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SYSTEM FOR THREE-DIMENSIONAL
GEOMETRIC GUIDED STUDENT-TEACHER
FEATURE MATCHING (3DG-STFM)

FIELD OF THE INVENTION

[0001] The invention relates generally to image process-
ing, and more particularly, to a system for three-dimensional
geometric guided student-teacher feature matching (3DG-
STFM) for establishing correspondences between over-
lapped images.

BACKGROUND OF THE INVENTION

[0002] Establishing correspondences between overlapped
images is critical for many computer vision tasks including
structure from motion (SfM), simultaneous localization and
mapping (SLAM), visual localization, etc.

[0003] Most existing methods that tackle this problem
follow the classical tri-stage pipeline, i.e., feature detection,
feature description, and feature matching. To generate robust
descriptors that are invulnerable to the illumination or
viewpoint variations, both traditional hand-crafted feature
descriptors, e.g., SIFT, SURF and BRISK, and deep network
representation features are intensively studied. The point-
to-point correspondences are produced by matching algo-
rithm based on nearest neighbor search or learnable match-
ing strategies.

[0004] A learning-based matching system, SuperGlue,
built a densely connected graph between two sets of key-
points by leveraging a graph neural network (GNN). Geo-
metric correlation of the keypoints and their visual features
are integrated and exchanged within the GNN using the self
and cross attention mechanism. However, those detector-
based local feature matching algorithms only produced
sparse keypoints, especially in low-texture regions.

[0005] Therefore, a heretofore unaddressed need exists in
the art to address the aforementioned deficiencies and inad-
equacies.

SUMMARY OF THE INVENTION

[0006] In view of the aforementioned deficiencies and
inadequacies in the existing methods, one objective of this
invention is to provide a framework/architecture using
RGB-induced depth information to improve local feature
matching performance. Another objective of the invention is
to provide a model compression system to train an efficient,
light-weight model, so it consumes the less computation
resource with high matching quality and accuracy. Particu-
larly, the invention provides system for three-dimensional
geometric guided student-teacher feature matching (3DG-
STFM), a student-teacher learning framework, to transfer
depth knowledge learned by a multi-modal teacher model to
a mono-modal student model to improve the local feature
matching.

[0007] In one aspect of the invention, the system com-
prises a multi-modal teacher model configured to determine
feature matching between a pair of RGB-D images, wherein
each RGB-D image is a combination of a RGB image and
its corresponding depth image, and the depth image is an
image channel in which each pixel relates to a distance
between an image plane and a corresponding object in the
RGB image; and a mono-modal student model configured to
determine feature matching from the pair of RGB images
and the teacher model, wherein the teacher model guides the
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student model to learn RGB-induced depth information for
the feature matching on both coarse and fine levels.

[0008] The system also comprises a coarse-level knowl-
edge transfer loss function for determining loss of transfer-
ring coarse-level matching knowledge from the teacher
model to the student model; and a fine-level knowledge
transfer loss function for determining loss of transferring
fine-level matching knowledge from the teacher model to
the student model, wherein the fine-level knowledge transfer
loss function guides the student model to learn a fine-level
prediction distribution with priority.

[0009] In one embodiment, each of the teacher model and
the student model comprises a feature pyramid network
(FPN) configured to extract coarse-level local features with
18 of an original image resolution and fine-level features
with %2 of the original image resolution from the pair of
images.

[0010] In one embodiment, the FPN of the teacher model
is designed for 4-channel inputs of RGB-D images, and the
FPN of the student model is designed for 3-channel inputs
of RGB images, wherein D is depth information.

[0011] In one embodiment, each of the teacher model and
the student model further comprises a coarse-level local
feature transform module, a coarse-level matching module,
and a fine-level matching module.

[0012] In one embodiment, the coarse-level local feature
transform module is configured to flatten maps of the
extracted coarse-level features to one-dimensional vectors;
perform positional encoding on the flattened one-dimen-
sional vectors to assign each feature entry a unique embed-
ding vector in a sinusoidal format to encode spatial infor-
mation; and process the encoded local feature vectors by a
coarse-level matching transformer comprising self-attention
and cross-attention layers to generate a logits layer com-
prising a correlation matrix.

[0013] In one embodiment, the self-attention and cross-
attention layers are interleaved in the coarse-level matching
transformer by L. times.

[0014] In one embodiment, the coarse-level matching
module is configured to generate a confidence score matrix
P, by applying a dual softmax operation to the correlation
matrix S, on both row and column directions:

P (i,j)=softmax(S(i,),) *softmax(S.(-,/);)

wherein P.(i, j) is a matching probability at matching
position (i, j); and select matching pairs with probability
scores higher than a threshold O, to yield coarse-level
matching predictions.

[0015] In one embodiment, given the ground-truth matrix
derived from correspondence labels, cross-entropy loss that
measures the performance of the coarse-level local feature
transform module and the coarse-level matching module is
calculated as:

Lo = —ma 2 FLP(, )log(Pe)
FL(p)=a(1-p),

_{ p ify=1,

p 1 - p otherwise
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wherein M ,, is a correspondence set generated by the
ground-truth labels, FL. with a predicted probability p is a
focal loss term for addressing imbalance between matching
and unmatching pairs.

[0016] In one embodiment, the fine-level matching mod-
ule is configured to project the coarse matching position (i,
j) on the fine-level feature map at posmon @, J) and extract
its features from a neighboring wxw size window as match-
ing candidates; upsample the selected coarse-level features
and concatenate the upsampled coarse-level features to the
fine-level features; and process the concatenated fine-level
features by a fine-level matching transformer to predict
correspondences on subpixel-level.

