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1
ARTIFICIAL INTELLIGENCE USING
CONVOLUTIONAL NEURAL NETWORK
WITH HOUGH TRANSFORM

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is a continuation of U.S. patent
application Ser. No. 17/237,539, filed on Apr. 22, 2021,
which claims priority to Russian Patent App. No.
2020134599, filed on Oct. 21, 2020, which are both hereby
incorporated herein by reference as if set forth in full.

BACKGROUND

Field of the Invention

The embodiments described herein are generally directed
to machine-learning for image segmentation, and, more
particularly, to semantic image segmentation using a neural
network with a Hough transform, such as a Fast Hough
Transform (FHT).

Description of the Related Art

Neural networks, and primarily convolutional neural net-
works (CNNs), have become popular in the context of
computer vision, as demonstrated by “State-of-the-art in
artificial neural network applications: A survey,” Abiodun et
al., Heliyon, vol. 4, no. 11, e00938, 2018, and “Neural
Architecture Search: A Survey,” Elsken et al., Journal of
Machine Learning Research, vol. 20, no. 55, pp. 1-21, 2019,
which are hereby incorporated herein by reference as if set
forth in full. This popularity is partially inspired by the ready
availability of computational resources and training frame-
works. Specifically, all that is needed is the appropriate
training data (e.g., supported by an ever-increasing supply of
public datasets), the appropriate architecture, and an appro-
priate methodology. However, neural networks often fail
due to a lack of understanding about how they process data
and what certain architectures can and cannot do.

For example, in “VPGNet: Vanishing Point Guided Net-
work for Lane and Road Marking Detection and Recogni-
tion,” Lee et al., Proceedings of the IEEE International
Conference on Computer Vision, pp. 1947-55, 2017, and
“Vanishing point detection with convolutional neural net-
works,” Borji, arXiv:1609.00967, 2016, which are both
hereby incorporated herein by reference as if set forth in full,
the authors employed an AlexNet-like architecture to detect
vanishing points in road scenes. However, vanishing-point
detection cannot be solved with local features and fully
connected layers having large numbers of parameters. In
addition, the resulting neural network tends to be overfitted,
as demonstrated by the fact that the neural networks in these
papers tend to choose central regions of input images, as
heavily represented in the training data.

In the context of semantic image segmentation, the most
popular neural network is the U-Net, as described, for
example, in “U-Net: Convolutional Networks for Biomedi-
cal Image Segmentation,” Ronneberger et al., Computer
Vision and Pattern Recognition, arXiv:1505.04597, 2015,
which is hereby incorporated herein by reference as if set
forth in full. U-Nets have been used, in varying scope, from
medicine to non-linear distortion correction of documents,
to solve area-specific tasks, as demonstrated by “IVD-Net:
Intervertebral disc localization and segmentation in MRI
with a multi-modal UNet,” Dolz et al., Int’l Workshop and
Challenge on Computational Methods and Clinical Appli-
cations for Spine Imaging, Springer, pp. 130-43, 2018, and
“DocUNet: Document Image Unwarping via A Stacked
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U-Net,” Ma et al., Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4700-09,
2018, which are both incorporated herein by reference as if
set forth in full. An important consideration in semantic
image segmentation is the computational cost. Specifically,
the size and speed of neural networks has become crucial in
the contexts of limited resources (e.g., mobile devices, such
as smartphones) and real-time decision-making (e.g.,
autonomous vehicles).

While new architectures continue to be developed, most
of them are simply different combinations of previously
known layers. What is needed is a lightweight neural net-
work model that is suitable for systems with limited com-
putational resources (e.g., mobile devices, autonomous
vehicles, etc.), and which can outperform heavier models in
specific tasks (e.g., detection of vanishing points).

SUMMARY

Accordingly, systems, methods, and non-transitory com-
puter-readable media are disclosed for semantic image seg-
mentation using a neural network with a Hough transform
(e.g., FHT).

In an embodiment, a method is disclosed that uses at least
one hardware processor to: store a convolutional neural
network comprising three or more convolution layers, a
Hough Transform (HT) layer, and a Transposed Hough
Transform (THT) layer, arranged such that a first subset of
at least one of the three or more convolution layers precede
the HT layer, a second subset of at least one of the three or
more convolution layers follow the HT layer and precede the
THT layer, and a third subset of at least one of the three or
more convolution layers follow the THT layer, wherein the
HT layer converts an output of the first subset from a first
space into a second space, and wherein the THT layer
converts an output of the second subset from the second
space into the first space; and, for each of a plurality of input
images, apply the convolutional neural network to the input
image to perform semantic image segmentation to the input
image, so as to produce an output image representing a result
of the semantic image segmentation. The method may
further comprise using the at least one hardware processor
to, prior to applying the convolutional neural network to the
plurality of input images, train the convolutional neural
network using at least one dataset comprising a plurality of
images. The convolutional neural network may be an auto-
encoder, wherein the first subset implements an encoding
process, wherein the second subset implements a core pro-
cess, and wherein the third subset implements a decoding
process.

The first space may be a Cartesian space representing
pixels in an image as (X, y) coordinates, and the second
space may be a Hough parameter space representing one or
more lines in the image as (s, o) coordinates. The HT layer
may be a Fast Hough Transform layer, and the THT layer
may be a Transpose Fast Hough Transform layer. The (s, o)
coordinates may be computed from the (X, y) coordinates
according to the following relationships: for any lines that
are mostly vertical, s=x,+y,-o/2, a=y,-(X,-X,), and, for
any lines that are mostly horizontal, s=y,+a/2, o=x,-(y,—
y,)- The second subset of at least one convolution layer may
operate in the second space to remove non-linear features of
the one or more lines.

The second subset may comprise a plurality of convolu-
tion layers. The second subset may comprise at least four
convolution layers. The second subset may consist of four
convolution layers. Each of the first subset and the third
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subset may comprise a plurality of convolution layers. The
first subset and the third subset may consist of the same
number of convolution layers as each other.

An activation function of a final convolution layer in the
third subset may comprise softmax, wherein an activation
function of at least one of the three or more convolution
layers, other than the final convolution layer, may comprise
softsign. The activation function of all of the three or more
convolution layers, other than the final convolution layer,
may comprise softsign.

Each of the three or more convolution layers may utilize
reflection padding to maintain a fixed image size. The
method may be performed using the at least one hardware
processor in a mobile device, wherein the convolutional
neural network is stored in a memory of the mobile device.
The method may be performed using the at least one
hardware processor in a controller of an autonomous
vehicle. In an embodiment, the number of parameters used
in the three or more convolution layers does not exceed a
magnitude of 10*. The three or more convolution layers may
comprise twelve convolution layers.

Any of the methods may be embodied in executable
software modules of a processor-based system, such as a
server, and/or in executable instructions stored in a non-
transitory computer-readable medium.

