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(57) ABSTRACT

Examples disclosed herein may involve a computing system
that is operable to (i) receive a sequence of images captured
by a camera associated with a vehicle, (ii) for each of at least
a subset of the received images in which a given agent is
detected, (a) generate a respective pixel mask that identifies
a boundary of the given agent within the image, (b) identify,
as a tracking point for the given agent within the image, at
least one given pixel within the pixel mask that is represen-
tative of an estimated intersection point between the given
agent and a ground plane, and (c¢) determine a position of the
given agent at the capture time of the image based on the
tracking point and information regarding the ground plane,
and (iii) determine a trajectory for the given agent based on
the determined positions of the given agent.

20 Claims, 26 Drawing Sheets
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FIG. 8B
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1
SYSTEMS AND METHODS FOR DERIVING
AN AGENT TRAJECTORY BASED ON
TRACKING POINTS WITHIN IMAGES

BACKGROUND

Vehicles are increasingly being equipped with sensors that
capture sensor data while such vehicles are operating in the
real world, and this captured sensor data may then be used
for many different purposes, examples of which may include
building an understanding of how vehicles and/or other
types of agents (e.g., pedestrians, bicyclists, etc.) tend to
behave within the real world and/or generating other pre-
processed information about the world. The sensor data that
is captured by these sensor-equipped vehicles may take any
of various forms, examples of which include Global Posi-
tioning System (GPS) data, Inertial Measurement Unit
(IMU) data, camera image data, Light Detection and Rang-
ing (LiDAR) data, Radio Detection And Ranging (RADAR)
data, and/or Sound Navigation and Ranging (SONAR) data,
among various other possibilities.

SUMMARY

In one aspect, the disclosed technology may take the form
of a first method that involves (i) receiving a sequence of
images captured by a camera associated with a vehicle,
where each image was captured at a respective capture time
during a period of operation of the vehicle, (ii) for each
respective image in at least a subset of images in the
sequence in which a given agent is detected: (a) generating
a respective pixel mask that identifies a boundary of the
given agent within the respective image and distinguishes
the given agent from any other agent appearing within the
respective image, (b) identifying, as a respective tracking
point for the given agent within the respective image, at least
one given pixel within the respective pixel mask that is
representative of an estimated intersection point between the
given agent and a ground plane within the vehicle’s sur-
rounding environment, and (¢) based on the respective
tracking point for the given agent within the respective
image and information regarding the ground plane within
the vehicle’s surrounding environment, determining a posi-
tion of the given agent at the respective capture time of the
respective image, and (iii) determining a trajectory for the
given agent based on the determined positions of the given
agent.

In example embodiments of the first method, the given
agent may be partially occluded in one or more images in the
subset of images. In example embodiments, for each respec-
tive image in the subset of images in which the given agent
was partially occluded, (a) a respective pixel mask for the
given agent may still be generated that delineates a visible
portion of the given agent within the respective image, (b)
a given pixel within the respective pixel mask may still be
identified as a respective tracking point for the given agent
within the respective image, and (c) a position of the given
agent at the respective capture time of the respective image
may still be determined based on the respective tracking
point despite the given agent being partially occluded within
the respective image, where the determined position may be
subsequently used to determine the trajectory for the given
agent.

Further, in example embodiments of the first method, the
given agent may be fully occluded in one or more images in
the sequence of images such that there is one or more time
gaps in the determined positions for the given agent, and
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2

determining the trajectory for the given agent based on the
determined positions the given agent may comprise inferring
aposition of the given agent for each of the one or more time
gaps based on other determined positions of the given agent.

Further yet, in example embodiments of the first method,
determining the trajectory for the given agent based on the
determined positions of the given agent may comprise (a)
identifying one or more determined positions of the given
agent that are inconsistent with physical constraints on the
given agent’s real-world movement, and (b) updating the
identified one or more determined positions of the given
agent to account for the physical constraints on the given
agent’s real-world movement.

Still further, in example embodiments of the first method,
identifying, as a respective tracking point for the given agent
within a given respective image in the subset of images, at
least one given pixel within the respective pixel mask that is
representative of an estimated intersection point between the
given agent and a ground plane within the vehicle’s sur-
rounding environment may comprise identifying, as the
respective tracking point for the given agent within the
respective image, a pixel within the respective pixel mask
that is closest to a bottom of the respective image, where the
identified pixel is then used as a basis for determining a
position of the given agent at the respective capture time of
the respective image.

Even further, in example embodiments of the first method,
identifying, as a respective tracking point for the given agent
within a given respective image in the subset of images, at
least one given pixel within the respective pixel mask that is
representative of an estimated intersection point between the
given agent and a ground plane within the vehicle’s sur-
rounding environment may comprise (a) identifying a
ground feature within the respective image, (b) identifying
one or more pixels within the respective pixel mask that are
adjacent to the ground feature, and (c¢) identifying, from the
one or more pixels that are identified as being adjacent to the
ground feature, at least one pixel that is closest to a bottom
of the respective image, where the identified at least one
pixel is then used as a basis for determining a position of the
given agent at the respective capture time of the respective
image.

In other example embodiments of the first method, deter-
mining a position of the given agent at a respective capture
time of a given respective image in the subset of images
based on a respective tracking point for the given agent
within the respective image and information regarding the
ground plane within the vehicle’s surrounding environment
may comprise (a) determining an association between the
respective tracking point for the given agent within the
respective image and a given ground point within the
vehicle’s surrounding environment, (b) determining a three-
dimensional (3D) position of the given ground point using a
ground map that provides information regarding the 3D
geospatial geometry of the ground plane within the vehicle’s
surrounding environment, and (c) using the determined 3D
position of the given ground point to determine a 3D
position of the given agent at the respective capture time of
the respective image.

In these example embodiments of the first method, deter-
mining the association between the respective tracking point
for the given agent within the respective image and the given
ground point within the vehicle’s surrounding environment
may comprise (a) casting a ray from the camera through the
respective tracking point for the given agent within the
respective image to the ground plane for the vehicle’s
surrounding environment, and (b) based on an angle of the
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cast ray and the ground map, determining that the cast ray
intersects with the ground plane at the given ground point.

Further, in these example embodiments of the first
method, using the determined 3D position of the given
ground point to determine the 3D position of the given agent
at the respective capture time of the respective image may
comprise translating the determined 3D position of the given
ground point to an estimated center point of the given agent
using information regarding the physical dimensions of the
given agent.

Moreover, in example embodiments of the first method,
determining the trajectory of the given agent based on the
determined positions of the given agent may comprise (a)
inputting the determined positions of the given agent into a
motion model that encodes knowledge regarding physical
constraints on the given agent’s real-world behavior, where
the motion model corrects for missing or errant position
information, and (b) determining the trajectory of the given
agent based on the motion model’s output.

In another aspect, the disclosed technology may take the
form of a second method that involves (i) receiving a first
sequence of images captured by a monocular camera asso-
ciated with a vehicle during a given period of operation and
a second sequence of image pairs captured by a stereo
camera associated with the vehicle during the given period
of operation, (ii) deriving, from the first sequence of images
captured by the monocular camera, a first track for a given
agent that comprises a first sequence of position information
for the given agent, (iii) deriving, from the second sequence
of image pairs captured by the stereo camera, a second track
for the given agent that comprises a second sequence of
position information for the given agent, and (iv) determin-
ing a trajectory for the given agent based on the first and
second tracks for the given agent.

In example embodiments of the second method, (i) the
position information in first track may be more accurate than
the position information in the second track at a first set of
one or more times within the given period of operation when
the given agent was more than a given distance away from
the vehicle and (ii) the position information in the second
track may be more accurate than the position information in
the first track at a second set of times within the given period
of operation when the given agent was less than the given
distance away from the vehicle.

Further, in example embodiments of the second method,
(1) the first track may include one or more gaps in the first
sequence of position information due to the given agent
being at least partially occluded in one or more images
included in the first sequence of images and (ii) the second
track may include one or more gaps in the second sequence
of position information due to the given agent being at least
partially occluded in one or more image pairs included in the
second sequence of image pairs.

In these example embodiments of the second method,
determining the trajectory for the given agent based on the
first and second tracks for the given agent may comprise (a)
inferring position information for each gap included in the
first track based on other position information included in
the first track, and (b) inferring position information for each
gap included in the second track based on other position
information included in the second track.

Still further, in example embodiments of the second
method, determining the trajectory for the given agent based
on the first and second tracks for the given agent may
comprise (a) identifying position information included in
one or both of the first track or the second track that is
inconsistent with physical constraints on the given agent’s
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real-world movement, and (b) updating the identified posi-
tion information included in one or both of the first track or
the second track to account for the physical constraints on
the given agent’s real-world movement.

Even further, in example embodiments of the second
method, determining the trajectory for the given agent based
on the first and second tracks for the given agent may
comprise (a) for each respective time of a plurality of times
within the given period of operation: (1) based on the first
track for the given agent, determining first position infor-
mation for the given agent at the respective time, (2) based
on the second track for the given agent, determining second
position information for the given agent at the respective
time, and (3) aggregating the first position information for
the given agent at the respective time and the second
position information for the given agent at the respective
time and thereby producing aggregated position information
for the given agent at the respective time, and (b) compiling
the aggregate position information for each respective time
of the plurality of times into the trajectory for the given
agent. In such example embodiments, the first position
information for the given agent at the respective time and the
second position information for the given agent at the
respective time may each be associated with a respective
measure of confidence, and aggregating the first position
information for the given agent at the respective time and the
second position information for the given agent at the
respective time may comprise weighting the first position
information for the given agent at the respective time and the
second position information for the given agent at the
respective time based on respective measures of confidence.

In other example embodiments of the second method,
determining the trajectory of the given agent based on the
first and second tracks for the given agent may comprise (a)
inputting the first and second tracks for the given agent into
a motion model that encodes knowledge regarding physical
constraints on the given agent’s real-world behavior, where
the motion model fuses the first and second tracks while also
correcting for missing or errant position information within
the first and second tracks, and (b) determining the trajectory
of the given agent based on the motion model’s output.

In still other example embodiments of the second method,
the stereo camera associated with the vehicle may comprise
a pair of cameras in a stereo configuration, and the pair of
cameras may include the monocular camera.

In further example embodiments of the second method,
deriving, from the first sequence of images captured by the
monocular camera, the first track for the given agent may
comprise (a) detecting the given agent in each of a subset of
images in the first sequence, where each image in the subset
of images was captured at a respective capture time, (b) for
each image in the subset of images, (1) identifying a tracking
point for the given agent within the image, (2) determining
an association between the identified tracking point and a
given ground point within the vehicle’s surrounding envi-
ronment, (3) determining a three-dimensional (3D) position
of the given ground point (e.g., based on one or both of a
ground map that provides information regarding the 3D
geospatial geometry of the ground surface within the vehi-
cle’s surrounding environment or 3D position information
for the given ground point that is derived from the second
sequence of images captured by the stereo camera), and (4)
using the determined 3D position of the given ground point
to determine a 3D position of the given agent at the
respective capture time of the image, and (c) deriving the
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first track based on the determined 3D positions of the given
agent at the respective capture times of the images in the
subset of images.

Moreover, in example embodiments of the second
method, deriving, from the second sequence of image pairs
captured by the stereo camera, the second track for the given
agent may comprise (a) detecting the given agent in each of
a subset of image pairs in the second sequence, wherein each
image pair in the subset of image pairs was captured at a
respective capture time, (b) for each image pair in the subset
of image pair, (1) identifying a pair of corresponding track-
ing points within the image pair that represent a common
reference point of the given agent, and (2) applying trian-
gulation to the identified pair of corresponding tracking
points within the image pair in order to determine a three-
dimensional (3D) position of the common reference point of
the given agent, and (3) using the determined 3D position of
the common reference point of the given agent to determine
a 3D position of the given agent at the respective capture
time of the image pair, and (c) deriving the second track
based on the determined 3D positions of the given agent at
the respective capture times of the image pairs in the subset
of image pairs.

In yet another aspect, the disclosed technology may take
the form of a computing system comprising at least one
processor, a non-transitory computer-readable medium, and
program instructions stored on the non-transitory computer-
readable medium that are executable by the at least one
processor such that the computing system is configured to
carry out one or more functions of one or more of the
aforementioned methods.

In a further aspect, the disclosed technology may take the
form of a non-transitory computer-readable medium com-
prising program instructions stored thereon that are execut-
able to cause a computing system to carry out one or more
functions of one or more of the aforementioned methods.

It should be appreciated that many other features, appli-
cations, embodiments, and variations of the disclosed tech-
nology will be apparent from the accompanying drawings
and from the following detailed description. Additional and
alternative implementations of the structures, systems, non-
transitory computer readable media, and methods described
herein can be employed without departing from the prin-
ciples of the disclosed technology.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a simplified, three-dimensional perspective
view of a vehicle having an associated monocular camera
that has captured a mono image of the vehicle’s surrounding
environment at a given point in time.

FIG. 1B is a simplified illustration of the mono image
captured by the monocular camera in FIG. 1A.

FIG. 2A is the simplified, three-dimensional perspective
view of the vehicle from FIG. 1A along with conceptual
illustrations of certain aspects of a first approach for deriving
agent trajectories described herein.

FIG. 2B is a simplified illustration of the mono image
captured by the monocular camera in FIG. 2A along with
conceptual illustrations of certain aspects of the first
approach for deriving agent trajectories described herein.

FIG. 3 is a simplified conceptual diagram that provides a
high-level summary of a second approach for deriving agent
trajectories described herein.

FIG. 4A is a simplified, top-down view of a vehicle’s
dashboard with a first example sensor hardware arrangement
that may be utilized to facilitate collecting agent trajectories.
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FIG. 4B is a simplified, top-down view of a vehicle’s
dashboard with a second example sensor hardware arrange-
ment that may be utilized to facilitate collecting agent
trajectories.

FIG. 5A is a simplified block diagram of an example
pipeline that illustrates example functions that may be
performed in the first approach for deriving agent trajecto-
ries described herein.

FIG. 5B is a simplified block diagram of an example
pipeline that illustrates example functions that may be
performed in the second approach for deriving agent trajec-
tories described herein.

FIG. 6A is a conceptual illustration of an example output
of an instance-segmentation object-detection model based
on a mono image from a first point in time.

FIG. 6B is a conceptual illustration of an example output
of an instance-segmentation object-detection model based
on a mono image from a second point in time.

FIG. 7A is a conceptual illustration of an example output
of'a bounding-box object-detection model based on a mono
image from a first point in time.

FIG. 7B is a conceptual illustration of an example output
of'a bounding-box object-detection model based on a mono
image from a second point in time.

FIG. 8A is a conceptual illustration of an example ray-
casting technique for deriving agent depth information.

FIG. 8B is a conceptual illustration of an example tech-
nique for deriving agent horizontal position information.

FIG. 9A is a simplified, two-dimensional representation of
a derived track for an agent.

FIG. 9B is a simplified, two-dimensional representation of
a trajectory that is output by a motion model based on the
agent track represented in FIG. 9A.

FIG. 10 is a flow diagram illustrating one example set of
functions that may be performed to derive agent trajectories
based on images from a monocular camera.

FIG. 11A is a simplified, two-dimensional representation
of a derived stereo track for an agent.

FIG. 11B is a simplified, two-dimensional representation
of the derived stereo track for the agent from FIG. 11A and
a mono track that is related to that stereo track.

FIG. 11C is a simplified, two-dimensional representation
of a fused trajectory that is output by a motion model after
the mono and stereo tracks represented in FIG. 11B are
provided as input to the motion model.

FIG. 11D is a simplified, two-dimensional representation
of a trajectory with a predicted agent pose that is output by
the motion model for the agent whose trajectory is repre-
sented in FIG. 11C.

FIG. 11E is a simplified, two-dimensional representation
of a trajectory with an updated agent pose that is output by
a motion model for the agent whose predicted trajectory is
represented in FIG. 11D.

FIG. 12 is a flow diagram illustrating one example set of
functions that may be performed to derive agent trajectories
based on both mono and stereo images.

FIG. 13 is a simplified block diagram illustrating certain
structural components of a vehicle.

FIG. 14 is a simplified block diagram illustrating certain
structural components of a transportation matching plat-
form.

FIG. 15 is a simplified block diagram illustrating certain
structural components of a computing system that may
perform functions for deriving agent trajectories described
herein.

DETAILED DESCRIPTION

Information regarding the prior behavior of vehicles or
other types of agents within the real world can be used in
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various areas of technology to help improve operation. One
specific example of this information is prior trajectories for
vehicles or other types of agents in the real world, which can
be used to help facilitate and improve various aspects of
technology. (As used herein, a prior “trajectory” for an agent
generally refers to the agent’s motion and location within the
real world over the course of some period of time, which
may be represented in terms of a sequence of timestamped
position and orientation (“pose”) values for the agent,
among other possibilities).

For instance, as one possibility, prior trajectories for
vehicles or other types of agents in the real world can be
encoded into a set of pre-processed information about the
world (which may sometimes be referred to as a map or map
data) that is made available to on-board computing systems
of vehicles (e.g., vehicles equipped with autonomy systems
and/or advanced driver assistance systems), and such prior
trajectories can then be used by the vehicles’ on-board
computing systems to perform various operations.