[0017] In one embodiment, the fine-level matching trans-
former contains L self-attention and cross-attention layers to
aggregate fine-level local information and generate a heat-
map distribution for the location refinement.

[0018] In one embodiment, the final loss based on the
direct supervision is calculated by:

£y = IIH@ Tl

where (i, J) is the ground-truth position wrapped from an
image solution to a fine-level heatmap scale, ].l(l) is the
prediction associated to a coarse position 1, 0%(i) is the total

variance of the heatmap distribution, and M , is the set of
fine matches predicted by the module.

[0019] In one embodiment, the total variance of the simi-
larity distribution is treated as uncertainty to assign a weight
to each fine-level match, and wherein the larger total vari-
ance indicates it is an uncertain prediction and associates
with low weights.

[0020] In one embodiment, the coarse-level knowledge
transfer loss function is adapted to decompose the logits
layer to multiple independent query distributions and guides
the student model to learn the distributions.

[0021] In one embodiment, the coarse-level knowledge
transfer loss function determines a mutual query divergence
(MQD) loss that employs all the mutual query distributions
for knowledge transfer:

n

1
I (PN O] A0
Y E FL( ) log( )

Lyop =

where p,’ and p,* are respectively student’s and teacher’s
query distributions distilled at temperature T, additional
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focal loss weight FL is added to balance the matching/
unmatching ground-truth pairs, p,” is the standard confi-
dence score predicted by the student model, and the total

MQD loss £ aop On the coarse level is the mean of
knowledge distillation (KD) loss of all n distributions,
wherein n is equal to 2xhw.

[0022] In one embodiment, the fine-level knowledge
transfer loss function is adapted to assign weights to the
prediction of the teacher model, with the prediction with
higher certainty is assigned with larger weights.

[0023] In one embodiment, the heatmaps of the teacher
model and the student model are of Gaussian distributions
N,(4,, 6,5 and N (u,, 6.%), respectively.

[0024] In one embodiment, the fine-level knowledge
transfer loss function determines an attentive loss (£ ) that

is applied to help the student model learn the Gaussian
distributions:

1A (1 - MS")

Lo = 'r:",il )
ZO'SL)

where the u, > and p,® are the expectations of student’s and
teacher’s output distributions which correspond to match G,

J) in the fine-level correspondence set M .

[0025] In one embodiment, the attentive loss is treated as
a 1, distance loss that pays more attention to the prediction
associated with large attention weight

1

=
20’50

[0026] In one embodiment, the teacher prediction with a
small total variance indicates the teacher model is quite
certain about the location of the correspondence, wherein the
loss is assigned with a large weight to guide the student
model to learn the certain predictions from the teacher
model in priority.

[0027] In one embodiment, the final losses for the teacher
model and the student model are respectively:

mcner=7»o£ A £ 4 and

L Lo Ll L

student=N0 MoptA3™ i

[0028] These and other aspects of the invention will
become apparent from the following description of the
preferred embodiments, taken in conjunction with the fol-
lowing drawings, although variations and modifications
therein may be affected without departing from the spirit and
scope of the novel concepts of the disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0029] The accompanying drawings illustrate one or more
embodiments of the invention and, together with the written
description, serve to explain the principles of the invention.
The same reference numbers may be used throughout the
drawings to refer to the same or like elements in the
embodiments.
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[0030] FIG. 1 shows schematically a system for three-
dimensional geometric guided student-teacher feature
matching (3DG-STFM) according to one embodiment of the
invention.

[0031] FIG. 2 shows schematically a system for 3DG-
STFM according to one embodiment of the invention.
[0032] FIG. 3 shows schematically a coarse-level differ-
entiable matching mechanism according to one embodiment
of the invention.

[0033] FIG. 4 shows schematically a coarse-level knowl-
edge transfer according to one embodiment of the invention.
[0034] FIG. 5 shows schematically a fine-level attentive
knowledge transfer according to one embodiment of the
invention.

[0035] FIG. 6 is shows schematically a block diagram of
the system according to one embodiment of the invention.

DETAILED DESCRIPTION OF THE
INVENTION

[0036] The invention will now be described more fully
hereinafter with reference to the accompanying drawings, in
which exemplary embodiments of the invention are shown.
This invention may, however, be embodied in many different
forms and should not be construed as limited to the embodi-
ments set forth herein. Rather, these embodiments are pro-
vided so that this invention will be thorough and complete,
and will fully convey the scope of the invention to those
skilled in the art. Like reference numerals refer to like
elements throughout.

[0037] The terms used in this specification generally have
their ordinary meanings in the art, within the context of the
invention, and in the specific context where each term is
used. Certain terms that are used to describe the invention
are discussed below, or elsewhere in the specification, to
provide additional guidance to the practitioner regarding the
description of the invention. For convenience, certain terms
may be highlighted, for example using italics and/or quota-
tion marks. The use of highlighting has no influence on the
scope and meaning of a term; the scope and meaning of a
term is the same, in the same context, whether or not it is
highlighted. It will be appreciated that same thing can be
said in more than one way. Consequently, alternative lan-
guage and synonyms may be used for any one or more of the
terms discussed herein, nor is any special significance to be
placed upon whether or not a term is elaborated or discussed
herein. Synonyms for certain terms are provided. A recital of
one or more synonyms does not exclude the use of other
synonyms. The use of examples anywhere in this specifica-
tion including examples of any terms discussed herein is
illustrative only, and in no way limits the scope and meaning
of the invention or of any exemplified term. Likewise, the
invention is not limited to various embodiments given in this
specification.

