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LOW COMPLEXITY ENHANCEMENT VIDEO CODING

TECHNICAL FIELD

The present invention relates to a video coding technology. In particular, the
present invention relates to methods and systems for encoding and decoding video data. In
certain examples, the methods and systems may be used to generate a compressed

representation for streaming and/or storage.

BACKGROUND

Typical comparative video codecs operate using a single-layer, block-based
approach, whereby an original signal is processed using a number of coding tools in order
to produce an encoded signal which can then be reconstructed by a corresponding decoding
process. For simplicity, coding and decoding algorithms or processes are often referred to
as “codecs”; the term “codec” being used to cover one or more of encoding and decoding
processes that are designed according to a common framework. Such typical codecs
include, but are not limited, to MPEG-2, AVC/H.264, HEVC/H.265, VP8, VP9, AV1.
There are also other codecs that are currently under development by international standards
organizations, such as MPEG/ISO/ITU as well as industry consortia such as Alliance for
Open Media (AoM).

In recent years, adaptations to the single-layer, block-based approach have been
suggested. For example, there exists a class of codecs that operate using a multi-layer,
block-based approach. These codecs are often known as “scalable” codecs within the video
coding industry. They typically replicate operations performed by a single-layer, block-
based approach over a number of layers, where a set of layers are obtained by down-
sampling an original signal. In certain cases, efficiencies in the single-layer, block-based
approach may be achieved by re-using information from a lower layer to encode (and
decode) an upper layer. These scalable codecs are meant to provide scalability features to
operators, in the sense that they need to guarantee that the quality of the scaled-down
decoded signal (e.g., the lower resolution signal) satisfies the quality requirements for
existing services, as well as ensuring that the quality of the non-scaled decoded signal (e.g.,
higher resolution signal) is comparable with that produced by a corresponding single-layer

codec.
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An example of a “scalable” codec is Scalable Video Coding - SVC (see for example
“The Scalable Video Coding Extension of the H.264/AVC Standard”, H. Schwarz and M.
Wien, IEEE Signal Processing Magazine, March 2008, which is incorporated herein by
reference). SVC is the scalable version of the Advanced Video Coding standard - AVC
(AVC also being known as H.264). In SVC, each scalable layer is processed using the
same AVC-based single-layer process, and upper layers receive information from lower
layers (e.g., interlayer predictions including residual information and motion information)
which is used in the encoding of the upper layer to reduce encoded information at the upper
layer. Conversely, in order to decode, an SVC decoder needs to receive various overhead
information as well as decode the lower layer in order to be able to decode the upper layer.

Another example of a scalable codec is the Scalable Extension of the High
Efficiency Video Coding Standard (HEVC) - SHVC (see for example “Overview of
SHVC: Scalable Extensions of the High Efficiency Video Coding Standard”, J. Boyce, Y.
Ye, J. Chen and A. Ramasubramonian, IEEE Trans. On Circuits and Systems for Video
Technology, Vol. 26, No. 1, Jan 2016, which is incorporated by reference herein). Similar
to SVC, SHVC also uses the same HEVC-based process for each scalable layer, but it
allows for the lower layer to use either AVC or HEVC. In SHVC, the upper layer also
receives information from the lower layer (e.g., inter layer processing including motion
information and/or the up-sampled lower layer as an additional reference picture for the
upper layer coding) in the encoding of the upper layer to reduce encoded information at
the upper layer. Again, similarly to SVC, an SHVC decoder needs to receive various
overhead information as well as decode the lower layer in order to be able to decode the
upper layer.

Both SVC and SHVC may be used to encode data in multiple streams at different
levels of quality. For example, SVC and SHVC may be used to encode e.g. a SD (standard
definition) and an HD (high definition) stream or an HD and a UHD (ultra-high-definition)
stream. The base stream (at the lowest level of quality) is typically encoded so that the
quality of the base stream is the same as if the base stream were encoded as a single stream,
separately from any higher-level streams. Both SVC and SHVC may be thought of
primarily as a set of parallel copies of a common encoder and decoder structure, where the
outputs of these parallel copies are respectively multiplexed and demultiplexed.

In more detail, within an example SVC encoding, a UHD stream (e.g. a series of
images) may be down-sampled to generate an HD stream. The UHD stream and the HD

stream are then each encoded separately using an AVC encoder. Although this example
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describes a two-layer encoder (for encoding two streams: a UHD stream and an HD
stream), an SVC encoder may have » layers (where n > 2), where each layer operates as
an independent AVC encoder.

As per standard AVC encoding, an AVC encoder of each SVC layer encodes each
pixel block of image data using either inter-frame prediction (in which a different frame is
used to estimate values for a current frame) or intra-frame prediction (in which other blocks
within a frame are used to estimate values for a given block of that same frame). These
blocks of pixels are typically referred to as “macroblocks”. Inter-frame prediction involves
performing motion compensation, which involves determining the motion between a pixel
block of a previous frame and the corresponding pixel block for the current frame. Both
inter- and intra-frame prediction within a layer involves calculating so-called “residuals”.
These “residuals” are the difference between a pixel block of the data stream of a given
layer and a corresponding pixel block within the same layer determined using either inter-
frame prediction or intra-frame prediction. As such, these “residuals” are the difference
between a current pixel block in the layer and either: 1) a prediction of the current pixel
block based on one or more pixel blocks that are not the current pixel block within the
frame (e.g. typically neighbouring pixel blocks within the same layer); or 2) a prediction
of the current pixel block within the layer based on information from other frames within
the layer (e.g. using motion vectors).

In SVC, despite the implementation as a set of parallel AVC encoders, some
efficiencies may be gained by re-using information obtained for a lower quality stream
(such as an HD stream) for the encoding of a higher quality stream (such as an UHD
stream). This re-using of information involves what is referred to as “inter-layer
signalling”. It should be noted that this is to be distinguished from the “inter-frame” and
“intra-frame” prediction, the latter being “within layer” coding approaches. For example,
without inter-layer signalling, the total bandwidth, BWr;,,, for an SVC stream may be
expressed as BW;,, = BWyp + BWyyp, where BWyp, is the bandwidth associated with
sending the encoded HD stream separately and BWy,, is the bandwidth associated
sending the encoded UHD stream separately (assuming no sharing of information between
the different streams). However, by using inter-layer signalling, the bandwidth for the
UHD stream BWyp can be reduced compared to that if the UHD stream is sent separately
from the HD stream. Typically, by using inter-layer signalling, the total bandwidth can be
reduced so that BW;,, = 1.4 BWyyp.
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In SVC, inter-layer signalling may comprise one of three types of information:
interlayer intra-prediction (in which an up-sampled pixel block from the HD stream is used
in intra-prediction for the UHD stream), interlayer residual prediction (which involves
calculating a residual between the residuals calculated for the HD stream after up-sampling
and the residuals calculated for the UHD stream for a given pixel block), and interlayer
motion compensation (which involves using motion compensation parameters determined
for the HD stream to perform motion compensation for the UHD stream).

Similar to SVC being a scalable extension of AVC, SHVC is a scalable extension
of HEVC. AVC involves dividing a frame into macroblocks (usually 16x16 pixels in size).
A given macroblock can be predicted either from other macroblocks within the frame
(intra-frame prediction) or from macroblock(s) of a previous frame (inter-frame
prediction). The analogous structure to macroblocks for HEVC is a coding tree unit (CTU),
which can be larger than macroblocks (e.g. up to 64x64 pixels in size), and which are
further divided into coding units (CUs). HEVC offers some improvements over AVC,
including improved motion vector determination, motion compensation and intra-frame
prediction, that may allow for improved data compression when compared to AVC.
However, the “scalable” aspect of HEVC is very similar to the “scalable” aspect of AVC,;
namely that both use the idea of parallel encoding streams, whereby some efficiencies may
be gained via inter-layer information exchange. For example, SHVC also offers inter-layer
signalling that includes interlayer intra-prediction, interlayer residual prediction, and
interlayer motion compensation. Like SVC, different levels of quality, e.g. HD and UHD
are encoded by parallel layers and then combined in a stream for decoding.

Despite the availability of SVC and SHVC, the take up of scalable codecs has been
below expectations. One reason for this is the complexity of these schemes and the modest
bandwidth savings. Within the field of video delivery, many leading industry experts
believed that the current available solutions do not address the challenges of delivering
video in the twenty-first century. These industry experts include a large range of entities
from vendors to traditional broadcasters, and from satellite providers to over-the-top (OTT)
service providers such as social media companies.

In general, video service providers need to work with complex ecosystems. The
selection of video codecs are often based on many various factors, including maximum
compatibility with their existing ecosystems and costs of deploying the technology (e.g.
both resource and monetary costs). Once a selection is made, it is difficult to change codecs

without further massive investments in the form of equipment and time. Currently, it is
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difficult to upgrade an ecosystem without needing to replace it completely. Further, the
resource cost and complexity of delivering an increasing number of services, sometimes
using decentralised infrastructures such as so-called “cloud” configurations, are becoming
a key concern for service operators, small and big alike. This is compounded by the rise in
low-resource battery-powered edge devices (e.g. nodes in the so-called Internet of Things).
All these factors need to be balanced with a need to reduce resource usage, e.g. to become
more environmentally friendly, and a need to scale, e.g. to increase the number of users
and provided services.

There is also a problem that many comparative codecs were developed in a time
where large-scale commodity hardware was unavailable. This is not the case today. Large-
scale data centres provide cheap generic data processing hardware. This is at odds with

traditional video coding solutions that require bespoke hardware to operate efficiently.

SUMMARY

Aspects of the present invention are set out in the appended independent claims.

Certain variations of the invention are then set out in the appended dependent claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Examples of the invention will now be described, by way of example only, with
reference to the accompanying drawings.

Figure 1 is a schematic illustration of an encoder according to a first example.

Figure 2 is a schematic illustration of a decoder according to a first example.

Figure 3A is a schematic illustration of an encoder according to a first variation of
a second example.

Figure 3B is a schematic illustration of an encoder according to a second variation
of the second example.

Figure 4 is a schematic illustration of an encoder according to a third example.

Figure 5A is a schematic illustration of a decoder according to a second example.

Figure 5B is a schematic illustration of a first variation of a decoder according to a
third example.

Figure 5C is a schematic illustration of a second variation of the decoder according
to the third example.

Figure 6A is a schematic illustration showing an example 4 by 4 coding unit of

residuals.
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Figure 6B is a schematic illustration showing how coding units may be arranged in
tiles.

Figures 7A to 7C are schematic illustrations showing possible colour plane
arrangements.

Figure 8 is a flow chart shows a method of configuring a bit stream.

Figure 9A is a schematic illustration showing how a colour plane may be
decomposed into a plurality of layers.

Figures 9B to 9J are schematic illustrations showing various methods of up-
sampling.

Figure 10A to 10I are schematic illustrations showing various methods of entropy
encoding quantized data.

Figures 11A to 11C are schematic illustrations showing aspects of different
temporal modes.

Figures 12A and 12B are schematic illustrations showing components for applying
temporal prediction according to examples.

Figures 12C and 12D are schematic illustrations showing how temporal signalling
relates to coding units and tiles.

Figure 12E is a schematic illustration showing an example state machine for run-
length encoding.

Figure 13A and 13B are two halves of a flow chart that shows a method of applying
temporal processing according to an example.

Figures 14A to 14C are schematic illustrations showing example aspects of cloud
control.

Figure 15 is a schematic illustration showing residual weighting according to an
example.

Figures 16A to 16D are schematic illustrations showing calculation of predicted
average elements according to various examples.

Figures 17A and 17B are schematic illustrations showing a rate controller that may
be applied to one or more of first and second level enhancement encoding.

Figure 18 is a schematic illustration showing a rate controller according to a first
example.

Figure 19 is a schematic illustration showing a rate controller according to a second

example.
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Figures 20A to 20D are schematic illustrations showing various aspects of
quantization that may be used in examples.

Figures 21A and 21B are schematic illustrations showing different bitstream
configurations.

Figures 22A to 22D are schematic illustrations showing different aspects of an
example neural network up-sampler.

Figure 23 is a schematic illustration showing an example of how a frame may be
encoded.

Figure 24 is a schematic illustration of a decoder according to a fourth example.

Figure 25 is a schematic illustration of an encoder according to a fifth example.

Figure 26 is a schematic illustration of a decoder according to a fifth example.

Figure 27 is a flow chart indicated a decoding process according to an example.

DETAILED DESCRIPTION

Introduction

Certain examples described herein relate to a framework for a new video coding
technology that is flexible, adaptable, highly efficient and computationally inexpensive
coding. It combines a selectable a base codec (e.g. AVC, HEVC, or any other present or
future codec) with at least two enhancement levels of coded data. The framework offers
an approach that is low complexity yet provides for flexible enhancement of video data.

Certain examples described herein build on a new multi-layer approach that has
been developed. Details of this approach are described, for example, in US Patent Nos.
US8,977,065, US8,948248, US8,711,943, US9,129,411, US8,531,321, US9,510,018,
US9,300,980, and US9,626,772 and PCT applications Nos. PCT/EP2013/059833,
PCT/EP2013/059847, PCT/EP2013/059880, PCT/EP2013/059853, PCT/EP2013/059885,
PCT/EP2013/059886, and PCT/IB2014/060716, which are all included herein by
reference. This new multi-layer approach uses a hierarchy of layers wherein each layer
may relate to a different level of quality, such as a different video resolution.

Examples of a low complexity enhancement video coding are described. Encoding
and decoding methods are described, as well as corresponding encoders and decoders. The
enhancement coding may operate on top of a base layer, which may provide base encoding
and decoding. Spatial scaling may be applied across different layers. Only the base layer

encodes full video, which may be at a lower resolution. The enhancement coding instead
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operates on computed sets of residuals. The sets of residuals are computed for a plurality
of layers, which may represent different levels of scaling in one or more dimensions. A
number of encoding and decoding components or tools are described, which may involve
the application of transformations, quantization, entropy encoding and temporal buffering.
At an example decoder, an encoded base stream and one or more encoded enhancement
streams may be independently decoded and combined to reconstruct an original video.

The general structure of an example encoding scheme presented herein uses a
down-sampled source signal encoded with a base codec, adds a first level of correction
data to the decoded output of the base codec to generate a corrected picture, and then adds
a further level of enhancement data to an up-sampled version of the corrected picture.

An encoded stream as described herein may be considered to comprise a base
stream and an enhancement stream. The enhancement stream may have multiple layers
(e.g. two are described in examples). The base stream may be decodable by a hardware
decoder while the enhancement stream may be suitable for software processing
implementation with suitable power consumption.

Certain examples described herein have a structure that provides a plurality of
degrees of freedom, which in turn allows great flexibility and adaptability to many
situations. This means that the coding format is suitable for many use cases including OTT
transmission, live streaming, live UHD broadcast, and so on.

Although the decoded output of the base codec is not intended for viewing, it is a
fully decoded video at a lower resolution, making the output compatible with existing
decoders and, where considered suitable, also usable as a lower resolution output.

In the following description, certain example architectures for video encoding and
decoding are described. These architectures use a small number of simple coding tools to
reduce complexity. When combined synergistically, they can provide visual quality
improvements when compared with a full resolution picture encoded with the base codec
whilst at the same time generating flexibility in the way they can be used.

The present described examples provide a solution to the recent desire to use less
and less power and, contributes to reducing the computational cost of encoding and
decoding whilst increasing performance. The present described examples may operate as
a software layer on top of existing infrastructures and deliver desired performances. The
present examples provide a solution that is compatible with existing (and future) video
streaming and delivery ecosystems whilst delivering video coding at a lower computational

cost than it would be otherwise possible with a tout-court upgrade. Combining the coding
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efficiency of the latest codecs with the processing power reductions of the described
examples may improve a technical case for the adoption of next-generation codecs.

Certain examples described herein operate upon residuals. Residuals may be
computed by comparing two images or video signals. In one case, residuals are computed
by comparing frames from an input video stream with frames of a reconstructed video
stream. In the case of the level 1 enhancement stream as described herein the residuals may
be computed by comparing a down-sampled input video stream with a first video stream
that has been encoded by a base encoder and then decoded by a base decoder (e.g. the first
video stream simulates decoding and reconstruction of the down-sampled input video
stream at a decoder). In the case of the level 2 enhancement stream as described herein the
residuals may be computed by comparing the input video stream (e.g. at a level of quality
or resolution higher than the down-sampled or base video stream) with a second video
stream that is reconstructed from an up-sampled version of the first video stream plus a set
of decoded level 1 residuals (e.g. the second video stream simulates decoding both a base
stream and the level 1 enhancement stream, reconstructing a video stream at a lower or
down-sampled level of quality, then up-sampling this reconstructed video stream). This is,
for example, shown in Figures 1 to 5C.

In certain examples, residuals may thus be considered to be errors or differences at
a particular level of quality or resolution. In described examples, there are two levels of
quality or resolutions and thus two sets of residuals (levels 1 and 2). Each set of residuals
described herein models a different form of error or difference. The level 1 residuals, for
example, typically correct for the characteristics of the base encoder, e.g. correct artefacts
that are introduced by the base encoder as part of the encoding process. In contrast, the
level 2 residuals, for example, typically correct complex effects introduced by the shifting
in the levels of quality and differences introduced by the level 1 correction (e.g. artefacts
generated over a wider spatial scale, such as areas of 4 or 16 pixels, by the level 1 encoding
pipeline). This means it is not obvious that operations performed on one set of residuals
will necessarily provide the same effect for another set of residuals, e.g. each set of
residuals may have different statistical patterns and sets of correlations.

In the examples described herein residuals are encoded by an encoding pipeline.
This may include transformation, quantization and entropy encoding operations. It may
also include residual ranking, weighting and filtering, and temporal processing. These
pipelines are shown in Figures 1 and 3A and 3B. Residuals are then transmitted to a

decoder, e.g. as level 1 and level 2 enhancement streams, which may be combined with a
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base stream as a hybrid stream (or transmitted separately). In one case, a bit rate is set for
a hybrid data stream that comprises the base stream and both enhancements streams, and
then different adaptive bit rates are applied to the individual streams based on the data
being processed to meet the set bit rate (e.g. high-quality video that is perceived with low
levels of artefacts may be constructed by adaptively assigning a bit rate to different
individual streams, even at a frame by frame level, such that constrained data may be used
by the most perceptually influential individual streams, which may change as the image
data changes).

The sets of residuals as described herein may be seen as sparse data, e.g. in many
cases there is no difference for a given pixel or area and the resultant residual value is zero.
When looking at the distribution of residuals much of the probability mass is allocated to
small residual values located near zero — e.g. for certain videos values of -2, -1, 0, 1, 2 etc
occur the most frequently. In certain cases, the distribution of residual values is symmetric
or near symmetric about 0. In certain test video cases, the distribution of residual values
was found to take a shape similar to logarithmic or exponential distributions (e.g.
symmetrically or near symmetrically) about 0. The exact distribution of residual values
may depend on the content of the input video stream.

Residuals may be treated as a two-dimensional image in themselves, e.g. a delta
image of differences. Seen in this manner the sparsity of the data may be seen to relate
features like “dots”, small “lines”, “edges”, “corners”, etc. that are visible in the residual
images. It has been found that these features are typically not fully correlated (e.g. in space
and/or in time). They have characteristics that differ from the characteristics of the image
data they are derived from (e.g. pixel characteristics of the original video signal).

As the characteristics of the present residuals, including transformed residuals in
the form of coefficients, differ from the characteristics of the image data they are derived
from it is generally not possible to apply standard encoding approaches, e.g. such as those
found in traditional Moving Picture Experts Group (MPEG) encoding and decoding
standards. For example, many comparative schemes use large transforms (e.g. transforms
of large areas of pixels in a normal video frame). Due to the characteristics of residuals,
e.g. as described herein, it would be very inefficient to use these comparative large
transforms on residual images. For example, it would be very hard to encode a small dot
in a residual image using a large block designed for an area of a normal image.

Certain examples described herein address these issues by instead using small and

simple transform kernels (e.g. 2x2 or 4x4 kernels — the Directional Decomposition and the
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Directional Decomposition Squared — as presented herein). This moves in a different
direction from comparative video coding approaches. Applying these new approaches to
blocks of residuals generates compression efficiency. For example, certain transforms
generate uncorrelated coefficients (e.g. in space) that may be efficiently compressed. While
correlations between coefficients may be exploited, e.g. for lines in residual images, these
can lead to encoding complexity, which is difficult to implement on legacy and low-
resource devices, and often generates other complex artefacts that need to be corrected. In
the present examples, a different transform is used (Hadamard) to encode the correction
data and the residuals than comparative approaches. For example, the transforms presented
herein may be much more efficient than transforming larger blocks of data using a Discrete
Cosine Transform (DCT), which is the transform used in SVC/SHVC.

Certain examples described herein also consider the temporal characteristics of
residuals, e.g. as well as spatial characteristics. For example, in residual images details like
“edges” and “dots” that may be observed in residual “images” show little temporal
correlation. This is because “edges” in residual images often don’t translate or rotate like
edges as perceived in a normal video stream. For example, within residual images, “edges”
may actually change shape over time, e.g. a head turning may be captured within multiple
residual image “edges” but may not move in a standard manner (as the “edge” reflects
complex differences that depend on factors such as lighting, scale factors, encoding factors
etc.). These temporal aspects of residual images, e.g. residual “video” comprising
sequential residual “frames” or “pictures” typically differ from the temporal aspects of
conventional images, e.g. normal video frames (e.g. in the Y, U or V planes). Hence, it is
not obvious how to apply conventional encoding approaches to residual images; indeed, it
has been found that motion compensation approaches from comparative video encoding
schemes and standards cannot encode residual data (e.g. in a useful manner).

An AVC layer within SVC may involve calculating data that are referred to in that
comparative standard as “residuals”. However, these comparative “residuals” are the
difference between a pixel block of the data stream of that layer and a corresponding pixel
block determined using either inter-frame prediction or intra-frame prediction. These
comparative “residuals” are, however, very different from residuals encoded in the present
examples. In SVC, the “residuals” are the difference between a pixel block of a frame and
a predicted pixel block for the frame (predicted using either inter-frame prediction or intra-
frame prediction). In contrast, the present examples involve calculating residuals as a

difference between a coding block and a reconstructed coding block (e.g. which has
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undergone down-sampling and subsequent up-sampling, and has been corrected for
encoding / decoding errors).

Furthermore, many comparative video encoding approaches attempt to provide
temporal prediction and motion-compensation as default to conventional video data. These
“built-in” approaches may not only fail when applied to sequential residual images, they
may take up unnecessary processing resources (e.g. these resources may be used while
actually corrupting the video encoding). It may also generate unnecessary bits that take up
an assigned bit rate. It is not obvious from conventional approaches how to address these
problems.

Certain examples described herein, e.g. as described in the “Temporal Aspects”
section and elsewhere, provide an efficient way of predicting temporal features within
residual images. Certain examples use zero-motion vector prediction to efficiently predict
temporal aspects and movement within residuals. These may be seen to predict movement
for relatively static features (e.g. apply the second temporal mode - inter prediction - to
residual features that persist over time) and then use the first temporal mode (e.g. intra
prediction) for everything else. Hence, certain examples described herein do not attempt
to waste scare resources and bit rate predicting transient uncorrelated temporal features in
residual “video”.

Certain examples described herein allow for legacy, existing and future codecs to
be enhanced. The examples may thus leverage the capabilities of these codes as part of a
base layer and provide improvements in the form of an enhancement layer.

Certain examples described herein are low complexity. They enable a base codec
to be enhanced with low computational complexity and/or in a manner that enables
widespread parallelisation. If down-sampling is used prior to the base codec (e.g. an
application of spatial scalability), then a video signal at the original input resolution may
be provided with a reduced computational complexity as compared to using the base codec
at the original input resolution. This allows wide adoption of ultra-high-resolution video.
For example, by a combination of processing an input video at a lower resolution with a
single-layer existing codec and using a simple and small set of highly specialised tools to
add details to an up-sampled version of the processed video, many advantages may be
realised.

Certain examples described herein implement a number of modular yet specialised
video coding tools. The tools that make up the enhancement layer (including two levels of

enhancement at two different points) are designed for a particular type of data: residual
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data. Residual data as described herein results from a comparison of an original data signal
and a reconstructed data signal. The reconstructed data signal is generated in a manner that
differs from comparative video coding schemes. For example, the reconstructed data signal
relates to a particular small spatial portion of an input video frame — a coding unit. A set
of coding units for a frame may be processed in parallel as the residual data is not generated
using other coding units for the frame or other coding units for other frames, as opposed
to inter- and intra- prediction in comparative video coding technologies. Although
temporal processing may be applied, this is applied at the coding unit level, using previous
data for a current coding unit. There is no interdependency between coding units.

Certain specialised video coding tools described herein are specifically adapted for
sparse residual data processing. Due to the differing method of generation, residual data as
used herein has different properties to that of comparative video coding technologies. As
shown in the Figures, certain examples described herein provide an enhancement layer that
processes one or two layers of residual data. The residual data is produced by taking
differences between a reference video frame (e.g., a source video) and a base-decoded
version of the video (e.g. with or without up-sampling depending on the layer). The
resulting residual data is sparse information, typically edges, dots and details which are
then processed using small transforms which are designed to deal with sparse information.
These small transforms may be scale invariant, e.g. have integer values within the range of
{-1,1}.

Certain examples described herein allow efficient use of existing codecs. For
example, a base encoder is typically applied at a lower resolution (e.g. than an original
input signal). A base decoder is then used to decode the output of the base encoder at the
lower resolution and the resultant decoded signal is used to generate the decoded data.
Because of this, the base codec operates on a smaller number of pixels, thus allowing the
codec to operate at a higher level of quality (e.g. a smaller quantization step size) and use
its own internal coding tools in a more efficient manner. It may also consume less power.

Certain examples described herein provide a resilient and adaptive coding process.
For example, the configuration of the enhancement layer allows the overall coding process
to be resilient to the typical coding artefacts introduced by traditional Discrete Cosine
Transform (DCT) block-based codecs that may be used in the base layer. The first
enhancement layer (level 1 residuals) enables the correction of artefacts introduced by the
base codec, whereas the second enhancement layer (level 2 residuals) enables the addition

of details and sharpness to a corrected up-sampled version of the signal. The level of
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correction may be adjusted by controlling a bit-rate up to a version that provides maximum
fidelity and lossless encoding. Typically, the worse the base reconstruction, the more the
first enhancement layer may contribute to a correction (e.g. in the form of encoded residual
data output by that layer). Conversely, the better the base reconstruction, the more bit-rate
can be allocated to the second enhancement layer (level 2 residuals) to sharpen the video
and add fine details.

Certain examples described herein provide for agnostic base layer enhancement.
For example, the examples may be used to enhance any base codec, from existing codecs
such as MPEG-2, VP8, AVC, HEVC, VP9, AV1, etc. to future codecs including those
under development such as EVC and VVC. This is possible because the enhancement layer
operates on a decoded version of the base codec, and therefore it can be used on any format
as it does not require any information on how the base layer has been encoded and/or
decoded.

As described below, certain examples described herein allow for parallelization of
enhancement layer encoding. For example, the enhancement layer does not implement any
form of inter (i.e. between) block prediction. The image is processed applying small (2x2
or 4x4) independent transform kernels over the layers of residual data. Since no prediction
is made between blocks, each 2x2 or 4x4 block can be processed independently and in a
parallel manner. Moreover, each layer is processed separately, thus allowing decoding of
the blocks and decoding of the layers to be done in a massively parallel manner.

With the presently described examples, errors introduced by the encoding /
decoding process and the down-sampling / up-sampling process may be corrected for
separately, to regenerate the original video on the decoder side. The encoded residuals and
the encoded correction data are thus smaller in size than the input video itself and can
therefore be sent to the decoder more efficiently than the input video (and hence more
efficiently than a comparative UHD stream of the SVC and SHVC approaches).

In further comparison with SVC and SHVC, certain described examples involve
sending encoded residuals and correction data to a decoder, without sending an encoded
UHD stream itself. In contrast, in SVC and SHVC, both the HD and UHD images are
encoded as separate video streams and sent to the decoder. The presently described
examples may allow for a significantly reduction in the overall bit rate for sending the
encoded data to the decoder, e.g. so that BWy,, = 0.7 BWyyp. In these cases, the total
bandwidth for sending both an HD stream and a UHD stream may be less than the

bandwidth required by comparative standards to send just the UHD stream.



10

15

20

25

30

15

The presently described examples further allow coding units or blocks to be
processed in parallel rather than sequentially. This is because the presently described
examples do not apply intra-prediction; there is very limited spatial correlation between
the spatial coefficients of different blocks, whereas SVC/SHVC provides for intra-
prediction. This is more efficient than the comparative approaches of SVC/SHVC, which
involve processing blocks sequentially (e.g. as the UHD stream relies on the predictions
from various pixels of the HD stream).

The enhancement coding described in examples herein may be considered an
enhancement codec that encodes and decodes streams of residual data. This differs from
comparative SVC and SHVC implementations where encoders receive video data as input
at each spatial resolution level and decoders output video data at each spatial resolution
level. As such, the comparative SVC and SHVC may be seen as the parallel
implementation of a set of codecs, where each codec has a video-in / video-out coding
structure. The enhancement codecs described herein on the other hand receive residual data
and also output residual data at each spatial resolution level. For example, in SVC and
SHVC the outputs of each spatial resolution level are not summed to generate an output
video — this would not make sense.

It should be noted that in examples references to levels 1 and 2 are to be taken as
an arbitrary labelling of enhancement sub-layers. These may alternatively be referred to be
different names (e.g. with a reversed numbering system with levels 1 and 2 being
respectively labelled as level 1 and level 0, with the “level 0” base layer below being level

2).

Definitions and Terms

In certain examples described herein the following terms are used.

“access unit” — this refers to a set of Network Abstraction Layer (NAL) units that
are associated with each other according to a specified classification rule. They may be
consecutive in decoding order and contain a coded picture (i.e. frame) of video (in certain
cases exactly one).

“base layer” — this is a layer pertaining to a coded base picture, where the “base”
refers to a codec that receives processed input video data. It may pertain to a portion of a

bitstream that relates to the base.
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“bitstream” — this is sequence of bits, which may be supplied in the form of a NAL
unit stream or a byte stream. It may form a representation of coded pictures and associated
data forming one or more coded video sequences (CVSs).

“block” — an MxN (M-column by N-row) array of samples, or an MxN array of
transform coefficients. The term “coding unit” or “coding block™ is also used to refer to an
MxN array of samples. These terms may be used to refer to sets of picture elements (e.g.
values for pixels of a particular colour channel), sets of residual elements, sets of values
that represent processed residual elements and/or sets of encoded values. The term “coding
unit” is sometimes used to refer to a coding block of luma samples or a coding block of
chroma samples of a picture that has three sample arrays, or a coding block of samples of
a monochrome picture or a picture that is coded using three separate colour planes and
syntax structures used to code the samples.

“byte” — a sequence of 8 bits, within which, when written or read as a sequence of
bit values, the left-most and right-most bits represent the most and least significant bits,
respectively.

“byte-aligned” — a position in a bitstream is byte-aligned when the position is an
integer multiple of 8 bits from the position of the first bit in the bitstream, and a bit or byte
or syntax element is said to be byte-aligned when the position at which it appears in a
bitstream is byte-aligned.

“byte stream” — this may be used to refer to an encapsulation of a NAL unit stream
containing start code prefixes and NAL units.

“chroma” — this is used as an adjective to specify that a sample array or single
sample is representing a colour signal. This may be one of the two colour difference signals
related to the primary colours, e.g. as represented by the symbols Cb and Cr. It may also
be used to refer to channels within a set of colour channels that provide information on the
colouring of a picture. The term chroma is used rather than the term chrominance in order
to avoid the implication of the use of linear light transfer characteristics that is often
associated with the term chrominance.

“chunk” — this is used to refer to an entropy encoded portion of data containing a
quantized transform coefficient belonging to a coefficient group.

“coded picture” — this is used to refer to a set of coding units that represent a coded

representation of a picture.
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“coded base picture” — this may refer to a coded representation of a picture encoded
using a base encoding process that is separate (and often differs from) an enhancement
encoding process.

“coded representation” — a data element as represented in its coded form

“coefficient group (CG)” — 1s used to refer to a syntactical structure containing
encoded data related to a specific set of transform coefficients (i.e. a set of transformed
residual values).

“component” or “colour component” — this is used to refer to an array or single
sample from one of a set of colour component arrays. The colour components may
comprise one luma and two chroma components and/or red, green, blue (RGB)
components. The colour components may not have a one-to-one sampling frequency, e.g.
the components may compose a picture in 4:2:0, 4:2:2, or 4:4:4 colour format. Certain
examples described herein may also refer to just a single monochrome (e.g. luma or
grayscale) picture, where there is a single array or a single sample of the array that
composes a picture in monochrome format.

“data block”™ — this is used to refer to a syntax structure containing bytes
corresponding to a type of data.

“decoded base picture” — this is used to refer to a decoded picture derived by
decoding a coded base picture.

“decoded picture” — a decoded picture may be derived by decoding a coded picture.
A decoded picture may be either a decoded frame, or a decoded field. A decoded field may
be either a decoded top field or a decoded bottom field.

“decoded picture buffer (DPB)” — this is used to refer to a buffer holding decoded
pictures for reference or output reordering.

“decoder” — equipment or a device that embodies a decoding process.

“decoding order” — this may refer to an order in which syntax elements are
processed by the decoding process.

“decoding process” — this is used to refer to a process that reads a bitstream and
derives decoded pictures from it.

“emulation prevention byte” — this is used in certain examples to refer to a byte
equal to 0x03 that may be present within a NAL unit. Emulation prevention bytes may be
used to ensure that no sequence of consecutive byte-aligned bytes in the NAL unit contains
a start code prefix.

“encoder” - equipment or a device that embodies a encoding process.
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“encoding process” — this is used to refer to a process that produces a bitstream (i.e.
an encoded bitstream).

“enhancement layer” — this is a layer pertaining to a coded enhancement data,
where the enhancement data is used to enhance the “base layer” (sometimes referred to as
the “base”). It may pertain to a portion of a bitstream that comprises planes of residual
data. The singular term is used to refer to encoding and/or decoding processes that are
distinguished from the “base” encoding and/or decoding processes.

“enhancement sub-layer” — in certain examples, the enhancement layer comprises
multiple sub-layers. For example, the first and second levels described below are
“enhancement sub-layers” that are seen as layers of the enhancement layer.

“field” — this term is used in certain examples to refer to an assembly of alternate
rows of a frame. A frame is composed of two fields, a top field and a bottom field. The
term field may be used in the context of interlaced video frames.

“video frame” —in certain examples a video frame may comprise a frame composed
of an array of luma samples in monochrome format or an array of luma samples and two
corresponding arrays of chroma samples. The luma and chroma samples may be supplied
in 4:2:0, 4:2:2, and 4:4:4 colour formats (amongst others). A frame may consist of two
fields, a top field and a bottom field (e.g. these terms may be used in the context of
interlaced video).

“group of pictures (GOP)” — this term is used to refer to a collection of successive
coded base pictures starting with an intra picture. The coded base pictures may provide the
reference ordering for enhancement data for those pictures.

“instantaneous decoding refresh (IDR) picture” — this is used to refer to a picture
for which an NAL unit contains a global configuration data block.

“inverse transform” — this is used to refer to part of the decoding process by which
a set of transform coefficients are converted into residuals.

“layer” — this term is used in certain examples to refer to one of a set of syntactical
structures in a non-branching hierarchical relationship, e.g. as used when referring to the
“base” and “enhancement” layers, or the two (sub-) “layers” of the enhancement layer.

“luma” — this term is used as an adjective to specify a sample array or single sample
that represents a lightness or monochrome signal, e.g. as related to the primary colours.
Luma samples may be represented by the symbol or subscript Y or L. The term “luma” is
used rather than the term luminance in order to avoid the implication of the use of linear

light transfer characteristics that is often associated with the term luminance. The symbol
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L is sometimes used instead of the symbol Y to avoid confusion with the symbol y as used
for vertical location.

"network abstraction layer (NAL) unit (NALU)” — this is a syntax structure
containing an indication of the type of data to follow and bytes containing that data in the
form of a raw byte sequence payload (RBSP — see definition below).

“network abstraction layer (NAL) unit stream” — a sequence of NAL units.

“output order” — this is used in certain examples to refer to an order in which the
decoded pictures are output from the decoded picture buffer (for the decoded pictures that
are to be output from the decoded picture buffer).

“partitioning” — this term is used in certain examples to refer to the division of a set
into subsets. It may be used to refer to cases where each element of the set is in exactly one
of the subsets.

“plane” — this term is used to refer to a collection of data related to a colour
component. For example, a plane may comprise a Y (luma) or Cx (chroma) plane. In
certain cases, a monochrome video may have only one colour component and so a picture
or frame may comprise one or more planes.

“picture” — this is used as a collective term for a field or a frame. In certain cases,
the terms frame and picture are used interchangeably.

“random access” — this is used in certain examples to refer to an act of starting the
decoding process for a bitstream at a point other than the beginning of the stream.

“raw byte sequence payload (RBSP)” - the RBSP is a syntax structure containing
an integer number of bytes that is encapsulated in a NAL unit. An RBSP is either empty
or has the form of a string of data bits containing syntax elements followed by an RBSP
stop bit and followed by zero or more subsequent bits equal to 0. The RBSP may be

interspersed as necessary with emulation prevention bytes.

“raw byte sequence payload (RBSP) stop bit” — this is a bit that may be set to 1 and
included within a raw byte sequence payload (RBSP) after a string of data bits. The lo-
cation of the end of the string of data bits within an RBSP may be identified by searching
from the end of the RBSP for the RBSP stop bit, which is the last non-zero bit in the RBSP.

“reserved” — this term may refer to values of syntax elements that are not used in
the bitstreams described herein but are reserved for future use or extensions. The term

“reserved zeros” may refer to reserved bit values that are set to zero in examples.
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“residual” — this term is defined in further examples below. It generally refers to a
difference between a reconstructed version of a sample or data element and a reference of
that same sample or data element.

“residual plane” — this term is used to refer to a collection of residuals, e.g. that are
organised in a plane structure that is analogous to a colour component plane. A residual
plane may comprise a plurality of residuals (i.e. residual picture elements) that may be
array elements with a value (e.g. an integer value).

“run length encoding” — this is a method for encoding a sequence of values in which
consecutive occurrences of the same value are represented as a single value together with
its number of occurrences.

“source” — this term is used in certain examples to describe the video material or
some of its attributes before encoding.

“start code prefix” — this is used to refer to a unique sequence of three bytes equal
to 0x000001 embedded in the byte stream as a prefix to each NAL unit. The location of a
start code prefix may be used by a decoder to identify the beginning of a new NAL unit
and the end of a previous NAL unit. Emulation of start code prefixes may be prevented
within NAL units by the inclusion of emulation prevention bytes.

“string of data bits (SODB)” — this term refers to a sequence of some number of
bits representing syntax elements present within a raw byte sequence payload prior to the
raw byte sequence payload stop bit. Within an SODB, the left-most bit is considered to be
the first and most significant bit, and the right-most bit is considered to be the last and least
significant bit.

“syntax element” — this term may be used to refer to an element of data represented
in the bitstream.

