US 20190310937A1

a2y Patent Application Publication o) Pub. No.: US 2019/0310937 A1

a9y United States

BACHMUTSKY et al.

43) Pub. Date: Oct. 10, 2019

(54) TECHNIQUES TO FACILITATE A
HARDWARE BASED TABLE LOOKUP

(71) Applicant: Intel Corporation, Santa Clara, CA
(US)

(72) Inventors: Alexander BACHMUTSKY,

Sunnyvale, CA (US); Raghu

KONDAPALLIL San Jose, CA (US);

Francesc GUIM BERNAT, Barcelona

(ES)

(21) Appl. No.: 16/452,173

(22) Filed: Jun. 25, 2019

Publication Classification

(51) Int. CL
GOGF 12/06 (2006.01)
(52) US.CL
CPC ... GOGF 12/06 (2013.01); GO6F 2212/1024
(2013.01)
(57) ABSTRACT

Techniques to facilitate a hardware based table look of a
table maintained in or more types of memories or memory
domains include examples of receiving a search request
forwarded from a queue management device. Examples also
include implementing table lookups to obtain a result and
sending the result to an output queue of the queue manage-
ment device for the queue management device to forward
the result to a requestor of the search request.

System 100
Memory Domains 110
Mcmory 112 Memory 114 Memory 116
€ —— —
y
Lookup Circuitry 120
A
HQM 130 Config.
3 Y Circuitry
|H|er1rch1ml Scheduled Requests I3J| Schedule eoo Output 105
Logic Qucucs )
% 132 136 |———~-
Input
Qllw’je{ Sch’d Results {'Z/ /ﬂ EH ” ‘ | | | |

D

, /

Hicrarchical
Search

Search Requestor

s 140

Accelerators
150




I 'OIAd

0¢1 F1 s103sanbay yoavag
SIOJRIJ[OI0Y —— =
P NETEIL
DIed eIy Lot il
yoress ppi sty ‘eayuy D

[eoTyOIeISTH HE u\ll‘

[ T~ <

US 2019/0310937 Al

o V/
o
S
)
o
= R 777277777 ¢ smsad puss
_m A -
wn -~ ——pei 9] Tet
o sanang) 21307
— sO1 mdingQ o0 SMpaYRS _mmﬁ sisonbay[ po[npayds EQEQSEE_
m Ao T ¥ §F T % 1 I §T F L—
= ‘Sguo) 0¢T WOH
o
+ y
3]
o 07T Anmoar) dnyjoory

/S Y S f

Y Y v R A |

L3 P1quL SHESuE
I 'v :
OTT ATOWON] FTT Atowopy TIT Asowopy
011 SuIBmOf AI0WdA

00] WIISAS

Patent Application Publication



Patent Application Publication  Oct. 10,2019 Sheet 2 of 16 US 2019/0310937 A1

Configuration Circuitry 105
Table Queue
Config. Config.
Logic Logic
210 220
Scheduler
Config.
Logic
230

FIG. 2

Lookup Circuitry 120

Lookup Logic Load Balancing and Policy
310 Enforcement Logic
320
HQM Result Processing Memory
Interface Logic Interface(s)
303 330 305

FIG. 3



Patent Application Publication  Oct. 10,2019 Sheet 3 of 16 US 2019/0310937 A1

HQM 130

\
— Q) on <t g 2
B 5 8 ks o o Buffers
SIS |53 El L] (a0
m m m [aa)] = A

m
S
Schedule Logic 132
Enqueue Logic 420 Dequeue Logic 430

Internal Storage Unit
440

FIG. 4



Patent Application Publication

Core
310

Core
308

Oct. 10,2019 Sheet 4 of 16

System 500
Core
512
Ring 502
L3
Cache
306

FIG. 5

Core 514

Config.
Circuitry
105

HQM
130

Lookup

Circuitry [em——

120

US 2019/0310937 Al

Mem.
Domains
10

A




Patent Application Publication  Oct. 10,2019 Sheet S of 16
Request Format 60
Key Value RequestID ResultQ
610 620 630
FIG. 6
Table Entry Format 700
Key Value Result OutQ Result Type
710 720 730 740
-~ - /
-~ /
- /
P /
g /
- /
- /

P — — — v — — — — — — — — — — — —

00 — Requestor Specific

02 — Callback Pointer
03 — Data Pointer

I
I
I 01 — Next Key for Compound Search
I
I
I

US 2019/0310937 Al




US 2019/0310937 Al

Oct. 10, 2019 Sheet 6 of 16

Patent Application Publication

& OIA

©

A

-

©

sysanboy yoresg

D

-

so1o1[0d
S[nNpayos onany) 10§

@

senong) ‘Syuo)

©

911 "W

LT 91qBL 9e01)

@

PIT WO

d

S11 2Iqe.L a1eal)

{ T wop )

( 0€1 WOH )

D08 Ss¥%04g

E11 21qeL 921D

"OJu “JuOD) onang)

L

ol

s101sonbay

QLB




US 2019/0310937 Al

Oct. 10,2019 Sheet 7 of 16

Patent Application Publication

6 ‘OIA

@9

NSy

1NSTY PIBMIO]

€9

&9

NSy [ampayos

nsoy

D

>
jnsoy

)

NS pueg

©

$800014

((zir wop )

dnxooT 21qeL

1sonbay

@9
$S00I g

-

-

150nbay premioyg Q

006 SS9%04

IEERGEN] EIENES

®

-

s

159nbay yoreog

( 0€1 WOH )

$82301d

(1-zp1 ddy )



US 2019/0310937 Al

Oct. 10,2019 Sheet 8 of 16

Patent Application Publication

01 'OIA

Qo

@y

TINSoy |550001g

D)

NSOy | 9[npayos

o

Jnsay

D)

@

nsay >

< dnyo0] S[qE].

D)

Jnsoy

« GO

>

1Sy

7 dnyjoory 9[qe].

Jnsoy

€ :

ISy
)

dnzjoor] 9[qeL

Jsanboy

JNS3Y pusg o

)

O: AEQEU Q: ,EQEU Q: ASoEv

0001 SSd%0.4g

1sonboy premiog @

1sonbay | S[payog

JNSOY PIEMIO]

@

-

-

{ 0¢1 WOH )

Jsonboy yoreag

(1-Tp1 ddy )



I'1 ‘O
D)

@ JNSTY [ SS000Id

@ nsoy pueg >
TINS5 d] 559001 @

-
YNSY PIEMIO] @

Jnsoy fonpayos

NSy puog

US 2019/0310937 Al

-

@

Jnsay| ssevoid

@

ynsoy o

€D

dnsjoo7 o[qeL

Oct. 10,2019 Sheet 9 of 16

1sonbay] | ssao001d g

-
1sonbay premiog @

1sonbay | o[npayog

@

15anbay] yoreog

( 06T WOH ) {1-zp1 "ddy )

B

(0c1 102V ) (111 wop )

0011 SS3%04qg

Patent Application Publication



Patent Application Publication  Oct. 10,2019 Sheet 10 of 16

Apparatus 1200

Search
[Request ]2]0} { Results 1215 }

{ A
i
P

—

US 2019/0310937 Al

Queue Management Device Interface
1203
{ ! E
[ Circuitry 1220
Receive Logic Table Lookup Logic
1222-1 1222-2
Result Logic Send Logic
1222-3 1222-4
gL AN
/ |
£ |
Memory Interface(s)
1205
Table
Lookup Results 1235
1230

FIG. 12



Patent Application Publication  Oct. 10,2019 Sheet 11 of 16  US 2019/0310937 A1l

1300

QUEUE MANAGEMENT DEVICE

RECEIVE A SEARCH REQUEST FORWARDED FROM AN INPUT QUEUE OF 4
1302

IMPLEMENT A TABLE LOOKUP OF A TABLE MAINTAINED IN A MEMORY
DOMAIN HAVING A GROUPING OF MEMORY ADDRESSES, THE TABLE
LOOKUP IMPLEMENTED BASED ON A KEY VALUE INDICATED IN THE

SEARCH REQUEST
1304

VALUE INDICATED IN THE SEARCH REQUEST MATCHING A KEY VALUE
INDICATED IN THE ENTRY OF THE TABLE
1306

SEND THE RESULT TO A REQUESTOR FOR THE SEARCH REQUEST BY
SENDING THE RESULT TO AN OUTPUT QUEUE OF THE QUEUE
MANAGEMENT DEVICE, WHEREIN THE QUEUE MANAGEMENT DEVICE IS
ARRANGED TO FORWARD THE RESULT TO THE REQUESTOR FROM THE
QUTPUT QUEUE
1308

[ OBTAIN A RESULT FROM AN ENTRY OF THE TABLE BASED ON THE KEY }

FIG. 13



Patent Application Publication  Oct. 10,2019 Sheet 12 of 16  US 2019/0310937 A1l

Storage Medium 1400

Computer Executable
Instructions for 1300

FIG. 14



Patent Application Publication  Oct. 10,2019 Sheet 13 of 16  US 2019/0310937 A1l

Apparatus 1500

Table Info. [ Queue Info. } [ Policy Info. }

1505 1510 1515
JT i JT
( Circuitry 1520 ]
( Receive Logic 1 ( Table Logic )
1522-1 1522-2
( Queue Logic 1 ( Send Logic )
1522-3 1522-4
Scheduler Logic
1522-5
L JL |
N N\
Table Queue Schedule Queue
Creation Config. Logic Config.
1530 1535 Config. Info. 1545
1540

FIG. 15



Patent Application Publication  Oct. 10,2019 Sheet 14 of 16  US 2019/0310937 A1l

1600

[ RECEIVE TABLE INFORMATION TO CREATE A TABLE TO BE MAINTAINED IN A j

MEMORY DOMAIN HAVING A GROUPING OF MEMORY ADDRESSES
1602

CAUSE THE TABLE TO BE CREATED IN THE MEMORY DOMAIN SUCH THAT THE )
TABLE INCLUDES A PLURALITY OF TABLE ENTRIES THAT INCLUDE A KEY VALUE, A
RESULT, OR A RESULT TYPE, THE TABLE ACCESSIBLE TO LOOKUP CIRCUITRY

1604 )

RECEIVE QUEUE INFORMATION TO CONFIGURE QUEUES OF A QUEUE )
MANAGEMENT DEVICE, THE QUEUE MANAGEMENT DEVICE HAVING INPUT
QUEUES T0 RECEIVE SEARCH REQUESTS TO CAUSE THE TABLE LOOKUP OF THE
TABLE BY THE LOOKUP CIRCUITRY AND HAVING OUTPUT QUEULS 10 RECEIVE
RESULTS OF THE TABLE LOOKUP
1606 J

CAUSE THE QUEUES OF THE QUEUE MANAGEMENT DEVICE TO BE CONFIGURED
BASED ON THE QUEUE INFORMATION
1608

SEND QUEUE CONFIGURATION INFORMATION TO ONE OR MORE REQUESTORS OF
THE SEARCH REQUESTS, THE QUEUE CONFIGURATION INFORMATION 10O IDENTIFY
THE INPUT QUEUES OF THE QUEUE MANAGEMENT DEVICE TO RECEIVE THE
SEARCH REQUESTS TO CAUSE THE LOOKUP OF THE TABLE BY THE LOOKUP
CIRCUITRY
1610

(" RECEIVE SCHEDULE INFORMATION 10 CONFIGURE SCHEDULE LOGIC AT THE )
QUEUE MANAGEMENT DEVICE TO SCHEDULE THE SEARCH REQUESTS RECEIVED

IN THE INPUT QUEUES OF THE QUEUE MANAGEMENT DEVICE
\ 1612

(" CAUSE THE SCHEDULE LOGIC TO BE CONFIGURED BASED ON THE SCHEDULE )
INFORMATION
N 1614

/

J

FIG. 16



Patent Application Publication  Oct. 10,2019 Sheet 15 of 16  US 2019/0310937 A1l

Storage Medium 1700

Computer Executable
Instructions for 1600

FIG. 17



Patent Application Publication  Oct. 10,2019 Sheet 16 of 16  US 2019/0310937 A1l

Computing Platform 1800
Processing Component Other
1840 Platform
;‘ ————————————————— | Components
_ Apparatus 120071500 | 1850
:— T Sl?)r_aée_ Medium 1| Communications
| 14001700 _ _ __ _ } Interface
1860

FIG. 18



US 2019/0310937 Al

TECHNIQUES TO FACILITATE A
HARDWARE BASED TABLE LOOKUP

TECHNICAL FIELD

[0001] Descriptions are generally related to techniques to
facilitate a hardware based table lookup of tables maintained
in one or more types of memory or memory domains.