One such operation may involve planning the future
behavior of a vehicle, which generally involves deriving a
behavior plan for the vehicle that defines the desired driving
behavior of the vehicle for some future period of time (e.g.,
the next 5 seconds)—including the planned trajectory of the
vehicle for that future period of time. For example, to the
extent that a vehicle’s on-board computing system has
access to prior vehicle trajectories for the road on which the
vehicle is currently traveling, the vehicle’s on-board com-
puting system may use those prior vehicle trajectories during
planning in order to derive a planned trajectory for the
vehicle that is informed by how other vehicles have histori-
cally traversed that same road.

Another such operation may involve predicting the future
behavior of agents surrounding a vehicle. For example, to
the extent that a vehicle’s on-board computing system has
access to prior agent trajectories for the road on which the
vehicle is currently traveling, the vehicle’s on-board com-
puting system may use those prior agent trajectories to help
predict the future behavior of agents surrounding the
vehicle, and this predicted behavior of the surrounding
agents may then be used to inform the on-board computing
system’s planning of the vehicle’s behavior.

On-board computing systems of vehicles may use prior
agent trajectories to help facilitate other operations as well.

As another possibility, prior trajectories of agents can be
used to train machine learning models that are employed by
on-board computing systems of vehicles during operation,
such as machine learning models for predicting the future
trajectories of surrounding agents that are detected by a
vehicle’s on-board computing system.

As yet another possibility, prior trajectories of vehicles
and/or other types of agents in the real world can be encoded
into a set of pre-processed information about the world that
is made available to a transportation-matching platform
(e.g., a platform that is configured to match individuals
interested in obtaining transportation with vehicles capable
of providing such transportation), and such prior trajectories
can then be used by the transportation-matching platform to
perform various different operations, including but not lim-
ited to matching individuals with available vehicles within
the given area, generating the most optimal routes for
vehicles to follow when picking up and/or transporting
individuals within the given area, providing accurate esti-
mates of pickup and drop-off times within the given area,
and/or effectively pre-positioning vehicles within the given
area in anticipation of responding to transportation requests,
among other possibilities.
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It should be understood that prior trajectories of agents
can also be used to improve other technology areas as well.

In view of the foregoing, there is a need for an approach
that allows prior trajectories of agents to be collected in a
way that is both accurate and scalable. More specifically, in
order to be used for the purposes discussed above, the prior
agent trajectories that are collected need to have a certain
level of accuracy (e.g., at least lane-level accuracy). Like-
wise, in order to achieve the improvements discussed above,
prior trajectories of agents generally need to be collected on
a very large scale. For example, if the goal is to encode prior
trajectories of agents into map data that is used by on-board
computing systems or transportation matching platforms to
help perform certain operations in an improved way, then
prior trajectories of agents need to be collected across an
expansive array of different geographic areas. As another
example, if the goal is to use prior trajectories of agents to
train machine learning models utilized by a vehicle’s on-
board computing system to predict future trajectories of
surrounding agents, then prior trajectories of agents need to
be collected for a wide range of different circumstances that
could potentially be faced by a vehicle.

One existing approach for collecting prior trajectories of
agents makes use of vehicles that are installed with expen-
sive, high-fidelity sensor systems, such as the types of Light
Detection and Ranging (LiDAR)-based sensor systems that
are found on autonomous vehicles, which are typically
comprised of a LiDAR unit combined with a 360°-camera
array and telematics sensors (among other possible types of
high-fidelity sensor systems). As a vehicle equipped with
such a LiDAR-based sensor system is being driven within a
given area of the real world (typically by humans, but
perhaps also with some level of autonomous operation), the
vehicle’s LiDAR-based sensor system captures high-fidelity
sensor data that is indicative of the movement and location
of the vehicle and perhaps other agents surrounding the
vehicle within the given area, and processing may then be
applied to this high-fidelity sensor data in order to derive
trajectory information for the vehicle itself and perhaps also
other agents in proximity to the vehicle.

Beneficially, the trajectories that are collected in this
manner typically have a high level of accuracy. However,
the total number of vehicles equipped with these types of
LiDAR-based sensor systems that currently exist in the
world is relatively small—which is due to the fact that
equipping vehicles with LiDAR-based sensor systems is
expensive and currently provides limited practical value
outside of high-definition data collection and autonomous
driving—and vehicles with these types of LiDAR-based
sensor systems are typically only found in a limited subset
of geographic areas (e.g., cities where autonomous-driving
technology is being tested). As such, it is currently neither
practical nor realistic to collect prior trajectories of agents on
a large scale using vehicles with these types of LiDAR-
based sensor systems.

One possible way to overcome these scalability problems
would be to collect prior trajectories of agents using sensor
systems that are less costly and/or are more widely available
than the types of expensive, LiDAR-based sensor systems
typically found on autonomous vehicles. For instance, it
may be possible to collect prior trajectories of agents using
a sensor system comprised of a monocular camera and
telematics sensors, which may be integrated into a vehicle
and/or may be embodied within a separate device such as a
smartphone, a tablet, a dashcam, or the like that can be
attached to or otherwise placed within a vehicle (e.g., by
being mounted on a dashboard, a windshield, a roof, and/or
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a hood of a vehicle). Beneficially, if prior trajectories of
agents could be collected with sufficient accuracy using a
sensor system comprised of a monocular camera and telem-
atics sensors—which is relatively inexpensive and already
included in a wide range of consumer electronic devices that
are commonly found in vehicles—this would allow prior
trajectories of agents to be collected on a much larger scale
than an approach that relies on vehicles that have been
installed with the types of expensive, LiDAR-based sensor
systems typically found on autonomous vehicles. However,
deriving agent trajectories from image data captured by the
monocular cameras (which may be referred to herein as
“mono images”) included in such sensor systems presents
various technical challenges.

First, in contrast to the sensor data captured by LiDAR-
based sensors systems, mono images captured by monocular
camera do not natively include any information regarding
the depth of agents that appear within such mono images
(i.e., how far away such vehicles and/or other agents actually
were from the monocular camera when the mono images
were captured), and it is technically difficult to accurately
estimate the depth of such agents from mono images alone.
Because of this limitation, it has generally been difficult to
derive an accurate estimate of the position of agents within
the real world from mono images alone, which is a critical
aspect of deriving accurate trajectories for agents.

FIGS. 1A and 1B help to illustrate the lack of depth
information in a mono image. In particular, FIG. 1A pro-
vides a three-dimensional (3D) perspective view of a vehicle
101 having an associated monocular camera that has cap-
tured a mono image 102 (illustrated in further detail in FIG.
1B) of the vehicle’s surrounding environment at a given
point in time when vehicle 101 is following two other
vehicles 103a and 1035. In FIG. 1A, the distance between
the monocular camera at vehicle 101 and vehicle 103a is
represented by depth line 1044 and the distance between the
monocular camera at vehicle 101 and vehicle 10354 is
represented by depth line 1045. While these depths are
apparent from the 3D perspective view in FIG. 1A, as shown
in FIG. 1B, mono image 102 lacks depth information
corresponding to vehicles 1034 and 1035.

Thus, the only way to determine the position of agents
within the real world from mono images is by using machine
learning models and/or other complex calculations and/or
calibration techniques that attempt to estimate the depth of
the agents appearing within the mono images, which is then
incorporated into the position information that is determined
for such agents. However, as noted above, existing tech-
niques for determining the position of agents within the real
world from mono images may not provide position infor-
mation for such agents that is accurate enough to form the
basis for agent trajectories that are to be used for the types
of applications discussed above, particularly for agents that
are further away from the monocular camera—which is due
to limitations in the monocular camera’s field of view.

Second, the agents being captured by the monocular
camera are likely to become at least partially occluded by
other objects in the monocular camera’s field of view (e.g.,
other agents) at various times during the capture window, it
is technically difficult to handle such occlusion when
attempting to track agents and derive agent trajectories using
mono images. In this respect, FIGS. 1A and 1B provide an
example illustration of agent occlusion. As shown in these
figures, vehicle 103a partially obstructs the monocular cam-
era’s view of vehicle 1035 such that only a portion of vehicle
10354 is represented in mono image 102. A complete occlu-
sion would occur when vehicle 103a wholly obstructs the
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monocular camera’s view of vehicle 1035 such that no
portion of vehicle 1035 is captured in the mono image.

As aresult of occlusion, existing computer approaches for
tracking a particular agent through a sequence of mono
images are often inaccurate and unreliable, which in turn
leads to inaccuracies in agent trajectories derived from such
mono images. For example, when a particular agent is
occluded in certain images, existing techniques may either
fail to detect the particular agent in such images or may
incorrectly identify some other tracking point within the
image that is not actually associated with the particular
agent, which may introduce gaps and/or noise in the trajec-
tory derived for the particular agent that makes it difficult to
use such trajectory for the applications discussed above.

Additional technical challenges related to deriving agent
trajectories from image data captured by monocular cameras
are also possible.

The present disclosure provides multiple approaches that
help address the aforementioned problems. In a first
approach, a vehicle may be associated with a sensor system
comprising a single monocular camera is used to capture a
sequence of mono images representing the vehicle’s sur-
roundings at different points in time across a period of
operation, and then for each of certain agents of interest
identified in the sequence of images, the disclosed technique
involves (i) identifying a tracking point for an agent in each
image where the agent appears that comprises a lowest-
observed point of the agent within the image, which may
provide an estimate of where some portion of the agent (e.g.,
a back tire of a vehicle) intersects a ground plane, (ii) using
the tracking point for the agent in each image where the
agent appears to derive a time-sequence of position infor-
mation for the agent in a manner that accounts for the depth
of the agent relative to the monocular camera, and then (iii)
deriving a trajectory for the agent based on the time-
sequence of position information for the agent (e.g., by
inputting the time-sequence of position information for the
agent into a motion model and designating the output of the
motion model as the agent’s trajectory).

FIGS. 2A and 2B provide a conceptual illustration of
aspects of this first approach. In particular, FIG. 2A shows
the same 3D perspective view as in FIG. 1A of vehicle 101
having an associated monocular camera that has captured
mono image 102. Likewise, FIG. 2B provides a represen-
tation of mono image 102 similar to the representation in
FIG. 1B.

However, unlike FIG. 1B, FIG. 2B includes (i) a respec-
tive pixel mask for vehicles 1034 and 1035 that may have
been generated utilizing instance segmentation, which may
identify the respective vehicle’s boundary within the mono
image and distinguish the respective vehicle from any other
agent appearing within the mono image, and (ii) a mask
corresponding to the ground plane that may have been
identified utilizing semantic segmentation. In this example,
a respective tracking point 205a and 2056 was identified for
vehicles 103a and 1035 that corresponds to a respective
lowest-observed pixel within the respective pixel masks for
vehicles 1034 and 1035 (e.g., a pixel that is closest to the
bottom of mono image 102). Based on these tracking points
2054 and 2055, respective position information was derived
for vehicles 1034 and 1035 in a manner that accounts for the
depth of vehicles 103a and 1035 relative to the monocular
camera. For instance, using vehicle 103a as an example, a
ray 206 may be cast from the monocular camera through
tracking point 205¢ to intersect the ground plane, as shown
in FIG. 2A. Based on ray 206 that has been cast through
tracking point 2054 and information about the ground plane
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(e.g., information about the 3D geospatial geometry of the
ground plane that has been encoded into a ground map or the
like), a 3D position of a ground point 207 corresponding to
tracking point 205a for vehicle 103a can then be determined.
In this respect, this 3D position of tracking point 205a
provides an indication of the position of vehicle 103a in the
real world that accounts for the depth of vehicle 103a
relative to the monocular camera, which is represented by
depth line 204a. (It should be understood that, in practice,
the 3D position of tracking point 2054 may be represented
according to a world coordinate frame and thus may not
include a direct measure of the vehicle’s depth relative to the
monocular camera, but that the vehicle’s depth relative to
the monocular camera is nevertheless accounted for in the
determined 3D position, and that such depth could also be
directly determined if desired by translating the determined
3D position of tracking point 205a from the world coordi-
nate frame to the camera coordinate frame of the monocular
camera). A similar process may be performed to derive
position information for vehicle 1035 that accounts for the
depth of vehicle 103a relative to the monocular camera,
which is represented by depth line 2045.

In example implementations, after this process is per-
formed on a sequence of two or more mono images captured
by the monocular camera in vehicle 101, then the respective
position information for each of vehicles 103a and 10354
may be used to derive a respective trajectory for each of
vehicles 103a and 10354. This function may involve various
operations for each of vehicles 103a and 1035, examples of
which may include: (i) associating the determined position
information for the vehicle across the different images where
the vehicle appears (e.g., using an object tracking tech-
nique), (ii) based on the associated tracking points for the
vehicle, deriving a respective time-sequence of position
information for the vehicle, (iii) inferring position informa-
tion for any time gaps in the respective time-sequence of
position information for the vehicle (e.g., gaps resulting
from the vehicle being at least partially occluded in certain
mono images), (iv) updating any position information
included in the respective time-sequence of position infor-
mation for the vehicle that is inconsistent with physical
constraints on the vehicle’s real-world movement, and (v)
compiling the resulting position information into the respec-
tive trajectory for the vehicle. In this respect, in at least some
embodiments, the operations of inferring and/or updating
position information may be accomplished by inputting the
respective time-sequence of position information that is
derived for the vehicle (and perhaps other state information
such as orientation, velocity, and/or acceleration) into a
motion model that applies pre-encoded knowledge about
expected vehicle behavior in the real world (e.g., physical
constraints on how a vehicle is capable of moving in the real
world) in order to correct for missing or errant estimates of
the vehicle’s position within the time-sequence of position
information, and then using the respective output of the
motion model to define the vehicle’s trajectory.

While the first approach is described herein in the context
of images captured by a monocular camera, it should be
understood that the disclosed approach could also be used to
derive agent trajectories from images captured by some
other type of camera.

This first approach is advantageous in that the requisite
hardware (e.g., a single monocular camera) is already widely
available and there are relatively low costs in terms of
attaching this requisite hardware to (or otherwise placing the
hardware within) a vehicle, which makes this approach
widely deployable in many vehicles. Moreover, by applying
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a motion model to the lowest-observed point for an agent
within each mono image in which the agent appears, this
first approach provides way to derive a trajectory for an
agent from mono images that is based on a more accurate
estimate of the agent’s depth relative to the monocular
camera and is also less susceptible to missing or errant
position estimates caused by occlusion, which helps
improve upon existing techniques for deriving agent trajec-
tories from mono images.

While less widely available than a sensor system com-
prising single monocular camera and telematics sensors,
another relatively inexpensive sensor system that could be
available for use in collecting agent trajectories may com-
prise a pair of two cameras that have been arranged into a
stereo configuration (which may be referred to herein as a
“stereo camera”) along with telematics sensors, which may
be integrated into a vehicle and/or may be embodied within
one or more separate devices that can be attached to or
otherwise placed within a vehicle (e.g., by being mounted on
a dashboard, a windshield, a roof, and/or a hood of a
vehicle). Such a stereo camera may be configured to capture
a pair of images from two different fields of view (e.g., a
field of view from the left side of the vehicle and from the
right side of the vehicle, where this pair of images may
collectively be referred to as a “stereo image.”

In this respect, disclosed herein is a second approach for
deriving agent trajectories from sensor data captured by a
vehicle that is associated with both a monocular camera and
also a stereo camera, which may comprise either a pair of
additional cameras separate from the monocular camera or
a pair of cameras that includes the single monocular camera
as well as one additional monocular camera (e.g., the
monocular camera may be part of the stereo configuration).
Advantageously, this second technique may further enhance
the accuracy of the agent trajectories collected by vehicles
while at the same time still providing a more scalable
approach than one that relies on vehicles installed with
expensive LiDAR-based sensor systems.

According to the second approach disclosed herein, a
monocular camera associated with a vehicle is used to
capture a sequence of mono images representing the vehi-
cle’s surroundings across a period of operation and a stereo
camera associated with the vehicle is used to capture a
sequence of stereo images representing the vehicle’s sur-
roundings across a period of operation. These captured
sequences of mono images and stereo images may then be
used to derive respective sets of position information for
certain agents identified in such images in a manner that
accounts for the depth of such agents relative to the cameras.
For instance, a first time-sequence of position information
for a given agent may be derived from the sequence of mono
images in a similar manner as in the first approach, and a
second time-sequence of position information for the given
agent may be derived from the sequence of stereo images
utilizing image processing techniques such as triangulation
or the like.

In turn, a trajectory for the given agent may be determined
based on the first and second time-sequences of position
information for the given agent. This function may involve
various operations, examples of which may include (i)
inferring position information for any time gaps in the first
and/or second time-sequences of position information for
the given agent (e.g., gaps resulting from the given agent
being at least partially occluded in certain images), (ii)
updating any position information included in the first
and/or second time-sequences of position information for
the given agent that is inconsistent with physical constraints
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on the given agent’s real-world movement, (iii) aggregating
each time-specific position included in the first time-se-
quence of position information with a corresponding time-
specific position included in the second time-sequence of
position information (e.g., by calculating an average of the
corresponding first and second positions for each respective
time that may optionally be weighted based on respective
measures of confidence associated with the first and second
positions), and (iv) compiling the resulting position infor-
mation into the respective trajectory for the vehicle. In this
respect, in at least some embodiments, these operations may
be accomplished by inputting the first and second time-
sequences of position information for the given agent (and
perhaps other state information such as orientation, velocity,
and/or acceleration) into a motion model that serves to
“fuse” together the position information for the given agent
that is derived from the two different image sources while
also correcting for missing or errant estimates of the agent’s
position within such time-sequences of position information,
and then using the resulting output of the motion model to
define the given agent’s trajectory.

