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(57) ABSTRACT

Systems and methods for controlling a population of a pest
are provided. A computer implemented method for control-
ling a population of a pest can include receiving population
data describing a presence of a pest in a host environment at
a first time. The method can include receiving environmental
data describing the host environment over a prediction
horizon including and temporally after the first time. The
method can include generating an intervention action for the
first time using the population data and the environmental
data as inputs to a control model configured to output the
intervention action as part of an optimization of the presence
of the pest over the prediction horizon. The method can also
include outputting the intervention action.
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MODEL-PREDICTIVE CONTROL OF PEST
PRESENCE IN HOST ENVIRONMENTS

TECHNICAL FIELD

[0001] This disclosure relates generally to sensor systems,
and in particular but not exclusively, relates to systems and
techniques for monitoring and predictive control of pest
populations.

BACKGROUND INFORMATION

[0002] Many important agricultural pests are insects. The
study of biological life cycles, such as the developmental
cycles of insects, is known as phenology, and many pheno-
logical models exist for different pest insect species. The
overall goal of pest modeling is to predict aspects of insect
population dynamics within a season to inform management
decisions, such as the timing of pesticide applications or
other interventions. Accurate prediction of interventions is
crucial for pest management, can help reduce pesticide use,
and can reduce crop damage by enabling more precise
application.

[0003] Insect pests pose a major threat to agricultural
systems and food security. Despite widespread effort to
mitigate the impacts of insects, pest management remains
challenging. In practice, management typically involves
corrective actions that are too late to avert damage. For
example, insect pests destroy approximately 20% of global
grain crops every year through a combination of direct
damage (e.g., consumption) and indirect damage (e.g.,
spreading disease and parasites). Typically, interventions
such as spraying or trapping are implemented in response to
a threshold change in population or emergence of a pest, or
by following a set schedule.

[0004] Pest intervention remains a labor intensive and
challenging process. For example, typical techniques for
pest intervention, such as reactive methods or intervention
scheduling, do not account for effects of interventions on
pest populations, the host environment, or competing objec-
tives including resource allocation and regulatory compli-
ance. There remains a need, therefore, for a predictive
approach that integrates physical constraints and competing
objectives to significantly reduce insect pest emergence with
fewer interventions than the conventional reactive and/or
scheduled approaches.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Non-limiting and non-exhaustive embodiments of
the invention are described with reference to the following
figures, wherein like reference numerals refer to like parts
throughout the various views unless otherwise specified. Not
all instances of an element are necessarily labeled so as not
to clutter the drawings where appropriate. The drawings are
not necessarily to scale, emphasis instead being placed upon
illustrating the principles being described.

[0006] FIG. 1 is a schematic diagram illustrating compo-
nents of an example system for controlling a population of
a pest, in accordance with embodiments of the disclosure.

[0007] FIG. 2 is a process flow diagram illustrating an
example process for controlling a population of a pest, in
accordance with embodiments of the disclosure.

[0008] FIG. 3 is a data flow diagram illustrating an
example control system for generating intervention actions,
in accordance with embodiments of the disclosure.
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[0009] FIG. 4A is a schematic diagram illustrating
example environmental data, in accordance with embodi-
ments the disclosure.

[0010] FIG. 4B is a schematic diagram illustrating
example state data and intervention data, in accordance with
embodiments the disclosure.

[0011] FIG. 5 is a schematic diagram illustrating example
data flows of an open loop optimization of predicted state
data and intervention actions to generate an intervention
action, in accordance with embodiments of the disclosure.
[0012] FIG. 6A is an example population graph illustrating
example population data as a function of time in a system
without intervention, in accordance with embodiments of
the disclosure.

[0013] FIG. 6B is an example population graph illustrating
example population data as a function of time in a system
with reactive intervention, in accordance with embodiments
of the disclosure.

[0014] FIG. 6C is an example population graph illustrating
example population data as a function of time in a system
with predictive intervention described in reference to FIGS.
1-5 and FIG. 7, in accordance with embodiments of the
disclosure.

[0015] FIG. 7 is a block flow diagram illustrating an
example method for controlling a population of a pest, in
accordance with embodiments of the disclosure.

[0016] In the above-referenced drawings, like reference
numerals refer to like parts throughout the various views
unless otherwise specified. Not all instances of an element
are necessarily labeled to simplify the drawings where
appropriate. The drawings are not necessarily to scale,
emphasis instead being placed upon illustrating the prin-
ciples being described.

DETAILED DESCRIPTION

[0017] Embodiments of a system, a method, and computer
executable instructions for model-predictive control of a
population of a pest in a host environment are described
herein. In the following description, numerous specific
details are set forth to provide a thorough understanding of
the embodiments. One skilled in the relevant art will rec-
ognize, however, that the techniques described herein can be
practiced without one or more of the specific details, or with
other methods, components, materials, etc. In other
instances, well-known structures, materials, or operations
are not shown or described in detail to avoid obscuring
certain aspects.

[0018] Reference throughout this specification to “one
embodiment” or “an embodiment” means that a particular
feature, structure, or characteristic described in connection
with the embodiment is included in at least one embodiment
of the present invention. Thus, the appearances of the
phrases “in one embodiment” or “in an embodiment” in
various places throughout this specification are not neces-
sarily all referring to the same embodiment. Furthermore,
the particular features, structures, or characteristics can be
combined in any suitable manner in one or more embodi-
ments.

[0019] Insect pests pose a major threat to agricultural
systems and food security. Despite widespread effort to
mitigate the impacts of insects, pest management remains
challenging. In practice, management typically involves
corrective actions that are too late to avert damage. For
example, insect pests destroy approximately 20% of global
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grain crops every year through a combination of direct
damage (e.g., consumption) and indirect damage (e.g.,
spreading disease and parasites). Typically, intervention
includes implementing an intervention in response to a
threshold change in population or emergence of a pest, or by
following a set schedule.

[0020] The study of biological life cycles, such as the
developmental cycles of insects is known as phenology, and
there are many existing phenological models for various pest
insect species. The overall goal of pest modeling is to predict
various aspects of insect population dynamics within a
season to inform management decisions, such as the timing
of pesticide applications or other interventions. Since most
insects cannot reliably maintain constant body temperature,
insect life cycle and population dynamics are strongly
dependent on environmental conditions, such as ambient
temperature. A widely used method of quantifying the
relationship between temperature and insect biology makes
use of a parameter referred to as growing degree days
(GDDs). GDDs describe a measure of time and temperature
for which the ambient temperature exceeds the lower devel-
opmental temperature threshold.

[0021] Models based on GDD estimates rely on heuristics
developed in laboratory conditions that, while simple and
easy to implement, incorporate simplifying assumptions to
reduce the number of parameters and cross-coupling of
environmental factors. Such simplifications introduce error
and significantly limit the flexibility of the GDD models to
adapt to in situ growing conditions. For at least this reason,
pest intervention prediction and timing remain a labor
intensive and challenging process. As a result, pest manage-
ment systems typically rely on reactive intervention, based
on pest population measurements rising above a threshold
value or rate, or by scheduled interventions that do not adapt
to in situ conditions.

[0022] GDD models can be calibrated using field mea-
surements, requiring multiple pest trap measurements over
multiple days, but only a limited set of models are available
for each pest/host combination, and empirical models cannot
be adapted for events that are not simulated in laboratory
conditions. For example, empirical models used to predict
pest populations do not account for effects of interventions
on pest populations, the host environment, or competing
objectives including allocation of limited intervention
resources or regulatory compliance. There remains a need,
therefore, for a predictive approach that integrates physical
constraints and competing objectives to significantly reduce
insect pest abundance with fewer interventions than the
conventional reactive and/or scheduled approaches.

[0023] In an illustrative example, many insect pests have
distinct generations within one season, referred to as mul-
tivoltinism. Different generations manifest as distinct popu-
lation peaks in observations from a particular season or year.
Knowledge about the emergence of each generation is
important when managing many pests, as the generations
can have distinct biology and interactions with crops. Tim-
ing, type, and extent of interventions can be optimized to
reduce the overall impact of a pest on the environment (e.g.,
crop damage) as well as to balance competing objectives
(e.g., intervention equipment usage, cost of materials, envi-
ronmental impact of interventions).

[0024] In the context of almond cultivation, the first gen-
eration of navel orangeworm typically lays eggs on old fruits
left over from the previous year and does not directly
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damage future harvests. Subsequent generations in the same
orchard, however, tend to be synchronized with the devel-
opment of new fruit and cause significant crop damage. In
this example, interventions can differ between pest genera-
tions. For example, the first generation can be treated to trap
adult insects (e.g., using pheromone traps), while a second
generation can be treated to reduce egg or larval numbers
(e.g., by spraying), before the pest is established or prolif-
erates in an orchard. In some embodiments, interventions
include targeted chemical interventions, such as mating
disruption, that do not kill insects directly, but rather pre-
vent/reduce reproduction as an approach to limit the prolif-
eration of the targeted pest.

[0025] In reference to the forthcoming paragraphs,
description of embodiments focuses on navel orangeworm
(Amyelois transitella, a type of moth) infestation of almond
orchards as an example pest/host combination, but alterna-
tive applications are contemplated where model predictive
control can be applied to control pest population through
optimization of intervention timings in line with competing
objectives. In general, the techniques described can be
applied to pest/host systems for which some ground-truth
data is available, for example, through regular albeit infre-
quent visits by human inspectors, that can be supplemented
with rich environmental datasets including historical data,
current data, and/or predicted data.

