US 20210255957A1

a2y Patent Application Publication o) Pub. No.: US 2021/0255957 A1

a9y United States

Vemulapalli et al.

43) Pub. Date: Aug. 19, 2021

(54) DATA PREFETCHING FOR GRAPHICS

DATA PROCESSING

(71) Applicant: Intel Corporation, Santa Clara, CA
(US)

(72) Inventors: Vikranth Vemulapalli, Folsom, CA
(US); Lakshminarayanan
Striramassarma, Folsom, CA (US);
Mike MacPherson, Portland, OR (US);
Aravindh Anantaraman, Folsom, CA
(US); Ben Ashbaugh, Folsom, CA
(US); Murali Ramadoss, Folsom, CA
(US); William B. Sadler, Folsom, CA
(US); Jonathan Pearce, Hillsboro, OR
(US); Scott Janus, Loomis, CA (US);
Brent Insko, Portland, OR (US);
Vasanth Ranganathan, El Dorado
Hills, CA (US); Kamal Sinha, Rancho
Cordova, CA (US); Arthur Hunter,
JR., Cameron Park, CA (US);
Prasoonkumar Surti, Folsom, CA
(US); Nicolas Galoppo von Borries,
Portland, OR (US); Joydeep Ray,
Folsom, CA (US); Abhishek R. Appu,
El Dorado Hills, CA (US);
ElMoustapha Ould-Ahmed-Vall,
Chandler, AZ (US); Altug Koker, El
Dorado Hills, CA (US); Sungye Kim,
Folsom, CA (US); Subramaniam
Maiyuran, Gold River, CA (US);
Valentin Andrei, San Jose, CA (US)

(73) Assignee: Intel Corporation, Santa Clara, CA

@n
22)

Appl. No.: 17/161,465

Filed: Jan. 28, 2021

Related U.S. Application Data

Continuation of application No. 16/355,015, filed on
Mar. 15, 2019, now Pat. No. 10,909,039.

(63)

Publication Classification

Int. Cl1.
GO6F 12/0862
GO6T 1720
GO6T 1/60
U.S. CL
CPC GO6F 12/0862 (2013.01); GO6T 1/20
(2013.01); GOGF 2212/608 (2013.01); GO6F
2212/602 (2013.01); G06T 1/60 (2013.01)

(51)
(2006.01)
(2006.01)
(2006.01)

(52)

(57) ABSTRACT

Embodiments are generally directed to data prefetching for
graphics data processing. An embodiment of an apparatus
includes one or more processors including one or more
graphics processing units (GPUs); and a plurality of caches
to provide storage for the one or more GPUs, the plurality
of caches including at least an [.1 cache and an L3 cache,
wherein the apparatus to provide intelligent prefetching of
data by a prefetcher of a first GPU of the one or more GPUs
including measuring a hit rate for the L1 cache; upon
determining that the hit rate for the [.1 cache is equal to or
greater than a threshold value, limiting a prefetch of data to
storage in the L3 cache, and upon determining that the hit
rate for the L1 cache is less than a threshold value, allowing

(as) the prefetch of data to the L1 cache.
100 Wireless
1 d J
Network izt:«(;l:
Adapter ’ “5;)
s _
; - Add-In
- 0 181\21:»}1 Device(s)
Display - 120
Device(s)
JRLLY
YO Hub s;’::;’:
= 107 1143
] 114
Input
Device(s) 1/O Subsystem
108 il
Communication
Link TN
106
! S
| - . ystem
: Parallel Prgctssor(s) Memory
¥

Display
Device(s) i
110B

102

Processor(s)

104

Processing
Subsystem
101

Patent Application Publication

Aug. 19,2021 Sheet 1 of 48

US 2021/0255957 Al

100 Wireloss
VITEIEss Network
Network
Adapter
Adapter 18
119 2
1/O Switch AddIn
: 116 Device(s)
Display == 120
Device(s)
110A
oo,
: ! S ’ste
1O Hub ystem
- Storage
107 =
] = 114
Tnput / AAAAAAAAAAAAAAAAAAAAAAAAAAAA
Device(s) /0 Subsystem
108 111
Communication
Link 7N
106
e 2 S
i
‘ M / Sys
11§ Parallel Processor(s) \iemm Sy féten?
; 112 Hub Memory
H
Communication
Link
Display 113 § Sy
Device(s) {
1108 § Processor(s) . .
100 Processing
§ — Subsystem
! 101

FlG. 1

Patent Application Publication

Aug. 19,2021 Sheet 2 of 48

US 2021/0255957 Al

b
i
i
i Parallel Processor Memory 222
!
: Memory Memory Memory
- Unit Unit [®*®®] Unit Parailel
] 2244 2248 224N Processor
7 , 200
; : i
(. i ! y
mmmmmm et s e 4 e b
i]
i
i
i
i Partition Partition Partition
: Unit Unit &8 8 Unit
i 2204 2208 220N
i
i Memory Interface 218
i
, E
: Memory Crossbar 216 oy
i
i
i
g Cluster Cluster { ®® %1 Cluster
i 214A 2148 214N
: Processing Array 212
b
i
§ -
i Scheduler 210
!
i
!
. Front End Host Interface I/Q_
i 208 206 Umt
" — — 204
- Parallel Processing Unit 202

Memory Hub

FIG. 2A

Patent Application Publication

To/From
Memory Unit
224

1

Aug. 19, 2021 Sheet 3 of 48

US 2021/0255957 Al

Y

Frame butfer
Interface
243

ROP

220

1.2 Cache
221

Partition Unit

A

A

To/From

Memory

Crosshar
216

FIG. 2B

Patent Application Publication

To/From

Memory

Crogshar
216

Aug. 19,2021 Sheet 4 of 48

To

US 2021/0255957 Al

Memory Crossbar

216 and/or

other Processing

Clusters
A
PreROP

MM 249 Data Crossbar

245 - 240

Texture
Graphics A %?g
Multiprocessor | —
L1 Cache
248
Processing Pipeline Manager
Cluster 232
214

A

i

To/From
Scheduler
210

FIG. 2C

Patent Application Publication Aug. 19,2021 Sheet 5 of 48 US 2021/0255957 A1

A

Shared Memory Cache Memory
270 272
[Memory and Cache Interconnect 268 }
e e e) e T
i it 1 i
Load/Store B§ GPGPU ig Tensor/RT sg
Unit g ; Cores : g Cores : i
266 i 262 it 263 g
ot - ! o
Register File 258
Address Mapping p .
daress Mappmg Instruction Unit
Unit 354
236 ——
Graphics) o
Multiprocessor Instruction Cache 252
234

From

Pipeline Manager
232

FIG. 2D

Patent Application Publication Aug. 19,2021 Sheet 6 of 48 US 2021/0255957 A1

Graphics Muitiprocessor 323

interconnect Fabric 327

Shared Memory 346

Texture Unit{s) 3444 Texture Unit{s) 3448

Cache Memory 342

Load/Store RT Tensor {| GPGPU | Load/Store RT Tensor § GPGPU
Unit Core Core Core Unit Core Core Core
340A 33RA TA 336A 3408 338B 3378 3368

(9]
(5]
~}

Regster File 334A Register File 3348

instruction Unit 332A Instruction Unit 3328

Instruction Cache 330

FIG. 3A

Patent Application Publication Aug. 19,2021 Sheet 7 of 48 US 2021/0255957 A1

Graphics Multiprocessor 350

Interconnect Fabric 352

Shared Memory 353

Texture Unit{s) 360A Texture Unit{s} 3608

Cache Memory 338A

Execution Resources 3564 Execuiion Resources 3568
Texture Unit{s) 360C Texture Unit{s) 360D

Cache Memory 358B

Execution Resources 3560 Execution Resources 3560
Instruction Cache 354

FIG. 3B

US 2021/0255957 Al

Aug. 19, 2021 Sheet 8 of 48

Patent Application Publication

DL DIA

|
m TEHHOVD T |
| , FTT SLING THALXAL n m
§ i i f §
M M 7€ RAOWAN OMEVHS/GHDVI 1T :M; |
; i {
m m eht | | w
| o S3H0) SHUOD STHoD |
ONIDVEL onel . m |
i voe § N JOSNHL KA 75¢
REOE OO | HEOT |4 AV 1 Do L
m I DO DO g — e R e J | : m
m ; | - 1 NN
| M (S)T T YALSIONY I 55¢
| S || xsonan
| g o i
| ; 89t 1] |
m , MAHDIVASIA AT TNATHDS m m
, ;
|] TLOT JNO¥D TIQO-1IINN gm |
B com aoon wom oom oom 90 oM 0K GOGG GDED OO GG GORG GODD 00D OGGC GRG0 G0O% X00M J0RGK
m S | t m
5T M Ty BE
m o/ m (IAINOT N
m o o e mn o o e e A e A o o
A O N A
R e Yoo M m = .,
798 : , —
A —— JC JU J; Tt .
SHJIAZO O/ R T — : mﬁ.w 140 N

US 2021/0255957 Al

Vv Dld

Aug. 19, 2021 Sheet 9 of 48

oo oy
AIGWOW 14D AJOWSN NdD
aosy Yy YOSy
HZry
D05E qO5¥ _
AICUWIB ‘ ad AIOWBIA
IS i IS
) s N ndn ndo Nyl nao A,
— Y0bh
Zov 90% 507 0%
AIOTUOPN JOSSI004] A V JOSSE00L] AICUIBIA]
JOSS205] IO YT TN 2I0-TUTNIN JOS8300Ig

Patent Application Publication

d0ck 13727

dv DId

[R47
AFOWAWN WHLSAS

US 2021/0255957 Al

H : !

; : : p—

“ P 3 i 5454 Lob

: :,? . M ” {8Yoyouy porBys I0SSOTONg
& : = u ;
5 | 57 D P NFEEEEEE M
= ; mﬁmwu : : : 4 i
s ! : W ” I B SR T I
. o ” M

" Yoy . - STOF
s ' ! ” . oEm |
e e AT 3 p 0t ¢
a f W o = : X ')
& fowaw (€] DNISSHOUH i sionsTBy “ _ azsv , J09F 3900
£ o XdD SOIHAVED :) ; (Syoyoe) el o
b M . 5FF w ” : & vy |
M ¢ s LA U0 ” ” dioy 5 {8)oyou) M

; S \ _ 1L w ;

w IvF w m) —

w . : (] HTOF |
g TR bl LNOW LOEENT |1 ” T00F 2100 , L “
< o € DNISSHDOMd e : : : .

- ; T 3 TN .
=2 “ YAy SOIHAYHD wﬁw o : ” - ..m.‘mwwm.@mﬁwus B .”
= w NOLEVEOHINI | ; sziziiiiit ;
< ! ¥OLVIATIOOY || : M 7R ;
g t %7 ey AW m n b s)oyon !
= ey S DNISSRDOUA je M ” _ (e Lo |
S 1AW SHHAVED | gy T g L sy Au.v Rt
= XD S3IHAYH _ Xy ; m - ; T
= M ALNL “) AXOud IR CTR
< ” J— i 3 ! ”
E “ HOIRID)%\%w sorgderr M ” \.V/\V M; - .y m‘ww. w .w&,ws s“
g w BRIS[S30Y S2aRID) ! oy, $Op SRE 20UMIGYT)
i

P EEE

O DI

T
ALDUUSA WIOISAY

US 2021/0255957 Al

§
§ — g
; 6eF oo s
v R LGy
. : (AN (s)oqae]y poreys JOSSO301
- “ RT7 : N ,M
= I aithig » : JCOY ;
— ; e o (syeyor)y |
- i oY FOh 3 £
= , . {ooF
[-?) ﬂm@ﬂ@rﬂm +) s ! ST !
@ ! (syoyoe]y AHV” J15¥F n
z e bbbl s e < s (A
~ : ; : sEnsi8oy {divy @ ” NTEF AH00 ”
& o N Co = a1t wuﬁmwwmmmmi
o oWaw €3 ONISSED0Ud g : ; L , a7 !
» XD SOIHAYHD L LINOW Teemasy TO0F 2103 H @ope) |
3 P, §
< ! . P ¥ thm “
! s ! ; LINOW LOMLNI ; qToT :
= m L o booaw |
= s 7R 7T _ i 1 1%7% iE !]
.m 0 owan -3 DNISSIDO0Nd e M ; NOLLYYDALNI AHHV ANOUd Auv Mi, HO9F s10p !
_w w Cin SOHIYYED) i ACIVIFTHIOY et PRy
£ , b , T
- - il | oo |
g ; TTF er L P e _ ‘ |
5 ! <3| ONISSHOONU 3 S K I ! . :
= m SOHIVED | pay | Y AN u v |
W ! GIHE YV Y " ; ‘ : d'IL :
s H
N) 3% fy . ‘ \V/\ ” VOOF a0y
g 1 uonRIesoY somydeiny p OFp po Sid IO e _
Ln|a~ ; : 3 ! P ¢ ”
P R T I T I T L B “ gg

Patent Application Publication Aug. 19, 2021 Sheet 12 0f 48 US 2021/0255957 Al

Processor 407

Application 480 Application

GPU Invocation

GPU Invocation 481

v o mn m v e v o Ah e e e e e A e e W x oEm oo oo oox Ex Ex mo mo oo o ok m o Ea oo e wx m

k4 Systera Memory 441
Apphication Effective Address
Space 482 .
, O5 Virtual Address Space 483 :
i H
mmmmmmmmmmmmmmmmmm 3 ¥
; Process Element 483 ; ' :
H i i
§
: ! , Segment/Page Tables :
; -
y 1 Work Descriptor (WD) | : 486 :
! 484 e ;
: ol A E
i H
P 3
Accelerator Integration Shice
490 v
MMU 439 <&
¥
Wi : , e
Fetch R@i s}ers intcrrugz gi(JMI < Effoctive
Context MGMT
448
Save/Restore A
¥ Y

Graphics Acceleration 446

FI1G. 4D

US 2021/0255957 Al

Aug. 19,2021 Sheet 13 of 48

Patent Application Publication

Hy "DId

Gbh uonerooony songderny

A .
§ DHOISOY/ONES
8P
EF o LD 7600
SSUPPY M N L L
2ATICOHH S 7TF ShY . ior
P oW dnuomg R SRR HOLHEL am
p—— &
2 GEF (NN 5F
031[§ BONRITORE IOIRID[I0Y

sssssss S A - - -
] :] i - il i
g t ¢ ¢ M M
, &eF Vo - , M FEE d
m B b 5% " £} 1030H10S3(] 310/
1 Jmowoyg ssoo0ig 5 M muﬁm\& M : () soaduosaq oM \

AM:‘E..!:.. P ey T s A H §
: : : Wegauowdog | : TUF WU $55004g !
H H H H W e e G e e ae A R e e e Ak R R e o e
v JEF eouds sso ;oo : !
; w@m‘ umgwwm Wm %mﬂ& : ; TEF ooedy : 78T sonds ssomppy
RO 0 ssoppy pumaso aanoap woneonddy

TH¥ Aiowsiay wioisdy Fov o e e
£
sosiasedAy [SO e (RF noneonddy

TP 108805014

US 2021/0255957 Al

Aug. 19,2021 Sheet 14 of 48

Patent Application Publication

Ay "DId

AIOTBIA]
PRYHINTY
ssssssssssssssssssssssssssssssss R RS CEEE LR
0°r i K2z oty ! ok ! oy
AIOTUOPN AIDUWISIA] AIDUISIA] AICWIBN 1 AWWSR 1+ ADWOR
H
145 045 dD NdH | I0sse001g , IOSSa00I]
H 3
£
VoYY TS ,W sssss VoY o AN ¥
bttt Nk B R, anl) I ettt dubetety ”
H I i PN i
m Fr6¥ ” : dver : _ Jbab , ” arer , M Vo ”
1 eousIzyoy ; 4 oousmyol | .| souereyoD ; o asuesyoy || (] ooueI0y |
: jserg : o jeeig AR jseig ! o gseig | : /seig :
H H] 3

! i : F ! 3 3 ¥ ! :
Y § e ¥ LS | N | s :
P66ty (VAN ; “ docy (YA : . oLy AN ; , doty NN ! LTSRN
L T T VS G n e e e e nm e e e e B f wu e e e am e w e e e e e o mn e e me e e o4

. _ _ . Sov

ety civ Ly Oy JO852001

(1d5 id5 145 (dL SIG- BT

Patent Application Publication Aug. 19, 2021 Sheet 15 0f 48 US 2021/0255957 Al

Graphics
Processing Raster Operations Unit 526 N ae
Pipeline %
500 : Memory
i\/\\ Fragment/Pixel Processing Unit 524 @ Interface
’% 528

Rasterizer 527

-

Viewport Scale, Cull, and Chip Unit 520

-

Primitive Assembler 518

-

Geometry Processing Unit 516 o

=

Primitive Assembler 514
Tessellation Evaluation Processing Unut $12

A

Tessellation Unit 310

A

Tessellation Control Processing Unit 308

A

Primitive Assernbler 506

A

Vertex Processing Unit 504 S

A

Diata Assembler 502

A
|

Tnsiruction Stream
and Parameters

Patent Application Publication Aug. 19, 2021 Sheet 16 of 48 US 2021/0255957 Al

L,

Machine Learning Application
602

Machine Learning Framework
604

|

Compute Framework
6o

i

GPGPU Driver

i

GPGPU Hardware
6ld

F1G. 6

US 2021/0255957 Al

Aug. 19,2021 Sheet 17 of 48

Patent Application Publication

71l

ISTI0NU0) AIOWBA]

f\)«

L DIA

OLL AUV (D

60L 9"H O/

YZIL
IS[IONUO} AJOWIIA]

2
¥

Ho0/L
sy sandmoy

3904
150 sndoy

4904
235010 smdwoy

H90L
1101y amndmo)y

Q0L AIOWOA BYSED

{190/
sy sandmoy

S390L
150 sndoy

901
235010 smdwoy

VO0L
1101y amndmo)y

gril
AIOWOPN

POL 1[npeyos [Bao[D

707 BORpIeIU] 180K

Vvii
RGO

Patent Application Publication Aug. 19, 2021 Sheet 18 0f 48 US 2021/0255957 Al

P2P GPU 800
Links
816
fv“’ \$
GPGPU |4 1l GPGPU
§06A 1, 11 80eB
& : : F 3
ST T D
¥ : E ¥
GPGPU ! | GPGPU
R06C ! i 806D
A - j

Host Interface Switch

304

2

»

Processor
302

FI1G. 8

Patent Application Publication

904

RGEB Components

\ .

Convolutional Layers

FlG. 9A

Input to Convolutional
Layer

Aug. 19,2021 Sheet 19 of 48 US 2021/0255957 Al

Fully Connected Layers

Convolutional Laver
914

¥

Convolation Stage
216

!

Detector Stage

!

Pooling Stage
a0

Next layer

I\
N2

FIG. 9B

US 2021/0255957 Al

Aug. 19,2021 Sheet 20 of 48

Patent Application Publication

001

Ol DIA

[T DId

US 2021/0255957 Al

it
1nssy

— 9011
8011

JOrBN] RINON pouTRI(
FIOAMION] [RINGN] PUTRIL HOMIIN T ;:u R

— [

Aug. 19,2021 Sheet 21 of 48

oL
195838
S Fururei]
POEL o
NIOMABUIBI]
Fumely,

411
BIR(] MIN

Patent Application Publication

US 2021/0255957 Al

Aug. 19,2021 Sheet 22 of 48

Patent Application Publication

¢l 'DId

0do

[id5

45

{1do

¥ 2PON

¢ SPON

T SPON

90T

WSIR[RIRg BIB(] PUB [2POJA

vOTl
wisijayfesed viegy

¥ OPON

£ SPON.