FIG. 3 is a simplified conceptual illustration that provides
a high-level summary of this second approach. In this
example, vehicle 301 has a single monocular camera as well
as a pair of additional monocular cameras in a stereo
configuration that are co-located with vehicle 301. The
single monocular camera captures a mono image 302 and
the stereo camera captures a stereo image comprising left
image 303a and right image 3035. As discussed in further
detail below, information derived from these images is then
utilized to facilitate deriving a respective trajectory for each
of certain agents identified in the images.

Notably, this second approach is advantageous in that it
takes advantage of the relative strengths of deriving agent
trajectories from mono images and from stereo images. For
instance, position information for an agent that is derived
from stereo images typically incorporates a more accurate
estimate of the agent’s depth relative to the camera than
estimated position information for an agent that is derived
from mono images alone. However, there may be some
specific circumstances where the position information for an
agent that is derived from mono images may have an
accuracy that is as good or better than the position infor-
mation for an agent that is derived from stereo images. For
instance, the accuracy of an agent’s depth that is estimated
from stereo images tends to degrade exponentially as the
agent gets farther away from the camera, and at some
threshold distance, the depth of the agent that is estimated
using mono images may become more accurate than the
depth of the agent that is estimated using stereo images. As
a result, it is possible that the technique disclosed herein for
deriving position information for an agent from mono
images may incorporate an estimate of the agent’s depth that
is more accurate (or at least as accurate as) the estimate of
the agent’s depth that is incorporated into position informa-
tion for the agent that is derived from stereo images when
the agent is farther away from the camera. (In fact, if an
agent is far enough away from the camera, it may not even
be possible to derive position information for the agent that
incorporates an estimate of the agent’s depth from a stereo
image). Further, at least in some circumstances, the position
information for an agent that is derived from mono images
may incorporate a more accurate estimate of the agent’s
lateral displacement to the camera than position information
for an agent that is derived from stereo images alone. Thus,
by fusing the position information derived from these two
different image sources together, the second approach can
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make use two different “reference points” to derive an
agent’s trajectory, which may produce agent trajectories that
have a higher level of accuracy than trajectories derived
from mono images alone or trajectories derived from stereo
images alone.

In practice, the first and second approaches disclosed
herein may be utilized for a variety of purposes. For
instance, the first and/or second approaches may be used to
collect prior trajectories of agents, which may then be used
for any of the various purposes described above, including
but not limited to being utilized by on-board computing
systems of vehicles or transportation-matching platforms to
help perform various operations and/or being utilized to
train machine learning models. Additionally, the first and/or
second approaches could also be incorporated into technol-
ogy employed by an on-board computing system of a
vehicle to track agents detected in the vehicle’s surrounding
environment in real time. The first and second approaches
disclosed herein may be utilized for other purposes as well.

Turning now to FIG. 4A, a simplified, top-down view of
a vehicle’s dashboard is provided to illustrate one example
sensor hardware arrangement that may be utilized to facili-
tate collecting agent trajectories. In this example, vehicle
401 is associated with a single monocular camera 402a,
which may be embodied within device that has been
mounted to the vehicle’s dashboard, such as smartphone, a
tablet, a dashcam, or the like (although as noted above,
monocular camera 402a could alternatively be integrated
with vehicle 401 or attached to or placed within vehicle 401
in some other manner). In practice, the position and orien-
tation of monocular camera 402a relative to vehicle 401 may
be known, such as from a calibration process or the like. As
indicated by field-of-view lines 403a, monocular camera
402q is configured to capture image data that is represen-
tative of a portion of the vehicle’s surrounding environment,
which is typically dependent on the monocular camera’s
position and orientation. In operation, monocular camera
402a may be configured to capture images of the vehicle’s
surrounding environment according to a particular frame
rate, such as 30 or 60 frames per second (fps), among other
possibilities.

Example functions that may be performed to facilitate
deriving agent trajectories will now be discussed in further
detail. To help describe some of these functions, flow
diagrams may be referenced to describe combinations of
functions that may be performed. In some cases, each
flow-diagram block may represent a module or portion of
program code that includes instructions that are executable
by at least one processor to implement specific logical
functions or steps in a process. The program code may be
stored on any type of computer-readable medium, such as
non-transitory computer-readable media. Moreover, a per-
son of ordinary skill in the art will appreciate that the blocks
shown in the flow diagrams may be rearranged into different
orders, combined into fewer blocks, separated into addi-
tional blocks, and/or removed based upon the particular
embodiment.

Turning now to FIG. 5A, an example pipeline 500 is
illustrated to facilitate describing example functions that
may be involved in deriving agent trajectories based on
mono images captured by a monocular camera, such as
monocular camera 402a of FIG. 4A, in accordance with the
first approach disclosed herein. In practice, these functions
may be performed by one or more computing systems of a
vehicle (which may or may not be an autonomous vehicle),
one or more remote computing systems, some combination
thereof, or some other computer, among other possibilities.
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As shown in FIG. 5A, pipeline 500 begins with receiving
a mono image 501 representative of a portion of the vehi-
cle’s surrounding environment that may have been captured
by a monocular camera (e.g., monocular camera 402a of
FIG. 4A) associated with the vehicle. In practice, the mon-
ocular camera may capture a sequence of mono images 501
with each mono image 501 corresponding to a respective
capture time.

At block 502, image processing functions may be per-
formed on mono image 501. For example, one image
processing function may involve identifying one or more
agents represented in mono image 501. In example imple-
mentations, this function may involve identifying agents that
belong to one or more particular object classes of interest,
such as “vehicle” objects or other types of agents.

Identifying one or more agents represented in mono
image 501 may be performed in a variety of manners. As one
possibility, this function may involve applying one or more
object-detection models to mono image 501 that are con-
figured to output a respective pixel mask for each agent
detected in mono image 501 that belongs to one or more
particular object classes of interest (e.g., any “vehicle”
object). Examples of such an object-detection model may
include a Mask R-CNN or other instance segmentation
object-detection model, among other possibilities.

FIG. 6A provides a conceptual illustration of an example
output 600 of such an object-detection model. As shown, an
object-detection model processed a mono image from a
particular capture time, detected three unique vehicle agents
601a, 6015, and 601c¢, and outputted a respective pixel mask
for each of the three vehicles agents (indicated by the
different fill patterns in vehicle agents 601a, 6015, and
601c).

Identifying one or more agents represented in mono
image 501 may be performed in other manners as well, such
as utilizing an R-CNN, Fast R-CNN, Faster R-CNN, or
YOLO object-detection models that may output a respective
bounding box for each identified agent, among other possi-
bilities.

Back at block 502 of FIG. 5A, another example image
processing function may involve identifying a respective
tracking point for each of one or more agents identified
within mono image 501. This function may be performed in
a variety of manners.

For example, this function may involve, for each of one
or more agents identified within mono image 501, designat-
ing a lowest-observed point of the agent as that agent’s
tracking point. As one particular example, the lowest-ob-
served point may take the form of a lowest pixel in a
generated pixel mask for an agent (e.g., a pixel in the
generated pixel mask that is closest to the bottom of the
image). In this respect, depending on the configuration of the
generated pixel mask, there could be one single pixel that is
vertically lower than the rest of the pixels within the
generated pixel mask or there could be multiple pixels that
are “tied” for being the vertically lowest pixel within the
generate pixel mask, in which case a tiebreaking function
may be performed in order to identify which of these pixels
is identified as the tracking point for the agent. Utilizing a
lowest pixel as a tracking point is advantageous not only in
that it helps with the occlusion problem (as discussed and
illustrated below) but also because the resolution in a mono
image tends to be higher in the lower portion of the image
than the upper portion due to the fact that real-world features
that are closer to the monocular camera tend to appear in the
lower portion of the image whereas real-world features that
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are farther away from the monocular camera tend to appear
in the upper portion of the image.

In practice, designating the lowest pixel of an agent’s
pixel mask as that agent’s tracking point may be performed
in various manners. As one possibility, a lowest pixel of an
agent’s pixel mask (e.g., outputted by an instance segmen-
tation object-detection model) may be identified by com-
paring the respective vertical position (e.g., in the y-direc-
tion) within mono image 501 of each pixel in the agent’s
pixel mask and then designating the pixel with the lowest
vertical position as that agent’s tracking point.

As another possibility, a lowest pixel of an agent’s pixel
mask may be identified based further on semantic segmen-
tation. For instance, in addition to processing mono image
501 using an instance-segmentation model (as discussed
with reference to the agent-identification function), a seman-
tic-segmentation model may be applied to mono image 501
to identify any portion of mono image 501 that corresponds
to a “ground” (or “street”) feature. Examples of such an
object-detection model may include an FCN, FastFCN, or
other semantic-segmentation object-detection model, among
other possibilities. After performing semantic segmentation,
the lowest pixel in the agent’s pixel mask that intersects, is
adjacent to, or is otherwise closest to the ground feature
identified within the mono image’s pixel space may be
designated as the given agent’s tracking point.

FIGS. 6A and 6B provide a conceptual illustration of this
technique and its advantages. As shown in FIG. 6 A, seman-
tic segmentation identified the ground pixels of the image, as
indicated by the speckled fill pattern. In turn, a pixel in the
pixel mask of vehicle agent 601a adjacent to the ground
pixels was designated as tracking point 602a, a pixel in the
pixel mask of vehicle agent 6015 adjacent to the ground
pixels was designated as tracking point 6025, and a pixel in
the pixel mask of vehicle agent 601c¢ adjacent to the ground
pixels was designated as tracking point 602c.

FIG. 6B provides a conceptual illustration of an example
output 610 of an object-detection model after processing a
second mono image that corresponds to an image captured
next in sequence after the mono image corresponding to
FIG. 6A. Similar to FIG. 6A, semantic segmentation iden-
tified the ground pixels of the second image, as indicated by
the speckled fill pattern. Likewise, a pixel in the pixel mask
of vehicle agent 601a adjacent to the ground pixels was
designated as tracking point 612a, a pixel in the pixel mask
of vehicle agent 6015 adjacent to the ground pixels was
designated as tracking point 6125, and a pixel in the pixel
mask of vehicle agent 601¢ adjacent to the ground pixels
was designated as tracking point 612c.

As yet another possibility, it may be possible to determine
an association between mono image 501 and a ground map
that provides information regarding the 3D geospatial geom-
etry of the ground surface within the vehicle’s surrounding
environment (e.g., by localizing the camera pose associated
with mono image 501 within the ground map), and the
information from such a ground map may then be used to
assist in the identification of a lowest pixel within an agent’s
pixel mask. For example, once an association between mono
image 501 and a ground map is determined, it may be
possible to use that association to assign a real-world
elevation value to each pixel in mono image 501 that is
representative of the ground plane (e.g., via a technique such
as projection), and the pixel within an agent’s pixel mask
that that intersects, is adjacent to, or is otherwise closest to
the ground pixel having the lowest real-world elevation
value may be designated as the given agent’s tracking point.
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Notably, using any of the aforementioned techniques to
identify a lowest-observed point facilitates establishing a
tracking point for an agent in images where the agent was
partially occluded, which is a scenario in which other
techniques may be unable to establish a tracking point. For
example, as shown in FIG. 6B, tracking point 6126 for
vehicle agent 6015 was identified despite vehicle agent 6015
being partially occluded by vehicle agent 601c. In contrast,
FIGS. 7A and 7B provide a conceptual illustration of an
alternate technique for identifying a respective tracking
point for each of one or more agents identified within a
mono image that is less robust than a technique that uses
pixel masks produced by instance segmentation to identify
the lowest-observed point.

In particular, FIGS. 7A and 7B correspond to the same
sequence of mono images as in FIGS. 6A and 6B but
illustrate a bounding-box technique for identifying tracking
points. As shown in FIG. 7A, each vehicle agent 601a, 6015,
and 601c is identified by a respective bounding box 701a,
7015, and 701c¢ and a particular point within each bounding
box (e.g., the lower, left corner) is selected as a tracking
point 702a, 7025, and 702¢. Compared to the pixel masks in
FIGS. 6A and 6B, these bounding boxes do not provide
specific information regarding the respective agent’s outline
within the mono image (e.g., the bounding box is not as
“tight” to the agent as a pixel mask is), and when an agent
is at least partially occluded in an image (e.g., vehicle agent
6015 in FIG. 7B), it may not be possible for a bounding box
(and consequently, a tracking point) to be generated for the
agent. Thus, in a series of images that includes some images
where an agent is at least partially occluded (e.g., as in FIG.
7B), the agent’s bounding box and tracking point may
“disappear” for such images, which may result in inaccurate
agent tracking.

Returning to FIG. 5A, information regarding each of one
or more agents identified in mono image 501 (including the
agent’s corresponding tracking point) is provided as input to
block 503, where position information is derived for each
such agent based on the agent’s tracking point within mono
image 501. In order to derive an agent’s position information
based on the agent’s tracking point within mono image 501,
a position of the agent’s tracking point may first be deter-
mined using a technique that accounts for the depth of the
agent’s tracking relative to the monocular. This function
may take various forms.

According to one implementation, the function of a deter-
mining a position of the agent’s tracking point identified
within mono image 501 may involve (i) localizing the
capture pose of mono image 501 (i.e., the pose of the
monocular camera at the time that it captured mono image
501) within a ground map that provides information regard-
ing the 3D geospatial geometry of the ground surface within
the vehicle’s surrounding environment, (ii) determining an
association between the agent’s tracking point within mono
image 501 and a given ground point within the vehicle’s
surrounding environment (e.g., by casting a ray through the
agent’s tracking point within mono image 501), and then
(iii) designating the 3D position for the given ground point
that is encoded into the ground map as the 3D position of the
agent’s tracking point. In this respect, it should be under-
stood that the determined 3D position of the agent’s tracking
point will be represented in terms of the ground map’s
coordinate frame and thus does not provide a direct measure
of the depth of the agent’s tracking point relative to the
monocular camera, but that the determined 3D position of
the agent’s tracking point nevertheless incorporates an esti-
mate of the depth the agent’s tracking point relative to the
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monocular camera and that this estimated depth could be
directly determined, if desired, by translating the 3D posi-
tion of the agent’s tracking point from the ground map’s
coordinate frame to the camera coordinate frame of the
monocular camera using the pose of the monocular camera
at the time that mono image 501 was captured. It should also
be understood that, after determining the 3D position of the
agent’s tracking point in this manner, the determined 3D
position could also be translated from the ground map’s
coordinate frame to some other world coordinate frame that
is to be used for representing agent trajectories (e.g., a local
or global map coordinate frame).

FIGS. 8A-B provides a conceptual illustration of one
example of this implementation for deriving a position of the
agent’s tracking point within mono image 501. Beginning
with FIG. 8A, a monocular camera associated with vehicle
801a is shown to have captured a mono image 805 at a time
when monocular camera had a given pose 802, where mono
image 805 contains a representation of an agent 8015 (e.g.,
another vehicle) for which tracking point 806a was identi-
fied as that agent’s lowest-observed point (e.g., a pixel
closest to ground plane 804) in mono image 805. In order to
determine a position of tracking point 8064 in a manner that
accounts for the tracking point’s depth relative to the mon-
ocular camera, pose 802 of the monocular camera may first
be used to localize the monocular camera within a ground
map that provides information regarding the 3D geospatial
geometry of ground plane. Next, a given ground point along
ground plane 804 that is associated with tracking point 8064
within mono image 805 may be determined using a tech-
nique such as raycasting. For example, as shown in FIG. 8A,
a ray 808 is cast from monocular camera through tracking
point 806a in mono image 805, and information regarding
ray 808 (e.g., angle 809) and the 3D geospatial geometry of
ground plane 804 may then be used to identify a particular
ground point 8065 along ground plane 804 that is associated
with tracking point 806a. Once associated ground point
8065 is determined, the 3D position of ground point 8065
within the ground map’s coordinate frame may be desig-
nated as the 3D position of the agent’s tracking point 806a.
In this respect, as shown in FIG. 8A, this 3D position of the
agent’s tracking point advantageously incorporates an esti-
mate of the depth 807 of the agent’s tracking point 806a
relative to the monocular camera, which is information that
is not otherwise available from mono image 805 itself.

Turning to FIG. 8B, a top-down view of the plan view
shown in FIG. 8 A is illustrated. As shown in FIG. 8B, the 3D
position of the ground point 8065 that is determined to be
associated with tracking point 8064 in mono image 805 also
incorporates an estimate of the lateral displacement 809 of
ground point 8065 relative to the monocular camera’s opti-
cal axis 810.