[0026] Examples of alternative pest/host systems can
include, but are not limited to, flying insects (e.g. Lepidop-
tera, Cynipidae, Diptera) and/or non-flying insects (e.g.
Aphidae, Lygus). In some embodiments, non-animal pests
can also be modeled in addition to or in place of insect pests.
For example, non-insect pests include but are not limited to
weeds (e.g., invasive, parasitic, competitor, or otherwise
undesirable plants) and plant diseases (e.g., fungal, bacterial,
protozoan, viral, etc.). In some embodiments, different mod-
els apply to different pest types, corresponding to charac-
teristic growth and proliferation dynamics.

[0027] As such, the techniques described herein (e.g.,
predictive model control incorporating machine-learning
and/or mechanistic models), can be adapted to a given
pest/host system. In situ environmental conditions and the
complex interactions between the measured and/or predicted
environmental parameters can serve as inputs to predictive
models paired with optimizer models to converge a con-
straint model to a target value (e.g., as part of a minimization
algorithm). The constraint model can be used to introduce
one or more competing objectives. Through optimization of
predicted pest population in tandem with the competing
objective(s) over a moving prediction horizon, an interven-
tion action at a current time can be generated that both
reduces the overall impact of the pest on the host environ-
ment and reduces the equipment/resource demand of inter-
vention strategies and the environmental impact of interven-
tions, among other competing objectives.

[0028] Inthis way, environmental data and pest population
data can be leveraged to predict future population inputs for
optimizer control models. The optimizer models, in turn, can
be configured to generate intervention actions as part of an
optimization of pest population and competing objectives
over a prediction horizon. Intervention data, such as the
economic, resource, and time demands of diverse types of
interventions can be included as part of constraint models.
Such diverse inputs permit model predictive control tech-
niques to be used to determine which intervention action to
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take and/or whether to take an intervention action at a given
time period during a growing season. In the context of this
disclosure, the term “intervention action” describes one or
more operations undertaken by a pest management system
including planning, scheduling, and executing an interven-
tion, which can include spraying, deploying natural preda-
tors, deploying traps, etc.

[0029] In an illustrative example, a pest monitoring sys-
tem of pheromone traps can be used to estimate the popu-
lation density of navel orangeworm in an almond orchard. A
control model can include a predictive model configured to
predict future pest populations using intervention data,
population data, and environmental data, and an optimizer
model configured to generate a set of intervention actions
over the prediction horizon. An intervention action can be
generated based at least in part on optimizing the set of
predicted invention actions using a constraint model (e.g.,
minimizing a “cost” function, where cost refers to non-
economic costs). The process of generating and/or receiving
pest population data, environmental data, and prior inter-
vention data can be repeated iteratively as part of a control
scheme to actively manage predictive interventions, rather
than applying a reactive or pre-scheduled intervention pro-
cess. Advantageously, the techniques and systems described
herein improve the performance of pest management sys-
tems at least in part by reducing the number of interventions
and the emergence of pests.

[0030] FIG. 1 is a schematic diagram illustrating compo-
nents of an example system 100 for controlling the popu-
lation of a pest, in accordance with embodiments of the
disclosure. Example system 100 includes: one or more
servers 105, one or more client computing devices 110, one
or more sources of environmental data 115, one or more pest
monitoring systems 117, and a network 120. The server(s)
105 include: a first database 125 of environmental data 130,
a second database 135 of pest population data 140, one or
more constraint models 145 and one or more predictive
models 150 encoded in software 155. As part of software
155, server(s) 105 include instructions by which models
145-150 are configured and/or deployed using computer
circuitry 160. In some embodiments, server(s) 105 further
include a third database 165 storing intervention data 170
that describes intervention actions that have been imple-
mented corresponding to one or more agricultural regions
(e.g., as part of a spatially localized pest management
system).

[0031] The following description focuses on embodiments
implementing a networked system for configuring and/or
deploying models 145-150 for generating predicted popu-
lation density and intervention predictions for a given pest/
host combination over a prediction horizon, and for opti-
mizing the intervention predictions using one or more
optimization criteria to determine an intervention action to
be taken. It is contemplated, however, that some embodi-
ments of the present disclosure include some or all of the
processes being implemented on client computing device(s)
110, such as a laptop, smartphone, or personal computer. For
example, configuration and development of models 145-150
can be implemented using server(s) 105, while completed
models 145-150 can be transferred to client computing
device 110 via network 120 and can be deployed directly on
client computing device 110. Similarly, the constituent ele-
ments of example system 100 can be hosted and/or stored on
a distributed computing system (e.g., a cloud system) rather

Nov. 30, 2023

than in a unitary system. For example, first database 125,
second database 135, third database 165, and/or computer
circuitry 160 can be implemented across a distributed sys-
tem, such that portions of environmental data 130, popula-
tion data 140, software 155, and/or intervention data 170 can
be stored or executed by a distributed computing system in
one or more physical locations.

[0032] In an illustrative example of the operation of
example system 100, server(s) 105 and/or client computing
device(s) 110 receive state data 210 (in reference to FIG. 2)
including environmental data 130 describing conditions and
physical characteristics of a host environment that are mea-
sured and/or predicted by sources 115 and/or pest population
data 140 describing the presence and/or abundance of a pest
in the host environment that is measured by pest monitoring
system 117. The presence of the pest can include whether the
pest is present at all (e.g., a “true” or “false” value) as well
as an estimate of pest population density in the host envi-
ronment. Environmental data 130 can be or include meteo-
rological data, hyperspectral data, topographic data, seg-
mented and/or classified image data, or the like, as described
in more detail in reference to FIG. 4A. Environmental data
130 can be accessed, received, and/or stored locally on client
computing device 110. Additionally or alternatively, envi-
ronmental data 130 can be accessed, received, and/or stored
on server(s) 105 via network 120.

[0033] Control models include predictive models 145 that
are configured, trained, and/or prepared to input environ-
mental data 130 and to output predicted population data,
which can be pushed to user devices, such as client com-
puting device 110. In some embodiments, example system
100 is configured to implement automated procedures, such
as scheduling interventions, implementing interventions,
generating notifications to be presented to users of client
computing devices 110, through direct control communica-
tion with automated or pseudo-automated pest management
systems 320 (in reference to FIG. 3). In this context,
automated refers to operation without human involvement
(e.g., as an autonomous vehicle configured to implement an
intervention, such as spraying), and pseudo automated refers
to a system that implements one or more automatic actions
and also includes some human involvement (e.g., a system
that prepares for an intervention and includes a human user
to implement the intervention, such as a human driver of a
spraying system).

[0034] In the context of example system 100, sources of
environmental data 115 are represented by a collection of
visual symbols (e.g., a thermometer), to simplify visual
explanation. Sources of environmental data 115 include, but
are not limited to, in situ sensors, orbital imaging/spectros-
copy platforms, meteorological models or data collection
systems, and/or user-labeled data. As an illustrative
example, sources of environmental data 115 can include in
situ sensors for ambient temperature, humidity, carbon diox-
ide, chemical pollution, GPS location, wind speed, atmo-
spheric pressure, or the like (e.g., as in a meteorological
sensor station). In some embodiments, sources of environ-
mental data 115 also include meteorological predictions for
the host environment generated by a weather model. Envi-
ronmental data 130 can be localized to a physical area by
correlating physical locations of sensors (e.g., GPS data)
with extent information describing the physical space where
host vegetation is grown (e.g., the metes and bounds of an
almond orchard within a polyculture agricultural region).
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[0035] Extent information can be generated by manual
labeling of map data and/or satellite images (e.g., hyper-
spectral images indicating spatial variation in water con-
tent), automated (e.g., without human intervention) classi-
fication/segmentation of satellite images, or through
communication of planting data with agricultural systems,
such as planting systems that include internet-connected
systems. In an example, a planter can include a GPS sensor
and an interne connected computer system that can generate
planting data describing locations and seed identifier infor-
mation for planting operations. In turn, the planting data can
be shared with example system 100 as part of environmental
data 130.

[0036] Pest population data 140 can be collected as part of
the operation of pest monitoring system 117 by various
sampling methods used by growers. For example, phero-
mone traps, egg traps (for flying insects, e.g. Lepidoptera),
suction traps (for aphidae) or bucket sampling and/or sweep
sampling (e.g., for non-flying insects, e.g. Lygus). Inspection
rates can vary within a season but for pheromone and egg
traps, traps are checked typically at least once per week.
Different sampling methods have different degrees of reli-
ability, but typically the data can include noise. For example,
a pheromone trap for navel orangeworm captures only adult
male moths, relying on an estimate of the proportion of male
insects in the overall population to estimate the total popu-
lation including both male and female insects. Data analysis
and entry into example system 100 can include manual
counting, automated assessment using computer vision
models (e.g., machine counting), weight-based counting, or
other techniques.

[0037] In some embodiments, intervention data 170
describe prior interventions taken in the host environment.
Intervention data 170 can be received from client computing
device(s) 110, including but not limited to planting systems,
by manual user input, and/or as part of outputting operations
as described in more detail in reference to FIG. 2. In this
way, it is contemplated that example system 100 will support
iteration of models 145-150 using intervention actions to
improve future performance of pest management actions
with respect to one or more competing objectives.

[0038] As described in more detail in the forthcoming
paragraphs, predictive model 145 generates predicted popu-
lation data 350 (in reference to FIG. 3) for an optimizer
model 310 by processing state data 210 and generating a
predicted population dataset based at least in part on kinetic
aspects of pest population development, such as a DEL
parameter 340, as described in more detail in reference to
FIG. 3. Predicted population data 350 are used to generate
predicted intervention data 355 using an optimization rou-
tine for constraint model 150, for example, through one or
more control schemes 317. Environmental data 130, popu-
lation data 140, predicted population data 350, intervention
data 170, and predicted intervention data 355 can be used as
part of an optimization of constraint model 150 over one or
more iterations, as described in more detail in reference to
FIGS. 3-8.