[0038] It will be understood that, as used in the description
herein and throughout the claims that follow, the meaning of
“a”, “an”, and “the” includes plural reference unless the
context clearly dictates otherwise. Also, it will be under-
stood that when an element is referred to as being “on”
another element, it can be directly on the other element or
intervening elements may be present therebetween. In con-
trast, when an element is referred to as being “directly on”
another element, there are no intervening elements present.
As used herein, the term “and/or” includes any and all
combinations of one or more of the associated listed items.
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[0039] It will be understood that, although the terms first,
second, third etc. may be used herein to describe various
elements, components, regions, layers and/or sections, these
elements, components, regions, layers and/or sections
should not be limited by these terms. These terms are only
used to distinguish one element, component, region, layer or
section from another element, component, region, layer or
section. Thus, a first element, component, region, layer or
section discussed below could be termed a second element,
component, region, layer or section without departing from
the teachings of the invention.

[0040] It will be further understood that the terms “com-
prises” and/or “comprising,” or “includes” and/or “includ-
ing” or “has” and/or “having”, or “carry”” and/or “carrying,”
or “contain” and/or “containing,” or “involve” and/or
“involving, and the like are to be open-ended, i.c., to mean
including but not limited to. When used in this invention,
they specify the presence of stated features, regions, inte-
gers, steps, operations, elements, and/or components, but do
not preclude the presence or addition of one or more other
features, regions, integers, steps, operations, elements, com-
ponents, and/or groups thereof.

[0041] Unless otherwise defined, all terms (including tech-
nical and scientific terms) used herein have the same mean-
ing as commonly understood by one of ordinary skill in the
art to which this invention belongs. It will be further
understood that terms, such as those defined in commonly
used dictionaries, should be interpreted as having a meaning
that is consistent with their meaning in the context of the
relevant art and the invention, and will not be interpreted in
an idealized or overly formal sense unless expressly so
defined herein.

[0042] The following description is merely illustrative in
nature and is in no way intended to limit the disclosure, its
application, or uses. The broad teachings of the disclosure
can be implemented in a variety of forms. Therefore, while
this disclosure includes particular examples, the true scope
of the disclosure should not be so limited since other
modifications will become apparent upon a study of the
drawings, the specification, and the following claims. For
purposes of clarity, the same reference numbers will be used
in the drawings to identify similar elements. As used herein,
the phrase at least one of A, B, and C should be construed
to mean a logical (A or B or C), using a non-exclusive
logical OR. It should be understood that one or more steps
within a method may be executed in different order (or
concurrently) without altering the principles of the present
disclosure.

[0043] As used herein, the term module may refer to, be
part of, or include an Application Specific Integrated Circuit
(ASIC); an electronic circuit; a combinational logic circuit;
a field programmable gate array (FPGA); a processor
(shared, dedicated, or group) that executes code; other
suitable hardware components that provide the described
functionality; or a combination of some or all of the above,
such as in a system-on-chip. The term module may include
memory (shared, dedicated, or group) that stores code
executed by the processor.

[0044] The systems and methods will be described in the
following detailed description and illustrated in the accom-
panying drawings by various blocks, components, circuits,
processes, algorithms, etc. (collectively referred to as “ele-
ments”). These elements may be implemented using elec-
tronic hardware, computer software, or any combination
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thereof. Whether such elements are implemented as hard-
ware or software depends upon the particular application
and design constraints imposed on the overall system. By
way of example, an element, or any portion of an element,
or any combination of elements may be implemented as a
“processing system” that includes one or more processors.
Examples of processors include microprocessors, microcon-
trollers, graphics processing units (GPUs), central process-
ing units (CPUs), application processors, digital signal pro-
cessors (DSPs), reduced instruction set computing (RISC)
processors, systems on a chip (SoC), baseband processors,
field programmable gate arrays (FPGAs), programmable
logic devices (PLDs), state machines, gated logic, discrete
hardware circuits, and other suitable hardware configured to
perform the various functionality described throughout this
disclosure. One or more processors in the processing system
may execute software. Software shall be construed broadly
to mean instructions, instruction sets, code, code segments,
program code, programs, subprograms, software compo-
nents, applications, software applications, software pack-
ages, routines, subroutines, objects, executables, threads of
execution, procedures, functions, etc., whether referred to as
software, firmware, middleware, microcode, hardware
description language, or otherwise.

[0045] Accordingly, in one or more example embodi-
ments, the functions described may be implemented in
hardware, software, or any combination thereof. If imple-
mented in software, the functions may be stored on or
encoded as one or more instructions or code on a computer-
readable medium. Computer-readable media includes com-
puter storage media. Storage media may be any available
media that can be accessed by a computer. By way of
example, and not limitation, such computer-readable media
can comprise a random-access memory (RAM), a read-only
memory (ROM), an electrically erasable programmable
ROM (EEPROM), optical disk storage, magnetic disk stor-
age, other magnetic storage devices, combinations of the
aforementioned types of computer-readable media, or any
other medium that can be used to store computer executable
code in the form of instructions or data structures that can be
accessed by a computer.

[0046] The description below is merely illustrative in
nature and is in no way intended to limit the invention, its
application, or uses. The broad teachings of the invention
can be implemented in a variety of forms. Therefore, while
this invention includes particular examples, the true scope of
the invention should not be so limited since other modifi-
cations will become apparent upon a study of the drawings,
the specification, and the following claims. For purposes of
clarity, the same reference numbers will be used in the
drawings to identify similar elements. It should be under-
stood that one or more steps within a method may be
executed in different order (or concurrently) without altering
the principles of the invention.

[0047] Establishing correspondences between overlapped
images is critical for many computer vision tasks including
structure from motion (SfM), simultaneous localization and
mapping (SLAM), visual localization, etc.