“syntax structure” — this term may be used to refer to zero or more syntax elements
present together in the bitstream in a specified order.

“tile” — this term is used in certain examples to refer to a rectangular region of
blocks or coding units within a particular picture, e.g. it may refer to an area of a frame
that contains a plurality of coding units where the size of the coding unit is set based on an
applied transform.

“transform coefficient” (or just “coefficient”) — this term is used to refer to a value
that is produced when a transformation is applied to a residual or data derived from a
residual (e.g. a processed residual). It may be a scalar quantity, that is considered to be in

a transformed domain. In one case, an M by N coding unit may be flattened into an M*N
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one-dimensional array. In this case, a transformation may comprise a multiplication of the
one-dimensional array with an M by N transformation matrix. In this case, an output may
comprise another (flattened) M*N one-dimensional array. In this output, each element may
relate to a different “coefficient”, e.g. for a 2x2 coding unit there may be 4 different types
of coefficient. As such, the term “coefficient” may also be associated with a particular
index in an inverse transform part of the decoding process, e.g. a particular index in the
aforementioned one-dimensional array that represented transformed residuals.

“video coding layer (VCL) NAL unit” — this is a collective term for NAL units that
have reserved values of NalUnitType and that are classified as VCL NAL units in certain
examples.

As well as the terms above, the following abbreviations are sometimes used:

CG - Coefticient Group, CPB- Coded Picture Buffer; CPBB - Coded Picture Buffer
of the Base; CPBL - Coded Picture Buffer of the Enhancement; CU - Coding Unit; CVS —
Coded Video Sequence; DPB - Decoded Picture Buffer; DPBB - Decoded Picture Buffer
of the Base; DUT - Decoder Under Test; HBD - Hypothetical Base Decoder; HD -
Hypothetical Demuxer; HRD - Hypothetical Reference Decoder; HSS - Hypothetical
Stream Scheduler; I — Intra; IDR - Instantaneous Decoding Refresh; LSB - Least
Significant Bit; MSB - Most Significant Bit; NAL - Network Abstraction Layer; P —
Predictive; RBSP - Raw Byte Sequence Payload; RGB —red, green blue (may also be used
as GBR — green, blue, red — i.e. reordered RGB; RLE - Run length encoding; SEI -
Supplemental Enhancement Information; SODB - String of data bits; SPS - Sequence
Parameter Set; and VCL - Video Coding Layer.

Example I'ncoders and Decoders

First Example Encoder — General Architecture

Figure 1 shows a first example encoder 100. The illustrated components may also
be implemented as steps of a corresponding encoding process.

In the encoder 100, an input full resolution video 102 is received and is processed
to generate various encoded streams. At a down-sampling component 104, the input video
102 is down-sampled. An output of the down-sampling component 104 is received by a
base codec that comprises a base encoder 102 and a base decoder 104. A first encoded
stream (encoded base stream) 116 is produced by feeding the base codec (e.g., AVC,
HEVC, or any other codec) with a down-sampled version of the input video 102. At a first
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subtraction component 120, a first set of residuals is obtained by taking the difference
between a reconstructed base codec video as output by the base decoder 104 and the down-
sampled version of the input video (i.e. as output by the down-sampling component 104).
A level 1 encoding component 122 is applied to the first set of residuals that are output by
the first subtraction component 120 to produce a second encoded stream (encoded level 1
stream) 126.

In the example of Figure 1, the level 1 encoding component 122 operates with an
optional level 1 temporal buffer 124. This may be used to apply temporal processing as
described later below. Following a first level of encoding by the level 1 encoding
component 122, the first encoded stream 126 may be decoded by a level 1 decoding
component 128. A deblocking filter 130 may be applied to the output of the level 1
decoding component 128. In Figure 1, an output of the deblocking filter 130 is added to
the output of the base decoder 114 (i.e. is added to the reconstructed base codec video) by
a summation component 132 to generate a corrected version of the reconstructed base
coded video. The output of the summation component 132 is then up-sampled by an up-
sampling component 134 to produce an up-sampled version of a corrected version of the
reconstructed base coded video.

At a second subtraction component 136, a difference between the up-sampled
version of a corrected version of the reconstructed base coded video (i.e. the output of the
up-sampling component 134) and the input video 102 is taken. This produces a second set
of residuals. The second set of residuals as output by the second subtraction component
136 is passed to a level 2 encoding component 142. The level 2 encoding component 142
produces a third encoded stream (encoded level 2 stream) 146 by encoding the second set
of residuals. The level 2 encoding component 142 may operate together with a level 2
temporal buffer 144 to apply temporal processing. One or more of the level 1 encoding
component 122 and the level 2 encoding component 142 may apply residual selection as
described below. This is shown as being controlled by a residual mode selection
component 150. The residual mode selection component 150 may receive the input video
102 and apply residual mode selection based on an analysis of the input video 102.
Similarly, the level 1 temporal buffer 124 and the level 2 temporal buffer 144 may operate
under the control of a temporal selection component 152. The temporal selection
component 152 may receive one or more of the input video 102 and the output of the down-
sampling component 104 to select a temporal mode. This is explained in more detail in

later examples.
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First Example Decoder — General Architecture

Figure 2 shows a first example decoder 200. The illustrated components may also
be implemented as steps of a corresponding decoding process. The decoder 200 receives
three encoded streams: encoded base stream 216, encoded level 1 stream 226 and encoded
level 2 stream 246. These three encoded streams correspond to the three streams generated
by the encoder 100 of Figure 1. In the example of Figure 2, the three encoded streams are
received together with headers 256 containing further decoding information.

The encoded base stream 216 is decoded by a base decoder 218 corresponding to
the base codec used in the encoder 100 (e.g. corresponding to base decoder 114 in Figure
1). At a first summation component 220, the output of the base decoder 218 is combined
with a decoded first set of residuals that are obtained from the encoded level 1 stream 226.
In particular, a level 1 decoding component 228 receives the encoded level 1 stream 226
and decodes the stream to produce the decoded first set of residuals. The level 1 decoding
component 228 may use a level 1 temporal buffer 230 to decode the encoded level 1 stream
226. In the example of Figure 2, the output of the level 1 decoding component 228 is passed
to a deblocking filter 232. The level 1 decoding component 228 may be similar to the level
1 decoding component 128 used by the encoder 100 in Figure 1. The deblocking filter 232
may also be similar to the deblocking filter 130 used by the encoder 100. In Figure 2, the
output of the deblocking filter 232 forms the decoded first set of residuals that are
combined with the output of the base decoder 218 by the first summation component 220.
The output of the first summation component 220 may be seen as a corrected level 1
reconstruction, where the decoded first set of residuals correct an output of the base
decoder 218 at a first resolution.

At an up-sampling component 234, the combined video is up-sampled. The up-
sampling component 234 may implement a form of modified up-sampling as described
with respect to later examples. The output of the up-sampling component 234 is further
combined with a decoded second set of residuals that are obtained from the encoded level
2 stream 246. In particular, a level 2 decoding component 248 receives the encoded level
2 stream 246 and decodes the stream to produce the decoded second set of residuals. The
decoded second set of residuals, as output by the level 2 decoding component 248 are
combined with the output of the up-sampling component 234 by summation component
258 to produce a decoded video 260. The decoded video 260 comprises a decoded

representation of the input video 102 in Figure 1. The level 2 decoding component 248
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may also use a level 2 temporal buffer 250 to apply temporal processing. One or more of
the level 1 temporal buffer 230 and the level 2 temporal buffer 250 may operate under the
control of a temporal selection component 252. The temporal selection component 252 is
shown receiving data from headers 256. This data may comprise data to implement
temporal processing at one or more of the level 1 temporal buffer 230 and the level 2
temporal buffer 250. The data may indicate a temporal mode that is applied by the temporal

selection component 252 as described with reference to later examples.

Second Example Encoder — Encoding Sub-Processing and Temporal Prediction

Figures 3A and 3B show different variations of a second example encoder 300,
360. The second example encoder 300, 360 may comprise an implementation of the first
example encoder 100 of Figure 1. In the examples of Figures 3A and 3B, the encoding
steps of the stream are expanded in more detail to provide an example of how the steps
may be performed. Figure 3A illustrates a first variation with temporal prediction provided
only in the second level of the enhancement process, i.e. with respect to the level 2
encoding. Figure 3B illustrates a second variation with temporal prediction performed in
processes of both levels of enhancement (i.e. levels 1 and 2).

In Figure 3A, an encoded base stream 316 is substantially created by a process as
explained with respect to Figure 1 above. That is, an input video 302 is down-sampled (i.e.
a down-sampling operation is applied by a down-sampling component 304 to the input
video 102 to generate a down-sampled input video. The down-sampled video is then
encoded using a base codec, in particular by a base encoder 312 of the base codec. An
encoding operation applied by the base encoder 312 to the down-sampled input video
generates an encoded base stream 316. The base codec may also be referred to as a first
codec, as it may differ from a second codec that is used to produce the enhancement
streams (i.e. the encoded level 1 stream 326 and the encoded level 2 stream 346).
Preferably the first or base codec is a codec suitable for hardware decoding. As per Figure
1, an output of the base encoder 312 (i.e. the encoded base stream 316) is received by a
base decoder 314 (e.g. that forms part of, or provides a decoding operation for, the base
codec) that outputs a decoded version of the encoded base stream. The operations
performed by the base encoder 312 and the base decoder 314 may be referred to as the base
layer or base level. The base layer or level may be implemented separately from an
enhancement or second layer or level, and the enhancement layer or level instructs and/or

controls the base layer or level (e.g. the base encoder 312 and the base decoder 314).
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As noted with respect to Figure 1, the enhancement layer or level may comprise
two levels that produce two corresponding streams. In this context, a first level of
enhancement (described herein as “level 1”) provides for a set of correction data which can
be combined with a decoded version of the base stream to generate a corrected picture.
This first enhancement stream is illustrated in Figures 1 and 3 as the encoded level 1 stream
326.

To generate the encoded level 1 stream, the encoded base stream is decoded, i.e. an
output of the base decoder 314 provides a decoded base stream. As in Figure 1, at a first
subtraction component, a difference between the decoded base stream and the down-
sampled input video (i.e. the output of the down-sampling component 304) is then created
(1.e. a subtraction operation is applied to the down-sampled input video and the decoded
base stream to generate a first set of residuals). Here the term “residuals” is used in the
same manner as that known in the art, that is, the error between a reference frame and a
desired frame. Here the reference frame is the decoded base stream and the desired frame
is the down-sampled input video. Thus, the residuals used in the first enhancement level
can be considered as a corrected video as they ‘correct’ the decoded base stream to the
down-sampled input video that was used in the base encoding operation.

In general, the term “residuals” as used herein refers to a difference between a value
of a reference array or reference frame and an actual array or frame of data. The array may
be a one or two-dimensional array that represents a coding unit. For example, a coding unit
may be a 2x2 or 4x4 set of residual values that correspond to similar sized areas of an input
video frame. It should be noted that this generalised example is agnostic as to the encoding
operations performed and the nature of the input signal. Reference to “residual data” as
used herein refers to data derived from a set of residuals, e.g. a set of residuals themselves
or an output of a set of data processing operations that are performed on the set of residuals.
Throughout the present description, generally a set of residuals includes a plurality of
residuals or residual elements, each residual or residual element corresponding to a signal
element, that is, an element of the signal or original data. The signal may be an image or
video. In these examples, the set of residuals corresponds to an image or frame of the video,
with each residual being associated with a pixel of the signal, the pixel being the signal
element.

It should be noted that the “residuals” described herein are, however, very different
from “residuals” that are generated in comparative technologies such as SVC and SHVC.

In SVC, the term “residuals” is used to refer to a difference between a pixel block of a
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frame and a predicted pixel block for the frame, where the predicted pixel block is
predicted using either inter-frame prediction or intra-frame prediction. In contrast, the
present examples involve calculating residuals as a difference between a coding unit and a
reconstructed coding unit, e.g. a coding unit of elements that has undergone down-
sampling and subsequent up-sampling, and has been corrected for encoding / decoding
errors. In the described examples, the base codec (i.e. the base encoder 312 and the base
decoder 314) may comprise a different codec from the enhancement codec, e.g. the base
and enhancement streams are generated by different sets of processing steps. In one case,
the base encoder 312 may comprise an AVC or HEVC encoder and thus internally
generates residual data that 1s used to generate the encoded base stream 316. However, the
processes that are used by the AVC or HEVC encoder differ from those that are used to
generate the encoded level 1 and level 2 streams 326, 346.

Returning to Figures 3A and 3B, an output of the subtraction component 320, i.e.
a difference that corresponds to a first set of residuals, is then encoded to generate the
encoded level 1 stream 326 (i.e. an encoding operation is applied to the first set of residuals
to generate a first enhancement stream). In the example implementations of Figures 3A
and 3B, the encoding operation comprises several sub-operations, each of which is optional
and preferred and provides particular benefits. In Figures 3A and 3B, a series of
components are shown that implement these sub-operations and these may be considered
to implement the level 1 and level 2 encoding 122 and 142 as shown in Figure 1. In Figures
3A and 3B, the sub-operations, in general, include a residuals ranking mode step, a
transform step, a quantization step and an entropy encoding step.

For the level 1 encoding, a level 1 residuals selection or ranking component 321
receives an output of the first subtraction component 320. The level 1 residuals selection
or ranking component 321 is shown as being controlled by a residual mode ranking or
selection component 350 (e.g. in a similar manner to the configuration of Figure 1). In
Figure 3A, ranking is performed by the residual mode ranking component 350 and applied
by the level 1 selection component 321, the latter selecting or filtering the first set of
residuals based on a ranking performed by the residual mode ranking component 350 (e.g.
based on an analysis of the input video 102 or other data). In Figure 3B this arrangement
is reversed, such that a general residual mode selection control is performed by a residual
mode selection component 350 but ranking is performed at each enhancement level (e.g.
as opposed to ranking based on the input video 102). In the example of Figure 3B, the

ranking may be performed by the level 1 residual mode ranking component 321 based on
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an analysis of the first set of residuals as output by the first subtraction component 320.
In general, the second example encoder 300, 360 identifies if the residuals ranking mode
is selected. This may be performed by the residual mode ranking or selection component
350. If a residuals ranking mode is selected, then this may be indicated by the residual
mode ranking or selection component 350 to the level 1 residuals selection or ranking
component 321 to perform a residuals ranking step. The residuals ranking operation may
be performed on the first step of residuals to generate a ranked set of residuals. The ranked
set of residuals may be filtered so that not all residuals are encoded into the first
enhancement stream 326 (or correction stream). Residual selection may comprise selecting
a subset of received residuals to pass through for further encoding. Although the present
examples describe a “ranking” operation, this may be seen as a general filtering operation
that is performed on the first set of residuals (e.g. the output of the first subtraction
component 320), i.e. the level 1 residuals selection or ranking component 321 is an
implementation of a general filtering component that may modify the first set of residuals.
Filtering may be seen as setting certain residual values to zero, i.e. such that an input
residual value is filtered out and does not form part of the encoded level 1 stream 326.

In Figures 3A and 3B, an output of the level 1 residuals selection or ranking
component 321 is then received by a level 1 transform component 322. The level 1
transform component 322 applies a transform to the first set of residuals, or the ranked or
filtered first set of residuals, to generate a transformed set of residuals. The transform
operation may be applied to the first set of residuals or the filtered first set of residuals
depending on whether or not ranking mode is selected to generate a transformed set of
residuals. A level 1 quantize component 323 is then applied to an output of the level 1
transform component 322 (i.e. the transformed set of residuals) to generate a set of
quantized residuals. Entropy encoding is applied by a level 1 entropy encoding component
325 that applies an entropy encoding operation to the quantized set of residuals (or data
derived from this set) to generate the first level of enhancement stream, i.e. the encoded
level 1 stream 326. Hence, in the level 1 layer a first set of residuals are transformed,
quantized and entropy encoded to produce the encoded level 1 stream 326. Further details
of possible implementations of the transformation, quantization and entropy encoding are
described with respect to later examples. Preferably, the entropy encoding operation may
be a Huffman encoding operation or a run-length encoding operation or both. Optionally
a control operation may be applied to the quantized set of residuals so as to correct for the

effects of the ranking operation. This may be applied by the level 1 residual mode control
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component 324, which may operate under the control of the residual mode ranking or
selection component 350.

As noted above, the enhancement stream may comprise a first level of enhancement
and a second level of enhancement (i.e. levels 1 and 2). The first level of enhancement may
be considered to be a corrected stream. The second level of enhancement may be
considered to be a further level of enhancement that converts the corrected stream to the
original input video. The further or second level of enhancement is created by encoding a
further or second set of residuals which are the difference between an up-sampled version
of a reconstructed level 1 video as output by the summation component 332 and the input
video 302. Up-sampling is performed by an up-sampling component 334. The second set
of residuals result from a subtraction applied by a second subtraction component 336,
which takes the input video 302 and the output of the up-sampling component 334 as
inputs.

In Figures 3A and 3B, the first set of residuals are encoded by a level 1 encoding
process. This process, in the example of Figures 3A and 3B, comprises the level 1
transform component 322 and the level 1 quantize component 323. Before up-sampling,
the encoded first set of residuals are decoded using an inverse quantize component 327 and
an inverse transform component 328. These components act to simulate (level 1) decoding
components that may be implemented at a decoder. As such, the quantized (or controlled)
set of residuals that are derived from the application of the level 1 transform component
322 and the level 1 quantize component 323 are inversely quantized and inversely
transformed before a de-blocking filter 330 is applied to generate a decoded first set of
residuals (i.e. an inverse quantization operation is applied to the quantized first set of
residuals to generate a de-quantized first set of residuals; an inverse transform operation is
applied to the de-quantized first set of residuals to generate a de-transformed first set of
residuals; and, a de-blocking filter operation is applied to the de-transformed first set of
residuals to generate a decoded first set of residuals). The de-blocking filter 330 is optional
depending on the transform applied and may comprise applying a weighted mask to each
block of the de-transformed first set of residuals.

At the summation component 332, the decoded base stream as output by the base
decoder 314 is combined with the decoded first set of residuals as received from the
deblocking filter 330 (i.e. a summing operation is performed on the decoded base stream
and the decoded first set of residuals to generate a re-created first stream). As illustrated in

Figures 3A and B, that combination is then up-sampled by the up-sampling component
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334 (i.e. an up-sampling operation is applied to the re-created first stream to generate an
up-sampled re-created stream). The up-sampled stream is then compared to the input video
at the second summation component 336, which creates the second set of residuals (i.e. a
difference operation is applied to the up-sampled re-created stream to generate a further
set of residuals). The second set of residuals are then encoded as the encoded level 2
enhancement stream 346 (i.e. an encoding operation is then applied to the further or second
set of residuals to generate an encoded further or second enhancement stream).

As with the encoded level 1 stream, the encoding applied to the second set (level
2) residuals may comprise several operations. Figure 3A shows a level 2 residuals selection
component 340, a level 2 transform component 341, a level 2 quantize component 343 and
a level 2 entropy encoding component 345. Figure 3B shows a similar set of components
but in this variation the level 2 residuals selection component 340 is implemented as a level
2 residuals ranking component 340, which is under control of the residual mode selection
component 350. As discussed above, ranking and selection may be performed based on
one or more of the input video 102 and the individual first and second sets of residuals. In
Figure 3A, a level 2 temporal buffer 345 is also provided, the contents of which are
subtracted from the output of the level 2 transform component 341 by third subtraction
component 342. In other examples, the third subtraction component 342 may be located in
other positions, including after the level 2 quantize component 343. As such the level 2
encoding shown in Figures 3A and 3B has steps of ranking, temporal prediction, transform,
quantization and entropy encoding. In particular, the second example encoder 200 may
identify if a residuals ranking mode is selected. This may be performed by one or more of
the residual ranking or selection component 350 and the individual level 2 selection and
ranking components 340. If a residuals ranking or filtering mode is selected the residuals
ranking step may be performed by one or more of the residual ranking or selection
component 350 and the individual level 2 selection and ranking components 340 (i.e. a
residuals ranking operation may be performed on the second set of residuals to generate a
second ranked set of residuals). The second ranked set of residuals may be filtered so that
not all residuals are encoded into the second enhancement stream (i.e. the encoded level 2
stream 346). The second set of residuals or the second ranked set of residuals are
subsequently transformed by the level 2 transform component 341 (i.e. a transform
operation is performed on the second ranked set of residuals to generate a second
transformed set of residuals). As illustrated by the coupling between the output of the

summation component 332 and the level 2 transform component 341, the transform
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operation may utilise a predicted coefficient or predicted average derived from the re-
created first stream, prior to up-sampling. Other examples of this predicted average
computation are described with reference to other examples; further information may be
found elsewhere in this document. In level 2, the transformed residuals (either temporally
predicted or otherwise) are then quantized and entropy encoded in the manner described
elsewhere (i.e. a quantization operation is applied to the transformed set of residuals to
generate a second set of quantized residuals; and, an entropy encoding operation is applied
to the quantized second set of residuals to generate the second level of enhancement
stream).

Figure 3A shows a variation of the second example encoder 200 where temporal
prediction is performed as part of the level 2 encoding process. Temporal prediction is
performed using the temporal selection component 352 and the level 2 temporal buffer
345. The temporal selection component 352 may determine a temporal processing mode
as described in more detail below and control the use of the level 2 temporal buffer 345
accordingly. For example, if no temporal processing is to be performed the temporal
selection component 352 may indicate that the contents of the level 2 temporal buffer 345
are to be set to 0.

Figure 3B shows a variation of the second example encoder 200 where temporal
prediction is performed as part of both the level 1 and the level 2 encoding process. In
Figure 3B, a level 1 temporal buffer 361 is provided in addition to the level 2 temporal
buffer 345. Although not shown, further variations where temporal processing is
performed at level 1 but not level 2 are also possible.

When temporal prediction is selected, the second example encoder 200 may further
modify the coefficients (i.e. the transformed residuals output by a transform component)
by subtracting a corresponding set of coefficients derived from an appropriate temporal
buffer. The corresponding set of coefficients may comprise a set of coefficients for a same
spatial area (e.g. a same coding unit as located within a frame) that are derived from a
previous frame (e.g. coefficients for the same area for a previous frame). The subtraction
may be applied by a subtraction component such as the third subtractions components 346
and 362 (for respective levels 2 and 1). This temporal prediction step will be further
described with respect to later examples. In summary, when temporal prediction is applied,
the encoded coefficients correspond to a difference between the frame and an other frame
of the stream. The other frame may be an earlier or later frame (or block in the frame) in

the stream. Thus, instead of encoding the residuals between the up-sampled re-created
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stream and the input video, the encoding process may encode the difference between a
transformed frame in the stream and the transformed residuals of the frame. Thus, the
entropy may be reduced. Temporal prediction may be applied selectively for groups of
coding units (referred to herein as “tiles”) based on control information and the application
of temporal prediction at a decoder may be applied by sending additional control
information along with the encoded streams (e.g. within headers or as a further surface as
described with reference to later examples).

As shown in Figures 3A and 3B, when temporal prediction is active, each
transformed coefficient may be:

A= Feprent — Fougrer

where the temporal buffer may store data associated with a previous frame. Temporal
prediction may be performed for one colour plane or for multiple colour planes. In general,
the subtraction may be applied as an element wise subtraction for a “frame” of video where
the elements of the frame represent transformed coefficients, where the transform is
applied with respect to a particular 7 by » coding unit size (e.g. 2x2 or 4x4). The difference
that results from the temporal prediction (e.g. the delta above may be stored in the buffer
for use for a subsequent frame. Hence, in effect, the residual that results to the temporal
prediction is a coefficient residual with respect to the buffer. Although Figures 3A and 3B
show temporal prediction being performed after the transform operation, it may also be
performed after the quantize operation. This may avoid the need to apply the level 2 inverse
quantization component 372 and/or the level 1 inverse quantize component 364.

Thus, as illustrated in Figures 3A and 3B and described above, the output of the
second example encoder 200 after performing an encoding process is an encoded base
stream 316 and one or more enhancement streams which preferably comprise an encoded
level 1 stream 326 for a first level of enhancement and an encoded level 2 stream 346 for

a further or second level of enhancement.

Third Example Encoder and Second FExample Decoder — Predicted Residuals

Figure 4 shows a third example encoder 400 that is a variation of the first example
encoder 100 of Figure 1. Corresponding reference numerals are used to refer to
corresponding features from Figure 1 (i.e. where feature 1xx relates to feature 4xx in Figure
4). The example of Figure 4 shows in more detail how predicted residuals, e.g. a predicted
average, may be applied as part of an up-sampling operation. Also, in Figure 4, the

deblocking filter 130 is replaced by a more general configurable filter 430.
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In Figure 4, a predicted residuals component 460 receives an input at a level 1
spatial resolution in the form of an output of a first summation component 432. This input
comprises at least a portion of the reconstructed video at level 1 that is output by the first
summation component 432. The predicted residuals component 460 also receives an input
at a level 2 spatial resolution from the up-sampling component 434. The inputs may
comprise a lower resolution element that is used to generate a plurality of higher resolution
elements (e.g. a pixel that is then up-sampled to generate 4 pixels in a 2x2 block). The
predicted residuals component 460 is configured to compute a modifier for the output of
the up-sampling component 434 that is added to said output via a second summation
component 462. The modifier may be computed to apply the predicted average processing
that is described in detail in later examples. In particular, where an average delta is
determined (e.g. a difference between a computed average coefficient and an average that
is predicted from a lower level), the components of Figure 4 may be used to restore the
average component outside of the level 2 encoding process 442. The output of the second
summation component 462 is then used as the up-sampled input to the second subtraction
component 436.

Figure SA shows how a predicted residuals operation may be applied at a second
example decoder 500. Like Figure 4, the second example decoder 500 may be considered
is a variation of the first example decoder 200 of Figure 2. Corresponding reference
numerals are used to refer to corresponding features from Figure 2 (i.e. where feature 2xx
relates to feature Sxx in Figure 5). The example of Figure SA shows in more detail how
predicted residuals, e.g. a predicted average, may be applied at the decoder as part of an
up-sampling operation. Also, in Figure SA, the deblocking filter 232 is replaced by a more
general configurable filter 532. It should be noted that the predicted residuals processing
may be applied asymmetrically at the encoder and the decoder, e.g. the encoder need not
be configured according to Figure 4 to allow decoding as set out in Figure SA. For example,
the encoder may applied a predicted average computation as described in US Patent
9,509,990, which is incorporated herein by reference.

The configuration of the second example decoder 500 is similar to the third
example encoder 400 of Figure 4. A predicted residuals component 564 receives a first
input from a first summation component 530, which represents a level 1 frame, and a
second input from the up-sampling component 534, which represents an up-sampled
version of the level 1 frame. The inputs may be received as a lower level element and a set

of corresponding higher level elements. The predicted residuals component 564 uses the
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inputs to compute a modifier that is added to the output of the up-sampling component 534
by the second summation component 562. The modifier may correct for use of a predicted
average, e.g. as described in US Patent 9,509,990 or computed by the third example
encoder 400. The modified up-sampled output is then received by a third summation
component 558 that performs the level 2 correction or enhancement as per previous
examples.

The use of one or more of the predicted residuals components 460 and 564 may
implement the “modified up-sampling” of other examples, where the modifier computed
by the components and applied by respective summation components performs the
“modification”. These examples may provide for faster computation of predicted averages
as the modifier is added in reconstructed video space as opposed to requiring conversion
to coefficient space that represents transformed residuals (e.g. the modifier is applied to
pixels of reconstructed video rather than applied in the A, H, V and D coefficient space of

the transformed residuals).

Third Example Decoder — Sub-Operations and Temporal Prediction

Figures 5B and 5C illustrate respective variations of a third example decoder 580,
590. The variations of the third example decoder 580, 590 may be respective implemented
to correspond to the variations of the third example encoder 300, 360 shown in Figures 3A
and 3B. The third example decoder 580, 590 may be seen as an implementation of one or
more of the first and second example encoders 200, 400 from Figures 2 and 4. As before,
similar reference numerals are used where possible to refer to features that correspond to
features in earlier examples.

Figures 5B and 5C show implementation examples of the decoding process
described briefly above and illustrated in Figure 2. As is clearly identifiable, the decoding
steps and components are expanded in more detail to provide an example of how decoding
may be performed at each level. As with Figures 3A and 3B, Figure 5B illustrates a
variation where temporal prediction is used only for the second level (i.e. level 2) and
Figure 5C illustrates a variation where temporal prediction is used in both levels (i.e. levels
1 and 2). As before, further variations are envisaged (e.g. level 1 but not level 2), where
the form of the configuration may be controlled using signalling information.

As shown in the examples of Figures SA and 5C, in the decoding process, the
decoder may parse headers 556 configure the decoder based on those headers. The headers

may comprise one or more of global configuration data, picture (i.e. frame) configuration
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data, and assorted data blocks (e.g. relating to elements or groups of elements within a
picture). In order to re-create the input video (e.g. the input video 102, 302 or 402 in
previous examples), an example decoder such as the third example decoder may decode
each of the encoded base stream 516, the first enhancement or encoded level 1 stream 526
and the second enhancement or encoded level 2 stream 546. The frames of the stream may
be synchronised and then combined to derive the decoded video 560.

As shown in Figure 5B, the level 1 decoding component 528 may comprise a level
1 entropy decoding component 571, a level 1 inverse quantize component 572, and a level
1 inverse transform component 573. These may comprise decoding versions of the
respective level 1 encoding components 325, 323 and 322 in Figures 3A and 3B. The level
2 decoding component 548 may comprise a level 2 entropy decoding component 581, a
level 2 inverse quantize component 582, and a level 2 inverse transform component 583.
These may comprise decoding versions of the respective level 2 encoding components 344,
343 and 341 in Figures 3A and 3B. In each decoding process, the enhancement streams
may undergo the steps of entropy decoding, inverse quantization and inverse transform
using the aforementioned components or operations to re-create a set of residuals.

In particular, in Figure 5B, an encoded base stream 516 is decoded by a base
decoder 518 that is implemented as part of a base codec 584. It should be noted that the
base and enhancement streams are typically encoded and decoded using different codecs,
wherein the enhancement codec operates on residuals (i.e. may implement the level 1 and
level 2 encoding and decoding components) and the base codec operates on video at a level
1 resolution. The video at the level 1 resolution may represent a lower resolution than the
base codec normally operates at (e.g. a down-sampled signal in two dimensions may be a
quarter of the size), which allows the base codec to operate at a high speed. This also marks
a difference from SVC wherein each layer applies a common codec (AVC) and operates
on video data rather than residual data. Even in SHVC, all spatial layers are configured to
operate on a video in / video out manner where each video out represents a different
playable video. In the present examples, the enhancement streams do not represent
playable video in the conventional sense — the output of the level 1 and level 2 decoding
components 528 and 548 (e.g. as received by the first summation component 530 and the
second summation component 558) are “residual videos”, i.e. consecutive frames of
residuals for multiple colour planes rather than the colour planes themselves. This then
allows a much greater bit rate saving as compared to SVC and SHVC, as the enhancement

streams will often be O (as a quantized difference is often 0), where 0 values may be
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efficiently compressed using run-length coding. It is also to be noted that in the present
examples, each coding unit of # by # elements (e.g. 2x2 or 4x4 blocks of pixels that may
be flattened into one-dimensional arrays) does not depend on predictions that involve other
coding units within the frame as per standard intra-processing in SVC and SHVC. As such,
the encoding and decoding components in the enhancement streams may be applied in
parallel to different coding units (e.g. different areas of a frame may be effectively
processed in parallel), as unlike SVC and SHVC there is no need to wait for a decoded
result of another coding unit to compute a subsequent coding unit. This means the
enhancement codec may be implemented extremely efficiently on parallel processors such
as common graphic processing units in computing devices (including mobile computing
devices). This parallelism is not possible with the high complexity processing of SVC and
SHVC.

Returning to Figure 5B, as in previous examples an optional filter such as
deblocking filter 532 may be applied to the output of the level 1 decoding component 528
to remove blocking or other artefacts and the output of the filter is received by the first
summation component 530 where it is added to the output of the base codec (i.e. the
decoded base stream). Note that the output of the base codec may resemble a low resolution
video as decoded by a conventional codec but the level 1 decoding output is a (filtered)
first set of residuals. This is different from SVC and SHVC where this form of summation
makes no sense, as each layer outputs a full video at a respective spatial resolution.

As in Figure 2, a modified up-sampling component 587 receives a corrected
reconstruction of the video at level 1 that is output by the first summation component 530
and up-samples this to generate an up-sampled reconstruction. The modified up-sampling
component 587 may apply the modified up-sampling illustrated in Figure 4. In other
examples, the up-sampling may not be modified, e.g. if a predicted average is not being
used or is being applied in the manner described in US Patent 9,509,990.

In Figure 5B, temporal prediction is applied during the level 2 decoding. In the
example of Figure 5B, the temporal prediction is controlled by temporal prediction
component 585. In this variation, control information for the temporal prediction is
extracted from the encoded level 2 stream 546, as indicated by the arrow from the stream
to the temporal prediction component 585. In other implementations, such as those shown
in Figures 5A and 5C, control information for the temporal prediction may be sent
separately from the encoded level 2 stream 546, e.g. in the headers 556. The temporal

prediction component 585 controls the use of level 2 temporal buffer 550, e.g. may
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determine a temporal mode and control temporal refresh as described with reference to
later examples. The contents of the temporal buffer 550 may be updated based on data for
a previous frame of residuals. When the temporal buffer 550 is applied, the contents of the
buffer are added to the second set of residuals. In Figure 5B, the contents of the temporal
buffer 550 are added to the output of the level 2 decoding component 548 at a third
summation component 594. In other examples, the contents of the temporal buffer may
represent any set of intermediate decoding data and as such the third summation
component 586 may be moved appropriated to apply the contents of the buffer at an
appropriate stage (e.g. if the temporal buffer is applied at the dequantized coefficient stage,
the third summation component 586 may be located before the inverse transform
component 583). The temporal-corrected second set of residuals are then combined with
the output of the up-sampling component 587 by the second summation component 558 to
generate decoded video 560. The decoded video is at a level 2 spatial resolution, which
may be higher than a level 1 spatial resolution. The second set of residuals apply a
correction to the (viewable) up-sampled reconstructed video, where the correction adds
back in fine detail and improves the sharpness of lines and features.

Figure 5C shows a variation 590 of the third example decoder. In this case,
temporal prediction control data is received by a temporal prediction component 585 from
headers 556. The temporal prediction component 585 controls both the level 1 and level 2
temporal prediction, but in other examples separate control components may be provided
for both levels if desired. Figure 5C shows how the reconstructed second set of residuals
that are input to the second summation component 558 may be fed back to be stored in the
level 2 temporal buffer for a next frame (the feedback is omitted from Figure 5B for
clarity). A level 1 temporal buffer 591 is also shown that operates in a similar manner to
the level 2 temporal buffer 550 described above and the feedback loop for the buffer is
shown in this Figure. The contents of the level 1 temporal buffer 591 are added into the
level 1 residual processing pipeline via a fourth summation component 595. Again, the
position of this fourth summation component 595 may vary along the level 1 residual
processing pipeline depending on where the temporal prediction is applied (e.g. if it is
applied in transformed coefficient space, it may be located before the level 1 inverse
transform component 573.

Figure 5C shows two ways in which temporal control information may be signalled
to the decoder. A first way is via headers 556 as described above. A second way, which

may be used as an alternative or additional signalling pathway is via data encoded within
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the residuals themselves. Figure SC shows a case whereby data 592 may be encoded into
an HH transformed coefficient and so may be extracted following entropy decoding by the
entropy decoding component 581. This data may be extracted from the level 2 residual

processing pipeline and passed to the temporal prediction component 585.

In general, the enhancement encoding and/or decoding components described
herein are low complexity (e.g. as compared to schemes such as SVC and SHVC) and may
be implemented in a flexible modular manner. Additional filtering and other components
may be inserted into the processing pipelines as determined by required implementations.
The level 1 and level 2 components may be implemented as copies or different versions of
common operations, which further reduces complexity. The base codec may be operated
as a separate modular black-box, and so different codecs may be used depending on the
implementation.

The data processing pipelines described herein may be implemented as a series of
nested loops over the dimensions of the data. Subtractions and additions may be performed
at a plane level (e.g. for each of a set of colour planes for a frame) or using multi-
dimensional arrays (e.g. X by Y by C arrays where C is a number of colour channels such
as YUV or RGB). In certain cases, the components may be configured to operate on n by
n coding units (e.g. 2x2 or 4x4), and as such may be applied on parallel on the coding units
for a frame. For example, a colour plane of a frame of input video may be decomposed
into a plurality of coding units that cover the area of the frame. This may create multiple
small one- or two-dimension arrays (e.g. 2x2 or 4x1 arrays or 4x4 or 16x1 arrays), where
the components are applied to these arrays. As such, reference to a set of residuals may
include a reference to a set of small one- or two-dimension arrays where each array
comprises integer element values of a configured bit depth.

Each enhancement stream or both enhancement streams may be encapsulated into
one or more enhancement bitstreams using a set of Network Abstraction Layer Units
(NALUs). The NALUs are meant to encapsulate the enhancement bitstream in order to
apply the enhancement to the correct base reconstructed frame. The NALU may for
example contain a reference index to the NALU containing the base decoder reconstructed
frame bitstream to which the enhancement has to be applied. In this way, the enhancement
can be synchronised to the base stream and the frames of each bitstream combined to

produce the decoded output video (i.e. the residuals of each frame of enhancement level
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are combined with the frame of the base decoded stream). A group of pictures may

represent multiple NALUS.

Further Description of Processing Components

It was noted above how a set of processing components or tools may be applied to
each of the enhancement streams (or the input video) throughout encoding and/or
decoding. These processing components may be applied as modular components. They
may be implemented in computer program code, i.e. as executed by one or more
processors, and/or configured as dedicated hardware circuitry, e.g. as separate or combined
Field Programmable Gate Arrays (FPGAs) or Application Specific Integrated Circuits
(ASICs). The computer program code may comprise firmware for an embedded device or
part of a codec that is used by an operating system to provide video rendering services.
The following provides a brief summary each of the tools and their functionality within the
overall process as illustrated in Figures 1 to 5C.

Down-sampling: The down-sampling process is applied by a down-
sampling component in the examples (e.g. 104, 304 and 404). The down-sampling
process is applied to the input video to produce a down-sampled video to be
encoded by a base codec. The down-sampling can be done either in both vertical
and horizontal directions, or alternatively only in the horizontal direction. A down-
sampling component may further be described as a down-scaler.

Level-1 (L-1) encoding: The input to this component, which is shown as
122 in Figure 1 comprises the first set of residuals obtained by taking the difference
between the decoded output of the base codec and the down-sampled video. The
first set of residuals are then transformed, quantized and encoded as further
described below.

Transform: In certain examples, there are two types of transforms that
could be used in by the transform components (e.g. transform components 122,
322, and/or 341). The transform may be a directional decomposition. The transform
may act to decorrelate the residual values in a coding unit (e.g. a small 7 by 7 block
of elements). A transform may be applied as a matrix transformation, e.g. a matrix
multiplication applied to a flattened array representing the coding unit.

