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1
GENERATING DISCRETE LATENT
REPRESENTATIONS OF INPUT DATA ITEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a National Stage Application under 35
U.S.C. § 371 and claims the benefit of International Appli-
cation No. PCT/EP2018/065308, filed on Jun. 11, 2018,
which claims priority to U.S. Provisional Application Ser.
No. 62/517,824, filed on Jun. 9, 2017. The disclosure of the
prior application is considered part of and is incorporated by
reference in the disclosure of this application.

BACKGROUND

This specification relates to processing data items through
the layers of neural networks to generate outputs.

Neural networks are machine learning models that
employ one or more layers of nonlinear units to predict an
output for a received input. Some neural networks include
one or more hidden layers in addition to an output layer. The
output of each hidden layer is used as input to the next layer
in the network, i.e., the next hidden layer or the output layer.
Each layer of the network generates an output from a
received input in accordance with current values of a respec-
tive set of parameters.

Variational autoencoders can autoencode input data items,
i.e., generate output data items that are reconstructions of
input data items provided to the autoencoder. Variational
autoencoders typically include an encoder neural network
and a decoder neural network. Generally, the encoder neural
network and the decoder neural network in a given varia-
tional autoencoder are trained jointly to generate reconstruc-
tions of input data items.

SUMMARY

This specification describes a system implemented as one
or more computer programs on one or more computers in
one or more locations that generates discrete latent repre-
sentations of input data items, e.g., images, audio data,
videos, electronic documents, and so on. Generally, each
discrete latent representation identifies a respective value for
each of one or more latent variables, where the number of
latent variables is fixed. The latent representation is referred
to as a discrete latent representation because, unlike a
continuous representation, the value for each of the latent
variables is selected from a discrete set of possible values.
More specifically, the value for each of the latent variables
is a vector selected from a discrete set of latent embedding
vectors.

The neural network system comprises a memory for
storing a set of latent embedding vectors; and one or more
computers and one or more storage devices storing instruc-
tions that when executed by the one or more computers
cause the one or more computers to implement: an encoder
neural network configured to: receive an input data item; and
process the input data item to generate an encoder output
that comprises, for each of one more latent variables, a
respective encoded vector; and a subsystem configured to:
provide the input data item as input to the encoder neural
network to obtain the encoder output for the input data item;
and generate a discrete latent representation of the input data
item from the encoder output, comprising: for each of the
latent variables, determining, from the set of latent embed-
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2

ding vectors in the memory, a latent embedding vector that
is nearest to the encoded vector for the latent variable.

The neural network system may include one or more of
the following features. The discrete latent representation of
the input data item may include, for each of the latent
variables, an identifier of the nearest latent embedding
vector to the encoded vector for the latent variable. The input
data item may be an image, and each latent variable may
correspond to a distinct spatial location in a two-dimensional
feature map. the encoder neural network is a deconvolu-
tional neural network that generates the encoder output as a
feature map that includes a respective encoded vector for
each of the spatial locations. The input data item may be
audio data, and each latent variable may correspond to a
distinct position in a sequence. The encoder neural network
may generate the encoder output as a sequence of encoded
vectors. The encoder neural network may have a dilated
convolutional architecture. The input data item may be a
video, and each latent variable may correspond to distinct
point in a three-dimensional feature map. The instructions
may further cause the one or more computers to implement:
a decoder neural network, wherein the decoder neural net-
work is configured to: receive a decoder input derived from
the discrete latent representation of the input data item, and
process the decoder input to generate a reconstruction of the
input data item, and wherein the subsystem is further con-
figured to: generate the decoder input, wherein the decoder
input comprises, for each of the latent variables, the latent
embedding vector that is nearest to the encoded vector for
the latent variable in the encoder output, and provide the
decoder input as input to the decoder neural network to
obtain the reconstruction of the input data item. The decoder
input may further comprise context data and the decoder
neural network may generate the reconstruction of the input
data item based on the context data and the discrete latent
representation. The input data item may be audio data, and
the context data may be data characterizing a speaker in
whose style the reconstruction should be generated. The
speaker may be a different speaker from a speaker of the
input data item. The decoder neural network may be an
auto-regressive decoder neural network that is configured to
autoregressively generate the reconstruction conditioned on
the decoder input. The system may train a generative neural
network, e.g., an auto-regressive generative neural network,
to generate latent representations, e.g., either after the
encoder neural network has been trained or jointly with the
encoder neural network. The system can then generate new
data items using the generative neural network by generating
decoder inputs from latent representations generated by the
trained generative neural network and using the decoder
neural network to generate data items from the decoder
inputs.

According to another aspect, there is provided a method
of training an encoder neural network and a decoder neural
network and of updating latent embedding vectors, the
method comprising: receiving a training data item; process-
ing the training data item through the encoder neural net-
work in accordance with current values of the encoder
network parameters of the encoder neural network to gen-
erate a training encoder output that comprises, for each of
the one more latent variables, a respective training encoded
vector; selecting, for each latent variable and from a plural-
ity of current latent embedding vectors currently stored in
the memory, a current latent embedding vector that is nearest
to the training encoded vector for the latent variable; gen-
erating a training decoder input that includes the nearest
current latent embedding vectors; processing the training
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decoder input through the decoder neural network in accor-
dance with current values of the decoder network parameters
of the decoder neural network to generate a training recon-
struction of the training data item; determining a reconstruc-
tion update to the current values of the decoder network
parameters and the encoder network parameters by deter-
mining a gradient with respect to the current values of the
decoder network parameters and the encoder network
parameters to optimize a reconstruction error between the
training reconstruction and the training data item; and for
each latent variable, determining an update to the nearest
current latent embedding vector for the latent variable by
determining a gradient with respect to the nearest current
latent embedding vector to minimize an error between the
training encoded vector for the latent variable and the
nearest current latent embedding vector to the training
encoded vector for the latent variable.

