	42.1	5.4	16934		518	1.9	2.5	11591		

507TABLE 27-continued

508
TABLE 27-continued

	IADLE 27	-continued				TABLE 21	-continued			
	TLR7/8/9 Repo	rter Assay Data			TLR7/8/9 Reporter Assay Data					
	TLR7	TLR8	TLR9		TLR7 TLR8 TLR9					
Ex.	IC_{50}	IC_{50}	IC_{50}	5	Ex.	IC_{50}	IC_{50}	IC_{50}		
No.	(nM)	(nM)	(nM)		No.	(nM)	(nM)	(nM)		
519 520	3.0 2.8	2.4 3.2	3723 6885		594 595	10.8 4.1	85.1 15.9	3928 14361		
521	2.6	3.9	4828		596	4.3	12.2	16277		
522	4.5	6.2	25614	10	597	8.8	44.3	10928		
523	2.5	3.6	3660		598	5.2	49.6	6302		
524 525	1.4 8.3	4.3 4.3	6234 13427		599 600	2.9 6.5	10.9 14.1	1738 2652		
525 526	6.3 4.4	1.8	2474		601	28.7	14.1 147.9	50000		
527	4.4	1.5	569		602	2.8	41.8	_		
528	30.8	16.5	9591	15	603	2.1	50.0	42404		
529 530	33.7	17.0	10201		604	4.5	132.1	37270		
530 532	10.5 33.3	7.0 435.3	653 55		605 606	0.8 0.7	25.8 36.1	40711 43596		
533	8.0	281.1	1227		607	0.9	42.6	44356		
534	27.4	677.0	7557		608	1.8	55.6	50000		
535	29.9	209.0	1443	20	609	69.6	243.3	50000		
536 537	8.4 2.2	15.9 3.3	3538 6503	20	610 611	1.7 3.2	13.7 6.1	5711 3382		
538	0.5	12.5	1459		612	5.6	174.9	2353		
539	1.2	15.1	3234		613	48.8	3125.0	50000		
540	0.4	1.5	1836		614	56.3	3125.0	47110		
541	0.3	1.8	1637	25	615	12.8	470.8	1595		
542 543	2.3 1.7	56.7 11.0	50000 1632	25	616 617	12.5 32.7	607.4 3125.0	901 50000		
544	1.8	6.5	5008		618	9.1	634.9	2547		
545	1.5	4.9	1301		619	19.3	310.2	50000		
546	71.6	85.3	7699		620	0.7	1.3	58		
547	42.4	135.0	6042		621	16.3	258.0	6809		
548 549	5.5 1.5	30.0 20.7	4303	30	622 623	1.3 2.7	21.6 9.1	1590 1106		
550	1.3	7.7	6413		624	1.6	12.1	1490		
551	0.8	6.1	2317		625	0.9	11.2	554		
552	0.6	3.5	995		626	0.5	6.7	3181		
553	5.3	29.0	3486		627	0.4	11.3	5872		
554 555	1.8 0.3	10.9 2.1	6093 2160	35	628 629	0.7	231.9 7.4	50000 3171		
556	0.4	5.5	3924		630	1.1	8.7	1988		
557	0.4	6.5	2730		631	3.5	66.9	45473		
558	3125.0	3125.0	16753		632	2.4	56.5	37917		
559 560	634.2 1308.6	288.6 149.4	483		633 634	568.1 8.7	3125.0	50000 35483		
561	1.5	5.8	1897 1327	40	635	3.1	31.5 17.0	1515		
562	2.2	6.2	6348		636	2.4	16.3	2448		
563	0.8	2.6	1133		637	34.0	1077.5	42907		
564	0.4	1.8	1234		638	5.8	152.6	3221		
565 566	0.4 0.3	1.2 1.2	549 1469		639 640	5.0 1838.5	140.1 3125.0	3028 3723		
567	0.4	3.0	2235	45	641	0.3	14.9	1067		
568	0.7	1.8	1451		642	0.2	14.0	2517		
569	0.4	1.3	1565		643	0.6	197.5	22162		
570	0.4	0.7	535		644	4.8	34.7	5784		
571 572	5.1 20.3	1.9 30.5	1238 24538		645 646	2.8 5.7	240.1 538.0	50000 50000		
573	2.6	3.6	1571	50	647	1.3	202.1	50000		
574	_	20.5	6570	30	648	14.7	1700.8	50000		
575	1.1	8.0	1859		649	1.6	10.1	7355		
576	0.9	6.5	1914		650	16.3	931.3	50000		
577 578	2.0 5.4	9.7 23.2	2237 7859		651 652	3.2 1.5	260.9 157.2	12737 36400		
579	2.1	18.7	1799	E E	653	24.0	3125.0	50000		
580	4.1	84.8	5087	55	654	7.9	603.3	50000		
581	31.5	1.9	2472		655	1.4	115.5	9585		
582 593	0.6	3.6	2556		656 657	131.7	2533.8	707		
583 584	1.0 2.1	12.2 12.1	13615 3296		657 658	416.4 385.2	3125.0 3125.0	50000 50000		
585	6.4	95.3	25590		659	809.7	3125.0	3750		
586	34.6	84.5	2111	60	660	1717.8	268.1	1001		
587	4.4	7.9	7380		661	868.3	85.9	544		
588	2.4	10.6	50000		662	1.0	14.0	1349		
589 590	2.6 172.6	0.7 132.0	4122 6275		663 664	1.6 2.2	43.5 56.9	50000 5998		
591	180.4	2.0	5677		665	4.1	77.9	11847		
592	384.6	353.6	81	65	666	5.8	55.4	12108		
593	0.7	16.1	1785		667	3.0	8.6	4501		