[0039] FIG. 2 is a process flow diagram illustrating an
example process 200 for modeling population dynamics of
a pest, in accordance with embodiments of the disclosure.
Example process 200 may be implemented by one or more
constituent elements of example system 100 of FIG. 1,
including but not limited to server(s) 105 and/or client
computing device(s) 110. Example process 200 includes
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operations 201-209 for receiving environmental data 130
and generating pest intervention recommendations 240
using control model(s) 220 including predictive models 145
and constraint models 150 as part of an optimization of
competing objectives including the presence of a pest in the
environment and the resource demand and/or environmental
impact of interventions over a prediction horizon 415 (in
reference to FIG. 4B), also referred to as “H.” In the context
of the present disclosure, prediction horizon “H” describes
a period of time over which state data 210 is available from
which population data 140 can be predicted for use in
iterative optimization of control model(s) 220.

[0040] Example process 200 is illustrated as a series of
operations 201-209 implemented by a computer system
using models encoded in software. For example, the opera-
tions of example process 200 can include implementation of
models 145 and 150, stored as computer-readable instruc-
tions in software 155 that are executed by computing
circuitry 160 of server(s) 105. In some embodiments, the
operations of example process 200 are divided between
multiple systems. For example, at least a subset of the
operations of example process 200 can be executed locally
on client computing device 110, while a different subset of
the operations of example process 200 can be executed on a
distributed system of server(s) 105. For example, outputting
operations can be executed on client computing device 110
as part of an interactive pest monitoring and/or management
platform that solicits user feedback and provides notifica-
tions of pest population dynamics in advance and/or in
near-real time, as part of scheduling and implementing
intervention actions.

[0041] In this context, the term “near-real time” is used to
refer to a delay in delivering pest population data within a
time frame during which an intervention can be effectively
staged. For example, an intervention recommendation can
be characterized by a timing window on the order of days
and a spraying operation can occupy a period of time of
hours, such that a delay in receiving pest population data
and/or intervention recommendations on the order of min-
utes or hours does not impair the effectiveness of the
prediction. Similarly, where an intervention is time-sensitive
on the order of hours, population data that is delayed by
hours can still be effective if the data accurately describe
future conditions more than one day in advance.

[0042] The order in which some or all of the process
blocks appear in example process 200 should not be deemed
limiting. Rather, one of ordinary skill in the art having the
benefit of the present disclosure will understand that some of
the operations can be executed in a variety of orders not
illustrated, or even in parallel, with some operations omitted
or with some optional operations included. Advantageously,
operations 201-209 of example process 200 can be priori-
tized, parallelized, distributed, or otherwise coordinated to
provide population and/or intervention data within a time-
frame where it can be effective for the user, being informed,
for example, by the temporal sensitivity of the data being
generated. In this way, the performance of pest management
systems, including automated systems, can be improved
over that of fixed-schedule or reactive pest management
systems, as described in more detail in reference to FIG. 7.
[0043] At operation 201, example process 200 includes
receiving state data 210, including environmental data 130
and/or population data 140. Environmental data 130 can be
received directly and/or indirectly from sources 115, for
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example, through operation of a data retrieval system con-
figured to request environmental data 115 and/or to receive
environmental data 115 according to a refresh cadence or
other timing. For example, an application hosted on client
computing device 110 can receive environmental data 130
from sources 115 via network 120. Pest population data 140
can be received from pest monitoring system(s) 117 directly
(e.g., where pest monitoring includes sensor bearing systems
that can communicate with server(s) 105 over network 120)
and/or indirectly from client computing device(s) 110 (e.g.,
via a user-initiated upload). Client computing device(s) 110
and/or server(s) 105 can then process environmental data
130 locally to generate state data 210. In some embodi-
ments, operation 201 can include communication of envi-
ronmental data 130 between sources 115 and server(s) 105,
where generation of state data 210 occurs at least in part on
server(s) 105.

[0044] In some embodiments, environmental data 130
includes data for a plurality of physical locations as part of
a spatiotemporal dataset, as described in more detail in
reference to FIG. 4A. For example, environmental data 130
can include two-dimensional projection data (e.g., iso-con-
tour maps) for atmospheric pressure, precipitation, wind
speed, or the like, that can be developed by meteorological
or other models using point-data measured by in situ sen-
sors. As such, environmental data 130 can be received from
sources 115 that are in situ (e.g., local sensors) and/or from
computer systems that communicate with in situ sensors to
generate estimated and/or predicted environmental data 130.
Example system 100 can receive environmental data 130
through intermediary systems (e.g., publicly available
weather data), rather than communicating directly with a
network of sensors specific to the pest/host system. To
address limitations in sensor networks and/or prediction
systems, in some embodiments, operation 201 includes
accessing multiple redundant data sources. Advantageously,
accessing redundant environmental data 130 addresses
delays in availability of environmental data 130 from any
given source and further corrects for error by aggregating
environmental data 130.

[0045] At operation 203, example process 200 can include
receiving past intervention data 170. In the context of
generating an intervention action 240 for the current time,
prior intervention data can be propagated into future pre-
dictions as part of optimizing a constraint function over one
or more growing seasons as well as over a prediction
horizon. In an illustrative example, state data 210 can be
received at operation 201 corresponding to a prediction
horizon of four weeks. Optimizing for competing objectives
of controlling the presence of a pest in the host environment
by applying spray pesticide and reducing the impact of
spraying on agricultural output can include imposing a
constraint on the total quantity of pesticide applied per unit
area. In this way, spray timings can be optimized to reduce
predicted pest emergence over the prediction horizon while
also minimizing the quantity of pesticide applied over the
prediction horizon, as well as over the entire growing
season, by propagating intervention data 170 from prior
iterations of example process 200 and/or from other sources
of intervention data 170.

[0046] At operation 205, example process 200 includes
inputting data, including state data 210 and/or intervention
data 170, to control model 220 configured generate inter-
vention action 240 as part of optimizing a set of predicted
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intervention actions 355 over the prediction horizon 415 “H”
(in reference to FIG. 4B). As described in more detail in
reference to FIGS. 3-5, predictive models 145 can take in
multiple inputs, including but not limited to environmental
data 130, pest population data 140, and/or intervention data
170 corresponding to a period of time preceding prediction
horizon “H.”

[0047] State data 210 can include fewer points of popu-
lation data 140 than environmental data 130. As such,
predictive model(s) 145 can be configured to generate
predicted population data 350 (e.g., population density, pest
emergence, etc.) that can be used to estimate pest population
dynamics at a future time, temporally after the time for
which intervention action 240 is generated. In an illustrative
example, predictive model(s) 145 can be used to describe
population density, cumulative population density, and
emergence information at a second time point, temporally
after a first time point of intervention action 240, for which
population data 140 is unavailable. The first time point and
the second time point can be separated by a time-step 420 (in
reference to FIG. 4B) that can be a parameter of pest
management system 320. The time-step can be on the order
of minutes, hours, days, weeks, or longer, based at least in
part on the time scale of a given intervention method and/or
a sampling period of population data 140.

[0048] Pest population data 140 can be collected using
pest monitoring system(s) 117 that are sampled and/or
replaced according to a sampling period of about one week.
To that end, the frequency of intervention actions can
correspond with the sampling period (e.g., one recommen-
dation per week) or can be more frequent or less frequent,
depending on the time used to implement an intervention
(e.g., where a spray intervention can be completed in less
than one week and population data is based on weekly trap
catches, intervention actions 240 can be generated more
frequently than the sampling period). In some embodiments,
the intervention period can be constrained by environmental
restrictions, system limits, or other constraints. For example,
the frequency of intervention actions of a given type (e.g.,
spraying, mite dispersal, or the like) can be limited by
environmental constraints or logistical factors, where appli-
cation is limited not only by total dose, but also by dose over
time to impose a minimum period between intervention
actions.

[0049] At operation 207, example process 200 includes
generating intervention action 240 as the output of control
model 220. As described in more detail in reference to FIG.
3, intervention action 240 corresponds to an entry in a set of
predicted intervention data generated via an optimization of
an intervention schedule over prediction horizon “H,” based
at least in part on optimizing a value of constraint model
150. As described in more detail in reference to FIG. 1,
constraint model can include terms to balances multiple
competing objectives including but not limited to presence
of the pest in the host environment, resource demands and
logistical demands of intervention systems, impacts of inter-
ventions on the host environment, and/or impacts of inven-
tions on the surrounding environment.

[0050] Control model 220 can include diverse model
architectures and a number of different optimization para-
digms implemented as an optimizer 310. As an illustrative
example, optimization can include one or more approaches
for model predictive control including but not limited to
genetic algorithms, nonlinear constrained optimization tech-
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niques (e.g. trust region methods, active-set algorithms,
sequential quadratic programming, or interior point algo-
rithms), or graph-based searches of intervention data includ-
ing a cost-optimized search algorithm. Nonlinear con-
strained optimization techniques (e.g., Pontryagin’s
principal or Hamilton-Jacobi-Bellman non-linear optimiza-
tion), linear-quadratic regulator optimization, and/or rein-
forcement learning approaches (e.g., machine learning mod-
els) can be used to solve an optimal control problem over
multiple prediction horizons for a period of time for which
environmental data, state data, and/or intervention data are
available. Additional and/or alternative approaches include
graph-based searches of intervention data 170 using a cost-
optimized search algorithm. Optimized search algorithms
can include classic tree search algorithms, local search
algorithms, or Monte Carlo search algorithms.

[0051] In the context of linear-quadratic regulator-based
model-predictive control, control model 220 can implement
predictive model(s) 335 as a set of linear differential equa-
tions (e.g., as PETE model described in reference to FIG. 3)
and can implement constraint model 150 as a quadratic
function. Optimization of a linear quadratic regulator
involves minimizing constraint model 150, which can be
defined as a sum of individual contributors to an overall
impact of intervention actions over prediction horizon “H.”
Iteratively modifying predicted intervention actions 355 and
revising predicted population data 355 toward convergence
permits control model 220 to determine intervention action
240 (e.g., immediately or as part of a scheduled pest
management system).