In one case, the two types of transformation may correspond to two
different sizes of transformation kernel. The size of the coding unit may thus be set

based on the size of the transformation kernel. A first transform has a 2x2 kernel
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which is applied to a 2x2 block of residuals. The resulting coefficients are as
follows:
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A second transform has a 4x4 kernel which is applied to a 4x4 block of

5 residuals. The resulting coefficients are as follows:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 -1 -1 11 -1 -1 11 -1 -1 11 -1 -1
1 -1 1 -11 -1 1 -1 1 -1 1 -1 1 -1 1 -1
1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1

1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

11 -1 -1 11 -1 -1 -1 -1 1 1 -1 -1 1 1
1 -1 1 -11 -1 1 -1 -11 -1 1 -1 1 -1 1
1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
11 -1 -1 -1 -1 1 1 11 -1 -1 -1 -1 1 1
1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1
1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1

1 1 1 1 -1 -1 -1 -1 1 1 11 -1 -1 -1 -1
11 -1 -1 -1 -1 1 1 -1 -1 11 1 1 -1 -1
1 -1 1 -1 -1 1 -1 1 -11 -1 1 1 -1 1 -1
1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1

These transformation matrices may comprise integer values in the range
{-1, 1} or {-1, 0, 1}. This may simplify computations and allow for fast
10 hardware implementations using addition and subtraction. The transformation

matrices may comprise Hadamard matrices that have advantageous properties, such
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as orthogonal rows and being self-inverse (i.e. the inverse transformation is the
same as the forward transformation). If a Hadamard matrix is used an inverse
transformation may be referred to as a transformation as the same matrix may be
used for both forward and inverse transformations.

In certain cases, the transformation may include the application of a
predicted residuals computation (i.e. the use of a predicted average as described in
more detail with reference to later examples).

Quantization: A set of transformed residuals (referred to herein as
“coefficients”) are quantized using a quantize component such as components 323
or 343). An inverse quantize component, such as components 327, 364, 372, 572
and 582 may reconstruct a version of a value pre-quantization by multiplying the
quantized value by a defined quantization factor. The coefficients may be quantized
using a linear quantizer. The linear quantizer may use a dead zone of variable size.
The linear quantizer may use a dead zone of different size vs. the quantization step
and a non-centred dequantization offset. These variations are described in more
detail with reference to later examples.

Entropy coding: A set of quantized coefficients may be encoded using an
entropy coder such as components 325 or 344. There are two schemes of entropy
coding. In a first scheme, the quantized coefficients are encoded using a Run-
Length-Encoder (RLE). In a second scheme, the quantized coefficients are first
encoded using RLE, then the encoded output is processed using a Huffman
Encoder.

Residual mode (RM) selection: If a residual (filtering) mode (RM) has
been selected, the first set of residuals (i.e. level 1) may be further ranked and
selected in order to determine which residuals should be transformed, quantized
and encoded. Residual filtering may be performed by one or more of the
components 321 or 340, e.g. under control of a control component such as 150 or
350. Filtering of residuals may be performed anywhere in the residual processing
pipelines but preferably it is preformed prior to entropy encoding.

Temporal selection mode: If a temporal selection mode is selected, e.g. by
a component such as 152 or 352, the encoder may modify the coefficients (i.e. the
transformed residuals or data derived from these) by subtracting the corresponding
coefficients derived from a temporal buffer, such as 345 or 361. This may

implement temporal prediction as described below. The decoder may then modify
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the coefficients by adding the corresponding coefficients derived from a temporal
buffer, such as one of components 230, 250, 530, 550 or 591.

Level-1 (L-1) decoding: This is shown as components 228 and 528. The
input to this tool comprises the encoded level 1 stream 226 or 526 (i.e. L-1 encoded
residuals), which are passed through an entropy decoder (such as 571), a de-
quantizer (such as 572) and an inverse transform module (such as 573). The
operations performed by these modules are the inverse operations performed by the
modules described above. If the temporal selection mode has been selected, the
residuals may be in part predicted from co-located residuals from a temporal buffer.

Deblocking and residual filters: In certain cases, if a 4x4 transform is
used, the decoded residuals may be fed to a filter module or deblocking filter such
as 130, 232, 330 or 535. The deblocking operates on each block of inversely
transformed residuals by applying a mask whose weights can be specified. The

general structure of the mask is as follows:

QL TR
™R RP™
™R RP™
QL TR

where 0 < a <1 and 0 <3 <1 The weights may be specified within control
signalling associated with the bitstream or may be retrieved from a local memory.

Up-sampling: The combination of the decoded (and filtered or deblocked,
if applicable) first set of (L-1) residuals and base decoded video is up-sampled in
order to generate an up-sampled reconstructed video. The up-sampling may be
performed as described with respect to up-sampling components 134, 234, 334,
434, 534 or 587. Examples of possible up-sampling operations are described in
more details below. The up-sampling method may be selectable and signalled in
the bytestream. It should be noted that in examples herein, the term “bytestream”
or an alternative term such as stream, bitstream or NALU stream may be used as
appropriate.

Level-2 (L-2) encoding: This is represented as components 142, 442 and
548. The input to this encoding operation comprises the second set of (L-2)
residuals obtained by taking the difference between the up-sampled reconstructed

video and the input video. The second set of (L-2) residuals are then transformed,
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quantized and encoded as further described herein. The transform, quantization and
encoding are performed in the same manner as described in relation to L-1
encoding. If a residual filtering mode has been selected, the second set of residuals
are further ranked and selected in order to determine which residuals should be
transformed and encoded.

Predicted coefficient (or predicted average) mode: If the predicted
coefficient mode is selected, the encoder may modify the transformed coefficient
CO00, which is also referred to herein as A, i.e. an average value (which may be Ax
for a 4x4 transform as described in more detail below). If the 2x2 transform is used,
C00 may be modified by subtracting the value of the up-sampled residual which
the transformed block of residuals is predicted from. If the 4x4 transform is used,
C00 may be modified by subtracting the average value of the four up-sampled
residuals which the transformed block of residuals is predicted from. The predicted
coefficient mode may be implemented at the decoder using the modified up-
sampling as described herein.

Level-2 (L-2) decoding: This is shown as components 248 and 548. The
input to this decoding comprises the encoded second set of (L-2) residuals. The
decoding process of the second set of residuals involves an entropy decoder (e.g.
581), a de-quantizer (e.g. 582) and an inverse transform module (e.g. 583). The
operations performed by these components are the inverse operations performed
by the encoding components as described above. If the temporal selection mode
has been selected, the residuals may be in part predicted from co-located residuals
from a temporal buffer.

Modified up-sampling: The modified up-sampling process comprises two
steps, the second depending on a signalling received by the decoder. In a first step,
the combination of the decoded (and deblocked, if applicable) first set of (L-1)
residuals and base decoded video (L-1 reconstructed video) is up-sampled to
generate an up-sampled reconstructed video. If the predicted coefficient mode has
been selected, then a second step is implemented. In particular, the value of the
element in the L-1 reconstructed value from which a 2x2 block in the up-sampled
reconstructed video was derived is added to said 2x2 block in the up-sampled
reconstructed video. In general, the modified up-sampling may be based on the up-
sampled reconstructed video and on the pre-up-sampling reconstructed lower

resolution video as described with reference to Figure 4.
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Dithering: In certain examples, a last stage of dithering may be selectively
applied to the decoded video 260 or 560 in Figures 2 and 5A to 5C. Dithering may
comprise the application of small levels of noise to the decoded video. Dithering
may be applied by adding random or pseudo-random numbers within a defined
range to the decoded video. The defined range may be configured based on local
and/or signalled parameters. The defined range may be based on a defined
minimum and maximum value, and/or a defined scaling factor (e.g. for an output
of a random number generator within a specific range). Dithering may reduce the

visual appearance of quantization artefacts as is known in the art.

FExample of 4x4 Residual Coding Unit and Tiles

Figure 6A shows an example 600 of a set of residuals 610 arranged in a 4x4
coding unit 620. There are thus 16 residual elements. The coding unit 620 may comprise
an N by N array R of residuals with elements R[x][y]. For a 2x2 coding unit, there may
be 4 residual elements. The transform may be applied to coding units as shown.

Figure 6B shows how a plurality of coding units 640 may be arranged into a set
of tiles 650. The set of tiles may collectively cover the complete area of a picture or
frame. In the example, of Figure 6B, a tile is made up of an 8x8 array of coding units. If
the coding units are 4x4, this means that each tile has 32x32 elements; if the coding units

are 2x2, this means that each tile has 16x16 elements.

Example Picture Formats

Figures 7A to 7C show a number of ways in which colour components may be
organised to form a picture or frame within a video. In examples, frames of an input video
102, 302, 402 may be referred to as source pictures and a decoded output video 260, 560
may be referred to as decoded pictures. The encoding process as implemented by the
encoder may general a bitstream as described in examples herein that is transmitted to, and
received by, the decoding process as implemented by a decoder. The bitstream may
comprise a combined bitstream that is generated from at least the encoded base stream, the
encoded level 1 stream, the encoded level 2 stream and the headers (e.g. as described in
examples herein). A video source that is represented by the bitstream may thus be seen as
a sequence of pictures in decoding order.

In certain examples, the source and decoded pictures are each comprised of one or

more sample arrays. These arrays may comprise: luma only (monochrome) components
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(e.g. Y); luma and two chroma components (e.g. YCbCr or YCgCo); Green, blue, and red
components (e.g. GBR or RGB); or other arrays representing other unspecified
monochrome or tri-stimulus colour samplings (for example, YZX, also known as XYZ).
Certain examples described herein are presented with reference to luma and chroma arrays
(e.g. Y, Cb and Cr arrays); however, those skilled in the art will understand that these
examples may be suitably configured to operate with any known or future colour
representation method.

In certain examples, a chroma format sampling structure may be specified through
chroma_sampling type (e.g. this may be signalled to the decoder). Different sampling
formats may have different relations between the different colour components. For
example: in 4:2:0 sampling, each of the two chroma arrays has half the height and half the
width of the luma array; in 4:2:2 sampling, each of the two chroma arrays has the same
height and half the width of the luma array; and in 4:4:4 sampling, each of the two chroma
arrays has the same height and width as the luma array. In monochrome sampling there is
only one sample array, which is nominally considered the luma array. The number of bits
necessary for the representation of each of the samples in the luma and chroma arrays in a
video sequence may be in the range of 8 to 16, inclusive, and the number of bits used in
the luma array may differ from the number of bits used in the chroma arrays.

Figures 7A to 7C show different sampling types that may be represented by
different wvalues of the variable chroma sampling type. When the value of
chroma_sampling type is equal to 0, the nominal vertical and horizontal relative locations
of luma samples 710 and chroma samples 720 in pictures are shown in Figure 7A. When
the value of chroma_sampling type is equal to 1, the chroma samples 720 are co-sited with
the corresponding luma samples 710 and the nominal locations in a picture are as shown
in Figure 7B. When the value of chroma sampling type is equal to 2, all array samples
710, 720 are co-sited for all cases of pictures and the nominal locations in a picture are as
shown in Figure 7C. In these cases, the variables SubWidthC and SubHeightC may indicate

how the chroma samples are shifted:

chroma_sampling_type |Chroma format |SubWidthC |SubHeightC

0 Monochrome 1 1
1 4:2:0 2 2
2 4:2:2 2 1

3 4:4:4 1 1
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Example Bitstream Processing

Figure 8 shows an example method 800 that may be used to process a bitstream
that has been encoded using the example encoders or encoding processes described herein.
The method 800 may be implemented by an example decoder, such as 200 or 500 in
Figures 2 and 5. The method 800 shows an example flow which facilitates separation of
an enhancement bitstream.

Atblock 802, the method 800 comprises receiving an input bitstream 802. At block
804, a NALU start is identified within the received bitstream. This then allows
identification of an entry point at block 806. The entry point may indicate which version
of a decoding process should be used to decode the bitstream. Next, at block 808, a payload
enhancement configuration is determined. The payload enhancement configuration may
indicate certain parameters of the payload. The payload enhancement configuration may
be signalled once per stream. Optionally, the payload enhancement configuration may be
signalled multiple per group of pictures or for each NALU. The payload enhancement
configuration may be used to extract payload metadata at block 810.

At block 812, a start of a group of pictures (GOP) is identified. Although the term
group of pictures is used it will be understood that this term is used to refer to a
corresponding structure to that of the base stream but not to define a particular structure on
the enhancement stream. That is, enhancement streams may not have a GOP structure in
the strict sense and strict compliance with GOP structures of the art is not required. If
payload metadata is included, it may be included after the payload enhancement
configuration and before the set of groups of pictures. Payload metadata may for example
include HDR information. Following block 812, a GOP may be retrieved. At block 814, if
the NALU relates to a first bitstream frame, the method may further comprise retrieving a
payload global configuration at block 816. The payload global configuration may indicate
parameters of the decoding process, for example, the payload global configuration may
indicate if a predicted residual mode or temporal prediction mode was enabled in the
encoder (and should be enabled at the decoder), thus the payload global configuration may
indicate if a mode should be used in the decoding method. The payload global
configuration may be retrieved once for each GOP. At block 818, the method 800 may
further comprise retrieving a set of payload decoder control parameters which indicate to
the decoder parameters to be enabled during decoding, such as dithering or up-sampling

parameters. The payload decoder control parameters may be retrieved for each GOP. At
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block 820, the method 800 comprises retrieving a payload picture configuration from the
bitstream. The payload picture configuration may comprise parameters relating to each
picture or frame, for example, quantization parameters such as a step width. The payload
picture configuration may be retrieved once for each NALU (that is, once for each picture
or frame). At block 822, the method 800 may then further comprise retrieving a payload
of encoded data which may comprise encoded data of each frame. The payload of encoded
data may be signalled once for each NALU (that is, once for each picture or frame). The
payload of encoded data may comprise a surface, plane or layer of data which may be
separated into chunks as described with reference to Figures 9A, as well as the examples
of Figures 21A and 21B. After the payload of encoded data is retrieved, the NALU may
end at block 824.

If the GOP also ends, the method may continue to retrieve a new NALU for a new
GOP. Ifthe NALU is not the first bitstream frame (as the case here), then the NALU may
then, optionally, retrieve an entry point (i.e. an indication of a software version to be used
for decoding). The method may then retrieve a payload global configuration, payload
decoder control parameters and payload picture configuration. The method may then
retrieve a payload of encoded data. The NALU will then end.

If at block 814, the NALU does not relate to a first bitstream frame, then blocks
828 to 838 may be performed. Optional block 828 may be similar to block 806. Blocks
830 to 838 may be performed in a similar manner to blocks 816 to 824.

At blocks 840 and 842, after each NALU has ended, if the GOP has not ended, the
method 800 may comprise retrieving a new NALU from the stream at block 844. For each
second and subsequent NALU of each GOP, the method 800 may optionally retrieve an
entry point indication at block 846, in a similar manner to blocks 806 and 828. The method
800 may then comprise retrieving payload picture configuration parameters at block 848
and a payload of encoded data for the NALU at block 850. Blocks 848 to 852 may thus be
performed in a similar manner to blocks 820 to 824 and blocks 834 to 838. The payload
encoded data may comprise tile data.

As above, if the NALU is not the last NALU for the GOP, the method may
comprise retrieving a further NALU (e.g. looping around to block 844). If the NALU is
the last NALU in the GOP, the method 800 may proceed to block 854. If there are further
GOPs, the method may loop around to block 812 and comprise retrieving a further GOP
and performing blocks 814 onwards as previously described. Once all GOPs have been

retrieved the bitstream ends at block 856.
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Example Form of Encoded Payload Data

Figure 9A shows how encoded data 900 within an encoded bitstream may be
separated into chunks. More particularly, Figure 9A shows an example data structure for a
bitstream generated by an enhancement encoder (e.g. level 1 and level 2 encoded data). A
plurality of planes 910 are shown (of number nPlanes). Each plane relates to a particular
colour component. In Figure 9A, an example with YUV colour planes is shown (e.g. where
a frame of input video has three colour channels, i.e. three values for every pixel). In the
examples, the planes are encoded separately.

The data for each plane is further organised into a number of levels (nLevels). In
Figure 9A there are two levels, relating to each of enhancement levels 1 and 2. The data
for each level is then further organised as a number of layers (nlayers). These layers are
separate from the base and enhancement layers; in this case, they refer to data for each of
the coefficient groups that result from the transform. For example, an 2x2 transform results
in four different coefficients that are then quantized and entropy encoded and an 4x4
transform results in sixteen different coefficients that are then likewise quantized and
entropy encoded. In these cases, there are thus respectively 4 and 16 layers, where each
layer represents the data associated with each different coefficient. In cases, where the
coefficients are referred to as A, H, V and D coefficients then the layers may be seen as A,
H, V and D layers. In certain examples, these “layers” are also referred to as “surfaces”, as
they may be viewed as a “frame” of coefficients in a similar manner to a set of two-
dimensional arrays for a set of colour components.

The data for the set of layers may be considered as “chunks”. As such each payload
may be seen as ordered hierarchically into chunks. That is, each payload is grouped into
planes, then within each plane each level is grouped into layers and each layer comprises
a set of chunks for that layer. A level represents each level of enhancement (first or further)
and layer represents a set of transform coefficients. In any decoding process, the method
may comprise retrieving chunks for two level of enhancement for each plane. The method
may comprise retrieving 4 or 16 layers for each level, depending on size of transform that
isused. Thus, each payload is ordered into a set of chunks for all layers in each level and
then the set of chunks for all layers in the next level of the plane. Then the payload
comprises the set of chunks for the layers of the first level of the next plane and so on.

As such, in the encoding and decoding methods described herein, the pictures of a

video may be partitioned, e.g. into a hierarchical structure with a specified organisation.
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Each picture may be composed of three different planes, organized in a hierarchical
structure. A decoding process may seek to obtain a set of decoded base picture planes and
a set of residuals planes. A decoded base picture corresponds to the decoded output of a
base decoder. The base decoder may be a known or legacy decoder, and as such the
bitstream syntax and decoding process for the base decoder may be determined based on
the base decoder that is used. In contrast, the residuals planes are new to the enhancement
layer and may be partitioned as described herein. A “residual plane” may comprise a set
of residuals associated with a particular colour component. For example, although the
planes 910 are shown as relating to YUV planes of an input video, it should be noted the
data 920 does not comprise YUV values, e.g. as for a comparative coding technology.
Rather, the data 920 comprises encoded residuals that were derived from data from each
of the YUV planes.

In certain examples, a residuals plane may be divided into coding units whose size
depends on the size of the transform used. For example, a coding unit may have a
dimension of 2x2 if a 2x2 directional decomposition transform is used or a dimension of
4x4 if a 4x4 directional decomposition transform is used. The decoding process may
comprise outputting one or more set of residuals surfaces, that is one or more sets of
collections of residuals. For example, these may be output by the level 1 decoding
component 228 and the level 2 decoding component 248 in Figure 2. A first set of residual
surfaces may provide a first level of enhancement. A second set of residual surfaces may
be a further level of enhancement. Each set of residual surfaces may combine, individually
or collectively, with a reconstructed picture derived from a base decoder, e.g. as illustrated

in the example decoder 200 of Figure 2.

Example Up-sampling Approaches

Figures 9B to 9J and the description below relate to possible up-sampling
approaches that may be used when implementing the up-sampling components as
described in examples herein, e.g. up-sampling components 134, 234, 334, 434, 534 or 587
in Figures 1 to 5C.

Figs. 9B and 9C show two examples of how a frame to be up-sampled may be
divided. Reference to a frame may be taken as reference to one or more planes of data, e.g.
in YUV format. Each frame to be up-sampled, called a source frame 910, is divided into
two major parts, namely a centre area 910C, and a border area 910B. Fig. 9B shows an

example arrangement for bilinear and bicubic up-sampling methods. In Fig. 9B, the border
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area 910B consists of four segments, namely top segment 910BT, left segment 910BL,
right segment 910BR, and bottom segment 910BB. Fig. 9C shows an example arrangement
for a nearest up-sampling method. In Fig. 9C, the border area 910B consists of 2 segments;
right segment 910BR and bottom segment 910BB. In both examples, the segments may be
defined by a border-size parameter (BS), e.g. which sets a width of the segment (i.e. a
length that the segment extends into the source frame from an edge of the frame). The
border-size may be set to be 2 pixels for bilinear and bicubic up-sampling methods or 1
pixel for the nearest method.

In use, determining whether a source frame pixel is located within a particular
segment may be performed based on a set of defined pixel indices (e.g. in x and y
directions). Performing differential up-sampling based on whether a source frame pixel is
within a centre area 910C or a border area 910B may help avoid border effects that may

be introduced due to the discontinuity at the source frame edges.

Nearest up-sampling

Figure 9D provides an overview of how a frame is up-sampled using a nearest up-
sampling method. In Figure 9D, a source frame 920 is up-sampled to become destination
frame 922. The nearest up-sampling method up-samples by copying a current source pixel
928 onto a 2x2 destination grid 924 of destination pixels, e.g. as indicated by arrows 925.
Centre and edge pixels are respectively shown as 926 and 927. The destination pixel
positions are calculated by doubling the index of the source pixel 928 on both axes and
progressively adding +1 to each axis to extend the range to cover 4 pixels as shown on the
right-hand side of Figure 9D. For example, the value of source pixel 928 with index
location (x=6, y=6) is copied to destination grid 924 comprising pixels with index locations
(12, 12) (13, 12) (12, 13) and (13, 13). Each pixel in the destination grid 924 takes the
value of the source pixel 928.

The nearest method of up-sampling provides enables fast implementations that may
be preferable for embedded devices with limited processor resources. However, the nearest
method has a disadvantage that blocking, or “pixilation”, artefacts may need to be corrected
by the level 2 residuals (e.g. that result in more non-zero residual values that require more
bits for transmission following entropy encoding). In certain examples described below,
bilinear and bicubic up-sampling may result in a set of level 2 residuals that can be more
efficiently encoded, e.g. that require fewer bits following quantization and entropy

encoding. For example, bilinear and bicubic up-sampling may generate an up-sampled
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output that more accurately matches the input signal, leading to smaller level 2 residual

values.

Bilinear up-sampling

Figures 9E, 9F and 9G illustrate a bilinear up-sampling method. The bilinear up-
sampling method can be divided into three main steps. The first step involves constructing
a 2x2 source grid 930 of source pixels 932 in the source frame. The second step involves
performing a bilinear interpolation. The third step involves writing the interpolation result

to destination pixels 936 in the destination frame.

Bilinear up-sampling - Step 1: Source pixel grid

Fig. 9E illustrates a construction example of the 2x2 source grid 930 (which may
also be called a bilinear grid). The 2x2 source grid 930 is used instead of a source pixel
932 because the bilinear up-sampling method performs up-sampling by considering the
values of the nearest 3 pixels to a base pixel 932B, i.e. the nearest 3 pixels falling within
the 2x2 source grid 930. In this example, the base pixel 932B is at the bottom right of the
2x2 source grid 930, but other positions are possible. During the bilinear up method the
2x2 source grid 930 may be determined for multiple source frame pixels, so as to iteratively
determine destination frame pixel values for the whole destination frame. The base pixel

932B location is used to determine an address of a destination frame pixel.

Bilinear up-sampling - Step 2: Bilinear interpolation

Fig. OF illustrates a bilinear coefficient derivation. In this example, the bilinear
interpolation is a weighted summation of the values of the four pixels in the 2x2 source
grid 930. The weighted summation is used as the pixel value of a destination pixel 936
being calculated. The particular weights employed are dependent on the position of the
particular destination pixel 936 in a 2x2 destination grid 935. In this example, the bilinear
interpolation applies weights to each source pixel 932 in the 2x2 source grid 930, using the
position of the destination pixel 936 in the 2x2 destination grid 935. For example, if
calculating the value for the top left destination pixel (shown as 936/936B in Fig. 9F), then
the top left source pixel value will receive the largest weighting coefficient 934 (e.g.
weighting factor 9) while the bottom right pixel value (diagonally opposite) will receive

the smallest weighting coefficient (e.g. weighting factor 1), and the remaining two pixel
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values will receive an intermediate weighting coefficient (e.g. weighting factor 3). This is
visualized in Fig. 9F with the weightings shown in the 2x2 source grid 930.

For the pixel on the right of 936/936B within the 2x2 destination grid 935, the
weightings applied to the weighted summation would change as follows: the top right
source pixel value will receive the largest weighting coefficient (e.g. weighting factor 9)
while the bottom left pixel value (diagonally opposite) will receive the smallest weighting
coefficient (e.g. weighting factor 1), and the remaining two pixel values will receive an
intermediate weighting coefficient (e.g. weighting factor 3).

In Figure 9F, four destination pixels are computed for the base pixel 932B based
on the 2x2 source grid 930 but each destination pixel is determined using a different set of
weights. These weights may be thought of as an up-sampling kernel. In this way, there may
be four different sets of four weighted values that are applied to the original pixel values
within the 2x2 source grid 930 to generate the 2x2 destination grid 935 for the base pixel
932B. After the four destination pixel values are determined, another base pixel is selected
with a different source grid and the process begins again to determine the next four
destination pixel values. This may be iteratively repeated until pixel values for the whole
destination (e.g. up-sampled) frame are determined. The next section describes in more
detail the mapping of these interpolated pixel values from the source frame to the

destination frame.

Bilinear up-sampling - Step 3: Destination pixels

Figure 9G shows an overview of the bilinear up-sampling method comprising a
source frame 940, a destination frame 942, an interpolation module 944, a plurality of 2x2
source grids 930 (a,b,c,d,h,j), and a plurality of 2x2 destination grids 935 (d,e,h,k). The
source frame 940 and destination frame 942 have indexes starting from O on each column
and row for pixel addressing (although other indexing schemes may be used).

In general, each of the weighted averages generated from each 2x2 source grid 930
is mapped to a corresponding destination pixel 936 in the corresponding 2x2 destination
grid 935. The mapping uses the source base pixel 932B of each 2x2 source grid 930 to map
to a corresponding destination base pixel 936B of the corresponding 2x2 destination grid
942, unlike the nearest sampling method. The destination base pixel 936B address is
calculated from the equation (applied for both axes):

Dst base addr = (Src_base address x 2)-1
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Also, the destination pixels have three corresponding destination sub-pixels 721S
calculated from the equation:

Dst sub_addr = Dst_base_addr+1 (for both axes)

And so, each 2x2 destination grid 935 generally comprises a destination base pixel 936B
together with three destination sub pixels 93685, one each to the right, below, and diagonally
down to the right of the destination base pixel, respectively. This is shown in Figure 9F.
However, other configurations of destination grid and base pixel are possible.

The calculated destination base and sub addresses for destination pixels 936B and
9368 respectively can be out of range on the destination frame 942. For example, pixel A
(0, 0) on source frame 940 generates a destination base pixel address (-1, -1) for a 2x2
destination grid 935. Destination address (-1, -1) does not exist on the destination frame
942. When this occurs, writes to the destination frame 942 are ignored for these out of
range values. This is expected to occur when up-sampling the border source frames.
However, it should be noted that in this particular example one of the destination sub-pixel
addresses (0, 0) is in range on the destination frame 942. The weighted average value of
the 2x2 source grid 930 (i.e. based on the lower left pixel value taking the highest
weighting) will be written to address (0, 0) on the destination frame 942. Similarly, pixel
B (1, 0) on source frame 940 generates a destination base pixel address (1, -1) which is out
of range because there is no -1 row. However, the destination sub-pixel addresses (1, 0)
and (2, 0) are in range and the corresponding weighted sums are each entered into the
corresponding addresses. Similar happens for pixel C, but only the two values on the
column O are entered (i.e. addresses (0, 1) and (0, 2)). Pixel D at address (1, 1) of the source
frame contributes a full 2x2 destination grid 935d based on the weighted averages of source
grid 930d, as do pixels E, H and K, with 2x2 destination grids 935e, 935h, and 935k and
corresponding source grids 930e, 930h and 930k illustrated in Figure 9G.

As will be understood, these equations usefully deal with the border area 910B and
its associated segments, and ensure that when the centre 910C segment is up-sampled it
will remain in the centre of the destination frame 942. Any pixel values that are determined
twice using this approach, e.g. due to the manner in which the destination sub-pixels are
determined, may be ignored or overwritten.

Furthermore, the ranges for border segments 910BR and 910BB are extended by
+1 in order to fill all pixels in the destination frame. In other words, the source frame 940

is extrapolated to provide a new column of pixels in border segment 910BR (shown as
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index column number 8 in Figure 9G), and a new row of pixels in border segment 910BB

(shown as index row number 8 in Figure 9G).

Cubic up-sampling

Figures 9H, 91 and 9J together illustrate a cubic up-sampling method, in particular,
a bicubic method. The cubic up-sampling method of the present example may be divided
into three main steps. The first step involves constructing a 4x4 source grid 962 of source
pixels with a base pixel 964B positioned at the local index (2, 2) within the 4x4 source grid
815. The second step involves performing a bicubic interpolation. The third step involves

writing the interpolation result to the destination pixels.

Cubic up-sampling - Step 1: Source pixel grid

Figure 9H shows a 4x4 source grid 962 construction on source frame 960 for an in-
bound grid 9621 and separately an out-of-bound grid 9620. In this example, “in-bound”
refers to the fact that the grid covers source pixels that are within the source frame, e.g. the
centre region 910C and the border regions 910B; “out-of-bound” refers to the fact that the
grid includes locations that are outside of the source frame. The cubic up-sampling method
is performed by using the 4x4 source grid 962 which is subsequently multiplied by a 4x4
kernel. This kernel may be called an up-sampling kernel. During the generation of the 4x4
source grid 962, any pixels which fall outside the frame limits of the source frame 960 (e.g.
those shown in out of bounds grid 9620) are replaced with the value of the source pixels

964 the at the boundary of the source frame 960.

Cubic up-sampling - Step 2: Bicubic interpolation

The kernels used for the bicubic up-sampling process typically have a 4x4
coefficient grid. However, the relative position of the destination pixel with reference to
the source pixel will yield a different coefficient set, and since the up-sampling is a factor
of two in this example, there will be 4 sets of 4x4 kernels used in the up-sampling process.
These sets are represented by a 4-dimensional grid of coefficients (2 x 2 x 4 x 4). For
example, there will be one 4x4 kernel for each destination pixel in a 2x2 destination grid,
that represents a single up-sampled source pixel 964B.

In one case, the bicubic coefficients may be calculated from a fixed set of
parameters. In one case, this comprises a core parameter (bicubic parameter) and a set of

spline creation parameters. In an example, a core parameter of -0.6 and four spline creation
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parameters of [1.25, 0.25,-0.75 & -1.75] may be used. An implementation of the filter may

use fixed point computations within hardware devices.

Cubic up-sampling - Step 3: Destination pixels

Figure 9J shows an overview of the cubic up-sampling method comprising a source
frame 972, a destination frame 980, an interpolation module 982, a 4x4 source grid 970,
and a 2x2 destination grid 984. The source frame 972 and destination frame 980 have
indexes starting from O on each column and row for pixel addressing (although other
addressing schemes may be used).

Similarly to the bilinear method, the bicubic destination pixels have a base address
calculated from the equation for both axes:

Dst base addr = (Src_base address x 2)-1
Also, the destination addresses are calculated from:

Dst sub_addr = Dst_base_addr+1 (for both axes)

And so, as for the bilinear method, each 2x2 destination grid 984 generally comprises a
destination base pixel together with three destination sub pixels, one each to the right,
below, and diagonally down to the right of the destination base pixel, respectively.
However, other configurations of destination grid and base pixel are possible.

Again, these equations ensure that when the centre segment is up-sampled it will
remain in the centre of the destination frame. Furthermore, the ranges for border segments
510BR and 510BB are extended by +1 in order to fill all pixels in the destination frame
980 in the same way as described for the bilinear method. Any pixel values that are
determined twice using this approach, e.g. due to the manner in which the destination sub-
pixels are determined, may be ignored or overwritten. The calculated destination base and
sub addresses can be out of range. When this occurs, writes to the destination frame are
ignored for these out of range values. This is expected to occur when up-sampling the

border area.

Example Entropy I'ncoding

Figures 10A to 10I illustrate different aspects of entropy encoding. These aspects
may relate to an entropy encoding performed, for example, by entropy encoding
components 325, 344 in Figures 3A and 3B and/or an entropy decoding performed, for
example, by entropy decoding components 571, 581 in Figures 5B and 5C.
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Example Entropy Encoding — Header Formats
Figures 10B to 10E illustrate a specific implementation of the header formats and
how the code lengths may be written to a stream header depending on the amount of non-

zero codes.
Example Entropy Encoding — RLE State Machine
Figure 10F shows a state machine 1050 that may be used be a run length decoder,

such as run length decoder 1005 in Figure 10A.

Temporal Prediction and Signalling

Certain variations and implementation details of the temporal prediction will now
be described, including certain aspects of temporal signalling.

In certain examples described herein, information from two of more frames of
video that relate to different time samples may be used. This may be described as a
temporal mode, e.g. as it relates to information from different times. Not all embodiments
may make use of temporal aspects. Components for temporal prediction are shown in the
examples of Figures 1 to 5C. As described herein, a step of encoding one or more sets of
residuals may utilise a temporal buffer that is arranged to store information relating to a
previous frame of video. In one case, a step of encoding a set of residuals may comprise
deriving a set of temporal coefficients from the temporal buffer and using the retrieved set
of temporal coefficients to modify a current set of coefficients. “Coefficients”, in these
examples, may comprise transformed residuals, e.g. as defined with reference to one or
more coding units of a frame of a video stream — approaches may be applied to both
residuals and coefficients. In certain cases, the modifying may comprise subtracting the set
of temporal coefficients from the current set of coefficients. This approach may be applied
to multiple sets of coefficients, e.g. those relating to a level 1 stream and those relating to
a level 2 stream. The modification of a current set of coefficients may be performed
selectively, e.g. with reference to a coding unit within a frame of video data.

Temporal aspects may be applied at both the encoding and decoding stages. Use of
a temporal buffer is shown in the encoder 300 of Figures 3A and 3B and in the decoder
580, 590 of Figures 5B and 5C. As described herein, prior to modifying a current set of
coefficients, the current set of coefficients may be one or more of ranked and transformed.
In one case, dequantized transformed coefficients — dqCx,yn-1— from a previous encoded

(n-1) frame at a corresponding position (e.g. a same position or mapped position) are used
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to predict the coefficients Cxynin a frame to be encoded (n). If a 4x4 transform is used, x,
y may be in the range [0,3]; if a 2x2 transform is used x,y may be in the range [0,1].
Dequantized coefficients may be generated by an inverse quantize block or operation. For
example, in Figure 3B, dequantized coefficients are generated by inverse quantize
component 372.

In certain examples, there may be at least two temporal modes.

e A firsttemporal mode that does not use the temporal buffer or that uses the temporal
buffer with all zero values. The first temporal mode may be seen as an intra-frame
mode as it only uses information from within a current frame. In the first temporal
mode, following any applied ranking and transformation, coefficients may be
quantized without modification based on information from one or more previous
frames.

e A second temporal mode that makes use of the temporal buffer, e.g. that uses a
temporal buffer with possible non-zero values. The second temporal mode may be
seen as an inter-frame mode as it uses information from outside a current frame,
e.g. from multiple frames. In the second temporal mode, following any applied
ranking and transformation, previous frame dequantized coefficients may be
subtracted from the coefficients to be quantized — Cxyn,inter.= Cxy.n — dqCxyn-1.

In one case, a first temporal mode may be applied by performing a subtraction with
a set of zeroed temporal coefficients. In another case, the subtraction may be performed
selectively based on temporal signalling data. Figures 11A and 11B show example
operations in the encoder for two respective temporal modes. A first example 1100 in

Figure 12A shows an example 1200 of temporal processing that may be performed
at the encoder.

Figure 12B shows a corresponding example 1230, e.g. as implemented at a decoder

Figure 12C shows an example 1250 of how temporal signalling information may be

provided for a frame of residuals 1251

Figure 12D shows a representation 1260 of temporal signals for 4x4 transform size
(e.g. a DDS transform) Figures 13A and 13B are two halves 1300, 1340 of a flow chart
showing a method of temporal processing according to an example. The method of
temporal processing may be performed at the encoder. The method of temporal processing
may implement certain processes described above. The method of processing may be

applied to the frame of residuals shown in Figure 12C.
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Cloud Configuration

In certain examples, an encoder (or encoding process) may communicate with one
or more remote devices. The encoder may be an encoder as shown in any one of Figures
1, 3A and 3B or described in any other of the examples.

Figure 14A shows an example 1400 of an encoder 1402 communicating across a
network 1404,

Figure 14B shows that the encoder 1402 may send and/or receive configuration
data 1406, 1408 to and/or from a remote control server 1412.

Figure 14C shows how an encoder 1432 (which may implement any of the
described encoders including encoder 1402 in Figures 14A and 14B) may comprise a
configuration interface 1434 that is configured to communicate over the network, e.g. with
the remote control server 1412.

Using a cloud configuration as described herein may provide implementation
advantages. For example, an encoder may be controlled remotely, e.g. based on network
control systems and measurements. An encoder may also be upgraded to provide new
functionality by upgrading firmware that provides the enhancement processing, with
additional data, e.g. based on measurements or pre-processing being supplied by one or
more remote data sources or control servers. This provides a flexible way to upgrade and

control legacy hardware devices.

Residual Mode Selection

As described above, e.g. in relation to Figures 3A and 3B, certain examples may
implement different residual processing modes. For example, in Figure 3A, a residual
mode ranking component 350 controls residual mode selection components 321, 340 in
each of the level 1 and level 2 enhancement streams; in Figure 3B, a residual mode
selection component 350 controls residual mode ranking components 321, 340 in each of
the level 1 and level 2 enhancement streams. In general, an encoder may comprise a
residual mode control component that selects and implements a residual mode and residual
mode implementation components that implements processing for a selected residual mode
upon one or more enhancement streams.

In one example, once the residuals have been computed, the residuals may be
processed to decide how the residuals are to be encoded and transmitted. As described
earlier, here residuals are computed by comparing an original form of an image signal with

a reconstructed form of an image signal. For example, in one case, residuals for a level 2
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enhancement stream are determined by subtracting an output of the up-sampling (e.g. in
Figures 1, 3A and 3B) from an original form of an image signal (e.g. the input video 120,
302 as indicated in the Figures). The input to the up-sampling may be said to be a
reconstruction of a signal following a simulated decoding. In another case, residuals for an
level 1 enhancement stream are determined by subtracting an image stream output by the
base decoder from a down-sampled form of the original image signal (e.g. the output of
the down-sampling component 104, 304 in Figures 1, 3A and 3B).

To process residuals, e.g. in a selected residual mode, the residuals may be
categorized. For example, residuals may be categorized in order to select a residual mode.
A categorization process of the residuals may be performed based, for example, on certain
spatial and/or temporal characteristic of the input image.