The method may further comprise: for each latent vari-
able, determining a respective commitment update to the
current values of the encoder parameters by determining a
gradient with respect to the current values of the encoder
parameters to minimize a commitment loss between the
training encoded vector for the latent variable and the
nearest current latent embedding vector to the training
encoded vector for the latent variable. The commitment loss
may be a constant multiplied by a square of an 12 error
between the training encoded vector for the latent variable
and a stop gradient of the nearest current latent embedding
vector to the training encoded vector. The error between the
training encoded vector for the latent variable and the
nearest current latent embedding vector to the training
encoded vector may be a constant multiplied by a square of
an 12 error between a stop gradient of the training encoded
vector for the latent variable and the nearest current latent
embedding vector to the training encoded vector. Determin-
ing the gradient with respect to the current values of the
encoder network parameters may comprise copying gradi-
ents from the decoder input to the encoder output without
updating the current latent embedding vectors. Determining
the gradient with respect to the current values of the encoder
network parameters may comprise: determining a subgradi-
ent through the operation of selecting the nearest current
latent embedding vector; and using the subgradient to deter-
mine the gradient with respect to the current values of the
encoder network parameters.

According to a further aspect, there is provided a method
of generating a new data item, the method comprising:
generating a discrete latent representation using an auto-
regressive generative neural network, wherein the generated
discrete latent representation identifies, for each of one or
more latent variables, a respective latent embedding vector
from a set of latent embedding vectors; generating a decoder
input that comprises, for each latent variable, the respective
latent embedding vector identified for the latent variable in
the discrete latent representation; and processing the decoder
input using a decoder neural network to generate the new
data item.

The auto-regressive generative neural network may have
been trained to generate discrete latent representations for
training data items that match discrete latent representations
generated by a subsystem according to any of the above
aspects for the training data items. The auto-regressive
generative neural network may have been trained as a prior
during the training of the encoder neural network.

Particular embodiments of the subject matter described in
this specification can be implemented so as to realize one or
more of the following advantages. The described system can
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generate latent representations of input data items that allow
high quality reconstructions of the input data items to be
generated even though the latent representations are much
smaller than latent representations generated by conven-
tional neural network-based encoders that allow reconstruc-
tions of comparable (or even lesser) quality to be generated,
e.g., continuous latent variable models. In particular,
because of the way that the described systems select the
value for each latent variable from a discrete set of latent
embedding vectors, the latent representations are discrete
and can be stored using very little memory or transmitted
using very little bandwidth while still allowing high quality
reconstructions to be generated.

Additionally, the described systems can generate high
quality representations while requiring a relatively small
amount of computing resources to train and without suffer-
ing from large variance during training, thereby reducing the
complexity and unpredictability of the training process. In
particular, reconstructions generated by the described sys-
tems can match or exceed the quality of reconstructions
generated by conventional continuous latent variable models
while requiring a significantly smaller amount of computa-
tional resources, e.g., memory and/or processing resources,
to train, to perform inference, or both, than the conventional
continuous latent variable models. The latent representations
generated by the system do not suffer from posterior collapse
issues when paired with a powerful decoder, e.g., an auto-
regressive decoder.

By using an auto-regressive encoder neural network to
generate latent representations, the described systems can
generate new data items that are coherent and high quality
without consuming an excessive amount of computational
resources.

The described system is particularly suitable for applica-
tions in data compression, for example, image compression,
video compression, audio compression and electronic docu-
ment compression.

It will be appreciated that aspects can be combined and it
will be readily appreciated that features described in the
context of one aspect can be combined with other aspects.

The details of one or more embodiments of the subject
matter of this specification are set forth in the accompanying
drawings and the description below. Other features, aspects,
and advantages of the subject matter will become apparent
from the description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A shows an example encoder system and an
example decoder system.

FIG. 1B illustrates an example of the operation of the
encoder and decoder systems when the input data item is an
image.

FIG. 2 is a flow diagram of an example process for
generating a discrete latent representation of a data item.

FIG. 3 is a flow diagram of an example process for
generating a reconstruction of a data item from a discrete
latent representation of the data item.

FIG. 4 is a flow diagram of an example process for
determining an update to the encoder network parameters,
the decoder network parameters, and the latent embedding
vectors.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

FIG. 1 shows an example encoder system 100 and an
example decoder system 150. The encoder system 100 and
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decoder system 150 are examples of systems implemented
as computer programs on one or more computers in one or
more locations, in which the systems, components, and
techniques described below can be implemented.

The encoder system 100 receives an input data item 102
and encodes the input data item 102 to generate a discrete
latent representation 122 of the input data item 102.

As will be described in more detail below, the latent
representation 122 is a numeric representation that identifies
features of the input data item 102 in a latent space. More
specifically, the latent representation 122 identifies, for each
of a fixed number of latent variables, a respective latent
embedding vector in the latent space. The latent represen-
tation 122 is a discrete representation because each latent
embedding vector is selected from a discrete set of latent
embedding vectors.

The decoder system 150 receives the discrete latent
representation 122 of the input data item 150 (or a further
compressed version of the discrete latent representation 122)
and generates a reconstructed data item 172 that is a recon-
struction of the input data item 102. That is, the decoder
system 150 generates an estimate of the input data item 102
based on the discrete latent representation 122 of the input
data item 102.

In particular, the encoder system 100 includes an encoder
neural network 110, an encoder subsystem 120, and a latent
embedding vector memory 130 that stores a set of latent
embedding vectors.

The encoder neural network 110 is a neural network that
has been configured through training to process the input
data item 102 to generate an encoder output 112 for the input
data item 102 in accordance with a set of parameters
(referred to in this specification as “encoder network param-
eters”).

The encoder output 112 includes a respective encoded
vector for each of one or more latent variables.

In particular, when the input data item 102 is an image,
each latent variable corresponds to a distinct spatial location
in a two-dimensional feature map. That is, the encoder
output 112 includes a respective encoded vector for each
spatial location in the two-dimensional feature map, and
each spatial location corresponds to a different latent vari-
able. In these cases, the encoder neural network 110 can be
a convolutional neural network that processes the image to
generate the encoder output.

When the input data item 102 is audio data, e.g., a raw
audio waveform, each latent variable corresponds to a
distinct position in a sequence. That is, the encoder neural
network 110 generates the encoder output 112 as a sequence
of encoded vectors, with each position in the sequence
corresponding to a different latent variable. In these cases,
the encoder neural network 110 can be a dilated convolu-
tional neural network that receives the sequence of audio
data and generates the sequence of encoded vectors.