BRIEF DESCRIPTION OF THE DRAWINGS

The details of the present invention, both as to its structure
and operation, may be gleaned in part by study of the
accompanying drawings, in which like reference numerals
refer to like parts, and in which:

FIG. 1 illustrates an example processing system, by which
one or more of the processes described herein, may be
executed, according to an embodiment;

FIG. 2 illustrates a lightweight convolutional neural net-
work, according to an embodiment;

FIG. 3 illustrates a process for producing a lightweight
convolutional neural network, according to an embodiment;

FIG. 4 illustrates a process for operating a lightweight
convolutional neural network, according to an embodiment;

FIG. 5 illustrates example results of a lightweight con-
volutional neural network, according to an embodiment;

FIG. 6 is a comparison of an example operation of a
lightweight convolutional neural network to an example
operation of a U-Net, according to an embodiment; and

FIG. 7 is a comparison of example results of a lightweight
convolutional neural network to example results of a U-Net,
according to an embodiment.

DETAILED DESCRIPTION

In an embodiment, systems, methods, and non-transitory
computer-readable media are disclosed for semantic image
segmentation using a neural network with a Hough trans-
form (e.g., FHT). In particular, direct and transposed integral
operators for a Fast Hough Transform may be added to the
architecture of a lightweight convolutional neural network,
to thereby split the convolutional layers of the lightweight
convolutional neural network into three blocks: a first block
preceding the direct Fast Hough Transform, a second block
between the direct Fast Hough Transform and the Trans-
posed Fast Hough Transform, and a third block following
the Transposed Fast Hough Transform. The resulting neural
network is a partially convolutional neural network, as
opposed to a fully convolutional neural network. By virtue
of the introduction of the Fast Hough Transform, the neural
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network acquires the ability to make a decision at every
point (e.g., pixel) using integral features along different
lines. Advantageously, the disclosed convolutional neural
network with the Fast Hough Transform (also referred to
herein as a “HoughEncoder”) does not increase the com-
plexity of the neural network in terms of the number of
trainable parameters. Experiments on the HoughEncoder
(e.g., using publicly available datasets, such as MIDV-500
and MIDV-2019, for training and testing), have demon-
strated that the HoughEncoder outperforms U-Net, produc-
ing state-of-the art results in many semantic image segmen-
tation tasks, while requiring at least one-hundred times
fewer parameters.

After reading this description, it will become apparent to
one skilled in the art how to implement the invention in
various alternative embodiments and for alternative uses.
However, although various embodiments of the present
invention will be described herein, it is understood that these
embodiments are presented by way of example and illus-
tration only, and not limitation. As such, this detailed
description of various embodiments should not be construed
to limit the scope or breadth of the present invention as set
forth in the appended claims.

1. Example Processing Device

FIG. 1 is a block diagram illustrating an example wired or
wireless system 100 that may be used in connection with
various embodiments described herein. For example, system
100 may be used to execute one or more of the functions,
processes, or methods described herein (e.g., to store and/or
execute the application or one or more software modules of
the application). System 100 can be a server (e.g., which
services requests over one or more networks, including, for
example, the Internet), a personal computer (e.g., desktop,
laptop, or tablet computer), a mobile device (e.g., smart-
phone), a controller (e.g., in an autonomous vehicle, robot,
etc.), or any other processor-enabled device that is capable
of wired or wireless data communication. Other computer
systems and/or architectures may be also used, as will be
clear to those skilled in the art.

In an embodiment, system 100 may be embedded or
comprised within a larger device or other apparatus to imbue
it with artificial intelligence (AI) or other automation capa-
bilities, such as computer vision. For example, system 100
may be comprised in a fully or partially autonomous vehicle
or robot, and configured to sense objects in the surrounding
environment of the vehicle or robot and/or navigate the
vehicle or robot around sensed objects. In other words,
system 100 may host and execute the artificial intelligence
(e.g., including computer vision) that controls a smart appa-
ratus.

System 100 preferably includes one or more processors,
such as processor 110. Additional processors may be pro-
vided, such as an auxiliary processor to manage input/
output, an auxiliary processor to perform floating-point
mathematical operations, a special-purpose microprocessor
having an architecture suitable for fast execution of signal-
processing algorithms (e.g., digital-signal processor), a slave
processor subordinate to the main processing system (e.g.,
back-end processor), an additional microprocessor or con-
troller for dual or multiple processor systems, and/or a
coprocessor. Such auxiliary processors may be discrete
processors or may be integrated with processor 110.
Examples of processors which may be used with system 100
include, without limitation, the Pentium® processor, Core
i7® processor, and Xeon® processor, all of which are
available from Intel Corporation of Santa Clara, California.
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Processor 110 is preferably connected to a communication
bus 105. Communication bus 105 may include a data
channel for facilitating information transfer between storage
and other peripheral components of system 100. Further-
more, communication bus 105 may provide a set of signals
used for communication with processor 110, including a
data bus, address bus, and/or control bus (not shown).
Communication bus 105 may comprise any standard or
non-standard bus architecture such as, for example, bus
architectures compliant with industry standard architecture
(ISA), extended industry standard architecture (EISA),
Micro Channel Architecture (MCA), peripheral component
interconnect (PCI) local bus, standards promulgated by the
Institute of FElectrical and Electronics Engineers (IEEE)
including IEEE 488 general-purpose interface bus (GPIB),
IEEE 696/S-100, and/or the like.

System 100 preferably includes a main memory 115 and
may also include a secondary memory 120. Main memory
115 provides storage of instructions and data for programs
executing on processor 110, such as one or more of the
functions, processes, and/or modules discussed herein. It
should be understood that programs stored in the memory
and executed by processor 110 may be written and/or
compiled according to any suitable language, including
without limitation C/C++, Java, JavaScript, Perl, Visual
Basic, .NET, and the like. Main memory 115 is typically
semiconductor-based memory such as dynamic random
access memory (DRAM) and/or static random access
memory (SRAM). Other semiconductor-based memory
types include, for example, synchronous dynamic random
access memory (SDRAM), Rambus dynamic random access
memory (RDRAM), ferroelectric random access memory
(FRAM), and the like, including read only memory (ROM).

Secondary memory 120 may optionally include an inter-
nal medium 125 and/or a removable medium 130. Remov-
able medium 130 is read from and/or written to in any
well-known manner. Removable storage medium 130 may
be, for example, a magnetic tape drive, a compact disc (CD)
drive, a digital versatile disc (DVD) drive, other optical
drive, a flash memory drive, and/or the like.

Secondary memory 120 is a non-transitory computer-
readable medium having computer-executable code (e.g.,
disclosed software modules) and/or other data stored
thereon. The computer software or data stored on secondary
memory 120 is read into main memory 115 for execution by
processor 110.