[OPON

b JOAET

£ 9PON

T 9PON

TTT
wstlfeIEd [PPOIN

Patent Application Publication Aug. 19,2021 Sheet 23 of 48

US 2021/0255957 A1
1300
AEDIA CHRS ,
MEDIA PR?(JF SOR VISION PROCESSOR
1362 .
1304
ON-CHIP MEMORY 1305
N MULTI-CORE
(]i)?g:j PROCESSOR
—— 1308

FIG. 13

US 2021/0255957 Al

Aug. 19,2021 Sheet 24 of 48

Patent Application Publication

AICLUBIN

ggyl \\

GivL
/ Jsyoieeld

{s)iossso0udininpy
soideisy

aerl oLbL \ g \\\

weIsAg Bunndwod

(sloyoen i

{Nd0)
(8}1i08580044

0orl \

US 2021/0255957 Al

Aug. 19,2021 Sheet 25 of 48

Patent Application Publication

V5T "Oid

{sjayses
£l

4

Ny

TA%)

gigt

I pouad !
\\l sjdwes Jaag |
gesi M 218y HH f
o o e o f
5
\
S
%
S
g
UL
[
0gst
2ied] 40 /;/

Buyoisgely 0esl

SHECTIEFT

wasAg Bunnduwion

N4

ols6i

0ost \\\

Patent Application Publication Aug. 19, 2021 Sheet 26 of 48 US 2021/0255957 Al

1550
(initiate Operation]/

f 1555
Perform Data Caching

!

1580
Determine Hit Rate for L1 Cache Qver f
Sampling Period

i

Instruction Prefeich

j 1565

PP Hit Rate < »
T, Threshold? -

1580

J

Limit Instruction Prefetch to
L3 Cache

intelligent ins‘krucﬂm
Prefetch Through to L1
Cache

V91 'Bid

US 2021/0255957 Al

£
~71 ssa
Vd
ra

3 e
s) B
S e
S ~
~ P . N
; - _ -1 ssa
T g e ~ d - -
— o o 4 -
S S osayepid X T
M, 7 ggesyoEdun \A”
E o eanemdng § .
) 3 Ydiajaid am” G ..
g N Asessasauun ~
S Ve —
g G191 p -
z ejeq/ssel ~— 0
z 0197 .
: 58400
=
= 0097
S ayoen w
=
=
: 5091
=
&
&
A

Patent Application Publication Aug. 19, 2021 Sheet 28 0of 48 US 2021/0255957 Al

1
/ 1650
System Processing Including Caching of Data

;

Receive Prefetches From One or More 1655
Sources at Interface ,//

;

1660
Evaluate Prefetches at interface f

Yes " Prefetch
. Uncacheable?

1675
\\

Allow Prefeich to
Procesd

« Prefetch . A
_ Having Duplicative
. Address? 7

1680
Eliminate Prefetch J/

US 2021/0255957 Al

Aug. 19,2021 Sheet 29 of 48

Patent Application Publication

thk\

LT "Dl

5,113 sjdinpy
SSOLTY BjGeIIRYS
b
saysed
Bl

P T T
- va b
| 1ossaaoudaig U el Jdi
m MH m

GTLY w.. m

Y2led O \\\ T ————
OLZL
N3
53

US 2021/0255957 Al

Aug. 19, 2021 Sheet 30 of 48

Patent Application Publication

BIB(] |2UIDY
BN

m,w @wnm AT LUOG ™

AN

AN
5

mmmm\\\

Qmww\\\

Jausiaiald
EREEY
youne
aseds 3pos ooossossossssssssesmmmmnrige
0181
0081
N3N
guiy/snan
S
SS3APPY P J

Patent Application Publication Aug. 19, 2021 Sheet 31 0f 48 US 2021/0255957 Al

i
|
E
E o
&
g -
<
fooboes
o
o3
[e)}
3 1 g M
S ° |\ | |

US 2021/0255957 Al

Aug. 19,2021 Sheet 32 of 48

Patent Application Publication

M SNgY BoRLBILY

Ny

5102
Suuoiaeig M AIOUISIA
JOAIDISUR | w M (s)i0ss8004d
N e

weisAg Bunndwod

-

0a0g

Patent Application Publication

MEMORY DEVICE - 2120

INSTRUCTIONS - 2121

DATA - 2122

DISPLAY DEVICE
214

U R S —

! EXTERNAL

Aug. 19, 2021 Sheet 33 of 48

PROCESSOR(S)
2102

REGISTER
FILE
2108

=
=

| GRAPHICS PROCESSOR E< >

i 2112

DATA STORAGE
DEVICE
2124

TOUCH SENSORS
2125

WIRELESS
TRANSCEIVER
2126

FIRMWARE INTERFACE
2128

MEMORY
CONTROLLER
2lie

PROCESSOR CORE(S) - 2107

INSTRUCTION SET
4108

GRAPHICS PROCESSOR(S)
2108

INTERFACE BUS(ES) - 2110

e
=
e
<=

PLATFORM
CONTROLLER

HUB
2130

US 2021/0255957 Al

X
H
NETWORK AUDIO { LEGACY O |
CONTROLLER || CONTROLLER | CONTROLLER
2134 2145 ! 2140
N
USB CONTROLLER(S)
2y
| "KEYBOARD § | CAMERA |
 MOUSE - 2143 !~ 2144

- s

= ¢ Dl

S

e,

S

e

o

S

N

-

% _

5 124

3 HOSSIO0Ud SOIHAVHO

5

=

N

S m

S ——" ps

o 257 Z1ee - ONIY

- HIATIOHINGD — , 8lze

o 8077 - (SILINM 3HOYD GIUYHS ¢

m - AFONIN w FINCON AHONIN
gize — R CEEETE

- (11NN 1% p Nvoee | {17 .

g YITIONINOD | | wamouineo | | Slunn T sl | | £Tee

g Sng A 1810 | FHOVD m FHOVO Oi

= — ekl

£ (\1¥77 |

S 12100 |

= INIOV ELSAS | FEOIC 3900 YZ02¢ 3400

c B

=

=

«

5

z 0027 ¥OSSA00Ud

-

= .

= «C DIA

7 5eE
g I0IAIT
| AVTdSIT
& Py
m AN

YLEC - FOVAZINI AHOWEN

Aug. 19, 2021 Sheet 35 of 48

230a0s AN ddid WNILISAS-ENS ANTdd ANIONT A TIOWINOD
O4dIA ViGN YIGEW/AE e 1hg AT 1451

wﬁ// 0LEe
ANIONT

;;;;;;;;;;;;;;;;;;;;;;;;;;; I DNISSIOOHd SOIHIYED

M
§
§
§
! ”
i !
! ”
RRRARAARIR m el P RRRRRRRRRAR, P e s
90eg w 9itd > GLEe 4 A% A ” yOEC A1
INDNT | i
! m
§ f
§ f
§
§
§

00ee
H0853004d SOHAYHD

Patent Application Publication

US 2021/0255957 Al

Aug. 19, 2021 Sheet 36 of 48

Patent Application Publication

vZ "DId
AIOWISH
e e M L0

| L
m m
(513HovD = darbe ——
W (5)3400 T
m AT S SOIHAVAD A

- | aNrEdd KT
| NOILYONANGD S K ! BTN
w H
W o QYIHHLHEIN] NOLONA | mmmomm%mm%m m Lo
m o G [P O3S m R
=N |

13400 Sp—— | ~

m HT TS A soHave 55 W
257 INEd (e

| — vt ot I
W R7HEY 300 15 S — |
m SOHdYHD MI4408 !
NN K m
M QNN ;
|

1374

ANIENG ONISSI00H SOHAYHD

oo woone wecons ooncoe oooore Gconoo 0O 0OOOn | WONGE 00K €ANGE | OOONY | GO0 CDGOD | G0PGOn | 00DGO GO GO GROpey | GnOn Cooops | Gnnep onooan | aenan

US 2021/0255957 Al

Aug. 19, 2021 Sheet 37 of 48

Patent Application Publication

¢ DIA

Fooee — _ i -
WS Fic TR 0% Wis RO e 714
SERTIER I ey HEVS |
37052 € Es NOILONNE 03X OL05¢ ae "
0854000 TYNOLLIQOY H0E8400dd
HIAVHS NIAAVHS
TR i 05T TE0ET
oHAL § AvHMY N3 - ovaL | AvMdY N3
Vi
I T 4
T e dlogg | NOLINAS TSX | ovoez) T ggmer —
WS T § ASLINOD WIS bse THOET
EENTHEN Iy SIS |
Tl e Gv e e R
HOSSI0Ud I$53004d
NIAYHS %Qﬁm
30 T 0 i,u Mmm & 1HOVO o0z E 4 =riy
. oHaL § AvEWY N3 O TS oHaL f AvudY N3
™ QFUVHS I o
- 31082 1052 = -
{14 e e e
Wis B 052 WS RGN iz
HATANYS | HEIVS | e g
armee o3 = w57 YI05 ae ' “
0853004 2507 HOSSI00Md
MICYHS NOLLONN MIAVHS
qo5e 052 A UFEvHS 7905 VETET V25T
NI VS oal AFHEY N3 &/, \ U TdNYS ONGL | AVHMY 3
VIOEN QL0682 Y1057 RASEL
RRES g7 e e o o o s e
0e5e w5 §ese 552 | geg7 AN :
INTEdid VIGIN HATIOHINCOOHON YA 1IN ; NOLLONNA GaIXid u
SOHdYHD 308 SOIHdYED M B AYLINOID |

00%¢

=
7 &
z V9T 'Ol
s
S
(o]
wn
-]
" m w,wun..,.,mﬁ,mm m.aa;Tastia.T;aw]
s rroe T | amoer | @oe |
% 1HOd VIV | N0 e OEOSC) SROSC T
= ww B M E i a4 e
g _ i ; ! ! P 1 3HOVD NOLLONHLSNI
- mzuwwmﬁg =y e e
= §00% o AI06E |y YIoEE |
& i Ot mm no0L ROL |
$ oo i | ¥ H %]
= _ i~ | : o 209
H Samm ww.................._m i g | | ¥3HOLYASIO | H0S5300d
SIT1dINYS | TNE067 | SE0GC I V09T
m B oamoem i P avadHl HIAYHS
g8 N9l d 04 8 N3 p
wm : | : w
[| | SUNSSNSNNS | SN——
R NB0AZ R m%@w,&%m

009¢
SIS NOUN2EXE

Patent Application Publication

US 2021/0255957 Al

Aug. 19, 2021 Sheet 39 of 48

Patent Application Publication

d9¢ Dld

awis

¥eoe
Sdd
awis

//m(%w - LINFTNOLLROEME SOHdEYED

%

2E8C
HONYHE

0£9¢
e

mmmmxﬂi\

HOL3d NOLLONYISNI

AN

g/......N...E.V AR, /y .N.........V, \....:

1

e sl s s s s e

o oo ool e R i o

AN

H318HY QvduHL

3517 - YBW PleRd — gxxxwac LD=8p0odo

§977 - snosueyeosyy — mxxﬁmﬂ:mmﬁnmnmuma

FPLZ - JOAUOT MOl e Qxxxxma L op=sposdo

US 2021/0255957 Al

7yl - 9boyRADp] e mxxxvmxmmwmumvmo%
3 BIlie eiv 51914

ovic
300030 300040

0LT § DCLE | B T ViiZ LVt 2le
LONS § 00dS | 1530 {10HINOD | X30ONH 1300040

Aug. 19,2021 Sheet 40 of 48

9

NOLLINELSNE LOVANOS 1ig-v8

e

GET7 - ey J0108p, oo ﬁxxxxmwmlmﬁnmmaaaa LT 51H

g Fp— p— P
i 924i W [{AYAR WaA T/ VYA I 1 VX 21944 piie CLig
] A00N S83HAAYISSI00Y ; ZOHS § LOHS | 00YE | 1530 (HZIS-03 31 T0dUINCD 1100040
" iz ,

_ NOLLOMALSN Lig-8¢1

o
SIVIRHOL ROILONMLSNI 08800 SOHJYHD

Patent Application Publication

Patent Application Publication Aug. 19, 2021 Sheet 41 0of 48 US 2021/0255957 Al

GRAPHICS PROCESSOR
2800 MEDIA PIPELINE
2830
\ DISPLAY ENGINE
(_\ 840
COMMAND
"l STREAMER | ,w==f=mm o A
GRAPHICS 2RO ¢ y
PIPELINE e MEDI e e e e i S
2802 BN~ T ENGINE ¥ o Akt
o o e & 20 ENGINE DISPLAY)
; ; CONTROLLER i
¢ DVERTEX |1 T 4] gy i
T FETCHER |7 RN sagt EXECUTIONLOGIC wu e oo !
2805 ; 2850
; i ! J Y
H
; VERTEX Y EXECUTION HImr
Pl SHADER e] UniTs | |[SAMPELER S
§ 28 } 252 — TEXTUR
- PN o | CACHE : CACHE
e | . e 1 DATA -
[i [ELE L 5o 2823’} E:X-...QU}-L/'\ [T, ?Bg)b
iy ¢ HULL Y i = UNITS PORT I =
= t1 SHADER 4 o . 2956
< § 2841 { 3 28528 fe
2 i Kmqg.,x‘ i [Y
O i § & -3
o ﬁ ! &
- ' ITESSELLATOR] &
= ; 2813 * 2 45
= § i n ¥ L Y. TRENDER
& : ; CACHE
T = RASTER/] | 13 PYEL || ara
ﬁ SHADER bt = | DEPTH | | CACHE | | 0PS
; o817 2873 2875 2877 |1 DEPTH
P e CACHE
| . A 2879
i { GEOMETRY Y "
; SHADER m
i 2819 i Py
; |
§ y ARS ;
o STREAM | 1 RENDER QUTPUT
, Out ; PIPELINE
Y i 2823 § 2870
{
; ;
§ i
t i
8 §
8 H
i H

FI1G. 28

Patent Application Publication

Aug. 19,2021 Sheet 42 of 48

FIG. 29A crapucs PRGGES??{% COMMAND FORMAT
CLIENT | OPCODE |SUB-OPCODE|] DATA | COMMAND SIZE
2902 2904 2905 2906 2908
FI{(. 298 crapHiCs ?ROQESS?; ggmmm SEQUENCE
" UPPELNEFLUSH |
2912 |
b o o v "g:‘"m s e e
S S
| PIPELINE SELECT |
L 2913 |
PIPELINE CONTROL
2914
RETURN BUFFER STATE
2918
2924
2922 ~sp PN Hediaw”
% < Pipeline?
30 PIPELINE STATE MEDIA PIPELINE STATE
2930 2940
30 PRIMITIVE MEDIA OBJECT
2337 2942
EXECUTE EXECUTE
2934 2944

US 2021/0255957 Al

Patent Application Publication Aug. 19, 2021 Sheet 43 0f 48 US 2021/0255957 Al

DATA PROCESSING SYSTEM - 3000

) 3D GRAPHICS APPLICATION
SHADER INSTRUCTIONS EXECUTABLE INSTRUCTIONS
GRAPHICS
OBJECTS
¥ y &
OPERATING SYSTEM (0S)
S02¢
vEvORY | USERMODE GRAPHICS DRVER | [ppep —
2050 Sl st COMPILER jotepe ,202;”' 4
SHADER COMPILER 028 -
K
: 06 KERNEL MODE FUNCTIONS
KERNEL MODE GRAPHICS ™ 008
« DRIVER
3029
& 8 &
¥ v ¥
GRAPHICS - GENERAL
PROCESSOR PROGEOSOR PURPOSE CORES)

US 2021/0255957 Al

Aug. 19,2021 Sheet 44 of 48

Patent Application Publication

0ETE ALTIOVH NDISEC
GHg
§71E NSISEQ THAT .

(Y 1Y(NDIS3(HIJSNVHL HILSID3Y Ohe
TWOISAHA HO T0H) — meﬁmww
TH0ON IUYMTEYH AR

THAOW NOUYININIS

091L€
NOLLDTINNDD
SO AU
473
0515 ™
NOLLOTINNGD
QI ™
™
N
- opie”
5 AHOWIN
A0V THLIOIANON
NOLLY OIS

G01E - INTWNAOTIATIT 30D dI

Patent Application Publication

Aug. 19,2021 Sheet 45 of 48

US 2021/0255957 Al

PACKAGE
ASSEMBLY
3170

LOGIC

«

INTERCONNECT
STRUCTURE

3173 N5

BRIDGE

SUBSTRATE
3180

PACKAGE
INTERCONNECT
3183

FIG. 318

Patent Application Publication Aug. 19, 2021 Sheet 46 of 48 US 2021/0255957 Al
50C
INTEGRATED CIRCUIT
~
v N\
APPLICATION GRAPHICS
PROCESSOR(S) PROCESSOR
3205 3210
IMAGE VIDEQ
PROCESSOR PROCESSOR
3215 3220
USR UART spysbio | | Psnic DISPLAY
3225 3230 3235 3240 3245
§S§§g§j?§ MEMORY | | FLASH : MIP] E HDMI
boo3o70 3268 3260 i 3255 i 3250
| S | |
- 7,

Patent Application Publication Aug. 19, 2021 Sheet 47 of 48 US 2021/0255957 Al

GRAPHICS PROCESSOR
gfx\jim
7)
VERTEX PROCESSOR
3305
FRAGMENT §"m%§A§M§ﬁ?“"§ | FRAGMENT |
PROCESSOR | PROCESSOR | = e ' PROCESSOR |
33154 Lomsc Dozasng
— P unwwranw R Lo o ek
| FRAGMENT | ?""%§A§ﬁﬁﬁ?“"§ | FRAGMENT |
| PROCESSOR | | PROCESSOR | e s ' PROCESSOR |
A 11-': B B B o S T
T‘mmmmmmmmmmm‘“’;
MMU 5 MMU a
33204 § 33208 5
mmmmmmmmmmmm o
T T e e e a
CACHE : CACHE ;
33954 g 33258 :
b oo e e o e e e e o o
T T e e e a
INTERCONNECT : INTERCONNECT |
33304 | 33308 |
b oo e e o e e e e o o
o)

FIG. 33A

Patent Application Publication Aug. 19, 2021 Sheet 48 0f 48 US 2021/0255957 A1l
GRAPHICS PROCESSOR
~
G N
INTER-CORE TASK-MANAGER
(e.q., THREAD DISPATCHER)
3345
SHADER | | SHADER 1 | SHADER | | SHADER |
CORE |} CORE ! CORE I w==see | CORE |
33554 |1 33s5C 11 33sEE I b 3355N-1
— | U T S| .
| SHADER | | SHADER { | SHADER | | SHADER |
b CORE 1! CORE 1! CORE | o I CORE |
Poaassg tE 33550 1 E 3385F bo33ssN
| S SRR [S ——— [T SR | | S
TILING UNIT
3358

MMU | MMU :
33204 § 33208 a
mmmmmmmmmmmm of
T ;
CACHE i CACHE ;
33254 | 33258 |
b o e mmn o nmam amam mn owamn aam amn e o
T T e ;
INTERCONNECT i INTERCONNECT ;
33304 | 33308 |

b o e mmn o nmam amam mn owamn aam amn e

S /)

FIG. 338

US 2021/0255957 Al

DATA PREFETCHING FOR GRAPHICS
DATA PROCESSING

CLAIM TO PRIORITY

[0001] This application is a continuation of and claims the
benefit of and priority to U.S. application Ser. No. 16/355,
015, entitled DATA PREFETCHING FOR GRAPHICS
DATA PROCESSING, by Vikranth Vemulapalli, et al., filed
Mar. 15, 2019, the entire contents of which are incorporated
herein by reference.

TECHNICAL FIELD

[0002] Embodiments described herein generally relate to
the field of electronic devices and, more particularly, data
prefetching for graphics data processing.

BACKGROUND

[0003] Current parallel graphics data processing includes
systems and methods developed to perform specific opera-
tions on graphics data such as, for example, linear interpo-
lation, tessellation, rasterization, texture mapping, depth
testing, etc. Traditionally, graphics processors used fixed
function computational units to process graphics data; how-
ever, more recently, portions of graphics processors have
been made programmable, enabling such processors to sup-
port a wider variety of operations for processing vertex and
fragment data.