509TABLE 27-continued

510
TABLE 27-continued

	TABLE 27	-continued				TABLE 27	-continued			
	TLR7/8/9 Reporter Assay Data					TLR7/8/9 Reporter Assay Data				
	TLR7	TLR8	TLR9			TLR7	TLR8	TLR9		
Ex. No.	IC ₅₀ (nM)	IC ₅₀ (nM)	IC ₅₀ (nM)	5	Ex. No.	IC ₅₀ (nM)	IC ₅₀ (nM)	IC ₅₀ (nM)		
668	1.2	36.9	34156		742	1.0	9.2	5878		
669 670	311.0 8.3	3125.0 59.6	50000 50000		743 744	0.9 3.7	5.1 13.4	2418 1387		
671	2.1	30.3	18365	10	745	0.7	5.1	1440		
672	1.0	8.4	2519		746	4.5	12.9	4678		
673 674	1.9 1.2	29.2 14.4	42411 663		747 748	3.5 1.8	20.0 14.3	6211 3623		
675	0.8	14.5	3586		749	0.8	3.5	1354		
676 677	7.8 1.9	64.6 43.8	1693		750 751	1.3 2.7	5.4	1632		
678	3.0	43.8 39.3	33978 42260	15	751 752	33.7	11.6 144.7	2560 50000		
679	0.4	5.2	1181		753	0.9	4.3	1923		
680 681	2.7 5.5	25.9 47.7	956 1195		754 755	1.4 2.1	9.5 7.8	3789 1019		
682	1261.1	8.2	778		756	0.9	2.7	1275		
683	_	1.7	124	20	757	1.8	5.9	782		
684 685	57.2 12.4	338.4 590.1	1468 50000	20	758 759	1.0 0.7	8.1 12.5	2893 3997		
686	0.6	13.9	2172		760	1.2	8.0	2950		
687	1.0	15.1	1738		761	8.9	71.5	50000		
688 689	0.5	18.6 3.3	4136 2779		762 763	0.9 2.5	8.1 8.1	5102 4756		
690	9.4	4.9	901	25	764	1.4	10.9	4042		
691	50.6	6.2	408		765	0.9	3.4	1182		
692 693	10.8 6.6	81.2 46.7	2415 893		766 767	1.3 0.2	11.4 2.7	4842 2496		
694	5.8	70.3	1288		768	2.3	12.5	6751		
695	6.2	23.5	1082		769	1.0	7.3	1769		
696 697	0.2 0.2	13.4 9.3	1547 1093	30	770 771	0.7 1.5	7.4 12.3	1794 2281		
698	2.6	41.4	1434		772	1.7	30.2	4855		
699	1.1	18.1	1215		773	1.0	11.9	3304		
700 701	1.8 2.4	25.6 8.0	1844 2048		774 775	0.5 0.7	5.9 5.6	1009 1735		
702	2.9	9.9	658	35	776	0.4	5.8	1398		
703 704	2.9	10.7	4601	33	777 778	0.4	22.6	4974 2934		
704 705	1.1 6.6	5.6 217.7	2013 32501		778 779	0.3 1.1	17.0 64.8	7100		
706	2.3	30.3	473		780	0.4	8.0	6227		
707 708	5.2 6.0	156.8 55.2	27366 2110		781 782	1.6	4.3 6.2	368 5308		
709	6.3	357.5	8846	40	783	0.5	4.1	3026		
710	16.2	290.8	16893		784	2.3	6.3	6602		
711 712	3.6 1.6	35.1 49.1	989 3058		785 786	1.0 2.0	5.8 8.9	 5342		
713	24.4	177.5	6626		787	0.8	4.1	3246		
714	0.8	3.7	2537	45	788	2.6	7.5	4575		
715 716	0.2 0.6	3.6 117.2	3257 43816	43	789 790	4.2 1.8	15.5 6.7	4153 5742		
717	5.5	46.3	46627		791	1.7	9.7	5028		
718 719	3.4 0.5	36.7 3.1	44471 616		792 793	1.3 1.5	6.4 5.9	3377 4963		
720	5.2	35.4	5037		794	2.9	13.9	5588		
721	3.9	9.9	190	50	795	2.2	8.6	3548		
722 723	3.3 2.9	17.5 21.0	2973 7713		796 797	1.7 1.4	7.2 5.4	5141 4075		
724	1.4	4.4	782		798	2.1	7.9	3146		
725	11.6	55.4	50000		799	8.3	18.1	6791		
726 727	10.7 1.7	35.8 9.8	50000 4497		800 801	8.5 1.8	37.4 10.5	16645 2874		
728	3.0	15.4	3903	55	802	3.3	5.8	5686		
729 730	2.2	5.4	462		803	7.6	10.0	41531		
730 731	27.4 1.7	152.8 8.6	13740 3025		804 805	5.1 2.4	5.2 6.3	5283 2830		
732	2.3	7.6	3127		806	1.6	4.3	22288		
733 734	10.1 1.4	78.2 6.6	23792 2862	60	807 808	11.5 8.5	7.1 5.8	16216 5987		
735	1.4	7.7	1963		809	17.3	10.3	6047		
736	1.2	5.9	812		810	6.6	4.3	3609		
737 738	1.1 0.4	5.9 5.5	4342 4312		811 812	1.1 1.3	13.8 14.4	4068 3769		
739	2.0	11.2	15195		813	7.8	14.5	5006		
740	1.0	4.7	2044	65	814	1.7	19.8	5168		
741	12.2	93.6	50000		815	9.2	46.0	7886		