In one example, the input image is processed to determine, for each element (e.g.,
a pixel or an area including multiple pixels) and/or group of elements whether that element
and/or group of elements has certain spatial and/or temporal characteristics. For example,
the element is measured against one or more thresholds in order to determine how to
classify it against respective spatial and/or temporal characteristics. Spatial characteristics
may include the level of spatial activity between specific elements or groups of elements
(e.g., how many changes exists between neighbouring elements), or a level of contrast
between specific elements and/or between groups of elements (e.g., how much a group of
element differs from one or more other groups of elements). The spatial characteristics
may be a measure of a change in a set of spatial directions (e.g. horizontal and/or vertical
directions for a 2D planar image). Temporal characteristics may include temporal activity
for a specific element and/or group of elements (e.g., how much an element and/or a group
of elements differ between collocated elements and/or group of elements on one or more
previous frames). The temporal characteristics may be a measure of a change in a temporal
direction (e.g. along a time series). The characteristics may be determined per element
and/or element group; this may be per pixel and/or per 2x2 or 4x4 residual block.

The categorization may associate a respective weight to each element and/or group
of elements based on the spatial and/or temporal characteristics of the element and/or group
of elements. The weight may be a normalized value between 0 and 1.

In one residual mode, a decision may be made as to whether to encode and transmit
a given set of residuals. For example, in one residual mode, certain residuals (and/or
residual blocks — such as the 2x2 or 4x4 blocks described herein) may be selectively

forwarded along the level 1 and/or level 2 enhancement processing pipelines by the RM
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L-x ranking components and/or the RM L-x selection components as shown in Figures 3A
and 3B. Put another way, different residual modes may have different residual processing
in the level 1 and/or level 2 encoding components 122, 142 in Figure 1. For example, in
one residual mode, certain residuals may not be forwarded for further level 1 and/or level
2 encoding, e.g. may not be transformed, quantized and entropy encoded. In one case,
certain residuals may not be forwarded by setting the residual value to O and/or by setting
a particular control flag relating to the residual or a group that includes the residual.

In one residual mode, a binary weight of 0 or 1 may be applied to residuals, e.g. by
the components discussed above. This may correspond to a mode where selective residual
processing is “on”. In this mode, a weight of 0 may correspond to “ignoring” certain
residuals, e.g. not forwarding them for further processing in an enhancement pipeline. In
another residual mode, there may be no weighting (or the weight may be set to 1 for all
residuals); this may correspond to a mode where selective residual processing is “off”. In
yet another residual mode, a normalised weight of 0 to 1 may be applied to a residual or
group of residuals. This may indicate an importance or “usefulness” weight for
reconstructing a video signal at the decoder, e.g. where 1 indicates that the residual has a
normal use and values below 1 reduce the importance of the residual. In other cases, the
normalised weight may be in another range, e.g. a range of 0 to 2 may give prominence to
certain residuals that have a weight greater than 1.

In the residual modes described above, the residual and/or group of residuals may
be multiplied by an assigned weight, where the weight may be assigned following a
categorization process applied to a set of corresponding elements and/or groups of
elements. For example, in one case, each element or group of elements may be assigned a
class represented by an integer value selected from a predefined set or range of integers
(e.g. 10 classes from O to 9). Each class may then have a corresponding weight value (e.g.
0 for class 0, 0.1 for class 1 or some other non-linear mapping). The relationship between
class and weight value may be determined by analysis and/or experimentation, e.g. based
on picture quality measurements at a decoder and/or within the encoder. The weight may
then be used to multiply a corresponding residual and/or group of residuals, e.g. a residual
and/or group of residuals that correspond to the element and/or group of elements. In one
case, this correspondence may be spatial, e.g. a residual is computed based on a particular
input element value and the categorisation is applied to the particular input element value
to determine the weight for the residual. In other words, the categorization may be

performed over the elements and/or group of elements of the input image, where the input
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image may be a frame of a video signal, but then the weights determined from this
categorization are used to weight co-located residuals and/or group of residuals rather than
the elements and/or group of elements. In this way, the characterization may be performed
as a separate process from the encoding process, and therefore it can be computed in

parallel to the encoding of the residuals process.

Example of Residual Mode Processing

Figure 15 shows an example of a residual mode. This example relates to a level 2
stream but a similar set of components may be provided for a level 1 stream. A set of input
image elements 7ij 1501 are classified via a classification component 1502 to generate a set
of class indications 1503 (e.g. in a range of O to 4). The class indications 1503 are then
used by a weight mapping component 1504 to retrieve a set of weights 1505 associated
with the class indications 1503. In parallel, a set of reconstructed up-sampled elements i
1506 are subtracted from the input image elements 75 1501 to generate an initial set of
residuals 7ij 1508. These residuals 1508 and the set of weights 1505 are then input to a
weight multiplication component 1509 that multiplies the residuals 1508 by the set of
weights 1505 to output a set of modified residuals 7' 1510. Figure 15 shows that the
residual mode selection may involve filtering a subset of residual values 1512 (e.g. by
multiplying them by a 0 weight) and passing through or modifying another subset of
residual values 1511 (e.g. where there are non-zero weights).

In certain cases, the characterization may be performed at a location remote from
the encoder and communicated to the encoder. For example, a pre-recorded movie or
television show may be processed once to determine a set of weights for a set of residuals
or group of residuals. These weights may be communicated over a network to the encoder,
e.g. they may comprise the residual masks described with reference to Figures 14A to 14C.

In one case, instead of, or as well as weighting the residuals, the residuals may be
compared against one or more thresholds derived from the categorization process. For
example, the categorisation process may determine a set of classes that have an associated
set of weights and thresholds, or just an associated set of thresholds. In this case, the
residuals are compared with the determined thresholds and residuals that falls below a
certain one or more thresholds are discarded and not encoded. For example, additional
threshold processing may be applied to the modified residuals 1510 from Figure 15 and/or
the weight mapping and weight multiplication components may be replaced with threshold

mapping and threshold application stages. In general, in both cases, residuals are modified
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for further processing based on a categorisation process, where the categorisation process
may be applied to corresponding image elements.

The above described methods of residual mode processing may be applied at the
encoder but not applied at the decoder. This thus represents a form of asymmetrical
encoding that may take into account increased resources at the encoder to improve
communication. For example, residuals may be weighted to reduce a size of data
transmitted between the encoder and decoder, allowing increases of quality for constrained
bit rates (e.g. where the residuals that are discarded have a reduced detectability at the

decoder).

Predicted Averages

As described herein, a residual element may be defined as a difference between an
input frame element and a corresponding/co-located up-sampled element, as indicated

below:

Atthe encoder, the residuals are transformed before being quantized, entropy coded
and transmitted to the decoder. In particular, the encoder uses two possible transforms, the
first one called Directional Decomposition (DD), the other called Directional
Decomposition Squared (DDS). More details on these transforms are also included in
patent applications PCT/EP2013/059847 and PCT/GB2017/052632, which are included
herein by reference.

Figure 16A shows a process 1600 involving a DD transform at the encoder. In the
case of a DD, a transform is applied to each 2x2 block of a frame or plane of input data
1610. By reference to Figure 16A, four 2x2 blocks 1611 of input values 1612 are presented.
These are down-sampled by a down-sampling process 1615 (e.g. similar to the down-
sampling component 104, 304 of Figures 1 and 3A/B) to generate a down-sampled frame
or plane 1620, with element values 1621. The down-sampled frame 1620 is then up-
sampled by up-sampling process 1625 (e.g. as shown via components 134, 334 in Figures
1 and 3A/3B). This results in an up-sampled frame 1630, which also has blocks 1631 of
up-sampled values 1632, where, in Figure 16A, one down-sampled value 1622 is up-
sampled to generate four up-sampled values 1632 (i.e. one up-sampled block 1631). In
Figure 16A, the up-sampled frame 1630 is subtracted 1635 from the input frame 1610 to

generate a frame of residuals 1640, which comprise blocks 1641 of residual values 1642.
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In a transformation, the following coefficients are calculated for each block of
residuals 1641 (the expression below, for simplicity, refers to the left uppermost 2x2 block,

but similar expressions can be easily derived for the other blocks):

1
1 1
Ay = 2 2 Ty :Z(Too + 791 + To + 711)
i,j=0
1
Hy = Z(roo — 701t 1o — T11)

1
Vo = Z(roo + 701 — To — T11)

1
Dy = Z(roo — To1 — Tyo +T11)

Looking now at an Average component (Ao) this can be decomposed as follows:

It is noted that each up-sampled 2x2 block 1631 with up-sampled values 1632 as
shown in Figure 16A is obtained from an up-sampling operation starting from the
corresponding lower resolution element 1622. This lower resolution element 1622 may be
referred to as a “controlling element”. In the case of left uppermost block, that element
would be doo.

Accordingly, doo may be can added and deleted as follows to obtain:

v 1w
Ao :ZZ ij T g Uij — doo + doo
i,j=0 i,j

=
Which could then be grouped as follows:

1 1

1 1

£,j=0 L,j=0
whereas 6Ao (delta average) is shown as 1650 corresponds to the difference 1645 between
the average of the elements in the input image (e.g. of block 1611) and the controlling
element 1622. The predicted average PAo corresponds to the difference between the
average of the up-sampled elements and the controlling element. This may be computed at
a decoder.

Figure 16B sets out a corresponding process 1655 at the decoder. Data from the

encoder 1656 communicates the 6A value 1658. In parallel, alevel 1 resolution frame 1660
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is reconstructed and up-sampled 1665 to form an up-sampled frame 1666. Figure 16B
shows a block 1661 of four lower resolution elements 1662. These elements correspond to
a reconstructed video signal. The up-sampled frame 1666 is shown with four blocks 1668
of four up-sampled elements 1669. The decoder is capable of calculating the PA using the
up-sampled elements 1668 and the controlling element 1662 obtained from decoding the
lower resolution frame (e.g., the frame obtained from decoding a base encoded with a
separate codec such as AVC, HEVC, etc.). In Figure 16B, the predicted average 1671 is
determined as the difference 1670 of the average of the block of up-sampled elements 1668
and the controlling element 1662. The original average 1675 may then be reconstructed by
summing 1672 the A value 1658 and the predicted average value PA 1671. This is also
why this element is called “predicted average” in that it is the component of the Average
that can be predicted at the decoder. The decoder would then need only the 8A, which is
provided by the encoder since there information about the input image frame is known at
the encoder.

Accordingly, when using the DD transform type, the decoder is able to compute
the predicted average using one or more up-sampled elements and a corresponding element
from a lower resolution image (“controlling element”), said corresponding element being
used to generate said one or more up-sampled elements. Then, it is able to decode a value
received from an encoder, said value representing the difference between one or more
elements in a reference (e.g., input) image and the controlled element. It is then able to
combine said predicted average and decoded value to generate one of the transformed
coefficients, namely the average coefficient.

When using the DD transform type, the encoder is able to compute a value to be
transmitted to the decoder, said value representing the difference between one or more
elements in a reference (e.g., input) image and a corresponding element from a lower
resolution image (“controlling element”). The encoder is able to generate said controlling
element by replicating the operations which an encoder would need to perform in order to
reconstruct the image. In particular, the controlling elements correspond to the element
which the decoder would use in order to generate said one or more up-sampled elements.
The encoder is then able to further transmit the H, V and D coefficients to the decoder.

In the case of a DDS transform, the operations are slightly modified. The DDS
operates over a 4x4 blocks of residuals and generate 16 transformed coefficients. A DDS
could be implemented in at least two ways. Either directly, by summing and subtracting

the 16 residuals in the 4x4 blocks — see below:
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)

Alternatively, and in a more efficient manner, it can be implemented as a “two-step”

transform by first performing a DD transform over each 2x2 blocks of residuals to generate

a 2x2 block of DD coefficients, and then applying a second DD transform over

5 First step:

1 1 1 1 Too

1 -1 1 -1 }{Toa

DDy = (Ago Hoo Voo Doo) =11 1 -1 -1 1o

1 -1 -1 1 "1

1 1 1 1 To2

1 -1 1 -1 }{T7s

DDy, = (Ao1 Hyy Voq D01) = (1 1 -1 -1 o

1 -1 -1 1/ V13

1 1 1 1 T20

1 -1 1 -1 (T

DDy = (410 Hiy Vie Do) = (1 1 -1 -1 T30

1 -1 -1 1/ \a1

1 1 1 1 T22

-1 1 -1 72

DDy; = (A1 Huw Vii Diy) = (% 1 -1 —1]\ry

1 -1 -1 1/ \33

10 Second step:

AA AH AV AD 1 1 1 1\ [Ao Hoo Voo Doo
pps—|HA HH HV HD)_[1 -1 1 -1 \[4n Ho Vor Do
VA VH VV VD 1 1 _1 _1 AlO HlO VlO DlO
DA DH DV DD 1 _1 _1 1 All Hll Vll Dll

As it can be seen, in the DDS case there are four “averages” coefficients, one for
each directions: (1) AA, or average of the average coefficients; (2) AH, or average of the
horizontal coefficients; (3) AV, or average of the vertical coefficients; and (4) AD, or

15  average of the diagonal coefficients.

Similarly to the DD transform, each of these average coefficients can be
decomposed into a delta average (to be computed by the encoder and decoded at the
decoder) and a predicted average (to be computed by the decoder), as follows:

AA = 64AA + PAA
20 AH = 6AH + PAH

AV = §AV + PAV
AD = 6AD + PAD
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Accordingly, there are four delta averages to be computed by the encoder, namely
SAA, 6AH, 6AV and 0AD.

Using the two-step approach defined above, the four delta averages can be

computed as follows:

1
1
5 sAA=7 > A,
ij=0
1
1
ij=0
1
1
sAV =2 ) oV,
ij=0

1
1
i,j=0

On the other hand, the various predicted averages can be computed as follows:

1
1
i,j=0
1
1
i,j=0

1

1
PAV =3 z PV,
LJj

[ j=0

1
1
i,j=0

where

1
Phij = dij = 7 (uenep + daine) + deine) + herne+n)

PH;; =d

ij =% T3 (Ueney = derne) + beine) ~ Yernei)

1
PVij=dyj = 7 (Uanep + Uemne) ~ beune) ~ bernei+n)
20
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PDy; = dij = 7 (e — Yeune) ~ Yeiune) + dernein)
An alternative way of computing the predicted averages is to first compute the

predicted averages for each 2x2 block and then perform a Directional Decomposition on

them.
In other words, the first step is to compute:
1
PAj =dij = 7 (Uene) T deune) + dewne) + teinein)
and then

1
1
PAA=7 ) PA;
ij=0

1
1
PAV:Z(PAOO + PAOI - PAlO - PAll)

1
PAD:Z(PAOO - PAOl - PAIO + PAll)

Accordingly, when using a DDS transform, the encoder may generate the various
delta averages 0AA, 6AH, 6AV and 6AD and send them to the decoder, along with the
other DDS coefficients HA, HH, HV, HD, VA, VH, VV, VD, DA, DH, DV, DD.

At the decoder, the decoder may compute PAA, PAH, PAV and PAD as illustrated
above. Further, in the present examples, it receives the delta averages, decode them and
then may sum them to the predicted averages in order to obtain the averages AA, AH, AV
and AD. The averages are then be combined with the other DDS coefficients, an inverse
DDS is applied, and then residuals are obtained from the inverse transform.

Alternatively, as transform and inverse transform are linear operations, inverse
DDS can be done on the delta averages 0AA, 0AH, 6AV and SAD and the other DDS
coefficients HA, HH, HV, HD, VA, VH, VV, VD, DA, DH, DV, DD to obtain residuals
and PAys could be added post-transform to the residuals in corresponding 2x2 blocks to
obtain final residual values.

Figures 16C and 16D respectively show an encoding process 1680 and a decoding
process 1690 that correspond to Figure 16A and 16B but where the transformation is one-
dimensional, e.g. where down-sampling and up-sampling are performed in one direction
rather than two directions. This, for example, may be the case for a horizontal-only scaling

mode that may be used for interlaced signals. This may be seen by the indicated elements
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1681 where two elements 1682 in a block 1683 are down-sampled to generate element
1684. The input data elements 1681 and the down-sampled (“control”) element are then
used to generate the delta average (0A) 1685. Correspondingly, at the decoding process
1690, a two element block 1691 of up-sampled elements is compared with the down-

sampled element 1662 to determine the predicted average 1671.

Signalling within DDS

In certain implementations, bit or bytestream signalling may be used to indicate
whether one or more of the coefficients from the DDS transform are used for internal
signalling (e.g. as opposed to carrying transformed coefficient values).

For example, in one case, a signalling bit may be set to a value of 0 to indicate that
no internal signalling is used (e.g. a predefined coefficient value carries the transformed
residual value for the coding unit) and may be set to a value of 1 to indicate that internal
signalling is used (e.g. any existing transformed residual value is replaced by a signalling
value that carries information to the decoder). In the latter case, the value of the coefficient
may be ignored when inverse transforming the transformed residuals, e.g. may be assumed
to be 0 regardless of the value used for signalling therein.

In one case, the HH coefficient of the DDS transform may be adapted to carry
signalling in the case that the signalling bit is set to 1. This coeftficient may be selected as
its value has been determined to least affect the decoded residual values for a coding block.

The value carried in the internal coefficient signalling may be used for a variety of
purposes. The information may be used at the decoder if the decoder is configured to
receive and act on the information (e.g. at the discretion of the decoder).

In one case, the within-coefficient signalling may indicate information associated
with post-processing to perform on the wider coding unit (e.g. the coding unit associated
with the signalling coefficient). In one case, the within-coefficient signalling may indicate
information associated with a potential artefact or impairment that may be present when
the decoded coding unit is applied in one or more of the level 1 and level 2 enhancement
operations. For example, the within-coefficient signalling may indicate that decoded
residual data (and/or a portion of reconstructed video frame) associated with the coding
unit may be subject to banding, blockiness etc. One or more post-processing algorithms
may then use this information embedded within the coefficient data to selective apply one
or more post-processing operations to address the impairment and improve the

reconstructed video.
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Predicted Residuals

As described above, certain examples may use an approach that acts to predict a
coefficient generated by the transform stage. In one case, an average component (A) may
be predicted using a “predicted average” computation. The predicted average computation
enables a delta average to be transmitted in place of a full average value. This can save a
signification amount of data (e.g. reduce a required bitrate) as it reduces the entropy of the
average component to be encoded (e.g. often this delta average may be small or zero).

For example, when decoding a level 2 enhancement stream, one picture element at
a level 1 resolution may be input to an up-sampling operation, where it is used to create
four picture elements at an up-sampled or level 2 resolution. As part of the reconstruction,
the value of the predicted average for the up-sampled coding unit of four picture elements
may be added to the up-sampled values for the four picture elements.

In one case, a variation to the above predicted average computation may be applied.

In this variation, the addition of the predicted average value after up-sampling may
be modified. The addition may be modified by a linear or non-linear function that acts to
add different proportions of the predicted average value to different locations within the
up-sampled coding block.

For example, in one case, information from one or more neighbouring coding
blocks may be used to weight the predicted average value differently for different picture
elements. In this case, picture elements that neighbour lower-valued picture elements may
receive less of the predicted average value and picture elements that neighbour higher-
valued picture elements may receive more of the predicted average value. The weighting
of the predicted average may thus be set for a picture element based on the relative values
of its neighbouring picture elements.

This may provide improvements when an edge is present within the coding block.
In cases, where an edge is present in the up-sampled coding block, it may be beneficial to
weight the predicted average value in accordance with the edge location. For example, if
the edge is vertical then picture elements within one column of the coding unit may be
combined with a higher or lower value than the other column of the coding unit, wherein
the exact weighting depends on the gradient of the edge. Edges at different angles may
have more complex weightings of the predicted average value. This form of correction to

the predicted average addition may be referred to as adding a form of “tilt”. It may form
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part of a predicted residuals computation. In these cases, each picture element may receive

a different value for combination, as opposed to a common single predicted average value.

Rate Control & Ouantization

In certain implementations the quantization operation may be controlled to control
a bit rate of one or more of the encoded streams. For example, quantization parameters for
the quantize components 323 and/or 343 in Figures 3A and 3B may be set to provide a
desired bitrate in one or more of the encoded video streams (whether that be a common bit
rate for all streams so as to generate a common encoded stream or different bit rates for
different encoded streams).

In certain cases, the quantization parameters may be set based on an analysis of one
or more of the base encoding and the enhancement stream encoding. Quantization
parameters may be chosen to provide a desired quality level, or to maximise a quality level,
within a set of pre-defined bit-rate constraints. Multiple mechanisms may be used to
control a variation in the original video.

Figure 17A shows a schematic diagram of an example encoder 1700.

Figure 17A shows the use of the buffer 1740 with respect to the encoded base
stream and the encoded L-1 stream; Figure 17B shows another example, where the buffer
1740 receives the encoded base stream and both the encoded level 1 and level 2
enhancement streams.

Figures 18 and 19 show two possible implementations of the rate controller (e.g.
rate controller 1710). These implementation uses a status of the buffer to generate a set of
quantization parameters Q: for a current frame 7.

QOuantization Features

Certain quantization variations will now be described with reference to Figures
20A to 20D.

Figure 20A provides an example 2000 of how quantization of residuals and/or
coefficients (transformed residuals) may be performed based on bins having a defined step

width.

Deadzone
Figure 20B shows an example 2010 how a so-called “deadzone” (DZ) may be

implemented.
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Bin Folding
Figure 20C shows an example 2020 of how an approach called bin folding may be
applied.

Quantization Offsets
Figure 20D shows an example 2030 of how a quantization offset may be used in

certain cases.

As described above, for example with reference to Figure 12C, in certain
configurations a frame of video data may be divided into two-dimensional portions referred
to as “tiles”. For example, a 640 by 480 frame of video data may contain 1200 tiles of 16
pixels by 16 pixels (e.g. 40 tiles by 30 tiles). Tiles may thus comprise non-overlapping
successive areas within a frame, where each area is of a set size in each of two-dimensional.
A common convention is for tiles to run successively in rows across the frame, e.g. a row
of tiles may run across a horizontal extent of the frame before starting a row of tiles below
(a so-called “raster” format, although other conventions, such as interlaced formats may
also be used). A tile may be defined as a particular set of coding units, e.g. a 16 by 16 pixel
tile may comprise an 8 by 8 set of 2x2 coding units or a 4 by 4 set of 4x4 coding units.

In certain cases, a decoder may selectively decode portions of one or more of a base
stream, a level 1 enhancement stream and a level 2 enhancement stream. For example, it
may be desired to only decode data relating to a region of interest in a reconstructed video
frame. In this case, the decoder may receive a complete set of data for one or more of the
base stream, the level 1 enhancement stream and the level 2 enhancement stream but may
only decode data within the streams that is useable to render the region of interest in the
reconstructed video frame. This may be seen as a form of partial decoding.

Partial decoding in this manner may provide advantages in a number of different
areas.

When implementing a virtual or augmented reality application, only a portion of a
wide field of view may be being viewed at any one time. In this case, only a small region
of interest relating to the viewed area may be reconstructed at a high level of quality, with
the remaining areas of the field of view being rendered at a low (i.e. lower) level of quality.

Further details regarding this approach may be found in patent publication
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WO02018/015764 A1, which is incorporated by reference herein. Similar, approaches may
be useful when communicating video data relating to a computer game.

Partial decoding may also provide an advantage for mobile and/or embedded
devices where resources are constrained. For example, a base stream may be decoded
rapidly and presented to a user. The user may then select a portion of this base stream to
render in more detail. Following selection of a region of interest, data within one or both
of the level 1 and level 2 enhancement streams relating to the region of interest may be
decoded and used to render a particular limited area in high detail. A similar approach may
also be advantageous for object recognition, whereby an object may be located in a base
stream, and this location may form a region of interest. Data within one or both of the level
1 and level 2 enhancement streams relating to the region of interest may then be decoded
to further process video data relating to the object.

In the present examples, partial decoding may be based on tiles. For example, a
region of interest may be defined as a set of one or more tiles within frames of the
reconstructed video stream, e.g. the reconstructed video stream at a high level of quality or
full resolution. Tiles in the reconstructed video stream may correspond to equivalent tiles
in frames of the input video stream. Hence, a set of tiles that covers an area that is smaller
that a complete frame of video may be decoded.

In certain configurations described herein, the encoded data that forms part of at
least the level 1 enhancement stream and the level 2 enhancement stream may result from
a Run-Length encoding then Huffman encoding. In this encoded data stream, it may not
be possible to discern data relating to specific portions of the reconstructed frame of video
without first decoding the data (e.g. until obtaining at least quantized transformed
coefficients that are organised into coding units).

In the above configurations, certain variations of the examples described herein
may include a set of signalling within the encoded data of one or more of the level 1
enhancement stream and the level 2 enhancement stream such that encoded data relating
to particular tiles may be identifier prior to decoding. This can then allow for the partial
decoding discussed above.

For example, in certain examples, the encoding scheme illustrated in one or more
of Figures 10A to 10l may be adapted to include header data that identifies a particular tile
within a frame. The identifier may comprise a 16-bit integer that identifies a particular tile
number within a regular grid of tiles (such as shown in Figure 12C). For example, at the

start of transmission of encoded data relating to a particular tile of the input video frame,
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an identifier for the tile may be added to a header field of the encoded data. At the decoder,
all data following the identifier may be deemed to relate to the identified tile, up to a time
where a new header field is detected within the encoded stream or a frame transition header
field is detected. In this case, the encoder signals tile identification information within one
or more of the level 1 enhancement stream and the level 2 enhancement stream and this
information may be received within the streams and extracted without decoding the
streams. Hence, in a case where a decoder is to decode one or more tiles relating to a
defined region of interest, the decoder may only decode portions of one or more of the
enhancement streams that relate to those tiles.

Use of a tile identifier within the encoded enhancement streams allows variable
length data, such as that output by the combination of Huffman and Run-length encoding,
while still enabling data that relates to particular areas of a reconstructed video frame to be
determined prior to decoding. The tile identifier may thus be used to identify different
portions of a received bitstream.

In the present examples, enhancement data (e.g. in the form of transformed
coefficients and/or decoded residual data) relating to a tile may be independent of
enhancement data relating to other tiles within the enhancement streams. For example,
residual data may be obtained for a given tile without requiring data relating to other tiles.
In this manner, the present examples may differ from comparative Scalable Video Coding
schemes, such as in associated with the HEVC and AVC standards (e.g. SVC and SHVC),
that require other intra or inter picture data to decode data relating to a particular area or
macroblock of a reconstructed picture. This enables the present examples to be efficiently
implemented using parallel processing — different tiles and/or coding units of the
reconstructed frame may be reconstructed in parallel. This can greatly speed up decoding
and reconstruction on modern computing hardware where multiple CPU or GPU cores are

available.

Tiles Within the Bytestream

Figure 21A shows another example 2100 of a bit or bytestream structure for an
enhancement stream. Figure 21A may be seen as another example similar to Figure 9A.
The top of Figure 21A shows components 2112 to 2118 of an example bytestream 2110
for a single frame of video data. A video stream will then comprise multiple such structures

for each frame of the video. The bytestream for a single frame comprises a header 2112,
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and data relating to each of three planes. In this example, these planes are colour
components of the frame, namely Y, U and V components 2114, 2216 and 2218.

In the second level of Figure 21A, the general structure of a bytestream for a given
colour plane 2115 is shown. In this case, the sub-portions of a Y plane are shown. The
other planes may have a similar structure. In Figure 21A, each plane comprises data 2120
relating to each of the two levels of enhancement: a first level of quality (level or LoQ 1)
2122 and a second level of quality (level or LoQ 2) 2124. As discussed above, these may
comprise data for the level 1 enhancement stream and the level 2 enhancement stream.

In the third level of Figure 21A, each enhancement level 2125 further data 2130
that comprises bytestream portions 2132 relating to a plurality of layers. In Figure 21A, N
layers are shown. Each layer here may relate to a different “plane” of encoded coefficients,
e.g. residual data following transformation, quantization and entropy encoding. If a 2x2
coding unit is used, there may be four such layers (e.g. each direction of the directional
decomposition — DD). If a 4x4 coding unit is used, there may be sixteen such layers (e.g.
each direction of the directional decomposition squared — DDS). In one case, each layer
may be decoded independently of the other layers; as such each layer may form an
Independently Decodable Unit — IDU. If a temporal mode is used, there may also be one
or more layers relating to temporal information.

When a tiling configuration is used, e.g. for partial decoding, there may be an extra
decomposition 2135 of the data 2140 for each layer into portions 2142 relating to multiple
tiles. These tiles may correspond to a rectangular area of the original input video. Tile size
may be fixed for each Group of Pictures (GOP). Tiles may be ordered in a raster order.
Figures 6B and 12C show examples of a tile structure.

Figure 21A shows an example whereby each layer further comprises portions 2142
of the bytestream relating to M tiles. Each tile thus forms an IDU and may be decoded
independently of other tiles. This independence then enables selectable or partial decoding.
Figure 21B shows an alternative example 2150 where each level of quality 2120 or a
bytestream 2110 is first decomposed into portions 2140 relating to the M tiles, whereby
each tile portion is then decomposed into portions relating to each layer 2130. Either
approach may be used.

In examples, each IDU may comprise header information such as one or more of
an isAlive field (e.g. indicating use or non-zero data), a Streamlength (indicating a data
size of the stream portion) and a payload carrying the encoded data for the IDU. Using an

indication of whether a particular tile contains data (e.g. isA/ive=1) may help reduce the
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data to be transmitted, as often particular tiles may be O due to the use of residual data, and
so additional tile data to be transmitted may be minimised.

When tiling is used, a header, e.g. for a group of pictures (GOP), may be modified
to include a tiling mode flag. In this case, a first flag value (e.g. 0) may represent a “null
region” mode whereby partial decoding is not supported and a second flag value (e.g. 1)
may represent a “tile” mode, whereby partial decoding is supported. The second flag value
may indicate that a particular fixed-size tile mode is being used, whereby a plane (e.g. one
of the YUV planes) is divided into fixed size rectangular regions (tiles), of size Tw x T,
and that the tiles are indexed in raster-order. In other cases, different flag values may
indicate different tiling modes, e.g. one mode may indicate a custom tile size that is
transmitted together with the header information.

In one case, a tile size may be signalled in header information. The tile size may be
signalled explicitly (e.g. by sending a tile width Twin pixels and a tile height in pixels Tu).
In one case, a tile size may be signalled by sending an index for a look-up table stored at
the decoder. The tile size may thus be signalled using one byte that indicates one of up to
255 tile sizes. One index value may also indicate a custom size (e.g. to be additionally
signalled in the header). The tile size, if signalled explicitly in the header information, may
be communicated using 4 bytes (two bytes per width/height).

If a tiling mode is signalled, there may be one or more tile-specific configurations
that are signalled in the header information. In one case, a data aggregation mode may be
signalled (e.g. using a 1-bit flag). A value of one may indicate that tile data segments within
the bytestream, such as the isAlive / StreamlLength / Payload portions described above, are
to be grouped or aggregated (e.g. the data stream first contains the isA/ive header
information for the set of tiles, then the StreamLength information for the set of tiles,
followed by the payload information for the set of tiles). Organising the bytestream in this
manner may facilitate selective decoding of tiles, e.g. as stream length information for each
tile may be received prior to the payload data. In this case, the aggregated data may also
be optionally compressed using Run-Length and Huffman encoding (e.g. as described
herein) and this may also be flagged (e.g. using a 1-bit field). Different portions of the
aggregated data stream may have different compression settings. If information such as the
stream length fields are Huffman encoded, then these may be encoded as either absolute
or relative values (e.g. as a relative difference from the last stream value). Relative value

encoding may further reduce bytestream size.
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In these examples, a method of encoding an enhancement stream is described
whereby an enhancement bitstream may be split into portions or chunks that represent
different spatial portions of a frame of video (i.e. tiles). The data relating to each tile may
be received and decoded independently, allowing parallel processing and selective or

partial decoding.

Neural Network Up-sampling

In certain examples, up-sampling may be enhanced by using an artificial neural
network. For example, a convolutional neural network may be used as part of the
up-sampling operation to predict up-sampled pixel or signal element values. Use of an
artificial neural network to enhance an up-sampling operation is described in WO
2019/111011 A1, which is incorporated by reference herein. A neural network up-sampler
may be used to implement any one of the up-sampling components described in the
examples herein.

Figure 22 A shows a first example 2200 of a neural network up-sampler 2210. The
neural network up-sampler may be used to convert between signal data at a first level (n-1)
and signal data at a second level n. In the context of the present examples, the neural
network up-sampler may convert between data processed at enhancement level 1 (i.e. level
of quality — LoQ — 1) and data processed at enhancement level 2 (i.e. level of quality —
LoQ —2). In one case, the first level (#-/) may have a first resolution (e.g. size 1 by size 2
elements) and the second level » may have a second resolution (e.g. size 3 by size 4
elements). The number of elements within each dimension at the second resolution may be
a multiple of the number of elements within each dimension at the first resolution (e.g.
size 3 =F1*size 1 and size 4 = F2*size 2). In described example, the multiples may be
the same in both dimensions (e.g. F1=F2=F and in some examples, F=2).

In certain examples, use of an artificial neural network may include conversion of
element data (e.g. picture elements such as values for a colour plane) from one data format
to another. For example, element data (e.g. as input to the up-sampler in non-neural cases)
may be in the form of 8- or 16-bit integers, whereas a neural network may operate upon
float data values (e.g. 32- or 64-bit floating point values). Element data may thus be
converted from an integer to a float format before up-sampling, and/or from a float format
to an integer format after neural-enhanced up-sampling. This is illustrated in Figure 22B.

In Figure 22B, the input to the neural network up-sampler 2210 (e.g. the up-sampler

from Figure 22A) is first processed by a first conversion component 2222. The first
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conversion component 2222 may convert input data from an integer format to a floating-
point format. The floating-point data is then input to the neural network up-sampler 2210,
which is free to perform floating-point operations. An output from the neural network up-
sampler 2210 comprises data in a floating-point format. In Figure 22B, this is then
processed by a second conversion component 2224, which converts the data from the
floating-point format to an integer format. The integer format may be the same integer
format as the original input data or a different integer format (e.g. input data may be
provided as an 8-bit integer but output as a 10-, 12- or 16-bit integer). The output of the
second conversion component 2224 may place the output data in a format suitable for
upper enhancement level operations, such as the level 2 enhancement described herein.

In certain examples, instead of, or as well as data format conversion the first and/or
second conversion components 2222 and 2224 may also provide data scaling. Data scaling
may place the input data in a form better suited to the application of an artificial neural
network architecture. For example, data scaling may comprise a normalisation operation.
An example normalisation operation is set out below:

norm_value = (input_value - min_int value) / (max_int value — min_int_value)

where input value is an input value, min_int value is a minimum integer value and
max_int_value is a maximum integer value. Additional scaling may be applied by
multiplying by a scaling divisor (i.e. dividing by a scale factor) and/or subtracting a scaling
offset. The first conversion component 2222 may provide for forward data scaling and the
second conversion component 2224 may apply corresponding inverse operations (e.g.
inverse normalisation). The second conversion component 2224 may also round values to
generate an integer representation.

Figure 22C shows an example architecture 2230 for a simple neural network up-
sampler 2210. The neural network up-sampler 2210 comprises two layers 2232, 2236
separated by a non-linearity 2234. There is also an optional post-processing operation
2238. By simplifying the neural network architecture, up-sampling may be enhanced while
still allowing real-time video decoding.

The convolution layers 2232, 2236 may comprise a two-dimensional convolution.
The convolution layers may apply one or more filter kernels with a predefined size. In one
case, the filter kernels may be 3x3 or 4x4. The convolution layers may apply the filter
kernels, which may be defined with a set of weight values, and may also apply a bias. The

bias is of the same dimensionality as the output of the convolution layer. In the example of
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Figure 22C both convolution layers 2232, 2236 may share a common structure or function
but have different parameters (e.g. different filter kernel weight values and different bias
values). Each convolution layer may operate at a different dimensionality. The parameters
of each convolution layer may be defined as a four-dimensional tensor have size —
(kernel _sizel, kernel size2, input_size, output_size). The input of each convolution layer
may comprise a three-dimensional tensor of size — (input_size 1, input size 2,
input_size). The output of each convolution layer may comprise a three-dimensional tensor
of size — (input_size 1, input_size 2, output size). The first convolution layer 2232 may
have an input_size of 1, i.e. such that it receives a two-dimensional input similar to a non-
neural up-sampler as described herein. Example values for these sizes are as follows:
kernel sizel and kernel size2 = 3; for the first convolutional layer 2232, input_size =1 and
output_size = 16; and for the second convolutional layer 2236, input_size = 16 and
output_size =4. Other values may be used depending on the implementation and empirical
performance. In the case that the output size is 4 (i.e. four channels are output for each
input element), this may be refactored into a 2x2 block representing the up-sampled output
for a given picture element.

The input to the first convolution layer 2232 may be a two-dimensional array
similar to the other up-sampler implementations described herein. For example, the neural
network up-sampler 2210 may receive portions of a reconstructed frame and/or a complete
reconstructed frame (e.g. the base layer plus a decoded output of the level 1 enhancement).
The output of the neural network up-sampler 2210 may comprise a portion of and/or a
complete reconstructed frame at a higher resolution, e.g. as per the other up-sampler
implementations described herein. The neural network up-sampler 2210 may thus be used
as a modular component in common with the other available up-sampling approaches
described herein. In one case, the selection of the neural network up-sampler, e.g. at the
decoder, may be signalled within a transmitted bytestream, e.g. in global header
information.

The non-linearity layer 2234 may comprise any known non-linearity, such as a
sigmoid function, a tanh function, a Rectified Linear Unit (ReLU), or an Exponential
Linear Unit (ELU). Variations of common functions may also be used, such as a so-called
Leaky ReLU or a Scaled ELU. In one example, the non-linearity layer 2234 comprises a
Leaky ReLLU — in this case the output of the layer is equal to the input for values of input
greater than O (or equal to 0) and is equal to a predefined proportion of the input, e.g.

a*input, for values of the input less than 0. In one case, @ may be set as 0.2.
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Figure 22D shows an example 2240 with one implementation of the optionally
post-processing operation 2238 from Figure 22C. In this case, the post-processing
operation may comprise an inverse transform operation 2242. In this case, the second
convolution layer 2236 may output a tensor of size (sizel, size2, number of coefficients)
— i.e. the same size as the input but with a channel representing each direction within a
directional decomposition. The inverse transform operation 2242 may be similar to the
inverse transform operation that is performed in the level 1 enhancement layer. In this case,
the second convolution layer 2236 may be seen as outputting coefficient estimates for an
up-sampled coding unit (e.g. for a 2x2 coding block, a 4-channel output represents A, H,
V and D coefficients). The inverse transform step then converts the multi-channel output
to a two-dimensional set of picture elements, e.g. an [A, H, V, D] vector for each input
picture element is converted to a 2x2 picture element block in level ».

Similar adaptations may be provided for down-sampling. An up-sampling
approach applied at the encoder may be repeated at the decoder. Different topologies may

be provided based on available processing resources.