[0004] To further increase performance, graphics proces-
sors typically implement processing techniques such as
pipelining that attempt to process, in parallel, as much
graphics data as possible throughout the different parts of the
graphics pipeline. Parallel graphics processors with single
instruction, multiple thread (SIMT) architectures are
designed to maximize the amount of parallel processing in
the graphics pipeline. In an SIMT architecture, groups of
parallel threads attempt to execute program instructions
synchronously together as often as possible to increase
processing efficiency. A general overview of software and
hardware for SIMT architectures can be found in Shane
Cook, CUDA Programming Chapter 3, pages 37-51 (2013).
[0005] Conventional graphics processing systems provide
for prefetching of data elements for efficiency in graphics
data processing. However, the prefetching operations in
such systems includes numerous inefficiencies in how the
prefetches are constructed or handled.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] Embodiments described here are illustrated by way
of example, and not by way of limitation, in the figures of
the accompanying drawings in which like reference numer-
als refer to similar elements.

[0007] FIG. 1 is a block diagram illustrating a computer
system configured to implement one or more aspects of the
embodiments described herein;

[0008] FIG. 2A-2D illustrate parallel processor compo-
nents, according to an embodiment;

[0009] FIG. 3A-3C are block diagrams of graphics mul-
tiprocessors and multiprocessor-based GPUs, according to
embodiments;

[0010] FIG. 4A-4F illustrate an exemplary architecture in
which a plurality of GPUs is communicatively coupled to a
plurality of multi-core processors;

Aug. 19, 2021

[0011] FIG. 5 illustrates a graphics processing pipeline,
according to an embodiment;

[0012] FIG. 6 illustrates a machine learning software
stack, according to an embodiment;

[0013] FIG. 7 illustrates a general-purpose graphics pro-
cessing unit, according to an embodiment;

[0014] FIG. 8 illustrates a multi-GPU computing system,
according to an embodiment;

[0015] FIG. 9A-9B illustrate layers of exemplary deep
neural networks;

[0016] FIG. 10 illustrates an exemplary recurrent neural
network;
[0017] FIG. 11 illustrates training and deployment of a

deep neural network;

[0018] FIG. 12 is a block diagram illustrating distributed
learning;
[0019] FIG. 13 illustrates an exemplary inferencing sys-

tem on a chip (SOC) suitable for performing inferencing
using a trained model;

[0020] FIG. 14 is an illustration of data prefetching for
graphics data processing according to some embodiments;
[0021] FIG. 15A is an illustration of intelligent prefetch to
cache according to some embodiments;

[0022] FIG. 15B is a flowchart to illustrate a process for
intelligent prefetch to cache according to some embodi-
ments;

[0023] FIG. 16A is an illustration of cache prefetch
enhancement to eliminate unnecessary prefetches according
to some embodiments;

[0024] FIG. 16B is a flowchart to illustrate a process to
squash unnecessary prefetches according to some embodi-
ments;

[0025] FIG. 17 is an illustration of speculative prefetch
according to some embodiments;

[0026] FIG. 18 is an illustration of prefetch for an instruc-
tion cache according to some embodiments;

[0027] FIG. 19A is an illustration of exploitation of band-
width sources for prefetching/scrubbing according to some
embodiments;

[0028] FIG. 19B is an illustration of activity of L3 cache
and memory activity to be utilized in exploitation of band-
width sources for prefetching/scrubbing to some embodi-
ments;

[0029] FIG. 20 is an illustration of an apparatus or system
to provide for data prefetching for graphics data processing,
according to some embodiments;

[0030] FIG. 21 is a block diagram of a processing system,
according to an embodiment;

[0031] FIG. 22 is a block diagram of a processor according
to an embodiment;

[0032] FIG. 23 is a block diagram of a graphics processor,
according to an embodiment;

[0033] FIG. 24 is a block diagram of a graphics processing
engine of a graphics processor in accordance with some
embodiments;

[0034] FIG. 25 is a block diagram of hardware logic of a
graphics processor core, according to some embodiments
described herein;

[0035] FIG. 26A-26B illustrate thread execution logic
including an array of processing elements employed in a
graphics processor core according to embodiments
described herein;

US 2021/0255957 Al

[0036] FIG. 27 is a block diagram illustrating a graphics
processor instruction formats according to some embodi-
ments;

[0037] FIG. 28 is a block diagram of a graphics processor
according to another embodiment;

[0038] FIG. 29A-29B illustrate a graphics processor com-
mand format and command sequence, according to some
embodiments;

[0039] FIG. 30 illustrates exemplary graphics software
architecture for a data processing system according to some
embodiments;

[0040] FIG. 31A is a block diagram illustrating an IP core
development system, according to an embodiment;

[0041] FIG. 31B illustrates a cross-section side view of an
integrated circuit package assembly, according to some
embodiments described herein;

[0042] FIG. 32 is a block diagram illustrating an exem-
plary system on a chip integrated circuit, according to an
embodiment; and

[0043] FIG. 33A-33B are block diagrams illustrating
exemplary graphics processors for use within an SoC,
according to embodiments described herein.

DETAILED DESCRIPTION

[0044] Embodiments described herein are generally
directed to data prefetching for graphics data processing.
[0045] In some embodiments, an apparatus, system, or
process provides for improvements in data prefetching for
graphics data processing, including one or more of the
following:

[0046] (1) Intelligent Prefetch to Cache Based on Cache
Hit Rate;
[0047] (2) Cache Prefetch Enhancement to Squash Unnec-

essary Prefetches;

[0048] (3) Speculative Prefetch;

[0049] (4) Prefetch for Instruction Cache (I-Cache); or
[0050] (5) Exploiting Bandwidth Sources for Prefetching/
Scrubbing.

[0051] In some embodiments, a graphics processing unit

(GPU) is communicatively coupled to host/processor cores
to accelerate graphics operations, machine-learning opera-
tions, pattern analysis operations, and various general-pur-
pose GPU (GPGPU) functions. The GPU may be commu-
nicatively coupled to the host processor/cores over a bus or
another interconnect (e.g., a high-speed interconnect such as
PCle or NVLink). In other embodiments, the GPU may be
integrated on the same package or chip as the cores and
communicatively coupled to the cores over an internal
processor bus/interconnect (i.e., internal to the package or
chip). Regardless of the manner in which the GPU is
connected, the processor cores may allocate work to the
GPU in the form of sequences of commands/instructions
contained in a work descriptor. The GPU then uses dedicated
circuitry/logic for efficiently processing these commands/
instructions.

[0052] In the following description, numerous specific
details are set forth to provide a more thorough understand-
ing. However, it will be apparent to one of skill in the art that
the embodiments described herein may be practiced without
one or more of these specific details. In other instances,
well-known features have not been described to avoid
obscuring the details of the present embodiments.

Aug. 19, 2021

[0053]

[0054] FIG. 1 is a block diagram illustrating a computing
system 100 configured to implement one or more aspects of
the embodiments described herein. The computing system
100 includes a processing subsystem 101 having one or
more processor(s) 102 and a system memory 104 commu-
nicating via an interconnection path that may include a
memory hub 105. The memory hub 105 may be a separate
component within a chipset component or may be integrated
within the one or more processor(s) 102. The memory hub
105 couples with an I/O subsystem 111 via a communication
link 106. The I/O subsystem 111 includes an I/O hub 107
that can enable the computing system 100 to receive input
from one or more input device(s) 108. Additionally, the I/O
hub 107 can enable a display controller, which may be
included in the one or more processor(s) 102, to provide
outputs to one or more display device(s) 110A. In one
embodiment the one or more display device(s) 110A coupled
with the I/O hub 107 can include a local, internal, or
embedded display device.

[0055] In one embodiment the processing subsystem 101
includes one or more parallel processor(s) 112 coupled to
memory hub 105 via a bus or other communication link 113.
The communication link 113 may be one of any number of
standards based communication link technologies or proto-
cols, such as, but not limited to PCI Express, or may be a
vendor specific communications interface or communica-
tions fabric. In one embodiment the one or more parallel
processor(s) 112 form a computationally focused parallel or
vector processing system that can include a large number of
processing cores and/or processing clusters, such as a many
integrated core (MIC) processor. In one embodiment the one
or more parallel processor(s) 112 form a graphics processing
subsystem that can output pixels to one of the one or more
display device(s) 110A coupled via the /O Hub 107. The
one or more parallel processor(s) 112 can also include a
display controller and display interface (not shown) to
enable a direct connection to one or more display device(s)
110B.

[0056] Within the I/O subsystem 111, a system storage
unit 114 can connect to the I/O hub 107 to provide a storage
mechanism for the computing system 100. An I/O switch
116 can be used to provide an interface mechanism to enable
connections between the /O hub 107 and other components,
such as a network adapter 118 and/or wireless network
adapter 119 that may be integrated into the platform, and
various other devices that can be added via one or more
add-in device(s) 120. The network adapter 118 can be an
Ethernet adapter or another wired network adapter. The
wireless network adapter 119 can include one or more of a
Wi-Fi, Bluetooth, near field communication (NFC), or other
network device that includes one or more wireless radios.

[0057] The computing system 100 can include other com-
ponents not explicitly shown, including USB or other port
connections, optical storage drives, video capture devices,
and the like, may also be connected to the I/O hub 107.
Communication paths interconnecting the various compo-
nents in FIG. 1 may be implemented using any suitable
protocols, such as PCI (Peripheral Component Interconnect)
based protocols (e.g., PCI-Express), or any other bus or
point-to-point communication interfaces and/or protocol(s),
such as the NV-Link high-speed interconnect, or intercon-
nect protocols known in the art.

System Overview

US 2021/0255957 Al

[0058] In one embodiment, the one or more parallel pro-
cessor(s) 112 incorporate circuitry optimized for graphics
and video processing, including, for example, video output
circuitry, and constitutes a graphics processing unit (GPU).
In another embodiment, the one or more parallel processor
(s) 112 incorporate circuitry optimized for general purpose
processing, while preserving the underlying computational
architecture, described in greater detail herein. In yet another
embodiment, components of the computing system 100 may
be integrated with one or more other system elements on a
single integrated circuit. For example, the one or more
parallel processor(s) 112, memory hub 105, processor(s)
102, and I/O hub 107 can be integrated into a system on chip
(SoC) integrated circuit. Alternatively, the components of
the computing system 100 can be integrated into a single
package to form a system in package (SIP) configuration. In
one embodiment at least a portion of the components of the
computing system 100 can be integrated into a multi-chip
module (MCM), which can be interconnected with other
multi-chip modules into a modular computing system.
[0059] It will be appreciated that the computing system
100 shown herein is illustrative and that variations and
modifications are possible. The connection topology, includ-
ing the number and arrangement of bridges, the number of
processor(s) 102, and the number of parallel processor(s)
112, may be modified as desired. For instance, in some
embodiments, system memory 104 is connected to the
processor(s) 102 directly rather than through a bridge, while
other devices communicate with system memory 104 via the
memory hub 105 and the processor(s) 102. In other alter-
native topologies, the parallel processor(s) 112 are con-
nected to the /O hub 107 or directly to one of the one or
more processor(s) 102, rather than to the memory hub 105.
In other embodiments, the I/O hub 107 and memory hub 105
may be integrated into a single chip. Some embodiments
may include two or more sets of processor(s) 102 attached
via multiple sockets, which can couple with two or more
instances of the parallel processor(s) 112.

[0060] Some of the particular components shown herein
are optional and may not be included in all implementations
of the computing system 100. For example, any number of
add-in cards or peripherals may be supported, or some
components may be eliminated. Furthermore, some archi-
tectures may use different terminology for components
similar to those illustrated in FIG. 1. For example, the
memory hub 105 may be referred to as a Northbridge in
some architectures, while the 1/O hub 107 may be referred
to as a Southbridge.

[0061] FIG.2A illustrates a parallel processor 200, accord-
ing to an embodiment. The various components of the
parallel processor 200 may be implemented using one or
more integrated circuit devices, such as programmable pro-
cessors, application specific integrated circuits (ASICs), or
field programmable gate arrays (FPGA). The illustrated
parallel processor 200 is a variant of the one or more parallel
processor(s) 112 shown in FIG. 1, according to an embodi-
ment.

[0062] In one embodiment the parallel processor 200
includes a parallel processing unit 202. The parallel pro-
cessing unit includes an 1/O unit 204 that enables commu-
nication with other devices, including other instances of the
parallel processing unit 202. The I/O unit 204 may be
directly connected to other devices. In one embodiment the
1/O unit 204 connects with other devices via the use of a hub

Aug. 19, 2021

or switch interface, such as memory hub 105. The connec-
tions between the memory hub 105 and the /O unit 204
form a communication link 113. Within the parallel process-
ing unit 202, the I/O unit 204 connects with a host interface
206 and a memory crossbar 216, where the host interface
206 receives commands directed to performing processing
operations and the memory crossbar 216 receives commands
directed to performing memory operations.

[0063] When the host interface 206 receives a command
buffer via the I/O unit 204, the host interface 206 can direct
work operations to perform those commands to a front end
208. In one embodiment the front end 208 couples with a
scheduler 210, which is configured to distribute commands
or other work items to a processing cluster array 212. In one
embodiment the scheduler 210 ensures that the processing
cluster array 212 is properly configured and in a valid state
before tasks are distributed to the processing clusters of the
processing cluster array 212. In one embodiment the sched-
uler 210 is implemented via firmware logic executing on a
microcontroller. The microcontroller implemented sched-
uler 210 is configurable to perform complex scheduling and
work distribution operations at coarse and fine granularity,
enabling rapid preemption and context switching of threads
executing on the processing array 212. In one embodiment,
the host software can prove workloads for scheduling on the
processing array 212 via one of multiple graphics processing
doorbells. The workloads can then be automatically distrib-
uted across the processing array 212 by the scheduler 210
logic within the scheduler microcontroller.

[0064] The processing cluster array 212 can include up to
“N” processing clusters (e.g., cluster 214A, cluster 214B,
through cluster 214N). Each cluster 214A-214N of the
processing cluster array 212 can execute a large number of
concurrent threads. The scheduler 210 can allocate work to
the clusters 214A-214N of the processing cluster array 212
using various scheduling and/or work distribution algo-
rithms, which may vary depending on the workload arising
for each type of program or computation. The scheduling
can be handled dynamically by the scheduler 210, or can be
assisted in part by compiler logic during compilation of
program logic configured for execution by the processing
cluster array 212. In one embodiment, different clusters
214A-214N of the processing cluster array 212 can be
allocated for processing different types of programs or for
performing different types of computations.

[0065] The processing cluster array 212 can be configured
to perform various types of parallel processing operations.
In one embodiment the processing cluster array 212 is
configured to perform general-purpose parallel compute
operations. For example, the processing cluster array 212
can include logic to execute processing tasks including
filtering of video and/or audio data, performing modeling
operations, including physics operations, and performing
data transformations.

[0066] In one embodiment the processing cluster array
212 is configured to perform parallel graphics processing
operations. In embodiments in which the parallel processor
200 is configured to perform graphics processing operations,
the processing cluster array 212 can include additional logic
to support the execution of such graphics processing opera-
tions, including, but not limited to texture sampling logic to
perform texture operations, as well as tessellation logic and
other vertex processing logic. Additionally, the processing
cluster array 212 can be configured to execute graphics

US 2021/0255957 Al

processing related shader programs such as, but not limited
to vertex shaders, tessellation shaders, geometry shaders,
and pixel shaders. The parallel processing unit 202 can
transfer data from system memory via the 1/O unit 204 for
processing. During processing the transferred data can be
stored to on-chip memory (e.g., parallel processor memory
222) during processing, then written back to system
memory.

[0067] In one embodiment, when the parallel processing
unit 202 is used to perform graphics processing, the sched-
uler 210 can be configured to divide the processing work-
load into approximately equal sized tasks, to better enable
distribution of the graphics processing operations to multiple
clusters 214A-214N of the processing cluster array 212. In
some embodiments, portions of the processing cluster array
212 can be configured to perform different types of process-
ing. For example a first portion may be configured to
perform vertex shading and topology generation, a second
portion may be configured to perform tessellation and geom-
etry shading, and a third portion may be configured to
perform pixel shading or other screen space operations, to
produce a rendered image for display. Intermediate data
produced by one or more of the clusters 214A-214N may be
stored in buffers to allow the intermediate data to be trans-
mitted between clusters 214A-214N for further processing.
[0068] During operation, the processing cluster array 212
can receive processing tasks to be executed via the scheduler
210, which receives commands defining processing tasks
from front end 208. For graphics processing operations,
processing tasks can include indices of data to be processed,
e.g., surface (patch) data, primitive data, vertex data, and/or
pixel data, as well as state parameters and commands
defining how the data is to be processed (e.g., what program
is to be executed). The scheduler 210 may be configured to
fetch the indices corresponding to the tasks or may receive
the indices from the front end 208. The front end 208 can be
configured to ensure the processing cluster array 212 is
configured to a valid state before the workload specified by
incoming command buffers (e.g., batch-buffers, push buf-
fers, etc.) is initiated.

[0069] Each of the one or more instances of the parallel
processing unit 202 can couple with parallel processor
memory 222. The parallel processor memory 222 can be
accessed via the memory crossbar 216, which can receive
memory requests from the processing cluster array 212 as
well as the /O unit 204. The memory crossbar 216 can
access the parallel processor memory 222 via a memory
interface 218. The memory interface 218 can include mul-
tiple partition units (e.g., partition unit 220A, partition unit
220B, through partition unit 220N) that can each couple to
a portion (e.g., memory unit) of parallel processor memory
222. In one implementation the number of partition units
220A-220N is configured to be equal to the number of
memory units, such that a first partition unit 220A has a
corresponding first memory unit 224A, a second partition
unit 220B has a corresponding memory unit 224B, and an
Nth partition unit 220N has a corresponding Nth memory
unit 224N. In other embodiments, the number of partition
units 220A-220N may not be equal to the number of
memory devices.

[0070] In various embodiments, the memory units 224A-
224N can include various types of memory devices, includ-
ing dynamic random access memory (DRAM) or graphics
random access memory, such as synchronous graphics ran-

Aug. 19, 2021

dom access memory (SGRAM), including graphics double
data rate (GDDR) memory. In one embodiment, the memory
units 224A-224N may also include 3D stacked memory,
including but not limited to high bandwidth memory
(HBM). Persons skilled in the art will appreciate that the
specific implementation of the memory units 224A-224N
can vary, and can be selected from one of various conven-
tional designs. Render targets, such as frame buffers or
texture maps may be stored across the memory units 224 A-
224N, allowing partition units 220A-220N to write portions
of each render target in parallel to efficiently use the avail-
able bandwidth of parallel processor memory 222. In some
embodiments, a local instance of the parallel processor
memory 222 may be excluded in favor of a unified memory
design that utilizes system memory in conjunction with local
cache memory.

[0071] In one embodiment, any one of the clusters 214A-
214N of the processing cluster array 212 can process data
that will be written to any of the memory units 224A-224N
within parallel processor memory 222. The memory cross-
bar 216 can be configured to transfer the output of each
cluster 214A-214N to any partition unit 220A-220N or to
another cluster 214A-214N, which can perform additional
processing operations on the output. Each cluster 214A-
214N can communicate with the memory interface 218
through the memory crossbar 216 to read from or write to
various external memory devices. In one embodiment the
memory crossbar 216 has a connection to the memory
interface 218 to communicate with the I/O unit 204, as well
as a connection to a local instance of the parallel processor
memory 222, enabling the processing units within the dif-
ferent processing clusters 214A-214N to communicate with
system memory or other memory that is not local to the
parallel processing unit 202. In one embodiment the
memory crossbar 216 can use virtual channels to separate
traffic streams between the clusters 214A-214N and the
partition units 220A-220N.