According to another implementation, the function of
determining a position of the agent’s tracking point identi-
fied within mono image 501 may involve (i) inputting mono
image 501 and an identification of the agent’s tracking point
into a machine learning model (e.g., a neural network) that
has been trained to estimate and output a 3D position of a
given ground point appearing within a mono image, where
this estimated 3D position is represented according to the
camera coordinate frame of the monocular camera (e.g., the
3D position relative to the monocular camera’s optical
center), and then (ii) using the pose of the monocular camera
at the time that mono image was captured, which may be
represented according to a given world coordinate system
(e.g., alocal or global map coordinate frame), to translate the
estimated 3D position of the agent’s tracking point output by
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the machine learning model from the camera coordinate
frame of the monocular camera to the given world coordi-
nate frame. In this respect, it should be understood that,
while the determined 3D position of the agent’s tracking
point will be represented in terms of the given world
coordinate system according to which the monocular cam-
era’s pose is represented, this determined 3D position of the
agent’s tracking point nevertheless incorporates an estimate
of the depth the agent’s tracking point relative to the
monocular camera. Further, it should also be understood
that, after determining the 3D position of the agent’s track-
ing point in this manner, the determined 3D position could
also be translated from the given world coordinate frame
according to which the monocular camera’s pose is repre-
sented to some other coordinate frame that is to be used for
representing agent trajectories.

Other techniques for determining a position of the agent’s
tracking point identified within mono image 501 are possible
as well.

In example implementations, after determining the posi-
tion of the agent’s tracking point, the function of deriving
the position information for the agent may further involve
translating the determined position of the agent’s tracking
point to a position of an estimated center point of the agent,
which may provide for more robust tracking of the agent
across a sequence of mono images. In practice, translating
the position of the agent’s tracking point to a position of an
estimated center point of the agent may be based on (i) the
determined position of the agent’s tracking point and (ii) one
or more estimated physical dimensions of the agent (e.g., an
estimated width, length, and height of a typical vehicle). For
instance, this function may involve (i) identifying one or
more estimated physical dimensions of the agent, (ii) esti-
mating a center point of the agent comprising the identified
one or more estimated physical dimensions, and (iii) trans-
lating the determined position of the agent’s tracking
point—which may correspond to a point where a portion of
the agent such as a back tire intersects with the ground—to
the estimated center point of the agent. Other techniques for
translating a determined position of an agent’s tracking point
to a position of an estimated center point of the agent are also
possible. In any case, this function may serve to identify a
standardized point of reference for the agent that can be
evaluated from image to image.

The function of deriving an agent’s position information
based on the agent’s tracking point within mono image 501
may take various other forms as well.

Returning to FIG. 5A, as noted above, the monocular
camera typically captures a sequence of mono images 501,
and consequently, the functions described above with ref-
erence to blocks 502 and 503 are typically performed on
each mono image 501 in that sequence of mono images 501.
As shown in FIG. 5A, the agent information that is deter-
mined across the sequence of two more mono images 501
(e.g., the agent tracking points and/or corresponding agent
position information) may then be provided as input to block
504, where an evaluation is then performed on such agent
information in order to determine which agent information
corresponds which different agent from image to image and
then associate each different agent’s respective set of agent
information across the sequence of mono images 501
together into a respective track for the agent, which may take
the form of a time sequence of position information for the
agent (and perhaps also other state information for the agent
such as orientation, velocity, and/or acceleration informa-
tion). In operation, this agent tracking function at block 504
may begin after at least two images have passed through
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blocks 502 and 503 or may begin after all images from a
particular period of driving have passed through blocks 502
and 503, among other possibilities.

In practice, evaluating the derived agent information
across a sequence of images to generate a respective track
for each identified agent may be performed in a variety of
manners. As one possibility, this function may generally
involve (i) identifying a relationship between first position
information derived from a first mono image and second
position information derived from a second mono image,
where the relationship indicates that the first and second
position information are associated with the same agent, and
then (ii) generating a track for the agent that includes a
time-sequence compilation of position information that was
deemed to have a relationship.

As one particular example, identifying a relationship
between image-specific position information may involve
starting with (i) a first mono image (e.g., mono image 501)
in which a given agent was identified and (ii) an estimated
center point of the given agent. Next, an evaluation is
performed on a second mono image that was captured next
in sequence after the first mono image in order to identify a
candidate object represented in the second mono image that
is closest to the estimated center point from the first mono
image. This step assumes that the monocular camera has a
high enough frame rate (e.g., 60 fps) that a given agent
moves only incrementally between the time a first image is
captured and a second image is captured. Lastly, first posi-
tion information for the given agent from the first mono
image is associated with second position information of the
candidate object from the second mono image such that the
first and second position information are deemed to be
related to the same agent (e.g., the given agent and the
candidate object are the same agent).

Other techniques for identifying a relationship between
image-specific position information from multiple mono
images are also possible, such as by evaluating similarity in
one or more characteristics of pixel masks from one image
to another, among other possibilities.

In example embodiments, after associating position infor-
mation across multiple mono images for a given agent, other
types of state information may also be derived that can form
part of the given agent’s track, such as agent orientation,
velocity, and/or acceleration information. For example,
velocity and/or acceleration information can be derived
based at least in part on the frame rate at which the
monocular camera was capturing images and the position
change of a given agent from one image to the next. Other
manners of deriving state information are also possible.

FIG. 9A provides a simplified, two-dimensional represen-
tation of a derived track for an agent. As shown, in plot 900,
a first axis 901 corresponds to a first horizontal dimension of
a given world coordinate frame and a second axis 902
corresponds to a second horizontal dimension of the given
world coordinate frame. In this example, triangles 903a,
9035, and 903¢ represent position information (as well as
orientation information) for the agent that were derived from
three consecutive mono images captured at times t,, t,, and
t. with the front tip of each triangle (indicated by the triangle
vertex pointing toward axis 902) representing the direction
that the agent was facing at the given point in time. These
three triangles 903a, 9035, and 903¢ represent the track that
was derived for the agent at block 504 of FIG. 5A.

Returning to FIG. 5A, at block 505, the derived track for
each given agent may be provided as input to a motion
model that encodes information about the expected real-
world motion behavior of an agent of the same type as the
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given agent (e.g., physics-based constraints on how an agent
of a given type is capable of moving in the real world). In
this respect, applying such a motion model to the derived
track for a given agent may correct for errors that may been
introduced into that derived track as a result of occlusions or
other measurement problems, such as gaps in the track
where position information for the given agent is missing
and/or position information for the given agent that is not
consistent with how the given agent would have physically
been capable of moving within the real world. In this way,
applying the motion model to the given agent’s derived track
may produce a trajectory for the given agent that takes the
expected real-world motion behavior of the given agent into
account and provides a more accurate representation of the
given agent’s real-world pose evolution over time.

To illustrate with an example, it is possible that the
tracking point of a given agent might correspond to a
different physical point on the given agent from one mono
image to the next mono image—which is illustrated in FIGS.
6A and 6B for vehicle agent 601)—and this difference
between tracking points may result in a situation where the
derived the track for the given agent may indicate unrealistic
real-world movement of the given agent over time. For
instance, as shown in FIG. 9A, the agent as represented by
triangle 903a (which may correspond to the agent’s tracking
point being on the vehicle’s left tire, like tracking point 6026
of vehicle agent 6015 in FIG. 6A) may unrealistically
“jump” to the right as represented by triangle 9035 (which
may correspond to the agent’s tracking point being on the
vehicle’s right tire, like tracking point 6125 of vehicle agent
6015 in FIG. 6B). Thus, the motion model helps to remove
such unrealistic characteristics in the agent’s track, as well
as to fill any gaps in the track caused by missing position
estimates.

In practice, applying a motion model may be performed
in a variety of manners and various types of motions models
may be utilized to output an estimated trajectory for a given
agent. As one possibility, a Kalman filter may be utilized that
receives a derived track for a given agent in the form of a
time-sequence of position states for the given agent (perhaps
along with corresponding velocity states), applies pre-en-
coded knowledge about the expected real-world motion
behavior of an agent of the same type as the given agent, and
then outputs a revised time-sequence of position states for
the given agent (perhaps along with other state information
such as corresponding orientation states, velocity states,
and/or acceleration states), which may then be designated as
the given agent’s trajectory.

To illustrate, FIG. 9B provides a simplified, two-dimen-
sional representation of a trajectory that is output by a
motion model for the agent represented in FIG. 9A. As
shown in plot 910, the motion model (e.g., a Kalman filter)
outputted a trajectory represented by triangles 913a, 9135,
and 913c¢ that provides a more accurate representation of the
agent’s pose evolution over time compared to the represen-
tation provided by triangles 903a, 9035, and 903¢ from FIG.
9A. Although not depicted here, in practice, the motion
model may also output a predicted pose for the agent at a
next point in time (e.g., time t;) based on the prior derived
measurements represented by triangles 903a, 9035, and
903¢ and/or the motion model’s outputted trajectory for the
agent represented by triangles 913a, 91356, and 913¢. The
motion model may then update this predicted pose for the
next point in time after state information is derived for the
agent based on a mono image that is captured at that next
point in time (e.g., time t,).
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In some implementations, a Kalman filter may be utilized
that may also receive respective weights that are to be
applied to the different dimensions of the position informa-
tion included in the derived track. For instance, when
applying the Kalman filter, a dimension of the position
information for the given agent that corresponds to the
lateral displacement of the given agent relative to the
monocular camera may be given more weight than a dimen-
sion of the position information for the given agent that
corresponds to the depth of the given agent relative to the
monocular camera, which reflects the fact that position
information derived from mono images tends to reflect the
lateral displacement of an agent relative to the monocular
camera more accurately than it reflect the depth of an agent
relative to the monocular camera. In this respect, it should be
understood that the track that is input into the motion could
be represented in the camera coordinate frame of the mon-
ocular camera instead of a world coordinate frame to facili-
tate the weighting along these dimensions, in which case
deriving the trajectory of the given agent may involve an
additional function of translating the poses included in the
trajectory from the camera coordinate frame to a world
coordinate frame. Other manners of weighting the position
information of an agent within the motion model are also
possible.

Other manners of applying a motion model to a derived
track and other types of motion models are also possible.

To summarize the aforementioned first approach for
deriving agent trajectories based on images from a monocu-
lar camera, FIG. 10 provides a flow diagram 1000 illustrat-
ing one example set of functions that may be performed to
derive such agent trajectories. At block 1001, a computing
system receives a sequence of images captured by a mon-
ocular camera (e.g., monocular camera 402a of FIG. 4A),
where each image in the sequence is representative of a
vehicle’s surrounding environment at a respective time. At
block 1002, the computing system identifies a given agent
(e.g., another vehicle) in at least a subset of the images in the
sequence by generating a respective pixel mask for the given
agent within each image in the subset. At block 1003, the
computing system identifies a respective tracking point for
the given agent within each image in the subset that com-
prises a lowest-observed point of the respective pixel mask
for the given agent. At block 1004, the computing system
derives a respective set of time-specific position information
for the given agent from each image in the subset based at
least in part on the respective tracking point for the given
agent within each image in the subset, where the time-
specific position information incorporates an estimate of the
given agent’s depth relative to the monocular camera. At
block 1005, the computing system applies a motion model
(e.g., a Kalman filter) to the respective set of time-specific
position information for the given agent that is derived from
the images in the subset. At block 1006, the computing
system uses an output of the motion model to represent a
trajectory of the given agent. Other sets of functions may
instead be performed to derive agent trajectories based on
images from a monocular camera, which may involve add-
ing to, removing from, or consolidating functions from flow
diagram 1000.

This first approach for deriving agent trajectories is
advantageous in that the requisite hardware (e.g., a single
monocular camera) is already widely available and there are
relatively low costs in terms of adding this requisite hard-
ware to vehicles, which makes this approach widely deploy-
able in many vehicles. Moreover, by applying a motion
model to the lowest-observed point for an agent within each
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mono image in which the agent appears, this first approach
provides a way to derive a trajectory for an agent from mono
images that is based on a more accurate estimate of the
agent’s depth relative to the monocular camera and is also
less susceptible to missing or errant position estimates
caused by occlusion, which helps improve upon existing
techniques for deriving agent trajectories from mono images
(e.g., as shown and described above with reference to FIGS.
9A and 9B).

Agent trajectories derived using this first approach may
then be used for any of a variety of purposes, including but
not limited to any of the purposes described above (e.g., to
help improve facilitate operations carried out by on-board
computing systems of vehicles or transportation-matching
platforms).

As discussed before, while less widely available than a
single monocular camera, another relatively inexpensive
sensor system that could be available for use in collecting
agent trajectories may comprise a pair of two cameras that
have been arranged into a stereo configuration (which as
noted above may be referred to as a “stereo camera”) along
with telematics sensors. In this respect, a second approach
will now be discussed for deriving agent trajectories from
sensor data that is captured by a vehicle that is associated
with both a monocular camera and also a stereo camera,
which may further enhance the accuracy of the agent tra-
jectories collected by such vehicles while at the same time
still providing a more scalable approach than one that relies
on vehicles installed with expensive LiDAR-based sensor
systems.

To illustrate, FIG. 4B provides a top-down view of a
vehicle’s dashboard with an example sensor hardware
arrangement that may be utilized to facilitate collecting
agent trajectories in accordance with this second approach.
In this example, in addition to vehicle 401 being equipped
with monocular camera 402a, vehicle 401 is also equipped
with a stereo camera comprised of left stereo camera 4026
and right stereo camera 402¢, which may be embodied
within one or more devices that are mounted to the vehicle’s
dashboard (although as noted above, stereo cameras 4025
and 402¢ could alternatively be integrated with vehicle 401
or attached to or placed within vehicle 401 in some other
manner). In practice, the position and orientation of each
camera 402a, 4025, and 402¢ relative to vehicle 401 is
known, such as from a calibration process or the like, along
with respective distances between the cameras (e.g., the
spacing between left stereo camera 4025 and right stereo
camera 402¢ is known).

As indicated by field-of-view lines 403a, monocular
camera 4024 has a first field of view (e.g., a center field of
view) and is configured to capture image data that is
representative of a first portion of the vehicle’s surrounding
environment. As indicated by field-of-view lines 4035, left
stereo camera 4025 has a second field of view (e.g., a
left-side field of view) that at least partially overlaps with the
first field of view and is configured to capture image data
that is representative of a second portion of the vehicle’s
surrounding environment. And, as indicated by field-of-view
lines 403c, right stereo camera 402¢ has a third field of view
(e.g., aright-side field of view) that at least partially overlaps
with the first field of view and is configured to capture image
data that is representative of a third portion of the vehicle’s
surrounding environment. As shown, the left and right
cameras’ respective fields of view typically partially overlap
with one another as well.

In operation, monocular camera 402a may be configured
to capture images of the vehicle’s surrounding environment
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according to a first frame rate (e.g., 60 fps) and left stereo
camera 402) and right stereo camera 402¢ may be config-
ured to capture images of the vehicle’s surrounding envi-
ronment according to a second frame rate that may be the
same or different from the first frame rate. In any case, left
stereo camera 4025 and right stereo camera 402¢ typically
operate at the same frame rate as one another, and left stereo
camera 4025 captures a left image of the vehicle’s surround-
ing environment and right stereo camera 402¢ captures a
right image of the vehicle’s surrounding environment at
approximately the same time. As noted above, a given pair
of images captured by left stereo camera 4025 and right
stereo camera 402¢ at a given point in time may be referred
to as a “stereo image.”

Although the example sensor hardware arrangement illus-
trated in FIG. 4B comprises a pair of cameras in a stereo
configuration (e.g., left stereo camera 4025 and right stereo
camera 402¢) in addition to monocular camera 402a,
another example sensor hardware arrangement for this sec-
ond approach could comprise monocular camera 4024 serv-
ing as one part of the stereo configuration such that only two
cameras are utilized. Other configurations may also be
possible.

Turning now to FIG. 5B, an example pipeline 510 is
illustrated to facilitate describing example functions that
may be involved in deriving agent trajectories based on a
combination of a mono and stereo images in accordance
with the second approach disclosed herein. In practice, these
functions may be performed by one or more computing
systems of a vehicle (that may or may not be an autonomous
vehicle), one or more remote computing systems, some
combination thereof, or some other computer, among other
possibilities.

As shown in FIG. 5B, pipeline 510 may involve receiving
a mono image 51la representative of a portion of the
vehicle’s surrounding environment that may have been
captured by a monocular camera (e.g., monocular camera
402a of FIG. 4B) associated with the vehicle. In practice, the
monocular camera may capture a sequence of mono images
511a with each mono image 511a corresponding to a respec-
tive capture time.

At blocks 512, 513, and 514, functions may be performed
on the sequence of mono images 511a in a manner similar
to that described above with respect to pipeline 500 of FIG.
5A. In this respect, at block 512, image processing functions
may be performed on mono image 511a, such as identifying
one or more agents represented in mono image 511a and
identifying a respective tracking point for each such agent
(e.g., by designating a lowest-observed pixel of an agent’s
pixel mask as that agent’s tracking point). At block 513,
position information may be derived for each agent identi-
fied in each respective mono image 511a based on the
agent’s tracking point within the respective mono image
511a. And then, at block 514, an evaluation is performed on
such agent information (e.g., the derived position informa-
tion) in order to determine which agent information corre-
sponds which different agent from mono image to mono
image and then associate each different agent’s respective
set of agent information across the sequence of images
together into a respective first track for the agent (which may
be referred to as a “mono track™) that comprises a time-
sequence of the position information for the agent (and
perhaps also orientation, velocity, and/or acceleration infor-
mation) that has been derived from the mono images. Each
agent’s mono track is then provided as input to block 535
where a motion model is applied to fuse the agent’s mono
track together with a second track for the agent that is
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derived from stereo images (which may be referred to as a
“stereo track”) in the manner discussed below.