In alternative embodiments, secondary memory 120 may
include other similar means for allowing computer programs
or other data or instructions to be loaded into system 100.
Such means may include, for example, a communication
interface 140, which allows software and data to be trans-
ferred from external storage medium 145 to system 100.
Examples of external storage medium 145 may include an
external hard disk drive, an external optical drive, an exter-
nal magneto-optical drive, and/or the like. Other examples
of secondary memory 120 may include semiconductor-
based memory, such as programmable read-only memory
(PROM), erasable programmable read-only memory
(EPROM), electrically erasable read-only memory (EE-
PROM), and flash memory (block-oriented memory similar
to EEPROM).

As mentioned above, system 100 may include a commu-
nication interface 140. Communication interface 140 allows
software and data to be transferred between system 100 and
external devices (e.g. printers), networks, or other informa-
tion sources. For example, computer software or executable
code may be transferred to system 100 from a network
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6

server via communication interface 140. Examples of com-
munication interface 140 include a built-in network adapter,
network interface card (NIC), Personal Computer Memory
Card International Association (PCMCIA) network card,
card bus network adapter, wireless network adapter, Uni-
versal Serial Bus (USB) network adapter, modem, a wireless
data card, a communications port, an infrared interface, an
IEEE 1394 fire-wire, and any other device capable of
interfacing system 100 with a network or another computing
device. Communication interface 140 preferably imple-
ments industry-promulgated protocol standards, such as
Ethernet IEEE 802 standards, Fiber Channel, digital sub-
scriber line (DSL), asynchronous digital subscriber line
(ADSL), frame relay, asynchronous transfer mode (ATM),
integrated digital services network (ISDN), personal com-
munications services (PCS), transmission control protocol/
Internet protocol (TCP/IP), serial line Internet protocol/point
to point protocol (SLIP/PPP), and so on, but may also
implement customized or non-standard interface protocols
as well.

Software and data transferred via communication inter-
face 140 are generally in the form of electrical communi-
cation signals 155. These signals 155 may be provided to
communication interface 140 via a communication channel
150. In an embodiment, communication channel 150 may be
a wired or wireless network, or any variety of other com-
munication links. Communication channel 150 carries sig-
nals 155 and can be implemented using a variety of wired or
wireless communication means including wire or cable,
fiber optics, conventional phone line, cellular phone link,
wireless data communication link, radio frequency (“RF”)
link, or infrared link, just to name a few.

Computer-executable code (e.g., computer programs,
such as the disclosed application, or software modules) is
stored in main memory 115 and/or secondary memory 120.
Computer programs can also be received via communication
interface 140 and stored in main memory 115 and/or sec-
ondary memory 120. Such computer programs, when
executed, enable system 100 to perform the various func-
tions of the disclosed embodiments as described elsewhere
herein.

In this description, the term “computer-readable medium”
is used to refer to any non-transitory computer-readable
storage media used to provide computer-executable code
and/or other data to or within system 100. Examples of such
media include main memory 115, secondary memory 120
(including internal memory 125, removable medium 130,
and/or external storage medium 145), and any peripheral
device communicatively coupled with communication inter-
face 140 (including a network information server or other
network device). These non-transitory computer-readable
media are means for providing executable code, program-
ming instructions, software, and/or other data to system 100.

In an embodiment that is implemented using software, the
software may be stored on a computer-readable medium and
loaded into system 100 by way of removable medium 130,
I/O interface 135, or communication interface 140. In such
an embodiment, the software is loaded into system 100 in
the form of electrical communication signals 155. The
software, when executed by processor 110, preferably
causes processor 110 to perform one or more of the pro-
cesses and functions described elsewhere herein.

In an embodiment, I/O interface 135 provides an interface
between one or more components of system 100 and one or
more input and/or output devices. Example input devices
include, without limitation, sensors, keyboards, touch
screens or other touch-sensitive devices, biometric sensing
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devices, computer mice, trackballs, pen-based pointing
devices, and/or the like. Examples of output devices include,
without limitation, other processing devices, cathode ray
tubes (CRTs), plasma displays, light-emitting diode (LED)
displays, liquid crystal displays (LCDs), printers, vacuum
fluorescent displays (VFDs), surface-conduction electron-
emitter displays (SEDs), field emission displays (FEDs),
and/or the like. In some cases, an input and output device
may be combined, such as in the case of a touch panel
display (e.g., in a smartphone, tablet, or other mobile device,
in the console of a vehicle, etc.).

In an embodiment, 1/0 interface 135 provides an interface
to a camera (not shown). for example, system 100 may be a
mobile device, such as a smartphone, tablet computer, or
laptop computer, with one or more integrated cameras (e.g.,
rear and front facing cameras). Alternatively, system 100
may be a desktop or other computing device that is con-
nected via /O interface 135 to an external camera. In either
case, the camera captures images (e.g., photographs, video,
etc.) for processing by processor(s) 110 (e.g., executing the
disclosed software) and/or storage in main memory 115
and/or secondary memory 120.

System 100 may also include optional wireless commu-
nication components that facilitate wireless communication
over a voice network and/or a data network. The wireless
communication components comprise an antenna system
170, a radio system 165, and a baseband system 160. In such
an embodiment, radio frequency (RF) signals are transmit-
ted and received over the air by antenna system 170 under
the management of radio system 165.

In an embodiment, antenna system 170 may comprise one
or more antennae and one or more multiplexors (not shown)
that perform a switching function to provide antenna system
170 with transmit and receive signal paths. In the receive
path, received RF signals can be coupled from a multiplexor
to a low noise amplifier (not shown) that amplifies the
received RF signal and sends the amplified signal to radio
system 165.

In an alternative embodiment, radio system 165 may
comprise one or more radios that are configured to commu-
nicate over various frequencies. In an embodiment, radio
system 165 may combine a demodulator (not shown) and
modulator (not shown) in one integrated circuit (IC). The
demodulator and modulator can also be separate compo-
nents. In the incoming path, the demodulator strips away the
RF carrier signal leaving a baseband receive audio signal,
which is sent from radio system 165 to baseband system
160.

If the received signal contains audio information, then
baseband system 160 may decode the signal and convert it
to an analog signal. Then, the signal is amplified and sent to
a speaker. Baseband system 160 may also receive analog
audio signals from a microphone. These analog audio sig-
nals may be converted to digital signals and encoded by
baseband system 160. Baseband system 160 can also encode
the digital signals for transmission and generate a baseband
transmit audio signal that is routed to the modulator portion
of radio system 165. The modulator mixes the baseband
transmit audio signal with an RF carrier signal, generating
an RF transmit signal that is routed to antenna system 170
and may pass through a power amplifier (not shown). The
power amplifier amplifies the RF transmit signal and routes
it to antenna system 170, where the signal is switched to the
antenna port for transmission.