The parameters of the convolutional layers in the above examples may be trained
based on pairs of level (n-/) and level n data. For example, the input during training may
comprise reconstructed video data at a first resolution that results from applying one or
more of the encoder and decoder pathways, whereas the ground truth output for training
may comprise the actual corresponding content from the original signal (e.g. the higher or
second resolution video data rather than up-sampled video data). Hence, the neural network
up-sampler is trained to predict, as closely as possible, the input level n video data (e.g. the
input video enhancement level 2) given the lower resolution representation. If the neural
network up-sampler is able to generate an output that is closer to the input video that a
comparative up-sampler, this will have a benefit of reducing the level 2 residuals, which
will further reduce the number of bits that need to be transmitted for the encoded level 2
enhancement stream. Training may be performed off-line on a variety of test media
content. The parameters that result from training may then be used in an on-line prediction
mode. These parameters may be communicated to the decoder as part of an encoded
bytestream (e.g. within header information) for a group of pictures and/or during an over-
the-air or wire update. In one case, different video types may have different sets of
parameters (e.g. movie vs live sport). In one case, different parameters may be used for

different portions of a video (e.g. periods of action vs relatively static scenes).
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Example I'ncoder and Decoder Variations

Graphical FExample with Opftional Level 0 Upscaling

Figure 23 shows a graphical representation 2300 of the decoding process described
in certain examples herein. The various stages in the decoding process are shown from left
to right in Figure 23. The example of Figure 23 shows how an additional up-sampling
operation may be applied following the decoding of the base picture. An example encoder
and an example decoder to perform this variation are shown respectively in Figures 25 and

26.

Fourth Example Decoder

Figure 24 shows a fourth example decoder 2400. The fourth example decoder 2400
may be seen as a variation of the other example decoders described herein. Figure 24
represents in a block diagram some of the processes described in more detail above and
below. The scheme comprises an enhancement layer of residual data, which are then added,
once processed and decoded, to a decoded base layer. The enhancement layer further
comprises two sub-layers 1 and 2, each comprising different sets of residual data. There is
also a temporal layer of data including signalling to predict some of the residuals at sub-

layer 2, e.g. using a zero-motion vector algorithm.

Fifth Example Encoder and Decoder
Figures 25 and 26 respectively show variations of the encoder architecture of
Figures 1, 3A and 3B and the decoder architecture of Figures 2, SA and 5B.

The encoding process 2500 to create a bitstream is shown in Figure 25.

Figure 26 shows a variation of a decoder 2600 according to an example. The
decoder may comprise a variation of the decoder shown in any one of Figures 2, SA, 5B

and 24. The decoder of Figure 26 may be used together with the encoder of Figure 25.

As described with reference to the above examples, unlike comparative scalable
codecs, the new approaches described herein may be completely agnostic of the codec used
to encode the lower layer. This is because the upper layer is decodable without any

information about the lower layer, as it shown in Figures 2, 24 and 26, for example. As
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shown in Figure 26, a decoder receives multiple streams generated by the encoder. These
may be five or so streams that include: a first encoded stream (encoded base) that is
produced by feeding a base codec (e.g., AVC, HEVC, or any other codec) with a down-
sampled version of the input video; a second encoded stream (level 1 coefficient layers)
that is produced by processing the residuals obtained by taking the difference between the
reconstructed base codec video and the down-sampled version of the input video (level 1
residuals); a third encoded stream (level 2 coefticient layers) that is produced by processing
the residuals obtained by taking the difference between an up-sampled version of a
corrected version of the reconstructed base coded video and the input video (level 2
residuals); a fourth encoded stream (e.g. in the form of a temporal layer) that is produced
from the temporal processing to instruct the decoder; and a fifth stream (headers) that are
produced for configuring the decoder. The encoded base stream is decoded by a base
decoder implementing a decoding algorithm corresponding to the encoding algorithm
implemented by the base codec used in the encoder, and the output of this is a decoded
base. Separately, and independently, the level 1 coefficient groups are decoded in order to
obtain level 1 residual data. Further, separately and independently, the level 2 coefficient
groups are decoded in order to obtain level 2 residual data. The decoded base, the level 1
residual data and the level 2 residual data are then combined. In particular, the decoded
base is combined with the level 1 residuals data to generate an intermediate picture. The
intermediate picture may be then up-sampled and further combined with the level 2
residual data.

Moreover, the new approach uses an encoding and decoding process which
processes the picture without using any inter-block prediction. Rather, it processes the
picture by transforming an NxN block of picture elements (e.g., 2x2 or 4x4) and processing
the blocks independently from each other. This results in efficient processing as well as in
no-dependency from neighbouring blocks, thus allowing the processing of the picture to

be parallelised.

In general summary, with reference to Figure 26, there is shown there is shown a
non-limiting exemplary embodiment according to the present invention. In Figure 26, an

exemplary decoding module 2600 is depicted. The decoding module 2600 receives a
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plurality of input bitstreams, comprising encoded base 2616, level 1 coefficient groups
2626, level 2 coefficient groups 2646, a temporal coefficient group 2656 and headers 2666.

In general, the decoding module 2600 processes two layers of data. A first layer,
namely the base layer, comprises a received data stream 2616 which includes the encoded
base. The encoded base 2616 is then sent to a base decoding module 2618, which decodes
the encoded base 2616 to produce a decoded base picture. The base decoding may be a
decoder implementing any existing base codec algorithm, such as AVC, HEVC, AV1,
VVC, EVC, VC-6, VP9, etc. depending on the encoded format of the encoded base.

A second layer, namely the enhancement layer, is further composed of two
enhancement sublayers. The decoding module receives a first group of coefficients,
namely level 1 coefficient groups 2626, which are then passed to an entropy decoding
module 2671 to generate decoded coefficient groups. These are then passed to an inverse
quantization module 2672, which uses one or more dequantization parameters to generate
dequantized coefficient groups. These are then passed to an inverse transform module 2673
which performs an inverse transform on the dequantized coefficient groups to generate
residuals at enhancement sublayer 1 (level 1 residuals). The residuals may then be filtered
by a smoothing filter 2632. The level 1 residuals (i.e., the decoded first enhancement
sublayer) is applied to a processed output of the base picture.

The decoding module receives a second group of coefficients, namely level 2
coefficient groups 2646, which are then passed to an entropy decoding module 2681 to
generate decoded coefficient groups. These are then passed to an inverse quantization
module 2682, which uses one or more dequantization parameters to generate dequantized
coefficient groups. The dequantization parameters used for the enhancement sublayer 2
may be different from the dequantization parameters used for the enhancement sublayer 1.
The dequantized coefficient groups are then passed to an inverse transform module 2683
which performs an inverse transform on the dequantized coefficient groups to generate

residuals at enhancement sublayer 2 (level 2 residuals).

Variations of Aspects of the Described Examples

A number of variations of certain aspects described above will now be described.

Partial Tiling
In certain examples, each group of coefficients may be encoded and decoded

separately. However, each group contains the respective coefficients for the whole frame
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(e.g. one group may relate to all the “A” coefficients and another group may relate to all
the “V” coefficients for a 2x2 transform). In the present description, the groups of
coefficients are also referred to as coefficient layers.

In certain variations, smaller portions of the frame (e.g., tiles) may be decoded
individually by the decoder, thus enabling features such as partial decoding.

In particular, the bitstream signals to the decoder whether the tiling of the
coefficients has been enabled. If enabled, the decoder is then able to select which tiles to
decode by identifying, within a group of coefficients, the portions of the group
corresponding to the selected tiles.

For example, in one case, the layers of Figure 9A may be tiled as shown in Figure
21A. Each of the tiles 2140 may be alternatively referred to as sub-groups of coefficients
(SGs). Each coefficient group may be split into M sub-groups, each sub-group
corresponding to a tile.

In certain examples, the size of each sub-group may differ between sub-groups as
the size may depend on the amount of data encoded in each group. The size of each sub-
group as well as whether the sub-group is active or not (a subgroup is only active if it
contains any encoded data) may be signalled as compressed metadata, which may, for
example, be encoded and decoded using Huffman coding and/or RLE as described with
respect to other examples.

Partial decoding, e.g. decoding certain tiles but not decoding other tiles, may be
particularly useful for virtual and augmented reality applications and for telepresence
applications (e.g. remote medicine or surgery). The solution described here enables a
decoder to selectively choose the portion of the video to decode, for example based on a
viewport area, and decode only that part. By way of non-limiting example, the decoder
may receive an 8K picture (8,192 x 4,320 pixels) but decide only to display a portion of it
due, for example, to the viewpoint of the user (e.g., a 4K area of 4,096 x 2,160 pixels).

In particular, in a hierarchical coding scheme like the one described in examples
herein, a base layer may be a lower resolution layer (e.g., 4K) encoded with a legacy codec
(e.g., HEVC, VVC, EVC, AV1, VP9, AVC, etc.) and the enhancement layer may be a
higher resolution layer (e.g., 8K) encoded with an enhancement codec such as the low
complexity enhancement video coding described herein. The decoder may select a portion
of the 8K full resolution picture to decode, for example a 4K portion. The decoder would
first decode the base layer using the legacy codec, and then would only select the portion

of interest of the 8K enhancement layer, for example a 4K area or a slightly bigger one
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depending on the decision of the decoder. In this way, the decoder would significantly
speed up the time to decode the region of interest of the picture without losing on the
resolution.

An exemplary method of the above variation may comprise: receiving first and
second sets of reconstruction data, said reconstruction data to be used to reconstruct a video
sequence (e.g. comprising the encoded residual data described herein); selecting a region
of interest in a video sequence; decoding a first portion of the first set of reconstruction
data based on the selected region of interest; and decoding a second portion of the second
set of reconstruction data based on the selected region of interest. The first portion may
correspond to the entirety of the first set. The method may comprise a step of processing
the first portion to produce a preliminary reconstruction of the video sequence. The method
may further comprise combining the decoded second portion with the preliminary
reconstruction to produce a final reconstruction of the video sequence. The final
reconstruction may correspond to a region of interest of the reconstruction that would be

produced if the whole first and second set were to be decoded and combined together.

Modular Signalling of Parameters

In an aspect of the present disclosure, there is provided a method for signalling
certain decoding parameters in a modular manner. In particular, one or more bits may be
used in a signalling portion of a bitstream (for example, in a header indicating parameters
associated with a sequence, such as Sequence Parameter Sets (SPS), or with a picture, such
as Picture Parameter Sets (PPS)) to indicate that certain parameters are indicated in the
bitstream.

In particular, the bitstream may contain one or more bits which, when set to one or
more certain values, indicate to the decoder the presence of additional information to be
decoded. The decoder, once received the bitstream, decodes the one or more bits and, upon
determining that the one or more bits corresponds to said one or more certain values,
interpret one or more subsequent set of bits in the bitstream as one or more specific
parameters to be used when decoding the bitstream (e.g., a payload included in the
bitstream).

In a non-limiting example, said one or more specific parameters may be associated
with the decoding of a portion of encoded data. For example, the one or more specific
parameters may be associated with one or more quantization parameters to decode a

portion of the encoded data. For example, if the encoded data comprises two or more



10

15

20

25

30

84

portions of encoded data (for example, each portion may be a sublayer of an enhancement
layer as described previously), the one or more specific parameters may be one or more
quantization parameters associated with decoding some of the two or more portions of
encoded data. In another example, the one or more specific parameters may be one or more
parameters associated with some post-processing operations to be performed at the
decoder, for example applying a dithering function.

In a specific example, the one or more bits may be a bit (eg,
step width levell enabled bit) which enables explicit signalling of a quantization
parameter (e.g., step width levell) only when required. For example, this may occur only
when there are data encoded in sublayer 1 as described above. In particular, if the bit
step width levell enabled is set to “0”, then the value of the step width for sublayer 1
would be set by default to a maximum value. On the other hand, when the bit
step width levell enabled is setto “17”, then step width levell is explicitly signalled and
the value of the step width for sublayer 1 is derived from it. A decoding module / decoder
would decode the bit step width levell enabled and, if it determines that it is set to “0”,
it is able to set the value of the step width for sublayer 1 to a maximum value. On the other
hand, if it determines that it is set to “17, it is able to set the value of the step width for
sublayer 1 to a value corresponding to the parameter step width levell (for example, a
value between O and 2N-1 where N is the number of bits associated with
step width levell).

In a different example, the one or more bits may be a bit (e.g., decoder control bit)
to enable two parameters (e.g., dithering control variables dithering type and
dithering strength) to be signalled on a per picture basis if decoder control is set to “1”.
A decoding module / decoder would decode the bit decoder control and, if it determines
that it is set to “1”, it would decode the dithering control variables dithering type and
dithering strength and apply the dithering as described in the present application.

The above mechanism provides some important technical advantages, here
described by reference to the specific examples but which can be easily generalised to
general cases. First, there are some efficiency gains coming from the use of the bit
step width levell enabled, which brings an N bits per picture saving in the event no
enhancement is used for sub-layer 1. This could result, for example, in a saving of 800 bps
for a 50fps sequence. Second, the use of the bit step width levell enabled may lead to a
decoding module /decoder being able to “by-pass” completely any processing for

enhancement sub-layer 1, thus further decreasing the decoding complexity.
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Further examples of different signalling approaches are described with respect to

the syntax and semantic sections below.

Hybrid Decoding Module

In an aspect of the present disclosure, there is provided a decoding module to enable
decoding of a combined bitstream made of at least a first bitstream decodable with a first
decoding algorithm (e.g., a base codec such as AVC, HEVC, VVC(, etc.) and a second
bitstream decodable with a second decoding algorithm (e.g., the enhancement codecs
described herein). The two bitstreams may comprise the bitstreams referred to herein as
the encoded base stream and the encoded enhancement stream, where the encoded
enhancement stream may have two sub-streams corresponding to each of a plurality of
layers, levels or sub-levels.

In a first non-limiting aspect, the combined bitstream is received by a receiving
module which separates the first bitstream and the second bitstream, and sends the first
bitstream to a first decoding module (capable of decoding with the first decoding
algorithm) and a second bitstream to a second decoding module (capable of decoding with
the second decoding algorithm). This may comprise a form of demultiplexer. Further, the
module may receive from the first decoding module a stream corresponding to the decoded
first bitstream and pass it to the second decoding module. The second decoding module
may then use it in order to generate a final decoded stream as described in further detail in
the present specification.

In a second non-limiting aspect, the combined bitstream is received by a first
decoding module (capable of decoding with the first decoding algorithm) and at the same
time by a second decoding module (capable of decoding with the second decoding
algorithm). The first decoding module would decode only the first bitstream and discard
the second bitstream. The second decoding module would decode only the second
bitstream and discard the first bitstream. The second decoding module may then receive
the decoded first bitstream and then use it in order to generate a final decoded stream as
described in further detail in other examples.

The example of NALU processing set out below describes certain ones of these

aspects in more detail.

NALU Processing

Examples are described herein where a base stream and an enhancement stream
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may be encapsulated within a set of Network Abstraction Layer Units or NALUs. The
Network Abstraction Layer or NAL was introduced as part of the H.264/AVC and HEVC
video coding standards. It provides a mechanism whereby a video coding layer, e.g. that
may comprise one or more of the base stream and the enhancement stream, is mapped onto
underlying network transport layers such as RTP/IP (for Internet traffic) and MPEG-2 (for
broadcast signals).

Each NALU may be seen as a packet of information that contains an integer number
of bytes. One set of bytes form a NAL header. The NAL header may indicate a type of
data that is contained within NALU. This, for example, is illustrated in the later examples
of syntax for the bitstream. The NAL header may be a number of bytes (e.g. 1 or 2 bytes).
The remaining bytes of the NALU comprise payload data of the type indicated by the NAL
header. The NAL header may comprise a nal unit type variable, which indicates the
NALU type. This is shown in some of the later described examples.

The NAL unit may specify a generic format for use in both packet-oriented and
bitstream-oriented transport systems, and a series of NALUSs generated by an encoder may
be referred to as a NALU stream. In the present case, both the base layer and the
enhancement layer may be encapsulated as a NALU stream. In certain cases, each layer
may comprise a different NALU stream. In those cases, the first and second enhancement
layer streams (e.g. level 1 and level 2 as described herein) may be encapsulated in a single
NALU stream (e.g. a general “enhancement stream”) or supplied as separate NALU
streams (e.g. enhancement stream 1 and enhancement stream 2).

In one embodiment, as indicated in the later section on syntax, at least one
enhancement stream comprising the encoded enhancement data is indicated with a specific
NAL header unit type value (e.g. 0 in the later section). This indicates to a decoder that the
NAL stream relates to the video coding specifications described in examples herein.

In certain implementations, it may be desired that a legacy decoder is able to receive
and decode the encoded base stream as described herein. However, certain decoders may
not be able to parse NALUs for the enhancement layers, e.g. they may only be configured
to process NALUs for legacy video coding standards such as AVC or HEVC. In this case,
if the decoder receives NALUs that do not comply with the specified configurations of the
legacy video coding standards, it may experience an error and/or refuse to decode the
encoded base stream as well as the encoded enhancement streams. For example, a legacy
decoder may receive both an encoded base stream and an encoded enhancement stream;

however, as the encoded enhancement stream has a NALU type that is not expected by the
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legacy decoder, it may result in an exception that prevents the processing of the encoded
base stream, despite the encoded base stream being configured according to the legacy
standard. Or alternatively, the NALU type used by the enhancement stream may be parsed
differently according to the legacy standard, resulting in unpredictable operation of the
decoder.

One solution to this issue is to provide a front-end component at the decoder that
parses received NALUs and that is configured with knowledge of the enhancement coding
technology as well as the base coding technology and as such may filter the NALUs that
are sent to a downstream legacy decoder. However, this may complicate decoding and
requires an additional entity within the decoding pipeline.

Another solution is for the encoded enhancement stream to use a NALU structure
that is supported by the base coding technology (e.g. the base codec) but where the NALU
header indicates a unit type that is not used by the base coding technology. Reference will
be made to a single enhancement stream in these examples, where this stream encapsulates
the two layers of the described enhancement streams. However, in other examples, there
may be two separate enhancement streams.

In the second solution discussed above, the enhancement stream may use an NALU
structure supported by the base stream but may set the NALU type to a unit type that is not
specified within the base coding technology or that is set as a reserved unit type. For
example, a base coding technology may have a unit type that is set by a byte or two bytes,
indicating, respectively, 256 or 65536 possible integer values representing the same
number of possible unit types. Only a small number of these unit types may actually be
used by the base coding technology (e.g. as specified in a decoding specification for the
technology), with remaining unit types indicated as a range of “non-specified” unit types.
In certain cases, certain ranges of integer values may be reserved as well as, or instead of,
being indicated as “non-specified”.

In this case, the encoder of the enhancement stream may encapsulate the stream
using NALUs that comply with the structure of the base coding technology but have an
NALU type that is set to a non-specified or reserved value. A legacy decoder may then be
able to receive and parse the header of the NALUs for the enhancement stream but the
indication of the unit type as non-specified or reserved may cause the legacy decoder to
simply ignore or discard these units (e.g. as instructed by the base coding technology). The
legacy decoder may then also receive the NALUs for the encoded base stream, which will

have the same NAL structure as the NALUSs for the enhancement stream, but the NALU
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type will not be non-specified or reserved. As the same NAL structure is used, the header
of the NALU may be processed as a conventional stream according to the legacy standard.
In this case, an enhancement decoder that is configured to process the enhancement stream
may receive the enhancement stream as a set of NALUSs, and parse the NAL header to
determine the unit type. In this case, although the unit type may be non-specified or
reserved with respect to the base coding technology, it may be specified in a specification
for the enhancement coding technology, meaning the enhancement decoder is able to parse
and process the enhancement stream.

For example, a NALU header for an example base coding technology may be 1
byte. In this example base coding technology, a range of 0 to 128 may indicate different
specified (i.e. supported) unit types, a range of 129 to 192 may indicate a range of non-
specified unit types and a range of 193 to 255 may indicate reserved values. The encoded
base stream as described herein may thus use a NALU structure that is supported by the
base coding technology and have a unit type in the supported range (0 to 128). The
enhancement coding technology may use the same NALU header and structure but use
NALU types within the range 129 to 255 (or one of 129 to 192 or 193 to 255). A legacy
decoder and an enhancement decoder may receive both the encoded base stream and the
encoded enhancement stream. The enhancement coding technology may be configured to
use a NALU type that is specified in the base coding technology to be ignored or discarded
by a decoder. Hence, the legacy decoder receives both streams but only processes the base
stream, discarding NALUs (i.e. packets) for the enhancement stream. The enhancement
decoder, on the other hand, is able to process the packets for the enhancement stream but,
if so configured, discard NALUs (i.e. packets) for the base stream. In this manner there is
no requirement for a front-end parser to distribute packets. This is all performed based on
the NALU type as specified in the NALU header.

Thus, in certain examples, there is a stream of packets (e.g. NALUs) where the
packets relate to either an encoded base stream or an encoded enhancement stream. The
packets of the encoded base stream and the encoded enhancement stream have a structure
that is compatible with a base coding technology (e.g. a base codec). The packets comprise
a header, where the header indicates a packet type (e.g. NALU type). Packets relating to
the encoded base stream have a first range of packet type values that are supported by the
base coding technology (e.g. that have a value that may be parsed and processed by a
decoder configured according to the base coding technology). Packets relating to the

encoded enhancement stream have a second range of packet type values that differ from
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the first range of packet type values and that do not have a function within the base coding
technology (e.g. that are non-specified or reserved). The packet type thus allows for a
mapping between the packets and a decoder adapted to process those packets.

A decoder configured according to the base coding technology may thus process
the encoded base stream and output a decoded base stream using the packets relating to the
encoded base stream. The same decoder may process the headers of the packets relating to
the encoded enhancement stream (i.e. process the encoded enhancement stream packets
within breaking) but may discard or ignore according to the specification of the base coding
technology. The decoded base stream may be rendered on a display device or used together
with a decoded enhancement stream as set out below.

A decoder configured according to the enhancement coding technology (e.g. as
described with respect to “enhancement” coding herein, also referred to herein as a low
complexity enhancement video coding or LCEVC codec) may thus process the encoded
enhancement stream and output a decoded enhancement stream using the packets relating
to the encoded enhancement stream. The same decoder may discard or ignore the packets
relating to the encoded base stream according to the specification of the enhancement
coding technology. The decoded enhancement stream may be combined with the decoded
base stream as described herein, e.g. to generate an enhanced reconstructed video at a level
of quality that is higher than the level of quality of the base stream.

In both cases, the packet type as set out in the packet header (e.g. the NALU type
in the NALU header) enables a mapping between NALU and decoder. The same data
stream may thus be received and processed by both a legacy and enhancement decoder but
selectively processing applied to different components of that stream (e.g. base and
enhancement portions) based on the unit type value. Legacy decoders may also operate
with enhancement coding technology without error. Both decoders need only parse the
header of the NALU, which allows for efficient processing of large quantities of data, e.g.

neither decoder needs to parse payload data for a data stream it does not process.

Selection of NAL Structure by an Enhancement Encoder

In the case above, in the context of the previously described examples, different
base coding technologies may be used. For example, a base coding technology (i.e. a base
codec) may be selected by an enhancement encoder based on configuration data. The

configuration data may represent a user selection and/or a selection according to one or
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more operating parameters. In this case, the enhancement encoder supports multiple base
encodings.

In the case that the enhancement encoder supports multiple base encodings, the
enhancement encoder may be configured to select a NAL structure, e.g. a format for the
NALU and a NALU type, based on a selected base encoding. For example, a hybrid
encoding may comprise a base encoding and an enhancement encoding as described
herein. In the examples above, the NALUSs for both the base encoding and the enhancement
encoding have a structure where the NALU header may be parsed by a base decoder. In
this case, the structure that is used for both the base encoding and the enhancement
encoding may be selected based on the selected base encoding. While a base encoder may,
by default, generate an encoded base stream with a compatible NALU structure, the
enhancement encoder may need to be configured to generate one or more enhancement
streams that have a NALU structure that is compatible with the base encoding. In other
words, the enhancement encoder may support multiple NAL structures and select the
structure that is needed based on the base encoder. The enhancement encoder may
determine a base coding technology that is being used (e.g. AVC or HEVC) and then
configured the NALUs and the NALU type in the header in accordance with that base
coding technology. This may be useful where different base coding technologies have
different non-specified and/or reserved unit types. For example, different base coding
technologies may use a different number of bytes for the NALU header, and as such the
integer values for the non-specified and/or reserved unit types may differ for the base
coding technologies. The enhancement encoder in the above examples is adapted to select
a NALU header value (e.g. a non-specified and/or reserved unit type) that is compatible
with the base coding technology to facilitate success decoding of both the base and
enhancement streams.

Similarly, when multiple base coding technologies are selectable, an enhancement
decoder may be configured to determine a base coding technology that is being used in
relation to a received stream (e.g. an enhancement stream that is associated with a
corresponding base stream), and parse the NAL accordingly. For example, the
enhancement decoder may determine a base codec that is being used and use this
determination to configure the parsing of NALUs, including at least a parsing of the NALU
header. In one case, the base coding technology may be signalled by the enhancement
encoder. In another case, the enhancement decoder may be configured to match a received

NALU against a set of possible NALUs, e.g. without explicit signalling from the
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enhancement encoder. For example, a byte size of the NALU header may indicate a
particular base coding technology. The enhancement decoder may be configured to parse
one or more NALU headers for one or more of the encoded base stream and the encoded
enhancement stream to determine a base coding technology. In yet another case, the
enhancement decoder may be configured to receive information from a base codec that
indicates which base codec is being used. This information may then be used to select a
NALU configuration for parsing one or more of the encoded base stream (e.g. to ignore)
and the encoded enhancement stream (e.g. to process). In this case, the base codec and/or
a configuration layer may comprise an application programming interface, where a method
call is used to return the base codec type (i.e. to determine at least a base decoder that is

used to decode the base stream).

Up-sampler Coefficient Signalling

An enhancement encoder and decoder as described herein may perform up-
sampling (“up-scaling”) to convert from one spatial layer to another (e.g. from a lower
resolution to a higher resolution). The up-sampling may be performed in one or more
dimensions, and in certain cases may be omitted.

Different types of up-sampling may be used. At least nearest neighbour, bilinear,
bicubic, modified cubic and neural network up-samplers are described in the examples
herein. These up-samplers may use an up-sampling kernel. An up-sampling kernel may
comprise one or more coefficient values to implement the up-sampling. For example, the
one or more coefficient values may be used in one or more up-sampling computations,
such as additions or multiplications. In one case, an up-sampling kernel may comprise
coefficient values for use in one or more matrix transformations. An up-sampling kernel
may comprise a multi-dimensional array (e.g. a matrix or tensor). For example, a cubic up-
sampler may use a two-dimensional matrix as an up-sampling kernel and neural network
up-sampler may use a series of one or more convolutions (e.g. with or without non-linear
activation functions) that use one or more multi-dimensional tensors (see the 4D and 3D
examples described herein).

In the above cases, an up-sampler (or up-sampling component, process or
operation) may be defined by way of an up-sampler type and a set of configurable
coefficients (the “kernel” described above). The set of configurable coefficients may be
signalled to an enhancement decoder. The signalling may be sent from an enhancement

encoder and/or from a cloud configuration server. In one case, the up-sampler type may be
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determined by the enhancement decoder by parsing (e.g. processing or otherwise
examining) a received set of configurable coefficients. This may avoid the need to
explicitly signal the up-sampler type and thus free up bandwidth.

In one case, a plurality of different up-sampler types may have a set of configurable
coefficients that are supplied in a common or shared format (e.g. as one or more matrices
or a multi-dimensional array). For example, a set of cubic, modified cubic or neural
network up-samplers may use a kernel that has coefficients stored as a multidimensional
array. The values of these coefficients may then determine which type of up-sampler is
applied. In this manner, an up-sampler may be changed by changing the kernel coefficient
values that are signalled to the enhancement decoder. This again may avoid the need to
explicitly signal the up-sampler type, and efficiencies in the up-sampler definitions may
be shared by multiple up-sampler types (e.g. optimisations within compiled computer

program code).

Bitstream

An example bitstream as generating by the video coding frameworks described
herein may contain a base layer, which may be at a lower resolution, and an enhancement
layer consisting of up to two sub-layers. The following subsection briefly explains the
structure of this bitstream and how the information can be extracted.

The base layer can be created using any video encoder and is may be flexibly
implemented using a wide variety of existing and future video encoding technologies. The
bitstream from the base layer may resemble a bitstream as output by an existing codec. The
enhancement layer has an additional different structure. Within this structure, syntax
elements are encapsulated in a set of network abstraction layer (NAL) units. These also
enable synchronisation of the enhancement layer information with the base layer decoded
information (e.g. at a decoder so as to reconstruct a video). Depending on the position of a
frame of video within a group of pictures (GOP), additional data specifying the global
configuration and for controlling the decoder may be present.

As described in the examples herein, and as shown in Figures 9A, 21A and 21B,
the data of one enhancement picture may be encoded as several chunks. These data chunks
may be hierarchically organised as shown in the aforementioned Figures. In these
examples, for each plane (e.g. corresponding to a colour component), up to two
enhancement sub-layers are extracted. Each of them again unfolds into numerous

coefficient groups of transform coefficients. The number of coefficients depends on the
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chosen type of transform (e.g. a 4x4 transform applied to 2x2 coding units may generate 4
coefficients and a 16x16 transform applied to 4x4 coding units may generate 16
coefficients). Additionally, if a temporal processing mode is used, an additional chunk with
temporal data for one or more enhancement sub-layers may be present (e.g. one or more
of the level 1 and level 2 sub-layers). Entropy-encoded transform coefficients within the
enhancement bitstream may be processed at a decoder by the coding tools described herein.

As described herein the terms bitstream, bytestream and stream of NALUs may be
used interchangeably. Implementations of examples may only comprise an implementation
of the enhancement levels and base layer implementations, such as base encoders and
decoders may be implemented by third-party components, wherein an output of a base
layer implementation may be received and combined with decoded planes of the
enhancement levels, with the enhancement decoding as described herein.

In certain examples, the bitstream can be in one of two formats: a NAL unit stream
format or a byte stream format. A NAL unit stream format may be considered conceptually
to be the more “basic” type. It consists of a sequence of syntax structures called NAL units.
This sequence is ordered in decoding order. There may be constraints imposed on the
decoding order (and contents) of the NAL units in the NAL unit stream. The byte stream
format can be constructed from the NAL unit stream format by ordering the NAL units in
decoding order and prefixing each NAL unit with a start code prefix and zero or more zero-
valued bytes to form a stream of bytes. The NAL unit stream format can be extracted from
the byte stream format by searching for the location of the unique start code prefix pattern
within this stream of bytes.

For bit-oriented delivery, the bit order for the byte stream format may be specified
to start with the most significant bit of the first byte, proceed to the least significant bit of
the first byte, followed by the most significant bit of the second byte, etc. The byte stream
format may consist of a sequence of byte stream NAL unit syntax structures. Each byte
stream NAL unit syntax structure may contain one 4-byte length indication followed by
one nal unit( NumBytesInNalUnit ) syntax structure. This syntax structure may be as

follows:

Syntax Descriptor

byte stream nal unit( ) {

nal unit length u(32)

nal_unit( nal unit_length )
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The order of byte stream NAL units in the byte stream may follow a decoding order
of the NAL units contained in the byte stream NAL units. The content of each byte stream
NAL unit may be associated with the same access unit as the NAL unit contained in the
byte stream NAL unit. In the above nal unit length is a 4-byte length field indicating the
length of the NAL unit within the nal wunit( ) syntax structure.

Relationship between base bitstream and enhancement bitstream

A relationship between the base bitstream and the enhancement bitstream may be
realized using one of the two following mechanisms. In a first case, if the base bitstream
and the enhancement bitstream are not interleaved, a relationship between the Access Units
of the base decoder and the Access Units of the enhancement decoder (i.e. the enhancement
layers) may be specified. In a second case, if the base decoder bitstream and the
enhancement bitstream are interleaved in a single elementary stream, a relationship may
be realized by interleaving the Access Units of the base bitstream and the Access Units of
the enhancement bitstream.

For example, in the first case, the relationship may be specified using the
interleaving and synchronization mechanisms specified by International Standard (IS)
13818-1 Program Stream or the interleaving and synchronization mechanisms specified by
IS 14496-14 File Format. In the second case, the interleaving of base Access Units and
corresponding enhancement Access Units may be implemented with a number of
constraints. These constraints may comprise one or more of’ the order of Access Units in
the input base bitstream is preserved in the interleaved base and enhancement bitstream,;
the enhancement Access Unit associated to the corresponding base Access Unit is inserted
immediately after the base Access Unit and immediately before the following base Access
Unit in bitstream order; the discrimination between Access Units belonging to the base
bitstream and Access Units belonging to the enhancement bitstream is realized by means
of the NAL unit types, as described with respect to later examples; and the enhancement
decoder infers that the residuals obtained from decoding the enhancement Access Unit are
to be processed in combination with the samples of the base picture obtained from

decoding the immediately preceding base Access Unit.
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Payload Processing

A payload data block unit process may be applied to the input bitstream. The
payload data block unit process may comprise separating the input bitstream into data
blocks, where each data block is encapsulated into a NALU. The NALU may be used as
described above to synchronise the enhancement levels with the base level. Each data block
may comprise a header and a payload. The payload data block unit may comprise parsing
each data block to derive a header and a payload where the header comprises configuration
metadata to facilitate decoding and the payload comprises encoded data. A process for
decoding the payload of encoded data may comprise retrieving a set of encoded data and
this may be performed following the decoding process for a set of headers. Payloads may
be processed based on the structure shown in one or more of Figures 9A, 21A and 21B,
e.g. a set of entropy encoded coefficients grouped be plane, levels of enhancement or
layers. As mentioned, each picture of each NALU may be preceded by picture
configuration payload parameters.

It is noted for example that each layer is a syntactical structure containing encoded
data related to a specific set of transform coefficients. Thus, each layer may comprise, e.g.
where a 2x2 transform is used, a set of ‘average’ values for each block (or coding unit), a
set of ‘horizontal’ values for each block, a set of ‘vertical’ for each block and a set of
‘diagonal’ values for each block. Of course, it will be understood that the specific set of
transform coefficients that are comprised in each layer will relate to the specific transform
used for that particular level of enhancement (e.g. first or further, level 1 or 2, defined

above).

Bitstream Syntax

In certain examples, the bitstreams described herein (e.g. in particular, the
enhancement bitstream) may be configured according to a defined. This section presents
an example syntax that may be used. The example syntax may be used for interpreting data
and may indicate possible processing implementations to aid understanding of the
examples described herein. It should be noted that the syntax described below is not
limiting, and that different syntax to that presented below may be used in examples to
provide the described functionality.

In general, a syntax may provide example methods by which it can be identified
what is contained within a header and what is contained within data accompanying the

header. The headers may comprise headers as illustrated in previous examples, such as
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headers 256, 556, 2402, 2566 or 2666. The syntax may indicate what is represented but

not necessarily how to encode or decode that data. For example, with relation to a specific
example of an up-sample operation, the syntax may describe that a header comprises an
indicator of an up-sample operation selected for use in the broader encoding operation, i.e.
the encoder side of the process. It may also be indicated where that indication is comprised
in the header or how that indicator can be determined. As well as the syntax examples
described below, a decoder may also implement components for identifying entry points
into the bitstream, components for identifying and handling non-conforming bitstreams,
and components for identifying and handling errors.

The table below provides a general guide to how the example syntax is presented.
When a syntax element appears, it is indicated via a variable such as syntax element; this
specifies that a syntax element is parsed from the bitstream and the bitstream pointer is
advanced to the next position beyond the syntax element in the bitstream parsing process.
The letter “D” indicates a descriptor, which is explained below. Examples of syntax are

presented in a most significant bit to least significant bit order.

General Guide - Syntax Specification D

/* A statement can be a syntax element with an associated descriptor or can be an
expression used to specify conditions for the existence, type and quantity of syntax

elements, as in the following two examples */

syntax_element u(n)

conditioning statement

/* A group of statements enclosed in curly brackets is a compound statement and

is treated functionally as a single statement. */

{

Statement

Statement
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General Guide - Syntax Specification

/* A “while” structure specifies a test of whether a condition is true, and if true,
specifies evaluation of a statement (or compound statement) repeatedly until the

condition is no longer true */

while (condition)

Statement

/* A “do ... while” structure specifies evaluation of a statement once, followed by
a test of whether a condition is true, and if true, specifies repeated evaluation of

the statement until the condition is no longer true */

do

Statement

while (condition)

/* An “if ... else” structure specifies a test of whether a condition is true and, if the
condition is true, specifies evaluation of a primary statement, otherwise, specifies
evaluation of an alternative statement. The “else” part of the structure and the

associated alternative statement is omitted if no alternative statement evaluation is

needed */

if (condition)

primary statement

else

alternative statement

/* A “for” structure specifies evaluation of an initial statement, followed by a test
of a condition, and if the condition is true, specifies repeated evaluation of a
primary statement followed by a subsequent statement until the condition is no

longer true. */

for (initial statement; condition; subsequent statement)

primary statement
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In the examples of syntax, functions are defined as set out in the table below.
Functions are expressed in terms of the value of a bitstream pointer that indicates the

position of the next bit to be read by the decoding process from the bitstream.

Syntax function Use

byte stream has data( ) If the byte-stream has more data, then
returns TRUE; otherwise returns FALSE.

process_payload function(payload type, | Behaves like a function lookup table, by
payload byte size) selecting and invoking the process payload

function relating to the payload type.

read_bits(n) Reads the next n bits from the bitstream.
Following the read operation, the bitstream
pointer is advanced by n bit positions. When
n is equal to O, read bits(n) returns a value
equal to O and the bitstream pointer is not

advanced.

read_byte(bitstream) Reads a byte in the bitstream returning its
value. Following the return of the value, the

bitstream pointer is advanced by a byte.

read_multibyte(bitstream) Executes a read byte(bitstream) until the

MSB of the read byte is equal to zero.

bytestream _current(bitstream) Returns the current bitstream pointer.

bytestream_seek(bitstream, n) Returns the current bitstream pointer at the
position in the bitstream corresponding to n

bytes.

The following descriptors, which may be used in the “D” column of the example
tables, specify the parsing process of each syntax element:

b(8): byte having any pattern of bit string (8 bits). The parsing process for this
descriptor is specified by the return value of the function read bits( 8 ).

f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit
first. The parsing process for this descriptor is specified by the return value of the function

read bits(n).
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u(n): unsigned integer using n bits. When n is “v” in the syntax table, the number
of bits varies in a manner dependent on the value of other syntax elements. The parsing
process for this descriptor is specified by the return value of the function read bits(n)
interpreted as a binary representation of an unsigned integer with most significant bit
written first.

ue(v): unsigned integer 0-th order Exp-Golomb-coded syntax element with the left
bit first. The parsing process for this descriptor is specified later examples.

mb: read multiple bytes. The parsing process for this descriptor is specified by the
return value of the function read multibyte(bitstream) interpreted as a binary
representation of multiple unsigned char with most significant bit written first, and most

significant byte of the sequence of unsigned char written first.