TABLE 27-continued

TABLE 27-continued

	1ABLE 27-continued					IABLE 27-continued						
TLR7/8/9 Reporter Assay Data					TLR7/8/9 Reporter Assay Data							
	TLR7	TLR8	TLR9	-		TLR7	TLR8	TLR9				
Ex. No.	IC ₅₀ (nM)	IC ₅₀ (nM)	IC ₅₀ (nM)	5	Ex. No.	IC ₅₀ (nM)	IC ₅₀ (nM)	IC ₅₀ (nM)				
816	4.8	38.1	20361		890	4.9	24.0	4315				
817 818	5.3 4.7	55.5 18.0	5416 3734		891 892	0.2 1.6	5.2 7.5	534 1379				
819	6.3	39.7	8031	10	893	1.3	5.0	1100				
820	3.8	23.5	6111	10	894	2.3	1.8	3303				
821	8.2	61.0	22760		895	1.1	3.3	1000				
822 823	9.8 6.7	44.2 26.9	4011 3040		896 897	2.4 1.2	9.4 2.2	2732 2357				
824	16.3	76.4	16936		898	2.2	12.0	3608				
825	11.5	34.3	5468	15	899	3.8	21.2	2298				
826 827	13.4 15.5	30.3 23.7	6312 7064		900 901	4.1 2.5	19.7 8.7	16642 1286				
828	16.3	73.1	12747		902	1.4	7.0	707				
829	4.8	32.1	1999		903	1.6	6.4	724				
830 831	6.7 9.5	37.8 68.3	9523 23615		904 905	1.1 1.1	4.9 4.4	1239 567				
832	11.3	61.7	50000	20	906	6.2	22.8	8854				
833	13.0	43.9	10940		907	1.1	3.9	1053				
834	20.0	91.8	17529		908	3.8	17.8	2192				
835 836	9.9 10.6	33.3 33.4	3968 3228		909 910	1.4 1.6	4.0 7.2	460 789				
837	10.4	35.7	5202		911	1.0	5.6	1386				
838	622.3	2352.4	28501	25	912	3.2	7.4	439				
839 840	6.0 17.0	21.0 82.8	5577 50000		913 914	9.2 0.9	40.7 4.2	50000 1410				
841	16.9	112.1	31037		915	1.1	4.5	1361				
842	58.2	342.0	50000		916	1.6	5.5	1958				
843	1.3	1.7	3654		917	1.1	4.3	1539				
844 845	6.0 1.4	9.0 1.1	23608 9868	30	918 919	1.9 3.8	11.2 21.0	3508 3197				
846	1.1	1.3	14078		920	3.9	15.2	1524				
847	1.6	1.1	4430		921	1.4	10.0	2943				
848 849	0.7 0.9	2.1 1.4	4492 5017		922 923	3.0 1.6	12.4 6.6	3234 652				
850	5.8	206.0	5624	35	924	3.0	11.9	1986				
851	1.0	14.3	_	33	925	1.0	7.9	2357				
852	3.5	34.6	10807		926	5.3 0.9	35.2	2859				
853 854	0.5 0.4	3.2 4.9	2064 13602		927 928	1.3	6.0 10.6	3676 12118				
855	2.4	7.6	7042		929	0.8	3.1	1289				
856	2.0	16.5	8337	40	930	1.1	3.7	2277				
857 858	1.3 0.8	13.3 2.4	16943 3330		931 932	1.0 1.7	3.9 10.7	1317 2686				
859	0.7	6.8	3367		933	1.5	3.9	1814				
860	1.7	24.5	35290		934	0.5	1.3	1715				
861 862	0.8 0.3	6.0 2.9	13098 1324		935 936	0.4 6.2	3.9 13.8	875 1601				
863	0.4	2.0	182	45	937	1.4	3.1	1532				
864	0.4	3.5	3008		938	1.2	5.6	1698				
865 866	0.2	3.4 2.8	4108 312		939 940	2.1 0.7	7.0 2.6	1962 1912				
867	1.1 1.1	4.6	1371		941	0.7	1.5	1520				
868	0.5	5.6	2088		942	2.5	14.7	7172				
869	2.0	11.8	2042	50	943	1.0	6.2	9610 7735				
870 871	0.5 0.7	4.7 6.9	3106 2472		944 945	2.0 1.3	17.2 6.9	7735 1954				
872	0.5	7.2	2838		946	9.5	38.9	30228				
873	0.8	8.6	3913		947	2.6	12.4	2448				
874 875	1.7 0.4	10.9 6.5	766 2240		948 949	24.3 18.6	125.9 128.9	18223 18701				
876	4.5	3.9	10992	55	950	2.3	40.7	5688				
877	5.3	1.9	16225		951	0.9	10.1	3767				
878 870	1.8	2.0	5697 5146		952 953	3.4	35.9	27912				
879 880	2.2 2.0	4.9 1.3	5146 6187		953 954	2.3 1.2	13.4 4.0	5808 2148				
881	2.9	5.0	6005		955	1.8	10.0	13172				
882	4.7	31.3	37052	60	956	1.3	8.5	1629				
883 884	2.7 12.1	21.3 71.7	12076 50000		957 958	1.1 1.3	21.0 9.4	50000 4557				
885	20.7	18.5	15041		959	69.8	186.9	24350				
886	3.4	11.6	467		960	2.5	12.3	5034				
887	2.5	11.6	1836	65	961	16.3	37.7	5021				
888 889	1.0 2.0	4.8 7.6	1776 421	0.5	962 963	6.0 4.2	12.7 30.9	2523 50000				
007	2.0	7.0	421		203	4.2	30.9	50000				

513 TABLE 27-continued

514 TABLE 28

	TLR7/8/9 Repo	rter Assay Data		_	Percent i	nhibition of IL-6 and II	FN-alpha in mouse TL	R7 PD model
Ex. No.	$ \begin{array}{c} TLR7 \\ IC_{50} \\ (nM) \end{array} $	TLR8 IC ₅₀ (nM)	TLR9 IC ₅₀ (nM)	5	Ex. No.	Dose (mg/kg)	% inhibition of IL6	% inhibition of IFN-alph
964	3.7	7.7	1522		6	0.0000375	10	9
965	1.6	11.5	5622			0.0001875	30	31
966	14.8	31.8	3080			0.00075	56	55
967	0.8	5.8	3780	10		0.003	64	66
968	12.1	24.4	3588			0.015	86	96
969	0.7	2.4	542		15	0.000625	18	11
970	11.4	28.9	3387		15	0.0005	49	27
971	20.9	22.3	2635					
972	3.9	15.5	2311			0.01	65	62
973	32.8	134.2	50000	15		0.04	84	88
974	2.6	4.9	2241	13		0.16	91	99
975	2.9	5.2	2223		18	0.00055	9	7
976	1.5	6.8	6155			0.0022	22	10
977	1.0	1.6	604			0.0088	50	44
978	2.0	3.4	3040			0.0352	60	66
979	8.1	12.4	11509	20		0.1408	80	99
980	1.9	3.6	868	20	25	0.00096	22	
981	16.9	249.7	7530		23			2
982	1.4	_	3106			0.00385	39	44
983	69.2	258.9	6108			0.01540	62	62
984	0.9	8.4	4750			0.06160	89	98
985	2.4	59.6	4832			0.24640	95	100
986	50.5	335.8	1256	25	26	0.000655	20	1
987	196.7	384.6	160			0.003276	40	33
988	1835.0	3125.0	413			0.01638	56	68
989	74.2	302.1	50000			0.0819	91	99
990	1.9	12.1	2592			0.4095	98	100
991	0.5	1.8	5591			0.4093	98	100
992	2.2	1.7	1461	30				
993 994	2.0 9.1	5.4 85.4	6521 13067					