When the input data item 102 is a video, each latent
variable corresponds to a distinct point in a three-dimen-
sional feature map. That is, the encoder output 112 includes
a respective encoded vector for each point in the three-
dimensional feature map and each point corresponds to a
different latent variable. In these cases, the encoder neural
network 110 can be a convolutional neural network with
layers that propagate information across time, e.g., recurrent
layers or pooling layers, or a neural network that includes
three-dimensional convolutional layers that receives the
video as a sequence of frames and generates the three-
dimensional feature map.
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Unlike a system that generates continuous latent repre-
sentations and instead of using the encoder output as the
representation of the input data item 102, the encoder
subsystem 120 generates the discrete latent representation
122 of the input data item 102 using the encoder output 112
and the latent embedding vectors in the memory 130.

In particular, for each latent variable, the encoder subsys-
tem 120 determines, from the set of latent embedding
vectors in the memory 130, a latent embedding vector that
is nearest to the encoded vector for the latent variable. For
example, the subsystem 120 can determine the latent embed-
ding vector that is nearest to a given encoded vector using
a nearest neighbor lookup on the set of latent embedding
vectors or any other appropriate distance metric.

In some cases, the subsystem 120 considers the entire set
of latent embedding vectors as possibilities for each of the
latent variables, i.e., selects the latent embedding vector for
each latent variable from the entire set of latent embedding
vectors.

In some other cases, the set of latent embedding vectors
is partitioned, with only the latent embedding vectors in the
partition corresponding to a given latent variable being
considered as potentially being the nearest latent embedding
vector to the encoded vector for the given latent variable.

The subsystem 120 then includes, in the discrete latent
representation 122, data that identifies, for each latent vari-
able, the nearest latent embedding vector to the encoded
vector for the latent variable.

Generating a discrete latent representation is described in
more detail below with reference to FIGS. 1B and 2.

In some implementations, the encoder system 100 and the
decoder system 150 are implemented on the same set of one
or more computers, e.g., when the discrete representation is
being used to reduce the storage size of the data item when
stored locally by the set of one or more computers. In these
implementations, the encoder system 120 stores the discrete
latent representation 122 (or a further compressed version of
the discrete latent representation 122) in a local memory
accessible by the one or more computers so that the discrete
latent representation (or the further compressed version of
the discrete latent representation) can be accessed by the
decoder system 150.

In some other implementations, the encoder system 100
and the decoder system 150 are remote from one another,
ie., are implemented on respective computers that are
connected through a data communication network, e.g., a
local area network, a wide area network, or a combination of
networks. In these implementations, the discrete represen-
tation is being used to reduce the bandwidth required to
transmit the input data item 102 over the data communica-
tion network. In these implementations, the encoder system
120 provides the discrete latent representation 122 (or a
further compressed version of the latent representation) to
the decoder system 150 over the data communication net-
work for use in reconstructing the input data item 102.

The decoder system 150 includes a decoder subsystem
160 and a decoder neural network 170.

The decoder subsystem 160 is configured to receive the
discrete latent representation 122 and generate a decoder
input 162 using the latent embedding vectors in a latent
embedding memory 152.

The latent embedding memory 152 generally stores the
same latent embedding vectors as the latent embedding
memory 130. When the encoder system 100 and decoder
system 150 are implemented on the same set of computers,
the memory 130 and the memory 152 can be the same
memory. When the encoder system 100 and the decoder
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system 150 are remote from one another, the encoder system
100 can send the decoder system 150 the latent embedding
vectors that are stored in the memory 130 prior to the
decoder system 150 being used to reconstruct data items.
That is, the set of latent variables only need to be sent from
the encoder system 100 to the decoder system 150 once in
order for the decoder system 150 to be able to reconstruct
data items.

The decoder input 162 includes, for each latent variable,
the latent embedding vector that is identified for the latent
variable in the discrete latent representation 122. Because
the decoder system 150 has access to the same latent
embedding vectors as the encoder system 160, the discrete
latent representation 122 does not need to include the latent
embedding vectors themselves and instead includes identi-
fiers for the latent embedding vectors that are known to, i.e.,
that can be resolved by, the decoder system 150.

The decoder neural network 170 has been trained to
process the decoder input 162 to generate the reconstruction
172 of the input data item 102 in accordance with a set of
parameters (referred to in this specification as “decoder
network parameters”). The decoder neural network 170 can
be the same type of neural network as the encoder neural
network 110, but configured to generate a reconstruction
from a decoder input rather than an encoder output (which
is the same size as the decoder input) from an input data item
(which is the same size as the reconstruction).

In some implementations, the decoder input 162 also
includes context data that characterizes the desired output
for the decoder neural network 170. For example, when the
input data item is audio data, the context data can be data
characterizing a speaker in whose style the reconstruction
should be generated. After training, by making the speaker
a different speaker from a speaker of the input data item, the
decoder system 150 can effectively perform speaker con-
version, i.e., transferring the voice from one speaker to
another without changing the contents of what is said.

Generating a reconstruction of an input data item from a
discrete latent representation of the data item is described in
more detail below with reference to FIGS. 1B and 3.

In order for the decoder neural network to be able to
generate high quality reconstructions from decoder inputs, a
training system 190 trains the encoder neural network 110
and the decoder neural network 170 jointly to determine
trained values of the encoder network parameters and the
decoder network parameters while also adjusting the latent
embedding vectors in the memory 130 (and 152) to allow the
latent embedding vectors to effectively represent features of
input data items. This training is described in more detail
below with reference to FIG. 4.

In some implementations, after this joint training, the
system 100 can employ a more powerful encoder neural
network and/or the system 150 can employ a more powerful
decoder neural network than the networks that were used in
the training to improve the performance of the system at
inference time.

In some implementations, at inference time the encoder
system 100 uses an auto-regressive neural network as the
encoder, e.g., a PixelCNN when the data items are images or
a WaveNet when the data items are audio. Generally, an
auto-regressive neural network is a neural network that
generates outputs in an auto-regressive manner, i.e., gener-
ates the current output conditioned on the outputs that have
already been generated.