NAL unit and NAL unit header syntcax
NAL unit and NAL unit header syntax may be configured as set out in the

respective two tables below:

Syntax D

nal unit(NumBytesInNALunit) {

nal unit header( )

NumBytesInRBSP =0

for (1 = 2; 1 < NumBytesInNALunit; i++) {

if (1 + 2 < NumBytesInNALunit && next_bits(24) == 0x000003) {

rbsp byte[NumBytesInRBSP++] u(8)
rbsp byte[NumBytesInRBSP++] u(8)
1+=2
emulation prevention three byte /* equal to 0x03 */ u(8)
} else
rbsp byte[NumBytesInRBSP++] u(8)
}
}
Syntax D

nal unit header() {

Jforbidden zero bit u(l)
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Syntax D
Jforbidden one_bit u(l)
nal _unit type u(s)
reserved flag u(9)
}
Process Block Syntax

An example process block syntax is set out in the table below:

Syntax D
process_block( ) {
payload size type u(3)
payload type u(s)
payload size=0
if (payload_size type==7) {
custom_byte_size mb

payload size = custom_byte size

} else {

if (payload_size type == 0) payload size=0

if (payload_size type == 1) payload size =1

if (payload_size type == 2) payload size =2

if (payload_size type == 3) payload size =3

if (payload_size type ==4) payload size =4

if (payload_size type ==5) payload size =15

}

if (payload_type == 0)

process payload sequence config(payload size)

else if (payload type ==1)

process payload global config(payload size)

else if (payload type == 2)

process payload picture config(payload_size)

else if (payload type ==3)

process payload encoded data(payload size)

else if (payload type ==4)
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Syntax D

process payload encoded data tiled(payload size)

else if (payload type ==5)

process payload additional info(payload size)

else if (payload type == 6)

process payload filler(payload size)

Process Payload — Sequence Configuration

A process payload sequence configuration syntax may be as set out in the table

below:
Syntax D
process_payload sequence config(payload size) {
profile idc u(4)
level idc u(4)
sublevel idc u(2)
conformance_window_flag u(l)
reserved zeros Sbit u(s)

if (profile idc == 16 || level idc ==16) {

extended profile idc u(3)
extended level idc u(4)
reserved zeros 1bit u(l)
}
if (conformance window flag == 1) {
conf win_left offset mb
conf win right offset mb
conf win_top offset mb
conf win_bottom_offset mb
}

Process Payload — Global Configuration

A process payload global configuration syntax may be as set out in the table below:
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Syntax D
process payload global config(payload size) {

processed planes type flag u(l)
resolution type u(6)
transform_type u(l)
chroma_sampling type u(2)
base depth type u(2)
enhancement depth type u(2)
temporal _step width modifier signalled flag u(l)
predicted residual mode_flag u(l)
temporal tile intra signalling enabled flag u(l)
temporal enabled flag u(l)
upsample_type u(3)
level 1 filtering signalled flag u(l)
scaling mode_levell u(2)
scaling mode_level2 u(2)
tile_dimensions_type u(2)
user data_enabled u(2)
levell depth flags u(l)
reserved zeros 1bit u(l)
if (temporal step width modifier signalled flag==1) {

temporal step width modifier u(8)
} else {

temporal step width modifier = 48
}
if (level 1 filtering signalled flag) {

level 1 filtering first coefficient u(4)

level 1 filtering second coefficient u(4)

}

if (tile_dimensions_type > 0) {

if (tile_dimensions_type ==3) {

custom tile width

u(16)
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custom tile height u(16)
}
reserved_zeros_Sbit u(s)
compression_type_entropy enabled per tile flag u(l)
compression_type_size per _tile u(2)
}
if (resolution_type == 63) {
custom resolution width u(16)
custom_resolution height u(16)
}
}

Process Payload — Picture Configuration
A process payload picture configuration syntax, e.g. for a frame of video, may be

as set out in the table below:

Syntax D
process_payload picture config(payload size) {
no_enhancement bit flag u(l)
if (no_enhancement bit flag ==0) {
quant matrix mode u(3)
dequant offset signalled flag u(l)
picture_type bit flag u(l)
temporal refresh bit flag u(l)
step width levell enabled flag u(l)
step width level2 u(15)
dithering control flag u(l)
} else {
reserved zeros 4bit u(4)
picture_type bit flag u(l)
temporal refresh_bit flag u(l)
temporal signalling present flag u(l)
}
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if (picture_type bit flag==1) {

field type bit flag u(l)

reserved zeros 7bit u(7)
}
if (step_width levell enabled flag==1) {

step width levell u(15)

level 1 filtering enabled flag u(l)
}

if (quant_matrix_mode == 2 || quant_matrix_mode == 3 || quant_matrix_mode

— 54

for(layerldx = 0; layerldx < nLayers; layerldx++) {

gm_coefficient Oflayerldx] u(8)

}

if (quant_matrix_mode == 4 || quant_matrix_mode == 5) {

for(layerldx = 0; layerldx < nLayers; layerldx++) {

gm coefficient [layerldx] u(8)
}
}
if (dequant_offset signalled flag) {
dequant offset mode flag u(l)
dequant offset u(7)
}
if (dithering_control flag==1) {
dithering type u(2)
reserverd zero u(l)

if (dithering_type !=0) {

dithering strength u(s)
} else {
reserved zeros 5bit u(s)
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Process Payload — Encoded Data

A process payload encoded data syntax may be as set out in the table below:

Syntax D

process_payload encoded data(payload size) {

if (tile_dimensions_type == 0) {

for (planeldx = 0; planeldx < nPlanes; planeldx++) {

if (no_enhancement bit flag ==0) {

for (levelldx = 1; levelldx <= 2; levelldx++) {

for (layerldx = 0; layerldx < nLayers;layerldx++) {

surfaces[planeldx][levelldx][layerldx].entropy enabled flag u(l)

surfaces[planeldx][levelldx][layerldx].rle only flag u(l)
i
}
j
if (temporal signalling_present flag == 1){
temporal surfaces[planeldx].entropy enabled flag u(l)
temporal surfaces[planeldx].rle only flag u(l)

}

byte alignment( )

for (planeldx = 0; planeldx < nPlanes; planeldx++) {

for (levelldx = 1; levelldx <= 2; levelldx++) {

for (layerldx = 0; layerldx < nLayers; layerldx++)

process_surface(surfaces[planeldx][levelldx][layerldx])

}

if (temporal signalling_present flag==1)

process_surface(temporal surfaces[planeldx])

}

} else {

process payload encoded data tiled(payload size)
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Process Payload — Encoded Tiled Data

A process payload encoded tiled data syntax may be as set out in the table below:

Syntax

D

process_payload encoded data tiled(payload size) {

for (planeldx = 0; planeldx < nPlanes; planeldx++) {

for (levelldx = 1; levelldx <= 2; levelldx++) {

if (no_enhancement bit flag ==0) {

for (layerldx = 0; layerldx < nLayers;layerldx++)

surfaces|planeldx[[levelldx][layerldx].rle only flag

u(l)

}

if (temporal_signalling_present flag==1)

temporal surfaces[planeldx].rle only flag

u(l)

}

byte alignment( )

if (compression_type entropy enabled per tile flag==0) {

for (planeldx = 0; planeldx < nPlanes; planeldx++) {

if (no_enhancement bit flag ==0) {

for (levelldx = 1; levelldx <= 2; levelldx++) {

if (levelldx == 1)

nTiles = nTilesLL1

else

nTiles = nTilesL.2

for (layerldx = 0; layerldx < nLayers; layerldx++) {

for (tileldx = 0; tileldx < nTiles; tileldx++)

surfaces|[planeldx][levelldx][layerldx].tiles[tileldx].

entropy enabled flag

u(l)
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j
if (temporal signalling_present flag==1) {
for (tileldx = O; tileldx < nTilesL2; tileldx++)
temporal _surfaces[planeldx].tiles[tileldx].entropy enabled flag u(l)
j
}
} else {
entropy enabled per tile compressed data rle mb

}

byte alignment( )

if (compression_type _size per tile == 0) {

for (planeldx = 0; planeldx < nPlanes; planeldx++) {

for (levelldx = 1; levelldx <= 2; levelldx++) {

if (levelldx == 1)

nTiles = nTilesLL1

else

nTiles = nTilesL.2

for (layerldx = 0; layerldx < nLayers; layerldx++) {

for (tileldx = 0; tileldx < nTiles; tileldx++)

process_surface(surfaces[planeldx][levelldx][layerldx].

tiles[tileldx])

}

if (temporal signalling_present flag==1) {

for (tileldx = O; tileldx < nTilesL2; tileldx++)

process_surface(temporal surfaces[planeldx] tiles[tileldx])

}

} else {

for (planeldx = O; planeldx < nPlanes; planeldx++) {

for (levelldx = 1; levelldx <= 2; levelldx++) {

if (levelldx == 1)
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nTiles = nTilesLL1

else

nTiles = nTilesL.2

for (layerldx = 0; layerldx < nLayers; layerldx++) {

if(surfaces[planeldx][levelldx][layerldx].rle_only flag) {

compressed_size per tile prefix mb
} else {

compressed prefix last symbol bit offset per tile prefix mb

compressed_size per tile prefix mb

}

for (tileldx=0; tileldx < nTiles; tileldx++)

process_surface(surfaces[planeldx][levelldx][layerldx].

tiles[tileldx])

}

if (temporal signalling_present flag==1) {

if(temporal surfaces[planeldx].rle only flag) {

compressed _size per tile prefix mb
} else {

compressed_prefix_last symbol bit offset per tile prefix mb

compressed _size per tile prefix mb

}

for (tileldx = O; tileldx < nTilesL2; tileldx++)

process_surface(temporal surfaces[planeldx] tiles[tileldx])

Process Payload — Surface
A process payload surface syntax (e.g. a syntax for a set of data that may comprise

encoded coefficients and/or temporal signalling) may be as set out in the table below:
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process_surface(surface) {
if (compression_type size per tile ==0) {
if (surface.entropy enabled flag) {
if (surface.rle_only flag) {
surface.size mb

surface.data

surface.size

}else {
reserved zeros 3bit u(3)
surface.prefix_last symbol bit offset u(5)
surface.size mb

surface.data

surface.size

}

} else {

if (surface.entropy enabled flag) {

surface.data

surface.size

Process Payload — Additional Information

A process payload additional information syntax may be as set out in the table

below:
Syntax D
additional info(payload_size) {
additional info type u(8)
if (additional info type ==0) {
payload type u(8)

sei_payload(payload type, payload size —2)

} else if (additional_info_type == 1)

vui_parameters (payload size — 1)

else // (additional _info_type >=2)
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Syntax

// reserved for future use

Process Payload — Filler

A process payload filler syntax may be as set out in the table below:

Syntax

process_payload_filler(payload size) {

for(x = 0; x < payload_size; x++) {

filler byte // equal to OXAA

u(®)

Byte Alignment

A byte alignment syntax may be as set out in the table below:

Syntax

byte alignment( ) {

alignment bit equal to one /* equal to 1 */

f(1)

while(!byte_aligned( ))

alignment bit equal to zero /* equal to 0 */

£(1)

Bitstream Semantics

The section below provides further detail on the meaning of certain variables set
out in the tables above. This detail may be referred to as the “semantics” of the bitstream.

Example semantics associated with the syntax structures and with the syntax elements

within these structures are described in this section. In certain cases, syntax

have a closed set of possible values and examples of these cases are presented in certain

tables below.

elements may
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NAL Unit Semantics

A number of examples of variables or parameters that relate generally to a NAL
unit will now be described. These should not be seen as limiting.

The variable NumBytesInNalUnit may be used to specify the size of the NAL unit
in bytes. This value may be used for the decoding of the NAL unit. Some form of
demarcation of NAL wunit boundaries may be used to enable inference of
NumBytesInNalUnit. One such demarcation method is described with reference to other
examples of the NALU for the byte stream format. A variety of methods of demarcation
may be used.

The variable rbsp byte[i] is the i-th byte of a raw byte sequence payload (RBSP).
An RBSP may be specified as an ordered sequence of bytes and contain a string of data
bits (SODB) as follows:

If the SODB is empty (i.e., zero bits in length), the RBSP is also empty.
Otherwise, the RBSP contains the SODB as follows:
1. The first byte of the RBSP contains the (most significant, left-most) eight bits
of the SODB; the next byte of the RBSP contains the next eight bits of the
SODB, etc., until fewer than eight bits of the SODB remain.
2. rbsp trailing bits() are present after the SODB as follows:
1. The first (most significant, left-most) bits of the final RBSP byte
contains the remaining bits of the SODB (if any).
ii.  The next bit consists of a single rbsp stop one bit equal to 1.
iii. ~ When the rbsp stop one bit is not the last bit of a byte-aligned byte,
one or more rbsp alignment zero bit is present to result in byte

alignment.

Syntax structures having the above RBSP properties are denoted in the above
syntax tables using an “ rbsp” suffix. These structures may be carried within NAL units
as the content of the rbsp byte[i] data bytes. The association of the RBSP syntax structures
to the NAL units may be as set out in the table below. When the boundaries of the RBSP
are known, the decoder can extract the SODB from the RBSP by concatenating the bits of
the bytes of the RBSP and discarding the rbsp stop one bit, which is the last (least
significant, right-most) bit equal to 1, and discarding any following (less significant, farther
to the right) bits that follow it, which are equal to 0. The data for the decoding process may
be contained in the SODB part of the RBSP.
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The variable emulation prevention three byte is a byte equal to 0x03. When an
emulation_prevention three byte is present in the NAL unit, it may be discarded by the
decoding process. In certain cases, the last byte of the NAL unit is prevented from being
equal to 0x00 and within the NAL unit, the following three-byte sequences are excluded
at any byte-aligned position: 0x000000, 0x000001 and 0x000002. It may also be
configured that, within the NAL unit, any four-byte sequence that starts with 0x000003
other than the following sequences may not occur at any byte-aligned position (e.g. the

following four-byte sequences 0x00000300, 0x00000301, 0x00000302, and 0x00000303).

NAL Unit Header Semantics

A number of examples of variables or parameters that may be used to carry
information relating a NAL unit header will now be described. These should not be seen
as limiting.

In certain examples, the variable forbidden zero bit is set as being equal to 0 and
the variable forbidden one bit is set as being equal to 1. The variable nal unit type may
be used to specify the type of RBSP data structure contained in the NAL unit as specified

in the table below:

nal_unit_type Name of Content of NAL unit and NAL unit

nal_unit_type RBSP syntax structure type class

0...27 UNSPECO...UNSP unspecified Non-VCL

EC27

28 LCEVC LEVEL segment of a Low Complexity VCL/Non-
Enhancement Level VCL

29-30 RSV _LEVEL reserved Non-VCL

31 UNSPEC31 unspecified Non-VCL

In this example, NAL units that have nal unit type in the range of
UNSPECO... UNSPEC27, inclusive, and UNSPEC31 for which semantics are not
specified, may be configured to not affect the enhancement decoding process. The
reserved flag may be equal to the bit sequence 111111111. NAL unit types in the range
of UNSPECO.. UNSPEC27 and UNSPEC31 may be used as determined by a particular
application or implementation. These may to relate to “enhancement” decoding processes

as described herein, which may be associated with the LCEVC_LEVEL nal unit type.
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Different applications may use NAL unit types in the range of UNSPECO... UNSPEC27
and UNSPEC31NAL for different purposes, and encoders and decoders may be adapted
accordingly. For purposes other than determining the amount of data in the decoding units
of the bitstream (e.g. as used in certain text configurations), decoders may be configured
to ignore (remove from the bitstream and discard) the contents of all NAL units that use
reserved values of nal unit type. Future compatible extensions to the aspects described

herein may use reserved and/or unspecified NAL unit types.

Data Block Unit General Semantics

A number of examples of variables or parameters that may be used to carry
information regarding a data block of a NAL unit will now be described. These should not
be seen as limiting.

The variable payload size type may be used to specify the size of the payload. It

may take a value between 0 and 7, as specified by the table below.

payload_size type Size (bytes)

0 0

1 1

2 2

3 3

4 4

5 5

6 Reserved
7 Custom

The variable payload type may specify the type of the payload used (e.g. the
content of the payload). It may take a value between O and 31, as specified by the table
below. The table also indicates a suggested minimum frequency of appearance of each

content within an example bitstream.

payload type Content of payload Minimum frequency
0 process_payload sequence config( ) at least once
1 process_payload global config() at least every IDR
2 process_payload picture config( ) picture
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payload type Content of payload Minimum frequency
3 process_payload encoded data( ) picture
4 process_payload encoded data tiled() | picture
5 process_payload additional info( ) picture
6 process_payload_filler() picture
7-30 Reserved
31 Custom
Data Block Semantics

The following describes the semantics for each of the data block units, e.g. the data
that is carried by the NAL units. Certain variables discussed below relate to profiles, levels
and toolsets. Profiles, levels and toolsets may be used to specify restrictions on the
bitstreams and hence apply limits to the capabilities needed to decode the bitstreams.
Profiles, levels and toolsets may also be used to indicate interoperability points between
individual decoder implementations. It may be desired to avoid individually selectable
“options” at the decoder, as this may increase interoperability difficulties.

A “profile” may specify a subset of algorithmic features and limits that are
supported by all decoders conforming to that profile. In certain case, encoders may not be
required to make use of any particular subset of features supported in a profile.

A “level” may specify a set of limits on the values that may be taken by the syntax
elements (e.g. the elements described above). The same set of level definitions may be
used with all profiles, but individual implementations may support a different level for
each supported profile. For any given profile, a level may generally correspond to a
particular decoder processing load and memory capability. Implementations of video
decoders conforming to the examples described herein may be specified in terms of the
ability to decode video streams conforming to the constraints of profiles and levels, e.g.
the profiles and/or levels may indicate a certain specification for a video decoder, such as
a certain set of features that are supported and/or used. As such, the capabilities of a
particular implementation of a decoder may be specified using a profile, and a given level
for that profile. The variable profile idc may be used to indicate a profile for the bitstream
and the variable level idc may be used to indicate a level. The values for these variables
may be restricted to a set of defined specifications. A reserved value of profile idc between

a set of specified values may not indicate intermediate capabilities between the specified
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profiles; however, a reserved value of level idc between a set of specified values may be
used to indicated intermediate capabilities between the specified levels. The variable
sublevel idc may also be used to indicate a sublevel for a set of capabilities. These levels
and sublevels are not to be confused with the levels and sublevels of the enhancement
encoders and decoders, which are a different concept.

As an example, there may be a “main” profile. Conformance of a bitstream to this
example “main” profile may be indicated by profile idc equal to 0. Bitstreams conforming
to this example “main” profile may have the constraint that active global configuration
data blocks have chroma sampling type equal to O or 1 only. All constraints for global
configuration parameter sets that are specified may be constraints for global configuration
parameter sets that are activated when the bitstream is decoded. Decoders conforming to
the present example “main” profile at a specific level (e.g. as identified by a specific value
of level idc) may be capable of decoding all bitstreams and sublayer representations for
which all of the following conditions apply: the bitstream is indicated to conform to the
“main” profile and the bitstream or sublayer representation is indicated to conform to a
level that is lower than or equal to the specified level. Variations of this example “main”
profile may also be defined and given differing values of profile idc. For example, there
may be a “main 4:4:4” profile. Conformance of a bitstream to the example “main 4:4:4”
profile may be indicated by profile idc equal to 1. Bitstreams conforming to the example
“main 4:4:4” profile may have the constraint that active global configuration data blocks
shall have chroma sampling type in the range of 0 to 3, inclusive. Again, decoders
conforming to the example “main 4:4:4” profile at a specific level (e.g. as identified by a
specific value of level idc) may be capable of decoding all bitstreams and sublayer
representations for which all of the following conditions apply: the bitstream is indicated
to conform to the “main” profile and the bitstream or sublayer representation is indicated
to conform to a level that is lower than or equal to the specified level. The variables
extended profile idc and extended level idc may be respectively used to indicate that an
extended profile and an extended level are used.

In certain implementation, the “levels” associated with a profile may be defined
based on two parameters: a count of luma samples of output picture in time (i.e. the Output
Sample Rate) and maximum input bit rate for the Coded Picture Buffer for the
enhancement coding (CPBL). Both sample rate and bitrate may be considered on

observation periods of one second (e.g. the maximum CPBL bit rate may be measured in
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terms of bits per second per thousand Output Samples). The table below indicates some

example levels and sublevels.

Level | Sublevel | Maximum Output | Maximum CPBL | Example Resolution
Sample Rate bit rate and Frame Rate
1 0 29,410,000 4 1280x720 (301ps)
1 1 29,410,000 40 1280x720 (301ps)
2 0 124,560,000 4 1920x1080 (601fps)
2 1 124,560,000 40 1920x1080 (601fps)
3 0 527,650,000 4 3840x2160 (60 fps)
3 1 527,650,000 40 3840x2160 (60 fps)
4 0 2,235,160,000 4 7640x4320 (601fps)
4 1 2,235,160,000 40 7640x4320 (601fps)

Returning to further variables of the NAL unit data block, if the variable
conformance_window_flag 1s equal to 1 this may be used to indicate that conformance
cropping window offset parameters are present in the sequence configuration data block.
If the variable conformance window flag is equal to O this may indicate that the
conformance cropping window offset parameters are not present. The variables
conf win left offset, conf win_right offset, conf win_top offset and
conf win_bottom_offset specify the samples of the pictures in the coded video sequence
that are output from the decoding process (i.e. the resulting output video), in terms of a
rectangular  region specified in picture coordinates for output. When
conformance window flag is equal to 0, the values of conf win left offset,
conf win right offset, conf win top offset and conf win bottom offset may be inferred
to be equal to 0. The conformance cropping window may be defined to contain the luma
samples with horizontal picture coordinates from (SubWidthC * conf win left offset) to
(width — (SubWidthC * conf win right offset + 1)) and vertical picture coordinates from
(SubHeightC * conf win top offset to height — (SubHeightC * conf win_bottom_offset +
1)), inclusive. The value of SubWidthC * (conf win_left offset + conf win right offset)
may be constrained to be less than width, and the value of SubHeightC *
(conf win_top offset+ conf win_bottom offset) may be constrained to be less than Aeight.
The corresponding specified samples of the two chroma arrays (e.g. in a YUV example)

may be similarly defined as the samples having picture coordinates (x / SubWidthC, y /
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SubHeight(), where (x, y) are the picture coordinates of the specified luma samples.
Example value of SubWidthC and SubHeightC are indicated in the “Example Picture
Formats” section above. Note that the conformance cropping window offset parameters
may only be applied at the output; all internal decoding processes may be applied to the

uncropped picture size.

Data Block Unit Global Configuration Semantics

A short description of certain global configuration variables as indicated in the
above syntax will now be described. A number of examples of variables or parameters that
may be used to carry information regarding the global configuration will be described.
These should not be seen as limiting.

The variable processed planes type flag may be used to specify the plane to be
processed by the decoder. It may be equal to O or 1. For a YUV examples, if it is equal to
0, only the Luma (Y) plane may be processed; if it is equal to 1, all planes (e.g. one luma
and two chroma) may be processed. In this case, if the processed planes type flagis equal
to 0, nPlanes shall be equal to 1 and if processed planes type flag is equal to 1, nPlanes
shall be equal to 3. An illustration of the variable nPlanes is shown in Figure 9A.

The variable resolution type may be used to specify the resolution of a Luma (Y)
plane of the enhanced decoded picture. It may be defined as a value between 0 and 63, as
specified in the table below. The value of the type is expressed as NxM, where N is the
width of the Luma (Y) plane of the enhanced decoded picture and M is height of the Luma
(Y) plane of the enhanced decoded picture. For example, the following values (amongst

others) may be available:

resolution_type Value of type
0 unused /* Escape code prevention */
1 360x200
2 400x240
3 480x320
4 640x360
5 640x480
6 768x480
7 800x600
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resolution_type Value of type
45 5120x3200
46 5120x4096
47 6400x4096
48 6400x4800
49 7680x4320
50 7680x4800
51-62 Reserved
63 Custom

The variable chroma sampling type defines the colour format for the enhanced
decoded picture as set out in the table in the “Example Picture Formats” section.
The variable fransform_type may be used to define the type of transform to be used.

5  For example, the following values (amongst others) may be available:

transform_type Value of type
0 2x2 directional decomposition transform
1 4x4 directional decomposition transform

In the example above, if ransform_type is equal to 0, nLayers (e.g. as shown in

Figure 9A) may be equal to 4 and if ransform_type is equal to 1, nLayers may be equal to

16.
10 The variable base depth type may be used to define the bit depth of the decoded
base picture. For example, the following values (amongst others) may be available:
base depth_type Value of type
0 8
1 10
2 12
3 14

Similarly, the variable enhancement depth type may be used to define the bit depth
of the enhanced decoded picture. For example, the following values (amongst others) may

15  be available:
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enhancement_depth_type | Value of type
0 8
1 10
2 12
3 14

The variable temporal step width modifier signalled flag may be used to specity
if the value of the temporal step width modifier parameter is signalled. It may be equal
to 0 or 1. If equal to O, the femporal step width modifier parameter may not be signalled.

The variable predicted residual mode flag may be used to specifie whether the
decoder should activate the predicted residual process during the decoding process. If the
value is 0, the predicted residual process shall be disabled.

The variable femporal tile intra signalling enabled flag may be used to specity
whether temporal tile prediction should be used when decoding a tile (e.g. a 32x32 tile). If
the value is 1, the temporal tile prediction process shall be enabled.

The variable upsample type may be used to specify the type of up-sampler to be

used in the decoding process. For example, the following values may be available:

upsample type Value of type
0 Nearest
1 Linear
2 Cubic
3 Modified Cubic
4-6 Reserved
7 Custom

The variable level [ filtering signalled may be used to specify whether a
deblocking filter should use a set of signalled parameters, e.g instead of default
parameters. If the value is equal to 1, the values of the deblocking coefficients may be
signalled.

The variable temporal step width modifier may be used to specify a value to be
used to calculate a variable step width modifier for transforms that use temporal prediction.
If temporal step width modifier signalled flag is equal to 0, this variable may be set to
a predefined value (e.g. 48).
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The variable level [ filtering first coefficient may be used to specify the value of
the first coefficient in the deblocking mask (e.g. a or the 4x4 block corner residual weight
in the example from the earlier sections above). The value of the first coefficient may be
between 0 and 15.

The variable level 1 filtering second coefficient may be used to specify the value
of the second coefficient in the deblocking mask (e.g. B or the 4x4 block side residual
weight in the example from the earlier sections above). The value of the second coefficient
may be between 0 and 15.

The variable scaling mode levell may be provided to specify whether and how
the up-sampling process should be performed between decoded base picture and
preliminary intermediate picture (e.g. up-scaler 2608 in Figure 26). The scaling mode
parameter for level 1 (e.g. to convert from level O to level 1) may have a number of possible

values including:

scaling_mode_levell Value of type
0 no scaling
one-dimensional 2:1 scaling only across the
: horizontal dimension
2 two-dimensional 2:1 scaling across both dimensions
3 Reserved

A similar variable scaling mode level2 may be used to specify whether and how
the up-sampling process is be performed between combined intermediate picture and
preliminary output picture (e.g. as per up-scaler 2687 in Figure 26). The combined
intermediate picture corresponds to the output of process 8.9.1. The scaling mode
parameter for level 2 (e.g. to convert from level 1 to level 2) may have a number of possible

values including:

scaling_mode_level2 Value of type
0 no scaling
one-dimensional 2:1 scaling only across the horizontal
: dimension
2 two-dimensional 2:1 scaling across both dimensions

3 Reserved
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As described in the section title “User Data Signalling” above, the variable
user _data_enabled may be used to specify whether user data are included in the bitstream

and the size of the user data. For example, this variable may have the following values:

user_data_enabled Value of type
0 disabled
1 enabled 2-bits
2 enabled 6-bits
3 reserved

Variables may also be defined to indicate the bit depth of one or more of the base
layer and the two enhancement sub-layers. For example, the variable level! depth flag
may be used to specify whether the encoding and/or decoding components at level 1
process data using the base depth type or the enhancement depth type (i.e. according to a
base bit depth or a bit depth defined for one or more enhancement levels). In certain cases,
the base and enhancement layers may use different bit depths. It may also be possible for
level 1 and level 2 processing to be performed at different bit depths (e.g. level 1 may use
a lower bit depth than level 2 as level 1 may accommodate a lower level of bit quantization
or level 2 may use a lower bit depth to reduce a number of bytes used to encode the level
2 residuals). In a case where a variable such as levell depth flag is provided, then a value
of 0 may indicate that the level 1 sub-layer is to be processed using the base depth type. If
a value of 1 is used, this may indicate that the level 1 sub-layer shall be processed using
the enhancement depth type.

A variable file dimensions type may be specified to indicate the resolution of the
picture tiles. Example values for this variable are shown in the table below. The value of
the type may be mapped to an NxM resolution, where N is the width of the picture tile and
M i1s height of the picture tile.

tile_dimensions_type Value of type
0 no tiling
1 512x256
2 1024x512
3 Custom
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As indicated by type “3” above, in certain cases a custom tile size may be defined.
If a custom tile size is indicated (e.g. via a value of 3 in the table above), the variables
custom_tile width and custom tile height may be used to specify a custom width and
height for the tile.

One or variables may be defined to indicate a compression method for data
associated with a picture tile. The compression method may be applied to signalling for
the file. For example, the compression type entropy enabled per file flag may be used
to specify the compression method used to encode the entropy enabled flag field of each

picture tile. It may take values as shown in the table below.

compression_type entropy_enabled per tile flag Value of type
0 No compression used
1 Run length encoding

Similarly, a variable compression type size per tile may be defined to indicate a
compression method used to encode the size field of each picture tile. In this case, the
compression_type size_per tile may take the values indicated in the table below (where

the terms Huffman Coding and Prefix Coding are used interchangeably).

compression_type_size per_tile Value of type
0 No compression used
1 Prefix Coding encoding
2 Prefix Coding encoding on differences
3 Reserved

Lastly, the variables custom resolution width and custom resolution height may

be used to respectively specify the width and height of a custom resolution.

Data Block Unit Picture Configuration Semantics

A number of examples of variables or parameters that may be used to carry
information regarding a picture configuration will now be described. These should not be
seen as limiting.

In certain examples, a variable may be defined to indicate that certain layers are not
to feature enhancement. This may indicate that the enhancement layer is effectively turned

off or disabled for certain pictures. For example, if there is network congestion it may be
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desirable to turn off the enhancement layer for a number of frames and so not receive and
add any enhancement data (e.g. not add one or more of the first set and the second set of
the decoded residuals). In certain examples, a no enhancement bit flag variable may be
specified to indicate that there are no enhancement data for all layerldx < nLayers in the
picture (e.g. as shown with respect to Figure 9A). A no enhancement bit flag value of 0
may indicate that enhancement is being used and that there is enhancement data.

As described in other examples herein, a quantization matrix may be used to
instruct quantization and/or dequantization. For dequantization at the decoder, signalling
may be provided that indicates a quantization matrix mode, e.g. a particular mode of
operation for generating and using one or more quantization matrices. For example, a
variable such as quant matrix mode may be used to specify how a quantization matrix is
to be used in the decoding process in accordance with the table below. In certain cases,
when quant matrix mode is not present, i.e. when a mode is not explicitly signalled, the
mode may be assumed to take a default value, e.g. be inferred to be equal to O as indicated
below. By allowing the quantization matrix mode value to be absent, signalling bandwidth
for each picture may be saved (e.g. the quantization components of the decoder may use a
default setting). Use of modes such as indicated in the examples below may allow for
efficient implementation of quantization control, whereby quantization parameters may be
varied dynamically in certain cases (e.g. when encoding has to adapt to changing
conditions) and retrieved based on default values in other cases. The examples in the table
below are not intended to be limiting, and other modes may be provided for as indicated

with respect to other examples described herein.

quant_matrix_mode Value of type

0 each enhancement sub-layer uses the matrices used for the
previous frame, unless the current picture is an instantaneous
decoding refresh - IDR - picture, in which case both

enhancement sub-layers use default matrices

1 both enhancement sub-layers use default matrices

2 one matrix of modifiers is signalled and should be used on

both residual plane

3 one matrix of modifiers is signalled and should be used on

enhancement sub-layer 2 residual plane
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quant_matrix_mode Value of type

4 one matrix of modifiers is signalled and should be used on

enhancement sub-layer 1 residual plane

5 two matrices of modifiers are signalled — the first one for
enhancement sub-layer 2 residual plane, the second for
enhancement sub-layer 1 residual plane

6-7 Reserved

As described above, in certain examples a quantization offset may be used. For
dequantization at the decoder, a quantization offset (also referred to as a dequantization
offset for symmetrical quantization and dequantization) may be signalled by the encoder
or another control device or may be retrieved from local decoder memory. For example, a
variable dequant offset signalled flag may be used to specify if the offset method and the
value of the offset parameter to be applied when dequantizing is signalled. In this case, if
the value is equal to 1, the method for dequantization offset and/or the value of the
dequantization offset parameter may be signalled. When dequant offset signalled flag is
not present, it may be inferred to be equal to 0. Again, having an inferred value for its
absence may help reduce a number of bits that need to be sent to encode a particular picture
or frame.

Following from the above, the variable dequant offset mode flag may be used to
specify the method for applying dequantization offset. For example, different modes may
be used to indicate different methods of applying the offset. One mode, which may be a
default mode, may involve using a signalled dequant offset variable that specifies the
value of the dequantization offset parameter to be applied. This may vary dynamically. In
one case, if the dequant offset mode flag is equal to 0, the aforementioned default mode
is applied; if the value of dequant offset mode flagis equal to 1, a constant-offset method
applies, which may also use the signalled dequant offset parameter. The value of the
dequantization offset parameter dequant offset may be, in certain implementations,
between 0 and 127, inclusive.

Further quantization variables may also be used. In one case, a set of variables may
be used to signal one or more quantization step-widths to use for a picture or frame within
the enhancement layer. The step-width values may be used to apply quantization and/or
dequantization as explained with respect to the quantization and/or dequantization

components of the above examples. For example, step width levell may be used to
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specify the value of the step-width to be used when decoding the encoded residuals in
enhancement sub-layer 1 (i.e. level 1) and step width level2 may be used to specify the
value of the step-width value to be used when decoding the encoded residuals in
enhancement sub-layer 2 (i.e. level 2).

In certain examples, a step-width may be defined for one or more of the
enhancement sub-layers (i.e. levels 1 and 2). In certain cases, a step-width may be signalled
for certain sub-layers but not others. For example, a step width levell enabled flag
variable may be used to specify whether the value of the step-width to be used when
decoding the encoded residuals in the enhancement sub-layer 1 (i.e. level 1 as described
herein) is a default value or is signalled (e.g. from the encoder). It may be either O (default
value) or 1 (to indicate that the value is signalled by step width levell). An example
default value may be 32,767. When step width levell enabled flag is not present, it is
inferred to be equal to 0.

In certain examples, a set of arrays may be defined to specify a set of quantization
scaling parameters. The quantization scaling parameters may indicate how to scale each
coefficient within a coding unit or block (e.g. for a 2x2 transform how to scale each of the
four layers representing A, H, V and D components). In one example, an array
gm_coefficient 0[layerldx] may be defined to specify the values of the quantization matrix
scaling parameter when quant matrix mode is equal to 2, 3 or 5 in the table above and an
array gm_coefficient I[layerldx] may be used to specify the values of the quantization
matrix scaling parameter when quant matrix_mode is equal to 4 or 5 in the table above.
The index layerldx represents a particular layer (e.g. as shown in Figure 9A), which in turn
relates to a particular set of coefficients (e.g. one layer may comprise A coefficients etc.).

In examples, a picture type bit flag variable may be used to specify whether the
encoded data are sent on a frame basis (e.g., progressive mode or interlaced mode) or on a
field basis (e.g., interlaced mode). An example of possible values is shown in the table

below.

picture_type bit flag Value of type

0 Frame

1 Field

If a field picture type is specified (e.g. via a value of 1 from the table above), a
further variable may be provided to indicate a particular field. For example, a variable

field type bit flag may be used to specity, if the picture type bit flag is equal to 1,
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whether the data sent are for top or bottom field. Example values for the field type bit flag

are shown below.

field type bit flag | Value of type
0 Top

1 Bottom

As discussed in the “Temporal Prediction and Signalling” section set out above, a
number of variables may be defined to signal temporal prediction configurations and
settings to the decoder. Certain variables may be defined at a picture or frame level (e.g.
to apply to a particular picture or frame). Some examples are further discussed in this
section.

In one case, a femporal refresh bit flag variable may be signalled to specify
whether the temporal buffer should be refreshed for the picture. If equal to 1, this may
instruct the refreshing of the temporal buffer (e.g. the setting of values within the buffer to
zero as described above).

In one case, a temporal signalling present flag variable may be signalled to
specify whether the temporal signalling coefficient group is present in the bitstream. If the
temporal_signalling present flag is not present, it may be inferred to be equal to 1 if
temporal enabled flag is equal to 1 and the temporal refresh bit flag is equal to O;
otherwise it may be inferred to be equal to 0.

Lastly, a set of variables may be used to indicate and control filtering within the
enhancement layer, e.g. as described with respect to the examples of the Figures. In one
case, the filtering that is applied at level 1 (e.g. by filtering component 232, 532, 2426 or
2632 in Figures 2, SA to 5C, 24 or 26) may be selectively controlled using signalling from
the encoder. In one case, signalling may be provided to turn the filtering on and off. For
example, a levell filtering enabled flag may be used to specify whether the level 1
deblocking filter should be used. A value of 0 may indicate that filtering is disabled and a
value of 1 may indicate that filtering is enabled. When level!l filtering enabled flagis not
present, it may be inferred to be equal to O (i.e. that filtering is disabled as a default if the
flag is not present). Although an example is presented with respect to the filtering of
residuals that are decoded in the level 1 enhancement sub-layer, in other examples, (e.g. in
addition or instead of), filtering may also be selectively applied to residuals that are

decoded in the level 2 enhancement sub-layer. Filtering may be turned off and on, and/or
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configured according to defined variables, in one or more of the levels using signalling
similar to the examples described here.

As described in examples above, in certain examples, dithering may be applied to
the output decoded picture. This may involve the application of random values generated
by a random number generator to reduce visual artefacts that result from quantization.
Dithering may be controlled using signalling information.

In one example, a dithering control flag may be used to specify whether dithering
should be applied. In may be applied in a similar way to the residual filtering control flags.
For example, a value of 0 may indicate that dithering is disabled and a value of 1 may
indicate that dithering is enabled. When dithering control flag is not present, it may be
inferred to be equal to 0 (e.g. disabled as per the level filtering above). One or more
variables may also be defined to specify a range of values the additional random numbers
are to have. For example, a variable dithering strength may be defined to specify a scaling
factor for random numbers. It may be used to set a range between [-dithering strength, +
dithering strength]. In certain examples, it may have a value between 0 and 31.

In certain examples, different types of dithering may be defined and applied. In this
case, the dithering type and/or parameters for each dithering type may be signalled from
the encoder. For example, a variable dithering type may be used to specify what type of
dithering 1s applied to the final reconstructed picture. Example values of the variable

dithering type are set out in the table below.

dithering_type Value of type

0 None
1 Uniform
2-3 Reserved

Data Block Unit Encoded Data Semantics

The following section sets out some examples of how the encoded data may be
configured. In certain examples, a portion of encoded data, e.g. that relates to a given
coefficient, is referred to as a chunk (e.g. with respect to Figure 9A). The data structures
920 in Figure 9A or 2130 indicated in Figure 21 may be referred to as “surfaces”. Surfaces
may be stored as a multi-dimensional array. A first dimension in the multi-dimensional
array may indicate different planes and use a plane index — planeldx; a second dimension
in the multi-dimensional array may indicate different levels, i.e. relating to the

enhancement sub-layers, and use a level index — /levelldx; and a third dimension in the
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multi-dimensional array may indicate different layers, i.e. relating to different coefficients
(e.g. different locations within a block of coefficients, which may be referred to as A, H,
V and D coefficients for a 2x2 transform), and use a layer index — layerldx. This is
illustrated in Figure 9A, where there are nPlanes, nlevels, and nlLayers (where these
indicate how many elements are in each dimension).