[0048] Several recent works attempted to avoid the detec-
tion step and established a fully-supervised dense matching
by considering all points from a regular grid. NCNet pro-
posed an end-to-end approach by directly learning the dense
correspondences. It enumerated all possible matches
between two images and constructed a 4D correlation tensor
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map. The 4D neighborhood consensus networks learned to
identify reliable matching pairs and filtered out unreliable
matches accordingly. Based on this concept, Sparse NCNet
improved NCNet’s efficiency and performance by process-
ing the 4D correlation map with submanifold sparse con-
volutions. And DRC-Net proposed a coarse-to-fine approach
to generate higher accuracy dense correspondences.

[0049] Recently, a local feature transformer (LoFTR)
approach was proposed to learn global consensus between
image correspondences by leveraging transformers. For
memory efficiency, the coarse matching features were first
predicted by a large LoFTR, then fed to a small LoFTR to
produce the final fine-level matches. Benefited from the
global receptive field of transformers, the LoFTR improved
the matching performance by a large margin.

[0050] All above mentioned dense local feature matching
approaches needed dense ground-truth correspondences as
supervision. To find the pixel-level ground-truth correspon-
dences, depth map, camera intrinsic, and extrinsic matrices
are used for the calculation of point reprojections from one
image to the other. On the other hand, given a set of images
with dense correspondences, triangulation could easily
reconstruct the 3D scene and depth maps. Therefore, depth
information is implicitly provided by dense correspondence
supervision.

[0051] However, to the best of our knowledge, none of the
existing methods explored the depth modality to further
improve their matching performance. Depth maps, unlike
RGB images, provide 3D information, which depicts the
geometry distribution in an explicit manner. The introduc-
tion of depth modality may provide two-fold benefits.
[0052] First, depth information, even if in lower quality or
sparse, can remove lots of ambiguity in a 2D image space
and enforce geometric consistency for feature matching,
which is super difficult using only RGB inputs. That is
particular true when there are multiple similar objects within
the image pair. In that case, most of the existing methods
tend to find implausible matching candidates since they
purely discriminate 2D descriptors without depth or size
knowledge. Second, a low texture area of single object
haunts 2D descriptor in terms of enforcing dense and
consistent matching. That deficiency can also be nicely
regularized by leveraging the discrimination of depth modal-
ity.

[0053] Despite the advantage of depth information, high
quality RGB-D inputs can only be collected in a well-
controlled lab environment, and very few, especially low
cost, consumer devices can capture similar well aligned
RGB-D pairs in real world scenarios. Most of the imaging
systems are only equipped with RGB sensor as input and
cannot afford high computational cost stemmed from multi-
modal inference.

[0054] That makes naive multi-modal fusion of RGB and
depth inputs during both inference and training a restrictive
solution. Consequently, a good way of transferring expen-
sive RGB-D knowledge into pure RGB modality inference
is needed in real world scenario, considering constraints
from both hardware and computational load.

[0055] Student-teacher learning has been actively studied
in knowledge transfer context including model compression,
acceleration, and cross-modal knowledge transfer. Given a
well-trained teacher model with heavy weight, the goal of
the student-teacher learning is to distill and compresses the
knowledge from the teacher and guides the lightweight
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student model for better performance. On the other hand,
data with multiple modalities commonly provides more
valuable supervisions than single modality data and could
benefit model’s performance. However, due to the lack of
data or labels for some modalities during training or testing,
it is important to transfer knowledge between different
modalities.

[0056] In view of the aforementioned deficiencies and
inadequacies in the existing methods, this invention pro-
vides a system/framework that, in contrast to the existing
methods that use dense correspondence ground-truths as
direct supervision for local feature matching training, trains
3DG-STFM: 3D Geometric Guided Student-Teacher Fea-
ture Matching, a multi-modal matching model (Teacher) to
enforce the depth consistence under 3D dense correspon-
dence supervision and transfer the knowledge to a 2D
mono-modal matching model (Student). Each of the teacher
and student models includes two transformer-based match-
ing modules that obtain the dense correspondences in a
coarse-to-fine manner. The teacher model guides the student
model to learn RGB-induced depth information for the
matching purpose on both coarse and fine branches. In one
embodiment, the 3DG-STFM is evaluated on the model
compression task. To the best of our knowledge, the 3DG-
STFM is the first student-teacher learning method for the
local feature matching task. The experiments show that the
method outperforms state-of-the-art methods on indoor and
outdoor camera pose estimations, and homography estima-
tion problems.

[0057] Referring to FIG. 1, the student-teacher learning
system in general comprises a multi-modal teacher model
configured to determine feature matching between a pair of
RGB-D images, wherein each RGB-D image is a combina-
tion of a RGB image and its corresponding depth image, and
the depth image is an image channel in which each pixel
relates to a distance between an image plane and a corre-
sponding object in the RGB image; and a mono-modal
student model configured to determine feature matching
from the pair of RGB images and the teacher model, wherein
the teacher model guides the student model to learn RGB-
induced depth information for the feature matching on both
coarse and fine levels.

[0058] In certain embodiments, each of the teacher model
and the student model comprises a feature pyramid network
(FPN) configured to extract coarse-level local features with
14 of an original image resolution and fine-level features
with 2 of the original image resolution from the pair of
images.

[0059] In certain embodiments, the FPN of the teacher
model is designed for 4-channel inputs of RGB-D images,
and the FPN of the student model is designed for 3-channel
inputs of RGB images, wherein D is depth information.

[0060] In certain embodiments, each of the teacher model
and the student model further comprises a coarse-level local
feature transform module including a large transformer for
coarse-level matching, a coarse-level matching module, and
a fine-level matching module including small transformer
for fine-level matching. The large transformer includes
self-attention and cross-attention layers to aggregate those
coarse-level local information and generate a confidence
score matrix for coarse matching predictions. High score
coarse matching is fed to the fine-level matching module for
refinement. The small transformer includes self-attention
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and cross-attention layers to aggregate fine-level local infor-
mation and generate a heatmap distribution for the location
refinement.