BACKGROUND

[0002] Core-to-core (“C2C”) communication is critical in
many computer applications today such as packet process-
ing, high-performance computing, machine learning, and
data center/cloud workloads associated with execution of
one or more applications. In chip multi-processor (“CMP”)
architectures, as the number of cores increases, C2C com-
munication often becomes a limiting factor for performance
scaling when workloads share data. On a general purpose
platform, shared memory space between cores is often
employed to realize efficient C2C communication. However,
the need to carefully manage the shared memory space by
software, together with the increase in hardware coherency
traffic, tend to incur significant overhead. As a result, CPU
cores and network-on-chip (“NoC”) designs that share
coherent caches typically experience substantially longer
latency and higher data traffic, while expending considerable
resources to carry-out communication-related work. This
keeps CPU cores and NoCs from performing their intended
data processing tasks without adding an undesirable amount
of processing latency.

[0003] In general, software queues such as the classic
Lamport algorithm are commonly used on CMP platforms to
enable C2C communication. There are three types of over-
head generated in these types of traditional software queues.
The first type of overhead includes cycles consumed by
queue structure maintenance and synchronization, as well as
by flow control and management of shared memory. This
first type of overhead may be referred to as control plane
overhead. The second type of overhead includes cycles spent
on moving of data from one core to another. This second
type of overhead may be referred to as data plane overhead.
The third type of overhead includes the timely and fair
scheduling of corresponding communicating entities (in-
cluding saving/restoring the required contexts) on sending
and receiving cores. This third type may be referred to as
scheduling overhead. The sum of control plane, data plane
and scheduling overhead may equate to a total overhead
required to transfer data across cores.

[0004] A solution to address high amounts of overhead
associated with software queues is to eliminate use of
software queues on CMP platforms and instead utilize
hardware based queue management devices. These hard-
ware based queue management devices may be referred to as
hardware queue managers “HQMs” and also may be
referred to as queue management devices (“QMDs”). Use of
HQMs or QMDs for C2C communications may assist in
reducing control plane, data plane and in some implemen-
tations even scheduling overhead as compared to use of
software queues for C2C communications. In some
examples, HQMs or QMDs may be arranged to assist in
managing queues arranged to temporarily maintain data
units. The data units may be data consumed or produced by
applications executed on separate cores and then transferred
between the separate cores via input/ingress queues and

Oct. 10, 2019

output/egress queues. HQMs or QMDs may have an internal
memory arranged to support these input/ingress queues and
output/egress queues.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 illustrates an example first system.

[0006] FIG. 2 illustrates an example of configuration
circuitry.

[0007] FIG. 3 illustrates an example of lookup circuitry.
[0008] FIG. 4 illustrates an example of a hardware queue
manager.

[0009] FIG. 5 illustrates an example second system.
[0010] FIG. 6 illustrates an example request format.
[0011] FIG. 7 illustrates an example table entry format.
[0012] FIG. 8 illustrates an example first process.

[0013] FIG. 9 illustrates an example second process.
[0014] FIG. 10 illustrates an example third process.
[0015] FIG. 11 illustrates an example fourth process.
[0016] FIG. 12 illustrates an example first apparatus.
[0017] FIG. 13 illustrates an example first logic flow.
[0018] FIG. 14 illustrates an example first storage
medium.

[0019] FIG. 15 illustrates an example second apparatus.
[0020] FIG. 16 illustrates an example second logic flow.
[0021] FIG. 17 illustrates an example second storage
medium.

[0022] FIG. 18 illustrates an example computing platform.

DETAILED DESCRIPTION

[0023] As mentioned in this disclosure, HQMs or QMDs
may have an internal memory arranged to support input/
ingress queues and output/egress queues. The internal
memory is typically sized to hold a few thousand table
entries to support these queues. In some examples, it may be
desirable to integrate hardware (at least operationally) based
table lookup logic with an HQM or QMD to enable an
application executed by a core or a hardware block of a core
(e.g., a field programmable gate array (FPGA) based accel-
erator) to request table lookups or searches of a multitude of
tables. The multitude of tables may collectively have mil-
lions of table entries via which the hardware based table
lookup logic may search and provide results to the request-
ing application or hardware block or even HQM or QMD to
increase the accessible table sizes or lookup types (hash,
(content address memory (CAM), ternary CAM (TCAM),
tree, etc.) for their internal decision making. These millions
of searchable table entries and different lookup types by the
hardware based table lookup logic may be possible via an
integration of the table lookup logic with an HQM or QMD.
As aresult of this integration, an amount of table entries and
lookup types for hardware based table lookups may be
exponentially expanded compared to using only an HQM or
QMD for hardware based table lookups.

[0024] FIG. 1 illustrates an example system 100. In some
examples, as shown in FIG. 1, system 100 may include
configuration circuitry 105, memory domains 110, lookup
circuitry 120, a hardware queue manager (HQM) 130,
search requestors 140, or hierarchical search accelerator(s)
150. Configuration circuitry 105 may include logic and/or
features to enable a control plane access (e.g., to a user or
operator) to configure tables accessible to lookup circuitry
120 and maintained in memory domains 110 and to also
configure at least some resources of HQM 130 (e.g., queues



US 2019/0310937 Al

and/or scheduler logic). As described in more detail below,
configuration of these tables and/or resources of HQM 130
may enable lookup circuitry 120 to extend hardware based
queue management capabilities of HQM 130 by signifi-
cantly expanding on a number of table entries and lookup
types that may be searched responsive to a search request.

[0025] According to some examples, as shown in FIG. 1,
memory domains 110 includes memory 112, memory 114
and memory 116. For these examples, memory 112, memory
114 and memory 116 may host or maintain respective tables
113, 115 and 117. For simplicity, the term “table” is used,
this term may represent various searchable data structures
such as, but not limited to, a tree table data structure, a range
table data structure, an array data structure, a link list data
structure, an in-memory data structure (e.g., content address-
able memory (CAM) or ternary CAM (TCAM)) or a stor-
age-based database data structure (e.g., MySQL, Oracle® or
others). Memories 112, 114 or 116 may represent separate
memory domains (e.g., separate groupings of memory
addresses) for a same or a different type of memory. Tables
113, 115 and 117 may includes separate searchable table
entries via which logic and/or features of lookup circuitry
120 may utilize resources of HQM 130 to facilitate search
requests from search requestors 140 to search these tables
and facilitate delivery of results of these search requests. As
shown in FIG. 1, tables 113, 115 and 117 have fill patterns
that match fill patterns of search requestors included in
search requestors 140 to indicate that a given search
requestor is mapped to a given table for searching. For
example, application 142-1 having a diagonal fill pattern is
mapped to table 113 for application 142-1 to search table
113. Examples are not limited to mapping a single requestor
to a single table as shown in FIG. 1. A single requestor may
search multiple tables, and a single table may be searched by
multiple requestors.

[0026] In some examples, tables 113, 115 or 117 may be
a same or different type of searchable table. For example, a
hash table, a TCAM table, a CAM table, a range table, an
array, a link list, a database or a tree table. In some examples,
it may be possible for logic and/or features of configuration
circuitry 105 to map one or more input queues of HQM 130
included in input queues 134 or one or more output queues
of HQM 130 included in output queues 136 to a table from
among tables 113, 115 or 117. Based, at least in part, on this
mapping, a requestor from among requestors 140 may use
multiple queues of HQM 130 to access and receive search
results from multiple tables. For example, application 142-1
may use the queues of output queues 136 pointing to the box
of scheduled search results 137 having the diagonal fill
pattern to receive search results. The scheduled search
results 137, for example, scheduled by logic and/or features
of HQM 130 such as schedule logic 132. In other examples,
more flexible mapping methodologies may allow for arbi-
trary mapping based on flow settings of HQM 130 or may
allow for an explicit table reference by search requestors 140
in their respective lookup or search requests. The search
requests, for example, scheduled for handling by lookup
circuitry 120 through input queues 134 by schedule logic
132 to generate hierarchical scheduled requests 135. Hier-
archical scheduled requests 135 may be scheduled based, at
least in part, on a hierarchy assigned (e.g., by configuration
circuitry 105) to an application, tenant or queue associated
with a search request.

Oct. 10, 2019

[0027] According to some examples, hierarchical search
accelerator(s) 150 may be capable of receiving a portion of
scheduled search results 137 routed through output queues
136 of HQM 130. Different search accelerators from among
hierarchical search accelerator(s) 150 may be distributed
(e.g., to different tables from among tables 113, 115 or 117)
and accessed in parallel, or may be chained to provide extra
levels of a search. For example, access to additional tables
(not shown) maintained in other memory domains than
memory domains 110. These extra levels may be in addition
to compound searches possible via searches involving mul-
tiple tables from among tables 113, 115 or 117. Hierarchical
search accelerator(s) 150 may be another instance of lookup
circuitry 120, an application specific integrated circuit
(ASIC) or an FPGA arranged to facilitate these extra levels
of a search.

[0028] In some examples, hierarchical search accelerator
(s) 150 may create a hardware based search pipeline without
extra intervention from search requestors 140. In other
words, a search request is placed, the search continues
through one or more tables of tables 113, 115 or 117 and then
on to one or more search accelerators of hierarchical search
accelerator(s) 150 via HQM 130. A final result is eventually
reached and sent back to the requestor. For example, in a
deployment of system 100 in a packet processing scenario,
a first search accelerator may be dedicated to media access
control (MAC) lookups or searches, a second search accel-
erator may be dedicated to internet protocol (IP) lookups or
searches, a third search accelerator may be dedicated to layer
4 (L4) lookups or searches, or a fourth search accelerator
may be dedicated to layer 7 (L.7) flow lookups or searches.

[0029] According to some examples, as shown in FIG. 1,
search requestors 140 may include applications 142-1 to
142-N, where “N” represents any whole, positive integer>1,
and infrastructure applications 144. Applications 142-1 to
142-N may be executed by one or more cores of a multi-
processor (CMP) architecture. Similarly, infrastructure may
be executed by one or more cores of the CMP architecture.
In other examples, applications 142-1 to 142-N may be
implemented or executed by hardware logic running on an
ASIC, an FPGA, or a mix of core(s), ASIC(s), and/or
FPGAC(s). Applications 142-1 to 142-N may include, but are
not limited to, applications implemented to support one or
more network functions (e.g., deep packet inspection, virus
detection, data storage management, etc.). Infrastructure
applications 144 may include, but are not limited to, virtual
routers, virtual switches or virtual network interface cards.
As described more below, a requestor such as application
142-1 may submit a search request through HQM 130 to
lookup circuitry 120 to search a table maintained in a
memory of memory domains 110. Depending on a result
type, results of these search requests may be routed back
through HQM 130 to the requestor or possibly routed to
hierarchical search accelerator(s) 150 for one or more addi-
tional table searches that may include results from those
additional searches being sent directly to the requestor.

[0030] Types of memory for which memories 112, 114 or
116 may be included in may include volatile types of
memory such as, but not limited to, random-access memory
(RAM), Dynamic RAM (DRAM), double data rate synchro-
nous dynamic RAM (DDR SDRAM), static random-access
memory (SRAM), ternary content-addressable memory
(TCAM), thyristor RAM (T-RAM) or zero-capacitor RAM
(Z-RAM). Types of memory may also include non-volatile



US 2019/0310937 Al

types of memory such as, but not limited to, single or
multi-level phase change memory (PCM), resistive memory,
nanowire memory, ferroelectric transistor random access
memory (FeTRAM), anti-ferroelectric memory, resistive
memory including a metal oxide base, an oxygen vacancy
base and a conductive bridge random access memory (CB-
RAM), a spintronic magnetic junction memory, a magnetic
tunneling junction (MTJ) memory, a domain wall (DW) and
spin orbit transfer (SOT) memory, a thiristor based memory,
a magnetoresistive random access memory (MRAM) that
incorporates memristor technology, or spin transfer torque
MRAM (STT-MRAM).