NZB/W Model of Systemic Lupus Erythematosus (SLE):

Inhibition Data

35

In Vivo mouse TLR7 PD model:

Adult male $C_{57}BL/6$ mice were used for the experiments. Mice (7 to 10 per group) were randomized into different treatment groups based on body weight. Mice from the respective treatment groups were administered orally with 50 vehicle or test compound. Thirty min after the oral administration of vehicle or test compound, mice were challenged with intraperitoneal injection of gardiquimod for TLR7 PD model. Ninety minutes after gardiquimod injection, mice 55 were bled under isoflurane anaesthesia and plasma IL-6 and IFN-alpha levels were estimated by using commercially available ELISA kit (BD Biosciences, PBL Life Sciences). At the end of experiment, mean cytokine data was plotted 60 and one way ANOVA with Dunnett's test was performed to calculate the significance of test compound treated group vs. vehicle control group. Percent inhibition of cytokine induction was calculated for test compound treated group vs 65 vehicle control group. Data from multiple studies with different test compounds is shown in Table 28.

Female NZB/W mice of were screened and randomized based on the titers of anti-dsDNA antibodies and urinary NGAL (Neutrophil Gelatinase Associated Lipocalin). Mice were treated orally, once daily for 24 weeks with vehicle or test compound. The effect of test compound on disease severity was assessed by measuring end points including proteinuria, urinary-NGAL, urinary TIMP1, blood urea nitrogen (BUN), anti-dsDNA Ab titer, anti-smRNP Ab titer, and plasma levels of IL10 and IL12p40. In case of BUN the absolute increase was measured by subtracting the BUN values estimated before the initiation of treatment, from BUN values estimated after the completion of treatment. At the end of experiment, all mice were euthanized by CO₂ asphyxiation and kidney samples were subjected for histology. To calculate the significance of test compound treated group vs. vehicle control group, one way ANOVA with Dunnett's test was performed. Percent reduction in disease severity was calculated for each parameter, for test compound treated group vs vehicle control group. A cumulative disease score and the percent reduction in cumulative disease score was calculated by considering the average inhibition in proteinuria, urinary-NGAL, anti-dsDNA Ab titer and anti-sm Ab titer to reflect the impact on the overall severity of disease progression. Data from multiple studies with different test compounds is shown in Table 30.

35

55

TABLE 30

Inhibition of Disease Development by TLR7/8 Inhibitors in NZB/W Model of Lupus

				% inhibition									
Ex No	Dose (mg/kg)	Proteinuria	Urinary NGAL	Urinary TIMP1	BUN	Anti-SmR NP Ab titer	Anti-ds DNA Ab titer	IL-12p 40	IL-10	Cumulative score			
15	0.06	96	79	66	100	28	20	68	98	56			
	0.25	96	84	73	100	48	34	78	93	66			
	0.75	98	86	72	100	51	45	81	93	70			
	2.5	97	93	80	100	55	55	83	97	75			
18	0.1	98	78	94	100	40	23	75	100	60			
	0.5	98	93	94	100	52	33	88	98	69			
	1.5	99	93	95	100	61	43	87	100	74			
	5	98	93	92	100	66	57	89	100	79			
25	0.5	99	77	71	97	41	4	91	97	65			
	3	99	80	73	100	51	51	93	98	70			
	9	99	83	81	98	65	54	92	100	75			
	30	98	84	82	100	68	62	93	97	78			

The invention claimed is:

1. A compound of Formula (I)

$$R_3$$
 $(R_4)_m$
 $(R_5)_n$
 $(R_1)_p$
 $(R_2)_p$
 $(R_5)_n$
 $(R_5)_n$
 $(R_7)_n$
 $(R_7)_n$

or a salt thereof, wherein:

R₁ is H, Cl, —CN, C₁₋₄ alkyl, C₁₋₃ fluoroalkyl, C₁₋₃ hydroxy-fluoroalkyl, —CR_z—CH₂, C₃₋₆ cycloalkyl, —CH₂(C₃₋₆ cycloalkyl), —C(O)O(C₁₋₃ alkyl), or tetrahydropyranyl;

each R₂ is independently halo, —CN, —OH, —NO₂+, C_{1-3} alkyl, C_{1-2} fluoroalkyl, C_{1-2} cyanoalkyl, C_{1-3} hydroxyalkyl, C_{1-3} aminoalkyl, $--O(CH_2)_{1-2}OH$, C_{1-3} $-(CH_2)_{0-4}O(C_{1-4} \quad alkyl),$ fluoroalkoxy, $-(CH_2)_{1-4}O(C_{1-3} \text{ alkyl}), -O(CH_2)_{1-2}OC(O)(C_{1-3} \text{ 45})$ alkyl), $--O(CH_2)_{1-2}NR_xR_x$, $--C(O)O(C_{1-3}$ alkyl), $-C(O)NR_{y}R_{y}$, $-NR_{y}R_{y}$, $-NR_{y}(C_{1-3}$ fluoroalkyl), $-NR_{\nu}(C_{1-4})$ hydroxyalkyl), -NR_xCH₂(phenyl), $-NR_xS(O)_2(C_{3-6} \text{ cycloalkyl}), -NR_xC(O)(C_{1-3} \text{ alkyl}),$ —NR_x(CH₂-cyclopropyl), C₃₋₆ cycloalkyl, morpholi- 50 nyl, dioxothiomorpholinyl, methylpiperidinyl, methylpiperazinyl, amino-oxadiazolyl, imidazolyl, triazolyl, or -C(O)(thiazolyl);

 R_3 is $-L_1$ -A;

L₁ is bond;