As described with respect to the examples of Figures 25 and 26, in certain cases
additional custom layers may be added. For example, temporal signalling may be encoded
as a non-coefficient layer in addition to the coefficient layers. Other user signalling may
also be added as custom layers. In other cases, separate “surface” arrays may be provided
for these uses, e.g. in addition to a main “surfaces” array structured as indicated in Figure
OA.

In certain cases, the “surfaces” array may have a further dimension that indicates a
grouping such as the tiles shown in Figure 21A. The arrangement of the “surfaces” array
is also flexible, e.g. tiles may be arranged below layers as shown in Figure 21B.

Returning to the examples of the above syntax section, a number of control flags
that relate to the surfaces may be defined. One control flag may be used to indicate whether
there 1is encoded data within the surfaces array. For example, a
surfaces[planeldx][levelldx][layeridx].entropy enabled flag may be used to indicate
whether there are encoded data in surfaces/planeldx][levelldx][layerldx]. Similarly, a
control flag may be used to indicate how a particular surface is encoded. For example, a
surfaces/planeldx[[levelldx][layerldx].rle only flag may indicate whether the data in
surfaces[planeldx][levelldx][layeridx].are encoded using only run length encoding or
using run length encoding and Prefix (i.e. Huffman) Coding.

If temporal data is configured as an additional set of surfaces, a femporal surfaces
array may be provided with a dimensionality that reflects whether temporal processing is
performed on one or two enhancement levels. With regard to the example shown in Figure
3A and Figures 24 to 26, a one-dimensional temporal surfaces[planeldx]| array may be
provided, where each plane has a different temporal surface (e.g. providing signalling for
level 2 temporal processing, where all coefficients use the same signalling). In other
examples, with more selective temporal processing the temporal surfaces array may be
extended into further dimensions to reflect one or more of different levels, different layers
(i.e. coefficient groups) and different tiles.

With regard to the temporal surface signalling of the above syntax examples,

similar flag to the other surfaces may be provided. For example, a
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temporal_surfaces[planeldx].entropy enabled flag may be used to indicate whether there
are encoded data in temporal surfaces[planeldx] and a
temporal_surfaces[planeldx].rle only flag may be used to indicate whether the data in
temporal_surfaces[planeldx] are encoded using only run length encoding or using run

length encoding and Prefix (i.e. Huffman) Coding.

Data Block Unit Encoded Tiled Data Semantics

Similar variables to those set out above for the surfaces may be used for encoded
data that uses tiles. In one case, the encoded tiled data block unit, e.g. tiled data, may have
a similar surfaces/planeldx [[levelldx][layeridx].rle only flag. However, it may have an
additional dimension (or set of variables) reflecting the partition into tiles. This may be
indicated using the data structure surfaces/planeldx][levelldx [[layeridx].tiles[tileldx]. As
set out in the examples above, the tiled data may also have a
surfaces[planeldx|[levelldx][layerldx].tiles[tileldx |.entropy enabled flag that indicates,
for each tile, whether there are encoded data in the respective tiles (e.g. in
surfaces[planeldx][levelldx[[layerldx].tiles[tileldx]).

The tiled data structures may also have associated temporal processing signalling
that is similar to that described for the surfaces above. For example,
temporal_surfaces[planeldx].rle_only flag may again be used to indicate whether the data
in temporal surfaces{planeldx] are encoded using only run length encoding or using run
length encoding and Prefix (i.e. Huffman) Coding. Each tile may have a
temporal _surfaces[planeldx].tiles(tileldx ].entropy enabled flag that indicates whether
there are encoded data in femporal surfaces[planeldx].tiles[tileldx].

Tiled data may have some additional data that relates to the use of tiles. For
example, the variable entropy enabled per tile compressed data rle may contain the
RLE-encoded signalling for each picture tile. A variable compressed size per tile prefix
may also be used to specify the compressed size of the encoded data for each picture tile.
The variable compressed prefix last symbol bit offset per tile prefix may be used to
specify the last symbol bit offset of Prefix (i.e. Huffman) Coding encoded data. Decoding

examples that use this signalling are set out later below.

Data Block Unit Surface Semantics
The higher level “surfaces” array described above may additionally have some

associated data structures. For example, the variable surface.size may specify the size of
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the entropy encoded data and surface.data may contain the entropy encoded data itself.
The variable surface.prefix last symbol bit offset may be used to specify the last symbol
bit offset of the Prefix (i.e. Huffman) Coding encoded data.

Data Block Unit Additional Info Semantics

The additional information data structures may be used to communicate additional
information, e.g. that may be used alongside the encoded video. Additional information
may be defined according to one or more additional information types. These may be
indicated via an additional info type variable. As an example, additional information may
be provided in the form of Supplementary Enhancement Information (SEI) messages or
Video Usability Information (VUI) messages. Further examples of these forms of
additional information are provided with respect to later examples. When SEI messages

are used a payload type variable may specify the payload type of an SEI message.

Data Block Unit Filler Semantics

In certain cases, it may be required to fill NAL units with filler. For example, this
may be required to maintain a defined constant bit rate when the enhancement layer
contains a large number of O values (i.e. when the size of the enhancement layer is small,
which may be possible depending on the pictures being encoded). A filler unit may be
constructed using a constant filler byte value for the payload. The filler byte may be a byte
equal to OxAA.

It should be noted that the example syntax and semantics that are set out above are
provided for example only. They may allow a suitable implementation to be constructed.
However, it should be noted that variable names and data formats may be varied from those
described while maintaining similar functionality. Further, not all features are required and

certain features may be omitted or varied depending on the implementation requirements.

Detailed Example Implementation of the Decoding Process

A detailed example of one implementation of the decoding process is set out below.
The detailed example is described with reference to the method 2700 of Figure 27. The
description below makes reference to some of the variables defined in the syntax and
semantics section above. The detailed example may be taken as one possible

implementation of the schematic decoder arrangements shown in Figures 2, SA to 5C, 24,
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and 26. In particular, the example below concentrates on the decoding aspects for the
enhancement layer, which may be seen as an implementation of an enhancement codec.
The enhancement codec encodes and decodes streams of residual data. This differs from
comparative SVC and SHVC implementations where encoders receive video data as input
at each spatial resolution level and decoders output video data at each spatial resolution
level. As such, the comparative SVC and SHVC may be seen as the parallel
implementation of a set of codecs, where each codec has a video-in / video-out coding
structure. The enhancement codecs described herein on the other hand receive residual data
and also output residual data at each spatial resolution level. For example, in SVC and
SHVC the outputs of each spatial resolution level are not summed to generate an output
video — this would not make sense.

As set out in the “Syntax” section above, a syntax maybe defined to process a
received bitstream. The “Syntax” section sets out example methods such as retrieving an
indicator from a header accompanying data, where the indicator may be retrieved from a
predetermined location of the header and may indicate one or more actions according to
the syntax of the following sections. As an example, the indicator may indicate whether to
perform the step of adding residuals and/or predicting residuals. The indicator may indicate
whether the decoder should perform certain operations, or be configured to perform certain
operations, in order to decode the bitstream. The indicator may indicate if such steps have

been performed at the encoder stage.

General Overview

Turning to the method 2700 of Figure 27A, the input to the presently described
decoding process is an enhancement bitstream 2702 (also called a low complexity
enhancement video coding bitstream) that contains an enhancement layer consisting of up
to two sub-layers. The outputs of the decoding process are: 1) an enhancement residuals
planes (sub-layer 1 residual planes) to be added to a set of preliminary pictures that are
obtained from the base decoder reconstructed pictures; and 2) an enhancement residuals
planes (sub-layer 2 residual planes) to be added to the preliminary output pictures resulting
from upscaling, and modifying via predicted residuals, the combination of the preliminary
pictures 1 and the sub-layer 1 residual planes.

As described above, and with reference to Figures 9A, 21A and 21B, data may be

arranged in chunks or surfaces. Each chunk or surface may be decoded according to an
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example process substantially similar to described below and shown in the Figures. As
such the decoding process operates on data blocks as described in the sections above.

An overview of the blocks of method 2700 will now be set out. Each block is
described in more detail in the subsequent sub-sections.

In block 2704 of the method 2700, a set of payload data block units are decoded.
This allows portions of the bitstream following the NAL unit headers to be identified and
extracted (i.e. the payload data block units).

In block 2706 of the method 2700, a decoding process for the picture receives the
payload data block units and starts decoding of a picture using the syntax elements set out
above. Pictures may be decoded sequentially to output a video sequence following
decoding. Block 2706 extracts a set of (data) surfaces and a set of temporal surfaces as
described above. In certain cases, entropy decoding may be applied at this block.

In block 2710 of the method 2700, a decoding process for base encoding data
extraction is applied to obtain a set of reconstructed decoded base samples
(recDecodedBaseSamples). This may comprise applying the base decoder of previous
examples. If the base codec or decoder is implemented separately, then the enhancement
codec may instruct the base decoding of a particular frame (including sub-portions of a
frame and/or particular planes for a frame). The set of reconstructed decoded base samples
(e.g. 2302 in Figure 23) are then passed to block 2712 where an optional first set of
upscaling may be applied to generate a preliminary intermediate picture (e.g. 2304 in
Figure 23). For example, block 2712 may correspond to up-scaler 2608 of Figure 26. The
output of block 2712 is a set of reconstructed level 1 base samples (where level 0 may
comprise to the base level resolution).

At block 2714, a decoding process for the enhancement sub-layer 1 (i.e. level 1)
encoded data is performed. This may receive variables that indicate a transform size
(nTbs), a user data enabled flag (userDataEnabled) and a step-width (i.e. for
dequantization), as well as blocks of level 1 entropy-decoded quantized transform
coefficients (TransformCoeffQ) and the reconstructed level 1 base samples
(recL1BaseSamples). A plane index (IdxPlanes) may also be passed to indicate which
plane is being decoded (in monochrome decoding there may be no index). The variables
and data may be extracted from the payload data units of the bitstream using the above
syntax.

Block 2714 is shown as comprising a number of sub-blocks that correspond to the

inverse quantization, inverse transform and level 1 filtering (e.g. deblocking) components
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of previous examples. At a first sub-block 2716, a decoding process for the dequantization
is performed. This may receive a number of control variables from the above syntax that
are described in more detail below. A set of dequantized coefficient coding units or blocks
may be output. At a second sub-block 2718, a decoding process for the transform is
performed. A set of reconstructed residuals (e.g. a first set of level 1 residuals) may be
output. At a third sub-block 2720, a decoding process for a level 1 filter may be applied.
The output of this process may be a first set of reconstructed and filtered (i.e. decoded)
residuals (e.g. 2308 in Figure 23). In certain cases, the residual data may be arranged in
NxM blocks so as to apply an NxM filter at sub-block 2720.

At block 2730, the reconstructed level 1 base samples and the filtered residuals that
are output from block 2714 are combined. This is referred to in the Figure as residual
reconstruction for a level 1 block. At output of this block is a set of reconstructed level 1
samples (e.g. 2310 in Figure 23). These may be viewed as a video stream (if multiple
planes are combined for colour signals).

At block 2732, a second up-scaling process is applied. This up-scaling process
takes a combined intermediate picture (e.g. 2310 in Figure 23) that is output from block
2730 and generates a preliminary output picture (e.g. 2312 in Figure 23). It may comprise
an application of the up-scaler 2687 in Figure 26 or any of the previously described up-
sampling components.

In Figure 27, block 2732 comprises a number of sub-blocks. At block 2734,
switching 1s implemented depending on a signalled up-sampler type. Sub-blocks 2736,
2738, 2740 and 2742 represent respective implementations of a nearest sample up-
sampling process, a bilinear up-sampling process, a cubic up-sampling process and a
modified cubic up-sampling process. Sub-blocks may be extended to accommodate new
up-sampling approaches as required (e.g. such as the neural network up-sampling
described herein). The output from sub-blocks 2736, 2738, 2740 and 2742 is provided in
a common format, e.g. a set of reconstructed up-sampled samples (e.g. 2312 in Figure 23),
and is passed, together with a set of lower resolution reconstructed samples (e.g. as output
from block 2730) to a predicted residuals process 2744. This may implement the modified
up-sampling described herein to apply predicted average portions. The output of block
2744 and of block 2732 is a set of reconstructed level 2 modified up-sampled samples
(recL2ModifiedUpsampledSamples).

Block 2746 shows a decoding process for the enhancement sub-layer 2 (i.e. level

2) encoded data. In a similar manner to block 2714, it receives variables that indicate a
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step-width (i.e. for dequantization), as well as blocks of level 2 entropy-decoded quantized
transform coefficients (TransformCoeftfQQ) and the set of reconstructed level 2 modified
up-sampled samples (recL2ModifiedUpsampledSamples). A plane index (IdxPlanes) is
also passed to indicate which plane is being decoded (in monochrome decoding there may
be no index). The variables and data may again be extracted from the payload data units of
the bitstream using the above syntax.

Block 2746 comprises a number of temporal prediction sub-blocks. In the present
example, temporal prediction is applied for enhancement sub-layer 2 (i.e. level 2). Block
2746 may thus receive further variables as indicated above that relate to temporal
processing including the variables femporal enabled, temporal refresh bit,
temporal_signalling present, and temporal step width modifier as well as the data
structures TransformTempSig and TileTempSig that provide the temporal signalling data.

Two temporal processing sub-blocks are shown: a first sub-block 2748 where a
decoding process for temporal prediction is applied using the TransformTempSig and
TileTempSig data structures and a second sub-block 2750 that applies a tiled temporal
refresh (e.g. as explained with reference to the examples of Figures 11A to 13B). Sub-
block 2750 is configured to set the contents of a temporal buffer to zero depending on the
refresh signalling.

At sub-blocks 2752 and 2756, decoding processes for the dequantization and
transform are applied to the level 2 data in a similar manner to sub-blocks 2718 and 2720
(the latter being applied to the level 1 data). A second set of reconstructed residuals that
are output from the inverse transform processing at sub-block 2756 are then added at sub-
block 2756 to a set of temporally predicted level 2 residuals that are output from sub-block
2748, this implements part of the temporal prediction. The output of block 2746 is a set of
reconstructed level 2 residuals (resL2Residuals).

At block 2758, the reconstructed level 2 residuals (resL2Residuals) and the
reconstructed level 2 modified up-sampled samples (recL2ModifiedUpsampledSamples)
are combined in a residual reconstruction process for the enhancement sub-layer 2. The
output of this block is a set of reconstructed picture samples at level 2
(recL2PictureSamples). At block 2760, these reconstructed picture samples at level 2 may
be subject to a dithering process that applies a dither filter. The output to this process is a
set of reconstructed dithered picture samples at level 2 (recL2DitheredPictureSamples).

These may be viewed at block 2762 as an output video sequence (e.g. for multiple
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consecutive pictures making up the frames of a video, where planes may be combined into

a multi-dimensional array for viewing on display devices).

Payload Data Block Unit Process

The operations performed at block 2704 will now be described in more detail. The
input to this process is the enhancement layer bitstream. The enhancement layer bitstream
is encapsulated in NAL units, e.g. as indicated above. A NAL unit may be used to
synchronize the enhancement layer information with the base layer decoded information.

The bitstream is organized in NAL units, with each NAL unit including one or
more data blocks. For each data block, the process block( ) syntax structure (as shown in
the “Syntax” section above) is used to parse a block header (in certain cases, only the block
header). It may invoke a relevant process block () syntax element based upon the
information in the block header. A NAL unit which includes encoded data may comprise
at least two data blocks: a picture configuration data block and an encoded (tiled) data
block. A set of possible different data blocks are indicated in the table above that shows
possible payload types.

A sequence configuration data block may occur at least once at the beginning of
the bitstream. A global configuration data block may occur at least for every instantaneous
decoding refresh picture. An encoded (tiled) data block may be preceded by a picture
configuration data block. When present in a NAL unit, a global configuration data block

may be the first data block in the NAL unit.

Picture Enhancement Decoding Process

The present section describes in more detail the picture enhancement decoding
process performed at block 2706.

The input of this process may be the portion of the bitstream following the headers
decoding process described in the “Process Block Syntax” section set out above. Outputs
are the entropy encoded transform coefficients belonging to the picture enhancement being
decoded. An encoded picture maybe preceded by the picture configuration payload
described in the “Process Payload — Picture Configuration” and “Data Block Unit Picture
Configuration Semantics” sections above.

The picture enhancement encoded data may be received as payload encoded data
with the syntax for the processing of this data being described in the “Process Payload —

Encoded Data” section. Inputs for the processing of the picture enhancement encoded data
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may comprise: a variable nPlanes containing the number of plane (which may depend on
the value of the variable processed planes type flag), a variable nlLayers (which may
depend on the value of fransform type), and a variable nlevels (which indicates the
number of levels to be processed). These are shown in Figure 9A. The variable nLevels
may be a constant, e.g. equal to 2, if two enhancement sub-layers are used and processed.

The output of block 2706 process may comprise a set of
(nPlanes)x(nlLevels)x(nLayers) surfaces (e.g. arranged as an array — preferably multi-
dimensional)  with  elements  surfaces/nPlanes][nlevels][nLayers]. If  the
temporal_signalling present flag is equal to 1, an additional temporal surface of a size
nPlanes with elements femporal surface[nPlanes] may also be retrieved. The variable

nPlanes may be derived using the following processing:

if (processed planes type flag == 0)

nPlanes = 1
else
nPlanes = 3

and the variable nLayers may be derived using the following processing:

if (transform_type == 0)

nLayers = 4
else
nLayers = 16

The encoded data may be organized in chunks as shown in Figure 9A (amongst
others). The total number of chunks total chunk count may be computed as: nPlanes *
nlevels * nlLayers * (no enhancement bit flag == 0) + nPlanes *
(temporal signalling present flag == 1). For each plane, a number (e.g. up to 2)
enhancement sub-layers are extracted. For each enhancement sub-layer, a number (e.g. up
to 16 for a 4x4 transform) coefticient groups of transtorm coefficients can be extracted.
Additionally, if temporal signalling present flag is equal to 1, an additional chunk with
temporal data for enhancement sub-layer 2 may be extracted. Within this processing, a
value of the variable /evelldx equal to 1 may be used to refer to enhancement sub-layer 1
and a value of the variable levelldx equal to 2 may be used to refer to enhancement sub-
layer 2. During the decoding process chunks may be read 2 bits at a time. Values for

surfaces[planeldx|[levelldx][[layeridx].entropy enabled flag,
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surfaces|[planeldx][levelldx][layerldx].rle only flag,
temporal_surfaces[planeldx].entropy enabled flag and
temporal_surfaces[planeldx].rle_only flag may be derived as follows:

shift size =—1

for (planeldx = 0; planeldx < nPlanes; ++planeldx) {

if (no_enhancement bit flag == 0) {

for (levelldx = 1; levelldx <= nLevels; ++levelldx) {

for (layerldx = 0; layer <nLayers; ++layerldx) {

if (shift_size <0) {
data =read_byte(bitstream)

shift size=8-1

}
surfaces [planeldx][levelldx][layerldx].entropy enabled flag = ((data >>

shift size) & 0x1)
surfaces [planeldx][levelldx][layerldx].rle_only flag=((data>> (shift size

— 1)) & 0x1)
shift size —=2

}
} else {
for (layerldx = 0; layer < nLayers; ++layerldx)
surfaces [planeldx][levelldx][layerldx].entropy enabled flag=0

}
if (temporal_signalling present flag==1) {

if (shift_size < 0) {

data = read_byte(bitstream)

shift size=8-1

}

temporal surfaces[planeldx].entropy enabled flag = ((data >> shift size) & 0x1)

temporal surfaces[planeldx].rle only flag = ((data >> (shift_size — 1)) & 0x1)

shift_size —=2
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Data associated with the entropy-encoded transform coefficients and the entropy-
encoded temporal signal coefficient group may be derived according to respective values
of the entropy enabled flag and rle only flag fields. Here entropy encoding may
comprise run-length encoding only or Prefix/Huffman Coding and run-length encoding.
The content for the surfaces[planeldx][levelldx][layerldx].data provides a starting
address for the entropy encoded transform coefficients related to the specific chunk of data
and temporal surfaces[planeldx].data provides the starting address for the entropy-
encoded temporal signal coefficient group related to the specific chunk of data. These

portions of data may be derived as set out below:

for (planeldx = 0; planeldx < nPlanes; ++planeldx) {

for (levelldx = 1, levelldx <= nLevels; ++levelldx) {

for (layerldx = 0; layer < nLayers; ++layerldx) {

if (surfaces [planeldx][levelldx][layerldx].entropy enabled flag) {

if (surfaces [planeldx][levelldx][layerldx].rle only flag) {

multibyte = read_multibyte(bitstream)

surfaces[planeldx][levelldx][layerldx].size = multibyte

surfaces[planeldx][levelldx][layerldx].data =

bytestream_current(bitstream)

}else {

data = read_byte(bitstream)

surfaces[planeldx][levelldx][layerldx].prefix last symbol bit offset
(data&Ox1F)

multibyte = read_multibyte(bitstream)

surfaces[planeldx][levelldx][layerldx].size = multibyte

surfaces[planeldx][levelldx][layerldx].data =

bytestream_current(bitstream)

bytestream_seek(bitstream, surfaces[planeldx][levelldx][layerldx].size)

}

if (temporal_signalling present flag==1) {
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if (temporal surfaces[planeldx].entropy enabled flag) {

if (temporal surfaces[planeldx].rle only flag) {

multibyte = read multibyte(bitstream)

temporal surfaces[planeldx].size = multibyte

temporal surfaces[planeldx].data = bytestream_current(bitstream)
}else {
data = read byte(bitstream)

temporal surfaces[planeldx].prefix last symbol bit offset = (data&Ox1F)

multibyte = read multibyte(bitstream)

temporal _surfaces[planeldx].size = multibyte

temporal surfaces[planeldx].data = bytestream_current(bitstream)

bytestream_seek(bitstream, temporal surfaces[planeldx].size)

}
}
b
}
The transform coefficients contained in the block of bytes of length
surfaces[planeldx][levelldx][layerldx].size and starting from

surfaces[planeldx][levelldx][layerldx].data address may then be extracted and passed to
an entropy decoding process, which may apply the methods described above with respect
to Figures 10A to 101, and/or the methods described in more detail in the description below.

If temporal signalling present flag is set to 1, the temporal signal coefficient
group contained in the block of bytes of length temporal surfaces/planeldx].size and
starting from temporal surfaces[planeldx].data address may also be passed to similar

entropy decoding process, .

Picture Enhancement Decoding Process — Tiled Data

The decoding process for picture enhancement encoded tiled data
(payload encoded tiled data) may be seen as a variation of the process described above.
Syntax for this process is described in the above section entitled “Process Payload —
Encoded Tiled Data™.

Inputs to this process may be: variables nPlanes, nLayers and nlLevels as above; a

variable n7ilesl.2, which equals to Ceil(Picture Width | Tile Width)xCeil(Picture Height
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/ Tile Height) and refers to the number of tiles in the level 2 sub-layer; a variable n7ilesl |,
which refers to the number of tiles in level 1 sub-layer and equals: (a) n7ilesL2 if the
variable scaling mode level2 1s equal to 0, (b) Ceil(Ceil(Picture Width | 2) /
Tile Width)xCeil(Ceil(Picture _Height) ! Tile Height) if the variable scaling mode_level2
is equal to 1, and (c) Ceil(Ceil(Picture Width / 2) ] Tile Width)xCeil(Ceil(Picture Height
/2) / Tile Height) if the variable scaling mode level2 is equal to 2; Picture Width and
Picture Height, which refer to the picture width and height as derived from the value of
the variable resolution type; and Tile Width and Tile Height, which refer to the tile width
and height as derived from the value of the variable tile dimensions type. Further details
of the variables referred to here is set out in the Data Block Semantics sections above.

An output of this process is the (nPlanes)x(nlevels)x(nLayer) array “surfaces”,
with elements surfaces{nPlanes][nlLevels][nLayer]. If temporal signalling present flag
is set to 1, the output may also comprise an additional temporal surface of a size nPlanes
with elements femporal surface[nPlanes]. Values for the variables nPlanes and nlayers
may be derived as set out in the above section.

As above, the encoded data is organized in chunks. In this case, each chunk may
correspond to a tile, e.g. each of the portions 2140 shown in Figure 21A. The total number
of chunks, total chunk count, is calculated as: nPlanes * nlLevels * nLayers * (nlilesL.1 +
nTilesl.2y * (no enhancement bit flag == 0) + nPlanes * nlilesl2 *
(temporal signalling present flag == 1). The enhancement picture data chunks may be
hierarchically organized as shown in one of Figures 21A and 21B. In accordance with the
examples described herein, for each plane, up to 2 layers of enhancement sub-layers may
be extracted and for each sub-layer of enhancement, up to 16 coefficient groups of
transform coefficients may be extracted. Other implementations with different numbers of
sub-layers or different transforms may have different numbers of extracted levels and
layers. As before, as the present example applies temporal prediction in level 2, if
temporal signalling present flag is set to 1, an additional chunk with temporal data for
enhancement sub-layer 2 is extracted. The variable /evelldx may be used as set out above.

In this tiled case, each chunk may be read 1 bit at a time. The
surfaces[planeldx|[levelldx][layerldx].rle _only flag and, if
temporal_signalling present flag is set to 1, temporal surfaces[planeldx].rle _only flag

may be derived as follows:

shift size =—1
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for (planeldx = 0; planeldx < nPlanes; ++ planeldx) {

if (no_enhancement bit flag ==0) {

for (levelldx = 1; levelldx <= nLevels; ++levelldx) {

for (layerldx = 0; layer < nLayers; ++layerldx) {

if (shift_size < 0) {

data = read_byte(bitstream)

shift size=8-1

}

surfaces [planeldx][levelldx][layerldx].rle only flag = ((data >>
(shift_size — 1)) & 0x1)

shift size —=1

}

if (temporal_signalling_present flag ==1) {

if (shift_size < 0) {

data = read_byte(bitstream)

shift size=8 -1

}

temporal surfaces[planeldx].rle only flag= ((data>> (shift size — 1)) & 0x1)

shift size —=1

and

2

The  surfaces/planeldx][levelldx][layerldx].tiles[tileldx].entropy enabled flag
if temporal signalling present flag is set to 1

2

temporal _surfaces[planeldx].tiles(tileldx [.entropy enabled flag may be derived as

follows:

if (compression_type entropy enabled per tile flag==10) {

shift size =—1

for (planeldx = 0; planeldx < nPlanes; ++planeldx) {

if (no_enhancement bit flag == 0) {

for (levelldx = 1; levelldx <= nLevels; ++levelldx) {
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if (levelldx == 1)

nTiles = nTilesL1

else

nTiles = nTilesL.2

for (layerldx = 0; layer < nLayers; ++layerldx) {

for (tileldx=0; tileldx < nTiles; tileldx ++) {

if (shift_size < 0) {

data = read byte(bitstream)

shift size=8-1

}

surfaces[planeldx][levelldx][layerldx]
tiles[tileldx].entropy enabled flag=
((data >> (shift_size — 1)) & 0x1)

shift size —=1

}

}else {

for (levelldx = 1; levelldx <= nLevels; ++levelldx) {

if (levelldx == 1)

nTiles = nTilesL1

else

nTiles = nTilesL.2

for (layerldx = 0; layer < nLayers; ++layerldx) {

for (tileldx = 0; tileldx < nTiles; tileldx++)

surfaces[planeldx][levelldx][layerldx]
tiles[tileldx].entropy enabled flag=0

}

if (temporal_signalling present flag==1) {

for (tileldx = 0; tileldx < nTilesL2; tileldx++) {

if (shift_size < 0) {
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data = read_byte(bitstream)

shift size=8-1

}

temporal surfaces[planeldx].tiles[tileldx].entropy enabled flag =
((data >> (shift_size — 1)) & Ox1)

shift size =1

3
} else {

RLE decoding process as defined herein.

According to the value of the enfropy enabled flag and rle only flag fields, the
content for the surfaces/planeldx][levelldx][layerldx].tiles[tileldx].data (i.e. indicating
the beginning of the RLE only or Prefix Coding and RLE encoded coefficients related to
the specific chunk of data) and, if temporal signalling present flag is set to 1, according
to the value of the entropy enabled flag and rle only flag fields, the content for the
temporal_surfaces[planeldx].tiles[tileldx].data indicating the beginning of the RLE only
or Prefix Coding and RLE encoded temporal signal coefficient group related to the specific

chunk of data may be derived as follows:

if (compression_type size per tile ==0) {

for (planeldx = 0; planeldx < nPlanes; ++planeldx) {

for (levelldx = 1; levelldx <= nLevels; ++levelldx) {
if (levelldx == 1)
nTiles = nTilesL1

else

nTiles = nTilesL2

for (layerldx = 0; layer < nLayers; ++layerldx) {
for (tileldx = 0; tileldx < nTiles; tileldx++) {

if (surfaces

[planeldx][levelldx][layerldx].tiles[tileldx].entropy enabled flag) {

if (surfaces [planeldx][levelldx][layerldx].rle_only flag) {
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multibyte = read_multibyte(bitstream)

surfaces[planeldx][levelldx][layerldx].tiles[tileldx].size =
multibyte

surfaces[planeldx][levelldx][layerldx].tiles[tileldx]data =

bytestream_current(bitstream)

} else {

data = read byte(bitstream)

surfaces[planeldx][levelldx][layerldx].

tiles[tileldx].prefix last symbol bit offset
(data&Ox1F)

multibyte = read_multibyte(bitstream)

surfaces[planeldx][levelldx][layerldx].tiles[tileldx].size
multibyte

surfaces[planeldx][levelldx][layerldx].tiles[tileldx].data =

bytestream_current(bitstream)

bytestream seek(bitstream,

surfaces[planeldx][levelldx][layerldx].tiles[tileldx].size)

}

}

if (temporal _signalling_present _flag == 1) {

for (tileldx = 0; tileldx < nTilesL2; tileldx++) {

if (temporal surfaces[planeldx] tiles[tileldx].entropy enabled flag) {

if (temporal surfaces[planeldx].rle only flag) {

multibyte = read multibyte(bitstream)

temporal surfaces|planeldx].tiles[tileldx].size = multibyte

temporal surfaces[planeldx].tiles[tileldx].data =

bytestream_current(bitstream)

} else {

data = read_byte(bitstream)
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temporal surfaces[planeldx].tiles[tileldx].
prefix last symbol bit offset = (data&O0x1F)

multibyte = read multibyte(bitstream)

temporal surfaces|planeldx].tiles[tileldx].size = multibyte

temporal surfaces[planeldx].tiles[tileldx].data =

bytestream_current(bitstream)

bytestream_seek(bitstream,

temporal surfaces[planeldx].tiles[tileldx].size)

}

}

} else {

for (planeldx = 0; planeldx < nPlanes; ++planeldx) {

for (levelldx = 1; levelldx <= nLevels; ++levelldx) {

if (levelldx == 1)

nTiles = nTilesL 1

else

nTiles = nTilesL2

for (layerldx = 0; layer < nLayers; ++layerldx) {

for (tileldx = 0; tileldx <nTiles; tileldx ++) {

if (surfaces

[planeldx][levelldx][layerldx].tiles[tileldx].entropy enabled flag) {

if (surfaces[planeldx][levelldx][layerldx].rle_only flag) {

Prefix Coding decoding process as defined in other sections to

fill surfaces[planeldx][levelldx][layerldx].tiles[tileldx].size

surfaces[planeldx][levelldx][layerldx].tiles[tileldx].data =

bytestream_current(bitstream)

} else {
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Prefix Coding decoding process as defined in other sections to
fill surfaces[planeldx][levelldx][layerldx].tiles[tileldx].
prefix_last symbol bit offset

Prefix Coding decoding process as defined in other sections to

fill surfaces[planeldx][levelldx][layerldx].tiles[tileldx].size

surfaces[planeldx][levelldx][layerldx].tiles[tileldx].data =

bytestream_current(bitstream)

bytestream_seek(
bitstream,surfaces[planeldx][levelldx][layerldx].
tiles[tileldx].size)

}

if (temporal _signalling_present _flag == 1) {

for (tileldx = 0; tileldx < nTilesL2; tileldx++) {

if (temporal surfaces [planeldx]. tiles[tileldx].entropy enabled flag) {

if (temporal surfaces [planeldx].rle only flag) {

Prefix Coding decoding process as defined in other sections to fill

temporal surfaces[planeldx].tiles[tileldx].size

temporal surfaces[planeldx].tiles[tileldx].data =

bytestream_current(bitstream)

} else {

Prefix Coding decoding process as defined in other sections to fill

temporal surfaces[planeldx].tiles[tileldx].prefix last symbol bit offset

Prefix Coding decoding process as defined in other sections to fill

temporal surfaces[planeldx].tiles[tileldx].size

temporal surfaces[planeldx].tiles[tileldx].data =

bytestream_current(bitstream)

bytestream_seek(bitstream,

temporal surfaces[planeldx].tiles[tileldx].size)
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The coefficients contained in the block of bytes of length
surfaces[planeldx [[levelldx][layerldx].tiles[tileldx].size and starting from
surfaces[planeldx][levelldx][layerldx].tiles[tileldx].data address may then be passed to
for entropy decoding process as described elsewhere. If temporal signalling enabled flag
is set to 1, the temporal signal coefficient group contained in the block of bytes of length
temporal surfaces[planeldx].tiles[tileldx].size and starting from
temporal surfaces[planeldx].tiles[tileldx].data address are also passed for entropy
decoding.

General Upscaling Process Description

Upscaling processes may be applied, at the decoder, to the decoded base picture at
block 2712 in Figure 27 and to the combined intermediate picture at block 2732. In the
present examples, upscaling may be configured based on a signalled scaling mode. In the
processes described below the upscaling is configured based on the indications of
scaling mode_levell for the up-scaling to level 1 and based on scaling mode level2 for

the up-scaling to level 2.

Upscaling from Decoded Base Picture to Preliminary Intermediate Picture

The up-scaling from a decoded base picture to a preliminary intermediate picture,
e.g. as performed in block 2712, may take the following inputs: a location (xCurr, yCurr)
specifying the top-left sample of the current block relative to the top-left sample of the
current picture component; a variable IdxPlanes specifying the colour component of the
current block; a variable nCurrS specifying the size of the residual blocks used in the
general decoding process, an (nCurrS)x(nCurrS) array recDecodedBaseSamples
specifying decoded base samples for the current block; variables sreWidth and srcHeight
specifying the width and the height of the decoded base picture; variables dstWidth and
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dstHeight specifying the width and the height of the resulting upscaled picture; and a
variable is8Bit used to select the kernel coefficients for the scaling to be applied, e.g. if the
samples are 8-bit, then variable is§Bit shall be equal to 0, if the samples are 16-bit, then
variable is8Bit shall be equal to 1. An output of block 2712 may comprise a
(nCurrX)x(nCurrY) array recL IModifiedUpsampledBaseSamples of picture elements.

In the array of elements recl IModifiedUpsampledBaseSamples[x][y] the variables
nCurrX and nCurrY may be derived based on the scaling mode. For example, if

scaling mode levell is equal to 0O, no upscaling 1is performed, and

recl IModifiedUpsampledBaseSamples[x][y] are set to be equal to
recDecodedBaseSamples[x][y]. If scaling mode levell is equal to 1, then nCurrX =
nCurrS << 1, and nCurrY = nCurrS. If scaling mode_levell is equal to 2, then nCurrX =
nCurrS <<1, and nCurrY = nCurrS << 1.

The up-scaling applied at block 2712 may involve the use of a switchable up-
scaling filter. The decoded base samples may be processed by an upscaling filter of a type
signalled in the bitstream. The type of up-scaler maybe derived from the process described
in the section “Data Block Unit Global Configuration Semantics”. Depending on the value
of the variable upsample type, a number of different kernel types may be applied. For
example, each kernel types may be configured to receive a set of picture samples
recDecodedBaseSamples as input and to produce a set of up-sampled picture samples
recL 1UpsampledBaseSamples as output. There may be four possible up-scaler kernels
(although these may vary in number and type depending on implementation). These are
also described in the section titled “Example Up-sampling Approaches”. In the present
example, if upsample type is equal to O, the Nearest sample up-scaler described in the
“Nearest up-sampling” section above may be selected. If upsample type is equal to 1, the
Bilinear up-scaler described in the “Bilinear up-sampling” section above may be selected.
If upsample_type is equal to 2, a Bicubic up-scaler described in the “Cubic Up-sampling”
section above may be selected. If upsample type is equal to 3, a Modified Cubic up-scaler

described in the “Cubic Up-sampling” section above may be selected.

A predicted residuals (e.g. predicted average) decoding computation may also be
applied in certain cases as described below with respect to the level 1 to level 2 up-scaling.
A general up-scaler may divide the picture to upscale in 2 areas: center area and
border areas as shown in Figures 9B and 9C. For the Bilinear and Bicubic kernel, the border

area consists of four segments: Top, Left, Right and Bottom segments as shown in Figure
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9B, while for the Nearest kernel consists of 2 segments: Right and Bottom as shown in
Figure 9C. These segments are defined by the border-size parameter which may be set to

2 samples (1 sample for nearest method).

Level 1 Bit Depth Conversion

In certain examples, an up-scaling process may also involve a bit depth conversion,
e.g. different levels (including levels O, 1 and 2 described herein) may process data having
different bit depths. The bit depths of each level may be configurable, e.g. based on
configuration data that may be signalled from the encoder to the decoder. For example, the
bit depths for each level, and any required conversion, may depending on the values of the
bitstream fields in the global configuration as processed in the examples above. In one
case, bit depth conversion is performed as part of the up-scaling process. Bit depth
conversion may be applied using bit shifts and the difference between the bit depths of the
lower and upper levels in the up-scaling.

When applying block 2712, the sample bit depth for level 1 may be based on
levell depth flag. If levell depth flag is equal to 0, the preliminary intermediate picture
samples are processed at the same bit depth as they are represented for the decoded base
picture. If levell depth flag is equal to 1, the preliminary intermediate picture samples
may be converted depending on the value of a variable base depth and a variable
enhancement depth. The variable base depth indicates a bit depth for the base layer. In
certain examples, if base depth is assigned a value between 8 and 14, e.g. depending on
the value of field base depth type as specified in the “Data Block Unit Global
Configuration Semantics” section above, then enhancement depth is assigned a value
between 8 and 14, depending on the value of field enhancement depth type as specified
in the aforementioned semantics section.

If base depth s equal to enhancement depth, no further processing is required.