[0031] According to some examples, the term “data”, as
used herein, may refer to any type of binary, numeric, voice,
video, textual, or script data, or any type of source or object
code, or any other suitable information in any appropriate
format that may be communicated from one point to another
in a system, electronic devices and/or networks.

[0032] According to some examples, system 100 may be
hosted by or coupled with a server. The server may be a
server for a base transceiver station (BTS), a web server, a
network server, an Internet server, a workstation. In other
examples, system 100 may be hosted by or coupled with a
mini-computer, a main frame computer, a supercomputer, a
network appliance, a web appliance, a distributed computing
system, multiprocessor systems, processor-based systems,
or combination thereof.

[0033] FIG. 2 illustrates an example of configuration
circuitry 105. According to some examples, as shown in
FIG. 2, configuration circuitry 105 includes a table configu-
ration logic 210, a queue configuration logic 220 and a
scheduler configuration logic 230. As briefly mentioned
above, configuration circuitry 105 may include logic and/or
features to enable a control plane access to configure tables
accessible to lookup circuitry 120 and maintained in
memory domains 110 as shown in FIG. 1. The logic and/or
features to configure these tables may include table configu-
ration logic 210. Table configuration logic 210, for
examples, may enable a user or operator to delete or update
tables 113, 115 or 117. Table configuration logic 210 may
also enable a user or operator to create new tables in memory
112, 114, 116 or in different memories included in memory
domains 110.

[0034] Also, as mentioned briefly above, configuration
circuitry 105 may include logic and/or features to enable a
control plane access to configure as least some resources of
HQM 130. The logic and/or features to configure these
resources of HQM 130 may include queue configuration
logic 220 and scheduler configuration logic 230. Queue
configuration logic 220 may enable a user or operator to
configure input and output queues of HQM 130 to facilitate
the flow of requests and results for search requests placed by
search requestors 140. This configuration may include, but
is not limited to, assigning specific queues to tables and/or
search requestors or allowing for search requests to indicate
which queues to use for routing requests/results through
HQM 130. Scheduler configuration logic 230 may enable a
user or operator to configure or set policies for schedule
logic 132 of HQM 130 to schedule requests to lookup
circuitry 120 through input queues 134 or to schedule results
pulled from tables 113, 115 and/or 117 by lookup circuitry
120 through output queues 136.

[0035] FIG. 3 illustrates an example of lookup circuitry
120. In some examples, as shown in FIG. 3, lookup circuitry

Oct. 10, 2019

120 includes an HQM interface 303, one or more memory
interface(s) 305, a lookup logic 310, a load balancing and
policy enforcement logic 320 and a result processing logic
330. HQM interface 303, may be a communication interface
to receive search requests forwarded from input queues of
HQM 130. Memory interface(s) 305 may be one or more
different types of memory interfaces coupled with memories
112, 114 or 115 to enable logic and/or features to implement
table lookups responsive to received search requests and to
obtain results for these table lookups.

[0036] According to some examples, lookup logic 310
may perform table lookups of one or more tables maintained
in memory domains 110 responsive to received search
requests to obtain results from these table lookups based on
information in the received search requests and based on
table entries included in the one or more tables.

[0037] In some examples, load balancing and policy
enforcement logic 320 may manage or control search
requests to search the one or more tables such that table
lookups are load balanced between the one or more tables
and or between those placing the search requests. Load
balancing and policy enforcement logic 320 may also
enforce policies that may include, for example, rules or
policies for load balancing table lookups or limiting a
number of tables that may be searched with a single search
request (e.g., a compound search request). Load balancing
and policy enforcement logic 320 may also enforce policies
related to an amount of time one or more table lookup can
take before the table lookup(s) time out. Load balancing and
policy enforcement logic 320 may also enforce policies
based on prioritizing requests/results for some requestors
over other requests/results for other requestors. For example,
prioritizing requests/results for infrastructure applications
144 over requests for applications 142-1 to 142-N.

[0038] According to some examples, result processing
logic 330 may process results obtained from table lookups
by lookup logic 310. As described more below, table look-
ups may return result types that may be processed by result
processing logic 330 to determine whether subsequent table
looks are needed for a search request and/or other actions are
needed for the search request.

[0039] FIG. 4 illustrates an example of HQM 130. In some
examples, as shown in FIG. 4, HQM 130 includes schedule
logic 132, buffers 410, an enqueue logic 420, a dequeue
logic 430 and an internal storage unit 440.

[0040] According to some examples, search requests/re-
sults sent from requestors 140 or lookup circuitry 120 may
be received and temporarily stored to buffers 410. Search
requests/results may be temporarily stored to buffers 410
because HQM 130 may not have enough resources or
bandwidth to serve all the incoming search requests/results
at the moment they are received. The buffers may be
arranged as first in first out (FIFO) buffers where the first
request/result into the buffer will be the first request/result
out of the buffer. In some examples, a subset of buffers 410
may be allocated to store enqueue search requests while
another subset is reserved for only dequeue search results.
Other ways for allocating the buffers, such as by application
or table, etc., may also be used. A single priority level may
be assigned across all the buffers of buffers 410 to simplify
implementation and to maximize throughput. Alternatively,
multiple priority levels may be implemented to support
fine-grained Quality of Service (QoS) features. For example,
given n priorities, every enqueue and dequeue buffer pair



US 2019/0310937 Al

may be assigned a different priority such that n buffers are
allocated for enqueue search requests and n buffers are
allocated for dequeue search results. Each search request/
result has a priority that is either pre-assigned by a search
requestor or assigned by schedule logic 132 upon receipt by
HQM 130. Each search request/result is then stored in a
buffer that corresponds to the search request’s/result’s pri-
ority (1-n) and/or type (enqueue or dequeue).

[0041] In some examples, schedule logic 132 chooses a
buffer and selects one or more search requests/results from
the head of the buffer. The buffer is chosen according to a
scheduling policy. Various scheduling policies, such as
Round Robin, Weighted Round Robin, preemptive priority,
and a combination of these and other policies may be
implemented. In a Round Robin policy, for example, the
buffers are simply chosen sequentially, i.e. lowest buffer ID
to the highest, or vice versa. If a chosen buffer is empty,
schedule logic 132 selects from a different buffer. In a
Weighted Round Robin policy, schedule logic 132 chooses
and serves each buffer sequentially based on their associated
priority. The ability to control the order in which to serve the
buffers is called request-level flow control. After choosing a
buffer and selecting one or more search requests/results from
the head of the chosen buffer, schedule logic 132 schedules
each selected request/result for execution by either enqueue
logic 420 or dequeue logic 430 according to the search
request/result type.

[0042] According to some examples, enqueue logic 420
and dequeue logic 430 read and write to internal storage unit
440 through dedicated ports. A search request executed by
enqueue logic 420 causes one data item to be inserted into
internal storage unit 440. A dequeue search result executed
by the dequeue logic 430 causes one data item to be
retrieved from internal storage unit 440 and sent to an output
queue. If a search request/result cannot be executed by the
enqueue or dequeue engine, it may be inserted back to the
tail of a buffer of buffers 410 to be processed later. This
reduces the chances of deadlocking a search request/result.
[0043] Insome examples, internal storage unit 440 is used
for storing queues and queue entries. It may be comprised of
types of memory such as SRAM, DRAM, or any other
suitable memory types. Internal storage unit 440 may be
configurable to support any number of queues as well as
different queue sizes.

[0044] FIG. 5 illustrates an example system 500. In some
examples, system 500 shown in FIG. 5 depicts an example
hardware-based system for enhanced table lookups. For
these examples, level 3 (L3) cache 506, CPU cores 508, 510,
512, 514, lookup circuitry 120 and HQM 130 may be
coupled together via ring 502. Ring 502 may serve as a
high-speed or network-on-chip (NoC) interconnect to
couple these elements of system 500 together. Although
Ring 502 is shown as a network interconnect, other network
interconnects may be contemplated to interconnected ele-
ments of system 500 such as, but not limited to, a mesh.
Although not shown in FIG. 5, additional CPU cores, L3
caches, and/or other devices may be connected to the high
speed interconnect of ring 502. Other devices may include,
for example, one or more memory devices (e.g., dual in-line
memory modules (DIMMs)) hosting memories included in
memory domains 110.

[0045] According to some examples, search requests sent
by applications executed by CPU cores 508, 510 or 512 may
be routed through input queues of HQM 130 to reach lookup

Oct. 10, 2019

circuitry 120 via ring 502 to cause lookup circuitry 120 to
search tables maintained in memories included in memory
domains 110 accessible to lookup circuitry 120 (e.g., via one
or more memory interfaces (not shown)). Also, subsequent
results for these search requests may be routed through
output queues of HQM 130 to the requesting applications.
As shown in FIG. 5, in some examples, configuration
circuitry 105 may be executed or hosted by CPU core 514.
For these examples, logic and/or features of configuration
circuitry such as queue configuration logic 220 or scheduler
configuration logic 230, may configure input queues and
schedule logic of HQM 130 to handle these search requests.
Also, logic and/or features of configuration circuitry 105
such as table configuration logic 210 may configure the
tables to be searched by lookup circuitry responsive to a
search request. Examples are not limited to configuration
circuitry 105 being executed by a CPU core. In other
examples, configuration circuitry may be executed by mul-
tiple cores of a multi-core processor, by an ASIC or by an
FPGA.

[0046] In some examples, CPU cores 508, 510, 512 and
514 may be CPU cores of various commercially available
processors, including without limitation an AMD® Epyc®,
Ryzen®, Athlon®, and Opteron® processors; ARM® appli-
cation, embedded and secure processors; IBM® and
Motorola® DragonBall® and PowerPC® processors; IBM
and Sony® Cell processors; Intel® Celeron®, Core (2)
Duo®, Core i3, Core i5, Core i7, Itanium®, Pentium®,
Xeon® or Xeon Phi® processors; and similar processors.
[0047] FIG. 6 illustrates an example request format 600. In
some examples, search requests sent by search requestors
(e.g., search requestors 140) may send search requests to
lookup circuitry (e.g., lookup circuitry 120) using example
request format 600. As shown in FIG. 6, request format 600
includes key value 610, RequestID 620 and ResultQQ 630.
[0048] Insome examples, key value 610 of request format
600 may include information used by lookup circuitry to
search tables. For these examples, key value 610 may
include information for the lookup circuitry to identify what
is to be searched for in tables maintained in memories
included in memory domains accessible to the lookup cir-
cuitry. For example, a network address for a targeted des-
tination or contact information for an individual or entity.
[0049] According to some examples, RequestID 620 may
include information to identify a requestor and/or individual
requests associated with each search request using example
request format 600. RequestID 620, for example, may
include a unique identifier assigned to a requestor (e.g., a
universal unique identifier (QUID) or a global unique iden-
tifier (GUID)). RequestID 620 may also include additional
identifier information (e.g., sequential numbers) to differen-
tiate between multiple requests made by a same requestor.
[0050] Insome examples, ResultQ 630 may include infor-
mation to identify a specific input queue of an HQM (e.g.,
HQM 130) via which a result to a search request using
example request format 600 is to be routed to a requestor.
For examples where a queue of the HQM is identified or
included in ResultQQ 630, search requestors and/or tables
may have been assigned or mapped to specified output
queues of the HQM. Identification of these assigned input
queues may facilitate routing of search requests results
through HQM 130 to the requestor.

[0051] FIG. 7 illustrates an example table entry format
700. In some examples, tables maintained in memories of



US 2019/0310937 Al

memory domains (e.g., table 113) may have entries in the
example format of table entry format 700. As shown in FIG.
7, table entry format 700 includes key value 710, result 720,
OutQ 730 and result type 740.

[0052] According to some examples, key value 710 may
include information to match up with information included
in a search request. Result 720 may include information to
provide for a given table entry that has a key value that
matches key value 710. For example, provide contact infor-
mation for an individual (e.g., mailing address or phone
number). OutQ 730, for example, may include information
to identify a specific output queue of an HQM (e.g., HQM
130) via which a result to a search request is to be placed.
In some examples, one or more output queues of the HQM
130 may be allocated or mapped to a table using example
table entry format 700. Those allocated queues may be
identified in OutQ 730.