[0072] While a single instance of the parallel processing
unit 202 is illustrated within the parallel processor 200, any
number of instances of the parallel processing unit 202 can
be included. For example, multiple instances of the parallel
processing unit 202 can be provided on a single add-in card,
or multiple add-in cards can be interconnected. The different
instances of the parallel processing unit 202 can be config-
ured to inter-operate even if the different instances have
different numbers of processing cores, different amounts of
local parallel processor memory, and/or other configuration
differences. For example, in one embodiment some
instances of the parallel processing unit 202 can include
higher precision floating point units relative to other
instances. Systems incorporating one or more instances of
the parallel processing unit 202 or the parallel processor 200
can be implemented in a variety of configurations and form
factors, including but not limited to desktop, laptop, or
handheld personal computers, servers, workstations, game
consoles, and/or embedded systems.

[0073] FIG. 2B is a block diagram of a partition unit 220,
according to an embodiment. In one embodiment the parti-
tion unit 220 is an instance of one of the partition units
220A-220N of FIG. 2A. As illustrated, the partition unit 220
includes an L2 cache 221, a frame buffer interface 225, and
a ROP 226 (raster operations unit). The [.2 cache 221 is a
read/write cache that is configured to perform load and store
operations received from the memory crossbar 216 and ROP

US 2021/0255957 Al

226. Read misses and urgent write-back requests are output
by L2 cache 221 to frame buffer interface 225 for process-
ing. Updates can also be sent to the frame buffer via the
frame buffer interface 225 for processing. In one embodi-
ment the frame buffer interface 225 interfaces with one of
the memory units in parallel processor memory, such as the
memory units 224A-224N of FIG. 2A (e.g., within parallel
processor memory 222).

[0074] In graphics applications, the ROP 226 is a process-
ing unit that performs raster operations such as stencil, z test,
blending, and the like. The ROP 226 then outputs processed
graphics data that is stored in graphics memory. In some
embodiments the ROP 226 includes compression logic to
compress depth or color data that is written to memory and
decompress depth or color data that is read from memory.
The compression logic can be lossless compression logic
that makes use of one or more of multiple compression
algorithms. The type of compression that is performed by
the ROP 226 can vary based on the statistical characteristics
of the data to be compressed. For example, in one embodi-
ment, delta color compression is performed on depth and
color data on a per-tile basis.

[0075] In some embodiments, the ROP 226 is included
within each processing cluster (e.g., cluster 214A-214N of
FIG. 2A) instead of within the partition unit 220. In such
embodiment, read and write requests for pixel data are
transmitted over the memory crossbar 216 instead of pixel
fragment data. The processed graphics data may be dis-
played on a display device, such as one of the one or more
display device(s) 110 of FIG. 1, routed for further processing
by the processor(s) 102, or routed for further processing by
one of the processing entities within the parallel processor
200 of FIG. 2A.

[0076] FIG. 2C is a block diagram of a processing cluster
214 within a parallel processing unit, according to an
embodiment. In one embodiment the processing cluster is an
instance of one of the processing clusters 214A-214N of
FIG. 2A. The processing cluster 214 can be configured to
execute many threads in parallel, where the term “thread”
refers to an instance of a particular program executing on a
particular set of input data. In some embodiments, single-
instruction, multiple-data (SIMD) instruction issue tech-
niques are used to support parallel execution of a large
number of threads without providing multiple independent
instruction units. In other embodiments, single-instruction,
multiple-thread (SIMT) techniques are used to support par-
allel execution of a large number of generally synchronized
threads, using a common instruction unit configured to issue
instructions to a set of processing engines within each one of
the processing clusters. Unlike a SIMD execution regime,
where all processing engines typically execute identical
instructions, SIMT execution allows different threads to
more readily follow divergent execution paths through a
given thread program. Persons skilled in the art will under-
stand that a SIMD processing regime represents a functional
subset of a SIMT processing regime.

[0077] Operation of the processing cluster 214 can be
controlled via a pipeline manager 232 that distributes pro-
cessing tasks to SIMT parallel processors. The pipeline
manager 232 receives instructions from the scheduler 210 of
FIG. 2A and manages execution of those instructions via a
graphics multiprocessor 234 and/or a texture unit 236. The
illustrated graphics multiprocessor 234 is an exemplary
instance of a SIMT parallel processor. However, various

Aug. 19, 2021

types of SIMT parallel processors of differing architectures
may be included within the processing cluster 214. One or
more instances of the graphics multiprocessor 234 can be
included within a processing cluster 214. The graphics
multiprocessor 234 can process data and a data crossbar 240
can be used to distribute the processed data to one of
multiple possible destinations, including other shader units.
The pipeline manager 232 can facilitate the distribution of
processed data by specifying destinations for processed data
to be distributed via the data crossbar 240.

[0078] Each graphics multiprocessor 234 within the pro-
cessing cluster 214 can include an identical set of functional
execution logic (e.g., arithmetic logic units, load-store units,
etc.). The functional execution logic can be configured in a
pipelined manner in which new instructions can be issued
before previous instructions are complete. The functional
execution logic supports a variety of operations including
integer and floating point arithmetic, comparison operations,
Boolean operations, bit-shifting, and computation of various
algebraic functions. In one embodiment the same functional-
unit hardware can be leveraged to perform different opera-
tions and any combination of functional units may be
present.

[0079] The instructions transmitted to the processing clus-
ter 214 constitutes a thread. A set of threads executing across
the set of parallel processing engines is a thread group. A
thread group executes the same program on different input
data. Each thread within a thread group can be assigned to
a different processing engine within a graphics multiproces-
sor 234. A thread group may include fewer threads than the
number of processing engines within the graphics multipro-
cessor 234. When a thread group includes fewer threads than
the number of processing engines, one or more of the
processing engines may be idle during cycles in which that
thread group is being processed. A thread group may also
include more threads than the number of processing engines
within the graphics multiprocessor 234. When the thread
group includes more threads than the number of processing
engines within the graphics multiprocessor 234, processing
can be performed over consecutive clock cycles. In one
embodiment multiple thread groups can be executed con-
currently on a graphics multiprocessor 234.

[0080] In one embodiment the graphics multiprocessor
234 includes an internal cache memory to perform load and
store operations. In one embodiment, the graphics multipro-
cessor 234 can forego an internal cache and use a cache
memory (e.g., .1 cache 248) within the processing cluster
214. Each graphics multiprocessor 234 also has access to [.2
caches within the partition units (e.g., partition units 220A-
220N of FIG. 2A) that are shared among all processing
clusters 214 and may be used to transfer data between
threads. The graphics multiprocessor 234 may also access
off-chip global memory, which can include one or more of
local parallel processor memory and/or system memory.
Any memory external to the parallel processing unit 202
may be used as global memory. Embodiments in which the
processing cluster 214 includes multiple instances of the
graphics multiprocessor 234 can share common instructions
and data, which may be stored in the L1 cache 248.
[0081] Each processing cluster 214 may include an MMU
245 (memory management unit) that is configured to map
virtual addresses into physical addresses. In other embodi-
ments, one or more instances of the MMU 245 may reside
within the memory interface 218 of FIG. 2A. The MMU 245

US 2021/0255957 Al

includes a set of page table entries (PTEs) used to map a
virtual address to a physical address of a tile and optionally
a cache line index. The MMU 245 may include address
translation lookaside buffers (TLB) or caches that may
reside within the graphics multiprocessor 234 or the L1
cache or processing cluster 214. The physical address is
processed to distribute surface data access locality to allow
efficient request interleaving among partition units. The
cache line index may be used to determine whether a request
for a cache line is a hit or miss.

[0082] In graphics and computing applications, a process-
ing cluster 214 may be configured such that each graphics
multiprocessor 234 is coupled to a texture unit 236 for
performing texture mapping operations, e.g., determining
texture sample positions, reading texture data, and filtering
the texture data. Texture data is read from an internal texture
L1 cache (not shown) or in some embodiments from the [.1
cache within graphics multiprocessor 234 and is fetched
from an [.2 cache, local parallel processor memory, or
system memory, as needed. Each graphics multiprocessor
234 outputs processed tasks to the data crossbar 240 to
provide the processed task to another processing cluster 214
for further processing or to store the processed task in an [.2
cache, local parallel processor memory, or system memory
via the memory crossbar 216. A preROP 242 (pre-raster
operations unit) is configured to receive data from graphics
multiprocessor 234, direct data to ROP units, which may be
located with partition units as described herein (e.g., parti-
tion units 220A-220N of FIG. 2A). The preROP 242 unit can
perform optimizations for color blending, organize pixel
color data, and perform address translations.

[0083] It will be appreciated that the core architecture
described herein is illustrative and that variations and modi-
fications are possible. Any number of processing units, e.g.,
graphics multiprocessor 234, texture units 236, preROPs
242, etc., may be included within a processing cluster 214.
Further, while only one processing cluster 214 is shown, a
parallel processing unit as described herein may include any
number of instances of the processing cluster 214. In one
embodiment, each processing cluster 214 can be configured
to operate independently of other processing clusters 214
using separate and distinct processing units, [.1 caches, etc.
[0084] FIG. 2D shows a graphics multiprocessor 234,
according to one embodiment. In such embodiment the
graphics multiprocessor 234 couples with the pipeline man-
ager 232 of the processing cluster 214. The graphics mul-
tiprocessor 234 has an execution pipeline including but not
limited to an instruction cache 252, an instruction unit 254,
an address mapping unit 256, a register file 258, one or more
general purpose graphics processing unit (GPGPU) cores
262, and one or more load/store units 266. The GPGPU
cores 262 and load/store units 266 are coupled with cache
memory 272 and shared memory 270 via a memory and
cache interconnect 268. In one embodiment the graphics
multiprocessor 234 additionally includes tensor and/or ray-
tracing cores 263 that include hardware logic to accelerate
matrix and/or ray-tracing operations.

[0085] In one embodiment, the instruction cache 252
receives a stream of instructions to execute from the pipeline
manager 232. The instructions are cached in the instruction
cache 252 and dispatched for execution by the instruction
unit 254. The instruction unit 254 can dispatch instructions
as thread groups (e.g., warps), with each thread of the thread
group assigned to a different execution unit within GPGPU

Aug. 19, 2021

core 262. An instruction can access any of a local, shared, or
global address space by specifying an address within a
unified address space. The address mapping unit 256 can be
used to translate addresses in the unified address space into
a distinct memory address that can be accessed by the
load/store units 266.

[0086] The register file 258 provides a set of registers for
the functional units of the graphics multiprocessor 234. The
register file 258 provides temporary storage for operands
connected to the data paths of the functional units (e.g.,
GPGPU cores 262, load/store units 266) of the graphics
multiprocessor 234. In one embodiment, the register file 258
is divided between each of the functional units such that
each functional unit is allocated a dedicated portion of the
register file 258. In one embodiment, the register file 258 is
divided between the different warps being executed by the
graphics multiprocessor 234.

[0087] The GPGPU cores 262 can each include floating
point units (FPUs) and/or integer arithmetic logic units
(ALUs) that are used to execute instructions of the graphics
multiprocessor 234. The GPGPU cores 262 can be similar in
architecture or can differ in architecture, according to
embodiments. For example and in one embodiment, a first
portion of the GPGPU cores 262 include a single precision
FPU and an integer ALU while a second portion of the
GPGPU cores include a double precision FPU. In one
embodiment the FPUs can implement the IEEE 754-2008
standard for floating point arithmetic or enable variable
precision floating point arithmetic. The graphics multipro-
cessor 234 can additionally include one or more fixed
function or special function units to perform specific func-
tions such as copy rectangle or pixel blending operations. In
one embodiment one or more of the GPGPU cores can also
include fixed or special function logic.

[0088] In one embodiment the GPGPU cores 262 include
SIMD logic capable of performing a single instruction on
multiple sets of data. In one embodiment GPGPU cores 262
can physically execute SIMD4, SIMDS8, and SIMDI16
instructions and logically execute SIMDI1, SIMD2, and
SIMD32 instructions. The SIMD instructions for the
GPGPU cores can be generated at compile time by a shader
compiler or automatically generated when executing pro-
grams written and compiled for single program multiple data
(SPMD) or SIMT architectures. Multiple threads of a pro-
gram configured for the SIMT execution model can be
executed via a single SIMD instruction. For example and in
one embodiment, eight SIMT threads that perform the same
or similar operations can be executed in parallel via a single
SIMDS logic unit.

[0089] The memory and cache interconnect 268 is an
interconnect network that connects each of the functional
units of the graphics multiprocessor 234 to the register file
258 and to the shared memory 270. In one embodiment, the
memory and cache interconnect 268 is a crossbar intercon-
nect that allows the load/store unit 266 to implement load
and store operations between the shared memory 270 and
the register file 258. The register file 258 can operate at the
same frequency as the GPGPU cores 262, thus data transfer
between the GPGPU cores 262 and the register file 258 is
very low latency. The shared memory 270 can be used to
enable communication between threads that execute on the
functional units within the graphics multiprocessor 234. The
cache memory 272 can be used as a data cache for example,
to cache texture data communicated between the functional

US 2021/0255957 Al

units and the texture unit 236. The shared memory 270 can
also be used as a program managed cached. Threads execut-
ing on the GPGPU cores 262 can programmatically store
data within the shared memory in addition to the automati-
cally cached data that is stored within the cache memory
272.

[0090] FIG.3A-3C illustrate additional graphics multipro-
cessors, according to embodiments. FIG. 3A-3B illustrate
graphics multiprocessors 325, 350, which are variants of the
graphics multiprocessor 234 of FIG. 2C. FIG. 3C illustrates
a graphics processing unit (GPU) 380 which includes dedi-
cated sets of graphics processing resources arranged into
multi-core groups 365A-365N. The illustrated graphics mul-
tiprocessors 325, 350 and the multi-core groups 365A-365N
can be streaming multiprocessor (SM) capable of simulta-
neous execution of a large number of execution threads.
[0091] FIG. 3A shows a graphics multiprocessor 325
according to an additional embodiment. The graphics mul-
tiprocessor 325 includes multiple additional instances of
execution resource units relative to the graphics multipro-
cessor 234 of FIG. 2D. For example, the graphics multipro-
cessor 325 can include multiple instances of the instruction
unit 332A-332B, register file 334A-334B, and texture unit(s)
344A-344B. The graphics multiprocessor 325 also includes
multiple sets of graphics or compute execution units (e.g.,
GPGPU core 336A-336B, tensor core 337A-337B, ray-
tracing core 338A-338B) and multiple sets of load/store
units 340A-340B. In one embodiment the execution
resource units have a common instruction cache 330, texture
and/or data cache memory 342, and shared memory 346.
[0092] The various components can communicate via an
interconnect fabric 327. In one embodiment the interconnect
fabric 327 includes one or more crossbar switches to enable
communication between the various components of the
graphics multiprocessor 325. In one embodiment the inter-
connect fabric 327 is a separate, high-speed network fabric
layer upon which each component of the graphics multipro-
cessor 325 is stacked. The components of the graphics
multiprocessor 325 communicate with remote components
via the interconnect fabric 327. For example, the GPGPU
cores 336A-336B, 337A-337B, and 3378A-338B can each
communicate with shared memory 346 via the interconnect
fabric 327. The interconnect fabric 327 can arbitrate com-
munication within the graphics multiprocessor 325 to ensure
a fair bandwidth allocation between components.

[0093] FIG. 3B shows a graphics multiprocessor 350
according to an additional embodiment. The graphics pro-
cessor includes multiple sets of execution resources 356 A-
356D, where each set of execution resource includes mul-
tiple instruction units, register files, GPGPU cores, and load
store units, as illustrated in FIG. 2D and FIG. 3A. The
execution resources 356A-356D can work in concert with
texture unit(s) 360A-360D for texture operations, while
sharing an instruction cache 354, and shared memory 353. In
one embodiment the execution resources 356A-356D can
share an instruction cache 354 and shared memory 353, as
well as multiple instances of a texture and/or data cache
memory 358A-358B. The various components can commu-
nicate via an interconnect fabric 352 similar to the intercon-
nect fabric 327 of FIG. 3A.

[0094] Persons skilled in the art will understand that the
architecture described in FIGS. 1, 2A-2D, and 3A-3B are
descriptive and not limiting as to the scope of the present
embodiments. Thus, the techniques described herein may be

Aug. 19, 2021

implemented on any properly configured processing unit,
including, without limitation, one or more mobile applica-
tion processors, one or more desktop or server central
processing units (CPUs) including multi-core CPUs, one or
more parallel processing units, such as the parallel process-
ing unit 202 of FIG. 2A, as well as one or more graphics
processors or special purpose processing units, without
departure from the scope of the embodiments described
herein.

[0095] In some embodiments a parallel processor or
GPGPU as described herein is communicatively coupled to
host/processor cores to accelerate graphics operations,
machine-learning operations, pattern analysis operations,
and various general purpose GPU (GPGPU) functions. The
GPU may be communicatively coupled to the host proces-
sor/cores over a bus or other interconnect (e.g., a high speed
interconnect such as PCle or NVLink). In other embodi-
ments, the GPU may be integrated on the same package or
chip as the cores and communicatively coupled to the cores
over an internal processor bus/interconnect (i.e., internal to
the package or chip). Regardless of the manner in which the
GPU is connected, the processor cores may allocate work to
the GPU in the form of sequences of commands/instructions
contained in a work descriptor. The GPU then uses dedicated
circuitry/logic for efficiently processing these commands/
instructions.

[0096] FIG. 3C illustrates a graphics processing unit
(GPU) 380 which includes dedicated sets of graphics pro-
cessing resources arranged into multi-core groups 365A-N.
While the details of only a single multi-core group 365A are
provided, it will be appreciated that the other multi-core
groups 365B-365N may be equipped with the same or
similar sets of graphics processing resources.

[0097] As illustrated, a multi-core group 365A may
include a set of graphics cores 370, a set of tensor cores 371,
and a set of ray tracing cores 372. A scheduler/dispatcher
368 schedules and dispatches the graphics threads for execu-
tion on the various cores 370, 371, 372. A set of register files
369 store operand values used by the cores 370, 371, 372
when executing the graphics threads. These may include, for
example, integer registers for storing integer values, floating
point registers for storing floating point values, vector reg-
isters for storing packed data elements (integer and/or float-
ing point data elements) and tile registers for storing tensor/
matrix values. In one embodiment, the tile registers are
implemented as combined sets of vector registers.

[0098] One or more combined level 1 (L1) caches and
shared memory units 373 store graphics data such as texture
data, vertex data, pixel data, ray data, bounding volume data,
etc., locally within each multi-core group 365A. One or
more texture units 374 can also be used to perform texturing
operations, such as texture mapping and sampling. A Level
2 (L2) cache 375 shared by all or a subset of the multi-core
groups 365A-365N stores graphics data and/or instructions
for multiple concurrent graphics threads. As illustrated, the
L2 cache 375 may be shared across a plurality of multi-core
groups 365A-365N. One or more memory controllers 367
couple the GPU 380 to a memory 366 which may be a
system memory (e.g., DRAM) and/or a dedicated graphics
memory (e.g., GDDR6 memory).

[0099] Input/output (/O) circuitry 363 couples the GPU
380 to one or more I/O devices 362 such as digital signal
processors (DSPs), network controllers, or user input
devices. An on-chip interconnect may be used to couple the

US 2021/0255957 Al

1/0 devices 362 to the GPU 380 and memory 366. One or
more [/O memory management units (IOMMUs) 364 of the
1/O circuitry 3195 couple the /O devices 362 directly to the
system memory 366. In one embodiment, the IOMMU 364
manages multiple sets of page tables to map virtual
addresses to physical addresses in system memory 366. In
this embodiment, the /O devices 362, CPU(s) 361, and
GPU(s) 380 may share the same virtual address space.

[0100] In one implementation, the IOMMU 364 supports
virtualization. In this case, it may manage a first set of page
tables to map guest/graphics virtual addresses to guest/
graphics physical addresses and a second set of page tables
to map the guest/graphics physical addresses to system/host
physical addresses (e.g., within system memory 366). The
base addresses of each of the first and second sets of page
tables may be stored in control registers and swapped out on
a context switch (e.g., so that the new context is provided
with access to the relevant set of page tables). While not
illustrated in FIG. 3C, each of the cores 370, 371, 372 and/or
multi-core groups 365A-365N may include translation
lookaside buffers (TLBs) to cache guest virtual to guest
physical translations, guest physical to host physical trans-
lations, and guest virtual to host physical translations.