That is, in these implementations, after training of the
encoder and decoder to determine the trained values and to
determine the final set of latent embedding vectors, the

10

15

20

25

30

35

40

45

50

55

60

65

8

training system 190 fits an autoregressive encoder over the
latents so that the autoregressive neural network is config-
ured to generate values for the latent variables autoregres-
sively. In some implementations, the system 190 can instead
train this auto-regressive encoder jointly with the less-
powerful encoder and the decoder, i.e., by employing it as a
prior over the latents during the joint training described
above and below with reference to FIG. 4.

In these implementations, the encoder system 100 and the
decoder system 150 are able to generate new data items in
addition to being able to reconstruct existing data items by
making use of the auto-regressive neural network. In par-
ticular, the encoder system 100 can generate a discrete latent
representation by using the auto-regressive neural network
as a generative neural network, i.e., by using the auto-
regressive neural network to generate latent representations
without needing to condition the auto-regressive neural
network on an existing data item. The decoder system 150
can then generate a new data item from the discrete latent
representation.

For example, the systems can generate a new image or a
new audio sample that are coherent and high quality.

As another example, the system can receive an existing
portion of a video and generate additional frames that are
coherent with the existing portion of the video and high
quality. For example, the system can generate the latent
representation that corresponds to the existing portion of the
video using the (non-autoregressive) encoder, and then
generate the remaining portion of the latent representation
using the auto-regressive encoder conditioned on the exist-
ing latent representation. In some cases, the auto-regressive
encoder can be conditioned on additional context informa-
tion also, e.g., information that identifies an action being
performed by an entity depicted in the existing portion of the
video.

In some implementations, the decoder system 150 can use
an auto-regressive neural network as the decoder. This setup
typically causes conventional variational autoencoders to
perform poorly as they suffer from “posterior collapse”, i.e.,
the latents are ignored by the auto-regressive decoder as the
decoder is powerful enough to model the distribution over
possible data items accurately without relying on the input
latents. However, because of the use of the latent embedding
vectors as described above, the auto-regressive decoder still
makes use of the discrete latent representation as generated
by the encoder system 100. This can allow the systems 100
and 150 to use an even smaller number of latent variables to
effectively represent a data item, i.e., because it combines
the additional modeling capacity of the auto-regressive
model with the information conveyed by the latent variables,
further decreasing the amount of data required to be trans-
mitted or stored to effectively represent a data item.

FIG. 1B illustrates an example of the operation of the
systems 100 and 150 when the input data item 102 is an
image.

In the example of FIG. 1B, the system 100 receives an
input data item (image) 102 and generates as output a
reconstruction 172 of the input image.

In particular, the encoder neural network 110 processes
the input image to generate the encoder output 112. As can
be seen in FIG. 1B, the encoder output 112 is a respective D
dimensional vector for each spatial location in a two-
dimensional feature map, with each spatial location corre-
sponding to a respective latent variable. Thus, the encoder
output 112 includes a respective encoded vector for each of
multiple latent variables.
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The system 100 then generates the discrete latent repre-
sentation 122 using the encoder output 112 and the set of
latent embedding vectors stored in the memory 130. In
particular, in the example of FIG. 1B, the memory 130 stores
K latent embedding vectors e, through e,.

To generate the latent representation 122, the system 100
identifies, for each of the latent variables, the latent embed-
ding vector of the K latent embedding vectors that is nearest
to the encoded vector for the latent variable, e.g., using a
nearest neighbor look-up. The system 100 then generates the
latent representation 122 that identifies, for each of the latent
variables, the nearest latent embedding vector to the encoded
vector for the latent variable. As can be seen in the example
of FIG. 1B, for the latent variable corresponding to a first
spatial location, the representation 122 identifies the latent
embedding vector e, while for the latent variable corre-
sponding to a second spatial location the representation
identifies the latent embedding vector es;, and so on.

The system 150 then generates the decoder input 162
using the latent embedding vectors and the latent represen-
tation 122. In particular, the system 150 generates the
decoder input 162 as a three-dimensional feature map hav-
ing a D dimensional vector at each of multiple spatial
locations. The D dimensional vector at any given spatial
location is the latent embedding vector identified for the
corresponding latent variable in the latent representation
122. Thus, the decoder input 162 includes the latent embed-
ding vector e, at the first spatial location, the latent embed-
ding vector e, at the second spatial location, and so on.

The system 150 then processes the decoder input 162
using the decoder neural network 170 to generate the
reconstruction 172 of the input data item 102, i.e., an image
the same size as the input image that is an estimate of the
input based on the latent representation 122.

When the example of FIG. 1B depicts a reconstruction
generated during training of the encoder 110 and the decoder
150, the training system 190 needs to backpropagate gradi-
ents into the encoder to update the values of the encoder
network parameters. As will be described in more detail
below, the training system 190 can copy gradients 192 from
the decoder input to the encoder output in order to allow for
the encoder network parameters to be updated.

FIG. 2 is a flow diagram of an example process 200 for
generating a discrete latent representation of an input data
item. For convenience, the process 200 will be described as
being performed by a system of one or more computers
located in one or more locations. For example, an encoder
system, e.g., the encoder system 100 of FIG. 1, appropriately
programmed, can perform the process 200.

The system receives an input data item (step 202).

The system processes the input data item using an encoder
neural network to generate an encoder output for the input
data item (step 204). In particular, as described above, the
encoder neural network is configured to process the input
data item to generate an output that includes a respective
encoded vector for each of one or more latent variables.

The system generates a discrete latent representation of
the input data item using the encoder output (step 206).

In particular, for each latent variable, the system selects
the latent embedding vector stored in the latent embedding
vector memory that is nearest to the encoded vector for the
latent variable.

The system then generates a discrete latent representation
that identifies, for each of the latent variables, the nearest
latent embedding vector to the encoded vector for the latent
variable.
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The discrete latent representation can identify nearest
encoded vector in any of a variety of ways. For example, the
latent representation can include, for each latent variable, a
one-hot encoding of the nearest latent embedding vector for
the latent variable. As another example, the latent represen-
tation can be a single vector that includes, for each latent
variable, an identifier for the nearest latent embedding vector
for the latent variable. Generally, the discrete latent repre-
sentation can use any identifier that can be resolved by the
decoder system.

In some implementations, the system further compresses
the discrete latent representation, e.g., using arithmetic cod-
ing or another conventional data compression technique,
before storing the discrete latent representation or transmit-
ting the discrete latent representation to a decoder system.
The decoder system also maintains the set of latent embed-
ding vectors and an instance of the decoder neural network
and can then reconstruct the data item by generating a
decoder input from the discrete latent representation and
processing the decoder input using the decoder neural net-
work.