[0053] In some examples, result type 740 may include
information to indicate a result type. For example, as shown
in FIG. 7, result types may include, but are not limited to,
requestor specific, next key value for compound search, call
back pointer or data pointer result types. Requestor specific
may refer to a result that is returned, as is, to a requester that
placed a search request and may be interpreted by the
requestor. Next key value for compound search may point to
another table entry that may be looked up by lookup
circuitry in a same table or a different table, and the result
720 may be used as key value 610 for an internally generated
compound lookup request. For example, a first result of a
compound search may find an individual’s phone number
and a next key value for compound search type may indicate
another key value to look up the individual’s home address.
Callback pointer, for example, may be a memory address of
a function to use. The function to use, for example, may be
to encrypt data to be sent to a target destination or individual.
Data pointer, for example, may be a pointer to a memory
address for a requestor to access, copy or send data. The
memory associated with the memory address, for example,
may be used for storing larger amounts of data that may not
fit within a limited data space associated with result 720/
[0054] FIG. 8 illustrates an example process 800. In some
examples, process 800 may depict how logic and/or features
of configuration circuity that may provide control plane
access to configure searchable tables or elements of an
HQM. For these examples, process 800 may include use of
various elements shown in FIG. 1 such as configuration
circuitry 105, memories 112, 114, 116, tables 113, 115, 117,
lookup circuitry 120, HQM 130, search requestors 140 or
hierarchical search accelerator(s) 150. Process 800 may also
include use of various elements shown in FIGS. 2, 4 and 5
such as table configuration logic 210, queue configuration
logic 220, scheduler configuration logic 230, schedule logic
132, enqueue logic 420, dequeue logic 430, internal storage
unit 440 or CPU cores 508, 510, 512, 514. Process 800 may
also include use example request format 600 shown in FIG.
6 or example table entry format 700 shown in FIG. 7.
Examples are not limited to these elements or example
formats shown in FIGS. 1, 2 and 4-7.

[0055] Beginning at process 8.1 (Create Table 113), logic
and/or features of configuration circuitry 105 such as table
configuration logic 210 may create table 113 to be main-
tained in memory 112. In some examples, table 113 may be
created for and mapped to a particular requestor (e.g., a
given application). For example, as shown in FIG. 1, table

Oct. 10, 2019

113 may be created for conducting lookups or searches
based on search requests from application 142-1. Table
entries for table 113 may be in the example format of table
entry format 700 as shown in FIG. 7 and described above.
Examples are not limited to creating tables for lookups or
searches by a single requestor.

[0056] Moving to process 8.2 (Create Table 115), logic
and/or features of configuration circuitry 105 such as table
configuration logic 210 may create table 115 to be main-
tained in memory 114. In some examples, table 115 may be
created for and mapped to a particular requestor (e.g., a
given application). For example, as shown in FIG. 1, table
115 may be created for conducting lookups or searches
based on search requests from application 142-N. Table
entries for table 115 may be in the example format of table
entry format 700.

[0057] Moving to process 8.3 (Create Table 117), logic
and/or features of configuration circuitry 105 such as table
configuration logic 210 may create table 117 to be main-
tained in memory 116. In some examples, table 117 may be
created for and mapped to a particular requestor (e.g., a
given application). For example, as shown in FIG. 1, table
117 may be created for conducting lookups or searches
based on search requests from infrastructure applications
144. Table entries for table 117 may be in the example
format of table entry format 700. Process 800 may also
include adding/deleting/modifying specific table entries in
table 113, table 115, and/or table 117.

[0058] Moving to process 8.4 (Configure Queues), logic
and/or features of configuration circuitry 105 such as queue
configuration logic 220 may cause input and output queues
of HQM 130 to be configured. In some examples, queue
configuration logic 220 may configure the queues of HQM
to facilitate a flow of requests and results placed by search
requestors 140. For example, a first portion of output queues
136 may be configured to handle results returned from
searching table 113 for a search request from application
142-1, a second portion of output queues 136 may be
configured to handle results returned from searching table
115 for a search request from application 142-N or a third
portion of output queues 136 may be configured to handle
results returned from searching table 117 for a search request
from infrastructure applications 144.

[0059] Moving to process 8.5 (Set Queue Schedule Poli-
cies), logic and/or features of configuration circuitry 105
such as scheduler configuration logic 230 may set queue
schedule policies for the input and output queues of HQM
130. In some examples, queue schedule polices may direct
schedule logic 132 of HQM 130 on how to schedule requests
received from search requesters 140 and routed through
input queues 134 to lookup circuitry 120. The queue sched-
ule policies may also direct schedule logic 132 on how to
schedule results sent from lookup circuitry 120 and received
in output queues 136 for forwarding to search requestors 140
or forwarding to hierarchical search accelerator(s) 150 (e.g.,
for additional searches).

[0060] Moving to process 8.6 (Queue Configure Informa-
tion), logic and/or features of configuration circuitry 105
such as queue configuration logic 220 may send queue
configuration information to search requestors 140. In some
examples, the queue configuration information may indicate
what respective portions of input queues 134 have been
configured to receive search requests sent from individual
search requestors. The queue configuration information may



US 2019/0310937 Al

also indicate what respective portions of output queues 136
have been configured to receive results for search requests
made to respective tables 113, 115 or 117.

[0061] Moving to process 8.7 (Search Requests), search
requestors 140 may send search requests to HQM. In some
examples, the search requests may be in example request
format 600. For these examples, a given search requestor
may indicate in the search request what input queue was
configured by queue configuration logic 220 of configura-
tion circuitry 105 to receiving search requests from the given
search requestor. Process 800 then comes to an end.

[0062] FIG. 9 illustrates an example process 900. In some
examples, process 900 may depict how a requestor may send
a search request through an HQM to lookup circuitry to
search a table maintained in a memory of a memory domain.
For these examples, process 900 may include use of various
elements shown in FIG. 1 such as memory 112, table 113,
lookup circuitry 120, HQM 130 or application 142-1. Pro-
cess 900 may also include use of various elements shown in
FIGS. 3-5 such as HQM interface 303, memory interface(s)
305, lookup logic 310, load balancing and policy enforce-
ment logic 320, result processing logic 330, schedule logic
132, enqueue logic 420, dequeue logic 430, internal storage
unit 440 or CPU cores 508, 510, 512, 514. Process 900 may
also include use example request format 600 shown in FIG.
6 or example table entry format 700 shown in FIG. 7.
Examples are not limited to these elements or example
formats shown in FIGS. 1 and 3-7.

[0063] Beginning at process 9.1 (Search Request), appli-
cation 142-1 may send a search request to lookup circuitry
120 that is routed to an input queue of HQM 130. According
to some examples, the search request may be in example
request format 600. If, for example, a portion of the input
queues of HQM 130 have been configured to receive search
requests from application 142-1, the search request may
indicate what input queue is to receive the search request.

[0064] Moving to process 9.2 (Schedule Request), logic
and/or features of HQM 130 such as schedule 132 may
schedule the request for forwarding to lookup circuitry 120.
In some examples, the search request may be scheduled
based on one or more policies. For example, first-in-first out,
round-robin, weighted round-robin, preemptive priority, or a
combination of these and other policies.

[0065] Moving to process 9.3 (Forward Request), logic
and/or features of HQM 130 such as enqueue logic 420 may
forward the search request to lookup circuitry 120.

[0066] Moving to process 9.4 (Process Request), logic
and/or features of lookup circuitry 120 such as load balanc-
ing and policy enforcement logic 320 may process the
search request received from application 142-1. In some
examples, load balancing and policy enforcement logic 320
may monitor received search requests and determine a rate
of table lookups to tables 113, 115 and 117 and may load
balance search requests to prevent a disproportionate
amount of table look ups to any single table compared to
other tables. Load balancing and policy enforcement logic
320 may also monitor sources of the search requests and
load balance search requests between various requestors.
The load balancing, for example, may be based on one or
more policies enforced by load balancing and policy
enforcement logic 320. The policies may include, but are not
limited to, assigning priority to some search requestors as
compared to other search requestors.

Oct. 10, 2019

[0067] Moving to process 9.5 (Table Lookup), logic and/
or features of lookup circuitry 120 such as lookup logic 310
may implement a table lookup of table 113 maintained at
memory 112. According to some examples, the table lookup
may include lookup logic 310 using the key value informa-
tion included in the search request received from application
142-1. Table 113, for example, may have entries according
to table entry format 700.

[0068] Moving to process 9.6 (Result), a result found in
table 113 maintained at memory 112 may be returned to
lookup circuitry 120. In some examples, the key value
indicated in the search request from application 142-1
matches a key value in a table entry of table 113. For these
examples, a result, output queue for HQM 130 and a result
type may be indicated in the found result returned from a
table lookup of table 113. In some examples, there may be
multiple results found and returned to lookup circuitry 120
in a single or multiple separate steps.

[0069] Moving to process 9.7 (Process Result), logic and/
or features of lookup circuitry 120 such as result processing
logic 330 may process the result to determine if any further
actions are needed to complete the search request. In some
examples, result processing logic 330 may determine that a
result type for the result indicates that it is a requestor
specific result type. For these examples, a requestor specific
result type may indicate that no further table lookups are
needed by logic and/or features of lookup circuitry 120. In
other examples, result types indicating a callback pointer, or
a data pointer may also indicate no further table looks are
needed. In yet other examples, result type could indicate a
need for a compound search that will trigger lookup circuitry
120 to generate another lookup request using, for example,
the result field as a key value for the next lookup. In this
example (not shown), the lookup circuitry 120 may continue
processing of new lookup request from process 9.4
described above or returned it back to HQM 130 to be
scheduled again with appropriate priority and policy.

[0070] Moving to process 9.8 (Send Result), logic and/or
features of lookup circuitry 120 such as result processing
logic 330 may cause the result(s) to be sent to an output
queue maintained at HQM 130. In some examples, result
processing logic 330 may send the result to an output queue
indicated in the table entry of table 113 that returned the
result.

[0071] Moving to process 9.9 (Schedule Result), logic
and/or features of HQM 130 such as schedule logic 132 may
schedule the result for forwarding to application 142-1. In
some examples, the result may be scheduled based on one or
more policies that may be the same or different policies than
those used for scheduling search requests for forwarding to
lookup circuitry 120.

[0072] Moving to process 9.10 (Forward Result), logic
and/or features of HQM 130 such as dequeue logic 430 may
forward the result to application 142-1. In alternate example,
instead of or in addition to processes 9.9 and 9.10, applica-
tion 142-1 may periodically check the result availability
status of the HQM 130 queue specified in ResultQ field 630
in the search request 9.1 from the application 142-1

[0073] Moving to process 9.11 (Process Result), applica-
tion 142-1 may process the received result. In some
examples, processing the result may include, but is not
limited to, requestor specific actions, using a callback



US 2019/0310937 Al

pointer included in the result to implement a function or use
a data pointer included in the result to obtain information
from a memory address.

[0074] FIG. 10 illustrates an example process 1000. In
some examples, process 1000 may depict how a requestor
may send a search request through an HQM to lookup
circuitry to search multiple tables maintained in multiple
memory domains (e.g., a compound search). For these
examples, process 1000 may include use of various elements
shown in FIG. 1 such as memories 112, 114, 116, tables 113,
115, 117, lookup circuitry 120, HQM 130 or application
142-1. Process 1000 may also include use of various ele-
ments shown in FIGS. 3-5 such as HQM interface 303,
memory interface(s) 305, lookup logic 310, load balancing
and policy enforcement logic 320, result processing logic
330, schedule logic 132, enqueue logic 420, dequeue logic
430, internal storage unit 440 or CPU cores 508, 510, 512,
514. Process 1000 may also include use example request
format 600 shown in FIG. 6 or example table entry format
700 shown in FIG. 7. Examples are not limited to these
elements or example formats shown in FIGS. 1 and 3-7.
[0075] Beginning at process 10.1 (Search Request), appli-
cation 142-1 may send a search request to lookup circuitry
120 that is routed to an input queue of HQM 130.

[0076] Moving to process 10.2 (Schedule Request), logic
and/or features of HQM 130 such as schedule 132 may
schedule the request for forwarding to lookup circuitry 120.