[0052] For genetic algorithm approaches, optimizer model
310 can generate two or more parent sets of predicted
intervention actions 355 (e.g., by random generation), from
which a number of child sets can be propagated by various
techniques (e.g., random combination, pseudo-random com-
bination, etc.) and the child sets can be evaluated using
constraint model 150. Optimizer 310 can iterate over mul-
tiple generations to converge one or more candidate sets of
predicted intervention data 355 toward an optimized value
of an objective function (e.g.. a loss function, cost function,
or the like), to evolve one or more elite candidates most
likely to correspond to a presence of the pest in the host
environment that is balanced with competing objectives,
such as a reduced resource demand and/or logistical cost of
interventions.

[0053] In the context of Hamilton-Jacobi-Bellman non-
linear optimization, control model 220 implements a “value
function” that represents the minimum value of a temporal
integral of the constraint model 150 and a residual value at
time T=H.

T
Vr(x(0), 0) = min{f Clx(@), u(®)ldt + D[x(T)]}
¥ 0

Where V. is the value function, C is the constraint model,
and D is the residual value as a function of predicted
population data 350. In the context of pest management, the
constraint model (accounting for competing objectives) can
represent a population model with intervention effect and the
residual value can be based on the pest information. As a
discrete-time counterpart, the value function can be replaced
by Bellman’s equation, which can be solved with value
iteration or policy iteration. In some cases, the residual value
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can represent a projected impact of the pest in the environ-
ment as a result of the remaining pest presence that can
result in future damage to agriculture and/or the environ-
ment. Inclusion of the integral permits that minimization of
the value function over the prediction horizon to represent
the optimum solution for a control vector “u(t)” that repre-
sents the set of predicted intervention actions 355.

[0054] In the context of optimization in line with Pontry-
agin’s principal, control model 220 can implement a mini-
mization of an objective functional, J, defined for the system
of pest population management as a function of state data
210 and intervention data 170 over time from a first time
point, corresponding to the time of intervention action 240
to a time T=H.

T2 T)H LG 0).aa(0))dt

Where W(x(T)) is defined as a partial derivative of the state
function, evaluated at the endpoint of prediction horizon H,
representing a residual state of the system. L represents a
Lagrangian formulation of constraint model 150 that is
integrated over time from the first time point to time T=H.
The optimization is implemented by control model 220 at
least in part by satisfying the four optimality conditions of
Pontryagin’s principal, as would be understood by a person
skilled in the art of computer control. In some embodiments,
the objective functional includes a discrete summation,
rather than an integral, where state and intervention data are
discrete time variables:

H-1
T06 wy = ) €, ) + $0x0)

=0

There the term u(t) represents control inputs to pest man-
agement system 320 as a function of time, with values being
generated as a function of predicted pest population data 355
in accordance with one or more control schemes 317. In the
function above, @ refers to additional terms not directly
dependent on interventions and/or populations.

[0055] Additional terms “@” can include but are not
limited to environmental and health related factors included
as part of model predictive control. As an illustrative
example, pesticides include harmful chemicals that can
damage surrounding ecosystems when they make their way
into rivers, lakes, and groundwater. This process is known as
“pesticide leaching,” and heavy rainfall and irrigation
increase the risk of leaching. To that end, & can include
rainfall predictions from environmental data as an input to
quantify runoff risk associated with spraying pesticides. In
another example, the time prior to harvest can be an addi-
tional term that modifies weather pesticide application is
permissible. For example, shortly before crop harvest, pes-
ticide application can leave residue on the crop that can be
harmful when consumed by humans. Similarly, the non-
economic “cost” of pesticide application can increase during
a window of time preceding a harvest to reflect that pesticide
application is disfavored, but not impermissible.

[0056] Control model 220 can incorporate machine learn-
ing models that are trained to predict intervention action
240. In an illustrative example, a machine learning model
can be trained to input state data 210 and intervention data
170 and to output a predicted set of intervention actions 355
(e.g., a sequence-to-sequence model such as an RNN,
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LSTM, or GRU model). Training can be based at least in
part on a set of labeled training data from prior executed pest
management operations and/or using synthesized data pro-
duced from model-predictive control simulations using
other methods described herein. Advantageously, machine
learning techniques can capture latent interactions between
different constraints that can be less apparent and therefore
excluded from analytical formulations of predictive model
(s) 145 and constraint model(s) 150. In some embodiments,
machine learning models can be trained to input a set of
predicted intervention actions 355 and state data 210 and to
output an optimized set of predicted intervention actions
355. As such, it is understood that such machine learning
techniques can include training a model to approximate the
behavior of the pest-host system in response to intervention
actions.

[0057] In some embodiments, example process 200
includes outputting intervention action 240 at operation 209.
Outputting operations can include electronic communication
of intervention action 240 in a computer system, such as
server(s) 105 and/or client computing device(s) 110 or
between different systems, as in distributed networked sys-
tems and/or between server(s) 105 and client computing
device(s) 110. In some embodiments, outputting operations
include storing intervention action 240 and/or intervention
data 170 in a data store, such as a memory device of
server(s) 105 and/or client computing device(s) 110.
[0058] Similarly, outputting operations can include gen-
erating visualization and/or notification data and communi-
cating the data to a user device or other associated device,
such as a smartphone or an internet-connected piece of
agricultural equipment. Agricultural equipment can incor-
porate many of the same types of electronic devices as client
computing device 110 or smart phones. As such, operation
209 can include communicating with agricultural equip-
ment, for example, over network 120, such that notifications
and/or visualizations can be presented to a user of the
agricultural equipment through display devices, acoustic
speakers, or the like, that are incorporated into the equip-
ment. In the example of a smartphone, the visualization
and/or notification data can be formatted using standardized
communication protocols, such that outputting can include
sending a digital message including population data 240,
intervention timing data, or other types of notifications,
without a specialized application.

[0059] Outputting operations can also include communi-
cating intervention action 240 with a pest management
system 320 (in reference to FIG. 3). In some embodiments,
outputting to pest management system 320 includes autono-
mous or semiautonomous initiation of an intervention
actions 240. For example, intervention action 240 can be
initiated through modifying a logistics system managing
pest intervention equipment. Where the logistics system
manages resource allocation, such as spray trucks, mite
dispersal, trap teams, or other automated, pseudo-auto-
mated, or manual interventions, outputting intervention
action 240 can include engaging an intervention resource
325 within a window of time corresponding to the first time
point for effecting intervention action 240.

[0060] Following operations 207 and/or 209, example
process 200 can be repeated over one or more iterations with
updated state data 210 and/or intervention data 170 for an
updated prediction horizon. For example, prediction horizon
H can be shifted by one or more timesteps T to permit
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control model 220 to generate a second intervention action
240 corresponding to a second time temporally after the first
time of a first intervention action 240.

[0061] FIG. 3 is a data flow diagram illustrating an
example control system 300 for generating and implement-
ing intervention actions, in accordance with embodiments of
the disclosure. Example control system 300 can be imple-
mented by one or more constituent elements of example
system 100 of FIG. 1, including but not limited to server(s)
105 and/or client computing device(s) 110. Example control
system 300 can include one or more algorithms encoded in
software 155 including one or more iteration loops used to
implement optimization of intervention action 240. Example
control system 300 includes control model 220 implement-
ing predictive model(s) 145 and an optimizer 310 configured
to minimize constraint model 150 over prediction horizon H.
Example control system 300 can include one or more pest
management systems 320 deployed to monitor the presence
of'a pest in a host environment (e.g., pest monitoring system
117 of FIG. 1) and/or to effect intervention action(s) 240.
[0062] As described in more detail in reference to FIG. 2,
control model 220 is configured to implement an optimiza-
tion of a set of predicted intervention actions 355 over
prediction horizon H, based at least in part on set of
predicted population data 350 and constraints 315 included
as part of constraint model 150. Over one or more iterations,
competing objectives encoded in constraint model 150 can
be balanced by modifying predicted intervention actions 355
and iteratively regenerating predicted population data 350.
As described in more detail in reference to FIG. 7, gener-
ating intervention action 240 can form a part of a model-
predictive control algorithm for managing the presence of a
pest in the host environment, where updated state data 210
and intervention data 170 are provided to control model 220
for a new prediction horizon H following operation 207 of
example process 200.

[0063] Selection of predictive model(s) 145 can be
informed by details of the pest/host system. As an illustrative
example, for insect pests, predictive model(s) 145 can
include mechanistic models such as the Predictive Extension
Timing Estimator (PETE) model 335. Other predictive mod-
els 145 for insect-pests include, but are not limited to, the
Ricker model, the Lotka-Volterra model, and the spruce
budworm model. Advantageously, predictive models 145
can be selected to account for particular pest population
dynamics, which can be specific to a genus, species, or
pest/host system. For example, the Lotka-Volterra model
includes predator-prey interaction terms, and the spruce
budworm model includes terms to account for outbreak
dynamics. In this context, the term “outbreak dynamics”
refers to a mechanism of pest proliferation that is infrequent
and significant in extent. For example, an outbreak of spruce
budworm in the Canadian province of Quebec in 2006
resulted in defoliation of approximately 3,000 hectares of
forest after several decades of inactivity by the pest.
[0064] PETE model 335 implements a simplifying
assumption that insect population development rate is deter-
mined primarily by ambient temperature. PETE model 335
assumes that the rate of development is directly proportional
to the temperature in excess of some species-specific lower
developmental threshold (just like degree days) and that the
dynamics of emergence are governed by a delay differential
equation (DDE). The PETE DDE takes the form of a system
of k equations:
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[0065] where I(t) represents the input population at time
“t,” y represents the predicted emergence at a later time
temporally after t, DEL 340 represents a delay parameter
that is the reciprocal of the rate of development, r; represents
intermediate rates, and k represents the number of equations
in the system.