A is 2-oxa-6-azaspiro[3,3]heptanyl, 4-oxaspiro[2.5]octanyl, 7-azaspiro[3.5]nonanyl, 8-azabicyclo[3.2.1]octanyl, 8-oxa-3-azabicyclo[3.2.1]octanyl, 9-azabicyclo [3.3.1]nonanyl, adamantanyl, azepanyl, azetidinyl, C₃₋₆ cycloalkyl, diazepanyl, dihydroinonyl, dihydropyrimidinonyl, dioxanyl, dioxidothiadiazinanyl, dioxidothiazolidinyl, dioxidothiazinanyl, dioxotetrahydrothiophenyl, dioxotetrahydrothiopyranyl, dioxothiomorpholinyl, furanyl, imidazolyl, imidazolidinonyl, indolyl, isoquinolinyl, isoxazolyl, morpholinyl, morpholinonyl, naphthalenyl, octahydrocyclopenta[b]pyranyl, octahydropy-

rrolo[3,4-b]pyridinyl, oxazolidinonyl, oxadiazolyl, oxazolyl, oxatanyl, phenyl, piperidinyl, piperidinonyl, piperazinyl, piperazinyl, pyrazolyl, pyridazinyl, pyridazinonyl, pyridinonyl, pyridinonyl, pyridinyl, pyrimidinyl, pyrrolidinonyl, pyrrolidinyl, pyrrolyl, quinolinyl, quinolizinonyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydrothiopyranyl, tetrazolyl, thiadiazolyl, thiazolyl, triazolonyl, or triazolyl, each substituted with $-L_2-R_a$ and zero to $4~R_b$;

 L_2 is a bond or $-CR_xR_x$;

 R_a is:

 $\begin{array}{lll} \text{(a) H, F, Cl,} & -\text{CN,} & -\text{OH,} & C_{1-6} & \text{alkyl,} & C_{1-3} & \text{fluoroalkyl,} \\ & C_{1-5} & \text{hydroxyalkyl,} & -\text{(CH}_2)_{0-4} \text{O(}C_{1-3} & \text{alkyl),} \\ & -\text{(CR}_x R_x)_{1-3} \text{S(}C_{1-3} & \text{alkyl),} & -\text{NHC(O)OC(CH}_3)_3, \\ & -\text{(CR}_x R_x)_{1-3} \text{NHC(O)O(}C_{1-4} & \text{alkyl),} & -\text{(CR}_x R_x)_{1-3} \\ & \text{NR}_y R_y, & -\text{(CR}_x R_x)_{1-3} \text{C(O)NR}_y R_y, & -\text{O(}C_{1-3} & \text{fluoroalkyl),} \\ & -\text{S(O)}_2 \text{NR}_x R_x, & -\text{O(}CR_x R_x)_{1-3} \text{NR}_x R_x, \\ & -\text{NHS(O)}_2 (C_{1-3} & \text{alkyl),} & -\text{NR}_x R_x, & -\text{NR}_x (C_{1-4} & \text{alkyl),} \\ & -\text{NR}_x \text{C(O)(}C_{1-4} & \text{alkyl),} & -\text{(CR}_x R_x)_{0-3} \text{C(O)} \\ & \text{OH,} & -\text{C(O)(}C_{1-5} & \text{alkyl),} & -\text{C(O)(}C_{1-3} & \text{fluoroalkyl),} \\ & -\text{C(O)O(}C_{1-4} & \text{alkyl),} & -\text{C(O)NH(}C_{1-3} & \text{cyanoalkyl),} \\ & -\text{C(O)NR}_x R_y, & -\text{C(O)NR}_x \text{CH}_2 \text{C(O)NR}_x R_x, & \text{or} \\ & -\text{C(O)NR}_x \text{CH}_2 \text{CH}_2 \text{NHC(O)(}C_{1-3} & \text{alkyl);} \\ \end{array}$

(b) C_{3-6} cycloalkyl or $-C(O)NH(C_{3-6}$ cycloalkyl), wherein each cycloalkyl is substituted with zero to 2 substituents independently selected from -OH, C_{1-3} alkyl, C_{1-3} hydroxyalkyl, C_{1-3} fluoroalkyl, and $-C(O)O(C_{1-3}$ alkyl); or

(c) A₁, —CH₂Ā₁, —C(O)A₁, —NR_xA₁, or —C(O) NR_xA₁, wherein A₁ is furanyl, imidazolyl, indolyl, isoxazolyl, morpholinyl, octahydropyrrolo[3,4-c] pyrrolyl, oxazolyl, oxetanyl, phenyl, piperazinonyl, piperazinyl, piperidinyl, pyrrazinyl, pyrazolyl, pyridinyl, pyrimidinyl, pyrrolidinonyl, pyrrolidinyl, pyrrolyl, tetrahydrofuranyl, tetrahydropyranyl, thiadiazolyl, thiazolyl, thiophenyl, or triazolyl, each substituted with zero to three substituents independently selected from —OH, C₁₋₃ alkyl, C₁₋₃ hydroxyalkyl, —C(O)(C₁₋₂ alkyl), —C(O)O(C₁₋₃ alkyl), —NR_xR_x, phenyl, trifluoromethyl-phenyl, —CH₂ (bromophenyl), and —CH₂CH₂(pyrrolidinyl);

each R_b is independently F, -OH, $-CH_3$, $-CF_3$, or $-OCH_3$;

each R_x is independently H or —CH₃; each R_y is independently H or C_{1-6} alkyl; R_z is H, C_{1-2} alkyl, or C_{1-2} fluoroalkyl;

each R₄ is independently F, —OH, C₁₋₂ alkyl, or —OCH₃; or two R_4 attached to the same carbon atom form =0; or wherein when m is at least 2, two R₄, each attached to a different carbon atom adjacent to the nitrogen atom in the piperidinyl ring, can form a -CH2CH2- 5 bridge;

each R_5 is independently F, Cl, —CN, C_{1-2} alkyl, C_{1-2} fluoroalkyl, or —OCH₃;

m is zero, 1, 2, 3, or 4;

n is zero, 1, or 2; and

p is zero, 1, 2, 3, or 4.