Turning now to the other portion of pipeline 510, at block
522, a sequence of stereo images may be received that each
comprise a respective left image 5115 and a respective right
image 511c¢ that are representative of a portion of the
vehicle’s surrounding environment that may have been
captured by a stereo camera (e.g., left stereo camera 4025
and right stereo camera 402¢ of FIG. 4B) associated with the
vehicle. In practice, the stereco camera may capture a
sequence of stereo images with each stereo image corre-
sponding to a respective capture time. In this example, mono
image 511a and the stereo image comprising left image 5115
and right image 511¢ may have been captured at the same
capture time or at approximately the same capture time.

At block 522, image processing functions may then be
performed on each stereo image comprising respective left
and right images 5115 and 511c¢ in order to identify agents
of interest represented in the stereo image. In example
implementations, this function may involve identifying
agents that belong to one or more particular object classes of
interest, such as “vehicle” objects or other types of agents.

Identifying one or more agents represented in the stereo
image may be performed in a variety of manners, such as
one of the techniques discussed above with reference to
block 502 of FIG. 5A. For instance, this function may
involve applying one or more object-detection models to the
stereo image (e.g., instance segmentation or semantic seg-
mentation models) that are configured to output a label for
each agent detected in the stereo image that belongs to a
particular agent class (e.g., each “vehicle” agent), where this
label may take any of various forms. As one example, the
label for a given agent detected in a stereo image may
comprise a pair of 2D pixel masks for the given agent that
includes a first 2D pixel mask derived from left image 5115
(e.g., a left pixel mask) for the given agent and a second 2D
pixel mask derived from right image 511c¢ (e.g., a right pixel
mask) for the given agent (or perhaps just a single 2D pixel
mask if the given agent is only detected in one of the
individual images). As another example, the label for a given
agent detected in a stereo image may comprise a pair of 2D
bounding boxes for the given agent that includes a first 2D
bounding box derived from left image 51156 (e.g., a left
bounding box) for the given agent and a second 2D bound-
ing box derived from right image 511c¢ (e.g., a right bound-
ing box) for the given agent (or perhaps just a single 2D
bounding box if the given agent is only detected in one of the
individual images). As yet another example, processing may
first be applied to each stereo image in order to generate a
3D point cloud that is representative of the scene depicted in
the stereo image, in which case the label for a given agent
detected in the stereo image may comprise a 3D convex hull
or 3D bounding box that identifies the given agent within the
generated 3D point cloud. The label for a given agent
detected in a stereo image may take other forms as well.

The image processing function at block 522 may also
involve an identification of a one or more tracking points for
each of one or more agents identified within the stereo image
comprising left image 5115 and right image 51l1c. This
function may take various forms, which may depend in part
on the form of the label that has been generated for an agent.
As one example, if the label for a given agent detected in the
stereo image comprises a pair of 2D pixel masks, this
function may involve designating a first lowest-observed
pixel in the agent’s first 2D pixel mask and a second
lowest-observed pixel in the agent’s second 2D pixel mask
as tracking points for the given agent. As another example,
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if the label for a given agent detected in the sterco image
comprises a pair of 2D bounding boxes, this function may
involve designating a first point in the agent’s first 2D
bounding box (e.g., a left corner of the first 2D bounding
box) and a second point in the agent’s second 2D bounding
box (e.g., a left corner of the second 2D bounding box) as
the tracking points for the agent. As yet another example, if
the label for a given agent detected in the stereo image
comprises a 3D convex hull or 3D bounding box that
identifies the given agent within a 3D point cloud that has
been generated from the stereo image, this function may
involve designating a given point within the 3D convex hull
or 3D bounding box as a tracking point for the given agent
(e.g., the centroid of the 3D convex hull or 3D bounding
box). The function of identifying one or more tracking
points for an agent may take various other forms as well.

At block 523, position information is derived for each of
one or more agents identified in the stereo image comprising
left image 5115 and right image 511¢ based on the agent’s
one or more tracking points within the stereo image, which
are received from block 522. This function of deriving
position information for an agent detected in the stereo
image may take various forms, which may depend in part on
the nature of the one or more tracking points that have been
identified for the agent.

For example, in an implementation where the one or more
tracking points for an agent detected in a stereco image take
the form of a pair of corresponding points within left image
5115 and right image 511c¢ (e.g., a lowest-observed pixel in
each of left and right 2D pixel masks or a bottom corner of
each of left and right 2D bounding boxes), the function of
deriving position information for the agent may involve (i)
applying a technique such as triangulation to the pair of
corresponding points within left image 5115 and right image
511c in order to determine a 3D position of some reference
point for the agent (e.g., a point that intersects with the
ground plane) that is represented in the camera coordinate
frame of the stereo camera, (ii) using the pose of the stereo
camera at the time that stereo image was captured, which
may be represented according to a given world coordinate
system (e.g., a local or global map coordinate frame), to
translate the determine 3D position of the agent’s reference
point to the given world coordinate frame, and then (iii)
optionally translating the determined 3D position of the
agent’s reference point within the given world coordinate
frame to a 3D position of an estimated center point of the
agent within the given world coordinate frame.

As another example, in an implementation where a 3D
point cloud was previously generated from a stereo image
and the one or more tracking points for an agent detected in
the stereo image take the form of a center point of a 3D
convex hull or a 3D bounding box that identifies the agent
within the generated 3D point cloud, the function of deriving
position information for the agent may involve (i) obtaining
the 3D position of the center point of the 3D convex hull or
3D bounding box within the generated 3D point cloud,
which may be represented in the camera coordinate frame of
the stereo camera, and then (ii) using the pose of the stereo
camera at the time that stereo image was captured, which
may be represented according to a given world coordinate
system (e.g., a local or global map coordinate frame), to
translate the determined 3D position of the center point of
the 3D convex hull or 3D bounding box from the camera
coordinate system to the given world coordinate frame.

In this respect, it should be understood that, while the 3D
position of the agent determined in one of these manners will
be represented in terms of the given world coordinate system
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according to which the stereo camera’s pose is represented,
this determined 3D position nevertheless incorporates an
estimate of the depth the agent relative to the stereo camera.
Further, it should also be understood that, after determining
the 3D position of the agent in one of these manners, the
determined 3D position could also be translated from the
given world coordinate frame according to which the stereo
camera’s pose is represented to some other coordinate frame
that is to be used for representing agent trajectories.

The function of deriving position information for an agent
detected in a stereo image may take various other forms as
well.

It should also be understood that, in some implementa-
tions, position information that is derived from the stereo
image could be leveraged to assist in the determination of
the position information from the mono images. For
example, in addition to using the above techniques to derive
position information of one or more tracking points for the
given agent, the above techniques could also be used to
derive 3D position information for ground points appearing
within the stereo image, and this 3D position information for
the ground points may then in turn be used during the
process of deriving position information of the given agent’s
tracking point within a mono image in a manner similar to
how a ground map would otherwise be used to derive such
position information. This process of using a 3D position of
a ground point to derive position information of the given
agent’s tracking point within a mono image was described in
detail above.

Returning to FIG. 5B, as noted above, the stereo camera
typically captures a sequence of stereo images comprising
left and right images 5115 and 511¢, and consequently, the
functions described above with reference to blocks 522 and
523 are typically performed on each stereo image in that
sequence of stereo images. As shown in FIG. 5B, the agent
information that is determined across the sequence of two
more stereo images (e.g., the agent tracking points and/or
corresponding agent position information) may then be
provided as input to block 524, where an evaluation is then
performed on such agent information in order to determine
which agent information corresponds which different agent
from image to image and then associate each different
agent’s respective set of agent information across the
sequence of stereo images together into a respective stereo
track for the agent, which may take the form of a time
sequence of position information for the agent (and perhaps
also other state information for the agent such as orientation,
velocity, and/or acceleration information) that has been
derived from the sequence of stereo images. In operation,
this agent tracking function may begin at block 524 after at
least two stereo images have passed through blocks 522 and
523 or may begin after all stereo images from a particular
period of driving have passed through blocks 522 and 523,
among other possibilities.

In practice, evaluating the derived agent information
across a plurality of stereo images to generate a respective
stereo track for each identified agent may be performed in a
variety of manners. As one possibility, this function may be
performed in a similar manner as described before with
reference to block 504 of FIG. 5A. For example, this
function may generally involve (i) identifying a relationship
between first position information derived from a first stereo
image and second position information derived from a
second stereo image, where the relationship indicates that
the first and second position information are associated with
the same agent, and then (ii) generating a stereo track for the
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agent that includes a time-sequence compilation of position
information that was deemed to have a relationship.

As one particular example, identifying a relationship
between image-specific position information may involve
starting with (i) a first stereo image (e.g., the stereo image
comprising left image 5115 and right image 511¢) in which
a given agent was identified and (ii) an estimated center
point of the given agent. Next, an evaluation is performed on
a second stereo image that was captured next in sequence
after the first stereo image in order to identify a candidate
object represented in the second stereo image that is closest
to the estimated center point from the first stereo image.
Lastly, first position information for the given agent from the
first stereo image is associated with second position infor-
mation of the candidate object from the second stereo image
such that the first and second position information are
deemed to be related to the same agent (e.g., the given agent
and the candidate object are the same agent).

Other techniques for identifying a relationship between
image-specific position information from multiple stereo
images are also possible, such as by evaluating similarity in
pixel masks from one image to another, among other pos-
sibilities.

In example embodiments, after associating position infor-
mation across multiple stereo images for a given agent, other
types of information may also be derived that can form part
of the given agent’s stereo track, such as agent orientation,
velocity, and/or acceleration information. For example,
velocity and/or acceleration information can be derived
based on the frame rate at which the stereo camera was
capturing images and the position change of a given agent
from one image to the next. Other manners of deriving
velocity information and other state information are also
possible.

FIG. 11A provides a simplified, two-dimensional repre-
sentation of a derived stereo track for an agent. As shown,
in plot 1100, a first axis 1101 corresponds to a first horizontal
dimension of a given world coordinate frame and a second
axis 1102 corresponds to a second horizontal dimension of
the given world coordinate frame. In this example, triangles
1103a and 11035 represent position information (as well as
orientation information) for the agent that were derived from
two consecutive stereo images captured at times t, and t,
with the front tip of each triangle (indicated by the triangle
vertex pointing toward vertical axis 1102) representing the
direction that the agent was facing at the given point in time.
These triangles 1103a and 11035 represent the stereo track
that was derived for the agent at block 524 of FIG. 5B.

After the respective mono and stereo tracks have been
derived for a given agent in the manner described above,
those mono and stereo tracks may then be fused together in
order to produce a single trajectory for the given agent. This
function of fusing an agent’s mono and stereo tracks
together may take various forms.

As an initial matter, this function of fusing an agent’s
mono and stereo tracks together may involve an operation of
identifying a derived mono track and a derived stereo track
that correspond to a same given agent detected within the
sequence of mono and stereo images. In this respect, as
discussed before with reference to FIG. 4B, while cameras
402a, 4025, and 402¢ have different fields of view, these
cameras typically capture images that include respective
representations of the same agents in the vehicle’s surround-
ings. Thus, fusing tracks derived from images captured from
these different viewpoints may help provide a more accurate
and robust estimate of an agent’s trajectory.
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In practice, identifying a derived mono track and a
derived stereo track correspond to a same given agent
detected within the sequence of mono and stereo images
may be performed in a variety of manners. For example, this
function may involve (i) identifying one or more mono and
stereo tracks that were derived based on images captured
around the same capture times, (ii) for each such stereo
track, identifying the respective portions of the stereo
images that were deemed to belong to a given agent, and for
each such mono track, identifying the respective portions of
the mono images that were deemed to belong to a given
agent, and then (iii) comparing the respective stereo and
mono portions (e.g., by evaluating stereo and mono pixel
masks) to identify a stereo and mono track that are related
to the same unique agent. In some implementations, this
function may additionally or alternatively be based in part
on the respective physical configurations of the cameras that
captured the images that were used to derive the stereo and
mono tracks. Other manners of identifying a derived mono
track and a derived stereo track correspond to a same given
agent detected within the sequence of mono and stereo
images are also possible.

FIG. 11B provides a simplified, two-dimensional repre-
sentation of the derived stereo track for the agent of FIG.
11A and a mono track that is related to that stereo track. As
shown, in plot 1110, triangles 11034 and 11035 from plot
1100 of FIG. 11A (illustrated with dashed lines) that repre-
sent position information (as well as orientation informa-
tion) for the agent that were derived from two consecutive
stereo images captured at times t, and t, are related to
triangles 11134 and 11135 that represent position informa-
tion (as well as orientation information) for the agent that
were derived from two consecutive mono images captured at
times t, and t,. These triangles 1113a and 11135 (illustrated
with dot-dashed lines) represent the mono track that was
derived for the agent at block 514 of FIG. 5B.

After identifying a derived mono track and a derived
stereo track correspond to a same given agent detected
within the sequence of mono and stereo images, some
alignment functions may optionally be performed on the
identified mono and stereo tracks. For example, to the extent
that the identified mono and stereo tracks are represented
according to different coordinate frames (e.g., different local
or global map coordinate frames), a translation may be
applied to one or both of the tracks to place them within a
common coordinate frame. As another example, to the
extent that the identified mono and stereo tracks are repre-
sented according to different temporal reference frames, a
translation may be applied to one or both of the tracks to
place them within a common temporal reference frame.
Other alignment functions are possible as well.

Once a given agent’s mono and stereo tracks have been
identified (and optionally aligned), then as shown at block
535 of FIG. 5B, the mono and stereo tracks for the given
agent may then be provided as input to a motion model that
encodes information about the expected real-world motion
behavior of an agent of the same type as the given agent
(e.g., physics-based constraints on how an agent of a given
type is capable of moving in the real world), which functions
to fuse the given agent’s mono and stereo tracks together
while also correcting for errors that may been introduced
into the mono and/or stereo tracks as a result of occlusions
or other measurement problems (e.g., gaps in the tracks
where position information for the given agent is missing
and/or position information within the tracks that is not
consistent with how the given agent would have physically
been capable of moving within the real world). In this way,
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applying the motion model to the given agent’s derived track
may fuse the given agent’s mono and stereo tracks together
into a single trajectory for the given agent that takes the
expected real-world motion behavior of the given agent into
account and provides a more accurate representation of the
given agent’s real-world pose evolution over time.

In practice, applying a motion model to the given agent’s
mono and stereo tracks may be performed in a variety of
manners and various types of motions models may be
utilized to output an estimated trajectory for an agent. As one
possibility, a motion model (e.g., a Kalman filter) may be
utilized that generally functions to (i) receive a mono track
for a given agent in the form of a series of time-sequence
states derived from mono images and a stereo track for the
given agent in the form of a time-sequence of position states
derived from stereo images, (ii) fuse the respective time-
sequences of position states together while applying pre-
encoded knowledge about the expected real-world motion
behavior of an agent of the same type as the given agent, and
then (ii) output a single, “fused” time-sequence of position
states for the given agent, which may then be designated the
given agent’s trajectory. FIGS. 11C-11E provide conceptual
illustrations of various aspects of an example motion mod-
el’s functionality.

In particular, FIG. 11C provides a simplified, two-dimen-
sional representation of a trajectory that is output by a
motion model (e.g., a Kalman filter) for the agent whose
mono and stereo tracks are represented in FIG. 11B. As
shown, the motion model outputted a trajectory represented
by triangles 1123q and 112356 (illustrated in solid lines) that
fused the stereo track represented by triangles 1103a¢ and
11035 and the mono track represented by triangles 1113a
and 11134. In this way, the motion model functions to
provide an agent trajectory that is typically more accurate
than an estimated agent trajectory that is derived based on
only a mono track or only a stereo track.

The motion model may also function to output a predic-
tion of the given agent’s pose at a future point in time and
then update that prediction based on actual state information
derived from mono and stereo images captured at that point
in time. To illustrate, FIG. 11D provides a simplified,
two-dimensional representation of a trajectory with a pre-
dicted agent pose that is output by a motion model (e.g., a
Kalman filter) for the agent whose trajectory is represented
in FIG. 11C. As shown, triangle 1133 ¢ represents the motion
model’s prediction for the agent’s pose at future point in
time t, that may have been derived based at least on the
motion model’s previously outputted trajectory for the agent
represented by triangles 1123a and 11235 and/or the previ-
ous state information for the agent.

In turn, FIG. 11E provides a simplified, two-dimensional
representation of a trajectory with an updated agent pose that
is output by a motion model (e.g., a Kalman filter) for the
agent whose predicted trajectory is represented in FIG. 11D.
As shown, triangle 1103¢ represents a stereco pose that was
derived based on a stereo image captured at time t,, and
triangle 1113¢ represents a mono pose that was derived
based on a mono image captured at time t_.. Based at least on
these actual derived stereo and mono poses and the motion
model’s predicted agent pose (represented by triangle
1133¢), the motion model provided an update agent pose
represented by triangle 1123c¢.