[0066] The delay DEL(t) at each timepoint can be
described by:

DEL(t) = DELppre(t) X DELyy (8)

B DD
= a0, T — Tg) o ®)

where f-, represents ML model 145 and x(t) represents
Environmental data 130 at time “t.”” In some embodiments,
DEL(t) is used to solve PETE model 335 above using a
Euler solver with timestep dt=0.25 days to obtain the pre-
dicted emergence y(t).

[0067] In an illustrative example, PETE model 355 can be
applied to model population dynamics of an individual life
stage of an insect, for example the emergence of an adult
insect from the pupal stage. In this context, the term “emer-
gence” describes a change in population density of the adult
insect over time. Since adult insects develop from pupae,
“emergence” indicates a positive rate of change of the
population density. In some embodiments, it is assumed that
the total population of insects is conserved, such that the
sum of the number of pupae and the number of adult insects
remains constant over time. In some embodiments, addi-
tional dynamics are introduced into mechanistic model(s)
150 to account for parasitism, natural death of pupae and/or
adult insects, and other factors. Such dynamics can include,
but are not limited to, additional terms added to population
equations to reduce the population of insects in either life
stage.

[0068] For PETE model 335, the total emergence of
insects is equal to the total number of input insects. In this
way, solving the above system for y and dividing by the
input population will return a population density that inte-
grates to 1. In PETE model 335, the number of insects in the
pupal stage serves as the initial population I(t). Insects
emerge into the adult life stage after spending time in the
pupal stage, the duration of which depends on the ambient
temperature. Emergence as adult insects occurs after a time
delay, reflected as a change in the adult population y(t).
[0069] It is assumed that the pupation stage can be
described by “k” latent ‘micro-states’ that each insect must
pass through before emergence, where “k” is an integer. The
“r” variables in the above equations represent the population
in each of the k latent micro-states as a function of time. It
should be noted that the latent ‘micro-states’ do not corre-
spond to instars or other physiological stages of insect
development. Instead, each system of k equations describes
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a single life stage or generation (e.g. a model with k=6 does
not represent six generations) that is accurately described by
the simplifying assumptions of PETE model 335. In the
context of example control system 300, latent micro-state
emergence parameter r; can be considered as a latent variable
internal to the mechanistic model(s) 150.

[0070] As DEL(t) 340 is a term in each of the k rate
equations, the rate of emergence of the adult stage depends
on the rate of growth and on the number of intermediate
stages. Timing of emergence and the shape of a population
emergence curve are accurately described by an Erlang
distribution with shape parameter k and time-dependent
mean and variance:

He(8) = DEL()

pe(t?
k

o) =

where 1 (t) represents the mean value of the Erlang distri-
bution for population density and G_(t) represents the vari-
ance of the Erlang distribution. As such, DEL determines the
location and width of the emergence curve and k its shape.
In an illustrative example, k=1 produces an exponential
distribution where population is proportional to e’, while for
larger values of k the population density distribution
approaches a Gaussian distribution.

[0071] Ambient temperature information is incorporated
into PETE model 335 through DEL term 340, defined as:

DD

DELWD = 0. 70O = To)

[0072] where TDD represents the mean number of accu-
mulated degree-days to go through the stage of growth, T(t)
is the temperature and To is the lower temperature threshold
for growth. It is apparent that DEL(t) is undefined in
circumstances where T(t) is below T, It is important to note
that DEL is defined as the reciprocal of the rate of growth,
defined as proportional to the temperature above the lower
threshold temperature. In this way, where ambient tempera-
ture is less than the lower threshold temperature, the rate of
growth is zero.

[0073] A limitation of PETE models 335 is that selecting
the values for parameters used in TDD and k can be
challenging. Where the mean and variance of emergence
time for a population of insects are known, for example,
from lab experiments, the Erlang mean and variance equa-
tions can be used to determine parameters. In some cases,
heuristic-based techniques involve estimating a time to
half-emergence of an insect from multiple in situ collections
in different host environments over multiple growth seasons
of the insect. From collection data, the time to half-emer-
gence can be used to compute Erlang mean and variances,
as the Erlang distribution is symmetrical about a central
mean. It is noted, however, that both techniques present
significant drawbacks. Using laboratory determined growth
parameters can ignore the influence of Environmental data
130 other than ambient temperature. Similarly, collection
data, based on samples taken from traps, can be labor
intensive and produce inconsistent results that are also
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affected by environmental factors not accounted for in PETE
models 335 (e.g., insect activity).

[0074] As a further limitation, fitting TDD and k param-
eters using gradient-descent from in situ trap data is difficult,
as “k” is an integer, making the latent microstate equations
not differentiable with respect to k. To address this limita-
tion, in some embodiments, a value for “k” can be estimated
using coordinate descent to alternately optimize TDD and k,
where TDD is updated with standard gradient update with
fixed k and k is then selected by exhaustive search on the
training loss with fixed TDD.

[0075] Insome embodiments, example control system 300
implements ML model(s) as part of predictive models 145 to
generate input data for mechanistic model(s) such as PETE
model 335. For example, input data can include values for
the DEL function generated by inputting environmental data
130 including temperature data and other data, as described
in more detail in reference to FIG. 4. Advantageously, ML
model(s) can learn the nonlinear dependencies of DEL 340
on temperature and other weather and environmental fac-
tors. The system of “k” latent microstate equations can then
be solved with the predicted value of DEL 340 to obtain
predicted population density over time.

[0076] In some embodiments, PETE models 335 can
include terms to account for one or more effects of inter-
ventions and other factors on the predicted emergence “y.”
As an example, an attrition rate, AR(t) can be included as a
function of time. Additionally or alternatively, an interven-
tion effect term (1—u(t)) can be included, where u(t) repre-
sents the intervention condition at time “t” from first time t,,
to t=H. The expression for a PETE model 335 including the

additional term is provided below:
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[0077] Attrition, in the context of pest population dynam-
ics, represents a sink term in the predicted emergence that
does not correspond to transition from the current life stage
or generation to the subsequent life stage or generation. For
example, attrition can describe reduction of an emergence
attributable to disease, predation, or other causes of reduc-
tion in emergence. As an illustrative example, models
described herein can include predation dynamics, pest-
disease dynamics, or the like. A predation rate can be
expressed as:

h =
o) 14w

where “h(w)” represents the predation rate as a direct
modifier of the population growth rate that is dependent on
the population “w,” a function of time and environmental
factors.

[0078] Predicted population data 350, such as y(t) from
PETE model 335, can serve as an input to optimizer 310, to
be used as part of an optimization of the presence of the pest
in the host environment against one or more constraints 315
as represented in constraint model 150. A general form of
constraint model 150 for discrete-time data can include:
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where x(k) is a function of predicted population data 350,
such as pest population density, at time k that represents the
impact of the pest on crop yields, u(k) represents the “cost”
of predicted intervention action 355 at time k, and ®
represents a tuning parameter between zero and one by
which optimizer 310 can modify the relative emphasis
placed on reducing pest populations as opposed to conserv-
ing intervention resources. For example, a larger value of ®
emphasizes the impact of the presence of the pest in the host
environment relative to the importance of constraints 315.
Where ® is relatively small, the importance of resource
demand, logistical factors, and/or environmental factors
included as constraints 315 into constraint model 150 is
emphasized by optimizer 310.

[0079] The nominal value of ® can be tuned as part of
optimizer 310 operations, as part of an optimization process
over a longer timeframe than prediction horizon H. In an
illustrative example, a season-long upper limit on spraying
can be imposed by regulation, as part of environmental
protections to reduce runoff into watercourses. As such,
optimizer 310 can modify @ toward smaller values as a
growing season progresses, and/or as a function of the
number of intervention actions 240 that contributed to the
upper limit. Similarly, the type of intervention action 240
being determined for the timepoint can affect the value of ®.
[0080] Predicted intervention actions 355 can be gener-
ated in accordance with one or more control schemes 317,
based at least in part on predicted population data 355. For
example, a Heaviside feedback control scheme 317 can be
configured to return a false value for predicted pest popu-
lation density or predicted pest emergence at time t=k that is
below a threshold value and to return a true value for a
density or emergence value above the threshold value. In
this way, predicted intervention actions 355 can represent a
sequence of Boolean values representing a schedule of
intervention actions.

[0081] In some embodiments, multiple control schemes
317 can be implemented by optimizer 310 to account for
system dynamics (e.g., pest emergence) indicated by pre-
dictive model(s) 145. For example, a feedback control
scheme can include derivative terms indicative of rate of
change, such that intervention action predictions are
informed by pest emergence as well as nominal population
density. In some embodiments, control schemes 317 inform
the generation of an initial set of predicted intervention
actions 355, after which optimizer 310 uses the optimization
schemes described in reference to FIG. 2 to minimize
constraint model 150.

[0082] For many pests, impact on crop yield is propor-
tional to pest population, such that x(k) will be a linear
function of pest population, where higher pest population
will result in a greater damage extent. For example, X, can
represent a constant slope linear function of pest population
“P.” Direct correlation between pest population and reduc-
tion in crop yield can be expected in pest/host systems where
the pest directly consumes or damages plants (e.g., herbivo-
rous pests that consume leaf matter or fruits or lay eggs in
fruits). An example of a direct pest is the Colorado potato
beetle (Leptinotarsa decemlineata).
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[0083] In some embodiments, x, can include an exponen-
tial term to account for nonlinear dependency of pest impact
(e.g., crop damage) on pest population (e.g., pest density).
The exponential term can include a power (‘p’), “x,”” such
that impact increases exponentially with pest population,
which can be characteristic of secondary pests that are
typically held in check by predation (e.g.. spider mites) or
that exhibit a transition from a solitary to gregarious behav-
ior above a given threshold density (e.g., locusts).