[0101] In one embodiment, the CPUs 361, GPUs 380, and
1/0 devices 362 are integrated on a single semiconductor
chip and/or chip package. The illustrated memory 366 may
be integrated on the same chip or may be coupled to the
memory controllers 367 via an off-chip interface. In one
implementation, the memory 366 comprises GDDR6
memory which shares the same virtual address space as
other physical system-level memories, although the under-
lying principles of the invention are not limited to this
specific implementation.

[0102] In one embodiment, the tensor cores 371 include a
plurality of execution units specifically designed to perform
matrix operations, which are the fundamental compute
operation used to perform deep learning operations. For
example, simultaneous matrix multiplication operations
may be used for neural network training and inferencing.
The tensor cores 371 may perform matrix processing using
a variety of operand precisions including single precision
floating-point (e.g., 32 bits), half-precision floating point
(e.g., 16 bits), integer words (16 bits), bytes (8 bits), and
half-bytes (4 bits). In one embodiment, a neural network
implementation extracts features of each rendered scene,
potentially combining details from multiple frames, to con-
struct a high-quality final image.

[0103] In deep learning implementations, parallel matrix
multiplication work may be scheduled for execution on the
tensor cores 371. The training of neural networks, in par-
ticular, requires a significant number matrix dot product
operations. In order to process an inner-product formulation
of an NxNxN matrix multiply, the tensor cores 371 may
include at least N dot-product processing elements. Before
the matrix multiply begins, one entire matrix is loaded into
tile registers and at least one column of a second matrix is
loaded each cycle for N cycles. Each cycle, there are N dot
products that are processed.

[0104] Matrix elements may be stored at different preci-
sions depending on the particular implementation, including
16-bit words, 8-bit bytes (e.g., INT8) and 4-bit half-bytes
(e.g., INT4). Different precision modes may be specified for
the tensor cores 371 to ensure that the most efficient preci-

Aug. 19, 2021

sion is used for different workloads (e.g., such as inferencing
workloads which can tolerate quantization to bytes and
half-bytes).

[0105] In one embodiment, the ray tracing cores 372
accelerate ray tracing operations for both real-time ray
tracing and non-real-time ray tracing implementations. In
particular, the ray tracing cores 372 include ray traversal/
intersection circuitry for performing ray traversal using
bounding volume hierarchies (BVHs) and identifying inter-
sections between rays and primitives enclosed within the
BVH volumes. The ray tracing cores 372 may also include
circuitry for performing depth testing and culling (e.g., using
a Z buffer or similar arrangement). In one implementation,
the ray tracing cores 372 perform traversal and intersection
operations in concert with the image denoising techniques
described herein, at least a portion of which may be executed
on the tensor cores 371. For example, in one embodiment,
the tensor cores 371 implement a deep learning neural
network to perform denoising of frames generated by the ray
tracing cores 372. However, the CPU(s) 361, graphics cores
370, and/or ray tracing cores 372 may also implement all or
a portion of the denoising and/or deep learning algorithms.
[0106] In addition, as described above, a distributed
approach to denoising may be employed in which the GPU
380 is in a computing device coupled to other computing
devices over a network or high speed interconnect. In this
embodiment, the interconnected computing devices share
neural network learning/training data to improve the speed
with which the overall system learns to perform denoising
for different types of image frames and/or different graphics
applications.

[0107] In one embodiment, the ray tracing cores 372
process all BVH traversal and ray-primitive intersections,
saving the graphics cores 370 from being overloaded with
thousands of instructions per ray. In one embodiment, each
ray tracing core 372 includes a first set of specialized
circuitry for performing bounding box tests (e.g., for tra-
versal operations) and a second set of specialized circuitry
for performing the ray-triangle intersection tests (e.g., inter-
secting rays which have been traversed). Thus, in one
embodiment, the multi-core group 365A can simply launch
a ray probe, and the ray tracing cores 372 independently
perform ray traversal and intersection and return hit data
(e.g., a hit, no hit, multiple hits, etc.) to the thread context.
The other cores 370, 371 are freed to perform other graphics
or compute work while the ray tracing cores 372 perform the
traversal and intersection operations.

[0108] In one embodiment, each ray tracing core 372
includes a traversal unit to perform BVH testing operations
and an intersection unit which performs ray-primitive inter-
section tests. The intersection unit generates a “hit”, “no
hit”, or “multiple hit” response, which it provides to the
appropriate thread. During the traversal and intersection
operations, the execution resources of the other cores (e.g.,
graphics cores 370 and tensor cores 371) are freed to
perform other forms of graphics work.

[0109] In one particular embodiment described below, a
hybrid rasterization/ray tracing approach is used in which
work is distributed between the graphics cores 370 and ray
tracing cores 372.

[0110] In one embodiment, the ray tracing cores 372
(and/or other cores 370, 371) include hardware support for
a ray tracing instruction set such as Microsoft’s DirectX Ray
Tracing (DXR) which includes a DispatchRays command,

US 2021/0255957 Al

as well as ray-generation, closest-hit, any-hit, and miss
shaders, which enable the assignment of unique sets of
shaders and textures for each object. Another ray tracing
platform which may be supported by the ray tracing cores
372, graphics cores 370 and tensor cores 371 is Vulkan
1.1.85. Note, however, that the underlying principles of the
invention are not limited to any particular ray tracing ISA.
[0111] In general, the various cores 372, 371, 370 may
support a ray tracing instruction set that includes instruc-
tions/functions for ray generation, closest hit, any hit, ray-
primitive intersection, per-primitive and hierarchical bound-
ing box construction, miss, visit, and exceptions. More
specifically, one embodiment includes ray tracing instruc-
tions to perform the following functions:

[0112] Ray Generation—Ray generation instructions may
be executed for each pixel, sample, or other user-defined
work assignment.

[0113] Closest Hit—A closest hit instruction may be
executed to locate the closest intersection point of a ray with
primitives within a scene.

[0114] Any Hit—An any hit instruction identifies multiple
intersections between a ray and primitives within a scene,
potentially to identify a new closest intersection point.
[0115] Intersection—An intersection instruction performs
a ray-primitive intersection test and outputs a result.
[0116] Per-primitive Bounding box Construction—This
instruction builds a bounding box around a given primitive
or group of primitives (e.g., when building a new BVH or
other acceleration data structure).

[0117] Miss—Indicates that a ray misses all geometry
within a scene, or specified region of a scene.

[0118] Visit—Indicates the children volumes a ray will
traverse.
[0119] Exceptions—Includes various types of exception

handlers (e.g., invoked for various error conditions).

[0120] Techniques for GPU to Host Processor Intercon-
nection
[0121] FIG. 4A illustrates an exemplary architecture in

which a plurality of GPUs 410-413 are communicatively
coupled to a plurality of multi-core processors 405-406 over
high-speed links 440A-440D (e.g., buses, point-to-point
interconnects, etc.). In one embodiment, the high-speed
links 440A-440D support a communication throughput of 4
GB/s, 30 GB/s, 80 GB/s or higher, depending on the
implementation. Various interconnect protocols may be used
including, but not limited to, PCle 4.0 or 5.0 and NVLink
2.0. However, the underlying principles of the invention are
not limited to any particular communication protocol or
throughput.

[0122] In addition, in one embodiment, two or more of the
GPUs 410-413 are interconnected over high-speed links
442A-442B, which may be implemented using the same or
different protocols/links than those used for high-speed links
440A-440D. Similarly, two or more of the multi-core pro-
cessors 405-406 may be connected over high speed link 443
which may be symmetric multi-processor (SMP) buses
operating at 20 GB/s, 30 GB/s, 120 GB/s or higher. Alter-
natively, all communication between the various system
components shown in FIG. 4A may be accomplished using
the same protocols/links (e.g., over a common interconnec-
tion fabric). As mentioned, however, the underlying prin-
ciples of the invention are not limited to any particular type
of interconnect technology.

Aug. 19, 2021

[0123] In one embodiment, each multi-core processor
405-406 is communicatively coupled to a processor memory
401-402, via memory interconnects 430A-430B, respec-
tively, and each GPU 410-413 is communicatively coupled
to GPU memory 420-423 over GPU memory interconnects
450A-450D, respectively. The memory interconnects 430A-
430B and 450A-450D may utilize the same or different
memory access technologies. By way of example, and not
limitation, the processor memories 401-402 and GPU
memories 420-423 may be volatile memories such as
dynamic random access memories (DRAMs) (including
stacked DRAMSs), Graphics DDR SDRAM (GDDR) (e.g.,
GDDRS5, GDDR6), or High Bandwidth Memory (HBM)
and/or may be non-volatile memories such as 3D XPoint or
Nano-Ram. In one embodiment, some portion of the memo-
ries may be volatile memory and another portion may be
non-volatile memory (e.g., using a two-level memory (2LM)
hierarchy).

[0124] As described below, although the various proces-
sors 405-406 and GPUs 410-413 may be physically coupled
to a particular memory 401-402, 420-423, respectively, a
unified memory architecture may be implemented in which
the same virtual system address space (also referred to as the
“effective address” space) is distributed among all of the
various physical memories. For example, processor memo-
ries 401-402 may each comprise 64 GB of the system
memory address space and GPU memories 420-423 may
each comprise 32 GB of the system memory address space
(resulting in a total of 256 GB addressable memory in this
example).

[0125] FIG. 4B illustrates additional details for an inter-
connection between a multi-core processor 407 and a graph-
ics acceleration module 446 in accordance with one embodi-
ment. The graphics acceleration module 446 may include
one or more GPU chips integrated on a line card which is
coupled to the processor 407 via the high-speed link 440.
Alternatively, the graphics acceleration module 446 may be
integrated on the same package or chip as the processor 407.
[0126] The illustrated processor 407 includes a plurality of
cores 460A-460D, each with a translation lookaside buffer
461A-461D and one or more caches 462A-462D. The cores
may include various other components for executing instruc-
tions and processing data which are not illustrated to avoid
obscuring the underlying principles of the invention (e.g.,
instruction fetch units, branch prediction units, decoders,
execution units, reorder buffers, etc.). The caches 462A-
462D may comprise level 1 (L.1) and level 2 (L.2) caches. In
addition, one or more shared caches 456 may be included in
the caching hierarchy and shared by sets of the cores
460A-460D. For example, one embodiment of the processor
407 includes 24 cores, each with its own L1 cache, twelve
shared L2 caches, and twelve shared L3 caches. In this
embodiment, one of the [.2 and L3 caches are shared by two
adjacent cores. The processor 407 and the graphics accel-
erator integration module 446 connect with system memory
441, which may include processor memories 401-402.
[0127] Coherency is maintained for data and instructions
stored in the various caches 462A-462D, 456 and system
memory 441 via inter-core communication over a coherence
bus 464. For example, each cache may have cache coher-
ency logic/circuitry associated therewith to communicate to
over the coherence bus 464 in response to detected reads or
writes to particular cache lines. In one implementation, a
cache snooping protocol is implemented over the coherence

US 2021/0255957 Al

bus 464 to snoop cache accesses. Cache snooping/coherency
techniques are well understood by those of skill in the art
and will not be described in detail here to avoid obscuring
the underlying principles of the invention.

[0128] In one embodiment, a proxy circuit 425 commu-
nicatively couples the graphics acceleration module 446 to
the coherence bus 464, allowing the graphics acceleration
module 446 to participate in the cache coherence protocol as
a peer of the cores. In particular, an interface 435 provides
connectivity to the proxy circuit 425 over high-speed link
440 (e.g., a PCle bus, NVLink, etc.) and an interface 437
connects the graphics acceleration module 446 to the high-
speed link 440.

[0129] In one implementation, an accelerator integration
circuit 436 provides cache management, memory access,
context management, and interrupt management services on
behalf of a plurality of graphics processing engines 431,
432, N of the graphics acceleration module 446. The graph-
ics processing engines 431, 432, N may each comprise a
separate graphics processing unit (GPU). Alternatively, the
graphics processing engines 431, 432, N may comprise
different types of graphics processing engines within a GPU
such as graphics execution units, media processing engines
(e.g., video encoders/decoders), samplers, and blit engines.
In other words, the graphics acceleration module may be a
GPU with a plurality of graphics processing engines 431-
432, N or the graphics processing engines 431-432, N may
be individual GPUs integrated on a common package, line
card, or chip.

[0130] In one embodiment, the accelerator integration
circuit 436 includes a memory management unit (MMU)
439 for performing various memory management functions
such as virtual-to-physical memory translations (also
referred to as effective-to-real memory translations) and
memory access protocols for accessing system memory 441.
The MMU 439 may also include a translation lookaside
buffer (TLB) (not shown) for caching the virtual/effective to
physical/real address translations. In one implementation, a
cache 438 stores commands and data for efficient access by
the graphics processing engines 431-432, N. In one embodi-
ment, the data stored in cache 438 and graphics memories
433-434, M is kept coherent with the core caches 462A-
462D, 456 and system memory 441. As mentioned, this may
be accomplished via proxy circuit 425 which takes part in
the cache coherency mechanism on behalf of cache 438 and
memories 433-434, M (e.g., sending updates to the cache
438 related to modifications/accesses of cache lines on
processor caches 462A-462D, 456 and receiving updates
from the cache 438).

[0131] A set of registers 445 store context data for threads
executed by the graphics processing engines 431-432, N and
a context management circuit 448 manages the thread con-
texts. For example, the context management circuit 448 may
perform save and restore operations to save and restore
contexts of the various threads during contexts switches
(e.g., where a first thread is saved and a second thread is
stored so that the second thread can be execute by a graphics
processing engine). For example, on a context switch, the
context management circuit 448 may store current register
values to a designated region in memory (e.g., identified by
a context pointer). It may then restore the register values
when returning to the context. In one embodiment, an
interrupt management circuit 447 receives and processes
interrupts received from system devices.

Aug. 19, 2021

[0132] In one implementation, virtual/effective addresses
from a graphics processing engine 431 are translated to
real/physical addresses in system memory 441 by the MMU
439. One embodiment of the accelerator integration circuit
436 supports multiple (e.g., 4, 8, 16) graphics accelerator
modules 446 and/or other accelerator devices. The graphics
accelerator module 446 may be dedicated to a single appli-
cation executed on the processor 407 or may be shared
between multiple applications. In one embodiment, a virtu-
alized graphics execution environment is presented in which
the resources of the graphics processing engines 431-432, N
are shared with multiple applications or virtual machines
(VMs). The resources may be subdivided into “slices” which
are allocated to different VMs and/or applications based on
the processing requirements and priorities associated with
the VM and/or applications.

[0133] Thus, the accelerator integration circuit acts as a
bridge to the system for the graphics acceleration module
446 and provides address translation and system memory
cache services. In addition, the accelerator integration circuit
436 may provide virtualization facilities for the host pro-
cessor to manage virtualization of the graphics processing
engines, interrupts, and memory management.

[0134] Because hardware resources of the graphics pro-
cessing engines 431-432, N are mapped explicitly to the real
address space seen by the host processor 407, any host
processor can address these resources directly using an
effective address value. One function of the accelerator
integration circuit 436, in one embodiment, is the physical
separation of the graphics processing engines 431-432, N so
that they appear to the system as independent units.
[0135] As mentioned, in the illustrated embodiment, one
or more graphics memories 433-434, M are coupled to each
of'the graphics processing engines 431-432, N, respectively.
The graphics memories 433-434, M store instructions and
data being processed by each of the graphics processing
engines 431-432, N. The graphics memories 433-434, M
may be volatile memories such as DRAMs (including
stacked DRAMs), GDDR memory (e.g., GDDRS, GDDR6),
or HBM, and/or may be non-volatile memories such as 3D
XPoint or Nano-Ram.

[0136] In one embodiment, to reduce data traffic over the
high-speed link 440, biasing techniques are used to ensure
that the data stored in graphics memories 433-434, M is data
which will be used most frequently by the graphics process-
ing engines 431-432, N and preferably not used by the cores
460A-460D (at least not frequently). Similarly, the biasing
mechanism attempts to keep data needed by the cores (and
preferably not the graphics processing engines 431-432, N)
within the caches 462A-462D, 456 of the cores and system
memory 441.

[0137] FIG. 4C illustrates another embodiment in which
the accelerator integration circuit 436 is integrated within
the processor 407. In this embodiment, the graphics pro-
cessing engines 431-432, N communicate directly over the
high-speed link 440 to the accelerator integration circuit 436
via interface 437 and interface 435 (which, again, may be
utilize any form of bus or interface protocol). The accelera-
tor integration circuit 436 may perform the same operations
as those described with respect to FIG. 4B, but potentially at
a higher throughput given its close proximity to the coher-
ency bus 464 and caches 462A-462D, 456.

[0138] One embodiment supports different programming
models including a dedicated-process programming model

US 2021/0255957 Al

(no graphics acceleration module virtualization) and shared
programming models (with virtualization). The latter may
include programming models which are controlled by the
accelerator integration circuit 436 and programming models
which are controlled by the graphics acceleration module
446.

[0139] Inone embodiment of the dedicated process model,
graphics processing engines 431-432, N are dedicated to a
single application or process under a single operating sys-
tem. The single application can funnel other application
requests to the graphics engines 431-432, N, providing
virtualization within a VM/partition.

[0140] In the dedicated-process programming models, the
graphics processing engines 431-432, N, may be shared by
multiple VM/application partitions. The shared models
require a system hypervisor to virtualize the graphics pro-
cessing engines 431-432, N to allow access by each oper-
ating system. For single-partition systems without a hyper-
visor, the graphics processing engines 431-432, N are owned
by the operating system. In both cases, the operating system
can virtualize the graphics processing engines 431-432, N to
provide access to each process or application.

[0141] For the shared programming model, the graphics
acceleration module 446 or an individual graphics process-
ing engine 431-432, N selects a process element using a
process handle. In one embodiment, process elements are
stored in system memory 441 and are addressable using the
effective address to real address translation techniques
described herein. The process handle may be an implemen-
tation-specific value provided to the host process when
registering its context with the graphics processing engine
431-432, N (that is, calling system software to add the
process element to the process element linked list). The
lower 16-bits of the process handle may be the offset of the
process element within the process element linked list.

[0142] FIG. 4D illustrates an exemplary accelerator inte-
gration slice 490. As used herein, a “slice” comprises a
specified portion of the processing resources of the accel-
erator integration circuit 436. Application effective address
space 482 within system memory 441 stores process ele-
ments 483. In one embodiment, the process elements 483 are
stored in response to GPU invocations 481 from applications
480 executed on the processor 407. A process element 483
contains the process state for the corresponding application
480. A work descriptor (WD) 484 contained in the process
element 483 can be a single job requested by an application
or may contain a pointer to a queue of jobs. In the latter case,
the WD 484 is a pointer to the job request queue in the
application’s address space 482.

[0143] The graphics acceleration module 446 and/or the
individual graphics processing engines 431-432, N can be
shared by all or a subset of the processes in the system.
Embodiments of the invention include an infrastructure for
setting up the process state and sending a WD 484 to a
graphics acceleration module 446 to start a job in a virtu-
alized environment.

[0144] In one implementation, the dedicated-process pro-
gramming model is implementation-specific. In this model,
a single process owns the graphics acceleration module 446
or an individual graphics processing engine 431. Because
the graphics acceleration module 446 is owned by a single
process, the hypervisor initializes the accelerator integration
circuit 436 for the owning partition and the operating system

Aug. 19, 2021

initializes the accelerator integration circuit 436 for the
owning process at the time when the graphics acceleration
module 446 is assigned.