Baseband system 160 may also be communicatively
coupled with processor 110, which may be a central pro-
cessing unit (CPU). Processor 110 has access to data storage
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areas 115 and 120. Processor 110 is preferably configured to
execute instructions (i.e., computer programs, such as the
disclosed application, or software modules) that can be
stored in main memory 115 or secondary memory 120.
Computer programs can also be received from baseband
processor 160 and stored in main memory 110 or in sec-
ondary memory 120, or executed upon receipt. Such com-
puter programs, when executed, enable system 100 to per-
form the various functions of the disclosed embodiments.

2. Architecture

An embodiment of an application for semantic image
segmentation will now be described. The semantic image
segmentation may be used in a variety of contexts, such as
in computer vision, which refers to the ability of computers
to understand and automate tasks performed by the human
visual system. Other potential contexts include image analy-
sis, digital image processing, and/or the like. The application
may comprise one or more software modules stored in
secondary memory 120, and loaded in main memory 115 to
be executed by one or more processors 110. In an embodi-
ment, the application comprises a lightweight neural net-
work model that utilizes a Hough Transform (HT) to out-
perform heavier models in specific tasks. Specifically, a
Hough Transform (HT) layer may be used to transform the
feature space in which the core layers of the neural network
operate. In addition, a Transpose Hough Transform (THT)
layer may be used to transform the result of the neural
network’s operation back into the original space. The Hough
Transform is described, for example, in “Point-to-line map-
pings as Hough Transforms,” Bhattacharya et al., Pattern
Recognition Letters, vol. 23, no. 14, pp. 1705-10, 2002, and
U.S. Pat. No. 3,069,654, issued Dec. 18, 1962, which are
both hereby incorporated herein by reference as if set forth
in full.

In an embodiment, the HT that is used may be a Fast
Hough Transform (FHT). The inventors have previously
used the Fast Hough Transform (FHT) in neural networks to
detect vanishing points in images. For instance, in “Hough-
Net: neural network architecture for vanishing points detec-
tion,” Sheshkus et al., 2019 Int’l Conference on Document
Analysis and Recognition (ICDAR), doi:10/1109/IC-
DAR.2019.00140, pp. 844-9, September 2019, which is
hereby incorporated herein by reference as if set forth in full,
a neural network architecture was proposed for detecting a
vanishing point outside an image. In “Vanishing Point
Detection with Direct and Transposed Fast Hough Trans-
form inside the neural network,” Sheshkus et al., arXiv:
2002.01176, 2020, which is hereby incorporated herein by
reference as if set forth in full, a neural network architecture
with Fast Hough Transform layers was proposed for detect-
ing a vanishing point inside an image. In the disclosed
embodiment, an HT-based neural network is taken further to
perform the task of semantic image segmentation (e.g., for
computer vision). Examples may be described herein pri-
marily in the context of detecting the edges of documents
within images. However, it should be understood that the
disclosed embodiments may be applied to detect the bound-
ary lines of any object or any other set of lines in an image.

In an embodiment, the lightweight neural network model
comprises a convolutional neural network (CNN) with a
plurality of layers, including a plurality of convolution
layers, at least one Hough Transform layer (e.g., an FHT
layer) and at least one subsequent Transpose Hough Trans-
form layer (e.g., a Transpose FHT (TFHT) layer). FIG. 2
illustrates such a neural network, according to an embodi-
ment. As illustrated, the neural network comprises a con-
volutional neural network 200, which receives and processes
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an input image 210, using one or more convolution layers
220, preceding, between, and/or after an HT layer 230 and
a THT layer 240, to produce a segmented output image 250.
Convolution layer(s) 220 that precede HT layer 230 may be
collectively referred to herein as initial layers or a first subset
220A, convolution layer(s) 220 between HT layer 230 and
THT layer 240 may be collectively referred to herein as
intermediate layers or a second subset 220B, and convolu-
tion layer(s) 220 that follow THT layer 240 may be collec-
tively referred to herein as final layers or a third subset 220C.
In the case that convolutional neural network 200 represents
an autoencoder, first subset 220A comprises one or more
convolution layers that implement an encoding process,
second subset 220B comprises one or more convolution
layers that implement a core process, and third subset 220C
comprises one or more convolution layers that implement a
decoding process.

In one particular implementation, convolutional neural
network 200 comprises fourteen layers. The configuration of
these layers is described, layer by layer and in order, in Table
1 below:

TABLE 1
Parameters
No. of Activation

No. Type Filters  Filter Size  Stride  Function

1 Convolutional 4 3x3 1x1 softsign

2 Convolutional 8 3x3 2x2 softsign

3 Convolutional 16 3x3 2x2 softsign

4 Convolutional 16 3x3 1x1 softsign

5 HT — — — —

6  Convolutional 16 3x3 1x1 softsign

7  Convolutional 16 3x3 1x1 softsign

8  Convolutional 16 3x3 1x1 softsign

9  Convolutional 16 3x3 1x1 softsign
10 THT — — — —

11 Convolutional 8 3x3 0.5 X 0.5 softsign
12 Convolutional 4 3x3 0.5 X 0.5 softsign
13 Convolutional 4 3x3 1x1 softsign
14 Convolutional 2 3x3 1x1 softmax

Notably, in Table 1, layers 1-4, 6-9, and 11-14 correspond
to convolution layers 220—and more specifically, layers 1-4
correspond to convolution layers 1 through N in FIG. 2,
layers 6-9 correspond to convolution layers N+1 through
N+M in FIG. 2, and layers 11-14 correspond to convolution
layers N+M+1 through N+M+P in FIG. 2. In addition, layer
5 corresponds to HT layer 230, and layer 10 corresponds to
THT layer 240. The fact that the stride of layers 11 and 12
are 0.5x0.5 indicates that these layers are transposed con-
volution layers (also referred to as “deconvolution layers™).

In an embodiment, softsign is used as the activation
function for most of the convolution layers 220 (e.g., all but
the final convolution layer 14 in Table 1 corresponding to
convolution layer N+M+P in FIG. 2). Advantageously,
softsign is simple and has a non-zero derivative. Softsign
also has a bounded output value, for example, on the scale
of [-1, 1]. In alternative embodiments, a different activation
function (e.g., sigmoid, tanh, rectified linear unit (Rel.U),
etc.) may be used for one or more of convolution layers 220,
and different convolution layers 220 may utilize different
activation functions.

Convolutional neural network 200 comprises HT layer
230. Since a Hough transformation cannot produce a single
image for an entire angle range (see, e.g., Bhattacharya et
al.), the Hough transformation produces an image of two
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parts: a first part for angles in the range of [-45°, 45°], and
a second part for angles in the range [45°, 135°], jointed
vertically.