[0077] Moving to process 10.3 (Forward Request), logic
and/or features of HQM 130 such as enqueue logic 420 may
forward the search request to lookup circuity 120.

[0078] Moving to process 10.4 (Process Request), logic
and/or features of lookup circuitry 120 such as load balanc-
ing and policy enforcement logic 320 may process the
search request received from application 142-1.

[0079] Moving to process 10.5 (Table Lookup), logic
and/or features of lookup circuitry 120 such as lookup logic
310 may implement a table lookup of table 113 maintained
at memory 112 based on a key value included in the search
request.

[0080] Moving to process 10.6 (Result), a first result found
in table 113 maintained at memory 112 based on a match of
the key value included in the search request may be returned
to lookup circuitry 120.

[0081] Moving to process 10.7 (Process Request), result
processing logic 330 may process the first result to deter-
mine if any further actions are needed to complete the search
request. In some examples, result processing logic 330 may
determine that a result type for the first result indicates a next
key value for a compound search.

[0082] Moving to process 10.8 (Table Lookup), lookup
logic 310 may use the next key value for the compound
search to do a lookup of table 115 maintained at memory 114
based on the next key value indicated in the first result.
[0083] Moving to process 10.9 (Result), a second result
found in table 115 maintained at memory 114 based on a
match of the next key value included in the first result may
be returned to lookup circuitry 120.

[0084] Moving to process 10.10 (Process Result), result
processing logic 330 may process the second result to
determine if any further actions are needed to complete the
search request. In some examples, result processing logic
330 may determine that a result type for the second result
also indicates a next key value for a compound search.

Oct. 10, 2019

[0085] Moving to process 10.11 (Table Lookup), lookup
logic 310 may use the next key value for the compound
search to do a lookup of table 117 maintained at memory 116
based on the next key value indicated in the second result.
[0086] Moving to process 10.12 (Result), a third result
found in table 117 maintained at memory 116 based on a
match of the next key value included in the second result
may be returned to lookup circuitry 120.

[0087] Moving to process 10.13 (Process Result), result
processing logic 330 may process the third result to deter-
mine if any further actions are needed to complete the search
request. In some examples, result processing logic 330 may
determine that a result type for the third result indicates that
no further table lookup are needed. For example, a result
type for the result indicates that it is requestor specific result
type, or indicates a callback pointer, or indicates a data
pointer. In alternative examples, rather than lookup circuitry
120 conducting subsequent table lookups of tables 115 and
117 as mentioned above for processes 10.8 and 10.11,
lookup circuitry 120 may cause these subsequent table
lookups to be scheduled with HQM 130 as separate new
search requests (using the next key value as key value for the
search request). These separate search requests may allow
for more flexibility in scheduling all search requests being
handled by lookup circuitry 120. In other words, lookup
resources may be load balanced at a finer level if separate
search requests can be schedule rather than allow for a single
search request from application 142-1 to result in multiple
table lookups by lookup circuitry 120.

[0088] Moving to process 10.14 (Send Result), result
processing logic 330 may cause the third result to be sent to
an output queue maintained at HQM 130. In some examples,
result processing logic 330 may send the third result to an
output queue indicated in the table entry of table 117 that
returned the third result. In other examples, result processing
logic 330 may send the third result to a queue indicated by
ResultQ field 630 in the original search request 10.1 from
application 142-1.

[0089] Moving to process 10.15 (Schedule Result), sched-
ule logic 132 of HQM 130 may schedule the third result for
forwarding to application 142-1. In an alternate example,
instead of or in addition to processes 10.15 and 10.16,
application 142-1 may periodically check the result avail-
ability status of the HQM 130 queue specified in ResultQ
field 630 in the original search request 10.1 from application
142-1

[0090] Moving to process 10.16 (Forward Result),
dequeue logic 430 of HQM 130 may forward the third result
to application 142-1

[0091] Moving to process 10.17 (Process Result), appli-
cation 142-1 may process the received result. Process 1000
may then come to an end.

[0092] FIG. 11 illustrates an example process 1100. In
some examples, process 1100 may depict how a requestor
may send a search request through an HQM to lookup
circuitry to search a table maintained in a memory of a
memory domain. Process 1100 also depicts how a result of
the search request may lead to a result that causes a
subsequent search using a hierarchical search accelerator.
For these examples, process 1100 may include use of various
elements shown in FIG. 1 such as memory 112, table 113,
lookup circuitry 120, HQM 130, application 142-1 or hier-
archical search accelerator(s) 150 Process 1100 may also
include use of various elements shown in FIGS. 3-5 such as



US 2019/0310937 Al

HQM interface 303, memory interface(s) 305, lookup logic
310, load balancing and policy enforcement logic 320, result
processing logic 330, schedule logic 132, enqueue logic 420,
dequeue logic 430, internal storage unit 440 or CPU cores
508, 510, 512, 514. Process 1100 may also include use
example request format 600 shown in FIG. 6 or example
table entry format 700 shown in FIG. 7. Examples are not
limited to these elements or example formats shown in
FIGS. 1 and 3-7.

[0093] Beginning at process 11.1 (Search Request), appli-
cation 142-1 may send a search request to lookup circuitry
120 that is routed to an input queue of HQM 130.

[0094] Moving to process 11.2 (Schedule Request), logic
and/or features of HQM 130 such as schedule 132 may
schedule the request for forwarding to lookup circuitry 120.
[0095] Moving to process 11.3 (Forward Request), logic
and/or features of HQM 130 such as enqueue logic 420 may
forward the search request to lookup circuity 120.

[0096] Moving to process 11.4 (Process Request), logic
and/or features of lookup circuitry 120 such as load balanc-
ing and policy enforcement logic 320 may process the
search request received from application 142-1.

[0097] Moving to process 11.5 (Table Lookup), logic
and/or features of lookup circuitry 120 such as lookup logic
310 may implement a table lookup of table 113 maintained
at memory 112 based on a key value included in the search
request.

[0098] Moving to process 11.6 (Result), a result may be
returned to lookup circuitry 120. In some examples, the
result may have been obtained from table 113 maintained at
memory 112 based on a match of the key value included in
the search request. In other examples, the result may be an
indication that no match was found for any table entries for
table 113, table 115 or table 117.

[0099] Moving to process 11.7 (Process Request), result
processing logic 330 may process the result. In some
examples, result processing logic 330 may determine that a
result type for the first result indicates a next key value for
a compound search. However, different from process 11.7,
the next key value is for a table that is to be searched using
a search accelerator included in hierarchical search accel-
erator(s) 150. A determination that the search accelerator is
to conduct the search may be based on no table in memories
112, 114 or 116 having a key value match for the next key
value. In other examples, where the result received indicates
no table entry matches entries for table 113, 115, or 117,
result processing logic 330 may determine that the search
accelerator is to the conduct the search.

[0100] Moving to process 11.8 (Send Result), result pro-
cessing logic 330 may cause the result to be sent to an output
queue maintained at HQM 130. In some examples, result
processing logic 330 may send the result to an output queue
mapped or allocated to hierarchical search accelerator(s)
150.

[0101] Moving to process 11.9 (Schedule Result), sched-
ule logic 132 of HQM 130 may schedule the result for
forwarding to hierarchical search accelerator(s) 150.
[0102] Moving to process 11.9 (Forward Result), dequeue
logic 430 of HQM 130 may forward the result to hierarchical
search accelerator(s) 150.

[0103] Moving to process 11.11 (Process Result), hierar-
chical search accelerator(s) 150 may process the received
result. In some examples, processing the received result may
include using information included in the received result

Oct. 10, 2019

(e.g., akey value or a next key value for a compound search)
to perform one or more table lookups to tables accessible to
hierarchical search accelerator(s) 150.

[0104] Moving to process 11.12 (Send Result), hierarchi-
cal search accelerator(s) 150 may be capable of sending
results to application 142-1.

[0105] Moving to process 11.13 (Process Result), appli-
cation 142-1 may process the result received from hierar-
chical search accelerator(s) 150. Process 1100 may then
come to an end. In some examples (not shown), hierarchical
search accelerator(s) 150 may send result to the same or
different instance of HQM 130 to be forwarded to yet
another search accelerator from hierarchical search accel-
erator(s) 150.

[0106] FIG. 12 illustrates an example block diagram for
apparatus 1200. Although apparatus 1200 shown in FIG. 12
has a limited number of elements in a certain topology, it
may be appreciated that the apparatus 1200 may include
more or less elements in alternate topologies as desired for
a given implementation.

[0107] According to some examples, apparatus 1200 may
be supported by circuitry 1220. For these examples, circuitry
1220 may be an ASIC, FPGA, configurable logic, processor,
processor circuit, or CPU. For these examples, the ASIC,
FPGA, configurable logic, processor, processor circuit, or
CPU may support logic and/or features of lookup circuity
such as lookup circuitry 120 to facilitate table lookups
responsive to search requests from requestors that are
received from a hardware queue manager or queue manage-
ment device. The table lookups to tables maintained in a
memory domain accessible by logic and/or features of
lookup circuitry 120. Circuitry 1220 may be arranged to
execute one or more software or firmware implemented
modules, components or logic 1222-a (module, component
or logic may be used interchangeably in this context). It is
worthy to note that “a” and “b” and “c” and similar desig-
nators as used herein are intended to be variables represent-
ing any positive integer. Thus, for example, if an implemen-
tation sets a value for a=4, then a complete set of software
or firmware for modules, components or logic 1222-a may
include logic 1222-1, 1222-2, 1222-3 or 1222-4. The
examples presented are not limited in this context and the
different variables used throughout may represent the same
or different integer values. Also, “logic”, “module” or “com-
ponent” may also include software/firmware stored in com-
puter-readable media, and although types of logic are shown
in FIG. 12 as discrete boxes, this does not limit these types
of logic to storage in distinct computer-readable media
components (e.g., a separate memory, etc.).

[0108] According to some examples, as mentioned above,
circuitry 1220 may include an ASIC, an FPGA, a configu-
rable logic, a processor, a processor circuit, a CPU, or one
or more cores of a CPU. Circuitry 1220 may be generally
arranged to execute or implement components 1222-a. Cir-
cuitry 1220 may be all or at least a part of any of various
commercially available processors.

[0109] According to some examples, apparatus 1200 may
include a queue management device interface 1203. Appa-
ratus 1200 may also include a receive logic 1222-1. Receive
logic 1222-1 may be executed or supported by circuitry
1220 to receive, via queue management device interface
1203, a search request forwarded from an input queue of the
queue management device. For these examples, the search
request may be included in search request 1210.



US 2019/0310937 Al

[0110] In some examples, apparatus 1200 may include one
or more memory interface(s) 1205. Also, apparatus 1200
may include a table lookup logic 1222-2. Table lookup logic
1222-2 may be executed or supported by circuitry 1220 to
implement a table lookup of a table maintained in a memory
domain having a grouping of memory addresses, the table
lookup implemented based on a key value indicated in the
search request. For these examples, the implemented table
lookup may be initiated by table lookup 1230 routed through
memory interface(s) 1205.

[0111] According to some examples, apparatus 1200 may
include result logic 1222-3. Result logic 1222-3 may be
executed or supported by circuitry 1220 to obtain a result
from an entry of the table based on the key value indicated
in the search request matching a key value indicated in the
entry of the table. For these examples, the results may be
included in results 1235 that may be received by results logic
1222-3 through memory interface(s) 1205.

[0112] In some examples, apparatus 1200 may include a
send logic 1222-4. Send logic 1222-4 may be executed or
supported by circuitry 1220 to send the result to a requestor
of the search request by sending the result through queue
management device interface 1203 to an output queue of the
queue management device. For these examples, the queue
management device is arranged to forward the result to the
requestor from the output queue. The forwarded results may
be included in results 1215.

[0113] Various components of apparatus 1200 may be
communicatively coupled to each other by various types of
communications media to coordinate operations. The coor-
dination may involve the uni-directional or bi-directional
exchange of information. For instance, the components may
communicate information in the form of signals communi-
cated over the communications media. The information can
be implemented as signals allocated to various signal lines.
In such allocations, each message is a signal. Further
embodiments, however, may alternatively employ data mes-
sages. Such data messages may be sent across various
connections. Example connections include parallel inter-
faces, serial interfaces, and bus interfaces.