[0084] In some embodiments, X, can include an inverse
power

1
=n
”xf

that can be characteristic of a pest that is a vector of a crop
pathogen. In such cases, a relatively low presence of the pest
in the host environment can introduce a potentially cata-
strophic effect on crop yield. The dynamics of crop yield
impact can be governed by other models more specific to the
pathogen and its spread through the host environment,
which can be pest agnostic. An example of a vector-pest is
the pea aphid (Acyrthosiphon pisum).

[0085] The term u, can include one or more terms that
represent the non-economic “cost” of implementing pre-
dicted intervention actions 355. For example, a continuous
and differentiable factor between zero and one can be
defined to reflect the progress toward a total permissible
dose for a pesticide on a given area of land over a growing
season (e.g., read into constraint model 150 as constraints
315), so that x, and u, can each be continuous and differ-
entiable variables between zero and one. In some embodi-
ments, the term u, can also include one or more terms that
represent the economic “cost” of implementing predicted
intervention actions 355. For example, a price-per-gallon of
a pesticide product can be used to approximate an economic
“cost” of a predicted intervention.

[0086] Insomeembodiments, u, represents an opportunity
cost associated with allocating intervention resources 325 to
one region rather than another. Pest management system 320
can include limited intervention resources 325 with rela-
tively little redundancy or excess capacity, as an approach to
reduce capital expenditure and maintenance/labor costs. As
such, the “cost” of implementing predicted intervention
actions 355 can include equipment prioritization and other
logistical considerations. In an illustrative example, pest
management system 320 can coordinate intervention
resources 325 for multiple agricultural environments sus-
ceptible to infestation by different pests, each managed by
application of respective chemical pesticides. In this way,
constraints 315 can include information about existing allo-
cations of intervention resources 325 as a function of time.
In some cases, a portion of the environment can be treated,
such that u, can reflect the portion of a constraint 315
representing the resource 325 allocation for the entire envi-
ronment.

[0087] Embodiments of the present disclosure focus on
spraying, but can also include other discrete and/or continu-
ous interventions. In this context, the term “discrete” refers
to an intervention that is applied at a specific time, such that
intervention action 240 can be represented as a Boolean
“true-false” for a given intervention type and a given time.
The term “continuous” can refer to an intervention type that
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includes a proportion or other extent or magnitude factor or
over a period of time including multiple time steps (e.g.,
continuously). For example, an intervention in a fruit
orchard can be applied to a fraction of trees, in proportion to
a population of a pest, such that u, can be a continuous value
between zero and one. In some embodiments, categorical
control variables representing different control types can be
included as part of model predictive control operations of
example process 200. For example, an exemplary interven-
tion scheme can include multiple different pesticide types
with different active ingredients.

[0088] Predictive model 145 can include a learned com-
ponent implemented as a machine learning (ML) model. ML
model(s) can be or include a fully-connected neural network
model, a recurrent neural network model, a Long-Short
Term Memory model, a gated recurrent unit model, or other
model architectures capable of using state data 210 and
intervention data 170 to estimate of DEL(t) (e.g., using
environmental data 130 and intervention data 170 as an
input). PETE model 335 can then generate predicted popu-
lation data 355 that accounts for latent interactions between
pest emergence and multiple environmental factors reflected
in environmental data 130 in addition to ambient tempera-
ture effect.

[0089] As an example of nonlinear dependencies intro-
duced by environmental factors, the presence of a pest can
be described by activity and population density. Population
describes the number of living pests, while activity describes
a proportion of the population that is physiologically active
in the environment at a given time. Activity may influence
measurements of population and can introduce error in
model predictions. For example, rain, wind and pesticide use
can all reduce the number of flying moths captured in traps
but might not impact the actual rate of development. Current
sampling methods typically ignore environmental influence
on activity, which can be accounted for through model
corrections using environmental data 130. Advantageously,
learned models can account for activity changes in response
to environmental factors other than ambient temperature.
[0090] FIG. 4A is a schematic diagram illustrating
example environmental data 130, in accordance with
embodiments the disclosure. Environmental data 130
includes spatial data 405 and temporal data 410, allowing
environmental data 130 to describe the state of a host
environment in one or more spatial dimensions and in time.
Environmental data 130, as described in more detail in
reference to FIG. 1-3, can include data from multiple
different sources, including temperature data 415, wind data
420, humidity data 425, land-use data 430, or the like.

[0091] Environmental data 130 can include temporal data
410 mapped to a geographic location of the host environ-
ment through spatial data 405. In some embodiments, envi-
ronmental data includes values for temperature 415, wind
420, humidity, and land-use 430, but also can include
precipitation, smoke, atmospheric pressure, or the like. In
this way, introduction of ML elements into predictive model
(s) 145 can model covariance between different spatial
predictions at a given timepoint. Advantageously, such an
approach can permit predictive models 145 to account for
the influence of environmental conditions on intervention
action 240 both spatially and temporally. In some embodi-
ments, environmental data 130 include data for multiple
physical locations, of which control model 220 generates
intervention actions 240 for a subset of the physical loca-
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tions. For example, a precipitation map can include data at
a resolution higher than the predictive model(s) 145 can
predict, based at least in part on limited resolution of other
environmental data 130 or population data 140. In this way,
intervention action 240 can be generated at a lower spatial
resolution than environmental data 130.

[0092] Each data type can be expressed as a probability
(e.g., a fraction or percentage), as a coded value, as a
numerical value, or in other forms as may be received from
the source(s) of environmental data 130. Each environmen-
tal data point can be associated with a timepoint and
geographical coordinates, for example, through a GPS ref-
erence. As such, environmental data 130 can describe a
multi-modal dataset in space and time for the host environ-
ment. In some embodiments, environmental data 130 is
represented numerically by a tuple including a timepoint,
spatial coordinates, and a value for each environmental data
type being measured (e.g., an n-tuple where n is the number
of entries in the datum).

[0093] With respect to land-use data 430, it is understood
that some vegetation and/or land conditions can serve as
direct hosts of pest organisms, some can serve as reservoirs
of pest organisms, and some can serve as attractants or
repellants for pest organisms. For example, wild land abut-
ting a cultivated plot can serve as a reservoir of pest insects,
where the wild land is not managed to limit the population
of the pest. Similarly, crop rotation and other agricultural
techniques can leave land fallow near a host environment,
which can serve as a source of pest population. Land-use
data 430 can encode one or more uses of land in the
geographic area in and around the host environment. For
example, land-use can be expressed numerically as a binary
Boolean value, where true indicates host land and false
indicates non-host land. In another example, land-use can be
expressed numerically as a coded integer value, with each
integer value corresponding to a different use. In some
embodiments, land-use is classified from images by trained
ML models, such that land-use can be expressed numerically
as a probability that a given geographical position corre-
sponds to cultivated land and/or as a host or reservoir
environment. A probability value can provide a continuous
and differentiable input to control model 220, for example,
as an input to predictive model(s) 145 to reflect a source
term from a pest reservoir.

[0094] FIG. 4B is a schematic diagram illustrating
example state data 210 and example intervention data 170 as
a function of time, in accordance with embodiments of the
disclosure. For a series of timepoints 405, set of predicted
intervention actions 355 are represented as discrete Boolean
actions 410, respectively corresponding to a timepoint T,
where “1” is an integer between 1 and “H,” with each value
of “1” corresponding to a sampling frequency of pest popu-
lation data 140 (e.g., using pest monitoring system 117). “H”
represents the length of time of a prediction horizon 415
over which predicted pest population data 350 can be
predicted using state data 210. Timepoints T are separated
by timesteps 420, the duration of which can be based at least
in part on a sampling frequency of pest monitoring system
117 and/or a minimum separation between intervention
actions 410.

[0095] Prediction horizon 415 is illustrated as being the
same length of time for population prediction and interven-
tion prediction. In some embodiments, prediction horizon
415 for population prediction differs from prediction horizon
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415 for intervention prediction. Some forms of intervention
(e.g., spraying, mite dispersal, pheromone trapping, or the
like) involve a prescribed course of intervention actions 410
including one or more periods of application/action and one
or more periods of inaction. As such, intervention actions
410 can represent implementing an intervention (e.g., “tak-
ing an action”) or not implementing an intervention (e.g.,
“not taking an action”).

[0096] In an illustrative example, a set of predicted inter-
vention actions 355 for spraying an orchard to reduce orange
navelworm egg density can include multiple separate spray-
ings separated by a minimum period of time, such that
prediction horizon 415 for interventions can include one or
more timepoints T with actions and one or more timepoints
T without actions, such that the total number of timesteps
420 exceeds the length of time for which environmental data
130 is available. Similarly, predicted intervention actions
355 can correspond to a shorter prediction horizon 415 than
the length of time described by environmental data 130, for
example, where timeframes for scheduling and/or imple-
menting intervention actions 410 are limited, but environ-
mental data 130 is available for longer terms.

[0097] FIG. 5 is a schematic diagram illustrating example
data flows for generation of predicted population data 350
and predicted intervention actions 355 for a prediction
horizon 415, in accordance with embodiments of the dis-
closure. Data flows illustrated herein represent interactions
between predictive model(s) 145 and constraint model(s)
150, as described in more detail in reference to FIGS. 1-3,
which can include operations executed by server(s) 105
and/or client computing device(s) 110 and using state data
210 and intervention data 170 as inputs.