HT layer 230 transforms every line in the (X, y) space of
input image 210 (e.g., a Cartesian space) into an (s, 0L) space
(e.g.. a Hough parameter space). Specifically, in an embodi-
ment that uses FHT, (s, o) coordinates can be computed
from the (%, y) coordinates of a line using Equation (1) for
mostly vertical lines and using Equation (2) for mostly
horizontal lines:

s=xo+h—a/2, Equation (1)

o =h-(x1 —xo),
wherein yo =0, =4

s=yo+af2, Equation 2)

a=w=(y— ),

whereinxg =0, x; =w

Conversely, THT layer 240 transforms every line in the (s,
) space back into the (X, y) space of input image 210.
Specifically, in an embodiment that uses TFHT, (x, y)
coordinates can be computed from the (s, &) coordinates of
a line using the relationships expressed in Equation (1) for
mostly vertical lines and Equation (2) for mostly horizontal
lines.

Notably, convolutional neural network 200 comprises one
or more intermediate convolutional layers 220B between HT
layer 230 and THT layer 240. In the particular implemen-
tation described above, there are a plurality of intermediate
layers 220B, represented as CONV ., to CONV ., ,,in FIG.
2 and layers 6-9 in Table 1. However, it should be under-
stood that there may be any number of intermediate layers
220B. Intermediate layers 220B operate in the (s, ) space
to extract or remove complex non-linear features along the
different lines in input image 210. In an embodiment,
window operations are used to account for imperfect input
data with noise and outliers, as expressed, for example, in
“Heteroscedastic Hough Transform (HtHT): An Efficient
Method for Robust Line Fitting in the ‘Errors in the Vari-
ables’ Problem,” Kiryati et al., Computer Vision and Image
Understanding, vol. 78, no. 1, pp. 69-83, 2000, which is
hereby incorporated herein by reference as if set forth in full.

In an embodiment, all convolution layers 220 use padding
to maintain consistency in the input and output image sizes
and to avoid false activation on the edges of the feature
maps. In a particular implementation, reflection padding
may be used. Reflection padding uses the contents of a row
to pad the values of a directly adjacent row. This can ensure
that outputs of a convolution layer 220 transition smoothly
into the padding.

With the above architecture, convolutional neural net-
work 200 produces an output image 250 in the same
coordinate space as input image 210. Therefore, convolu-
tional neural network 200 can be used as an autoencoder. An
autoencoder is a special type of neural network that trans-
forms input values in input image 210 to output values in
output image 250. In this case, initial layers 220A may
implement the encoding process of the autoencoder, inter-
mediate layers 220B may implement the core process of the
autoencoder, and final layers 220C may implement the
decoding process of the autoencoder. The encoding process
compresses the input values of input image 210, HT layer
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230 transforms the output of the encoding process from (x,
y) space into (s, &) space, the core process performs the
essential functions in the (s, o) space (e.g., removing non-
linear features along lines represented in the input values),
THT layer 240 transforms the output of the core process
from (s, ) space into (X, y) space, and the decoding process
mirrors the encoding process to reconstruct the values of
input image 210 in the form of output image 250. Since the
core process operates in the (s, o) space, as a result of the
Hough Transform, the neural network can make decisions at
each point (e.g., at each pixel) using features along all lines
that intersect that point. This allows the neural network to
solve complex cases (e.g., remove complex non-linear fea-
tures), even when the size of its receptive field is small.

3. Process Overview

Embodiments of processes for semantic image segmen-
tation using a lightweight neural network with a Fast Hough
Transform will now be described in detail. It should be
understood that the described processes may be embodied in
one or more software modules that are executed by one or
more hardware processors processor 110, for example, as a
software application or library. The described processes may
be implemented as instructions represented in source code,
object code, and/or machine code. These instructions may be
executed directly by the hardware processor(s) 110, or
alternatively, may be executed by a virtual machine operat-
ing between the object code and the hardware processor(s)
110. In addition, the disclosed software may be built upon or
interfaced with one or more existing systems.

Alternatively, the described processes may be imple-
mented as a hardware component (e.g., general-purpose
processor, integrated circuit (IC), application-specific inte-
grated circuit (ASIC), digital signal processor (DSP), field-
programmable gate array (FPGA) or other programmable
logic device, discrete gate or transistor logic, etc.), combi-
nation of hardware components, or combination of hardware
and software components. To clearly illustrate the inter-
changeability of hardware and software, various illustrative
components, blocks, modules, circuits, and steps are
described herein generally in terms of their functionality.
Whether such functionality is implemented as hardware or
software depends upon the particular application and design
constraints imposed on the overall system. Skilled persons
can implement the described functionality in varying ways
for each particular application, but such implementation
decisions should not be interpreted as causing a departure
from the scope of the invention. In addition, the grouping of
functions within a component, block, module, circuit, or step
is for ease of description. Specific functions or steps can be
moved from one component, block, module, circuit, or step
to another without departing from the invention.

Furthermore, while the processes, described herein, are
illustrated with a certain arrangement and ordering of steps,
each process may be implemented with fewer, more, or
different steps and a different arrangement and/or ordering
of steps. In addition, it should be understood that any step,
which does not depend on the completion of another step,
may be executed before, after, or in parallel with that other
independent step, even if the steps are described or illus-
trated in a particular order.

3.1. Production of Neural Network

FIG. 3 is a flowchart illustrating the production of a neural
network, according to an embodiment. For example, process
300 may be utilized to produce convolutional neural net-
work 200.

In subprocess 310, the neural network is generated. In an
embodiment, subprocess 310 comprises constructing con-
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volutional neural network 200. For example, convolutional
neural network 200 may be constructed to have the specific
layers described in Table 1. Alternatively, convolutional
neural network 200 may be constructed to have a different
set of layers than those described in Table 1. However, in a
preferred embodiment, the general architecture of convolu-
tional neural network 200 comprises at least a first subset
220A of convolution layers, an HT layer 230 (e.g., a Fast
Hough Transform layer), a second subset 220B of convo-
Iution layers, a THT layer 240 (e.g., a Transpose Fast Hough
Transform layer), and a third subset 220C of convolution
layers, in that order.

In subprocesses 320 and 330, the neural network, gener-
ated in subprocess 310, is trained and tested, respectively.
For example, convolutional neural network 200 may be
trained and tested using a plurality of images from one or
more datasets. In an embodiment of a convolutional neural
network 200 that is to be used to perform semantic image
segmentation on images of documents, the dataset(s) may
comprise the Mobile Identity Document Video (MIDV)-500
dataset and/or the MIDV-2019 dataset. Before images are
used to train and/or test convolutional neural network 200,
the images may be converted to greyscale and scaled to a
fixed dimension (e.g., 256 pixels by 256 pixels) using
cropping, down-sampling, and/or up-sampling.