[0145] Inoperation, a WD fetch unit 491 in the accelerator
integration slice 490 fetches the next WD 484 which
includes an indication of the work to be done by one of the
graphics processing engines of the graphics acceleration
module 446. Data from the WD 484 may be stored in
registers 445 and used by the MMU 439, interrupt manage-
ment circuit 447 and/or context management circuit 448 as
illustrated. For example, one embodiment of the MMU 439
includes segment/page walk circuitry for accessing segment/
page tables 486 within the OS virtual address space 485. The
interrupt management circuit 447 may process interrupt
events 492 received from the graphics acceleration module
446. When performing graphics operations, an effective
address 493 generated by a graphics processing engine
431-432, N is translated to a real address by the MMU 439.
[0146] In one embodiment, the same set of registers 445
are duplicated for each graphics processing engine 431-432,
N and/or graphics acceleration module 446 and may be
initialized by the hypervisor or operating system. Each of
these duplicated registers may be included in an accelerator
integration slice 490. Exemplary registers that may be
initialized by the hypervisor are shown in Table 1.

TABLE 1

Hypervisor Initialized Registers

Slice Control Register

Real Address (RA) Scheduled Processes Area Pointer

Authority Mask Override Register

Interrupt Vector Table Entry Offset

Interrupt Vector Table Entry Limit

State Register

Logical Partition ID

Real address (RA) Hypervisor Accelerator Utilization Record Pointer
Storage Description Register

O 00~ O AW

[0147] Exemplary registers that may be initialized by the
operating system are shown in Table 2.

TABLE 2

Operating System Initialized Registers

1 Process and Thread Identification
2 Effective Address (EA) Context Save/Restore Pointer
3 Virtual Address (VA) Accelerator Utilization Record Pointer
4 Virtual Address (VA) Storage Segment Table Pointer
5 Authority Mask
6 Work descriptor
[0148] In one embodiment, each WD 484 is specific to a

particular graphics acceleration module 446 and/or graphics
processing engine 431-432, N. It contains all the information
a graphics processing engine 431-432, N requires to do its
work or it can be a pointer to a memory location where the
application has set up a command queue of work to be
completed.

[0149] FIG. 4E illustrates additional details for one
embodiment of a shared model. This embodiment includes
a hypervisor real address space 498 in which a process
element list 499 is stored. The hypervisor real address space
498 is accessible via a hypervisor 496 which virtualizes the
graphics acceleration module engines for the operating
system 495.

US 2021/0255957 Al

[0150] The shared programming models allow for all or a
subset of processes from all or a subset of partitions in the
system to use a graphics acceleration module 446. There are
two programming models where the graphics acceleration
module 446 is shared by multiple processes and partitions:
time-sliced shared and graphics directed shared.

[0151] In this model, the system hypervisor 496 owns the
graphics acceleration module 446 and makes its function
available to all operating systems 495. For a graphics
acceleration module 446 to support virtualization by the
system hypervisor 496, the graphics acceleration module
446 may adhere to the following requirements: 1) An
application’s job request must be autonomous (that is, the
state does not need to be maintained between jobs), or the
graphics acceleration module 446 must provide a context
save and restore mechanism. 2) An application’s job request
is guaranteed by the graphics acceleration module 446 to
complete in a specified amount of time, including any
translation faults, or the graphics acceleration module 446
provides the ability to preempt the processing of the job. 3)
The graphics acceleration module 446 must be guaranteed
fairness between processes when operating in the directed
shared programming model.

[0152] In one embodiment, for the shared model, the
application 480 is required to make an operating system 495
system call with a graphics acceleration module 446 type, a
work descriptor (WD), an authority mask register (AMR)
value, and a context save/restore area pointer (CSRP). The
graphics acceleration module 446 type describes the targeted
acceleration function for the system call. The graphics
acceleration module 446 type may be a system-specific
value. The WD is formatted specifically for the graphics
acceleration module 446 and can be in the form of a graphics
acceleration module 446 command, an effective address
pointer to a user-defined structure, an effective address
pointer to a queue of commands, or any other data structure
to describe the work to be done by the graphics acceleration
module 446. In one embodiment, the AMR value is the AMR
state to use for the current process. The value passed to the
operating system is similar to an application setting the
AMR. If the accelerator integration circuit 436 and graphics
acceleration module 446 implementations do not support a
User Authority Mask Override Register (UAMOR), the
operating system may apply the current UAMOR value to
the AMR value before passing the AMR in the hypervisor
call. The hypervisor 496 may optionally apply the current
Authority Mask Override Register (AMOR) value before
placing the AMR into the process element 483. In one
embodiment, the CSRP is one of the registers 445 containing
the effective address of an area in the application’s address
space 482 for the graphics acceleration module 446 to save
and restore the context state. This pointer is optional if no
state is required to be saved between jobs or when a job is
preempted. The context save/restore area may be pinned
system memory.

[0153] Upon receiving the system call, the operating sys-
tem 495 may verify that the application 480 has registered
and been given the authority to use the graphics acceleration
module 446. The operating system 495 then calls the hyper-
visor 496 with the information shown in Table 3.

Aug. 19, 2021

TABLE 3

OS to Hypervisor Call Parameters

1 A work descriptor (WD)

An Authority Mask Register (AMR) value (potentially masked).

An effective address (EA) Context Save/Restore Area Pointer
(CSRP)

A process ID (PID) and optional thread ID (TID)

A virtual address (VA) accelerator utilization record pointer (AURP)
The virtual address of the storage segment table pointer (SSTP)

A logical interrupt service number (LISN)

W N

-~y

[0154] Upon receiving the hypervisor call, the hypervisor
496 verifies that the operating system 495 has registered and
been given the authority to use the graphics acceleration
module 446. The hypervisor 496 then puts the process
element 483 into the process element linked list for the
corresponding graphics acceleration module 446 type. The
process element may include the information shown in Table
4.

TABLE 4

Process Element Information

1 A work descriptor (WD)

2 An Authority Mask Register (AMR) value (potentially masked).

3 An effective address (EA) Context Save/Restore Area Pointer
(CSRP)

4 A process ID (PID) and optional thread ID (TID)

A virtual address (VA) accelerator utilization record pointer (AURP)

The virtual address of the storage segment table pointer (SSTP)

A logical interrupt service number (LISN)

Interrupt vector table, derived from the hypervisor call parameters.

A state register (SR) value

A logical partition ID (LPID)

A real address (RA) hypervisor accelerator utilization record pointer

The Storage Descriptor Register (SDR)

—_
OO 0~ N

_ =
[y

[0155] In one embodiment, the hypervisor initializes a
plurality of accelerator integration slice 490 registers 445.

[0156] As illustrated in FIG. 4F, one embodiment of the
invention employs a unified memory addressable via a
common virtual memory address space used to access the
physical processor memories 401-402 and GPU memories
420-423. In this implementation, operations executed on the
GPUs 410-413 utilize the same virtual/effective memory
address space to access the processors memories 401-402
and vice versa, thereby simplifying programmability. In one
embodiment, a first portion of the virtual/effective address
space is allocated to the processor memory 401, a second
portion to the second processor memory 402, a third portion
to the GPU memory 420, and so on. The entire virtual/
effective memory space (sometimes referred to as the effec-
tive address space) is thereby distributed across each of the
processor memories 401-402 and GPU memories 420-423,
allowing any processor or GPU to access any physical
memory with a virtual address mapped to that memory.

[0157] In one embodiment, bias/coherence management
circuitry 494A-494F within one or more of the MMUs
439A-439E ensures cache coherence between the caches of
the host processors (e.g., 405) and the GPUs 410-413 and
implements biasing techniques indicating the physical
memories in which certain types of data should be stored.
While multiple instances of bias/coherence management
circuitry 494A-494E are illustrated in FIG. 4F, the bias/
coherence circuitry may be implemented within the MMU

US 2021/0255957 Al

of one or more host processors 405 and/or within the
accelerator integration circuit 436.

[0158] One embodiment allows GPU-attached memory
420-423 to be mapped as part of system memory, and
accessed using shared virtual memory (SVM) technology,
but without suffering the typical performance drawbacks
associated with full system cache coherence. The ability to
GPU-attached memory 420-423 to be accessed as system
memory without onerous cache coherence overhead pro-
vides a beneficial operating environment for GPU offload.
This arrangement allows the host processor 405 software to
setup operands and access computation results, without the
overhead of tradition /O DMA data copies. Such traditional
copies involve driver calls, interrupts and memory mapped
1/0 (MMIO) accesses that are all inefficient relative to
simple memory accesses. At the same time, the ability to
access GPU attached memory 420-423 without cache coher-
ence overheads can be critical to the execution time of an
offloaded computation. In cases with substantial streaming
write memory traffic, for example, cache coherence over-
head can significantly reduce the effective write bandwidth
seen by a GPU 410-413. The efficiency of operand setup, the
efficiency of results access, and the efficiency of GPU
computation all play a role in determining the effectiveness
of GPU offload.

[0159] In one implementation, the selection of between
GPU bias and host processor bias is driven by a bias tracker
data structure. A bias table may be used, for example, which
may be a page-granular structure (i.e., controlled at the
granularity of a memory page) that includes 1 or 2 bits per
GPU-attached memory page. The bias table may be imple-
mented in a stolen memory range of one or more GPU-
attached memories 420-423, with or without a bias cache in
the GPU 410-413 (e.g., to cache frequently/recently used
entries of the bias table). Alternatively, the entire bias table
may be maintained within the GPU.

[0160] In one implementation, the bias table entry asso-
ciated with each access to the GPU-attached memory 420-
423 is accessed prior the actual access to the GPU memory,
causing the following operations. First, local requests from
the GPU 410-413 that find their page in GPU bias are
forwarded directly to a corresponding GPU memory 420-
423. Local requests from the GPU that find their page in host
bias are forwarded to the processor 405 (e.g., over a high-
speed link as discussed above). In one embodiment, requests
from the processor 405 that find the requested page in host
processor bias complete the request like a normal memory
read. Alternatively, requests directed to a GPU-biased page
may be forwarded to the GPU 410-413. The GPU may then
transition the page to a host processor bias if it is not
currently using the page.

[0161] The bias state of a page can be changed either by
a software-based mechanism, a hardware-assisted software-
based mechanism, or, for a limited set of cases, a purely
hardware-based mechanism.

[0162] One mechanism for changing the bias state
employs an API call (e.g. OpenCL), which, in turn, calls the
GPU’s device driver which, in turn, sends a message (or
enqueues a command descriptor) to the GPU directing it to
change the bias state and, for some transitions, perform a
cache flushing operation in the host. The cache flushing
operation is required for a transition from host processor 405
bias to GPU bias, but is not required for the opposite
transition.

Aug. 19, 2021

[0163] Inone embodiment, cache coherency is maintained
by temporarily rendering GPU-biased pages uncacheable by
the host processor 405. To access these pages, the processor
405 may request access from the GPU 410 which may or
may not grant access right away, depending on the imple-
mentation. Thus, to reduce communication between the host
processor 405 and GPU 410 it is beneficial to ensure that
GPU-biased pages are those which are required by the GPU
but not the host processor 405 and vice versa.

[0164] Graphics Processing Pipeline

[0165] FIG. 5 illustrates a graphics processing pipeline
500, according to an embodiment. In one embodiment a
graphics processor can implement the illustrated graphics
processing pipeline 500. The graphics processor can be
included within the parallel processing subsystems as
described herein, such as the parallel processor 200 of FIG.
2A, which, in one embodiment, is a variant of the parallel
processor(s) 112 of FIG. 1. The various parallel processing
systems can implement the graphics processing pipeline 500
via one or more instances of the parallel processing unit
(e.g., parallel processing unit 202 of FIG. 2A) as described
herein. For example, a shader unit (e.g., graphics multipro-
cessor 234 of FIG. 2C) may be configured to perform the
functions of one or more of a vertex processing unit 504, a
tessellation control processing unit 508, a tessellation evalu-
ation processing unit 512, a geometry processing unit 516,
and a fragment/pixel processing unit 524. The functions of
data assembler 502, primitive assemblers 506, 514, 518,
tessellation unit 510, rasterizer 522, and raster operations
unit 526 may also be performed by other processing engines
within a processing cluster (e.g., processing cluster 214 of
FIG. 2A) and a corresponding partition unit (e.g., partition
unit 220A-220N of FIG. 2A). The graphics processing
pipeline 500 may also be implemented using dedicated
processing units for one or more functions. In one embodi-
ment, one or more portions of the graphics processing
pipeline 500 can be performed by parallel processing logic
within a general purpose processor (e.g., CPU). In one
embodiment, one or more portions of the graphics process-
ing pipeline 500 can access on-chip memory (e.g., parallel
processor memory 222 as in FIG. 2A) via a memory
interface 528, which may be an instance of the memory
interface 218 of FIG. 2A.

[0166] In one embodiment the data assembler 502 is a
processing unit that collects vertex data for surfaces and
primitives. The data assembler 502 then outputs the vertex
data, including the vertex attributes, to the vertex processing
unit 504. The vertex processing unit 504 is a programmable
execution unit that executes vertex shader programs, light-
ing and transforming vertex data as specified by the vertex
shader programs. The vertex processing unit 504 reads data
that is stored in cache, local or system memory for use in
processing the vertex data and may be programmed to
transform the vertex data from an object-based coordinate
representation to a world space coordinate space or a nor-
malized device coordinate space.

[0167] A first instance of a primitive assembler 506
receives vertex attributes from the vertex processing unit
504. The primitive assembler 506 readings stored vertex
attributes as needed and constructs graphics primitives for
processing by tessellation control processing unit 508. The
graphics primitives include triangles, line segments, points,
patches, and so forth, as supported by various graphics
processing application programming interfaces (APIs).

US 2021/0255957 Al

[0168] The tessellation control processing unit 508 treats
the input vertices as control points for a geometric patch.
The control points are transformed from an input represen-
tation from the patch (e.g., the patch’s bases) to a represen-
tation that is suitable for use in surface evaluation by the
tessellation evaluation processing unit 512. The tessellation
control processing unit 508 can also compute tessellation
factors for edges of geometric patches. A tessellation factor
applies to a single edge and quantifies a view-dependent
level of detail associated with the edge. A tessellation unit
510 is configured to receive the tessellation factors for edges
of'a patch and to tessellate the patch into multiple geometric
primitives such as line, triangle, or quadrilateral primitives,
which are transmitted to a tessellation evaluation processing
unit 512. The tessellation evaluation processing unit 512
operates on parameterized coordinates of the subdivided
patch to generate a surface representation and vertex attri-
butes for each vertex associated with the geometric primi-
tives.

[0169] A second instance of a primitive assembler 514
receives vertex attributes from the tessellation evaluation
processing unit 512, reading stored vertex attributes as
needed, and constructs graphics primitives for processing by
the geometry processing unit 516. The geometry processing
unit 516 is a programmable execution unit that executes
geometry shader programs to transform graphics primitives
received from primitive assembler 514 as specified by the
geometry shader programs. In one embodiment the geom-
etry processing unit 516 is programmed to subdivide the
graphics primitives into one or more new graphics primi-
tives and calculate parameters used to rasterize the new
graphics primitives.

[0170] In some embodiments the geometry processing
unit 516 can add or delete elements in the geometry stream.
The geometry processing unit 516 outputs the parameters
and vertices specifying new graphics primitives to primitive
assembler 518. The primitive assembler 518 receives the
parameters and vertices from the geometry processing unit
516 and constructs graphics primitives for processing by a
viewport scale, cull, and clip unit 520. The geometry pro-
cessing unit 516 reads data that is stored in parallel processor
memory or system memory for use in processing the geom-
etry data. The viewport scale, cull, and clip unit 520 per-
forms clipping, culling, and viewport scaling and outputs
processed graphics primitives to a rasterizer 522.

[0171] The rasterizer 522 can perform depth culling and
other depth-based optimizations. The rasterizer 522 also
performs scan conversion on the new graphics primitives to
generate fragments and output those fragments and associ-
ated coverage data to the fragment/pixel processing unit
524. The fragment/pixel processing unit 524 is a program-
mable execution unit that is configured to execute fragment
shader programs or pixel shader programs. The fragment/
pixel processing unit 524 transforming fragments or pixels
received from rasterizer 522, as specified by the fragment or
pixel shader programs. For example, the fragment/pixel
processing unit 524 may be programmed to perform opera-
tions included but not limited to texture mapping, shading,
blending, texture correction and perspective correction to
produce shaded fragments or pixels that are output to a raster
operations unit 526. The fragment/pixel processing unit 524
can read data that is stored in either the parallel processor
memory or the system memory for use when processing the
fragment data. Fragment or pixel shader programs may be

Aug. 19, 2021

configured to shade at sample, pixel, tile, or other granu-
larities depending on the sampling rate configured for the
processing units.

[0172] The raster operations unit 526 is a processing unit
that performs raster operations including, but not limited to
stencil, z-test, blending, and the like, and outputs pixel data
as processed graphics data to be stored in graphics memory
(e.g., parallel processor memory 222 as in FIG. 2A, and/or
system memory 104 as in FIG. 1), to be displayed on the one
or more display device(s) 110 or for further processing by
one of the one or more processor(s) 102 or parallel processor
(s) 112. In some embodiments the raster operations unit 526
is configured to compress z or color data that is written to
memory and decompress z or color data that is read from
memory.

[0173]

[0174] The architecture described above can be applied to
perform training and inference operations using machine
learning models. Machine learning has been successful at
solving many kinds of tasks. The computations that arise
when training and using machine learning algorithms (e.g.,
neural networks) lend themselves naturally to efficient par-
allel implementations. Accordingly, parallel processors such
as general-purpose graphic processing units (GPGPUs) have
played a significant role in the practical implementation of
deep neural networks. Parallel graphics processors with
single instruction, multiple thread (SIMT) architectures are
designed to maximize the amount of parallel processing in
the graphics pipeline. In an SIMT architecture, groups of
parallel threads attempt to execute program instructions
synchronously together as often as possible to increase
processing efficiency. The efficiency provided by parallel
machine learning algorithm implementations allows the use
of high capacity networks and enables those networks to be
trained on larger datasets.

[0175] A machine learning algorithm is an algorithm that
can learn based on a set of data. Embodiments of machine
learning algorithms can be designed to model high-level
abstractions within a data set. For example, image recogni-
tion algorithms can be used to determine which of several
categories to which a given input belong; regression algo-
rithms can output a numerical value given an input; and
pattern recognition algorithms can be used to generate
translated text or perform text to speech and/or speech
recognition.

[0176] An exemplary type of machine learning algorithm
is a neural network. There are many types of neural net-
works; a simple type of neural network is a feedforward
network. A feedforward network may be implemented as an
acyclic graph in which the nodes are arranged in layers.
Typically, a feedforward network topology includes an input
layer and an output layer that are separated by at least one
hidden layer. The hidden layer transforms input received by
the input layer into a representation that is useful for
generating output in the output layer. The network nodes are
fully connected via edges to the nodes in adjacent layers, but
there are no edges between nodes within each layer. Data
received at the nodes of an input layer of a feedforward
network are propagated (i.e., “fed forward”) to the nodes of
the output layer via an activation function that calculates the
states of the nodes of each successive layer in the network
based on coeflicients (“weights”) respectively associated
with each of the edges connecting the layers. Depending on

Machine Learning Overview

US 2021/0255957 Al

the specific model being represented by the algorithm being
executed, the output from the neural network algorithm can
take various forms.

[0177] Before a machine learning algorithm can be used to
model a particular problem, the algorithm is trained using a
training data set. Training a neural network involves select-
ing a network topology, using a set of training data repre-
senting a problem being modeled by the network, and
adjusting the weights until the network model performs with
a minimal error for all instances of the training data set. For
example, during a supervised learning training process for a
neural network, the output produced by the network in
response to the input representing an instance in a training
data set is compared to the “correct” labeled output for that
instance, an error signal representing the difference between
the output and the labeled output is calculated, and the
weights associated with the connections are adjusted to
minimize that error as the error signal is backward propa-
gated through the layers of the network. The network is
considered “trained” when the errors for each of the outputs
generated from the instances of the training data set are
minimized.

[0178] The accuracy of a machine learning algorithm can
be affected significantly by the quality of the data set used
to train the algorithm. The training process can be compu-
tationally intensive and may require a significant amount of
time on a conventional general-purpose processor. Accord-
ingly, parallel processing hardware is used to train many
types of machine learning algorithms. This is particularly
useful for optimizing the training of neural networks, as the
computations performed in adjusting the coefficients in
neural networks lend themselves naturally to parallel imple-
mentations. Specifically, many machine learning algorithms
and software applications have been adapted to make use of
the parallel processing hardware within general-purpose
graphics processing devices.