[0061] The system also comprises a coarse-level knowl-
edge transfer loss function for determining loss of transfer-
ring coarse-level matching knowledge from the teacher
model to the student model; and a fine-level knowledge
transfer loss function for determining loss of transferring
fine-level matching knowledge from the teacher model to
the student model, wherein the fine-level knowledge transfer
loss function guides the student model to learn a fine-level
prediction distribution with priority.

[0062] In certain embodiments, the locations of student
model’s coarse level selection are sent to teacher branch to
extract teacher model’s same location fine-level features.
[0063] In certain embodiments, the coarse-level knowl-
edge transfer loss function include a mutual query diver-
gence (MQD) loss to transfer the coarse-level matching
knowledge from the teacher model to the student model. The
MQD loss decomposes the logits layer to multiple indepen-
dent query distributions and guide the student model to learn
those distribution.

[0064] In certain embodiments, the fine-level knowledge
transfer loss function includes an attentive loss to transfer
the fine-level matching knowledge from the teacher model
to the student model. The attentive loss assigns weights to
teacher model’s prediction. The prediction with higher cer-
tainty is assigned with larger weights. The attentive loss
guides the student model to learn a fine-level prediction
distribution with priority.

[0065] Referring to FIG. 2, one exemplary embodiment of
the student-teacher learning system is shown according to
the invention.

[0066] For each of the student and teacher models/
branches, the FPN is used to extract coarse-level local
features (F*, F_”) and fine-level features (F, F /) with &
and V2 of the original image resolution from an image pair,
(Freso™s Frasn’) for the teacher branch and (Fpz7,
Fres~) for the student branch, as shown in FIG. 2. The input
channel of the FPN of the teacher model is set to four
channels to explore the additional depth map.

[0067] The coarse-level local feature transform modules
are transformer-based matching modules on coarse levels
for the matching purpose. In some embodiments, the coarse
level feature dimension is % of input image. For example,
the input RGB image is 640x640x3, the coarse feature is
80x80xc, where ¢ is the number of channels of the feature
map and depends on the deep network’s structure. In one
embodiment. the flatten (reshape) operation only applied on
first two dimensions. Transformer-based architecture is
adopted in the student-teacher learning system due to their
high performance. The coarse-level feature map in dimen-
sion hxwxc is flatten into hwxc and the positional encoding
assigns each feature entry a unique embedding vector in the
sinusoidal format to encode their spatial information. The
encoded local feature vector is fed to a coarse-level match-
ing transformer. Unlike a classical vision transformer focus-
ing on self-attention, the matching transformer adds a cross-
attention layer to consider the relations between pixels from
different images. The self-attention and cross-attention lay-
ers are interleaved in the matching transformer modules by
L, times.

[0068] The coarse-to-fine modules are employed to reduce
the computational cost, as shown in FIG. 2. The coarse-level
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predictions with high confidence scores is selected and
mapped to a fine-level feature map. Surrounding features on
(F~, FfB) are collected by the wxw size window and fed to
a lightweight fine-level transformer with L, self-attention
and cross-attention layers. The fine-level matching module
is applied to predict correspondences on subpixel-level.

[0069] For the coarse-level matching modules, FIG. 3
demonstrates the output of a logits layer, correlation matrix
S. with size hwxhw, and the dual softmax operation is
applied to generate confidence score matrix P,:

P (i,j)=softmax(S (i,"),) *softmax(S.(-,);)

where the softmax is applied in both horizontal direction,
SC(i,-)j, and vertical direction, S_(-,j);, of correlation matrix
S. and multiplied together as final matching probabilities.
Given the ground-truth matrix derived from correspondence
labels, the cross-entropy loss is calculated as follows:

Lo = -2 FLP, )log(P)
FL(p)=a(-pY,

A_{ p if y=1,
p= 1 - p otherwise

where P_ is the confidence matrix, and M _, is the corre-
spondence set generated by the ground-truth labels. FL. with
a predicted probability p is a focal loss term used to address
the imbalance between matching and unmatching pairs.

[0070] In certain embodiments, the locations of student
model’s coarse level selection are sent to teacher branch to
extract teacher model’s same location fine-level features.

[0071] For the fine-level matching modules, based on the
confidence matrix P_, matching pairs with probability scores
higher than a threshold 6, are selected and refined by the
fine-level matching module. The coarse matching position
(i, j) is projected on a fine-level feature map at position (i,
) and its features are extracted from the neighboring wxw
size window as matching candidates. The selected coarse-
level features are upsampled and concatenated to the fine-
level features before passing to the fine-level matching
transformer. The fine-level matching transformer is a light-
weight transformer containing L, attention layers to aggre-
gate selected contextual information and passes to a differ-
entiable matching module. Instead of generating a
confidence matrix, the fine-level matching module selects
the center feature of F # and correlates it with all features in
F . The similarity dlstrlbutlon is generated and the expec-
tatlon p is treated as the prediction. The final loss based on
the direct supervision is calculated by:

. 1 o a2
Ly =2 Uz_(i)”l‘(‘) = Jall,

where (i, j) is the ground-truth position wrapped from an
image solution to a fine-level heatmap scale. ].l(l) is the
prediction associated to coarse position i and %) is the

total variance of the heatmap distribution. M ,is the set of
fine matches predicted by the module. The total variance of
the similarity distribution is treated as uncertainty to assign
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a weight to each fine-level match. The larger total variance
indicates it is an uncertain prediction and associate with low
weights.