[0114] Included herein is a set of logic flows representa-
tive of example methodologies for performing novel aspects
of the disclosed architecture. While, for purposes of sim-
plicity of explanation, the one or more methodologies shown
herein are shown and described as a series of acts, those
skilled in the art will understand and appreciate that the
methodologies are not limited by the order of acts. Some
acts may, in accordance therewith, occur in a different order
and/or concurrently with other acts from that shown and
described herein. For example, those skilled in the art will
understand and appreciate that a methodology could alter-
natively be represented as a series of interrelated states or
events, such as in a state diagram. Moreover, not all acts
illustrated in a methodology may be required for a novel
implementation.

[0115] A logic flow may be implemented in software,
firmware, and/or hardware. In software and firmware
embodiments, a logic flow may be implemented by com-
puter executable instructions stored on at least one non-
transitory computer readable medium or machine readable
medium, such as an optical, magnetic or semiconductor
storage. The embodiments are not limited in this context.
[0116] FIG. 13 illustrates an example logic flow 1300.
Logic flow 1300 may be representative of some or all of the

Oct. 10, 2019

operations executed by one or more logic, features, or
devices described herein, such as apparatus 1200. More
particularly, logic flow 1300 may be implemented by at least
receive logic 1222-1, table lookup logic 1222-2, result logic
1222-3 or send logic 1222-4.

[0117] According to some examples, logic flow 1300 at
block 1302 may receive a search request forwarded from an
input queue of a queue management device. For these
examples, receive logic 1222-1 may receive the search
request through queue management device interface 1203.
[0118] In some examples, logic flow 1300 at block 1304
may implement a table lookup of a table maintained in a
memory domain having a grouping of memory addresses,
the table lookup implemented based on a key value indicated
in the search request. For these examples, table lookup logic
1222-2 may implement the table lookup.

[0119] According to some examples, logic flow 1300 at
block 1306 may obtain a result from an entry of the table
based on the key value indicated in the search request
matching a key value indicated in the entry of the table. For
these examples, result logic 1222-4 may obtain the result
through memory interface(s) 1205.

[0120] In some examples, logic flow 1300 at block 1308
may send the result to a requestor of the search request by
sending the result to an output queue of the queue manage-
ment device, wherein the queue management device is
arranged to forward the result to the requestor from the
output queue. For these examples, send logic 1222-4 may
send the result through queue management device interface
1203.

[0121] FIG. 14 illustrates an example storage medium
1400. In some examples, storage medium 1400 may be an
article of manufacture. Storage medium 1400 may include
any non-transitory computer readable medium or machine
readable medium, such as an optical, magnetic or semicon-
ductor storage. Storage medium 1400 may store various
types of computer executable instructions, such as instruc-
tions to implement logic flow 1300. Examples of a computer
readable or machine readable storage medium may include
any tangible media capable of storing electronic data,
including volatile memory or non-volatile memory, remov-
able or non-removable memory, erasable or non-erasable
memory, writeable or re-writeable memory, and so forth.
Examples of computer executable instructions may include
any suitable type of code, such as source code, compiled
code, interpreted code, executable code, static code,
dynamic code, object-oriented code, visual code, and the
like. The examples are not limited in this context.

[0122] FIG. 15 illustrates an example block diagram for
apparatus 1500. Although apparatus 1500 shown in FIG. 15
has a limited number of elements in a certain topology, it
may be appreciated that the apparatus 1500 may include
more or less elements in alternate topologies as desired for
a given implementation.

[0123] According to some examples, apparatus 1500 may
be supported by circuitry 1520. For these examples, circuitry
1520 may be an ASIC, FPGA, configurable logic, processor,
processor circuit, or CPU. For these examples, the ASIC,
FPGA, configurable logic, processor, processor circuit, or
CPU may support logic and/or features of configuration
circuity such as configuration circuitry 105 to facilitate
creation of tables maintained in one or more memory
domains accessible to lookup circuitry such as lookup
circuitry 120 and/or configure queues of a queue manage-



US 2019/0310937 Al

ment device such as HQM 130 arranged to receive search
requests to cause table lookups of created tables or receive
results for those table lookups. Circuitry 1520 may be
arranged to execute one or more software or firmware
implemented modules, components or logic 1522-a (mod-
ule, component or logic may be used interchangeably in this
context). It is worthy to note that “a” and “b” and “c” and
similar designators as used herein are intended to be vari-
ables representing any positive integer. Thus, for example, if
an implementation sets a value for a=5, then a complete set
of software or firmware for modules, components or logic
1522-a may include logic 1522-1, 1522-2, 1522-3, 1522-4
or 1522-5. The examples presented are not limited in this
context and the different variables used throughout may
represent the same or different integer values. Also, “logic”,
“module” or “component” may also include software/firm-
ware stored in computer-readable media, and although types
of'logic are shown in FIG. 15 as discrete boxes, this does not
limit these types of logic to storage in distinct computer-
readable media components (e.g., a separate memory, etc.).
[0124] According to some examples, as mentioned above,
circuitry 1520 may include an ASIC, an FPGA, a configu-
rable logic, a processor, a processor circuit, a CPU, or one
or more cores of a CPU. Circuitry 1520 may be generally
arranged to execute or implement components 1522-a. Cir-
cuitry 1520 may be all or at least a part of any of various
commercially available processors.

[0125] According to some examples, apparatus 1500 may
a receive logic 1522-1. Receive logic 1522-1 may be
executed or supported by circuitry 1520 to receive table
information to create a table to be maintained in a memory
domain having a grouping of memory addresses. For these
examples, table information 1505 may be sent by a user or
operator and may information to create the table. Table
information 1505, in other examples, may include informa-
tion to add/modify or delete a table or table entry.

[0126] In some examples, apparatus 1500 may include a
table logic 1522-2. Table logic 1522-2 may be executed or
supported by circuitry 1520 to cause the table to be created
in the memory domain such that the table includes a plurality
of table entries that include a key value, a result, or a result
type, the table accessible to lookup circuitry. For these
examples, table creation 1530 may include information to
cause the creation of the table in the memory domain.
[0127] According to some examples, apparatus 1500 may
include queue logic 1522-3. Queue logic 1522-3 may be
executed or supported by circuitry 1520 to cause queues of
a queue management device to be configured. The queue
management device having input queues to receive search
requests to cause the table lookup of the table by the lookup
circuitry and having output queues to receive results of the
table lookup. For these examples, the configuration of the
queues may be based on queue information 1510 that was
received by receive logic 1522.

[0128] Accord to some examples, apparatus 1500 may
include a send logic 1522-4. Send logic 1522-4 may be
executed or supported by circuitry 1520 to send queue
configuration information to one or more requestors of the
search requests, the queue configuration information to
identify the input queues of the queue management device to
receive the search requests to cause the lookup of the table
by the lookup circuitry. For these examples, the queue
configuration information may be included in queue con-
figuration information 1545.

Oct. 10, 2019

[0129] Accord to some examples, apparatus 1500 may
include a scheduler logic 1522-5. Scheduler logic 1522-5
may be executed or supported by circuitry 1520 to cause a
schedule logic at the queue management device to be
configured to schedule the search requests received in the
input queues of the queue management device. For these
examples, configuration of the schedule logic at the queue
management device may be based on policy information
1515 that was received by receive logic 1522.

[0130] Various components of apparatus 1500 may be
communicatively coupled to each other by various types of
communications media to coordinate operations. The coor-
dination may involve the uni-directional or bi-directional
exchange of information. For instance, the components may
communicate information in the form of signals communi-
cated over the communications media. The information can
be implemented as signals allocated to various signal lines.
In such allocations, each message is a signal. Further
embodiments, however, may alternatively employ data mes-
sages. Such data messages may be sent across various
connections. Example connections include parallel inter-
faces, serial interfaces, and bus interfaces.

[0131] FIG. 16 illustrates an example logic flow 1600.
Logic flow 1600 may be representative of some or all of the
operations executed by one or more logic, features, or
devices described herein, such as apparatus 1500. More
particularly, logic flow 1600 may be implemented by at least
receive logic 1522-1, table logic 1522-2, queue logic 1522-
3, send logic 1522-4 or scheduler logic 1522-5.

[0132] According to some examples, logic flow 1600 at
block 1602 may receive table information to create a table
to be maintained in a memory domain having a grouping of
memory addresses. For these examples, receive logic 1522-1
may receive the table information.

[0133] In some examples, logic flow 1600 at block 1604
may cause the table to be created in the memory domain
such that the table includes a plurality of table entries that
include a key value, a result, or a result type, the table
accessible to lookup circuitry. For these examples, table
logic 1522-2 may cause the table to be created.

[0134] According to some examples, logic flow 1600 at
block 1606 may receive queue information to configure
queues of a queue management device, the queue manage-
ment device having input queues to receive search requests
to cause the table lookup of the table by the lookup circuitry
and having output queues to receive results of the table
lookup. For these examples, receive logic 1522-1 may
receive the queue information.

[0135] In some examples, logic flow 1600 at block 1608
may cause the queues of the queue management device to be
configured based on the queue information. For these
examples, queue logic 1522-3 may cause the queues to be
configured.

[0136] According to some examples, logic flow 1600 at
block 1610 may send queue configuration information to
one or more requestors of the search requests, the queue
configuration information to identify the input queues of the
queue management device to receive the search requests to
cause the lookup of the table by the lookup circuitry. For
these examples, send logic 1522-4 may send the queue
configuration information.

[0137] In some examples, logic flow 1600 at block 1612
may receive schedule information to configure schedule
logic at the queue management device to schedule the search



US 2019/0310937 Al

requests received in the input queues of the queue manage-
ment device. For these examples, receive logic 1522-1 may
receive the schedule information.

[0138] According to some examples, logic flow 1600 at
block 1614 may cause the schedule logic to be configured
based on the schedule information. For these examples,
scheduler logic 1522-5 may cause the schedule logic to be
configured.

[0139] FIG. 17 illustrates an example storage medium
1700. In some examples, storage medium 1700 may be an
article of manufacture. Storage medium 1700 may include
any non-transitory computer readable medium or machine
readable medium, such as an optical, magnetic or semicon-
ductor storage. Storage medium 1700 may store various
types of computer executable instructions, such as instruc-
tions to implement logic flow 1600. Examples of a computer
readable or machine readable storage medium may include
any tangible media capable of storing electronic data,
including volatile memory or non-volatile memory, remov-
able or non-removable memory, erasable or non-erasable
memory, writeable or re-writeable memory, and so forth.
Examples of computer executable instructions may include
any suitable type of code, such as source code, compiled
code, interpreted code, executable code, static code,
dynamic code, object-oriented code, visual code, and the
like. The examples are not limited in this context.

[0140] FIG. 18 illustrates an example computing platform
1800. In some examples, as shown in FIG. 18, computing
platform 1800 may include a processing components 1840,
other platform components 1850 or a communications inter-
face 1860.

[0141] According to some examples, processing compo-
nents 1840 may execute or implement processing operations
or logic for apparatus 1200/1500 and/or storage medium
1400/1700. Processing components 1840 may include vari-
ous hardware elements, software elements, or a combination
of both. Examples of hardware elements may include
devices, logic devices, components, processors, micropro-
cessors, management controllers, companion dice, circuits,
processor circuits, circuit elements (e.g., transistors, resis-
tors, capacitors, inductors, and so forth), integrated circuits,
ASICs, programmable logic devices (PLDs), digital signal
processors (DSPs), FPGAs, memory units, logic gates, reg-
isters, semiconductor device, chips, microchips, chip sets,
and so forth. Examples of software elements may include
software components, programs, applications, computer
programs, application programs, device drivers, system pro-
grams, software development programs, machine programs,
operating system software, middleware, firmware, software
modules, routines, subroutines, functions, methods, proce-
dures, software interfaces, application program interfaces
(APIs), instruction sets, computing code, computer code,
code segments, computer code segments, words, values,
symbols, or any combination thereof. Determining whether
an example is implemented using hardware elements and/or
software elements may vary in accordance with any number
of factors, such as desired computational rate, power levels,
heat tolerances, processing cycle budget, input data rates,
output data rates, memory resources, data bus speeds and
other design or performance constraints, as desired for a
given example.