[0098] Model predictive control includes generating a set
of predicted control inputs that converge constraint model
150 to an optimum (e.g., minimum, maximum, or target)
value over prediction horizon H, for which intervention
action 240 represents a control input for a first time point
that is typically the next control action to be taken. As such,
generating predicted intervention actions 355 for multiple
timesteps (“I””) over prediction horizon 210 can include
iteratively evaluating predictive model(s) 145 to generate a
set of predicted population data 350 for timepoints T, to T,,.
Similarly, predicted population data 350 can be used to
generate predicted intervention actions 355 for timepoints
T1 to TH in line with control schemes 317.

[0099] As illustrated, each iteration of predictive model(s)
145 includes inputting time-series state data 210, as well as
the preceding value corresponding to intervention data 170
and population data 140. For example, a first iteration of
predictive model(s) 145-1 receives as inputs a first timepoint
of'state data 210-1 and intervention data 170 (e.g., from third
database 165). The output of first iteration of predictive
model(s) 145-1 can be used by optimizer 310 to generate a
predicted intervention action corresponding to the first time-
point. In line with the model-predictive control approach, of
example control system 300, the predicted intervention
action 355 corresponding to the first timepoint represents
intervention action 240 when optimizer 310 has converged
(FIG. 5 represents this conditional status with an asterisk
«#7)_ For an “N”” iteration of predictive model(s) 145-N,
the output of a preceding iteration “N-1" of predictive
model(s) 145-N-1 and the corresponding output of optimizer
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310 are used, along with the Nth timepoint for state data
210-N, to populate the corresponding entry in predicted pest
population data 350.

[0100] FIG. 6A is a graph 600 illustrating example popu-
lation data as a function of time in a system without
intervention, in accordance with embodiments of the dis-
closure. Graph 600 represents typical pest population data
140 for a host environment produced by an example
embodiment of pest monitoring system 117. In the example
of FIG. 6A, the pest host system is infestation of almond
orchards by navel orangeworm (Amyelois tramsitella) in
California, USA. In graph 600, population data includes
multiple generations over a period of about 20 weeks, with
a peak population density 610 corresponding to the first
generation of approximately 155 insects per trap on average.

[0101] FIG. 6B is a graph 630 illustrating example popu-
lation data as a function of time in a system with reactive
intervention, in accordance with embodiments of the dis-
closure. Graph 630 demonstrates the impact of so-called
“reactive” control that is typically implemented as a feed-
back control scheme using pest population data as an input
to a model without a predictive component. Population data
635 of graph 630 is simulated using a simple feedback
control model, with predictive model(s) 145 described in
reference to FIG. 3 for the specific pest-host system of Lygus
in strawberries. In contrast to graph 600 of FIG. 6A,
population data 635 for graph 630 reflects the impact of four
simulated intervention actions 640 taken approximately at 4
weeks, 5 weeks, 8 weeks, and 12 weeks over the same 20
week growing period. In the simulation, interventions 640
correspond to spraying pesticide. The reactive control
scheme indicates an improvement in pest population over
multiple generations, with the duration of each generation
being shortened and the peak populations in second and
third generations being reduced relative to population data
605 of graph 600. Peak population 610 remains approxi-
mately 155 insects per trap, however, revealing a relative
weakness of reactive control schemes. Pest management
systems can include sources of latency in control systems,
such that a control input based on current population data
140 can be implemented after populations have continued to
rise. This effect is demonstrated in graph 330, in that initial
growth in population data 635 is not reduced relative to the
corresponding untreated dataset 605 of graph 600. Popula-
tion data 635 for the second and third generations reveal the
progressive effect of the four interventions 640, with a
reduction in peak populations in contrast to corresponding
data in graph 600. By integrating the population curve over
the growing season, reactive control reduces the total emer-
gence relative to unmanaged crops by 47%.

[0102] FIG. 6C is a graph 650 illustrating example popu-
lation data 655 as a function of time in a system with
predictive intervention described in reference to FIGS. 1-5,
in accordance with embodiments of the disclosure. In con-
trast to the simulated data in graph 630, population data 655
reflects the improvements to pest management system 320
provided by model predictive control of pest populations in
line with the embodiments of example process 200 and
example control system 300. With fewer interventions 660,
at 3 weeks and 4 weeks into the roughly 20 week growing
season, peak managed pest population 665 is reduced sig-
nificantly, from approximately 155 insects per trap to
approximately 65 insects per trap. While Lygus is a direct
consumer of fruit seeds, the early-stage of development of
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fruit affected by Lygus can also reduce pollination of flow-
ers, which introduces higher order and other non-linear
dynamics into the pest-host system between population 665
and reduction in crop yield.

[0103] As shown, model predictive control results in
reduced peak and total populations, corresponding to a 59%
reduction in pest emergence, with half as many interventions
660 that take place earlier in the growing season and are not
repeated. Advantageously, the model predictive control
scheme illustrated in graph 660 also represents an improve-
ment in management system 320 performance by facilitating
more efficient use of intervention resources 325. For
example, with spraying for the host environment concluded
within the first five weeks of the growing season, spray
equipment can be reallocated to other locations and/or
repurposed for other pests. Similarly, with advanced predic-
tion of pest emergence, resources 325 can be provisionally
allocated in anticipation of interventions. In this way, fleet
distribution and material supply issues can be addressed in
advance, reducing latency introduced by logistical systems
and/or labor shortages. Furthermore, optimization of com-
peting objectives that is handled by control model 220
balances the environmental impact, material and resource
costs, and labor and equipment time of interventions 660
against the reduction in yield of fruit harvests in a way that
is absent from reactive control shown in graph 630.

[0104] FIG. 7 is a block flow diagram illustrating an
example method 700 for controlling the presence of a pest
in a host environment, in accordance with embodiments of
the disclosure. Example process 700 describes an example
of operations implemented by a computer system (e.g.,
server(s) 105 of FIG. 1) as part of deploying example
process 200 of FIG. 2. The order in which some or all of the
process blocks appear in process 700 should not be deemed
limiting. Rather, one of ordinary skill in the art having the
benefit of the present disclosure will understand that some of
the process blocks can be executed in a variety of orders not
illustrated or in parallel and can be repeated, omitted, or
assigned to other systems.

[0105] At block 705, the computer system receives envi-
ronmental data 130 for a prediction horizon H (e.g., predic-
tion horizon 415 of FIG. 4B). As described in more detail in
reference to FIG. 1-5, environmental data 130 can be or
include measured and/or predicted data describing a host
environment for a pest/host system. Environmental data 130
can be received from one or more sources including weather
systems (e.g., weather forecast data), in situ sensors (e.g.,
meteorological sensor stations), internet connected sensor-
bearing devices (e.g., agricultural vehicles, mobile elec-
tronic devices, etc.), by manual entry by human users. In
some embodiments, data are received separately from mul-
tiple sources, such that the computer system, as part of
operations at block 705, synthesizes environmental data 130
from the disparate source data. For example, each data
source can be configured for a different sampling period,
such that preparation operations can include sub-sampling at
least some of the source data such that each entry of
environmental data 130 includes a complete set of environ-
mental measurements for each timepoint.

[0106] Environmental data 130 can be processed into
other forms to be suitable for use as inputs to predictive
model(s) 145. For example, predictive model(s) 145 can be
configured to input derived parameters (e.g., DEL parameter
340 of FIG. 3) that can be determined using one or more



US 2023/0385654 Al

models (e.g., trained ML models, heuristic models, estima-
tions derived from pest monitoring system 117 data) con-
figured to generate predicted DEL parameters using envi-
ronment data 130. Advantageously, using environmental
data 130 as part of state data 210 can improve the perfor-
mance of pest management system 320 and control model
220, at least in part due to a relative infrequency of samples
from pest monitoring system 117 and the possibility of noisy
data caused by sparse sampling.

[0107] At block 710, the computer system receives popu-
lation data 140 generated by pest monitoring system(s) 117
for a first time point. As described in more detail in reference
to FIG. 1, pest monitoring system(s) 117 can include
manual, automated, or pseudo-automated systems, devices,
or techniques for assessing the presence of a pest in the host
environment. In an illustrative example, pest monitoring
system 117 can include multiple pheromone traps distributed
through an almond orchard and periodically replaced to
gather time-series data for the emergence of a navel orange-
worm pest. Population data 140 received at block 710 can
include timepoints preceding the first time, such that pre-
dictive model(s) 145 can include prediction based on envi-
ronmental data 140 and on emergence dynamics (e.g.,
derivative terms).

[0108] At block 715, the computer system receives past
intervention data. As illustrated in FIG. 6C, intervention
actions can have lasting effects on pest emergence, which
can be accounted for in predictive model(s) 145. As such,
past intervention data 170 can be used as part of generating
predicted intervention data 355, as described in more detail
in reference to FIG. 3 and FIG. 5. Where no interventions
have been implemented, or are otherwise not considered for
predictive model(s) 145, block 715 can be omitted from
example method 700.