[0072] For the coarse-level knowledge transfer loss, a
response-based knowledge distillation strategy is applied to
help the student learn from the teacher on a coarse level.
This method distills the logits layer’s distribution and guides
the student to learn. FIG. 3 demonstrates the logits layer’s
output, correlation matrix S_ with size hwxhw. Each row or
column depicts the relation between one pixel and each pixel
of the other image.

[0073] The dual softmax operation could be treated as a
query process in two directions. As shown in FIG. 4, the
correlation matrix is decomposed into two matching query
matrixes. Mutual query divergence (MQD) loss employs all
2xhw mutual query distributions for knowledge transfer:

n

_ZFL( (r)) mlog( (r))

L =--
MOD 2l
=1

where p? and p,? are student and teacher’s query distri-
butions distilled at temperature T. Additional focal loss
weight FL is added to balance the matching/unmatching
ground-truth pairs. ps? is the standard confidence score
predicted by the student model. The total MQD loss LAND
on the coarse level is the mean of knowledge distillation
(KD) loss of all n distributions, where n is equal to 2xhw.
[0074] For the fine-level knowledge transfer loss, FIG. 5
demonstrates the fine-level knowledge transfer. During the
student-teacher learning process, both teacher and student
branches could generate heatmaps. In some embodiments,
the heatmaps of the teacher model and the student model are
treated as Gaussian distributions N(p,, 6,%) and N (p, 6.°).

The attentive loss (£ ) is applied to help the student learn
the distribution:

where the ps > and pt > are the expectations of student’s and
teacher’s output distributions which correspond to match G,

J) in the fine-level correspondence set M -

[0075] Therefore, the total loss is a mean of the weighted
sum of all the fine-level pairs’ 1, loss in the matching set
M + In some embodiments, the attentive loss is treated as a
1, distance loss that pays more attention to the prediction
associated with large attention weight
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20’52)2 .

The total variance is commonly treated as a metric for
certainty measure. The teacher prediction with a small total
variance indicates the teacher is quite certain about the
location of the correspondence. In this case, the loss is
assigned with a large weight to guide the student model to
learn those certain predictions from the teacher in priority.
[0076] Both teacher and student training processes are
under the direct supervision provided by correspondence
ground-truths. The teacher model provides extra supervision
during the student model training. The final losses for the
teacher model and the student model are respectively:

L teacherszL Ay £ 5 and
L student:kOL Ay L f+7h2£

[0077] It should be noted that the student-teacher learning
system may also include electronics, at least one processor
operatively coupled to the electronics, and at least one
memory operatively coupled to the at least one processor
and being configured to store processor-executable instruc-
tions, which when executed by the at least one processor
cause the system to perform the 3D geometric guided
student-teacher feature matching, for example, determining,
by the multi-modal teacher model, feature matching
between a pair of RGB-D images, each RGB-D image being
a combination of a RGB image and its corresponding depth
image, the depth image being an image channel in which
each pixel relates to a distance between an image plane and
a corresponding object in the RGB image; determining, by
the mono-modal student model, feature matching from the
pair of RGB images and the teacher model, wherein the
teacher model guides the student model to learn RGB-
induced depth information for the feature matching on both
coarse and fine levels; determining, by the coarse-level
knowledge transfer loss function, loss of transferring coarse-
level matching knowledge from the teacher model to the
student model; and determining, by the fine-level knowledge
transfer loss function, loss of transferring fine-level match-
ing knowledge from the teacher model to the student model,
wherein the fine-level knowledge transfer loss function
guides the student model to learn a fine-level prediction
distribution with priority.

[0078] Further, each of the teacher model and the student
model itself may also include electronics, one or more
processors operatively coupled to the electronics, and one or
more memories coupled to the one or more processors and
being configured to store processor-executable instructions,
which when executed by the one or more processor cause the
one or more processors to perform feature extraction, local
feature transforms and matching, and so on. The teacher
model may include a teacher network and the student model
may include a student network.

[0079] In addition, the system may be configured to oper-
ably communicate wirelessly or wired with other devices
such as mobile devices, servers, databases or data centers,
clouds, etc. Moreover, the system may also include a display
for displaying the results and/or a graphical user interface
(GUI) for interactions between users and the system.
[0080] FIG. 6 is an exemplary block diagram illustrating
physical components (i.e., hardware) of the system 600 with

L

MQD+7"3 att*
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which examples of the invention may be practiced. How-
ever, the devices and systems illustrated and discussed with
respect to FIG. 6 are for purposes of example and illustration
and are not limiting of other device configurations that are
used for practicing the invention. In the basic configuration
608, the system 600 includes at least one processing unit 602
and a system memory 604. In some embodiment, the system
memory 604 comprises, but is not limited to, volatile storage
(e.g., random access memory), non-volatile storage (e.g.,
read-only memory), flash memory, or any combination of
such memories. The system memory 604 may include an
operating system 605 and one or more program modules 606
suitable for running software applications 650. The system
memory 604 also includes model trainer 620 for training the
teacher model and the student model. In addition, the system
600 may have additional features or functionality, and may
include additional data storage devices (removable and/or
non-removable) 610 such as, for example, magnetic disks,
optical disks, or tape.

[0081] In some embodiments, program modules and data
files are stored in the system memory 604. While executing
on the processing unit 602, the program modules 606 (e.g.,
model trainer 620) perform processes as illustrated in FIGS.
2-5.

[0082] In some embodiments, the system 600 may also
include one or more input devices 612 and an output device
614 such as a display. Further, the system 600 may include
communication protocols 616 allowing wireless and/or
wired communications with other devices.