[0142] In some examples, other platform components
1850 may include common computing elements, memory
units, chipsets, controllers, peripherals, interfaces, oscilla-

Oct. 10, 2019

tors, timing devices, video cards, audio cards, multimedia
input/output (I/O) components (e.g., digital displays), power
supplies, and so forth. Examples of memory units or
memory devices may include without limitation various
types of computer readable and machine readable storage
media in the form of one or more higher speed memory
units, such as read-only memory (ROM), random-access
memory (RAM), dynamic RAM (DRAM), Double-Data-
Rate DRAM (DDRAM), synchronous DRAM (SDRAM),
static RAM (SRAM), programmable ROM (PROM), eras-
able programmable ROM (EPROM), electrically erasable
programmable ROM (EEPROM), flash memory, polymer
memory such as ferroelectric polymer memory, ovonic
memory, phase change or ferroelectric memory, silicon-
oxide-nitride-oxide-silicon (SONOS) memory, magnetic or
optical cards, an array of devices such as Redundant Array
of Independent Disks (RAID) drives, solid state memory
devices (e.g., USB memory), solid state drives (SSD) and
any other type of storage media suitable for storing infor-
mation.

[0143] In some examples, communications interface 1860
may include logic and/or features to support a communica-
tion interface. For these examples, communications inter-
face 1860 may include one or more communication inter-
faces that operate according to various communication
protocols or standards to communicate over direct or net-
work communication links. Direct communications may
occur via use of communication protocols or standards
described in one or more industry standards (including
progenies and variants) such as those associated with the
PCle specification, the NVMe specification or the I3C
specification. Network communications may occur via use
of communication protocols or standards such those
described in one or more Ethernet standards promulgated by
the Institute of Electrical and Electronics Engineers (IEEE).
For example, one such Ethernet standard promulgated by
IEEE may include, but is not limited to, IEEE 802.3-2018,
Carrier sense Multiple access with Collision Detection
(CSMA/CD) Access Method and Physical Layer Specifica-
tions, Published in August 2018 (hereinafter “IEEE 802.3
specification”). Network communication may also occur
according to one or more OpenFlow specifications such as
the OpenFlow Hardware Abstraction API Specification.
Network communications may also occur according to one
or more Infiniband Architecture specifications.

[0144] Computing platform 1800 may be implemented in
a server or client computing device. Accordingly, functions
and/or specific configurations of computing platform 1800
described herein, may be included or omitted in various
embodiments of computing platform 1800, as suitably
desired for a server or client computing device.

[0145] The components and features of computing plat-
form 1800 may be implemented using any combination of
discrete circuitry, ASICs, logic gates and/or single chip
architectures. Further, the features of computing platform
1800 may be implemented using microcontrollers, FPGAs
and/or microprocessors or any combination of the foregoing
where suitably appropriate. It is noted that hardware, firm-
ware and/or software elements may be collectively or indi-
vidually referred to herein as “logic” or “circuit.”

[0146] It should be appreciated that the exemplary com-
puting platform 1800 shown in the block diagram of FIG. 18
may represent one functionally descriptive example of many
potential implementations. Accordingly, division, omission



US 2019/0310937 Al

or inclusion of block functions depicted in the accompany-
ing figures does not infer that the hardware components,
circuits, software and/or elements for implementing these
functions would necessarily be divided, omitted, or included
in embodiments.

[0147] One or more aspects of at least one example may
be implemented by representative instructions stored on at
least one machine-readable medium which represents vari-
ous logic within the processor, which when read by a
machine, computing device or system causes the machine,
computing device or system to fabricate logic to perform the
techniques described herein. Such representations, known as
“IP cores” and may be similar to IP blocks. IP cores may be
stored on a tangible, machine readable medium and supplied
to various customers or manufacturing facilities to load into
the fabrication machines that actually make the logic or
processor.

[0148] Various examples may be implemented using hard-
ware elements, software elements, or a combination of both.
In some examples, hardware elements may include devices,
components, processors, Microprocessors, circuits, circuit
elements (e.g., transistors, resistors, capacitors, inductors,
and so forth), integrated circuits, ASICs, PLDs, DSPs,
FPGAs, memory units, logic gates, registers, semiconductor
device, chips, microchips, chip sets, and so forth. In some
examples, software elements may include software compo-
nents, programs, applications, computer programs, applica-
tion programs, system programs, machine programs, oper-
ating system software, middleware, firmware, software
modules, routines, subroutines, functions, methods, proce-
dures, software interfaces, APIs, instruction sets, computing
code, computer code, code segments, computer code seg-
ments, words, values, symbols, or any combination thereof.
Determining whether an example is implemented using
hardware elements and/or software elements may vary in
accordance with any number of factors, such as desired
computational rate, power levels, heat tolerances, processing
cycle budget, input data rates, output data rates, memory
resources, data bus speeds and other design or performance
constraints, as desired for a given implementation.

[0149] Some examples may include an article of manu-
facture or at least one computer-readable medium. A com-
puter-readable medium may include a non-transitory storage
medium to store logic. In some examples, the non-transitory
storage medium may include one or more types of computer-
readable storage media capable of storing electronic data,
including volatile memory or non-volatile memory, remov-
able or non-removable memory, erasable or non-erasable
memory, writeable or re-writeable memory, and so forth. In
some examples, the logic may include various software
elements, such as software components, programs, applica-
tions, computer programs, application programs, system
programs, machine programs, operating system software,
middleware, firmware, software modules, routines, subrou-
tines, functions, methods, procedures, software interfaces,
API, instruction sets, computing code, computer code, code
segments, computer code segments, words, values, symbols,
or any combination thereof.

[0150] According to some examples, a computer-readable
medium may include a non-transitory storage medium to
store or maintain instructions that when executed by a
machine, computing device or system, cause the machine,
computing device or system to perform methods and/or
operations in accordance with the described examples. The

Oct. 10, 2019

instructions may include any suitable type of code, such as
source code, compiled code, interpreted code, executable
code, static code, dynamic code, and the like. The instruc-
tions may be implemented according to a predefined com-
puter language, manner or syntax, for instructing a machine,
computing device or system to perform a certain function.
The instructions may be implemented using any suitable
high-level, low-level, object-oriented, visual, compiled and/
or interpreted programming language.

[0151] Some examples may be described using the expres-
sion “in one example” or “an example” along with their
derivatives. These terms mean that a particular feature,
structure, or characteristic described in connection with the
example is included in at least one example. The appear-
ances of the phrase “in one example™ in various places in the
specification are not necessarily all referring to the same
example.

[0152] Some examples may be described using the expres-
sion “coupled” and “connected” along with their derivatives.
These terms are not necessarily intended as synonyms for
each other. For example, descriptions using the terms “con-
nected” and/or “coupled” may indicate that two or more
elements are in direct physical or electrical contact with each
other. The term “coupled” or “coupled with”, however, may
also mean that two or more elements are not in direct contact
with each other, but yet still co-operate or interact with each
other.

[0153] To the extent various operations or functions are
described herein, they can be described or defined as soft-
ware code, instructions, configuration, and/or data. The
content can be directly executable (“object” or “executable”
form), source code, or difference code (“delta” or “patch”
code). The software content of what is described herein can
be provided via an article of manufacture with the content
stored thereon, or via a method of operating a communica-
tion interface to send data via the communication interface.
A machine readable storage medium can cause a machine to
perform the functions or operations described and includes
any mechanism that stores information in a form accessible
by a machine (e.g., computing device, electronic system,
etc.), such as recordable/non-recordable media (e.g., read
only memory (ROM), random access memory (RAM),
magnetic disk storage media, optical storage media, flash
memory devices, etc.). A communication interface includes
any mechanism that interfaces to any of a hardwired, wire-
less, optical, etc., medium to communicate to another
device, such as a memory bus interface, a processor bus
interface, an Internet connection, a disk controller, etc. The
communication interface can be configured by providing
configuration parameters and/or sending signals to prepare
the communication interface to provide a data signal
describing the software content. The communication inter-
face can be accessed via one or more commands or signals
sent to the communication interface.

[0154] The follow examples pertain to additional
examples of technologies disclosed herein.

[0155] Example 1. An example apparatus may include an
interface coupled with a queue management device. The
apparatus may also include circuitry to receive, via the
interface, a search request forwarded from an input queue of
the queue management device. The circuitry may also
implement a table lookup of a table maintained in a memory
domain having a grouping of memory addresses. The table
lookup may be implemented based on a key value indicated



US 2019/0310937 Al

in the search request. The circuitry may also obtain a result
from an entry of the table based on the key value indicated
in the search request matching a key value indicated in the
entry of the table.

[0156] Example 2. The apparatus of example 1, the cir-
cuitry may also send the result to a requestor of the search
request by sending the result through the interface to an
output queue of the queue management device. The queue
management device may be arranged to forward the result to
the requestor from the output queue.

[0157] Example 3. The apparatus of example 2, the entry
of the table may indicate the output queue of the queue
management device to which the result is to be sent.
[0158] Example 4. The apparatus of example 1, the search
request may indicate the input queue of the queue manage-
ment device from which the search request is received.
[0159] Example 5. The apparatus of example 4, the input
queue of the queue management device may be mapped to
the table maintained in the memory domain such that the
search request that indicates the input queue causes the table
lookup of the table maintained in the memory domain.
[0160] Example 6. The apparatus of example 1, the entry
of the table may indicate a result type for the result obtained
from the entry, the result type to include a requestor specific
result that causes the requestor to decide how to process the
result, a callback pointer to a memory address to implement
a function, or a data pointer to obtain information from a
memory address.

[0161] Example 7. The apparatus of example 1, the table
may be a hash table, a ternary table or a tree table.

[0162] Example 8. The apparatus of example 1, the cir-
cuitry may also cause a second table lookup of a second
table maintained in a second memory domain having a
second grouping of memory addresses based on the entry of
the table indicating a result type for the result obtained from
the entry that indicates a next key value for a compound
search. The circuitry may also obtain a second result from an
entry of the second table based on the next key value
matching a key value indicated in the entry of the second
table.

[0163] Example 9. The apparatus of example 8, the cir-
cuitry may also send the second result to a requestor of the
search request by sending the second result through the
interface to an output queue of the queue management
device. The queue management device may be arranged to
forward the second result to the requestor from the output
queue.

[0164] Example 10. The apparatus of example 1, the
circuitry may also cause a second table lookup based on the
entry of the table indicating a result type for the result
obtained from the entry that indicates a next key value for a
compound search. The circuitry may also send the result to
a search accelerator to implement the second table lookup
based on the next key value not matching table entries for
tables maintained in a plurality of memory domains acces-
sible to the circuitry. The result may be sent through the
interface to an output queue of the queue management
device. The queue management device may be arranged to
forward the result to the search accelerator.

[0165] Example 11. An example method may include
receiving, at circuitry, a search request forwarded from an
input queue of a queue management device. The method
may also include implementing a table lookup of a table
maintained in a memory domain having a grouping of

Oct. 10, 2019

memory addresses. The table lookup may be implemented
based on a key value indicated in the search request. The
method may also include obtaining a result from an entry of
the table based on the key value indicated in the search
request matching a key value indicated in the entry of the
table.

[0166] Example 12. The method of example 11 may also
include sending the result to a requestor of the search request
by sending the result to an output queue of the queue
management device. The queue management device may be
arranged to forward the result to the requestor from the
output queue.

[0167] Example 13. The method of example 12, the entry
of the table may indicate the output queue of the queue
management device to which the result is to be sent.

[0168] Example 14. The method of example 11, the search
request may indicate the input queue of the queue manage-
ment device from which the search request is received.

[0169] Example 15. The method of example 14, the input
queue of the queue management device may be mapped to
the table maintained in the memory domain such that the
search request that indicates the input queue causes the table
lookup of the table maintained in the memory domain.

[0170] Example 16. The method of example 11, the entry
of the table may indicate a result type for the result obtained
from the entry, the result type including a requestor specific
result that causes the requestor to decide how to process the
result, a callback pointer to a memory address to implement
a function, or a data pointer to obtain information from a
memory address.

[0171] Example 17. The method of example 11, the table
may be a hash table, a ternary table or a tree table.