2. The compound according to claim 1 or salt thereof,

 R_1 is H, Cl, —CN, C_{1-4} alkyl, or C_{1-2} fluoroalkyl;

each R₂ is independently F, Cl, —CN, —OH, C₁₋₃ alkyl, 15 $\begin{array}{lll} & C_{1\text{-}2} \text{ fluoroalkyl, } C_{1\text{-}2} \text{ cyanoalkyl, } C_{1\text{-}3} \text{ hydroxyalkyl,} \\ C_{1\text{-}3} \text{ aminoalkyl, } & -O(\text{CH}_2)_{1\text{-}2}\text{OH, } & -O(\text{C}_{1\text{-}4} \text{ alkyl),} \\ C_{1\text{-}2} \text{ fluoroalkoxy, } & -(\text{CH}_2)_{1\text{-}4}\text{O(C}_{1\text{-}3} \text{ alkyl), } & -O(\text{CH}_2)_{1\text{-}2}\text{NR}_xR_x, \\ & (\text{CH}_2)_{1\text{-}2}\text{OC}(\text{O})(\text{C}_{1\text{-}3} \text{ alkyl), } & -O(\text{CH}_2)_{1\text{-}2}\text{NR}_xR_x, \end{array}$ $-C(O)O(C_{1-3} \text{ alkyl}), -C(O)NR_{\nu}R_{\nu}, -NR_{\nu}R_{\nu}, -NR_{\nu} 20$ $\begin{array}{lll} (C_{1\text{-}3} & \text{fluoroalkyl}), & -\text{NR}_{\nu}(C_{1\text{-}4} & \text{hydroxyalkyl}), \\ -\text{NR}_{\nu}CH_{2}(\text{phenyl}), & -\text{NR}_{\nu}S(O)_{2}(C_{3\text{-}6} & \text{cycloalkyl}), \end{array}$ $-NR_xC(O)(C_{1-3} \text{ alkyl}), -NR_x(CH_2\text{-cyclopropyl}),$ C₃₋₆ cycloalkyl, morpholinyl, dioxothiomorpholinyl, methylpiperidinyl, methylpiperazinyl, amino-oxadiaz- 25 olyl, imidazolyl, triazolyl, or —C(O)(thiazolyl);

A is azetidinyl, C₃₋₆ cycloalkyl, dioxotetrahydrothiopyranyl, dioxidothiadiazinanyl, dioxidothiomorpholinyl, furanyl, imidazolyl, isoquinolinyl, morpholinyl, oxazolyl, 2-oxa-6-azaspiro[3.3]heptanyl, octahydropyrrolo [3,4-b]pyridinyl, oxetanyl, phenyl, piperazinonyl, piperazinyl, piperidinyl, pyrazinyl, pyrazolyl, pyridinyl, pyrrolidinonyl, pyrrolidinyl, pyrrolyl, quinolinyl, tetrahydrofuranyl, tetrahydropyranyl, tetrazolyl, thiadiazolyl, thiazolyl, or triazolyl, each substituted with -L₂- 35 R_a and zero to 4 R_b ;

R_a is:

- (a) H, F, —CN, —OH, C_{1-3} alkyl, C_{1-2} fluoroalkyl, C_{1-3} hydroxyalkyl, $-(CH_2)_{0-2}O(C_{1-3} \text{ alkyl})$, --NHC(O) $OC(CH_3)_3$, $-(CR_xR_x)_{1-3}NHC(O)O(C_{1-4}$ alkyl), 40 $-(CR_xR_x)_{1-3}NH_2$, $--(CR_xR_x)_{1-3}NR_x(C_{1-4} \text{ alkyl})$, $-O(C_{1-2} \text{ fluoroalkyl}), -S(O)_2NR_xR_x, -NHS(O)_2$ $(C_{1-3} \text{ alkyl}), -NR_xR_x, -NR_x(C_{1-4} \text{ alkyl}),$ $-(CR_xR_x)_{1-2}C(O)OH$, -C(O)OH, $-C(O)(C_{1-3})$ alkyl), $-C(O)O(C_{1-4}$ alkyl), $-C(O)NR_x(C_{1-2})$ alkyl), — $C(O)N(C_{1-3} \text{ alkyl})_2$, — $C(O)NR_xCH_2C(O)$ NR_xR_x , or $-C(O)NR_xCH_2CH_2NHC(O)(C_{1-3} alkyl)$;
- (b) C_{3-6} cycloalkyl or $-C(O)NH(C_{3-6}$ cycloalkyl), wherein each cycloalkyl is substituted with zero to 2 substituents independently selected from —OH, C₁₋₃ 50 wherein said compound is: alkyl, C_{1-3} hydroxyalkyl, C_{1-3} fluoroalkyl, and $-C(O)O(C_{1-3} \text{ alkyl}); \text{ or }$
- (c) A_1 , $-CH_2A_1$, $-C(O)A_1$, or $-C(O)NHA_1$, wherein A₁ is furanyl, imidazolyl, indolyl, isoxazolyl, octahydropyrrolo[3,4-c]pyrrolyl, oxazolyl, 55 oxetanyl, phenyl, piperazinyl, piperidinyl, pyrazinyl, pyrazolyl, pyridinyl, pyrimidinyl, pyrrolidinyl, pyrrolyl, tetrahydrofuranyl, tetrahydropyranyl, thiadiazolyl, thiazolyl, thiophenyl, or triazolyl, each substituted with zero to three substituents independently 60 selected from —OH, C_{1-3} alkyl, C_{1-3} hydroxyalkyl, $-C(O)(C_{1-2} \text{ alkyl}), -C(O)O(C_{1-3} \text{ alkyl}), -NR_x R_x,$ phenyl, trifluoromethylphenyl, —CH₂(bromophenyl), and —CH₂CH₂(pyrrolidinyl);

each R₄ is independently F, —OH, C₁₋₂ alkyl, or —OCH₃; 65 or two R₄ attached to the same carbon atom form =O; R_5 is F, Cl, —CN, —CH₃, —CF₃, or —OCH₃;

518

each R_b is independently —OH, —CH₃, or —CF₃; each R_x is independently H or — CH_3 ; each R_{ν} is independently H or C_{1-5} alkyl; m is zero, 1, or 2;

n is zero or 1; and

p is zero, 1, or 2.