FIG. 3 is a flow diagram of an example process 300 for
generating a reconstruction of a data item from a discrete
latent representation of the data item. For convenience, the
process 300 will be described as being performed by a
system of one or more computers located in one or more
locations. For example, a decoder system, e.g., the decoder
system 150 of FIG. 1, appropriately programmed, can per-
form the process 300.

The system obtains the discrete latent representation of
the data item (step 302). In some cases, the system directly
accesses the discrete latent representation of the data item,
e.g., from memory or by receiving the discrete latent rep-
resentation from an encoder system over a data communi-
cation system. In other cases, the system receives a further
compressed version of the discrete latent representation and
decompresses, e.g., using arithmetic decoding or another
conventional technique that matches the technique used to
compress the latent representation, the received version to
obtain the discrete latent representation.

The system generates a decoder input from the discrete
latent representation using the latent embedding vectors
(step 304). In particular, the system generates a decoder
input that includes, for each latent variable, the latent
embedding vector identified in the discrete latent represen-
tation for the latent variable.

The system generates the reconstruction of the input data
item by processing the decoder input using the decoder
neural network (step 306).

FIG. 4 is a flow diagram of an example process 400 for
training the encoder neural network, the decoder neural
network, and updating the latent embedding vectors. For
convenience, the process 400 will be described as being
performed by a system of one or more computers located in
one or more locations. For example, a training system, e.g.,
the training system 190 of FIG. 1, appropriately pro-
grammed, can perform the process 400.

The system can repeatedly perform the process 400 to
repeatedly update the values of the encoder network param-
eters, the decoder network parameters, and the latent embed-
ding vectors.

The system receives a training data item (step 402). For
example, the training data item can be a training data item
randomly sampled from a set of training data maintained by
the system.

The system generates a training reconstruction of the
training data item using the encoder neural network in
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accordance with current values of the encoder network
parameters, the current latent embedding vectors, i.e., the
latent embedding vectors that are currently stored in the
memory, and the decoder neural network in accordance with
current values of the decoder network parameters (step 404).

In particular, the system processes the training data item
through the encoder neural network in accordance with
current values of the encoder network parameters to gener-
ate a training encoder output that includes, for each of the
one more latent variables, a respective training encoded
vector.

The system then selects, for each latent variable and from
the current latent embedding vectors, a current latent embed-
ding vector that is nearest to the training encoded vector for
the latent variable.

The system then generates a training decoder input that
includes the nearest current latent embedding vectors and
processes the training decoder input through the decoder
neural network in accordance with the current values of the
decoder network parameters to generate the training recon-
struction of the training data item.

The system determines a reconstruction update to the
current values of the decoder network parameters and the
encoder network parameters (step 406).

In particular, the system determines the reconstruction
updates by determining a gradient with respect to the current
values of the decoder network parameters and the encoder
network parameters of a reconstruction error between the
training reconstruction and the training data item, i.e., to
optimize the reconstruction error.

In some implementations the reconstruction error is a
reconstruction loss that satisfies:

L,=log p(xlz,(x)),

where x is the input data item, z,, (x) is the decoder input, and
p (xlz, (x)) is the probability assigned to the input data item
by the decoder.

In order to determine the gradient of this reconstruction
error with respect to the encoder network parameters, the
system needs to backpropagate gradients into the encoder
from the decoder. However, the operation of selecting the
nearest current latent embedding vector has no defined
gradient.

In some implementations, to backpropagate into the
encoder neural network in spite of this, the system copies
gradients from the decoder input to the encoder output
without updating the current latent embedding vectors.

In some other implementations, the system determines a
subgradient through the operation of selecting the nearest
current latent embedding vector for each latent variable and
uses the subgradient to determine the gradient with respect
to the current values of the encoder network parameters.

By determining this update, the system encourages the
encoder and decoder neural networks to generate higher
quality reconstructions given the current latent embedding
vectors, i.e., the latent embedding vectors currently stored in
the memory.

The system determines updates to the current latent
embedding vectors that are stored in the memory (step 408).

In particular, in some implementations, for each latent
variable, the system determines an update to the nearest
current latent embedding vector for the latent variable by
determining a gradient with respect to the nearest current
latent embedding vector of an error between the training
encoded vector for the latent variable and the nearest current
latent embedding vector for the latent variable, i.e., to
minimize the error.
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For example, the error E for a given latent variable can
satisty:

lisglzo(x)]-ell,?,

where sg stands for the stop gradient operator that is defined
as identity at forward computation time and has zero partial
derivatives, thus effectively constraining its operand to be a
non-updated constant, z, (x) is the encoded vector for the
latent variable, and e is the nearest current latent embedding
vector for the latent variable.

Thus, the error is a constant, e.g., one or a different
positive value, multiplied by the square of an 12 error
between the stop gradient of the training encoded vector for
the latent variable and the nearest current latent embedding
vector to the training encoded vector.

In some other implementations, the system can update the
current embedding vectors as a function of the moving
averages of the encoded vectors in the training encoder
outputs. That is, for each current embedding vector, the
system can update the embedding vector using exponential
moving averages of the n encoded vectors that are nearest to
the current embedding vector.

For example, for a given embedding vector e, and at
training time step t, the system can set the value as follows:

N =Ny +n(L )

—1
m =m eyt 3 a0 —)

where y is a fixed value between zero and one, n,"” is the
number of nearest encoded vectors that are being used to
update the value of the given embedding vector at the time
step t, the sum is a sum over the n,"” nearest encoded vectors,
and z, J(’) is the j-th nearest encoded vector to the given
embedding vector at the time step t.

By updating the current latent embedding vectors in this
manner, the system moves at least some of the embedding
vectors in the memory towards the encoded vectors in the
encoder output.

In some implementations, the system also determines, for
each latent variable, a respective commitment update to the
current values of the encoder network parameters (step 410).
The system can determine the update for a given latent
variable by determining a gradient with respect to the
current values of the encoder network parameters of a
commitment loss between the training encoded vector for
the latent variable and the nearest current latent embedding
vector for the latent variable, i.e., to minimize the commit-
ment loss.