In some implementations, a Kalman filter may be utilized
that may also apply different weights to the different tracks.
For example, when applying the Kalman filter, the position
information included in a stereo track may be given more or
less weight than the position information included in a mono
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track along certain dimensions of the position information
(e.g., the stereo-based position information may be weight
more heavily along a dimension that corresponds to the
depth of the given agent relative to the cameras and/or the
mono-based position information may be weight more heav-
ily along a dimension that corresponds to the lateral dis-
placement of the given agent relative to the cameras). In this
respect, it should be understood that the tracks that are input
into the motion could be represented in the camera coordi-
nate frame of the monocular and stereo cameras instead of
a world coordinate frame to facilitate the weighting along
these dimensions, in which case deriving the trajectory of
the given agent may involve an additional function of
translating the poses included in the trajectory from the
camera coordinate frame to a world coordinate frame.

As another example, the Kalman filter may weight the
tracks based on a measure of confidence regarding the
predicted accuracy of the mono and/or stereo tracks, such
that the position information included in a track associated
with a higher measure of confidence (e.g., a stereo track)
may be given more weight than the position information
included in a track associated with a lower measure of
confidence (e.g., a mono track). Other manners of applying
weights to position information inputted to a Kalman filter
are also possible.

Other manners of applying a motion model to derived
mono and stereo tracks and other types of motion models are
also possible.

To summarize the aforementioned approach for deriving
agent trajectories based on mono and stereo images, FIG. 12
provides a flow diagram 1200 illustrating one example set of
functions that may be performed to derive such agent
trajectories. At block 1201, a computing system receives a
first sequence of images captured by a first monocular
camera (e.g., camera 402a of FIG. 4B), where each image in
the first sequence of images (e.g., each mono image) is
representative of a vehicle’s surrounding environment at a
respective time. At block 1202, the computing system
receives a second sequence of images captured by a pair of
monocular cameras in a stereo configuration (e.g., left
camera 4025 and right camera 402¢), where each image in
the second sequence of images (e.g., each stereo image) is
representative of the vehicle’s surrounding environment at a
respective time. At block 1203, the computing system
derives a first track for a given agent from the first sequence
of' images, where the first track comprises a first sequence of
time-specific position information for the given asset that
incorporates an estimate of the given agent’s depth relative
to the monocular camera. At block 1204, the computing
system derives a second track for the given agent from the
second sequence of images, where the second track com-
prises a second sequence of time-specific position informa-
tion for the given agent that incorporates an estimate of the
given agent’s depth relative to the stereo camera. At block
1205, the computing system fuses the first and second tracks
for the given agent together using a motion model (e.g., a
Kalman filter). At block 1206, the computing system uses an
output of the motion model to represent a trajectory for the
given object. Other sets of functions may instead be per-
formed to derive agent trajectories based on mono and stereo
images, which may involve adding to, removing from, or
consolidating functions from flow diagram 1200.

The aforementioned second approach for deriving agent
trajectories may be advantageous in that it leverages the
strengths of a single mono image technique and the strengths
of'a stereo image technique while also mitigating the relative
weaknesses of those techniques. Further, while this second
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approach has a relatively higher cost than the first approach
in terms of equipping vehicles with the requisite hardware
(e.g., at least two monocular cameras), this relatively higher
cost is still lower than the cost of installing vehicles with the
types of expensive, LiDAR-based sensor systems typically
found on autonomous vehicles, which means that this
approach may still be widely deployable in many vehicles.
Further yet, by fusing an agent’s mono and stereo tracks
together using a motion model, this second approach pro-
vides another way to derive a trajectory for an agent from
images that is based on a more accurate estimate of the
agent’s depth relative to the cameras and is also less sus-
ceptible to missing or errant position estimates caused by
occlusion, which helps improve upon existing techniques for
deriving agent trajectories from images.

As discussed above with reference to the first approach,
agent trajectories derived using this second approach may be
used for any of a variety of purposes, including but not
limited to any of the various purposes discussed above (e.g.,
to help improve facilitate operations carried out by on-board
computing systems of vehicles or transportation-matching
platforms).

In line with the discussion above, one possible use case
for the trajectories derived using the disclosed techniques is
for purposes of informing operations that are performed by
an on-board computing system of a vehicle. Turning now to
FIG. 13, a simplified block diagram is provided to illustrate
certain systems that may be included in an example vehicle
1310 that takes the form of an autonomous vehicle. As
shown, at a high level, vehicle 1310 may include at least (i)
a sensor system 1301 that is configured to capture sensor
data that is representative of the real-world environment
being perceived by the vehicle (i.e., the vehicle’s “surround-
ing environment™) and/or the vehicle’s operation within that
real-world environment, (ii) an on-board computing system
1302 that is configured to perform functions related to
autonomous operation of vehicle 1310 (and perhaps other
functions as well), and (iii) a vehicle-control system 1303
that is configured to control the physical operation of vehicle
1310, among other possibilities. Each of these systems may
take various forms.

In general, sensor system 1301 may comprise any of
various different types of sensors, each of which is generally
configured to detect one or more particular stimuli based on
vehicle 1310 operating in a real-world environment. The
sensors then output sensor data that is indicative of one or
more measured values of the one or more stimuli at one or
more capture times (which may each comprise a single
instant of time or a range of times).

For instance, as one possibility, sensor system 1301 may
include one or more two-dimensional (2D) sensors 1301a
that are each configured to capture 2D data that is represen-
tative of the vehicle’s surrounding environment (e.g., sensor
system 601 may include an arrangement like those illus-
trated in FIG. 4A or 4B). Examples of 2D sensor(s) 1301a
may include a single 2D camera, a 2D camera array, a 2D
RADAR unit, a 2D SONAR unit, a 2D ultrasound unit, a 2D
scanner, and/or 2D sensors equipped with visible-light and/
or infrared sensing capabilities, among other possibilities.
Further, in an example implementation, 2D sensor(s) 1301a
have an arrangement that is capable of capturing 2D sensor
data representing a 360° view of the vehicle’s surrounding
environment, one example of which may take the form of an
array of 6-7 cameras that each have a different capture angle.
Other 2D sensor arrangements are also possible.

As another possibility, sensor system 1301 may include
one or more three-dimensional (3D) sensors 130154 that are
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each configured to capture 3D data that is representative of
the vehicle’s surrounding environment. Examples of 3D
sensor(s) 13016 may include a LIDAR unit, a 3D RADAR
unit, a 3D SONAR unit, a 3D ultrasound unit, and a camera
array equipped for stereo vision, among other possibilities.
Further, in an example implementation, 3D sensor(s) 13015
may comprise an arrangement that is capable of capturing
3D sensor data representing a 360° view of the vehicle’s
surrounding environment, one example of which may take
the form of a LIDAR unit that is configured to rotate 360°
around its installation axis. Other 3D sensor arrangements
are also possible.

As yet another possibility, sensor system 1301 may
include one or more state sensors 1301c that are each
configured to detect aspects of the vehicle’s current state,
such as the vehicle’s current position, current orientation
(e.g., heading/yaw, pitch, and/or roll), current velocity, and/
or current acceleration of vehicle 1310. Examples of state
sensor(s) 1301¢ may include an Inertial Measurement Unit
(IMU) (which may be comprised of accelerometers, gyro-
scopes, and/or magnetometers), an Inertial Navigation Sys-
tem (INS), a Global Navigation Satellite System (GNSS)
unit such as a Global Positioning System (GPS) unit, among
other possibilities.

Sensor system 1301 may include various other types of
sensors as well.

In turn, on-board computing system 1302 may generally
comprise any computing system that includes at least a
communication interface, a processor, and data storage,
where such components may either be part of a single
physical computing device or be distributed across a plu-
rality of physical computing devices that are interconnected
together via a communication link. Each of these compo-
nents may take various forms.

For instance, the communication interface of on-board
computing system 1302 may take the form of any one or
more interfaces that facilitate communication with other
systems of vehicle 1310 (e.g., sensor system 1301, vehicle-
control system 1303, etc.) and/or remote computing systems
(e.g., a transportation request management system), among
other possibilities. In this respect, each such interface may
be wired and/or wireless and may communicate according to
any of various communication protocols, examples of which
may include Ethernet, Wi-Fi, Controller Area Network
(CAN) bus, serial bus (e.g., Universal Serial Bus (USB) or
Firewire), cellular network, and/or short-range wireless pro-
tocols.

Further, the processor of on-board computing system
1302 may comprise one or more processor components,
each of which may take the form of a general-purpose
processor (e.g., a microprocessor), a special-purpose pro-
cessor (e.g., an application-specific integrated circuit, a
digital signal processor, a graphics processing unit, a vision
processing unit, etc.), a programmable logic device (e.g., a
field-programmable gate array), or a controller (e.g., a
microcontroller), among other possibilities.

Further yet, the data storage of on-board computing
system 1302 may comprise one or more non-transitory
computer-readable mediums, each of which may take the
form of a volatile medium (e.g., random-access memory, a
register, a cache, a buffer, etc.) or a non-volatile medium
(e.g., read-only memory, a hard-disk drive, a solid-state
drive, flash memory, an optical disk, etc.), and these one or
more non-transitory computer-readable mediums may be
capable of storing both (i) program instructions that are
executable by the processor of on-board computing system
1302 such that on-board computing system 1302 is config-
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ured to perform various functions related to the autonomous
operation of vehicle 1310 (among other possible functions),
and (ii) data that may be obtained, derived, or otherwise
stored by on-board computing system 1302.

In one embodiment, on-board computing system 1302
may also be functionally configured into a number of
different subsystems that are each tasked with performing a
specific subset of functions that facilitate the autonomous
operation of vehicle 1310, and these subsystems may be
collectively referred to as the vehicle’s “autonomy system.”
In practice, each of these subsystems may be implemented
in the form of program instructions that are stored in the
on-board computing system’s data storage and are execut-
able by the on-board computing system’s processor to carry
out the subsystem’s specific subset of functions, although
other implementations are possible as well—including the
possibility that different subsystems could be implemented
via different hardware components of on-board computing
system 1302.

As shown in FIG. 13, in one embodiment, the functional
subsystems of on-board computing system 1302 may
include (i) a perception subsystem 1302¢ that generally
functions to derive a representation of the surrounding
environment being perceived by vehicle 1310, (ii) a predic-
tion subsystem 13025 that generally functions to predict the
future state of each object detected in the vehicle’s surround-
ing environment, (iii) a planning subsystem 1302¢ that
generally functions to derive a behavior plan for vehicle
1310, (iv) a control subsystem 13024 that generally func-
tions to transform the behavior plan for vehicle 1310 into
control signals for causing vehicle 1310 to execute the
behavior plan, and (v) a vehicle-interface subsystem 1302e¢
that generally functions to translate the control signals into
a format that vehicle-control system 1303 can interpret and
execute. However, it should be understood that the func-
tional subsystems of on-board computing system 1302 may
take various other forms as well. Each of these example
subsystems will now be described in further detail below.

For instance, the subsystems of on-board computing
system 1302 may begin with perception subsystem 13024,
which may be configured to fuse together various different
types of “raw” data that relate to the vehicle’s perception of
its surrounding environment and thereby derive a represen-
tation of the surrounding environment being perceived by
vehicle 1310. In this respect, the “raw” data that is used by
perception subsystem 1302a to derive the representation of
the vehicle’s surrounding environment may take any of
various forms.

For instance, at a minimum, the “raw” data that is used by
perception subsystem 1302¢ may include multiple different
types of sensor data captured by sensor system 1301, such
as 2D sensor data (e.g., image data) that provides a 2D
representation of the vehicle’s surrounding environment, 3D
sensor data (e.g., LIDAR data) that provides a 3D represen-
tation of the vehicle’s surrounding environment, and/or state
data for vehicle 1310 that indicates the past and current
position, orientation, velocity, and acceleration of vehicle
1310. Additionally, the “raw” data that is used by perception
subsystem 1302¢ may include map data associated with the
vehicle’s location, such as high-definition geometric and/or
semantic map data, which may be preloaded onto on-board
computing system 1302 and/or obtained from a remote
computing system. Additionally yet, the “raw” data that is
used by perception subsystem 1302a may include naviga-
tion data for vehicle 1310 that indicates a specified origin
and/or specified destination for vehicle 1310, which may be
obtained from a remote computing system (e.g., a transpor-
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tation request management system) and/or input by a human
riding in vehicle 1310 via a user-interface component that is
communicatively coupled to on-board computing system
1302. Additionally still, the “raw” data that is used by
perception subsystem 1302a may include other types of data
that may provide context for the vehicle’s perception of its
surrounding environment, such as weather data and/or traffic
data, which may be obtained from a remote computing
system. The “raw” data that is used by perception subsystem
13024 may include other types of data as well.

Advantageously, by fusing together multiple different
types of raw data (e.g., both 2D sensor data and 3D sensor
data), perception subsystem 1302a is able to leverage the
relative strengths of these different types of raw data in a
way that may produce a more accurate and precise repre-
sentation of the surrounding environment being perceived
by vehicle 1310.

Further, the function of deriving the representation of the
surrounding environment perceived by vehicle 1310 using
the raw data may include various aspects. For instance, one
aspect of deriving the representation of the surrounding
environment perceived by vehicle 1310 using the raw data
may involve determining a current state of vehicle 1310
itself, such as a current position, a current orientation, a
current velocity, and/or a current acceleration, among other
possibilities. In this respect, perception subsystem 1302a
may also employ a localization technique such as Simulta-
neous Localization and Mapping (SLAM) to assist in the
determination of the vehicle’s current position and/or ori-
entation. (Alternatively, it is possible that on-board comput-
ing system 1302 may run a separate localization service that
determines position and/or orientation values for vehicle
1310 based on raw data, in which case these position and/or
orientation values may serve as another input to perception
subsystem 1302q).

Another aspect of deriving the representation of the
surrounding environment perceived by vehicle 1310 using
the raw data may involve detecting objects within the
vehicle’s surrounding environment, which may result in the
determination of class labels, bounding boxes, or the like for
each detected object. In this respect, the particular classes of
objects that are detected by perception subsystem 1302a
(which may be referred to as “agents”) may take various
forms, including both (i) “dynamic” objects that have the
potential to move, such as vehicles, cyclists, pedestrians, and
animals, among other examples, and (ii) “static” objects that
generally do not have the potential to move, such as streets,
curbs, lane markings, traffic lights, stop signs, and buildings,
among other examples. Further, in practice, perception sub-
system 13024 may be configured to detect objects within the
vehicle’s surrounding environment using any type of object
detection model now known or later developed, including
but not limited object detection models based on convolu-
tional neural networks (CNN).

Yet another aspect of deriving the representation of the
surrounding environment perceived by vehicle 1310 using
the raw data may involve determining a current state of each
object detected in the vehicle’s surrounding environment,
such as a current position (which could be reflected in terms
of coordinates and/or in terms of a distance and direction
from vehicle 1310), a current orientation, a current velocity,
and/or a current acceleration of each detected object, among
other possibilities. In this respect, the current state of each
detected object may be determined either in terms of an
absolute measurement system or in terms of a relative
measurement system that is defined relative to a state of
vehicle 1310, among other possibilities.
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The function of deriving the representation of the sur-
rounding environment perceived by vehicle 1310 using the
raw data may include other aspects as well.

Further yet, the derived representation of the surrounding
environment perceived by vehicle 1310 may incorporate
various different information about the surrounding envi-
ronment perceived by vehicle 1310, examples of which may
include (i) a respective set of information for each object
detected in the vehicle’s surrounding, such as a class label,
a bounding box, and/or state information for each detected
object, (ii) a set of information for vehicle 1310 itself, such
as state information and/or navigation information (e.g., a
specified destination), and/or (iii) other semantic informa-
tion about the surrounding environment (e.g., time of day,
weather conditions, traffic conditions, etc.). The derived
representation of the surrounding environment perceived by
vehicle 1310 may incorporate other types of information
about the surrounding environment perceived by vehicle
1310 as well.

Still further, the derived representation of the surrounding
environment perceived by vehicle 1310 may be embodied in
various forms. For instance, as one possibility, the derived
representation of the surrounding environment perceived by
vehicle 1310 may be embodied in the form of a data
structure that represents the surrounding environment per-
ceived by vehicle 1310, which may comprise respective data
arrays (e.g., vectors) that contain information about the
objects detected in the surrounding environment perceived
by vehicle 1310, a data array that contains information about
vehicle 1310, and/or one or more data arrays that contain
other semantic information about the surrounding environ-
ment. Such a data structure may be referred to as a “param-
eter-based encoding.”

As another possibility, the derived representation of the
surrounding environment perceived by vehicle 1310 may be
embodied in the form of a rasterized image that represents
the surrounding environment perceived by vehicle 1310 in
the form of colored pixels. In this respect, the rasterized
image may represent the surrounding environment per-
ceived by vehicle 1310 from various different visual per-
spectives, examples of which may include a “top down”
view and a “bird’s eye” view of the surrounding environ-
ment, among other possibilities. Further, in the rasterized
image, the objects detected in the surrounding environment
of vehicle 1310 (and perhaps vehicle 1310 itself) could be
shown as color-coded bitmasks and/or bounding boxes,
among other possibilities.

The derived representation of the surrounding environ-
ment perceived by vehicle 1310 may be embodied in other
forms as well.

As shown, perception subsystem 1302a may pass its
derived representation of the vehicle’s surrounding environ-
ment to prediction subsystem 13024. In turn, prediction
subsystem 130256 may be configured to use the derived
representation of the vehicle’s surrounding environment
(and perhaps other data) to predict a future state of each
object detected in the vehicle’s surrounding environment at
one or more future times (e.g., at each second over the next
5 seconds)—which may enable vehicle 1310 to anticipate
how the real-world objects in its surrounding environment
are likely to behave in the future and then plan its behavior
in a way that accounts for this future behavior.