If enhancement depth is greater than base depth, the array of level 1 up-sampled
base samples recl IModifiedUpsampledBaseSamples may be modified as follows:

recl IModifiedUpsampledBaseSamples[x][y] =
recL IModifiedUpsampledBaseSamples[x][y] << (enhancement depth -
base depth)

If base depth i1s greater than  enhancement depth, the  array
recl IModifiedUpsampledBaseSamples may be modified as follows:

recl IModifiedUpsampledBaseSamples[x][y] =
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recl IModifiedUpsampledBase Samples[x][y] >> (base_depth -

enhancement depth)

Upscaling from Combined Intermediate Picture to Preliminary Output Picture

A similar set of processes may be performed at block 2732. Inputs to this process
may comprise: a location (xCurr, yCurr) specifying the top-left sample of the current block
relative to the top-left sample of the current picture component; a variable IdxPlanes
specifying the colour component of the current block; a variable nCurr$ specifying the
size of the residual block; an (nCurrS)x(nCurrS) array recl I PictureSamples specifying
the combined intermediate picture samples of the current block; variables srcWidth and
srcHeight specifying the width and the height of the reconstructed base picture; variables
dstWidth and dstHeight specifying the with and the height of the resulting upscaled picture;
and a variable is8Bit used to select the kernel coefficients for the scaling to be applied. If
the samples are 8-bit, then variable is§Bif may be equal to 0, if the samples are 16-bit, then
variable is8Bit may be equal to 1. An output of process 2732 is the (nCurrX)x(nCurrY)
array recL.2ModifiedUpsampledSamples of preliminary output picture samples with
elements recl. 2ModifiedUpsampledSamples[x][y].

The variables nCurrX and nCurrY may be derived based on a scaling mode in a
similar manner to the process described above. If scaling mode level2 is equal to 0, no
upscaling is performed, and recl. 2ModifiedUpsampledSamples[x][y] are set to be equal to
recL1PictureSamples[x][y]. If scaling mode level?2 is equal to 1, then nCurrX = nCurr§
<< 1, and nCurrY = nCurrS. If scaling mode_level?2 is equal to 2, then nCurrX = nCurrS§
<< 1, and nCurrY = nCurr§ << 1.

As described in the section above, the up-scaling performed at block 2732 may also
involve the selective application of an upscaling filter, where an up-scaling type is
signalled in the bitstream. Depending on the value of the variable upsample type, each
kernel type may be configured to reclLlPictureSamples as input and producing
recL2UpsampledSamples as output. There may be four possible up-scaler kernels
(although these may vary in number and type depending on implementation). These are
also described in the section titled “Example Up-sampling Approaches”. In the present
example, if upsample type is equal to O, the Nearest sample up-scaler described in the
“Nearest up-sampling” section above may be selected. If upsample type is equal to 1, the
Bilinear up-scaler described in the “Bilinear up-sampling” section above may be selected.

If upsample type is equal to 2, a Bicubic up-scaler described in the “Cubic Up-sampling”
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section above may be selected. If upsample type is equal to 3, a Modified Cubic up-scaler
described in the “Cubic Up-sampling” section above may be selected.

The division of the picture into multiple areas may be performed as described in
the section above with reference to Figures 9B and 9C.

Following the upscaling, if predicted residual mode flag as described above is
equal to 1 process, a predicted residual (i.e. modified up-sampling) mode as described
above and below (see sub-block 2744 in Figure 27) may be invoked with inputs as the
(nCurrX)x(nCurrY) array reclL2UpsampledSamples and the (nCurrS)x(nCurrS) array
recL1PictureSamples specifying the combined intermediate picture samples of the current
block. The output of this process may comprise a (nCurrX)x(nCurrY) array
recL. 2ModifiedUpsampledSamples of  picture elements. Otherwise, if
predicted residual mode_flag 1s equal to 0, a predicted residual mode is not applied, and
recL2ModifiedUpsampledSamples[x][y] are set to be equal to recl.2UpsampledSamples

[x][y] (i.e. set as the up-sampled values without modification).

Level 2 Bit Depth Conversion
Bit depth conversion as described above for level 1 may also (or alternatively) be
applied when up-scaling from level 1 to level 2. Again, bit depth conversion may be
performed depending on the values of the bitstream fields in the global configuration.
With respect to level 2, the sample bit depth may be derived from the
levell depth flag. 1f levell depth flag is equal to 1, the preliminary output picture
samples are processed at the same bit depth as they are represented for the preliminary
intermediate picture. If levell depth flag is equal to 0, the output intermediate picture
samples are converted depending on the value of the variables base depth and
enhancement depth. These may be derived as discussed in the level 1 bit depth conversion
section above. Again, if base depth is equal to enhancement depth, no further processing
is required. If emnhancement depth is greater than base depth, the array
recL.2ModifiedUpsampledSamples 1s modified as follows:
recl.2ModifiedUpsampledSamples|x][y] =
recL.2ModifiedUpsampledSamples[x]ly] <<  (enhancement depth -
base depth)
If base depth i1s greater than  enhancement depth, the  array
recL.2ModifiedUpsampledSamples 1s modified as follows:
recl.2ModifiedUpsampledSamples|x][y] =
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reclL.2ModifiedUpsampledSamples[x][y] >> (base_depth -

enhancement depth)

Nearest Sample Upsampler Kernel Description

The sections below set out additional details on the example up-samplers described
above.

A first up-sampler is a nearest sample up-sampler as shown in sub-block 2736 and
discussed in the “Nearest Up-sampling” section above. The example of sub-block 2736
takes as inputs: variables srcX and srcY specifying the width and the height of the input
array, variables dstX and dstY specifying the width and the height of the output array; and
a (sreX)x(srcY) array reclnputSamples[x][y] of input samples. Outputs to this process are
a (dstX)x(dstY) array recUpsampledSamples[x][y] of output samples.

The Nearest kernel performs upscaling by copying the current source sample onto
the destination 2x2 grid. This is shown in Figure 9D and described in the accompanying
description above. The destination sample positions are calculated by doubling the index
of the source sample on both axes and adding +1 to extend the range to cover 4 samples as
shown in Figure 9D.

The nearest sample kernel up-scaler may be applied as specified by the following
ordered steps whenever (xCurr, yCurr) block belongs to the picture or to the border area
as specified in Figure 9D.

If scaling mode levelX is equal to 1, the computation may be as follows:

for (ySrc = 0; ySrc < nCurrS; ++ySrc)

yDst = ySrc

for (xSrc = 0; xSrc < nCurrS; ++xSrc)

xDst = xSrc << 1

recUpsampledSamples[xDst][yDst] = recInputSamples[xSrc][ySrc]

recUpsampledSamples[xDst + 1][yDst] = recInputSamples[xSrc][ySrc]

If scaling mode_levelX is equal to 2, the computation may be as follows:

for (ySrc = 0; ySrc < nCurrS; ++ySrc)

yDst = ySrc << 1

for (xSrc = 0; xSrc < nCurrS; ++xSrc)

xDst = xSrc << 1

recUpsampledSamples[xDst][yDst] = recInputSamples[xSrc][ySrc]
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recUpsampledSamples[xDst][yDst + 1] = recInputSamples[xSrc][ySrc]

recUpsampledSamples[xDst + 1][yDst] = recInputSamples[xSrc][ySrc]

recUpsampledSamples[xDst + 1][yDst + 1] =
recInputSamples[xSrc][ySrc]

Bilinear Upsampler Kernel Description

A bilinear upsampler kernel process is described in the section titles “Bilinear up-
sampling above”. Further examples are now described with reference to sub-block 2738 in
Figure 27. The inputs and outputs to sub-block 2738 may be the same as for sub-block
2736. The Bilinear up-sampling kernel consists of three main steps. The first step involves
constructing a 2x2 grid of source samples with the base sample positioned at the bottom
right corner. The second step involves performing the bilinear interpolation. The third step
involves writing the interpolation result to the destination samples. The bilinear method
performs the up-sampling by considering the values of the nearest 3 samples to the base
sample. The base sample is the source sample from which the address of the destination
sample is derived. Figure 9E shows an example source grid used in the kernel.

The bilinear interpolation is a weighted summation of all the samples in the source
grid. The weights employed are dependent on the destination sample being derived. The
algorithm applies weights which are relative to the position of the source samples with
respect to the position of the destination samples. If calculating the value for the top left
destination sample, then the top left source sample will receive the largest weighting
coefficient while the bottom right sample (diagonally opposite) will receive the smallest
weighting coefficient, and the remaining two samples will receive an intermediate
weighting coefficient. This is visualized in Figure OF and described in detail above.

An example bilinear kernel up-scaler is illustrated in Figure 9G. It may be applied
as specified by the following ordered steps below when (xCurr, yCurr) block does not
belong to the border area as specified in Figures 9B and 9C.

If scaling mode levelX is equal to 1, the following up-scaling computation may be

performed:

for (ySrc = 0; ySrc <nCurrS + 1; ++ySrc)

for (xSrc = 0; xSrc < nCurrS + 1; ++xSrc)

xDst = (xSrc << 1) — 1
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bilinear1D(recInputSamples[xSrc¢ — 1][ySrc], recInputSamples[xSrc1][ySrc],
recUpsampledSamples [xDst][ySrc], recUpsampledSamples [xDst + 1][ySrc])

If scaling mode levelX is equal to 2, the following up-scaling computation may be

performed:

for (ySrc = 0; ySrc <nCurrS + 1; ++ySrc)

yDst = (ySrc << 1) — 1

for (xSrc = 0; xSrc < nCurrS + 1; ++xSrc)

xDst = (xSrc << 1) — 1

bilinear2D(recInputSamples[xSrc — 1][ySrc — 1], recInputSamples[xSrc][y Src —
1], recInputSamples[xSrc - 1][ySrc], recInputSamples[xSrc][ySrc],
recUpsampledSamples[xDst][ySrc], recUpsampledSamples [xDst + 1][ySrc],
recUpsampledSamples[xDst][ySrc + 1], recUpsampledSamples[xDst + 1][ySrc + 1])

The bilinear kernel up-scaler is applied as specified by the following ordered steps
below when (xCurr, yCurr) block belongs to the border area as specified in Figures 9B and
9C:

If scaling mode_levelX is equal to 1:

for (ySrc = 0; ySrc <nCurrS + 1; ++ySrc)

for (xSrc = 0; xSrc < nCurrS + 1; ++xSrc)

xDst = (xSrc << 1) — 1
xSrc0 = Max(xSrc — 1, 0);
xSrcl = Min(xSrc, srcWidth — 1)

bilinear 1D(recInputSamples[xSrcO][ySrc], recInputSamples[xSrc1][ySrc],
dst00, dst10)
if (xDst >= 0)

recUpsampledSamples[xDst][ySrc] = dst00
if (xDst < (dstWidth-1))
recUpsampledSamples[xDst + 1][ySrc] = dst10

If scaling mode_levelX is equal to 2:

for (ySrc = 0; ySrc <nCurrS + 1; ++ySrc)
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yDst = (ySrc << 1) — 1
ySrc0 = Max(ySrc — 1, 0)));
ySrcl = Min (ySrc, srcHeight — 1)))

for (xSrc = 0; xSrc < nCurrS + 1; ++xSrc)

xDst = (xSrc << 1) —1
xSrc0 = Max(xSrc — 1, 0);
xSrcl = Min(xSrc, srcWidth — 1)

bilinear2D(recInputSamples[xSrcO][ySrc0],  recInputSamples[xSrc1][xSrc0],
recInputSamples[xSrcO][ySrcl], recInputSamples[xSrc1][ySrcl], dst00, dst10, dstO1,
dstll)

The function bilinear1D (in00, in10, out00, out10) as set out above may be applied

as set out below:

in00x3 = in00 * 3
in10x3 =in10 * 3
out00 = ((in00x3 +inl10 + 2) >> 2)
out10 = ((in00 +in10x3 + 2) >> 2)

The function bilinear2D (in00, in10, in01, in11, out00, out10, outO1, outll) as set
out above may be applied as set out below:
in00x3 =1n00 * 3
in10x3 =1in10 * 3
in01x3 =1in01 * 3

inl1x3 =1inll * 3
in00x9 = in00x3 * 3

in10x9 =1in10x3 * 3
in01x9 =1n01x3 * 3
inl1x9=1inl1x3 * 3

out00 = ((in00x9 + in10x3 +in01x3 + inl11 + 8) >> 4))
out10 = ((in00x3 + in10x9 + in01+ in11x3 + 8) >> 4))
outO1 = ((in00x3 +in10 +in01x9 + in11x3 + 8) >> 4))
outll = ((in00 + in10x3 + in01x3 + in11x9 + 8) >> 4))
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Cubic Upsampler Kernel Description

The cubic up-sampler kernel process that is shown in sub-block 2740 may be
applied as set out in this section. The inputs and outputs are the same as those described in
the sections above. Further reference is made to Figures 9H, 91 and 9J and the section titled
“Cubic Up-sampling”.

The cubic up-sampling kernel of sub-block 2740 may be divided into three main
steps. The first step involves constructing a 4x4 grid of source samples with the base
sample positioned at the local index (2, 2). The second step involves performing a bicubic
interpolation. The third step involves writing the interpolation result to the destination
samples.

The cubic up-sampling kernel may be performed by using a 4x4 source grid which
is subsequently multiplied by a 4x4 kernel. During the generation of the source grid, any
samples which fall outside the frame limits of the source frame are replaced with the value
of the source samples at the boundary of the frame. This is visualized in Figures 9H and
ol

The kernels used for the cubic up-sampling process typically have a 4x4 coefficient
grid. However, the relative position of the destination sample with regards to the source
sample will yield a different coefficient set, and since the up-sampling is a factor of two,
there will be 4 sets of 4x4 kernels used in the up-sampling process. These sets are
represented by a 4-dimensional grid of coefficients (2 x 2 x 4 x 4). The bicubic coefficients
are calculated from a fixed set of parameters; a core parameter (or bicubic parameter) of
and four spline creation parameters. These may have values of, for example, —0.6 and
[1.25, 0.25, —0.75, —1.75] respectively. The implementation of the filter uses fixed point
computations.

The cubic kernel up-scaler is shown in Figure 9J and described in more detail in
the “Cubic up-sampling” section above. The up-scaler is applied on one direction (vertical
and horizontal) at time and follows different steps if (xCurr, yCurr) block belongs to the
border as specified in Figures 9B and 9C.

Given a set of example coefficients as follows:

kernel[y][x] =

{

{ —1382, 14285, 3942, —461 }
{ —461, 3942, 14285, —1382 }
{ —1280, 14208, 3840, —384 }
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{ —384, 3840, 14208, —1280 }
}

where y = 0...1 are coefficients to be used with 10-bit samples and y =2...3 to be

used with 8-bits samples. The up-scaler may thus be applied according to the following

pseudo-code.

kernelOffset is equal to 4.

kernelSize is equal to 4.

if (Horizontal) {

for (y = 0; y <nCurrS; y++)

for (xSrc = 0; xSrc < nCurrS + 1; xSrc++)

kernel[is8Bit * 2])

ConvolveHorizontal(recInputSamples, recUpsampledSamples, xSrc, vy,

} else if (Vertical) {

dstHeightM1 = dstHeight — 1

tor (ySrc = 0; ySrc < nCurrS + 1; ySrc++)

yDst = (ySrc <<1)—1

if (border) {

yDst0 = ((yDst > 0)&&(yDst < dstHeight)) ? yDst : —1

yDstl = ((yDst + 1) < dstHeightM1) ? yDst + 1 : —1

} else {
yDstO = yDst
yDstl = (yDst + 1)
}

for (x = 0; x <nCurrS; x++)

x, ySrc, kernel[is8Bit * 2])

ConvolveVertical(recInputSamples, recUpsampledSamples, yDst0, yDst1,

}

The function ConvolveHorizontal(input, output, x, y, kernel, border) as referenced

above may be applied as set out below:

xDst=(x<<1)—1;

if (border)

dstWidthM1 = dstWidth — 1

if (xDst >= 0 && xDst < dstWidth)
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output[xDst][y] = ConvolveHorizontal (kernel[0], input[x + kernel Offset][y] , 14);
if (xDst < dstWidthM 1)

output [xDst + 1][y] = ConvolveHorizontal(kernel[ 1], input[x + kernelOffset][y])
14)

2

else

output [xDst][y] = ConvolveHorizontal (kernel[0], input[x + kernelOffset][y], 14)

output [xDst + 1][y] = ConvolveHorizontal (kernel[1], input[x + kernelOffset][y]
14)

2

The function ConvolveVertical (input, output, yDst0, yDsti, x, ySrc, kernel) as
referenced above may be applied as set out below:
if (border)

dstWidthM1 = dstWidth — 1
if (yDst0 >= 0)

output[x][yDst0] = ConvolveHorizontal (kernel[0], input[x][y + kernel Offset] , 14)
if (yDst0 >= 0)

output [x][yDst] = ConvolveHorizontal(kernel[1], input[x][y + kernelOffset]) , 14)

else

output [x][yDst0] = ConvolveHorizontal (kernel[0], input[x + kernelOffset][y], 14)

output [x][yDst1] = ConvolveHorizontal (kernel[1], input[x + kernel Offset][y], 14)

5 The function Convolve Horizontal (kernel, input, shift) as referenced above may be

applied as set out below:

accumulator = 0

for (int32_tx = 0; x < kernelSize; x++)

accumulator += input[x] * kernel[x]

offset = 1 << (shift — 1)

output = ((accumulator + offset) >> shift)

Modlified Cubic Upsampler Kernel Description
Lastly in this section, a short description of an example implementation of sub-
10 block 2742 is presented. The inputs and outputs may be defined as for the other up-

sampling processes above. The implementation of the modified cubic filter again uses
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fixed point computations. It may be seen as a variation of the cubic up-sampler kernel
described above, but with the following kernel coefficients:
kernel[y][x] =
{
{ —2360, 15855, 4165, 1276 }
{ —1276, 4165, 15855, 2360 }
{ —2360, 15855, 4165, 1276 }
{ —1276, 4165, 15855, 2360 }
b
where y = 0...1 are coefficients to be used with 10-bit samples and y = 2...3 to be
used with 8 bits samples, the kernelOffset is equal to 4, and the kernelSize is equal to 4.
It should be noted the kernels provided herein are for example only and other

implementations may use different kernels.

Predicted Residual Process Description

The following section will briefly provide an example implementation for the
predicted residual process shown in sub-block 2744 of Figure 27. It may also be applied
as part of the up-scaling of block 2712 in other examples. Inputs to this process are shown
as: variables srcX and srcY specifying the width and the height of the lower resolution
array; variables dstX and dstY specitying the width and the height of the upsampled arrays;
a (sreX)x(srcY) array recLowerResSamples[x][y] of samples that were provided as input
to the upscaling process; and a (dstX)x(dstY) array recUpsampledSamples [x][y] of
samples that were output of the up-scaling process. The outputs to this process are a
(dstX)x(dstY) array recUpsampledModifiedSamples[x][y] of output samples.

In the present example, the predicted residual process modifies
recUpsampledSamples using a 2x2 grid if scaling mode levelX 1s equal to 2 (i.e. is two-
dimensional) and using a 2x1 grid if scaling mode levelX is equal to 1 (i.e. is one-
dimensional). The predicted residual process is not applied if scaling mode levelX s equal
to 0 (e.g. as no up-scaling is performed).

The predicted residual process may be applied as specified by the following ordered
steps whenever (xCurr, yCurr) block belongs to the picture or to the border area as
specified in Figures 9B and 9C:

If scaling mode levelX is equal to 1 (i.e. scaling is one-dimensional), the

following computation may be performed:



160

for (ySrc = 0; ySrc < srcY; ySrc++)

yDst = ySrc

for (xSrc = 0; xSrc < srcX; xSrc++)

xDst = xSrc << 1

modifier = recLowerResSamples[xSrc][ySrc] -
(recUpsampledSamples[xDst][yDst] + recUpsampledSamples[xDst + 1][yDst])

>> 1

recModifiedUpsampledSamples[xDst][yDst] =
recUpsampledSamples[xDst][yDst] + modifier
recModifiedUpsampledSamples[xDst + 1][yDst]

recUpsampledSamples[xDst + 1][yDst] + modifier

If scaling mode levelX is equal to 2 (i.e. scaling is two-dimensional), the

following computation may be performed:

for (ySrc = 0; ySrc < srcY; ySrc++)

yDst = ySrc << 1

for (xSrc = 0; xSrc < srcX; xSrc++)

xDst = xSrc << 1

modifier = recLowerResSamples[xSrc][ySrc] —
(recUpsampledSamples[xDst][yDst] +
recUpsampledSamples[xDst + 1][yDst] +
recUpsampledSamples[xDst][yDst + 1] +
recUpsampledSamples[xDst + 1][yDst + 1]) >> 2

recModifiedUpsampledSamples [xDst][yDst] =
recUpsampledSamples[xDst][yDst] + modifier

recModifiedUpsampledSamples [xDst][yDst + 1] =
recUpsampledSamples[xDst + 1][yDst] + modifier

recModifiedUpsampledSamples [xDst + 1][yDst]
recUpsampledSamples[xDst][yDst + 1] + modifier
recModifiedUpsampledSamples [xDst  + 1][yDst + 1] =

recUpsampledSamples[xDst + 1][yDst + 1] + modifier
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Conventions Used in Certain Ixamples

Certain examples described herein use conventional notation for video coding
technologies. For example, notation is used herein to refer to one or more of programming
functions and mathematical operations. Certain mathematical operators used herein are
presented in a manner that is similar to the conventions used in the C programming
language. In certain examples, the results of integer division and arithmetic shift operations
are defined as set out below, and additional operations are defined, such as exponentiation
and real-valued division. Numbering and counting conventions generally begin from O,
e.g., “the first” is equivalent to the O-th, “the second” is equivalent to the 1-th, etc.

In examples, arithmetic operators use conventional notation:

+ Addition

Subtraction (as a two-argument operator) or negation (as a unary prefix

operator)
* Multiplication, including matrix multiplication
xY Exponentiation. Specifies x to the power of y.

Integer division with truncation of the result toward zero. For example, 7/ 4

and —7 / —4 are truncated to 1 and —7 /4 and 7 / —4 are truncated to —1.

Used to denote division in mathematical equations where no truncation or

rounding is intended.

Used to denote division in mathematical equations where no truncation or

rounding is intended.

2 (i The summation of f( i ) with i taking all integer values from x up to and
i

including y.

Modulus. Remainder of x divided by y, defined only for integers x and y with

x >= O0andy > 0.

Conventional logical operators are also used. The following logical operators are
defined as follows:

x && y - Boolean logical “and” of x and y
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X || v - Boolean logical “or” of x and y

' - Boolean logical “not”

x?y:z -1If xis TRUE or not equal to O, evaluates to the value of y; otherwise,

evaluates to the value of z.

Relational operators also have conventional meanings, e.g.: > - Greater than; >= - Greater
than or equal to; < - Less than; <= - Less than or equal to, = = - Equal to; != - Not equal to.

When a relational operator is applied to a syntax element or variable that has been
assigned the value “na” (not applicable), the value “na” may be treated as a distinct value
for the syntax element or variable. The value “na” is considered not to be equal to any other
value.

The following bit-wise operators are also used in examples:

& Bit-wise “and”. When operating on integer arguments, this operates on a two’s
complement representation of the integer value. When operating on a binary argument that
contains fewer bits than another argument, the shorter argument is extended by adding
more significant bits equal to 0.

| Bit-wise “or”. When operating on integer arguments, this operates on a two’s
complement representation of the integer value. When operating on a binary argument that
contains fewer bits than another argument, the shorter argument is extended by adding
more significant bits equal to 0.

"Bit-wise “exclusive or”.  When operating on integer arguments, this operates on a
two’s complement representation of the integer value. When operating on a binary
argument that contains fewer bits than another argument, the shorter argument is extended
by adding more significant bits equal to O.

X >>y Arithmetic right shift of a two’s complement integer representation of x
by y binary digits. This function is defined only for non-negative integer values of y. Bits
shifted into the most significant bits (MSBs) as a result of the right shift have a value equal
to the MSB of x prior to the shift operation.

x <<y Arithmetic left shift of a two’s complement integer representation of x
by y binary digits. This function is defined only for non-negative integer values of y. Bits
shifted into the least significant bits (LSBs) as a result of the left shift have a value equal
to 0.

The following arithmetic operators are also used: = - Assignment operator, + + -
Increment, i.e., x+ + is equivalent to x = x + 1 (when used in an array index, this may

evaluate to the value of the variable prior to the increment operation), — —-  Decrement,
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i.e., x——1is equivalent to x =x — 1 (when used in an array index, this may evaluate to the
value of the variable prior to the decrement operation); += - Increment by amount
specified, 1.e, x += 3 is equivalent to x = x + 3, and x += (—3) is equivalent
tox =x + (—3);, —= - Decrement by amount specified, i.e., x —= 3 is equivalent to x =x —
3,and x —= (—3)is equivalent to x =x — (-3).

A range of values may be specified using the notation: x =y..z or x =y to z, where x
takes on integer values starting from y to z, inclusive, with x, y, and z being integer
numbers and z being greater than y.

The following mathematical functions are also used in certain example computations:

x >= 0

_y X
Abs(x)—{_X L x<0
Ceil( x )the smallest integer greater than or equal to x.

X Z <X

Clip3(x,y,z)={y ; z>y
z ; otherwise
Floor(x ) the largest integer less than or equal to x.
Ln( x )the natural logarithm of x (the base-e logarithm, where e is the natural
logarithm base constant 2.718 281 828...).

Log10( x ) the base-10 logarithm of x.

: _(X ; X<Ty
Mln(x,y)—{y . x>y
_(X ; X>Ty
Max(xy)={y | <y
Round( x ) = Sign( x ) * Floor( Abs(x)+0.5)
1 x>0
Sign(x)=40 ;, x==0
-1 ; x<0
Sqrt( x ) =>Vx

When an order of precedence in an expression is not indicated explicitly by use of
parentheses, the following rules may apply: operations of a higher precedence are
evaluated before any operation of a lower precedence; and operations of the same
precedence are evaluated sequentially from left to right. The table below indicates a
preferred precedence of certain example operations (e.g. from highest to lowest where a
higher position in the table indicates a higher precedence — this may be the same as the

order of precedence as used in the C programming language).
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operations (with operands x, y, and z)

"X++", My— —"

"Ix", "—x" (as a unary prefix operator)

xY
Ny * yu’ "X/y", "y = yu’ u?u) "% % yu
"x+y", "x-y" (as a two-argument

Y .
2 f(i)

operator), " =%

HX << yll’ HX >> yll

"non
2

HX < yll’ "X <: y X > yll’ HX >: y

In descriptions of bitstreams in examples herein, syntax elements in the bitstream
may be represented in bold type. A syntax element may be described by its name (e.g. in
all lower-case letters with underscore characters), and one descriptor for its method of
coded representation. The decoding processes described herein may be configured to
behave according to the value of the syntax element and to the values of previously
decoded syntax elements. When a value of a syntax element is used in the syntax tables or
the text, it may appear in regular (i.e., not bold) type.

In some cases, the syntax tables may use the values of other variables derived from
syntax elements values. Such variables appear in syntax tables, or text, named by a mixture
of lower case and uppercase letter and without any underscore characters. Variables
starting with an upper-case letter are derived for the decoding of the current syntax
structure and all depending syntax structures. Variables starting with an upper-case letter

may be used in the decoding process for later syntax structures without mentioning the
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originating syntax structure of the variable. Variables starting with a lower-case letter may
only used within the clause in which they are derived.

In some cases, “mnemonic” names for syntax element values or variable values are
used interchangeably with their numerical values. Sometimes “mnemonic” names are used
without any associated numerical values. The association of values and names is specified
in the text. The names are constructed from one or more groups of letters separated by an
underscore character. Each group starts with an upper-case letter and may contain more
upper-case letters. It should be noted that names are provided as examples only and
implementations may use different names.

Functions that specify properties of the current position in the bitstream may be
referred to as syntax functions. These functions are specified in examples and may assume
the existence of a bitstream pointer with an indication of the position of the next bit to be
read by the decoding process from the bitstream. Syntax functions may be described by
their names, which may be constructed as syntax element names and end with left and right
round parentheses including zero or more variable names (for definition) or values (for
usage), separated by commas (if more than one variable).

Functions that are not syntax functions (e.g. mathematical functions) may be
described by their names, which start with an upper case letter, contain a mixture of lower
and upper case letters without any underscore character, and end with left and right
parentheses including zero or more variable names (for definition) or values (for usage)
separated by commas (if more than one variable).

A one-dimensional array may be referred to as a list. A two-dimensional array may
be referred to as a matrix. Arrays can either be syntax elements or variables. Subscripts or
square parentheses are used in examples for the indexing of arrays. In reference to a visual
depiction of a matrix, the first subscript is used as a row (vertical) index and the second
subscriptis used as a column (horizontal) index. The indexing order may be reversed when
using square parentheses rather than subscripts for indexing. Thus, an element of a matrix
S at horizontal position x and vertical position y may be denoted either as S[x][y] or as Syx.
A single column of a matrix may be referred to as a list and denoted by omission of the
row index. Thus, the column of a matrix s at horizontal position x may be referred to as the
list S[x].

A specification of values of the entries in rows and columns of an array may be
denoted by { {...} {...} }, where each inner pair of brackets specifies the values of the

elements within a row in increasing column order and the rows are ordered in increasing
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row order. Thus, setting a matrix Sequalto { { 1 6 } { 49 }} specifies that S[0][0] is set
equal to 1, S[1][0] is set equal to 6, SO][1] is set equal to 4, and S[1][1] is set equal to 9.
Binary notation is indicated in examples by enclosing the string of bit values by
single quote marks. For example, ‘01000001” represents an eight-bit string having only its
second and its last bits (counted from the most to the least significant bit) equal to 1.
Hexadecimal notation is indicated by prefixing the hexadecimal number by “0x”, it may
be used instead of binary notation when the number of bits is an integer multiple of 4. For
example, Ox4 1 represents an eight-bit string having only its second and its last bits (counted
from the most to the least significant bit) equal to 1. Numerical values not enclosed in
single quotes and not prefixed by “0x” may be considered as decimal values. A value equal
to 0 may represent a FALSE condition in a test statement. The value TRUE may be
represented by any value different from zero.
In pseudocode examples presented herein, a statement of logical operations as
would be described mathematically in the following form:
if( condition 0 )
statement O
else if( condition 1 )

statement 1

else /* informative remark on remaining condition */
statement n
may be described in the following manner:
.. as follows / ... the following applies:
If condition 0, statement O

Otherwise, if condition 1, statement 1
Otherwise (informative remark on remaining condition), statement n
Statements such “If ... Otherwise, if ... Otherwise, ...” in the text may be introduced

with “... as follows” or ... the following applies” immediately followed by “If ... “. The

last condition of the “If ... Otherwise, if ... Otherwise, ...” is always an “Otherwise, ...”.
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Interleaved “If ... Otherwise, if ... Otherwise, ...” statements can be identified by matching
“... as follows” or ... the following applies” with the ending “Otherwise, ...”.
In certain pseudo-code examples, a statement of logical operations as would be
described mathematically in the following form:
if( condition 0a && condition Ob )
statement O
else if( condition la || condition 1b )

statement 1

else
statement n
may be described in the following manner:
... as follows / ... the following applies:
If all of the following conditions are true, statement O:
condition Oa
condition Ob
Otherwise, if one or more of the following conditions are true, statement 1:
condition la

condition 1b

Otherwise, statement n
In certain pseudo-code examples, a statement of logical operations as would be
described mathematically in the following form:
if( condition 0 )
statement O
if( condition 1)
statement 1
may be described in the following manner:
When condition 0, statement O

When condition 1, statement 1

In examples, processes are used to describe the decoding of syntax elements. A
process may have a separately described specification and invoking. Syntax elements and

upper-case variables that pertain to a current syntax structure and depending syntax
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structures may be available in the process specification and invoking. A process
specification may also have a lower-case variable explicitly specified as input. Each
process specification may have an explicitly specified output. The output is a variable that
may either be an upper-case variable or a lower-case variable. When invoking a process,
the assignment of variables is specified as follows: if the variables at the invoking and the
process specification do not have the same name, the variables are explicitly assigned to
lower case input or output variables of the process specification; otherwise (the variables
at the invoking and the process specification have the same name), assignment is implied.
In the specification of a process, a specific coding block may be referred to by the variable
name having a value equal to the address of the specific coding block.

At both the encoder and decoder, for example implemented in a streaming server
or client device or client device decoding from a data store, methods, “components” and
processes described herein can be embodied as code (e.g., software code) and/or data. The
encoder and decoder may be implemented in hardware or software as is well-known in the
art of data compression. For example, hardware acceleration using a specifically
programmed Graphical Processing Unit (GPU) or a specifically designed Field
Programmable Gate Array (FPGA) may provide certain efficiencies. For completeness,
such code and data can be stored on one or more computer-readable media, which may
include any device or medium that can store code and/or data for use by a computer system.
When a computer system reads and executes the code and/or data stored on a computer-
readable medium, the computer system performs the methods and processes embodied as
data structures and code stored within the computer-readable storage medium. In certain
embodiments, one or more of the steps of the methods and processes described herein can
be performed by a processor (e.g., a processor of a computer system or data storage
system).

Generally, any of the functionality described in this text or illustrated in the figures can be
implemented using software, firmware (e.g., fixed logic circuitry), programmable or
nonprogrammable hardware, or a combination of these implementations. The terms
“component” or “function” as used herein generally represents software, firmware,
hardware or a combination of these. For instance, in the case of a software implementation,
the terms “component” or “function” may refer to program code that performs specified
tasks when executed on a processing device or devices. The illustrated separation of
components and functions into distinct units may reflect any actual or conceptual physical

grouping and allocation of such software and/or hardware and tasks.
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Claims

1. A bitstream for transmitting one or more enhancement residuals planes suitable to
be added to a set of preliminary pictures obtained from a decoder reconstructed video,
comprising:

a decoder configuration for controlling a decoding process of the bitstream; and,

encoded enhancement data comprising encoded residual data representing
differences between a reference video frame and a decoded version of the video frame,

wherein the decoder configuration comprises an wupsample type parameter
indicating a type of upscaling that should be used in the decoding process;

wherein each of one or more values of upsample type indicates that the type of
upscaling is cubic upscaling;

wherein a plurality of values of upsample type each indicate that the type of
upscaling is cubic upscaling according to a respective set of coefficients;

wherein a third value of upsample fype indicates that the cubic upscaling should

be performed according to a first set of kernel coefficients ki, wherein:

k. = (—1382 14285 3942 —461)
1 —461 3942 14285 -—1382

and/or a fourth value of upsample type indicates that the cubic upscaling should

be performed according to a second set of kernel coefficients ka, wherein:

k. = (—2360 15855 4165 —1276)
2 —1276 4165 15855 —2360

2. Abitstream according to claim 1, wherein a first value of upsample type indicates

that the type of upscaling is nearest sample upscaling.

3. A bitstream according to claim 1 or claim 2, wherein a second value of

upsample_type indicates that the type of upscaling is linear upscaling.

4. A bitstream according to any preceding claim, wherein the wupsample type
parameter is included in the bitstream for a plurality of pictures, preferably wherein the

video includes instantaneous decoding refresh, IDR, pictures and non-IDR pictures, the
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bitstream includes a global configuration at least once per IDR picture, and the

upsample_type parameter is included in each global configuration.

5. A bitstream according to any preceding claim, wherein the decoder configuration
further comprises one or more scaling mode parameters indicating whether or not the

decoding process should include the upscaling.

6. A bitstream according to claim 5, wherein the one or more scaling mode
parameters are included in the bitstream for a plurality of pictures, preferably wherein the
video includes instantaneous decoding refresh, IDR, pictures and non-IDR pictures, the
bitstream includes a global configuration at least once per IDR picture, and the one or more

scaling mode parameters are included in each global configuration.

7. A bitstream according to claim 5 or 6, wherein each of the one or more scaling
mode parameters indicates whether or not the decoding process should include the

upscaling for a respective enhancement sub-layer.

8. A bitstream according to any of claims 5 to 7, wherein:

a first value of one of the scaling mode parameters indicates that the decoding
process should include the upscaling in one dimension; and

a second value of one of the scaling mode parameters indicates that the decoding

process should include the upscaling in two dimensions.

9. A bitstream according to any preceding claim, wherein the decoder configuration
comprises:

an indication of a scaling factor to be applied to the decoded version of the video
frame; and/or

a type of transform to be applied to coding units of the encoded residual data.
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10. A method of decoding an encoded bitstream into one or more enhancement
residuals planes to be added to a set of preliminary pictures that are obtained from a decoder
reconstructed video, the method comprising:

retrieving a plurality of decoding parameters from a decoder configuration
associated with the encoded bitstream, wherein the decoding parameters are used to
configure the decoding operations;

retrieving encoded enhancement data from the encoded bitstream; and,

decoding the enhancement data to generate a set of residuals representing
differences between a reference video frame and a decoded version of the video frame,

wherein the decoder configuration comprises an wupsample type parameter
indicating a type of upscaling to be used in the decoding process;

wherein each of one or more values of upsample type indicates that the type of
upscaling is cubic upscaling;

wherein plurality of values of upsample type each indicate that the type of
upscaling is cubic upscaling according to a respective set of coefficients;

wherein a third value of upsample type indicates that the cubic upscaling should

be performed according to a first set of kernel coefficients ki, wherein:

k. = (—1382 14285 3942 —461)
1 —461 3942 14285 -—1382

and/or a fourth value of upsample type indicates that the cubic upscaling should

be performed according to a second set of kernel coefficients ka, wherein:

k. = (—2360 15855 4165 —1276)
2 —1276 4165 15855 —2360

11. A method according to claim 10, wherein a first value of upsample type indicates

that the type of upscaling is nearest sample upscaling.

12. A method according to claim 10 or claim 11, wherein a second value of

upsample_type indicates that the type of upscaling is linear upscaling.

13. A method according to any of claims 10 to 12, wherein the upsample type

parameter is included in the bitstream for a plurality of pictures, preferably wherein the
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video includes instantaneous decoding refresh, IDR, pictures and non-IDR pictures, the
bitstream includes a global configuration at least once per IDR picture, and the

upsample_type parameter is included in each global configuration.

14. A method according to any of claims 10 to 13, wherein the decoder configuration
further comprises one or more scaling mode parameters indicating whether or not the

decoding process should include the upscaling.

15. A method according to claim 14, wherein the one or more scaling mode
parameters are included in the bitstream for a plurality of pictures, preferably wherein the
video includes instantaneous decoding refresh, IDR, pictures and non-IDR pictures, the
bitstream includes a global configuration at least once per IDR picture, and the one or more

scaling mode parameters are included in each global configuration.

16. A method according to claim 14 or 15, wherein each of the one or more scaling
mode parameters indicates whether or not the decoding process should include the

upscaling for a respective enhancement sub-layer.

17. A method according to any of claims 14 to 16, wherein:

a first value of one of the scaling mode parameters indicates that the decoding
process should include the upscaling in one dimension; and

a second value of one of the scaling mode parameters indicates that the decoding

process should include the upscaling in two dimensions.

18. A processing apparatus configured to decode a bitstream according to any of

claims 1 to 9 and/or perform a method according to any of claims 10 to 17.

19. A computer readable storage medium storing instructions which, when executed
by a processing apparatus, cause the processing apparatus to perform a method according

to any of claims 10 to 17.
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An encoder configured to generate the bitstream of any one of claims 1 to 9.

A method of generating the bitstream of any one of claims 1 to 9.
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