[0172] Example 18. The method of example 11 may also
include causing a second table lookup of a second table
maintained in a second memory domain having a second
grouping of memory addresses based on the entry of the
table indicating a result type for the result obtained from the
entry that indicates a next key value for a compound search.
The method may also include obtaining a second result from
an entry of the second table based on the next key value
matching a key value indicated in the entry of the second
table.

[0173] Example 19. The method of example 18 may also
include sending the second result to a requestor of the search
request by sending the second result to an output queue of
the queue management device. The queue management
device may be arranged to forward the second result to the
requestor from the output queue.

[0174] Example 20. The method of example 11 may also
include causing a second table lookup based on the entry of
the table indicating a result type for the result obtained from
the entry that indicates a next key value for a compound
search. The method may also include sending the result to a
search accelerator to implement the second table lookup
based on the next key value not matching table entries for
tables maintained in a plurality of memory domains acces-
sible to the circuitry. The result may be sent to an output
queue of the queue management device, wherein the queue
management device is arranged to forward the result to the
search accelerator.

[0175] Example 21. An example at least one machine
readable medium may include a plurality of instructions that



US 2019/0310937 Al

in response to being executed by a system cause the system
to carry out a method according to any one of examples 11
to 20.

[0176] Example 22. An example apparatus may include
means for performing the methods of any one of examples
11 to 20.

[0177] Example 23. An example at least one machine
readable medium may include a plurality of instructions that
in response to being executed by a system, may cause the
system to receive a search request forwarded from an input
queue of a queue management device. The instructions may
also cause the system to implement a table lookup of a table
maintained in a memory domain having a grouping of
memory addresses. The table lookup may be implemented
based on a key value indicated in the search request. The
instructions may also cause the system to obtain a result
from an entry of the table based on the key value indicated
in the search request matching a key value indicated in the
entry of the table.

[0178] Example 24. The at least one machine readable
medium of example 23, the instructions may also cause the
system to send the result to a requestor of the search request
by sending the result to an output queue of the queue
management device. The queue management device may be
arranged to forward the result to the requestor from the
output queue.

[0179] Example 25. The at least one machine readable
medium of example 24, the entry of the table may indicate
the output queue of the queue management device to which
the result is to be sent.

[0180] Example 26. The at least one machine readable
medium of example 23, the search request may indicate the
input queue of the queue management device from which
the search request is received.

[0181] Example 27. The at least one machine readable
medium of example 26, the input queue of the queue
management device may be mapped to the table maintained
in the memory domain such that the search request that
indicates the input queue causes the table lookup of the table
maintained in the memory domain.

[0182] Example 28. The at least one machine readable
medium of example 23, the entry of the table may indicate
a result type for the result obtained from the entry. The result
type may include a requestor specific result that causes the
requestor to decide how to process the result, a callback
pointer to a memory address to implement a function, or a
data pointer to obtain information from a memory address.
[0183] Example 29. The at least one machine readable
medium of example 23, the table may be a hash table, a
ternary table or a tree table.

[0184] Example 30. The at least one machine readable
medium of example 23, the instructions may also cause the
system to cause a second table lookup of a second table
maintained in a second memory domain having a second
grouping of memory addresses based on the entry of the
table indicating a result type for the result obtained from the
entry that indicates a next key value for a compound search.
The instructions may also cause the system to obtain a
second result from an entry of the second table based on the
next key value matching a key value indicated in the entry
of the second table.

[0185] Example 31. The at least one machine readable
medium of example 30, the instructions may also cause the
system to send the second result to a requestor of the search

Oct. 10, 2019

request by sending the second result to an output queue of
the queue management device. The queue management
device may be arranged to forward the second result to the
requestor from the output queue.

[0186] Example 32. The at least one machine readable
medium of example 23, the instructions may also cause the
system to cause a second table lookup based on the entry of
the table indicating a result type for the result obtained from
the entry that indicates a next key value for a compound
search. The instructions may also cause the system to send
the result to a search accelerator to implement the second
table lookup based on the next key value not matching table
entries for tables maintained in a plurality of memory
domains accessible to the system. The result may be sent to
an output queue of the queue management device. The
queue management device may be arranged to forward the
result to the search accelerator.

[0187] Example 33. An example method may include
receiving table information to create a table to be maintained
in a memory domain having a grouping of memory
addresses. The method may also include causing the table to
be created in the memory domain such that the table includes
a plurality of table entries that include a key value, a result,
or a result type, the table accessible to lookup circuitry. The
method may also include receiving queue information to
configure queues of a queue management device, the queue
management device having input queues to receive search
requests to cause the table lookup of the table by the lookup
circuitry and having output queues to receive results of the
table lookup. The method may also include causing the
queues of the queue management device to be configured
based on the queue information.

[0188] Example 34. The method of example 33 may also
include sending queue configuration information to one or
more requestors of the search requests. The queue configu-
ration information may identify the input queues of the
queue management device to receive the search requests to
cause the lookup of the table by the lookup circuitry.
[0189] Example 35. The method of example 33 may also
include receiving schedule information to configure sched-
ule logic at the queue management device to schedule the
search requests received in the input queues of the queue
management device. The method may also include causing
the schedule logic to be configured based on the schedule
information.

[0190] It is emphasized that the Abstract of the Disclosure
is provided to comply with 37 C.F.R. Section 1.72(b),
requiring an abstract that will allow the reader to quickly
ascertain the nature of the technical disclosure. It is submit-
ted with the understanding that it will not be used to interpret
or limit the scope or meaning of the claims. In addition, in
the foregoing Detailed Description, it can be seen that
various features are grouped together in a single example for
the purpose of streamlining the disclosure. This method of
disclosure is not to be interpreted as reflecting an intention
that the claimed examples require more features than are
expressly recited in each claim. Rather, as the following
claims reflect, inventive subject matter lies in less than all
features of a single disclosed example. Thus, the following
claims are hereby incorporated into the Detailed Descrip-
tion, with each claim standing on its own as a separate
example. In the appended claims, the terms “including” and
“in which” are used as the plain-English equivalents of the
respective terms “comprising” and “wherein,” respectively.



US 2019/0310937 Al

Moreover, the terms “first,” “second,” “third,” and so forth,
are used merely as labels, and are not intended to impose
numerical requirements on their objects.

[0191] Although the subject matter has been described in
language specific to structural features and/or methodologi-
cal acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the
specific features or acts described above. Rather, the specific
features and acts described above are disclosed as example
forms of implementing the claims.

What is claimed is:

1. An apparatus comprising:

an interface coupled with a queue management device;

and

circuitry to:

receive, via the interface, a search request forwarded
from an input queue of the queue management
device;

implement a table lookup of a table maintained in a
memory domain having a grouping of memory
addresses, the table lookup implemented based on a
key value indicated in the search request; and

obtain a result from an entry of the table based on the
key value indicated in the search request matching a
key value indicated in the entry of the table.

2. The apparatus of claim 1, further comprising the
circuitry to:

send the result to a requestor of the search request by

sending the result through the interface to an output
queue of the queue management device, wherein the
queue management device is arranged to forward the
result to the requestor from the output queue.

3. The apparatus of claim 2, comprising the entry of the
table indicates the output queue of the queue management
device to which the result is to be sent.

4. The apparatus of claim 1, comprising the input queue
of the queue management device is mapped to the table
maintained in the memory domain such that the search
request in the input queue causes the table lookup of the
table maintained in the memory domain.

5. The apparatus of claim 1, comprising the entry of the
table indicates a result type for the result obtained from the
entry, the result type to include a requestor specific result
that causes the requestor to decide how to process the result,
a callback pointer to a memory address to invoke a function
indicated in the result, or a data pointer to obtain information
from a memory address indicated in the result.

6. The apparatus of claim 1, the table comprising a hash
table, a content addressable memory (CAM) table, a ternary
CAM (TCAM) table, a range table, an array, a link list, a
database or a tree table.

7. The apparatus of claim 1, further comprising the
circuitry to:

cause a second table lookup of a second table maintained

in a second memory domain having a second grouping
of memory addresses based on the entry of the table
indicating a result type for the result obtained from the
entry that indicates a next key value for a compound
search; and

obtain a second result from an entry of the second table

based on the next key value matching a key value
indicated in the entry of the second table.

8. The apparatus of claim 7, further comprising the
circuitry to:

Oct. 10, 2019

send the second result to a requestor of the search request
by sending the second result through the interface to an
output queue of the queue management device, wherein
the queue management device is arranged to forward
the second result to the requestor from the output
queue.

9. The apparatus of claim 1, comprising the circuitry to:

cause a second table lookup based on the entry of the table

indicating a result type for the result obtained from the
entry that indicates a next key value for a compound
search; and

send the result to a search accelerator to implement the

second table lookup based on the next key value not
matching table entries for tables maintained in a plu-
rality of memory domains accessible to the circuitry,
the result sent through the interface to an output queue
of the queue management device, wherein the queue
management device is arranged to forward the result to
the search accelerator.

10. A method comprising:

receiving, at circuitry, a search request forwarded from an

input queue of a queue management device;
implementing a table lookup of a table maintained in a
memory domain having a grouping of memory
addresses, the table lookup implemented based on a
key value indicated in the search request; and

obtaining a result from an entry of the table based on the
key value indicated in the search request matching a
key value indicated in the entry of the table.

11. The method of claim 10, further comprising:

sending the result to a requestor of the search request by

sending the result to an output queue of the queue
management device, wherein the queue management
device is arranged to forward the result to the requestor
from the output queue.

12. The method of claim 11, comprising the entry of the
table indicates the output queue of the queue management
device to which the result is to be sent.

13. The method of claim 10, comprising the input queue
of the queue management device is mapped to the table
maintained in the memory domain such that the search
request in the input queue causes the table lookup of the
table maintained in the memory domain.

14. The method of claim 10, comprising the entry of the
table indicates a result type for the result obtained from the
entry, the result type including a requestor specific result that
causes the requestor to decide how to process the result, a
callback pointer to a memory address to invoke a function
indicated in the result, or a data pointer to obtain information
from a memory address indicated in the result.

15. The method of claim 10, further comprising:

causing a second table lookup of a second table main-

tained in a second memory domain having a second
grouping of memory addresses based on the entry of
the table indicating a result type for the result obtained
from the entry that indicates a next key value for a
compound search;

obtaining a second result from an entry of the second table

based on the next key value matching a key value
indicated in the entry of the second table; and
sending the second result to a requestor of the search
request by sending the second result to an output queue
of the queue management device, wherein the queue



US 2019/0310937 Al

management device is arranged to forward the second
result to the requestor from the output queue.
16. At least one machine readable medium comprising a
plurality of instructions that in response to being executed
by a system, cause the system to:
receive a search request forwarded from an input queue of
a queue management device;

implement a table lookup of a table maintained in a
memory domain having a grouping of memory
addresses, the table lookup implemented based on a
key value indicated in the search request;

obtain a result from an entry of the table based on the key

value indicated in the search request matching a key
value indicated in the entry of the table; and

send the result to a requestor of the search request by

sending the result to an output queue of the queue
management device, wherein the queue management
device is arranged to forward the result to the requestor
from the output queue.

17. The at least one machine readable medium of claim
16, comprising the entry of the table indicates the output
queue of the queue management device to which the result
is to be sent.

18. The at least one machine readable medium of claim
17, comprising the input queue of the queue management
device is mapped to the table maintained in the memory
domain such that the search request in the input queue
causes the table lookup of the table maintained in the
memory domain.

Oct. 10, 2019

19. The at least one machine readable medium of claim
16, comprising the entry of the table indicates a result type
for the result obtained from the entry, the result type
including a requestor specific result that causes the requestor
to decide how to process the result, a callback pointer to a
memory address to invoke a function indicated in the result,
or a data pointer to obtain information from a memory
address indicated in the result.

20. The at least one machine readable medium of claim
16, further comprising the instructions to cause the system
to:

cause a second table lookup of a second table maintained
in a second memory domain having a second grouping
of memory addresses based on the entry of the table
indicating a result type for the result obtained from the
entry that indicates a next key value for a compound
search;

obtain a second result from an entry of the second table
based on the next key value matching a key value
indicated in the entry of the second table; and

send the second result to a requestor of the search request
by sending the second result to an output queue of the
queue management device, wherein the queue manage-
ment device is arranged to forward the second result to
the requestor from the output queue.

#* #* #* #* #*