Prediction subsystem 13025 may be configured to predict
various aspects of a detected object’s future state, examples
of which may include a predicted future position of the
detected object, a predicted future orientation of the detected
object, a predicted future velocity of the detected object,
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and/or predicted future acceleration of the detected object,
among other possibilities. In this respect, if prediction
subsystem 13025 is configured to predict this type of future
state information for a detected object at multiple future
times, such a time sequence of future states may collectively
define a predicted future trajectory of the detected object.
Further, in some embodiments, prediction subsystem 13025
could be configured to predict multiple different possibilities
of future states for a detected object (e.g., by predicting the
3 most-likely future trajectories of the detected object).
Prediction subsystem 13025 may be configured to predict
other aspects of a detected object’s future behavior as well.

In practice, prediction subsystem 130256 may predict a
future state of an object detected in the vehicle’s surround-
ing environment in various manners, which may depend in
part on the type of detected object. For instance, as one
possibility, prediction subsystem 13026 may predict the
future state of a detected object using a data science model
that is configured to (i) receive input data that includes one
or more derived representations output by perception sub-
system 1302a at one or more perception times (e.g., the
“current” perception time and perhaps also one or more prior
perception times), (ii) based on an evaluation of the input
data, which includes state information for the objects
detected in the vehicle’s surrounding environment at the one
or more perception times, predict at least one likely time
sequence of future states of the detected object (e.g., at least
one likely future trajectory of the detected object), and (iii)
output an indicator of the at least one likely time sequence
of future states of the detected object. This type of data
science model may be referred to herein as a “future-state
model.”

Such a future-state model will typically be created by an
off-board computing system (e.g., a backend platform) and
then loaded onto on-board computing system 1302, although
it is possible that a future-state model could be created by
on-board computing system 1302 itself. Either way, the
future-state model may be created using any modeling
technique now known or later developed, including but not
limited to a machine-learning technique that may be used to
iteratively “train” the data science model to predict a likely
time sequence of future states of an object based on training
data. The training data may comprise both test data (e.g.,
historical representations of surrounding environments at
certain historical perception times) and associated ground-
truth data (e.g., historical state data that indicates the actual
states of objects in the surrounding environments during
some window of time following the historical perception
times).

Prediction subsystem 13025 could predict the future state
of a detected object in other manners as well. For instance,
for detected objects that have been classified by perception
subsystem 1302a as belonging to certain classes of static
objects (e.g., roads, curbs, lane markings, etc.), which gen-
erally do not have the potential to move, prediction subsys-
tem 13025 may rely on this classification as a basis for
predicting that the future state of the detected object will
remain the same at each of the one or more future times (in
which case the state-prediction model may not be used for
such detected objects). However, it should be understood
that detected objects may be classified by perception sub-
system 1302a as belonging to other classes of static objects
that have the potential to change state despite not having the
potential to move, in which case prediction subsystem
13025 may still use a future-state model to predict the future
state of such detected objects. One example of a static object
class that falls within this category is a traffic light, which
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generally does not have the potential to move but may
nevertheless have the potential to change states (e.g.
between green, yellow, and red) while being perceived by
vehicle 1310.

After predicting the future state of each object detected in
the surrounding environment perceived by vehicle 1310 at
one or more future times, prediction subsystem 13026 may
then either incorporate this predicted state information into
the previously-derived representation of the vehicle’s sur-
rounding environment (e.g., by adding data arrays to the data
structure that represents the surrounding environment) or
derive a separate representation of the vehicle’s surrounding
environment that incorporates the predicted state informa-
tion for the detected objects, among other possibilities.

As shown, prediction subsystem 13025 may pass the one
or more derived representations of the vehicle’s surrounding
environment to planning subsystem 1302¢. In turn, planning
subsystem 1302¢ may be configured to use the one or more
derived representations of the vehicle’s surrounding envi-
ronment (and perhaps other data) to derive a behavior plan
for vehicle 1310, which defines the desired driving behavior
of vehicle 1310 for some future period of time (e.g., the next
5 seconds).

The behavior plan that is derived for vehicle 1310 may
take various forms. For instance, as one possibility, the
derived behavior plan for vehicle 1310 may comprise a
planned trajectory for vehicle 1310 that specifies a planned
state of vehicle 1310 at each of one or more future times
(e.g., each second over the next 5 seconds), where the
planned state for each future time may include a planned
position of vehicle 1310 at the future time, a planned
orientation of vehicle 1310 at the future time, a planned
velocity of vehicle 1310 at the future time, and/or a planned
acceleration of vehicle 1310 (whether positive or negative)
at the future time, among other possible types of state
information. As another possibility, the derived behavior
plan for vehicle 1310 may comprise one or more planned
actions that are to be performed by vehicle 1310 during the
future window of time, where each planned action is defined
in terms of the type of action to be performed by vehicle
1310 and a time and/or location at which vehicle 1310 is to
perform the action, among other possibilities. The derived
behavior plan for vehicle 1310 may define other planned
aspects of the vehicle’s behavior as well.

Further, in practice, planning subsystem 1302¢ may
derive the behavior plan for vehicle 1310 in various man-
ners. For instance, as one possibility, planning subsystem
1302¢ may be configured to derive the behavior plan for
vehicle 1310 by (i) deriving a plurality of different “candi-
date” behavior plans for vehicle 1310 based on the one or
more derived representations of the vehicle’s surrounding
environment (and perhaps other data), (ii) evaluating the
candidate behavior plans relative to one another (e.g., by
scoring the candidate behavior plans using one or more cost
functions) in order to identify which candidate behavior plan
is most desirable when considering factors such as proximity
to other objects, velocity, acceleration, time and/or distance
to destination, road conditions, weather conditions, traffic
conditions, and/or traffic laws, among other possibilities,
and then (iii) selecting the candidate behavior plan identified
as being most desirable as the behavior plan to use for
vehicle 1310. Planning subsystem 1302¢ may derive the
behavior plan for vehicle 1310 in various other manners as
well.

After deriving the behavior plan for vehicle 1310, plan-
ning subsystem 1302¢ may pass data indicating the derived
behavior plan to control subsystem 13024. In turn, control
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subsystem 13024 may be configured to transform the behav-
ior plan for vehicle 1310 into one or more control signals
(e.g., a set of one or more command messages) for causing
vehicle 1310 to execute the behavior plan. For instance,
based on the behavior plan for vehicle 1310, control sub-
system 13024 may be configured to generate control signals
for causing vehicle 1310 to adjust its steering in a specified
manner, accelerate in a specified manner, and/or brake in a
specified manner, among other possibilities.

As shown, control subsystem 13024 may then pass the
one or more control signals for causing vehicle 1310 to
execute the behavior plan to vehicle-interface subsystem
1302¢. In turn, vehicle-interface subsystem 1302¢ may be
configured to translate the one or more control signals into
a format that can be interpreted and executed by components
of vehicle-control system 1303. For example, vehicle-inter-
face subsystem 1302e¢ may be configured to translate the one
or more control signals into one or more control messages
are defined according to a particular format or standard, such
as a CAN bus standard and/or some other format or standard
that is used by components of vehicle-control system 1303.

In turn, vehicle-interface subsystem 1302¢ may be con-
figured to direct the one or more control signals to the
appropriate control components of vehicle-control system
1303. For instance, as shown, vehicle-control system 1303
may include a plurality of actuators that are each configured
to control a respective aspect of the vehicle’s physical
operation, such as a steering actuator 13034 that is config-
ured to control the vehicle components responsible for
steering (not shown), an acceleration actuator 13035 that is
configured to control the vehicle components responsible for
acceleration such as a throttle (not shown), and a braking
actuator 1303¢ that is configured to control the vehicle
components responsible for braking (not shown), among
other possibilities. In such an arrangement, vehicle-interface
subsystem 1302¢ of on-board computing system 1302 may
be configured to direct steering-related control signals to
steering actuator 1303a, acceleration-related control signals
to acceleration actuator 13035, and braking-related control
signals to braking actuator 1303¢. However, it should be
understood that the control components of vehicle-control
system 1303 may take various other forms as well.

Notably, the subsystems of on-board computing system
1302 may be configured to perform the above functions in
a repeated manner, such as many times per second, which
may enable vehicle 1310 to continually update both its
understanding of the surrounding environment and its
planned behavior within that surrounding environment.

Although not specifically shown, it should be understood
that vehicle 1310 includes various other systems and com-
ponents as well, including but not limited to a propulsion
system that is responsible for creating the force that leads to
the physical movement of vehicle 1310.

In line with the discussion above, another possible use
case for the trajectories derived using the disclosed tech-
niques is for purposes of informing operations that are
performed by a transportation-matching platform. FIG. 14 is
a simplified block diagram that illustrates one possible
example of such a transportation matching platform 1400.
As shown, transportation matching platform 1400 may
include at its core a transportation request management
system 1401, which may be communicatively coupled via a
communication network 1406 to (i) a plurality of client
stations of individuals interested in transportation (i.e.,
“transportation requestors”), of which client station 1402 of
transportation requestor 1403 is shown as one representative
example, (ii) a plurality of vehicles that are capable of
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providing the requested rides, of which example vehicle
1404 is shown as one representative example, and (iii) a
plurality of third-party systems that are capable of providing
respective subservices that facilitate the platform’s transpor-
tation matching, of which third-party system 1405 is shown
as one representative example.

Broadly speaking, transportation request management
system 1401 may include one or more computing systems
that collectively comprise a communication interface, at
least one processor, data storage, and executable program
instructions for carrying out functions related to managing
and facilitating transportation matching. These one or more
computing systems may take various forms and be arranged
in various manners. For instance, as one possibility, trans-
portation request management system 1401 may comprise
computing infrastructure of a public, private, and/or hybrid
cloud (e.g., computing and/or storage clusters). In this
respect, the entity that owns and operates transportation
request management system 1401 may either supply its own
cloud infrastructure or may obtain the cloud infrastructure
from a third-party provider of “on demand” computing
resources, such as Amazon Web Services (AWS), Microsoft
Azure, Google Cloud, Alibaba Cloud, or the like. As another
possibility, transportation request management system 1401
may comprise one or more dedicated servers. Other imple-
mentations of transportation request management system
1401 are possible as well.

As noted, transportation request management system
1401 may be configured to perform functions related to
managing and facilitating transportation matching, which
may take various forms. For instance, as one possibility,
transportation request management system 1401 may be
configured to receive ride requests from client stations of
ride requestors (e.g., client station 1402 of ride requestor
1403) and then fulfill such ride requests by dispatching
suitable vehicles, which may include vehicles such as
vehicle 1404. In this respect, a ride request from client
station 1402 of ride requestor 1403 may include various
types of information.

For example, a ride request from client station 1402 of
ride requestor 1403 may include specified pick-up and
drop-oft locations for the ride. As another example, a ride
request from client station 1402 of ride requestor 1403 may
include an identifier that identifies ride requestor 1403 in
transportation request management system 1401, which may
be used by transportation request management system 1401
to access information about ride requestor 1403 (e.g., profile
information) that is stored in one or more data stores of
transportation request management system 1401 (e.g., a
relational database system), in accordance with the ride
requestor’s privacy settings. This ride requestor information
may take various forms, examples of which include profile
information about ride requestor 1403. As yet another
example, a ride request from client station 1402 of ride
requestor 1403 may include preferences information for ride
requestor 1403, examples of which may include vehicle-
operation preferences (e.g., safety comfort level, preferred
speed, rates of acceleration or deceleration, safety distance
from other vehicles when traveling at various speeds, route,
etc.), entertainment preferences (e.g., preferred music genre
or playlist, audio volume, display brightness, etc.), tempera-
ture preferences, and/or any other suitable information.

As another possibility, transportation request manage-
ment system 1401 may be configured to access ride infor-
mation related to a requested ride, examples of which may
include information about locations related to the ride, traffic
data, route options, optimal pick-up or drop-off locations for



US 11,961,241 B2

41

the ride, and/or any other suitable information associated
with a ride. As an example and not by way of limitation,
when transportation request management system 1401
receives a request to ride from San Francisco International
Airport (SFO) to Palo Alto, California, system 1401 may
access or generate any relevant ride information for this
particular ride request, which may include preferred pick-up
locations at SFO, alternate pick-up locations in the event that
a pick-up location is incompatible with the ride requestor
(e.g., the ride requestor may be disabled and cannot access
the pick-up location) or the pick-up location is otherwise
unavailable due to construction, traffic congestion, changes
in pick-up/drop-off rules, or any other reason, one or more
routes to travel from SFO to Palo Alto, preferred off-ramps
for a type of ride requestor, and/or any other suitable
information associated with the ride.

In some embodiments, portions of the accessed ride
information could also be based on historical data associated
with historical rides facilitated by transportation request
management system 1401. For example, historical data may
include aggregate information generated based on past ride
information, which may include any ride information
described herein and/or other data collected by sensors
affixed to or otherwise located within vehicles (including
sensors of other computing devices that are located in the
vehicles such as client stations). Such historical data may be
associated with a particular ride requestor (e.g., the particu-
lar ride requestor’s preferences, common routes, etc.), a
category/class of ride requestors (e.g., based on demograph-
ics), and/or all ride requestors of transportation request
management system 1401.

For example, historical data specific to a single ride
requestor may include information about past rides that a
particular ride requestor has taken, including the locations at
which the ride requestor is picked up and dropped off, music
the ride requestor likes to listen to, traffic information
associated with the rides, time of day the ride requestor most
often rides, and any other suitable information specific to the
ride requestor. As another example, historical data associ-
ated with a category/class of ride requestors may include
common or popular ride preferences of ride requestors in
that category/class, such as teenagers preferring pop music,
ride requestors who frequently commute to the financial
district may prefer to listen to the news, etc. As yet another
example, historical data associated with all ride requestors
may include general usage trends, such as traffic and ride
patterns.

Using such historical data, transportation request man-
agement system 1401 could be configured to predict and
provide ride suggestions in response to a ride request. For
instance, transportation request management system 1401
may be configured to apply one or more machine-learning
techniques to such historical data in order to “train” a
machine-learning model to predict ride suggestions for a
ride request. In this respect, the one or more machine-
learning techniques used to train such a machine-learning
model may take any of various forms, examples of which
may include a regression technique, a neural-network tech-
nique, a k-Nearest Neighbor (kNN) technique, a decision-
tree technique, a support-vector-machines (SVM) technique,
a Bayesian technique, an ensemble technique, a clustering
technique, an association-rule-learning technique, and/or a
dimensionality-reduction technique, among other possibili-
ties.

In operation, transportation request management system
1401 may only be capable of storing and later accessing
historical data for a given ride requestor if the given ride
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requestor previously decided to “opt-in” to having such
information stored. In this respect, transportation request
management system 1401 may maintain respective privacy
settings for each ride requestor that uses transportation
matching platform 1400 and operate in accordance with
these settings. For instance, if a given ride requestor did not
opt-in to having his or her information stored, then trans-
portation request management system 1401 may forgo per-
forming any of the above-mentioned functions based on
historical data. Other possibilities also exist.

Transportation request management system 1401 may be
configured to perform various other functions related to
managing and facilitating transportation matching as well.

Referring again to FIG. 14, client station 1402 of ride
requestor 1403 may generally comprise any computing
device that is configured to facilitate interaction between
ride requestor 1403 and transportation request management
system 1401. For instance, client station 1402 may take the
form of a smartphone, a tablet, a desktop computer, a laptop,
a netbook, and/or a PDA, among other possibilities. Each
such device may comprise an 1/O interface, a communica-
tion interface, a GNSS unit such as a GPS unit, at least one
processor, data storage, and executable program instructions
for facilitating interaction between ride requestor 1403 and
transportation request management system 1401 (which
may be embodied in the form of a software application, such
as a mobile application, web application, or the like). In this
respect, the interaction that may take place between ride
requestor 1403 and transportation request management sys-
tem 1401 may take various forms, representative examples
of which may include requests by ride requestor 1403 for
new rides, confirmations by transportation request manage-
ment system 1401 that ride requestor 1403 has been matched
with a vehicle (e.g., vehicle 1404), and updates by trans-
portation request management system 1401 regarding the
progress of the ride, among other possibilities.

In turn, vehicle 1404 may generally comprise any vehicle
that is equipped with autonomous technology, and in one
example, may take the form of vehicle 1310 described
above. Further, the functionality carried out by vehicle 1404
as part of transportation matching platform 1400 may take
various forms, representative examples of which may
include receiving a request from transportation request man-
agement system 1401 to handle a new ride, autonomously
driving to a specified pickup location for a ride, autono-
mously driving from a specified pickup location to a speci-
fied drop-off location for a ride, and providing updates
regarding the progress of a ride to transportation request
management system 1401, among other possibilities.

Generally speaking, third-party system 1405 may include
one or more computing systems that collectively comprise a
communication interface, at least one processor, data stor-
age, and executable program instructions for carrying out
functions related to a third-party subservice that facilitates
the platform’s transportation matching. These one or more
computing systems may take various forms and may be
arranged in various manners, such as any one of the forms
and/or arrangements discussed above with reference to
transportation request management system 1401.