[0179] FIG. 6 is a generalized diagram of a machine
learning software stack 600. A machine learning application
602 can be configured to train a neural network using a
training dataset or to use a trained deep neural network to
implement machine intelligence. The machine learning
application 602 can include training and inference function-
ality for a neural network and/or specialized software that
can be used to train a neural network before deployment.
The machine learning application 602 can implement any
type of machine intelligence including but not limited to
image recognition, mapping and localization, autonomous
navigation, speech synthesis, medical imaging, or language
translation.

[0180] Hardware acceleration for the machine learning
application 602 can be enabled via a machine learning
framework 604. The machine learning framework 604 can
provide a library of machine learning primitives. Machine
learning primitives are basic operations that are commonly
performed by machine learning algorithms. Without the
machine learning framework 604, developers of machine
learning algorithms would be required to create and opti-
mize the main computational logic associated with the
machine learning algorithm, then re-optimize the computa-
tional logic as new parallel processors are developed.
Instead, the machine learning application can be configured
to perform the necessary computations using the primitives
provided by the machine learning framework 604. Exem-
plary primitives include tensor convolutions, activation

Aug. 19, 2021

functions, and pooling, which are computational operations
that are performed while training a convolutional neural
network (CNN). The machine learning framework 604 can
also provide primitives to implement basic linear algebra
subprograms performed by many machine-learning algo-
rithms, such as matrix and vector operations.

[0181] The machine learning framework 604 can process
input data received from the machine learning application
602 and generate the appropriate input to a compute frame-
work 606. The compute framework 606 can abstract the
underlying instructions provided to the GPGPU driver 608
to enable the machine learning framework 604 to take
advantage of hardware acceleration via the GPGPU hard-
ware 610 without requiring the machine learning framework
604 to have intimate knowledge of the architecture of the
GPGPU hardware 610. Additionally, the compute frame-
work 606 can enable hardware acceleration for the machine
learning framework 604 across a variety of types and
generations of the GPGPU hardware 610.

[0182] GPGPU Machine Learning Acceleration

[0183] FIG. 7 illustrates a general-purpose graphics pro-
cessing unit 700, according to an embodiment. In one
embodiment, the general-purpose processing unit (GPGPU)
700 can be configured to be particularly efficient in process-
ing the type of computational workloads associated with
training deep neural networks. Additionally, the GPGPU 700
can be linked directly to other instances of the GPGPU to
create a multi-GPU cluster to improve training speed for
particularly deep neural networks.

[0184] The GPGPU 700 includes a host interface 702 to
enable a connection with a host processor. In one embodi-
ment the host interface 702 is a PCI Express interface.
However, the host interface can also be a vendor specific
communications interface or communications fabric. The
GPGPU 700 receives commands from the host processor
and uses a global scheduler 704 to distribute execution
threads associated with those commands to a set of compute
clusters 706A-706H. The compute clusters 706A-706H
share a cache memory 708. The cache memory 708 can
serve as a higher-level cache for cache memories within the
compute clusters 706 A-706H.

[0185] The GPGPU 700 includes memory 714A-B
coupled with the compute clusters 706A-H via a set of
memory controllers 712A-712B. In various embodiments,
the memory 714A-714B can include various types of
memory devices including dynamic random-access memory
(DRAM) or graphics random access memory, such as syn-
chronous graphics random access memory (SGRAM),
including graphics double data rate (GDDR) memory. In one
embodiment, the memory 714A-714N may also include 3D
stacked memory, including but not limited to high band-
width memory (HBM).

[0186] In one embodiment, each of the compute clusters
706A-706H includes a set of graphics multiprocessors, such
as the graphics multiprocessor 400 of FIG. 4A. The graphics
multiprocessors of the compute cluster multiple types of
integer and floating-point logic units that can perform com-
putational operations at a range of precisions including
suited for machine learning computations. For example, and
in one embodiment at least a subset of the floating-point
units in each of the compute clusters 706A-H can be
configured to perform 16-bit or 32-bit floating point opera-
tions, while a different subset of the floating-point units can
be configured to perform 64-bit floating point operations.

US 2021/0255957 Al

[0187] Multiple instances of the GPGPU 700 can be
configured to operate as a compute cluster. The communi-
cation mechanism used by the compute cluster for synchro-
nization and data exchange varies across embodiments. In
one embodiment, the multiple instances of the GPGPU 700
communicate over the host interface 702. In one embodi-
ment the GPGPU 700 includes an I/O hub 709 that couples
the GPGPU 700 with a GPU link 710 that enables a direct
connection to other instances of the GPGPU. In one embodi-
ment the GPU link 710 is coupled to a dedicated GPU-to-
GPU bridge that enables communication and synchroniza-
tion between multiple instances of the GPGPU 700. In one
embodiment the GPU link 710 couples with a high-speed
interconnect to transmit and receive data to other GPGPUs
or parallel processors. In one embodiment the multiple
instances of the GPGPU 700 are located in separate data
processing systems and communicate via a network device
that is accessible via the host interface 702. In one embodi-
ment the GPU link 710 can be configured to enable a
connection to a host processor in addition to or as an
alternative to the host interface 702.

[0188] While the illustrated configuration of the GPGPU
700 can be configured to train neural networks, one embodi-
ment provides alternate configuration of the GPGPU 700
that can be configured for deployment within a high perfor-
mance or low power inferencing platform. In an inferencing
configuration, the GPGPU 700 includes fewer of the com-
pute clusters 706 A-706H relative to the training configura-
tion. Additionally, memory technology associated with the
memory 714A-714B may differ between inferencing and
training configurations. In one embodiment, the inferencing
configuration of the GPGPU 700 can support inferencing
specific instructions. For example, an inferencing configu-
ration can provide support for one or more 8-bit integer dot
product instructions, which are commonly used during infer-
encing operations for deployed neural networks.

[0189] FIG. 8 illustrates a multi-GPU computing system
800, according to an embodiment. The multi-GPU comput-
ing system 800 can include a processor 802 coupled to
multiple GPGPUs 806A-806D via a host interface switch
804. The host interface switch 804, in one embodiment, is a
PCI express switch device that couples the processor 802 to
a PCI express bus over which the processor 802 can com-
municate with the set of GPGPUs 806A-806D. Each of the
multiple GPGPUs 806A-806D can be an instance of the
GPGPU 700 of FIG. 7. The GPGPUs 806A-806D can
interconnect via a set of high-speed point to point GPU to
GPU links 816. The high-speed GPU to GPU links can
connect to each of the GPGPUs 806A-806D via a dedicated
GPU link, such as the GPU link 710 as in FIG. 7. The P2P
GPU links 816 enable direct communication between each
of the GPGPUs 806A-806D without requiring communica-
tion over the host interface bus to which the processor 802
is connected. With GPU-to-GPU traffic directed to the P2P
GPU links, the host interface bus remains available for
system memory access or to communicate with other
instances of the multi-GPU computing system 800, for
example, via one or more network devices. While in the
illustrated embodiment the GPGPUs 806A-D connect to the
processor 802 via the host interface switch 804, in one
embodiment the processor 802 includes direct support for
the P2P GPU links 816 and can connect directly to the
GPGPUs 806A-806D.

Aug. 19, 2021

[0190] Machine Learning Neural Network Implementa-
tions
[0191] The computing architecture provided by embodi-

ments described herein can be configured to perform the
types of parallel processing that is particularly suited for
training and deploying neural networks for machine learn-
ing. A neural network can be generalized as a network of
functions having a graph relationship. As is well-known in
the art, there are a variety of types of neural network
implementations used in machine learning. One exemplary
type of neural network is the feedforward network, as
previously described.

[0192] A second exemplary type of neural network is the
Convolutional Neural Network (CNN). A CNN is a special-
ized feedforward neural network for processing data having
a known, grid-like topology, such as image data. Accord-
ingly, CNNs are commonly used for compute vision and
image recognition applications, but they also may be used
for other types of pattern recognition such as speech and
language processing. The nodes in the CNN input layer are
organized into a set of “filters” (feature detectors inspired by
the receptive fields found in the retina), and the output of
each set of filters is propagated to nodes in successive layers
of the network. The computations for a CNN include apply-
ing the convolution mathematical operation to each filter to
produce the output of that filter. Convolution is a specialized
kind of mathematical operation performed by two functions
to produce a third function that is a modified version of one
of the two original functions. In convolutional network
terminology, the first function to the convolution can be
referred to as the input, while the second function can be
referred to as the convolution kernel. The output may be
referred to as the feature map. For example, the input to a
convolution layer can be a multidimensional array of data
that defines the various color components of an input image.
The convolution kernel can be a multidimensional array of
parameters, where the parameters are adapted by the training
process for the neural network.

[0193] Recurrent neural networks (RNNs) are a family of
feedforward neural networks that include feedback connec-
tions between layers. RNNs enable modeling of sequential
data by sharing parameter data across different parts of the
neural network. The architecture for an RNN includes
cycles. The cycles represent the influence of a present value
of a variable on its own value at a future time, as at least a
portion of the output data from the RNN is used as feedback
for processing subsequent input in a sequence. This feature
makes RNNs particularly useful for language processing due
to the variable nature in which language data can be com-
posed.

[0194] The figures described below present exemplary
feedforward, CNN, and RNN networks, as well as describe
a general process for respectively training and deploying
each of those types of networks. It will be understood that
these descriptions are exemplary and non-limiting as to any
specific embodiment described herein and the concepts
illustrated can be applied generally to deep neural networks
and machine learning techniques in general.

[0195] The exemplary neural networks described above
can be used to perform deep learning. Deep learning is
machine learning using deep neural networks. The deep
neural networks used in deep learning are artificial neural
networks composed of multiple hidden layers, as opposed to
shallow neural networks that include only a single hidden

US 2021/0255957 Al

layer. Deeper neural networks are generally more computa-
tionally intensive to train. However, the additional hidden
layers of the network enable multistep pattern recognition
that results in reduced output error relative to shallow
machine learning techniques.

[0196] Deep neural networks used in deep learning typi-
cally include a front-end network to perform feature recog-
nition coupled to a back-end network which represents a
mathematical model that can perform operations (e.g.,
object classification, speech recognition, etc.) based on the
feature representation provided to the model. Deep learning
enables machine learning to be performed without requiring
hand crafted feature engineering to be performed for the
model. Instead, deep neural networks can learn features
based on statistical structure or correlation within the input
data. The learned features can be provided to a mathematical
model that can map detected features to an output. The
mathematical model used by the network is generally spe-
cialized for the specific task to be performed, and different
models will be used to perform different task.

[0197] Once the neural network is structured, a learning
model can be applied to the network to train the network to
perform specific tasks. The learning model describes how to
adjust the weights within the model to reduce the output
error of the network. Backpropagation of errors is a common
method used to train neural networks. An input vector is
presented to the network for processing. The output of the
network is compared to the desired output using a loss
function and an error value is calculated for each of the
neurons in the output layer. The error values are then
propagated backwards until each neuron has an associated
error value which roughly represents its contribution to the
original output. The network can then learn from those
errors using an algorithm, such as the stochastic gradient
descent algorithm, to update the weights of the of the neural
network.

[0198] FIG. 9A-9B illustrate an exemplary convolutional
neural network. FIG. 9A illustrates various layers within a
CNN. As shown in FIG. 9A, an exemplary CNN used to
model image processing can receive input 902 describing
the red, green, and blue (RGB) components of an input
image. The input 902 can be processed by multiple convo-
Iutional layers (e.g., convolutional layer 904, convolutional
layer 906). The output from the multiple convolutional
layers may optionally be processed by a set of fully con-
nected layers 908. Neurons in a fully connected layer have
full connections to all activations in the previous layer, as
previously described for a feedforward network. The output
from the fully connected layers 908 can be used to generate
an output result from the network. The activations within the
fully connected layers 908 can be computed using matrix
multiplication instead of convolution. Not all CNN imple-
mentations make use of fully connected layers 908. For
example, in some implementations the convolutional layer
906 can generate output for the CNN.

[0199] The convolutional layers are sparsely connected,
which differs from traditional neural network configuration
found in the fully connected layers 908. Traditional neural
network layers are fully connected, such that every output
unit interacts with every input unit. However, the convolu-
tional layers are sparsely connected because the output of
the convolution of a field is input (instead of the respective
state value of each of the nodes in the field) to the nodes of
the subsequent layer, as illustrated. The kernels associated

Aug. 19, 2021

with the convolutional layers perform convolution opera-
tions, the output of which is sent to the next layer. The
dimensionality reduction performed within the convolu-
tional layers is one aspect that enables the CNN to scale to
process large images.

[0200] FIG. 9B illustrates exemplary computation stages
within a convolutional layer of a CNN. Input to a convolu-
tional layer 912 of a CNN can be processed in three stages
of'a convolutional layer 914. The three stages can include a
convolution stage 916, a detector stage 918, and a pooling
stage 920. The convolution layer 914 can then output data to
a successive convolutional layer. The final convolutional
layer of the network can generate output feature map data or
provide input to a fully connected layer, for example, to
generate a classification value for the input to the CNN.
[0201] In the convolution stage 916 performs several
convolutions in parallel to produce a set of linear activations.
The convolution stage 916 can include an affine transfor-
mation, which is any transformation that can be specified as
a linear transformation plus a translation. Affine transfor-
mations include rotations, translations, scaling, and combi-
nations of these transformations. The convolution stage
computes the output of functions (e.g., neurons) that are
connected to specific regions in the input, which can be
determined as the local region associated with the neuron.
The neurons compute a dot product between the weights of
the neurons and the region in the local input to which the
neurons are connected. The output from the convolution
stage 916 defines a set of linear activations that are pro-
cessed by successive stages of the convolutional layer 914.
[0202] The linear activations can be processed by a detec-
tor stage 918. In the detector stage 918, each linear activa-
tion is processed by a non-linear activation function. The
non-linear activation function increases the nonlinear prop-
erties of the overall network without affecting the receptive
fields of the convolution layer. Several types of non-linear
activation functions may be used. One particular type is the
rectified linear unit (Rel.U), which uses an activation func-
tion defined as f(x)=max (0, x), such that the activation is
thresholded at zero.

[0203] The pooling stage 920 uses a pooling function that
replaces the output of the convolutional layer 906 with a
summary statistic of the nearby outputs. The pooling func-
tion can be used to introduce translation invariance into the
neural network, such that small translations to the input do
not change the pooled outputs. Invariance to local transla-
tion can be useful in scenarios where the presence of a
feature in the input data is more important than the precise
location of the feature. Various types of pooling functions
can be used during the pooling stage 920, including max
pooling, average pooling, and 12-norm pooling. Addition-
ally, some CNN implementations do not include a pooling
stage. Instead, such implementations substitute and addi-
tional convolution stage having an increased stride relative
to previous convolution stages.

[0204] The output from the convolutional layer 914 can
then be processed by the next layer 922. The next layer 922
can be an additional convolutional layer or one of the fully
connected layers 908. For example, the first convolutional
layer 904 of FIG. 9A can output to the second convolutional
layer 906, while the second convolutional layer can output
to a first layer of the fully connected layers 908.

[0205] FIG. 10 illustrates an exemplary recurrent neural
network 1000. In a recurrent neural network (RNN), the

US 2021/0255957 Al

previous state of the network influences the output of the
current state of the network. RNNs can be built in a variety
of ways using a variety of functions. The use of RNNs
generally revolves around using mathematical models to
predict the future based on a prior sequence of inputs. For
example, an RNN may be used to perform statistical lan-
guage modeling to predict an upcoming word given a
previous sequence of words. The illustrated RNN 1000 can
be described has having an input layer 1002 that receives an
input vector, hidden layers 1004 to implement a recurrent
function, a feedback mechanism 1005 to enable a ‘memory’
of previous states, and an output layer 1006 to output a
result. The RNN 1000 operates based on time-steps. The
state of the RNN at a given time step is influenced based on
the previous time step via the feedback mechanism 1005.
For a given time step, the state of the hidden layers 1004 is
defined by the previous state and the input at the current time
step. An initial input (x,) at a first time step can be processed
by the hidden layer 1004. A second input (x,) can be
processed by the hidden layer 1004 using state information
that is determined during the processing of the initial input
(x;). A given state can be computed as s=f(Ux+Ws,_,),
where U and W are parameter matrices. The function f is
generally a nonlinearity, such as the hyperbolic tangent
function (Tan h) or a variant of the rectifier function f(x)
=max(0, x). However, the specific mathematical function
used in the hidden layers 1004 can vary depending on the
specific implementation details of the RNN 1000.

[0206] In addition to the basic CNN and RNN networks
described, variations on those networks may be enabled.
One example RNN variant is the long short term memory
(LSTM) RNN. LSTM RNNs are capable of learning long-
term dependencies that may be necessary for processing
longer sequences of language. A variant on the CNN is a
convolutional deep belief network, which has a structure
similar to a CNN and is trained in a manner similar to a deep
belief network. A deep belief network (DBN) is a generative
neural network that is composed of multiple layers of
stochastic (random) variables. DBNs can be trained layer-
by-layer using greedy unsupervised learning. The learned
weights of the DBN can then be used to provide pre-train
neural networks by determining an optimal initial set of
weights for the neural network.

[0207] FIG. 11 illustrates training and deployment of a
deep neural network. Once a given network has been struc-
tured for a task the neural network is trained using a training
dataset 1102. Various training frameworks 1104 have been
developed to enable hardware acceleration of the training
process. For example, the machine learning framework 604
of FIG. 6 may be configured as a training framework 604.
The training framework 604 can hook into an untrained
neural network 1106 and enable the untrained neural net to
be trained using the parallel processing resources described
herein to generate a trained neural net 1108.

[0208] To start the training process the initial weights may
be chosen randomly or by pre-training using a deep belief
network. The training cycle then be performed in either a
supervised or unsupervised manner.

[0209] Supervised learning is a learning method in which
training is performed as a mediated operation, such as when
the training dataset 1102 includes input paired with the
desired output for the input, or where the training dataset
includes input having known output and the output of the
neural network is manually graded. The network processes

Aug. 19, 2021

the inputs and compares the resulting outputs against a set of
expected or desired outputs. Errors are then propagated back
through the system. The training framework 1104 can adjust
to adjust the weights that control the untrained neural
network 1106. The training framework 1104 can provide
tools to monitor how well the untrained neural network 1106
is converging towards a model suitable to generating correct
answers based on known input data. The training process
occurs repeatedly as the weights of the network are adjusted
to refine the output generated by the neural network. The
training process can continue until the neural network
reaches a statistically desired accuracy associated with a
trained neural net 1108. The trained neural network 1108 can
then be deployed to implement any number of machine
learning operations to generate an inference result 1114
based on input of new data 1112.

[0210] Unsupervised learning is a learning method in
which the network attempts to train itself using unlabeled
data. Thus, for unsupervised learning the training dataset
1102 will include input data without any associated output
data. The untrained neural network 1106 can learn groupings
within the unlabeled input and can determine how individual
inputs are related to the overall dataset. Unsupervised train-
ing can be used to generate a self-organizing map, which is
a type of trained neural network 1108 capable of performing
operations useful in reducing the dimensionality of data.
Unsupervised training can also be used to perform anomaly
detection, which allows the identification of data points in an
input dataset that deviate from the normal patterns of the
data.

[0211] Variations on supervised and unsupervised training
may also be employed. Semi-supervised learning is a tech-
nique in which in the training dataset 1102 includes a mix of
labeled and unlabeled data of the same distribution. Incre-
mental learning is a variant of supervised learning in which
input data is continuously used to further train the model.
Incremental learning enables the trained neural network
1108 to adapt to the new data 1112 without forgetting the
knowledge instilled within the network during initial train-
ing.