As described in “MIDV-500: A Dataset for Identity Docu-
ments Analysis and Recognition on Mobile Devices in
Video stream,” Arlazarov et al., Computer Optics, vol. 43,
doi:10.18287/2412-6179-2019-43-5-818-824, pp. 818-24,
October 2019, which is hereby incorporated herein by
reference as if set forth in full, MIDV-500 is a fully open
dataset that contains frames of fifty different types of docu-
ments in various conditions and with complex backgrounds.
In an embodiment, the MIDV-500 dataset is divided into two
non-overlapping subsets of images: a training subset; and a
testing subset. For example, images of the first thirty docu-
ment types may be used as the training subset, and images
of the final twenty document types may be used as the
testing subset. However, alternative divisions of the dataset
are possible. In a particular implementation, images that did
not have at least three corners of the document within the
image were excluded from the training and testing subsets.
This resulted in 7,217 images in the training subset and
4,748 images in the testing subset, from the MIDV-500
dataset.

As described in “MIDV-2019: Challenges of the modern
mobile-based document OCR,” Bulatov et al., Computer
Vision and Pattern Recognition, vol. 11433, pp. 717-22,
doi:10.1117/12.2558438, January 2020, which is hereby
incorporated herein by reference as if set forth in full,
MIDV-2019 contains frames of documents with strong pro-
jective distortions and low lighting conditions. In an
embodiment, the MIDV-2019 dataset is divided into two
non-overlapping subsets of images: a training subset; and a
testing subset. In a particular implementation, the entire
MIDV-2019 dataset, except for one document type, was
used as the testing subset (e.g., in combination with the
testing subset from the MIDV-500 dataset). The remaining
document type was used as the training subset (e.g., with the
training subset from the MIDV-500 dataset), in order to
introduce the heavier projective transformations and wider
range of backgrounds from the MIDV-2019 dataset into the
training images. It should be understood that alternative
divisions of the dataset are possible. Again, images that did
not have at least three corners of the document within the
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image may be excluded. This resulted in 120 images in the
training subset and 4,966 images in the testing subset, from
the MIDV-2019 dataset.

In subprocess 340, process 300 determines whether addi-
tional training and/or testing is warranted. Additional train-
ing and/or testing may be warranted where additional data-
sets are available and/or the results of testing in subprocess
330 indicate that there is the potential for further training to
produce performance gains. If more training and/or testing
is warranted (i.e., “No” in subprocess 340), process 300
returns to subprocess 320 or 330 to perform additional
training and/or testing. Otherwise, if no more training and/or
testing is warranted (i.e., “Yes” in subprocess 340), process
300 proceeds to operate the neural network in subprocess
350. Operation of the neural network may comprise opera-
tion of convolutional neural network 200 on its own (e.g., as
a stand-alone model) or as a part of a larger model or
ensemble (e.g., as an initial step in computer vision, image
analysis, digital image processing, etc.).

3.2. Operation of Neural Network

FIG. 4 is a flowchart illustrating the operation of a neural
network, according to an embodiment of subprocess 350 in
process 300. For example, subprocess 350 may be utilized to
operate convolutional neural network 200 to perform seman-
tic image segmentation. The result of the semantic image
segmentation may be used by itself or as part of a larger
process or model (e.g., as an initial step in computer vision,
image analysis, digital image processing, etc.).

In subprocess 410, an input image 210 is received. Input
image 210 may be a stand-alone image or an image frame of
a video. For example, input image 210 may be an image or
image frame that has been captured by an imaging device in
real time or near real time. This may be the case, for
instance, when convolutional neural network 200 is being
used for real-time detection or control (e.g., for an autono-
mous vehicle or robot). Alternatively, in a context in which
timing is not important (e.g., document processing), input
image 210 may be an image or image frame that was
captured in the past.

In subprocess 420, convolutional neural network 200 is
applied to input image 210, received in subprocess 410, to
produce an output image 250. Output image 250 represents
the results of the semantic image segmentation task per-
formed by convolutional neural network 200. For example,
output image 250 may comprise a reconstruction of input
image 210 with reduced noise (e.g., elimination or reduction
of non-linear features, background, etc.). In this case, con-
volutional neural network 200 may act as an autoencoder. In
the context of document images, output image 250 may
comprise an outline representing the boundaries of the
document. In the context of computer vision of road images
for a fully or partially autonomous vehicle, output image 250
may comprise a set of lines representing a roadway (e.g.,
lane markers, boundaries between the road and shoulder,
outlines of road signs, etc.).

In subprocess 430, output image 250, output from con-
volutional neural network 200, may be further processed to
perform one or more additional tasks (e.g., which build upon
the results of the semantic image segmentation performed in
subprocess 420). For example, in the context of document
images, subprocess 430 may comprise, image cropping,
de-skewing, de-warping, and/or other image corrections to
the document detected by convolutional neural network 200,
extracting text from within the boundaries of the document,
and/or the like. In the context of images captured by an
autonomous vehicle or robot, subprocess 430 may comprise
identifying one or more objects detected by convolutional
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neural network 200, and controlling the vehicle or robot to
navigate around or with respect to the detected object(s)
(e.g., stay within lane markers and/or road boundaries, avoid
collisions with other vehicles and/or pedestrians, etc.) and/or
triggering some other response to the detection of the
object(s) (e.g., adjusting a speed based on a speed limit
extracted from a sign, stopping the vehicle based on the
detection of a red traffic light and/or stop sign, etc.). It should
be understood that subprocess 430 may comprise the appli-
cation of other artificial intelligence (e.g., neural networks or
other machine-learning models, rules-based artificial intel-
ligence, etc.) to the segmented output image 250 produced
by convolutional neural network 200.

Regardless of the particular context, a result of subprocess
430 may be output in subprocess 440. The result could be
one or more control instructions (e.g., automatic braking,
acceleration, steering, signaling, etc.) for a fully or partially
autonomous vehicle, robot, or other device or apparatus,
data (e.g., text) extracted from a document detected in input
image 210 (e.g., as a result of Optical Character Recognition
(OCR)), a classification of one or more objects detected in
input image 210, and/or the like. It should be understood that
the disclosed convolutional neural network 200 with a Fast
Hough Transform may be used within any overarching
process or model which would benefit from semantic image
segmentation, including, without limitation, computer
vision, image analysis, digital image processing, and/or the
like.