3. The compound according to claim 1 or salt thereof.

 R_1 is $-CH_2CH_3$, $-CH(CH_3)_2$, or $-CH_2CHF_2$; each R₂ is independently F, Cl, —CN, —CH₃, —CD₃, $-\text{CH}(\text{CH}_3)_2$, $-\text{CF}_3$, $-\text{CH}_2\text{CN}$, --CH₂CH₃, —CH₂OH, —CH₂CH₂OH, —CH(CH₃)OH, —C (CH₃)₂OH, —OCH₂CH₂OH, —OCH₃, —OCH₂CH₃, -CH₂OCH₃, -OCH2CH2OC(O)CH3, (CH₂CF₃), —NHS(O)₂(cyclopropyl), cyclopropyl, morpholinyl, dioxothiomorpholinyl, or methylpiperazinyl;

A is C₄₋₆ cycloalkyl, dioxanyl, dioxotetrahydrothiophenyl, dioxotetrahydrothiopyranyl, oxetanyl, pyridinyl, pyrimidinyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydrothiopyranyl, or triazolyl, each substituted with $-L_2-R_a$ and zero to 1 R_b ;

 L_2 is a bond;

 R_a is —CN, —OH, —CH₃, —NHC(O)OC(CH₃)₃, or $-C(O)OCH_2CH_3;$

 R_b is $-CH_3$;

m is zero;

n is zero; and

p is zero, 1 or 2.

4. The compound according to claim **1** or salt thereof,

 R_1 is $-CH_2CH_3$, $-CH(CH_3)_2$, or $-CH_2CHF_2$;

A is oxetanyl, tetrahydrofuranyl, or tetrahydropyranyl, each substituted with $-L_2-R_a$ and zero to 2 R_b ;

 L_2 is a bond;

m is zero or 1;

n is zero; and

p is zero, 1 or 2.

5. The compound according to claim 1 or salt thereof, wherein:

 R_1 is $-CH_2CH_3$, $-CH(CH_3)_2$, or $-CH_2CHF_2$;

A is cyclobutyl, cyclopentyl, or dioxotetrahydrothiopyranyl, each substituted with $-L_2-R_a$ and zero to 2 R_b ; L_2 is a bond;

m is zero or 1;

n is zero; and

p is zero, 1 or 2.

- 6. The compound according to claim 1 or a salt thereof,
 - 4-(4-(2-(7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)tetrahydro-2H-thiopyran 1,1-dioxide (20):

6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (26);

- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a] pyridine (35);
- 4-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)tetrahydro-2Hthiopyran 1,1-dioxide (37);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-7, 8-dimethyl-[1,2,4]triazolo[1,5-a] pyridine(38);
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5a]pyridine (40);

55

60

519

- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (44):
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a] pyridine (45);
- 3-(4-(2-(8-(hydroxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl) oxetane-3-carbonitrile (235);
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (351);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (352);
- 6-(3-isopropyl-5-(1-((1-methyl-1H-1,2,4-triazol-3-yl) methyl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo [1,5-a]pyridine (353);
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (354);
- 6-(3-isopropyl-5-(1-(tetrahydrofuran-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (355):
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-8-(trideuteromethyl)-[1,2,4]triazolo[1,5-a] pyridine (357);
- 6-(3-isopropyl-5-(1-(tetrahydrofuran-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (393);
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a] pyridine (394);
- 3-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)tetrahydrothiophene 1,1-dioxide (395);
- 4-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)cyclohexan-1-ol (403):
- 2-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)-1-methylcy-clopentane-1-carbonitrile (416-417);
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-thiopyran-4-yl)pip-eridin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1, 45 5-a]pyridine (425);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (441);
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-50 4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a] pyridine (443);
- 3-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)tetrahydrothiophene 1,1-dioxide (460);
- 8-fluoro-6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (469);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-8-(methoxymethyl)-[1,2,4]triazolo[1,5-a] pyridine (473);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-5,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (487);
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-65 4-yl)-1H-indol-2-yl)-5,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (488);

520

- 4-(4-(2-(5,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)tetrahydro-2H-thiopyran 1,1-dioxide (489);
- 2-(6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)propan-2-ol (492):
- 2-(6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)propan-2-ol (493);
- 4-(4-(2-(8-(2-hydroxypropan-2-yl)-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)tetrahydro-2H-thiopyran 1,1-dioxide (496);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-8-(methoxymethyl)-7-methyl-[1,2,4]triazolo [1,5-a]pyridine (499);
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine-8-carbonitrile (500);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine-8-carbonitrile (501);
- 1-(6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)ethan-1-ol (503):
- (6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridin-8-yl) methanol (504):
- 2-(6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)acetonitrile (506);
- 8-fluoro-6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (507):
- (6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-7-yl)methanol (508):
- (6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)methanol (510);
- 4-(4-(2-(8-(hydroxymethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)tetrahydro-2H-thiopyran 1,1-dioxide (514);
- (6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)methanol (521);
- 2-(6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)ethan-1-ol (525);
- 2-((6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)oxy) ethyl acetate (528);
- 2-((6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)oxy) ethan-1-ol (529-530);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-2-methyl-[1,2,4]triazolo[1,5-a]pyridine (534);
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)-1H-indol-2-yl)-2-methyl-[1,2,4]triazolo[1,5-a] pyridine (535);
- tert-butyl (3-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)cy-clobutyl)carbamate (538);
- ethyl 3-(4-(3-isopropyl-2-(8-methyl-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)cyclobutane-1-carboxylate (539);