[0083] Yet another aspect of the invention provides a
non-transitory tangible computer-readable medium storing
instructions that when executed by one or more processors
enable the student-teach system to perform three-dimen-
sional geometric guided student-teacher feature matching
(3DG-STEM). The computer executable instructions or pro-
gram codes enable the above disclosed apparatus or a similar
system to complete various operations in accordance with
the above disclosed method. The storage medium/memory
may include, but is not limited to, high-speed random access
medium/memory such as DRAM, SRAM, DDR RAM or
other random access solid state memory devices, and non-
volatile memory such as one or more magnetic disk storage
devices, optical disk storage devices, flash memory devices,
or other non-volatile solid state storage devices.

[0084] These and other aspects of the invention are further
described below. Without intent to limit the scope of the
invention, exemplary instruments, apparatus, methods, and
their related results according to the embodiments of the
invention are given below. Note that titles or subtitles may
be used in the examples for convenience of a reader, which
in no way should limit the scope of the invention. Moreover,
certain theories are proposed and disclosed herein; however,
in no way they, whether they are right or wrong, should limit
the scope of the invention so long as the invention is
practiced according to the invention without regard for any
particular theory or scheme of action.

Examples

[0085] The following exemplary examples/experiments
show that the method outperforms state-of-the-art methods
on indoor and outdoor camera pose estimations, and homog-
raphy estimation problems. Specifically, given two different
cameras A and B, a relative camera pose matrix E depicts the
3D relative orientation and location of camera B in world



US 2023/0298307 Al

coordinates, defined for reference camera A. Once we esti-
mate sufficient correspondence between two images taken
by these two cameras, we could regress the camera pose
matrix. The more reliable correspondences we found in the
pair of images, the more accurate pose estimations we could
establish. Therefore, camera pose estimation is a good
evaluation method for the local feature matching task. These
experimental data show that RGBD model outperforms
vanilla RGB model and student RGB model could learning
from the teacher model and get better performance as well.
[0086] In the exemplary example, the novel approach of
this invention is evaluated on camera pose estimation task
on indoor and outdoor datasets, which is listed in Table 1.
LoFTR [1] is the current state-of-the-art method and treated
as baseline for comparison. The results show the AUC (area
under the curve) of the pose error at thresholds (5°, 10°,
20°). The pose error is defined as the maximum of angular
error in rotation and translation.

TABLE 1

Camera pose estimation task on indoor and outdoor datasets

Method Dataset AUC@5° AUC@10°  AUC@20°
LoFTR [1] Indoor [2] 22.06% 40.80% 57.62%
This Invention Indoor [2] 23.58% 43.60% 61.17%
LoFTR [1] Outdoor [3] 47.50% 64.50% 77.08%
This Invention Outdoor [3] 47.98% 64.97% 77.77%

[0087] Table 2 shows comparisons among the teacher
(RGBD) model, student model, vanilla RGB model on
indoor/outdoor datasets.

TABLE 2

Comparisons among the teacher (RGBD) model, student
model, vanilla RGB model on indoor/outdoor datasets

Method Dataset AUC@5° AUC@10°  AUC@20°
Teacher Model Indoor [2] 27.93% 47.11% 63.47%
Vanilla RGB Indoor [2] 22.06% 40.80% 57.62%
Model

Student Model Indoor [2] 23.58% 43.60% 61.17%
Teacher Model Outdoor [3] 50.05% 66.76% 79.21%
Vanilla RGB Outdoor [3] 47.50% 64.50% 77.08%
Model

Student Model Outdoor [3] 47.98% 64.97% 77.77%

[0088] The results listed in Table 2 indicates that both the
3DG-STFM teacher and student models show better perfor-
mance than vanilla mono-modal competitors for both indoor
and outdoor dataset. The depth modality can remove lots of
ambiguity in 2D image space and enforce geometric con-
sistency for feature matching. However, during the inference
time, depth modality is not always available since most of
imaging systems are only equipped with RGB sensor. The
results in the table also prove the student RGB model learn
from the teacher model and outperform vanilla RGB model.
[0089] The foregoing description of the exemplary
embodiments of the invention has been presented only for
the purposes of illustration and description and is not
intended to be exhaustive or to limit the invention to the
precise forms disclosed. Many modifications and variations
are possible in light of the above teaching.

[0090] The embodiments were chosen and described in
order to explain the principles of the invention and their
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practical application so as to enable others skilled in the art
to utilize the invention and various embodiments and with
various modifications as are suited to the particular use
contemplated. Alternative embodiments will become appar-
ent to those skilled in the art to which the invention pertains
without departing from its spirit and scope. Accordingly, the
scope of the invention is defined by the appended claims
rather than the foregoing description and the exemplary
embodiments described therein.

[0091] Some references, which may include patents, pat-
ent applications and various publications, are cited and
discussed in the description of this disclosure. The citation
and/or discussion of such references is provided merely to
clarify the description of the present disclosure and is not an
admission that any such reference is “prior art” to the
disclosure described herein. All references cited and dis-
cussed in this specification are incorporated herein by ref-
erence in their entireties and to the same extent as if each
reference was individually incorporated by reference.
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What is claimed is:

1. A system for three-dimensional geometric guided stu-

dent-teacher feature matching (3DG-STFM), comprising:

a multi-modal teacher model configured to determine
feature matching between a pair of RGB-D images;
wherein each RGB-D image is a combination of a RGB
image and its corresponding depth image, wherein the
depth image is an image channel in which each pixel
relates to a distance between an image plane and a
corresponding object in the RGB image;

a mono-modal student model configured to determine
feature matching from the pair of RGB images and the
teacher model, wherein the teacher model guides the
student model to learn RGB-induced depth information
for the feature matching on both coarse and fine levels;

a coarse-level knowledge transfer loss function for deter-
mining loss of transferring coarse-level matching
knowledge from the teacher model to the student
model; and

a fine-level knowledge transfer loss function for deter-
mining loss of transferring fine-level matching knowl-
edge from the teacher model to the student model,
wherein the fine-level knowledge transfer loss function
guides the student model to learn a fine-level prediction
distribution with priority.