For example, the commitment loss for a given latent
variable can satisfy:

Bllz.(¥)-sglelll?,

where f is a positive constant that determines the weight
between the commitment loss updates and the reconstruction
loss updates. For example, § can be a value between 0.1 and
2.0.

Thus, the commitment loss is a constant multiplied by a
square of'an 12 error between the training encoded vector for
the latent variable and the stop gradient of the nearest current
latent embedding vector for the latent variable.

Including the commitment loss can ensure that the
encoder neural network commits to an embedding and that
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the volume of the encoder outputs does not grow, preventing
the volume of the embedding space from growing arbitrarily
because the embeddings do not train as fast as the encoder
network parameters.

Once the system has performed the process 400 for each
training data item in a mini-batch of training data items, the
system applies the updates to the current values of the
encoder network parameters and the decoder network
parameters and to the current embedding vectors, e.g., in
accordance with the update rule employed by the optimizer
used by the system in the training, e.g., the Adam optimizer
or another gradient descent-based optimizer.

The system repeats the process 400 for multiple mini-
batches to determine the trained encoder and decoder net-
work parameter values and the final set of latent embedding
vectors.

This specification uses the term “configured” in connec-
tion with systems and computer program components. For a
system of one or more computers to be configured to
perform particular operations or actions means that the
system has installed on it software, firmware, hardware, or
a combination of them that in operation cause the system to
perform the operations or actions. For one or more computer
programs to be configured to perform particular operations
or actions means that the one or more programs include
instructions that, when executed by data processing appa-
ratus, cause the apparatus to perform the operations or
actions.

Embodiments of the subject matter and the functional
operations described in this specification can be imple-
mented in digital electronic circuitry, in tangibly-embodied
computer software or firmware, in computer hardware,
including the structures disclosed in this specification and
their structural equivalents, or in combinations of one or
more of them. Embodiments of the subject matter described
in this specification can be implemented as one or more
computer programs, i.e., one or more modules of computer
program instructions encoded on a tangible non transitory
storage medium for execution by, or to control the operation
of, data processing apparatus. The computer storage medium
can be a machine-readable storage device, a machine-read-
able storage substrate, a random or serial access memory
device, or a combination of one or more of them. Alterna-
tively or in addition, the program instructions can be
encoded on an artificially generated propagated signal, e.g.,
a machine-generated electrical, optical, or electromagnetic
signal, that is generated to encode information for transmis-
sion to suitable receiver apparatus for execution by a data
processing apparatus.

The term “data processing apparatus” refers to data pro-
cessing hardware and encompasses all kinds of apparatus,
devices, and machines for processing data, including by way
of example a programmable processor, a computer, or mul-
tiple processors or computers. The apparatus can also be, or
further include, special purpose logic circuitry, e.g., an
FPGA (field programmable gate array) or an ASIC (appli-
cation specific integrated circuit). The apparatus can option-
ally include, in addition to hardware, code that creates an
execution environment for computer programs, e.g., code
that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a
combination of one or more of them.

A computer program, which may also be referred to or
described as a program, software, a software application, an
app, a module, a software module, a script, or code, can be
written in any form of programming language, including
compiled or interpreted languages, or declarative or proce-
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dural languages; and it can be deployed in any form,
including as a stand alone program or as a module, compo-
nent, subroutine, or other unit suitable for use in a computing
environment. A program may, but need not, correspond to a
file in a file system. A program can be stored in a portion of
a file that holds other programs or data, e.g., one or more
scripts stored in a markup language document, in a single
file dedicated to the program in question, or in multiple
coordinated files, e.g., files that store one or more modules,
sub programs, or portions of code. A computer program can
be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a data communication
network.

In this specification, the term “database” is used broadly
to refer to any collection of data: the data does not need to
be structured in any particular way, or structured at all, and
it can be stored on storage devices in one or more locations.
Thus, for example, the index database can include multiple
collections of data, each of which may be organized and
accessed differently.

Similarly, in this specification the term “engine” is used
broadly to refer to a software-based system, subsystem, or
process that is programmed to perform one or more specific
functions. Generally, an engine will be implemented as one
or more software modules or components, installed on one
or more computers in one or more locations. In some cases,
one or more computers will be dedicated to a particular
engine; in other cases, multiple engines can be installed and
running on the same computer or computers.

The processes and logic flows described in this specifi-
cation can be performed by one or more programmable
computers executing one or more computer programs to
perform functions by operating on input data and generating
output. The processes and logic flows can also be performed
by special purpose logic circuitry, e.g., an FPGA or an ASIC,
or by a combination of special purpose logic circuitry and
one or more programmed computers.

Computers suitable for the execution of a computer
program can be based on general or special purpose micro-
processors or both, or any other kind of central processing
unit. Generally, a central processing unit will receive
instructions and data from a read only memory or a random
access memory or both. The essential elements of a com-
puter are a central processing unit for performing or execut-
ing instructions and one or more memory devices for storing
instructions and data. The central processing unit and the
memory can be supplemented by, or incorporated in, special
purpose logic circuitry. Generally, a computer will also
include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices
for storing data, e.g., magnetic, magneto optical disks, or
optical disks. However, a computer need not have such
devices. Moreover, a computer can be embedded in another
device, e.g., a mobile telephone, a personal digital assistant
(PDA), a mobile audio or video player, a game console, a
Global Positioning System (GPS) receiver, or a portable
storage device, e.g., a universal serial bus (USB) flash drive,
to name just a few.

Computer readable media suitable for storing computer
program instructions and data include all forms of non
volatile memory, media and memory devices, including by
way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD ROM and DVD-ROM disks.
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To provide for interaction with a user, embodiments of the
subject matter described in this specification can be imple-
mented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liquid crystal display) monitor,
for displaying information to the user and a keyboard and a
pointing device, e.g., a mouse or a trackball, by which the
user can provide input to the computer. Other kinds of
devices can be used to provide for interaction with a user as
well; for example, feedback provided to the user can be any
form of sensory feedback, e.g., visual feedback, auditory
feedback, or tactile feedback; and input from the user can be
received in any form, including acoustic, speech, or tactile
input. In addition, a computer can interact with a user by
sending documents to and receiving documents from a
device that is used by the user; for example, by sending web
pages to a web browser on a user’s device in response to
requests received from the web browser. Also, a computer
can interact with a user by sending text messages or other
forms of message to a personal device, e.g., a smartphone
that is running a messaging application, and receiving
responsive messages from the user in return.