521

- 6-(3-isopropyl-5-(1-(tetrahydrofuran-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (540-541):
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (542):
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)-1H-indol-2-yl)-2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (543);
- 4-(4-(2-(2,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)tetrahydro-2H-thiopyran 1,1-dioxide (545);
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)-1H-indol-2-yl)-2,7-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (546);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-2,7-dimethyl-[1,2,4]triazolo [1,5-a]pyridine (547);
- 4-(4-(2-(2,7-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)- 20 3-isopropyl-1H-indol-5-yl)piperidin-1-yl)tetrahydro-2H-thiopyran 1,1-dioxide (548);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-8-(trifluoromethyl)-[1,2,4]triazolo[1,5-a] pyridine (549);
- 4-(4-(3-isopropyl-2-(8-(trifluoromethyl)-[1,2,4]triazolo [1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)tetrahydro-2H-thiopyran 1,1-ioxide (550);
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl)piperidin-4-yl)-1H-indol-2-yl)-8-(trifluoromethyl)-[1,2,4]tri-azolo[1,5-a]pyridine (552);
- 6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-(trifluoromethyl)-[1,2,4]tri-azolo[1,5-a]pyridine (554);
- 4-(4-(3-isopropyl-2-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)tetrahydro-2H-thiopyran 1,1-dioxide (455);
- 6-(3-isopropyl-5-(1-(tetrahydrofuran-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-(trifluoromethyl)-[1,2,4]triazolo [1,5-a]pyridine (556-557);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-2,5-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (558);
- 4-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)tetrahydro-2H-thiopyran 1,1-dioxide (561);
- 6-(5-(1-(2,2-dimethyltetrahydro-2H-pyran-4-yl)piperidin-4-yl)-3-isopropyl-1H-indol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (562-564);
- 3-(4-(3-isopropyl-2-(8-methoxy-[1,2,4]triazolo[1,5-a] pyridin-6-yl)-1H-indol-5-yl)piperidin-1-yl)cyclobutane-1-carbonitrile (567);
- 6-(3-isopropyl-5-(1-(tetrahydrofuran-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a] pyridine (568-569);
- 8-ethoxy-6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl) piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a] pyridine (571);
- 8-ethoxy-6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (572):
- 4-(4-(2-(8-ethoxy-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3-isopropyl-1H-indol-5-yl)piperidin-1-yl)tetrahydro-2H-thiopyran 1,1-dioxide (573);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-8-methoxy-2-methyl-[1,2,4]triazolo[1,5-a] pyridine (574);

522

- 6-(3-isopropyl-5-(1-(tetrahydrofuran-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-2-methyl-[1,2,4]triazolo [1,5-a]pyridine (575-576);
- 8-ethyl-6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl) piperidin-4-yl)-1H-indol-2-yl)-2-methyl-[1,2,4]tri-azolo[1,5-a]pyridine (577);
- 8-ethyl-6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-2-methyl-[1,2,4]triazolo[1,5-a]pyridine (578);
- 8-chloro-6-(3-isopropyl-5-(1-(tetrahydro-2H-pyran-4-yl) piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]tri-azolo[1,5-a]pyridine (579);
- 8-chloro-6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (580):
- 4-(6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)morpholine (581):
- 8-ethyl-6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (583);
- 8-isopropyl-6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (585):
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-N-(2,2,2-trifluoroethyl)-[1,2,4]triazolo[1,5-a]pyridin-8-amine (586);
- 8-ethyl-6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (587);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-8-methoxy-7-methyl-[1,2,4]triazolo[1,5-a] pyridine (588);
- N-(6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)cyclo-propanesulfonamide (590);
- 4-(6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridin-8-yl)thiomorpholine 1,1-dioxide (591);
- 6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-in-dol-2-yl)-8-(4-methylpiperazin-1-yl)-[1,2,4]triazolo[1,5-a]pyridine (592);
- 8-cyclopropyl-6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-[1,2,4]triazolo[1,5-a]pyridine (593);
- 8-cyclopropyl-6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-2-methyl-[1,2,4]triazolo[1,5-a]pyridine (594);
- 8-cyclopropyl-6-(3-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (595);
- 6-(3-ethyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (596);
- 6-(3-(2,2-difluoroethyl)-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methyl-[1,2,4]triazolo[1,5-a]pyridine (597);
- 6-(3-(2,2-difluoroethyl)-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a] pyridine (598);
- 6-(3-ethyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-indol-2-yl)-8-methoxy-[1,2,4]triazolo[1,5-a]pyridine (600);
- 6-(3-isopropyl-5-(1-(pyridin-2-yl)piperidin-4-yl)-1H-in-dol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (986);
- 6-(3-isopropyl-5-(1-(pyrimidin-2-yl)piperidin-4-yl)-1H-indol-2-yl)-7,8-dimethyl-[1,2,4]triazolo[1,5-a]pyridine (989); or

6-(5-(1-(2,2-dimethyl-1,3-dioxan-5-yl)piperidin-4-yl)-4-fluoro-3-isopropyl-1H-indol-2-yl)-8-methoxy-[1,2,4] triazolo[1,5-a]pyridine (993).

7. The compound according to claim 1 or a salt thereof, wherein said compound is:

$$H_3C$$
 CH_3
 N
 N
 N
 N
 N

8. The compound according to claim 1 or a salt thereof, wherein said compound is:

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

9. The compound according to claim 1 or a salt thereof, wherein said compound is:

NC
$$H_3C$$
 CH_3 $O-CH_3$.

524

10. A pharmaceutical composition comprising a compound according to claim 1 or a pharmaceutically-acceptable salt thereof; and a pharmaceutically acceptable carrier.

11. A pharmaceutical composition comprising a compound according to claim 7 or a pharmaceutically-acceptable salt thereof; and a pharmaceutically acceptable carrier.

12. A pharmaceutical composition comprising a compound according to claim 8 or a pharmaceutically-acceptable salt thereof; and a pharmaceutically acceptable carrier.

13. A pharmaceutical composition comprising a compound according to claim 9 or a pharmaceutically-acceptable salt thereof; and a pharmaceutically acceptable carrier.

15 14. A method of treating an autoimmune disease or a chronic inflammatory disease, comprising administering to a mammalian [patent] patient a compound according to claim 1 or a pharmaceutically acceptable salt thereof, wherein said autoimmune disease or chronic inflammatory disease is systemic lupus erythematosus.

15. A method of treating an autoimmune disease or a chronic inflammatory disease, comprising administering to a
25 mammalian [patent] patient a compound according to claim
7 or a pharmaceutically acceptable salt thereof, wherein said autoimmune disease or chronic inflammatory disease is systemic lupus erythematosus.

16. A method of treating an autoimmune disease or a chronic inflammatory disease, comprising administering to a mammalian [patent] patient a compound according to claim
 8 or a pharmaceutically acceptable salt thereof, wherein said autoimmune disease or chronic inflammatory disease is systemic lupus erythematosus.

17. A method of treating an autoimmune disease or a chronic inflammatory disease, comprising administering to a mammalian [patent] *patient* a compound according to claim 9 or a pharmaceutically acceptable salt thereof, wherein said autoimmune disease or chronic inflammatory disease is systemic lupus erythematosus.

* * * * *