2. The system of claim 1, wherein each of the teacher

model and the student model comprises:

a feature pyramid network (FPN) configured to extract
coarse-level local features with Y% of an original image
resolution and fine-level features with 4 of the original
image resolution from the pair of images.
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3. The system of claim 2, wherein the FPN of the teacher
model is designed for 4-channel inputs of RGB-D images,
and the FPN of the student model is designed for 3-channel
inputs of RGB images, wherein D is depth information.

4. The system of claim 2, wherein each of the teacher
model and the student model further comprises a coarse-
level local feature transform module, a coarse-level match-
ing module, and a fine-level matching module.

5. The system of claim 4, wherein the coarse-level local
feature transform module is configured to

flatten maps of the extracted coarse-level features to

one-dimensional vectors;

perform positional encoding on the flattened one-dimen-

sional vectors to assign each feature entry a unique
embedding vector in a sinusoidal format to encode
spatial information; and

process the encoded local feature vectors by a coarse-

level matching transformer comprising self-attention
and cross-attention layers to generate a logits layer
comprising a correlation matrix.

6. The system of claim 5, wherein the self-attention and
cross-attention layers are interleaved in the coarse-level
matching transformer by L, times.

7. The system of claim 5, wherein the coarse-level match-
ing module is configured to

generate a confidence score matrix P. by applying a dual

softmax operation to the correlation matrix S_ on both
row and column directions:

P (i,j)=softmax(S (i,"))*softmax(S(-,/);)

wherein P_(i, j) is a matching probability at matching
position (i, j); and

select matching pairs with probability scores higher than

a threshold 0, to yield coarse-level matching predic-
tions.

8. The system of claim 7, wherein given the ground-truth
matrix derived from correspondence labels, cross-entropy
loss that measures the performance of the coarse-level local
feature transform module and the coarse-level matching
module is calculated as:

Lo = —wa2 FLPG, ))log(Pe)
FL(p)=a( -pY,

A_{ p if y=1,
p= 1 - p otherwise

wherein M, is a correspondence set generated by the
ground-truth labels, FL. with a predicted probability p is
a focal loss term for addressing imbalance between
matching and unmatching pairs.

9. The system of claim 7, wherein the fine-level matching

module is configured to

project the coarse matching position (i, j) on the fine-level
feature map at position (i, j) and extract its features
from a neighboring wxw size window as matching
candidates;

upsample the selected coarse-level features and concat-
enate the upsampled coarse-level features to the fine-
level features; and

process the concatenated fine-level features by a fine-level
matching transformer to predict correspondences on
subpixel-level.
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10. The system of claim 9, wherein the fine-level match-
ing transformer contains L, self-attention and cross-attention
layers to aggregate fine-level local information and generate
a heatmap distribution for the location refinement.

11. The system of claim 9, wherein the final loss based on
the direct supervision is calculated by:

. 1 oA R
Lr =5, Uz_(i)”ll(t) =g,

where (i, ) is the ground-truth position wrapped from an
image solution to a fine-level heatmap scale, p(i) is the
prediction associated to a coarse position 1, 67(1) is the

total variance of the heatmap distribution, and M , is
the set of fine matches predicted by the module.

12. The system of claim 11, wherein the total variance of
the similarity distribution is treated as uncertainty to assign
a weight to each fine-level match, and wherein the larger
total variance indicates it is an uncertain prediction and
associates with low weights.

13. The system of claim 7, wherein the coarse-level
knowledge transfer loss function is adapted to decompose
the logits layer to multiple independent query distributions
and guides the student model to learn the distributions.

14. The system of claim 13, wherein the coarse-level
knowledge transfer loss function determines a mutual query
divergence (MQD) loss that employs all the mutual query
distributions for knowledge transfer:

n

- D FL(pY) b 1og(p)
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where ps” and p,” are respectively student’s and teach-
er’s query distributions distilled at temperature T, addi-
tional focal loss weight FL is added to balance the

matching/unmatching ground-truth pairs, ps® is the stan-

dard confidence score predicted by the student model,

and the total MQD loss £ aop On the coarse level is the
mean of knowledge distillation (KD) loss of all n
distributions, wherein n is equal to 2xhw.

15. The system of claim 9, wherein the fine-level knowl-
edge transfer loss function is adapted to assign weights to the
prediction of the teacher model, with the prediction with
higher certainty is assigned with larger weights.

16. The system of claim 15, wherein the heatmaps of the
teacher model and the student model are of Gaussian dis-
tributions N(u,, ,%) and N (u,, 6,%), respectively.
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17. The system of claim 16, wherein the fine-level knowl-
edge transfer loss function determines an attentive loss (

£ ) that is applied to help the student model learn the
Gaussian distributions:

where the ps(i) and pt(f) are the expectations of student’s
and teacher’s output distributions which correspond to

match (i, j) in the fine-level correspondence set M B

18. The system of claim 17, wherein the attentive loss is
treated as a 1, distance loss that pays more attention to the
prediction associated with large attention weight
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19. The system of claim 17, wherein the teacher predic-
tion with a small total variance indicates the teacher model
is quite certain about the location of the correspondence,
wherein the loss is assigned with a large weight to guide the
student model to learn the certain predictions from the
teacher model in priority.

20. The system of claim 17, wherein the final losses for
the teacher model and the student model are respectively:

L mcner=7»o‘6 A £ 4 and
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