Data processing apparatus for implementing machine
learning models can also include, for example, special-
purpose hardware accelerator units for processing common
and compute-intensive parts of machine learning training or
production, i.e., inference, workloads.

Machine learning models can be implemented and
deployed using a machine learning framework, e.g., a TEN-
SORFLOW® framework or other appropriate machine
learning framework.

Embodiments of the subject matter described in this
specification can be implemented in a computing system that
includes a back end component, e.g., as a data server, or that
includes a middleware component, e.g., an application
server, or that includes a front end component, e.g., a client
computer having a graphical user interface, a web browser,
or an app through which a user can interact with an imple-
mentation of the subject matter described in this specifica-
tion, or any combination of one or more such back end,
middleware, or front end components. The components of
the system can be interconnected by any form or medium of
digital data communication, e.g., a communication network.
Examples of communication networks include a local area
network (LAN) and a wide area network (WAN), e.g., the
Internet.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In some embodi-
ments, a server transmits data, e.g., an HTML page, to a user
device, e.g., for purposes of displaying data to and receiving
user input from a user interacting with the device, which acts
as a client. Data generated at the user device, e.g., a result
of the user interaction, can be received at the server from the
device.

While this specification contains many specific imple-
mentation details, these should not be construed as limita-
tions on the scope of any invention or on the scope of what
may be claimed, but rather as descriptions of features that
may be specific to particular embodiments of particular
inventions. Certain features that are described in this speci-
fication in the context of separate embodiments can also be
implemented in combination in a single embodiment. Con-
versely, various features that are described in the context of
a single embodiment can also be implemented in multiple
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embodiments separately or in any suitable subcombination.
Moreover, although features may be described above as
acting in certain combinations and even initially be claimed
as such, one or more features from a claimed combination
can in some cases be excised from the combination, and the
claimed combination may be directed to a subcombination
or variation of a subcombination.

Similarly, while operations are depicted in the drawings
and recited in the claims in a particular order, this should not
be understood as requiring that such operations be per-
formed in the particular order shown or in sequential order,
or that all illustrated operations be performed, to achieve
desirable results. In certain circumstances, multitasking and
parallel processing may be advantageous. Moreover, the
separation of various system modules and components in the
embodiments described above should not be understood as
requiring such separation in all embodiments, and it should
be understood that the described program components and
systems can generally be integrated together in a single
software product or packaged into multiple software prod-
ucts.

Particular embodiments of the subject matter have been
described. Other embodiments are within the scope of the
following claims. For example, the actions recited in the
claims can be performed in a different order and still achieve
desirable results. As one example, the processes depicted in
the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve
desirable results. In some cases, multitasking and parallel
processing may be advantageous.

What is claimed is:

1. A method of training an encoder neural network and a
decoder neural network and of updating a set of latent
embedding vectors stored in a memory, wherein:

the encoder neural network is configured to receive an

input data item and process the input data item in
accordance with a set of encoder network parameters
to: generate an encoder output that comprises, for each
of one more latent variables, a respective encoded
vector;

the decoder neural network is configured to: receive a

decoder input derived from a discrete latent represen-
tation of the input data item that is generated from the
encoded vectors and the set of latent embedding vectors
and process the decoder input in accordance with a set
of decoder network parameters to: generate a recon-
struction of the input data item, and the method com-
prises:

receiving a training data item;

processing the training data item through the encoder

neural network in accordance with current values of the
encoder network parameters of the encoder neural
network to generate a training encoder output that
comprises, for each of the one more latent variables, a
respective training encoded vector;

selecting, for each latent variable and from a plurality of

current latent embedding vectors currently stored in the
memory, a current latent embedding vector that is
nearest to the training encoded vector for the latent
variable;

generating a training decoder input that includes the

nearest current latent embedding vectors;

processing the training decoder input through the decoder

neural network in accordance with current values of the
decoder network parameters of the decoder neural
network to generate a training reconstruction of the
training data item;
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determining a reconstruction update to the current values
of the decoder network parameters and the encoder
network parameters by determining a gradient with
respect to the current values of the decoder network
parameters and the encoder network parameters to
optimize a reconstruction error between the training
reconstruction and the training data item; and

for each latent variable, determining an update to the

nearest current latent embedding vector for the latent
variable by determining a gradient with respect to the
nearest current latent embedding vector to minimize an
error between the training encoded vector for the latent
variable and the nearest current latent embedding vec-
tor to the training encoded vector for the latent variable.

2. The method of claim 1, further comprising:

for each latent variable, determining a respective com-

mitment update to the current values of the encoder
network parameters by determining a gradient with
respect to the current values of the encoder network
parameters to minimize a commitment loss between the
training encoded vector for the latent variable and the
nearest current latent embedding vector to the training
encoded vector for the latent variable.

3. The method of claim 2, wherein the commitment loss
is a constant multiplied by a square of an 12 error between
the training encoded vector for the latent variable and a stop
gradient of the nearest current latent embedding vector to the
training encoded vector.

4. The method of claim 1, wherein the error between the
training encoded vector for the latent variable and the
nearest current latent embedding vector to the training
encoded vector is a constant multiplied by a square of an 12
error between a stop gradient of the training encoded vector
for the latent variable and the nearest current latent embed-
ding vector to the training encoded vector.

5. The method of claim 1, wherein determining the
gradient with respect to the current values of the encoder
network parameters comprises:

copying gradients from the decoder input to the encoder

output without updating the current latent embedding
vectors.

6. The method of claim 1, wherein determining the
gradient with respect to the current values of the encoder
network parameters comprises:

determining a subgradient through the selecting the near-

est current latent embedding vector; and

using the subgradient to determine the gradient with

respect to the current values of the encoder network
parameters.