[0109] At blocks 720-725, the computer system inputs
data received at blocks 705-715 to control model 220 and
generated intervention action 240. as described in more
detail in reference to FIGS. 2-3, control model 220 is
configured to implement model-predictive control-based
optimization of a set of predicted intervention actions 355
over prediction horizon H, of which the predicted interven-
tion action 355 corresponding to a first time point is out-
putted as intervention action 240. Optimization includes
balancing competing objectives, such as crop damage due to
pest presence, resource allocation constraints, equipment
allocation constraints, labor allocation constraints, environ-
mental restrictions on timing and extent of intervention, or
the like. As such, through iterative optimization of the set of
predicted intervention actions 355, intervention action 240
can be determined that guides the pest-host system toward
an optimum state at timepoint T,,. It is understood that the
optimum state may not correspond to the absolute minimum
possible pest emergence over the prediction horizon, as pest
emergence is balanced against other constraints that may
limit the number and magnitude of interventions indicated.
[0110] In some embodiments, the computer system out-
puts intervention action 240 or other data (e.g., input data
220, environmental data 130) at block 730. Outputting
operations, as described in more detail in reference to FIG.
2, can include storing data, including data for intervention
action 240 and/or predicted data 350-355 on one or more
storage systems. Outputting operations can also include
communicating data to associated systems (e.g., client com-
puting device(s) 110, pest management system 320, etc.), as
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through notifications and audio-visual information for pre-
sentation to a user. Additionally or alternatively, outputting
operations can include implementing interventions directly,
as when pest management system 320 includes automated
(e.g., without human involvement) or pseudo-automated
(e.g., with human oversight or control) intervention systems,
such as sprayer systems or automated deployment systems,
as when an unmanned aerial vehicle deploys pest predator
organisms to control pest populations (e.g., Persimilis to
attack spider mites) or autonomous spraying systems can at
least partially prepare intervention resources 325 for imple-
menting intervention action 240 (e.g., scheduling a spray
event, allocating spray equipment, initiating a spray action,
configuring spray equipment, or the like).

[0111] Atblock 735, the computer system iterates example
method 700 by shifting prediction horizon H by one or more
timepoints and repeating at least a subset of blocks 705-730.
In some embodiments, data are available for more time-
points than what are included in prediction horizon H. As
such, block 735 can shift the prediction horizon H by
selecting a new set of data already stored in databases of
server(s) 105 or client computing device(s) 110. In line with
the principals of model-predictive control, implementing
intervention action 240 at a first timepoint can be followed
by shifting prediction horizon H forward (e.g., to exclude
first timepoint and to cover timepoints T, to T,,,) and
repeating prediction and optimization operations using con-
stituent models of control model 220 to generate a second
intervention action 240.

[0112] The processes explained above are described in
terms of computer software and hardware. The techniques
described can constitute machine-executable instructions
embodied within a tangible or non-transitory machine (e.g.,
computer) readable storage medium, that when executed by
a machine will cause the machine to perform the operations
described. Additionally, the processes can be embodied
within hardware, such as an application specific integrated
circuit (“ASIC”) or otherwise.

[0113] A tangible machine-readable storage medium
includes any mechanism that provides (i.e., stores) informa-
tion in a non-transitory form accessible by a machine (e.g.,
a computer, network device, personal digital assistant,
manufacturing tool, any device with a set of one or more
processors, etc.). For example, a machine-readable storage
medium includes recordable/non-recordable media (e.g.,
read only memory (ROM), random access memory (RAM),
magnetic disk storage media, optical storage media, flash
memory devices, etc.).

[0114] The above description of illustrated embodiments
of the invention, including what is described in the Abstract,
is not intended to be exhaustive or to limit the invention to
the precise forms disclosed. While specific embodiments of,
and examples for, the invention are described herein for
illustrative purposes, various modifications are possible
within the scope of the invention, as those skilled in the
relevant art will recognize.

[0115] These modifications can be made to the invention
in light of the above detailed description. The terms used in
the following claims should not be construed to limit the
invention to the specific embodiments disclosed in the
specification. Rather, the scope of the invention is to be
determined entirely by the following claims, which are to be
construed in accordance with established doctrines of claim
interpretation.
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What is claimed is:

1. A computer implemented method for controlling a
population of a pest, the method comprising:

receiving population data describing a presence of a pest
in a host environment at a first time;

receiving environmental data describing the host environ-
ment over a prediction horizon including and tempo-
rally after the first time;

generating an intervention action for the first time using
the population data and the environmental data as
inputs to a control model configured to output the
intervention action as part of an optimization of the
presence of the pest over the prediction horizon; and

outputting the intervention action.

2. The computer implemented model of claim 1, wherein

the control model comprises:

a predictive model configured to input the population
data, the environmental data, and intervention data, and
to output a predicted population density for the pest in
the host environment at a timepoint of the prediction
horizon temporally after the first time; and

an optimizer model, configured to input the predicted
population density and to output an intervention rec-
ommendation by optimizing a constraint model.

3. The computer implemented method of claim 2, wherein
the predictive model comprises a Predictive Extension Tim-
ing Estimator (PETE) model with an intervention term, the
intervention term modifying the PETE model to account for
the effect of the intervention action on a pest emergence as
a function of time.

4. The computer implemented method of claim 2, wherein
generating the intervention action comprises:

generating a set of predicted population density data for
the pest over the prediction horizon using the environ-
mental data, the population data, and the intervention
data;

generating a set of predicted intervention actions for the
prediction horizon using the set of predicted population
density data as inputs to the optimizer model;

determining a value of the constraint model for the set of
predicted intervention actions, wherein the constraint
incorporates information for the presence of the pest in
the host environment and the set of predicted interven-
tion actions; and

iteratively updating the set of predicted population density
and the set of predicted intervention actions until a
convergence criterion is satisfied for the value.

5. The computer implemented method of claim 4, wherein

the constraint model includes:

a first term for the damage caused to the host environment
by the pest; and

a second term for the resource demand attributed to the
predicted intervention actions.

6. The computer implemented model of claim 4, wherein
generating the set of predicted intervention actions com-
prises a cost-optimized search of a database of intervention
data.

7. The computer implemented model of claim 4, wherein
generating the set of predicted intervention actions com-
prises:

randomly generating two parent sets of predicted inter-
vention recommendations over the prediction horizon;

initializing a genetic algorithm using the two parent sets,
wherein the genetic algorithm is configured to populate
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an initial generation of child sets using the parent sets,
to determine respective optimization factors for the
child sets, and to select two or more retained child sets
by comparison of the respective optimization factors;

re-initializing the genetic algorithm using the retained
child sets; and

iterating the genetic algorithm over one or more subse-
quent generations until a marginal improvement thresh-
old is satisfied.

8. The computer implemented model of claim 4, wherein
generating the set of predicted intervention actions com-
prises a non-linear constrained optimization of the set of
predicted intervention actions and the set of predicted pest
population data for the prediction horizon.

9. The computer implemented model of claim 4, wherein
the convergence criterion comprises a comparison of a
marginal reduction of the value of the constraint model with
a threshold value.

10. The computer implemented model of claim 1, wherein
the population data is first population data, the environmen-
tal data is first environmental data, the prediction horizon is
a first prediction horizon, the intervention action is a first
intervention action, and wherein the method further com-
prises:

receiving second population data describing the presence
of the pest in the host environment at a second time
temporally after the first time;

receiving second environmental data describing the host
environment over a second prediction horizon tempo-
rally after the second time; and

generating a second intervention action for the second
time using the second population data, the second
environmental data, and the first intervention recom-
mendation as inputs to the control model.

11. The computer implemented method of claim 1,
wherein the intervention action indicates no action at the
first time.

12. The computer implemented method of claim 1,
wherein outputting the intervention action comprises out-
putting data for the intervention action to a pest management
system.

13. At least one machine-accessible storage medium that
provides instructions that, when executed by a machine, will
cause the machine to perform operations comprising:

receiving population data describing a presence of a pest
in a host environment at a first time;

receiving environmental data describing the host environ-
ment over a prediction horizon including and tempo-
rally after the first time;

generating an intervention action for the first time using
the population data and the environmental data as
inputs to a control model configured to output the
intervention action as part of an optimization of the
presence of the pest over the prediction horizon; and

outputting the intervention action.

14. The at least one machine-accessible storage medium

of claim 13, wherein the control model comprises:

a predictive model configured to input the population
data, the environmental data, and intervention data, and
to output a predicted population density for the pest in
the host environment at a timepoint of the prediction
horizon temporally after the first time; and
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an optimizer model, configured to input the predicted
population density and to output an intervention rec-
ommendation by optimizing a constraint model.

15. The at least one machine-accessible storage medium
of claim 14, wherein the predictive model comprises a
Predictive Extension Timing Estimator (PETE) model with
an intervention term, and wherein the intervention term
modifies the PETE model to account for the effect of the
intervention action on a pest emergence as a function of
time.

16. The at least one machine-accessible storage medium
of claim 14, wherein generating the intervention recommen-
dation comprises:

generating a set of predicted population density data for

the pest over the prediction horizon using the environ-
mental data, the population data, and the intervention
data;
generating a set of predicted intervention actions for the
prediction horizon using the set of predicted population
density data as inputs to the optimizer model;

determining a value of the constraint model for the set of
predicted intervention actions, wherein the constraint
incorporates information for the presence of the pest in
the host environment and the set of predicted interven-
tion actions; and

iteratively updating the set of predicted population density

and the set of predicted intervention actions until a
convergence criterion is satisfied for the value.

17. The at least one machine-accessible storage medium
of claim 16, wherein the constraint model includes:
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a first term for the damage caused to the host environment

by the pest; and

a second term for the resource demand attributed to the

predicted intervention actions.

18. The at least one machine-accessible storage medium
of claim 16, wherein generating the set of predicted inter-
vention actions comprises a non-linear constrained optimi-
zation of the set of predicted intervention actions and the set
of predicted pest population data for the prediction horizon.

19. The at least one machine-accessible storage medium
of claim 16, wherein the convergence criterion comprises a
comparison of a marginal reduction of the value of the
constraint model with a threshold value.

20. The at least one machine-accessible storage medium
of claim 13, wherein the population data is first population
data, the environmental data is first environmental data, the
prediction horizon is a first prediction horizon, the interven-
tion action is a first intervention action, and wherein the
instructions, when executed by the machine, cause the
machine to implement further operations comprising:

receiving second population data describing the presence

of the pest in the host environment at a second time
temporally after the first time;

receiving second environmental data describing the host

environment over a second prediction horizon tempo-
rally after the second time; and

generating a second intervention action for the second

time using the second population data, the second
environmental data, and the first intervention recom-
mendation as inputs to the control model.
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