4. Example Performance Results

To evaluate the performance of the disclosed convolu-
tional neural network 200 with a Hough Transform (e.g.,
Fast Hough Transform), referred to hereafter as the “Hough-
Encoder,” the results of the HoughEncoder were compared
to the results of the same convolutional neural network, but
without the Hough Transform (i.e., without HT layer 230
and THT layer 240), referred to hereafter as the “NonHough-
Encoder.” In addition, the results of the HoughEncoder and
NonHoughEncoder were compared to the results of a U-Net,
which acted as a baseline. Each of the neural networks were
trained and tested using the same datasets under the same
conditions. In particular, thirty document types from MIDV-
500 and one document type from MIDV-2019, with online
augmentation with projective distortions for two-hundred
epochs, were used as the training dataset for all three neural
networks. An example of online augmentation is described
in “Effective real-time augmentation of training dataset for
the neural networks learning,” Gayer et al., [CMV 2018, vol.
11041, SPIE, doi:10.1117/12.2522969, March 2019, which
is hereby incorporated herein by reference as if set forth in
full.

To account for fluctuations and improve the trustworthi-
ness of the performance results, the training and testing
process was run five times, and the average result values
were used for comparison. The result values were calculated
using the mean intersection over union distance (MIoU), as
expressed in Equation (3):

N-14: N G;

1 Equation (3)
MloU = —
° NZf:O 4, UGy

wherein N equals 2 (representing the background and fore-
ground),

wherein A, is the answer for the considered class, and
wherein G;, is the ground truth for the considered class.
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The experimental results of testing on the HoughEncoder,
NonHoughEncoder, and U-Net, using the combination of
MIDV-500 and MIDV-2019 datasets described above, are
illustrated in Table 2 below:

TABLE 2
Number of MIoU for MIoU for
Neural Network Parameters MIDV-500 MIDV-2019
U-Net 1.96 x 106 0.94 0.86
NonHoughEncoder 1.48 x 10* 0.91 0.74
HoughEncoder 1.48 x 10* 0.96 0.89

From the experimental results in Table 2, it is evident that
the HoughEncoder outperformed both the NonHoughEn-
coder and the U-Net. Notably, the U-Net substantially
outperformed the NonHoughEncoder. This is not surprising,
since the NonHoughEncoder uses substantially fewer
parameters than the U-Net and has a much smaller receptive
field than the U-net. In contrast, the HoughEncoder substan-
tially outperformed the U-Net, despite using the same num-
ber of parameters as the NonHoughEncoder and substan-
tially fewer parameters than the U-Net (e.g., a magnitude of
10* for the HoughEncoder vs. a magnitude of 10° for the
U-Net). This indicates that the introduction of the Fast
Hough Transform to the architecture of a lightweight neural
network transforms the lightweight neural network into a
simple, yet powerful, neural network. In other words, HT
layer 230 and THT layer 240 improve the neural network’s
ability to solve the semantic image segmentation task, while
maintaining the simplicity (e.g., relatively low resource
requirements) of the neural network. In addition, the differ-
ence between the MloU for the MIDV-500 dataset and the
MIoU for the MIDV-2019 dataset was larger for the U-Net
(ie., (0.94-0.86=0.08) than for the HoughEncoder (i.e.,
0.96-0.89=0.07). This indicates that the U-Net became more
overfitted than the HoughEncoder.

FIG. 5 illustrates input images 210 and output images 250
for two executions of the HoughEncoder, according to an
embodiment. A, s the output image 250 produced (e.g.,
in subprocess 420 by convolutional neural network 200)
from A, . as an input image 210 (e.g., received in subpro-
cess 410). Similarly, B, is the output image 250 pro-
duced (e.g., in subprocess 420 by convolutional neural
network 200) from B,,,,, as an input image 210 (e.g,
received in subprocess 410). Notably, with respect to images
A, the HoughEncoder was able to identify the lines defining
the boundary of the document (an identification card in the
illustrated example), despite a noisy background. With
respect to images B, the HoughEncoder was able to identify
the lines defining the boundary of the document (again, an
identification card in the illustrated example), despite the
boundary of the document being partially obscured by two
fingers and a thumb of a person holding the document. In
other words, the HoughEncoder was able to remove the
non-linear features (i.e., backgrounds, thumb and fingers,
etc.) from the boundary lines of the documents.

FIG. 6 illustrates input images 210, a set of feature maps,
and output images 250 for an execution of the HoughEn-
coder and an execution of the U-Net, according to an
embodiment. The left-side images labeled C represent the
HoughEncoder, and the right-side images labeled D repre-
sent the U-Net. For better visualization, all of the feature
maps have been scaled to 256x256. It should be understood
that the features maps FM1-FM4 of the HoughEncoder are
produced by convolutional layers 220 of convolutional
neural network 200 (e.g., the four intermediate layers 220B).
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For example, feature map FM1 may be produced by layer 6,
feature map FM2 may be produced by layer 7, feature map
FM3 may be produced by layer 8, and feature map FM4 may
be produced by layer 9, as represented in Table 1. Due to the
architecture of the HoughEncoder, the feature maps FM1-
FM4 look substantially different than the corresponding
feature maps produced by the convolution layers of the
U-Net. Specifically, in deep fully convolutional neural net-
work models, such as U-Net, the features gradually trans-
form from input image 210 to output image 250 (i.e., D,
to D,,,,..)- In contrast, the disclosed HoughEncoder inserts
two essential barriers, HT layer 230 and THT layer 240, that
result in the non-gradual transformation from C,,,, to
Corupusr- This demonstrates that the Hough Transform intro-
duces new properties into the neural network by allowing it
to operate with features in a different space.

FIG. 7 illustrates two complex cases, as processed by both
a U-Net and the HoughEncoder, according to an embodi-
ment. Specifically, the input images 210, labeled E,,,,, and
F,pu» Were provided to both the U-Net and the HoughEn-
coder. From these input images E,,,,, and F, ., the U-Net
produced the output images 250, labeled E,, ., and F,, ...
whereas the HoughFEncoder produced the output images
250, labeled Egp,enzmcoder 304 Fappgnmncoder- As demon-
strated by the top portion of the set of E images, both the
U-Net and the HoughEncoder struggled, without additional
information, to solve the semantic segmentation task when
the entire document was not within the boundaries of the
image. However, as demonstrated by the bottom portion of
the set of E images and by the set of F images, the
HoughEncoder outperformed the U-Net on the semantic
segmentation task when the document can be distinguished
from its overall shape.

The disclosed HoughEncoder could be trained and oper-
ated to perform the more complex task of multi-class
semantic image segmentation, for example, to classify the
pixels or objects (e.g., documents) in an input image 210. In
addition, in an embodiment, the HoughEncoder may include
bypasses or skip connections over HT layer 230 and THT
layer 240. This may improve the HoughEncoder’ s perfor-
mance in at least some instances.

5. Hough Transforms

Embodiments have been primarily described herein with
respect to a Fast Hough Transform and Transpose Fast
Hough Transform. However, embodiments may utilize other
types of Hough Transforms. More generally, the term
“Hough Transform” refers to any linear image transforma-
tion for which an integral value of a linear object in the input
image is calculated for every pixel in the output image. Such
a transform is also known as a discrete radon transform.
There are many versions of this transform, depending on the
output space parametrization. Since this transformation is a
linear operation, it can be explicitly written as a multipli-
cation with a matrix. The term “Transposed Hough Trans-
form™ refers to the operation of multiplication with the
transposed matrix of the Hough Transform.