7. The method of claim 1, wherein the input data item is
an image or a video.

8. A system comprising one or more computers and one
or more storage devices storing instructions that when
executed by the one or more computers cause the one or
more computers to perform operations for training an
encoder neural network and a decoder neural network and of
updating a set of latent embedding vectors stored in a
memory, wherein:

the encoder neural network is configured to receive an

input data item and process the input data item in
accordance with a set of encoder network parameters
to: generate an encoder output that comprises, for each
of one more latent variables, a respective encoded
vector;

the decoder neural network is configured to: receive a

decoder input derived from a discrete latent represen-
tation of the input data item that is generated from the
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encoded vectors and the set of latent embedding vectors
and process the decoder input in accordance with a set
of decoder network parameters to: generate a recon-
struction of the input data item, and the operations
comprise:

receiving a training data item;

processing the training data item through the encoder

neural network in accordance with current values of the
encoder network parameters of the encoder neural
network to generate a training encoder output that
comprises, for each of the one more latent variables, a
respective training encoded vector;

selecting, for each latent variable and from a plurality of

current latent embedding vectors currently stored in the
memory, a current latent embedding vector that is
nearest to the training encoded vector for the latent
variable;

generating a training decoder input that includes the

nearest current latent embedding vectors;

processing the training decoder input through the decoder

neural network in accordance with current values of the
decoder network parameters of the decoder neural
network to generate a training reconstruction of the
training data item;

determining a reconstruction update to the current values

of the decoder network parameters and the encoder
network parameters by determining a gradient with
respect to the current values of the decoder network
parameters and the encoder network parameters to
optimize a reconstruction error between the training
reconstruction and the training data item; and

for each latent variable, determining an update to the

nearest current latent embedding vector for the latent
variable by determining a gradient with respect to the
nearest current latent embedding vector to minimize an
error between the training encoded vector for the latent
variable and the nearest current latent embedding vec-
tor to the training encoded vector for the latent variable.

9. The system of claim 8, the operations further compris-
ing:

for each latent variable, determining a respective com-

mitment update to the current values of the encoder
network parameters by determining a gradient with
respect to the current values of the encoder network
parameters to minimize a commitment loss between the
training encoded vector for the latent variable and the
nearest current latent embedding vector to the training
encoded vector for the latent variable.

10. The system of claim 9, wherein the commitment loss
is a constant multiplied by a square of an 12 error between
the training encoded vector for the latent variable and a stop
gradient of the nearest current latent embedding vector to the
training encoded vector.

11. The system of claim 8, wherein the error between the
training encoded vector for the latent variable and the
nearest current latent embedding vector to the training
encoded vector is a constant multiplied by a square of an 12
error between a stop gradient of the training encoded vector
for the latent variable and the nearest current latent embed-
ding vector to the training encoded vector.

12. The system of claim 8, wherein determining the
gradient with respect to the current values of the encoder
network parameters comprises:

copying gradients from the decoder input to the encoder

output without updating the current latent embedding
vectors.
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13. The system of claim 8, wherein determining the
gradient with respect to the current values of the encoder
network parameters comprises:

determining a subgradient through the selecting the near-

est current latent embedding vector; and

using the subgradient to determine the gradient with

respect to the current values of the encoder network
parameters.

14. The system of claim 8, wherein the input data item is
an image or a video.

15. One or more non-transitory computer-readable stor-
age media storing instructions that when executed by one or
more computers cause the one or more computers to perform
operations for training an encoder neural network and a
decoder neural network and of updating a set of latent
embedding vectors stored in a memory, wherein:

the encoder neural network is configured to receive an

input data item and process the input data item in
accordance with a set of encoder network parameters
to: generate an encoder output that comprises, for each
of one more latent variables, a respective encoded
vector;

the decoder neural network is configured to: receive a

decoder input derived from a discrete latent represen-
tation of the input data item that is generated from the
encoded vectors and the set of latent embedding vectors
and process the decoder input in accordance with a set
of decoder network parameters to: generate a recon-
struction of the input data item, and the operations
comprise:

receiving a training data item;

processing the training data item through the encoder

neural network in accordance with current values of the
encoder network parameters of the encoder neural
network to generate a training encoder output that
comprises, for each of the one more latent variables, a
respective training encoded vector;

selecting, for each latent variable and from a plurality of

current latent embedding vectors currently stored in the
memory, a current latent embedding vector that is
nearest to the training encoded vector for the latent
variable;

generating a training decoder input that includes the

nearest current latent embedding vectors;

processing the training decoder input through the decoder

neural network in accordance with current values of the
decoder network parameters of the decoder neural
network to generate a training reconstruction of the
training data item;

determining a reconstruction update to the current values

of the decoder network parameters and the encoder
network parameters by determining a gradient with
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respect to the current values of the decoder network
parameters and the encoder network parameters to
optimize a reconstruction error between the training
reconstruction and the training data item; and

for each latent variable, determining an update to the
nearest current latent embedding vector for the latent
variable by determining a gradient with respect to the
nearest current latent embedding vector to minimize an
error between the training encoded vector for the latent
variable and the nearest current latent embedding vec-
tor to the training encoded vector for the latent variable.

16. The computer-readable storage media of claim 15, the
operations further comprising:

for each latent variable, determining a respective com-
mitment update to the current values of the encoder
network parameters by determining a gradient with
respect to the current values of the encoder network
parameters to minimize a commitment loss between the
training encoded vector for the latent variable and the
nearest current latent embedding vector to the training
encoded vector for the latent variable.

17. The computer-readable storage media of claim 16,
wherein the commitment loss is a constant multiplied by a
square of'an 12 error between the training encoded vector for
the latent variable and a stop gradient of the nearest current
latent embedding vector to the training encoded vector.

18. The computer-readable storage media of claim 15,
wherein the error between the training encoded vector for
the latent variable and the nearest current latent embedding
vector to the training encoded vector is a constant multiplied
by a square of an 12 error between a stop gradient of the
training encoded vector for the latent variable and the
nearest current latent embedding vector to the training
encoded vector.

19. The computer-readable storage media of claim 15,
wherein determining the gradient with respect to the current
values of the encoder network parameters comprises:

copying gradients from the decoder input to the encoder
output without updating the current latent embedding
vectors.

20. The computer-readable storage media of claim 15,
wherein determining the gradient with respect to the current
values of the encoder network parameters comprises:

determining a subgradient through the selecting the near-
est current latent embedding vector; and

using the subgradient to determine the gradient with
respect to the current values of the encoder network
parameters.