Moreover, third-party system 1405 may be configured to
perform functions related to various subservices. For
instance, as one possibility, third-party system 1405 may be
configured to monitor traffic conditions and provide traffic
data to transportation request management system 1401
and/or vehicle 1404, which may be used for a variety of
purposes. For example, transportation request management
system 1401 may use such data to facilitate fulfilling ride
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requests in the first instance and/or updating the progress of
initiated rides, and vehicle 1404 may use such data to
facilitate updating certain predictions regarding perceived
agents and/or the vehicle’s behavior plan, among other
possibilities.

As another possibility, third-party system 1405 may be
configured to monitor weather conditions and provide
weather data to transportation request management system
1401 and/or vehicle 1404, which may be used for a variety
of purposes. For example, transportation request manage-
ment system 1401 may use such data to facilitate fulfilling
ride requests in the first instance and/or updating the prog-
ress of initiated rides, and vehicle 1404 may use such data
to facilitate updating certain predictions regarding perceived
agents and/or the vehicle’s behavior plan, among other
possibilities.

As yet another possibility, third-party system 1405 may be
configured to authorize and process electronic payments for
ride requests. For example, after ride requestor 1403 submits
a request for a new ride via client station 1402, third-party
system 1405 may be configured to confirm that an electronic
payment method for ride requestor 1403 is valid and autho-
rized and then inform transportation request management
system 1401 of this confirmation, which may cause trans-
portation request management system 1401 to dispatch
vehicle 1404 to pick up ride requestor 1403. After receiving
a notification that the ride is complete, third-party system
1405 may then charge the authorized electronic payment
method for ride requestor 1403 according to the fare for the
ride. Other possibilities also exist.

Third-party system 1405 may be configured to perform
various other functions related to subservices that facilitate
the platform’s transportation matching as well. It should be
understood that, although certain functions were discussed
as being performed by third-party system 1405, some or all
of these functions may instead be performed by transporta-
tion request management system 801.

As discussed above, transportation request management
system 1401 may be communicatively coupled to client
station 1402, vehicle 1404, and third-party system 1405 via
communication network 1406, which may take various
forms. For instance, at a high level, communication network
1406 may include one or more Wide-Area Networks
(WANS) (e.g., the Internet or a cellular network), Local-Area
Networks (LANs), and/or Personal Area Networks (PANs),
among other possibilities, where each such network may be
wired and/or wireless and may carry data according to any
of various different communication protocols. Further, it
should be understood that the respective communication
paths between the various entities of FIG. 14 may take other
forms as well, including the possibility that such commu-
nication paths include communication links and/or interme-
diate devices that are not shown.

In the foregoing arrangement, client station 1402, vehicle
1404, and/or third-party system 1405 may also be capable of
indirectly communicating with one another via transporta-
tion request management system 1401. Additionally,
although not shown, it is possible that client station 1402,
vehicle 1404, and/or third-party system 1405 may be con-
figured to communicate directly with one another as well
(e.g., via a short-range wireless communication path or the
like). Further, vehicle 1404 may also include a user-interface
system that may facilitate direct interaction between ride
requestor 1403 and vehicle 1404 once ride requestor 1403
enters vehicle 1404 and the ride begins.
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It should be understood that transportation matching
platform 1400 may include various other entities and take
various other forms as well.

FIG. 15 depicts a simplified block diagram of certain
structural details of a computing system 1500 that may be
configured to perform the some or all of the functions
described above with reference to FIGS. 5A, 5B, 10, and 12.
In example embodiments, computing system 1500 may take
the form of a remote platform, such as a cloud-computing
system or the like. In practice, computing system 1500 may
include one or more computing systems (e.g., one or more
servers, one or more mainframe computers, one or more
desktop computers, etc.) that collectively include at least one
processor 1501, data storage 1502, and at least one com-
munication interface 1503, where such components may be
communicatively connected by link 1504 that may take the
form of a system bus, communication network, or some
other connection mechanism. Each of these components
may take various forms.

For instance, processor 1501 may comprise one or more
processor components, each of which may take the form of
a general-purpose processor (e.g., a microprocessor), a spe-
cial-purpose processor (e.g., an application-specific inte-
grated circuit, a digital signal processor, a graphics process-
ing unit, a vision processing unit, etc.), a programmable
logic device (e.g., a field-programmable gate array), or a
controller (e.g., a microcontroller), among other possibili-
ties.

Moreover, data storage 1502 may comprise one or more
non-transitory computer-readable mediums, each of which
may take the form of a volatile medium (e.g., random-access
memory, a register, a cache, a buffer, etc.) or a non-volatile
medium (e.g., read-only memory, a hard-disk drive, a solid-
state drive, flash memory, an optical disk, etc.). In line with
the discussion above, it should also be understood that data
storage 1502 may comprise computer-readable storage
mediums that are distributed across a plurality of physical
computing devices connected via a network, such as a
storage cluster of a public, private, or hybrid cloud that
operates according to technologies such as AWS for Elastic
Compute Cloud, Simple Storage Service, etc.

As shown in FIG. 15, data storage 1502 may be capable
of storing both (i) program instructions (e.g., software) that
are executable by processor 1501 such that computing
system 1500 is capable of performing various functions
related to deriving agent trajectories based on mono and/or
stereo images (among other possible functions), and (ii) data
that may be obtained, derived, or otherwise stored by
computing system 1500.

Further yet, communication interface 1503 may take the
form of any one or more interfaces that facilitate commu-
nication with other local systems and/or remote computing
systems (e.g., a vehicle that captured various mono and/or
stereo images), among other possibilities. In this respect,
each such interface may be wired and/or wireless and may
communicate according to any of various communication
protocols, examples of which may include Ethernet, Wi-Fi,
Controller Area Network (CAN) bus, serial bus (e.g., Uni-
versal Serial Bus (USB) or Firewire), cellular network,
and/or short-range wireless protocols.

Although not shown, computing system 1500 may addi-
tionally include one or more input/output (I/O) interfaces
that are configured to either (i) receive and/or capture
information at computing system 1500 and (ii) output infor-
mation from computing system 1500 (e.g., for presentation
to a user). In this respect, the one or more 1/O interfaces may
include or provide connectivity to input components such as
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a microphone, a camera, a keyboard, a mouse, a trackpad, a
touchscreen, and/or a stylus, among other possibilities, as
well as output components such as a display screen and/or
an audio speaker, among other possibilities.

It should be understood that computing system 1500 may
include various other components and take various other
forms as well.

CONCLUSION

This disclosure makes reference to the accompanying
figures and several example embodiments. One of ordinary
skill in the art should understand that such references are for
the purpose of explanation only and are therefore not meant
to be limiting. Part or all of the disclosed systems, devices,
and methods may be rearranged, combined, added to, and/or
removed in a variety of manners without departing from the
true scope and sprit of the present invention, which will be
defined by the claims.

Further, to the extent that examples described herein
involve operations performed or initiated by actors, such as
“humans,” “curators,” “users” or other entities, this is for
purposes of example and explanation only. The claims
should not be construed as requiring action by such actors
unless explicitly recited in the claim language.

2 <

We claim:

1. A computer-implemented method comprising:

receiving a sequence of images captured by a camera

associated with a vehicle, wherein each image was
captured at a respective capture time during a period of
operation of the vehicle;

for each respective image in at least a subset of images in

the sequence in which a given agent is detected:

generating a respective pixel mask that identifies a
boundary of the given agent within the respective
image and distinguishes the given agent from any
other agent appearing within the respective image;

identifying, as a respective tracking point for the given
agent within the respective image, at least one given
pixel within the respective pixel mask that is repre-
sentative of an estimated intersection point between
the given agent and a ground plane within the
vehicle’s surrounding environment; and

based on the respective tracking point for the given
agent within the respective image and information
regarding the ground plane within the vehicle’s
surrounding environment, determining a position of
the given agent at the respective capture time of the
respective image; and

determining a trajectory for the given agent based on the

determined positions of the given agent.

2. The computer-implemented method of claim 1,
wherein the given agent was partially occluded in one or
more images in the subset of images.

3. The computer-implemented method of claim 2,
wherein, for each respective image in the subset of images
in which the given agent was partially occluded, (i) the
respective pixel mask for the given agent is still generated
and delineates a visible portion of the given agent within the
respective image, (ii) the at least one given pixel within the
respective pixel mask is still identified as a respective
tracking point for the given agent within the respective
image, and (iii) the position of the given agent at the
respective capture time of the respective image is still
determined based on the respective tracking point despite
the given agent being partially occluded within the respec-
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tive image, wherein the determined position is subsequently
used to determine the trajectory for the given agent.

4. The computer-implemented method of claim 1,
wherein the given agent is fully occluded in one or more
images in the sequence of images such that there are one or
more time gaps in the determined positions for the given
agent, and wherein determining the trajectory for the given
agent based on the determined positions the given agent
comprises:

inferring a position of the given agent for each of the one

or more time gaps based on other determined positions
of the given agent.

5. The computer-implemented method of claim 1,
wherein determining the trajectory for the given agent based
on the determined positions of the given agent comprises:

identifying one or more determined positions of the given

agent that are inconsistent with physical constraints on
the given agent’s real-world movement; and

updating the identified one or more determined positions

of the given agent to account for the physical con-
straints on the given agent’s real-world movement.

6. The computer-implemented method of claim 1,
wherein identifying, as the respective tracking point for the
given agent within a given respective image in the subset of
images, the at least one given pixel within the respective
pixel mask that is representative of the estimated intersec-
tion point between the given agent and the ground plane
within the vehicle’s surrounding environment comprises:

identifying, as the respective tracking point for the given

agent within the given respective image, a pixel within
the respective pixel mask that is closest to a bottom of
the given respective image, wherein the identified pixel
is then used as a basis for determining the position of
the given agent at the respective capture time of the
given respective image.

7. The computer-implemented method of claim 1,
wherein identifying, as the respective tracking point for the
given agent within a given respective image in the subset of
images, the at least one given pixel within the respective
pixel mask that is representative of the estimated intersec-
tion point between the given agent and a ground plane within
the vehicle’s surrounding environment comprises:

identifying a ground feature within the given respective

image;
identifying one or more pixels within the respective pixel
mask that are adjacent to the ground feature; and

identifying, from the one or more pixels that are identified
as being adjacent to the ground feature, at least one
pixel that is closest to a bottom of the given respective
image, wherein the identified at least one pixel is then
used as a basis for determining the position of the given
agent at the respective capture time of the given respec-
tive image.

8. The computer-implemented method of claim 1,
wherein determining the position of the given agent at the
respective capture time of a given respective image in the
subset of images based on the respective tracking point for
the given agent within the respective image and information
regarding the ground plane within the vehicle’s surrounding
environment comprises:

determining an association between the respective track-

ing point for the given agent within the given respective
image and a given ground point within the vehicle’s
surrounding environment;

determining a three-dimensional (3D) position of the

given ground point using a ground map that provides
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information regarding a 3D geospatial geometry of the
ground plane within the vehicle’s surrounding environ-
ment; and

using the determined 3D position of the given ground

point to determine a 3D position of the given agent at
the respective capture time of the given respective
image.

9. The computer-implemented method of claim 8,
wherein determining the association between the respective
tracking point for the given agent within the respective
image and the given ground point within the vehicle’s
surrounding environment comprises:

casting a ray from the camera through the respective

tracking point for the given agent within the respective
image to the ground plane for the vehicle’s surrounding
environment; and

based on an angle of the cast ray and the ground map,

determining that the cast ray intersects with the ground
plane at the given ground point.

10. The computer-implemented method of claim 8,
wherein using the determined 3D position of the given
ground point to determine the 3D position of the given agent
at the respective capture time of the respective image
comprises:

translating the determined 3D position of the given

ground point to an estimated center point of the given
agent using information regarding physical dimensions
of the given agent.

11. The computer-implemented method of claim 1,
wherein determining the trajectory for the given agent based
on the determined positions of the given agent comprises:

inputting the determined positions for the given agent into

a motion model that encodes knowledge regarding
physical constraints on the given agent’s real-world
behavior, wherein the motion model corrects for miss-
ing or errant position information; and

determining the trajectory for the given agent based on the

motion model’s output.

12. A non-transitory computer-readable medium compris-
ing program instructions stored thereon that, when executed
by at least one processor of a computing system, cause the
computing system to perform functions comprising:

receiving a sequence of images captured by a camera

associated with a vehicle, wherein each image was
captured at a respective capture time during a period of
operation of the vehicle;

for each respective image in at least a subset of images in

the sequence in which a given agent is detected:

generating a respective pixel mask that identifies a
boundary of the given agent within the respective
image and distinguishes the given agent from any
other agent appearing within the respective image;

identifying, as a respective tracking point for the given
agent within the respective image, at least one given
pixel within the respective pixel mask that is repre-
sentative of an estimated intersection point between
the given agent and a ground plane within the
vehicle’s surrounding environment; and

based on the respective tracking point for the given
agent within the respective image and information
regarding the ground plane within the vehicle’s
surrounding environment, determining a position of
the given agent at the respective capture time of the
respective image; and

determining a trajectory for the given agent based on the

determined positions of the given agent.
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13. The non-transitory computer-readable medium of
claim 12, wherein the given agent was partially occluded in
one or more images in the subset of images.

14. The non-transitory computer-readable medium of
claim 13, wherein, for each respective image in the subset of
images in which the given agent was partially occluded, (i)
the respective pixel mask for the given agent is still gener-
ated and delineates a visible portion of the given agent
within the respective image, (ii) the at least one given pixel
within the respective pixel mask is still identified as the
respective tracking point for the given agent within the
respective image, and (iii) the position of the given agent at
the respective capture time of the respective image is still
determined based on the respective tracking point despite
the given agent being partially occluded within the respec-
tive image, wherein the determined position is subsequently
used to determine the trajectory for the given agent.

15. The non-transitory computer-readable medium of
claim 12, wherein the given agent is fully occluded in one
or more images in the sequence of images such that there are
one or more time gaps in the determined positions for the
given agent, and wherein determining the trajectory for the
given agent based on the determined positions the given
agent comprises:

inferring a position of the given agent for each of the one

or more time gaps based on other determined positions
of the given agent.

16. The non-transitory computer-readable medium of
claim 12, wherein determining the trajectory for the given
agent based on the determined positions of the given agent
comprises:

identifying one or more determined positions of the given

agent that are inconsistent with physical constraints on
the given agent’s real-world movement; and

updating the identified one or more determined positions

of the given agent to account for the physical con-
straints on the given agent’s real-world movement.

17. The non-transitory computer-readable medium of
claim 12, wherein identifying, as the respective tracking
point for the given agent within a given respective image in
the subset of images, the at least one given pixel within the
respective pixel mask that is representative of the estimated
intersection point between the given agent and the ground
plane within the vehicle’s surrounding environment com-
prises:

identifying, as the respective tracking point for the given

agent within the given respective image, a pixel within
the respective pixel mask that is closest to a bottom of
the given respective image, wherein the identified pixel
is then used as a basis for determining a position of the
given agent at the respective capture time of the given
respective image.

18. The non-transitory computer-readable medium of
claim 12, wherein identifying, as the respective tracking
point for the given agent within a given respective image in
the subset of images, the at least one given pixel within the
respective pixel mask that is representative of the estimated
intersection point between the given agent and the ground
plane within the vehicle’s surrounding environment com-
prises:

identifying a ground feature within the given respective

image;

identifying one or more pixels within the respective pixel

mask that are adjacent to the ground feature; and
identifying, from the one or more pixels that are identified

as being adjacent to the ground feature, at least one

pixel that is closest to a bottom of the given respective
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image, wherein the identified at least one pixel is then
used as a basis for determining the position of the given
agent at the respective capture time of the given respec-
tive image.

19. The non-transitory computer-readable medium of
claim 12, wherein determining the position of the given
agent at the respective capture time of a given respective
image in the subset of images based on the respective
tracking point for the given agent within the respective
image and information regarding the ground plane within
the vehicle’s surrounding environment comprises:

determining an association between the respective track-

ing point for the given agent within the given respective
image and a given ground point within the vehicle’s
surrounding environment;

determining a three-dimensional (3D) position of the

given ground point using a ground map that provides
information regarding a 3D geospatial geometry of the
ground plane within the vehicle’s surrounding environ-
ment; and

using the determined 3D position of the given ground

point to determine a 3D position of the given agent at
the respective capture time of the given respective
image.

20. A computing system comprising:

at least one processor;

a non-transitory computer-readable medium; and
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program instructions stored on the non-transitory com-

puter-readable medium that are executable by the at
least one processor such that the computing system is
configured to:
receive a sequence of images captured by a camera
associated with a vehicle, wherein each image was
captured at a respective capture time during a period
of operation of the vehicle;
for each respective image in at least a subset of images
in the sequence in which a given agent is detected:
generate a respective pixel mask that identifies a
boundary of the given agent within the respective
image and distinguishes the given agent from any
other agent appearing within the respective image;
identify, as a respective tracking point for the given
agent within the respective image, at least one
given pixel within the respective pixel mask that is
representative of an estimated intersection point
between the given agent and a ground plane within
the vehicle’s surrounding environment; and
based on the respective tracking point for the given
agent within the respective image and information
regarding the ground plane within the vehicle’s
surrounding environment, determine a position of
the given agent at the respective capture time of
the respective image; and
determine a trajectory for the given agent based on the
determined positions of the given agent.
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