The Fast Hough Transform is simply one example of a
Hough Transform that is calculated with the Brady algo-
rithm. The Fast Hough Transform can be advantageous since
it works fast. However, other Hough Transforms may be
appropriate, including, without limitation, the original vari-
ant of the Hough Transform, which does not use recursive
line patterns and therefore provides a more accurate calcu-
lation than the Fast Hough Transform but with a longer
execution time, and the Radon Transform, which is similar
to the Fast Hough Transform but uses a different parameter-
ization—(p,) instead of (s, a)—such that every point in the
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input image transforms into a sinusoid instead of line, which
can be suitable in some types of algorithms.

The above description of the disclosed embodiments is
provided to enable any person skilled in the art to make or
use the invention. Various meodifications to these embodi-
ments will be readily apparent to those skilled in the art, and
the general principles described herein can be applied to
other embodiments without departing from the spirit or
scope of the invention. Thus, it is to be understood that the
description and drawings presented herein represent a pres-
ently preferred embodiment of the invention and are there-
fore representative of the subject matter which is broadly
contemplated by the present invention. It is further under-
stood that the scope of the present invention fully encom-
passes other embodiments that may become obvious to those
skilled in the art and that the scope of the present invention
is accordingly not limited.

Combinations, described herein, such as “at least one of
A, B, or C,” “one or more of A, B, or C,” “at least one of A,
B, and C,” “one or more of A, B, and C,” and “A, B, C, or
any combination thereof” include any combination of A, B,
and/or C, and may include multiples of A, multiples of B, or
multiples of C. Specifically, combinations such as “at least
one of A, B, or C,” “one or more of A, B, or C,” “at least one
of A, B, and C,” “one or more of A, B, and C,” and “A, B,
C, or any combination thereof” may be A only, B only, C
only, A and B, A and C, B and C, or A and B and C, and any
such combination may contain one or more members of its
constituents A, B, and/or C. For example, a combination of
A and B may comprise one A and multiple B’s, multiple A’s
and one B, or multiple A’s and multiple B’s.

What is claimed is:

1. A method comprising using at least one hardware
processor to:

store a neural network comprising three or more layers, a

Hough Transform (HT) layer, and a Transposed Hough
Transform (THT) layer, arranged such that a first subset
of at least one of the three or more layers precede the
HT layer, a second subset of at least one of the three or
more layers follow the HT layer and precede the THT
layer, and a third subset of at least one of the three or
more layers follow the THT layer, wherein the HT layer
converts an output of the first subset from a first space
into a second space, and wherein the THT layer con-
verts an output of the second subset from the second
space into the first space; and,

for each of a plurality of input images, apply the neural

network to the input image to produce an output image
representing a result of an image-processing task in
computer vision.

2. The method of claim 1, further comprising using the at
least one hardware processor to, prior to applying the neural
network to the plurality of input images, train the neural
network using at least one dataset comprising a plurality of
images.

3. The method of claim 1, wherein the neural network is
an autoencoder, wherein the first subset implements an
encoding process, wherein the second subset implements a
core process, and wherein the third subset implements a
decoding process.

4. The method of claim 1, wherein the first space is a
Cartesian space representing pixels in an image as (X, y)
coordinates, and wherein the second space is a Hough
parameter space representing one or more lines in the image
as (s, o) coordinates.
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5. The method of claim 4, wherein the HT layer is a Fast
Hough Transform layer, and wherein the THT layer is a
Transpose Fast Hough Transform layer.

6. The method of claim 5, wherein the (s, @) coordinates
are computed from the (x,y) coordinates according to the
following relationships:

for any lines that are more vertical than horizontal,

S=Xo+y,—/2,

a=y;—(x,-%o), and,
for any lines that are more horizontal than vertical,

S=po+a/2,

a=x~(¥o=y1)-

7. The method of claim 4, wherein the second subset of at
least one layer operates in the second space to remove
non-linear features of the one or more lines.

8. The method of claim 1, wherein the second subset
comprises a plurality of layers.

9. The method of claim 8, wherein the second subset
comprises at least four layers.

10. The method of claim 8, wherein each of the first subset
and the third subset comprises a plurality of layers.

11. The method of claim 10, wherein the first subset and
the third subset consist of a same number of layers as each
other.

12. The method of claim 1, wherein an activation function
of a final layer in the third subset comprises softmax, and
wherein an activation function of at least one of the three or
more layers, other than the final layer, comprises softsign.

13. The method of claim 12, wherein the activation
function of all of the three or more layers, other than the final
layer, comprises softsign.

14. The method of claim 1, wherein each of the three or
more layers utilize reflection padding to maintain a fixed
image size.

15. The method of claim 1, wherein the method is
performed using the at least one hardware processor in a
mobile device, and wherein the neural network is stored in
a memory of the mobile device.

16. The method of claim 1, wherein the method is
performed using the at least one hardware processor in a
controller of an autonomous vehicle.

17. The method of claim 1, wherein a number of param-
eters used in the three or more layers does not exceed a
magnitude of 10*.

18. The method of claim 1, wherein the three or more
layers comprise twelve layers.

19. A system comprising:

at least one hardware processor; and

one or more software modules that, when executed by the

at least one hardware processor,

store a neural network comprising three or more layers,
a Hough Transform (HT) layer, and a Transposed
Hough Transform (THT) layer, arranged such that a
first subset of at least one of the three or more layers
precede the HT layer, a second subset of at least one
of the three or more layers follow the HT layer and
precede the THT layer, and a third subset of at least
one of the three or more layers follow the THT layer,
wherein the HT layer converts an output of the first
subset from a first space into a second space, and
wherein the THT layer converts an output of the
second subset from the second space into the first
space, and,
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for each of a plurality of input images, apply the neural
network to the input image to produce an output
image representing a result of an image-processing
task in computer vision.

20. A non-transitory computer-readable medium having
instructions stored therein, wherein the instructions, when
executed by a processor, cause the processor to:

store a neural network comprising three or more layers, a

Hough Transform (HT) layer, and a Transposed Hough
Transform (THT) layer, arranged such that a first subset
of at least one of the three or more layers precede the
HT layer, a second subset of at least one of the three or
more layers follow the HT layer and precede the THT
layer, and a third subset of at least one of the three or
more layers follow the THT layer, wherein the HT layer
converts an output of the first subset from a first space
into a second space, and wherein the THT layer con-
verts an output of the second subset from the second
space into the first space; and,

for each of a plurality of input images, apply the neural

network to the input image to produce an output image
representing a result of an image-processing task in
computer vision.
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