[0212] Whether supervised or unsupervised, the training
process for particularly deep neural networks may be too
computationally intensive for a single compute node.
Instead of using a single compute node, a distributed net-
work of computational nodes can be used to accelerate the
training process.

[0213] FIG. 12 is a block diagram illustrating distributed
learning. Distributed learning is a training model that uses
multiple distributed computing nodes to perform supervised
or unsupervised training of a neural network. The distributed
computational nodes can each include one or more host
processors and one or more of the general-purpose process-
ing nodes, such as the highly-parallel general-purpose
graphics processing unit 700 as in FIG. 700. As illustrated,
distributed learning can be performed model parallelism
1202, data parallelism 1204, or a combination of model and
data parallelism 1204.

[0214] Inmodel parallelism 1202, different computational
nodes in a distributed system can perform training compu-
tations for different parts of a single network. For example,
each layer of a neural network can be trained by a different
processing node of the distributed system. The benefits of
model parallelism include the ability to scale to particularly
large models. Splitting the computations associated with

US 2021/0255957 Al

different layers of the neural network enables the training of
very large neural networks in which the weights of all layers
would not fit into the memory of a single computational
node. In some instances, model parallelism can be particu-
larly useful in performing unsupervised training of large
neural networks.

[0215] In data parallelism 1204, the different nodes of the
distributed network have a complete instance of the model
and each node receives a different portion of the data. The
results from the different nodes are then combined. While
different approaches to data parallelism are possible, data
parallel training approaches all require a technique of com-
bining results and synchronizing the model parameters
between each node. Exemplary approaches to combining
data include parameter averaging and update based data
parallelism. Parameter averaging trains each node on a
subset of the training data and sets the global parameters
(e.g., weights, biases) to the average of the parameters from
each node. Parameter averaging uses a central parameter
server that maintains the parameter data. Update based data
parallelism is similar to parameter averaging except that
instead of transferring parameters from the nodes to the
parameter server, the updates to the model are transferred.
Additionally, update based data parallelism can be per-
formed in a decentralized manner, where the updates are
compressed and transferred between nodes.

[0216] Combined model and data parallelism 1206 can be
implemented, for example, in a distributed system in which
each computational node includes multiple GPUs. Each
node can have a complete instance of the model with
separate GPUs within each node are used to train different
portions of the model.

[0217] Distributed training has increased overhead rela-
tive to training on a single machine. However, the parallel
processors and GPGPUs described herein can each imple-
ment various techniques to reduce the overhead of distrib-
uted training, including techniques to enable high bandwidth
GPU-to-GPU data transfer and accelerated remote data
synchronization.

[0218] Exemplary Machine Learning Applications

[0219] Machine learning can be applied to solve a variety
of technological problems, including but not limited to
computer vision, autonomous driving and navigation,
speech recognition, and language processing. Computer
vision has traditionally been one of the most active research
areas for machine learning applications. Applications of
computer vision range from reproducing human visual abili-
ties, such as recognizing faces, to creating new categories of
visual abilities. For example, computer vision applications
can be configured to recognize sound waves from the
vibrations induced in objects visible in a video. Parallel
processor accelerated machine learning enables computer
vision applications to be trained using significantly larger
training dataset than previously feasible and enables infer-
encing systems to be deployed using low power parallel
processors.

[0220] Parallel processor accelerated machine learning
has autonomous driving applications including lane and road
sign recognition, obstacle avoidance, navigation, and driv-
ing control. Accelerated machine learning techniques can be
used to train driving models based on datasets that define the
appropriate responses to specific training input. The parallel
processors described herein can enable rapid training of the
increasingly complex neural networks used for autonomous

Aug. 19, 2021

driving solutions and enables the deployment of low power
inferencing processors in a mobile platform suitable for
integration into autonomous vehicles.

[0221] Parallel processor accelerated deep neural net-
works have enabled machine learning approaches to auto-
matic speech recognition (ASR). ASR includes the creation
of a function that computes the most probable linguistic
sequence given an input acoustic sequence. Accelerated
machine learning using deep neural networks have enabled
the replacement of the hidden Markov models (HMMs) and
Gaussian mixture models (GMMs) previously used for ASR.
[0222] Parallel processor accelerated machine learning
can also be used to accelerate natural language processing.
Automatic learning procedures can make use of statistical
inference algorithms to produce models that are robust to
erroneous or unfamiliar input. Exemplary natural language
processor applications include automatic machine transla-
tion between human languages.

[0223] The parallel processing platforms used for machine
learning can be divided into training platforms and deploy-
ment platforms. Training platforms are generally highly
parallel and include optimizations to accelerate multi-GPU
single node training and multi-node, multi-GPU training.
Exemplary parallel processors suited for training include the
general-purpose graphics processing unit 700 of FIG. 700
and the multi-GPU computing system 800 of FIG. 800. On
the contrary, deployed machine learning platforms generally
include lower power parallel processors suitable for use in
products such as cameras, autonomous robots, and autono-
mous vehicles.

[0224] FIG. 13 illustrates an exemplary inferencing sys-
tem on a chip (SOC) 1300 suitable for performing inferenc-
ing using a trained model. The SOC 1300 can integrate
processing components including a media processor 1302, a
vision processor 1304, a GPGPU 1306 and a multi-core
processor 1308. The SOC 1300 can additionally include
on-chip memory 1305 that can enable a shared on-chip data
pool that is accessible by each of the processing compo-
nents. The processing components can be optimized for low
power operation to enable deployment to a variety of
machine learning platforms, including autonomous vehicles
and autonomous robots. For example, one implementation
of'the SOC 1300 can be used as a portion of the main control
system for an autonomous vehicle. Where the SOC 1300 is
configured for use in autonomous vehicles the SOC is
designed and configured for compliance with the relevant
functional safety standards of the deployment jurisdiction.
[0225] During operation, the media processor 1302 and
vision processor 1304 can work in concert to accelerate
computer vision operations. The media processor 1302 can
enable low latency decode of multiple high-resolution (e.g.,
4K, 8K) video streams. The decoded video streams can be
written to a buffer in the on-chip-memory 1305. The vision
processor 1304 can then parse the decoded video and
perform preliminary processing operations on the frames of
the decoded video in preparation of processing the frames
using a trained image recognition model. For example, the
vision processor 1304 can accelerate convolution operations
for a CNN that is used to perform image recognition on the
high-resolution video data, while back end model compu-
tations are performed by the GPGPU 1306.

[0226] The multi-core processor 1308 can include control
logic to assist with sequencing and synchronization of data
transfers and shared memory operations performed by the

US 2021/0255957 Al

media processor 1302 and the vision processor 1304. The
multi-core processor 1308 can also function as an applica-
tion processor to execute software applications that can
make use of the inferencing compute capability of the
GPGPU 1306. For example, at least a portion of the navi-
gation and driving logic can be implemented in software
executing on the multi-core processor 1308. Such software
can directly issue computational workloads to the GPGPU
1306 or the computational workloads can be issued to the
multi-core processor 1308, which can offload at least a
portion of those operations to the GPGPU 1306.

[0227] The GPGPU 1306 can include compute clusters
such as a low power configuration of the compute clusters
706A-706H within general-purpose graphics processing unit
700. The compute clusters within the GPGPU 1306 can
support instruction that are specifically optimized to perform
inferencing computations on a trained neural network. For
example, the GPGPU 1306 can support instructions to
perform low precision computations such as 8-bit and 4-bit
integer vector operations.

[0228] Data Prefetching to Cache for Graphics Data Pro-
cessing
[0229] In general prefetching of data to cache is utilized to

improve computing operation, including performance uti-
lizing a graphics processor. An apparatus or system provid-
ing prefetching may include a graphics multiprocessor 234
illustrated in FIGS. 2C and 2D operating to prefetch data
from one or more cache memories.

[0230] However, conventional operations do not provide
for efficient prefetch operations in all cases, resulting in loss
of performance in a graphics processing environment.
[0231] In some embodiments, an apparatus, system, or
process provides for improvements in data prefetching for
graphics data processing, including one or more of the
following:

[0232] (1) Intelligent Prefetch to Cache Based on Cache
Hit Rate;

[0233] (2) Cache Prefetch Enhancements;

[0234] (3) Cache Prefetch Enhancement to Squash Unnec-

essary Prefetches;

[0235] (4) Prefetch for Instruction Cache (I-Cache); or
[0236] (5) Exploiting Bandwidth Sources for Prefetching/
Scrubbing.

[0237] FIG. 14 is an illustration of data prefetching for

graphics data processing according to some embodiments.
As illustrated, a computer system 1400 includes one or more
processors 1405, which may include a central processing
(CPU) or other host processing element, and one or more
graphics multiprocessors 1410. Each graphics multiproces-
sor may include a prefetcher 1415 to prefetch data. In
addition to other processing, the one or more graphics
multiprocessors 1410 are to provide for data pre-fetching by
the prefetcher 1415 from a memory 1420 to one or more
caches 1430 (which may include internal and external
caches, and multiple cache levels, such as [.1, L2, and [.3
caches) for the purpose of graphics data processing.
[0238] In some embodiments, an apparatus, system (such
as computing system), or process is to provide for prefetch-
ing operations as illustrated in FIGS. 15A to 19B.

[0239] FIG. 15A is an illustration of intelligent prefetch to
cache according to some embodiments. In an apparatus or
system, such as computing system 1500, current implemen-
tations are to initiate an instruction prefetch to one or more
L3 caches 1525. There is an opportunity for better perfor-

Aug. 19, 2021

mance by the execution units (EUs) of a processor, illus-
trated as, for example, a first execution unit 1510 and a
second execution unit 1515, by prefetching all the way to the
L1 cache 1520. However, prefetching to the [.1 cache 1520
can cause cache thrashing in which the pattern of accesses
results in competition for the same cache lines in the L1
cache, and thus frequent eviction of data and high levels of
cache misses. Thus, the thrashing of the .1 cache 1520 will
reduce the performance of computing system 1500.

[0240] In some embodiments, an improved apparatus,
system, or process is to provide intelligent prefetching of
data 1530 wherein the data is prefetched to the L1 cache
1520 upon determining that the hit rate (or hit ratio) over a
particular sampling period 1535 is low, such as a hit rate
below a certain threshold value. The low hit rate thereby
enables efficient data eviction from the L1 cache, and thus
allows for prefetching all the way to the L1 cache. However,
if the hit rate over the sample period is equal to or greater
than the threshold value, then it may be concluded that that
prefetching to the L1 cache 1520 would be inefficient, and
thus prefetched data would remain only in the L3 cache(s)
1525.

[0241] FIG. 15B is a flowchart to illustrate a process for
intelligent prefetch to cache according to some embodi-
ments. In some embodiments, a process for intelligent
prefetching includes initiating an operation in a computing
environment 1550. The process then provides for perform-
ing caching 1555, wherein the caching includes caching to
at least an L1 cache and an L3 cache, such as the L1 cache
1520 and the L3 cache 1525 illustrated in FIG. 15A.
[0242] In some embodiments, the process includes mea-
suring or determining a hit rate (or hit ratio, or other similar
measure of cache hits) over a certain sample period 1560.
Upon there being an operation that results in an instruction
prefetch 1565, there is a determination whether the hit rate
is less than a certain threshold 1570. If so, then an intelligent
instruction prefetch may be made through to the [.1 cache
1575 because the low hit rate indicates a low probability of
cache thrashing in the L1 cache. However, if the hit rate is
instead equal to or greater than the threshold, then the
instruction prefetch is limited to the L3 cache 1580 to avoid
cache thrashing in the .1 cache.

[0243] FIG. 16A is an illustration of cache prefetch
enhancement to eliminate unnecessary prefetches according
to some embodiments. Prefetching of cache data can result
in significant improvement in system performance However,
there are certain unnecessary prefetches that do not add to
performance. In particular, duplicative prefetches with the
same address do not provide any additional cache informa-
tion, and prefetches that relate to data that is uncacheable
will not result in any cached data. Thus, these prefetches are
unnecessary or unproductive and can be eliminated without
negatively affecting the cache operation.

[0244] In some embodiments, an apparatus, system, or
process is to eliminate unnecessary prefetches. Specifically,
the apparatus, system, or process is to eliminate (i.e., squash,
flush, or clear) prefetches that are recognized to have dupli-
cative addresses of another prefetch or are directed to
uncacheable data. The elimination of these unnecessary
prefetches can assist in reducing power consumption in a
computing system.

[0245] As shown in FIG. 16A, multiple DSS, shown as
DSS 0, DSS 1, DSS 2, and DSS 3, are providing prefetches
for a cache 1600, shown as providing storage of tags and

US 2021/0255957 Al

cached data 1615. In some embodiments, an apparatus,
system, or process includes an interface 1610 or other
element to evaluate the prefetches and eliminate prefetches
that are unnecessary. In particular, the interface 1610 is
compare the prefetches received from the DSS to detect any
prefetches having a duplicate address, and to squash one or
more prefetches having the duplicate address such that only
a single prefetch with the address is provided. Further, the
interface is to evaluate the prefetches to determine if any
prefetch is directed to data that is uncacheable, and to drop
such requests.

[0246] FIG. 16B is a flowchart to illustrate a process to
eliminate unnecessary prefetches according to some
embodiments. As illustrated in FIG. 16B, a process includes
system processing including caching of data 1650, wherein
this may include processing with a computing system such
as computing system 100 illustrated in FIG. 1. The process
may include receiving prefetches from one or more sources
at an interface 1655, wherein the interface may be the
interface 1610 illustrated in FIG. 16A. In some embodi-
ments, the prefetches are evaluated at the interface 1660,
such evaluation enabling the elimination of unproductive
prefetches.

[0247] The process continues with a determination
whether the prefetch is uncacheable 1665. If so, the prefetch
is to be eliminated 1680, and the process continues with the
system processing 1650. If not, there is a further determi-
nation whether prefetch has an address that is a duplicate of
another prefetch 1670, and, if so, one or more duplicate
prefetches are eliminated 1680. If not, then the prefetch is
allowed to proceed 1675.

[0248] While the determinations 1665 and 1670 are illus-
trated in a particular order for purposes of illustration,
embodiments are not limited to this example. The determi-
nations may be made in a different order or at the same or
an overlapping time, depending on the implementation.
Further, other determinations may further be included to
identify other unproductive prefetches that can be eliminated
before such prefetches are processed.

[0249] FIG. 17 is an illustration of speculative prefetch
according to some embodiments. Instruction prefetch is
conventionally based on a thread executing an instruction,
and at that point prefetching a next N cache lines. However,
there can be issues regarding the latency of prefetches with
this process.

[0250] In some embodiments, and apparatus, system, or
process provides support for a higher performant speculative
instruction prefetch with a hardware preprocessor. In some
embodiments, an execution unit (EU) 1710 of a processor
utilizes a hardware preprocessor 1715 that has access to a
table of IP (Internet Protocol) addresses 1720 that the kernel
is using.

[0251] In some embodiments, the hardware preprocessor
1715 is to commence prefetching IP addresses ahead of
thread execution, which can significantly reduce fetch
latency. In some embodiments, the hardware preprocessor
1715 is a hardware element that is shareable across multiple
EUs of a processor.

[0252] In some embodiments, the table of IP addresses
1720 is loaded based on either software generating
sequences of IP addresses that the kernel is utilizing, or
based on generating a stride that can be used to identify and
load the IP addresses.

Aug. 19, 2021

[0253] FIG. 18 is an illustration of prefetch for an instruc-
tion cache according to some embodiments. In some
embodiments, prefetch is to be made directly into the
I-cache (Instruction cache). In this operation:

[0254] (i) The application driver is aware of the next
kernel.
[0255] (ii) There is a command to load block instructions

into I code (instruction code).

[0256] (iii) A prefetch is issued for the next kernel when
starting execution of the current kernel.

[0257] In some embodiments, this process addresses the
problem of kernels that are short running but have large
instruction counts. Currently the prefetch is performed as the
current kernel executes, thus potentially causing stalls in
such circumstances.

[0258] In some embodiments, as illustrated in FIG. 18, a
hardware prefetcher communicates with a command queue/
ring 1800 through the following:

[0259] a) An address register queue 1810
(ring—prefetcher), shown as receiving from code space
1820.

[0260] b) A prefetcher 1830 is to read the command
queue/ring 1800 (prefetcher—ring).

[0261] FIG. 19A is an illustration of exploitation of band-
width sources for prefetching/scrubbing according to some
embodiments. FIG. 19A illustrates compute operation 1910,
an L3 cache 1920, and memory 1930. In operation, when the
compute operation 1910 is operating out of the L3 cache
1920, the memory 1930 is idle. In some embodiments, in
this circumstance, an apparatus, system, or process is to use
the memory link for memory 1930 to perform memory
scrubbing in order to keep the memory bandwidth active. In
some embodiments, an apparatus, system, or process is to
maintain operation to gauge 1.3 and memory activity, and
trigger activities (prefetching and scrubbing) based at least
in part the determination of I.3 cache and memory activity.
[0262] FIG. 19B is an illustration of activity of L3 cache
and memory activity to be utilized in exploitation of band-
width sources for prefetching/scrubbing to some embodi-
ments.

[0263] FIG. 20 is an illustration of an apparatus or system
to provide for data prefetching for graphics data processing,
according to some embodiments. As illustrated in FIG. 20,
a computing system 2000, such as, for example, system 100
illustrated in FIG. 1, includes one or more processors 2005
for the processing of data, such as one or more processors
102 and one or more parallel processor(s) 112 incorporating
circuitry optimized for graphics and video processing,
including, for example, video output circuitry, and consti-
tuting a graphics processing unit (GPU), as shown in FIG. 1.
The computing system 2000 further includes memory 2010
for the storage of data and one or more elements for the
transfer of data, such as interface bus 2015 and transceiver
2020. In some embodiments, the transceiver 2020 is a
wireless transceiver with one or more antennas 2025 for
transmission and reception of data, wherein the antennas
2025 may include a dipole antenna or other antenna struc-
ture.

[0264] Insome embodiments, the computing system 2000
further includes prefetching 2030 to provide for enhanced
prefetching operations as illustrated in FIGS. 15A to 19B.
[0265] System Overview

[0266] FIG. 21 is a block diagram of a processing system
2100, according to an embodiment. System 2100 may be

US 2021/0255957 Al

used in a single processor desktop system, a multiprocessor
workstation system, or a server system having a large
number of processors 2102 or processor cores 2107. In one
embodiment, the system 2100 is a processing platform
incorporated within a system-on-a-chip (SoC) integrated
circuit for use in mobile, handheld, or embedded devices
such as within Internet-of-things (IoT) devices with wired or
wireless connectivity to a local or wide area network.

[0267] In one embodiment, system 2100 can include,
couple with, or be integrated within: a server-based gaming
platform; a game console, including a game and media
console; a mobile gaming console, a handheld game con-
sole, or an online game console. In some embodiments the
system 2100 is part of a mobile phone, smart phone, tablet
computing device or mobile Internet-connected device such
as a laptop with low internal storage capacity. Processing
system 2100 can also include, couple with, or be integrated
within: a wearable device, such as a smart watch wearable
device; smart eyewear or clothing enhanced with augmented
reality (AR) or virtual reality (VR) features to provide
visual, audio or tactile outputs to supplement real world
visual, audio or tactile experiences or otherwise provide text,
audio, graphics, video, holographic images or video, or
tactile feedback; other augmented reality (AR) device; or
other virtual reality (VR) device. In some embodiments, the
processing system 2100 includes or is part of a television or
set top box device.

[0268] In some embodiments, system 2100 can include,
couple with, or be integrated within a self-driving vehicle
such as a bus, tractor trailer, car, motor or electric power
cycle, plane or glider (or any combination thereof). The
self-driving vehicle may use system 2100 to process the
environment sensed around the vehicle.

[0269] In some embodiments, the one or more processors
2102 each include one or more processor cores 2107 to
process instructions which, when executed, perform opera-
tions for system or user software. In some embodiments, at
least one of the one or more processor cores 2107 is
configured to process a specific instruction set 2109. In some
embodiments, instruction set 2109 may facilitate Complex
Instruction Set Computing (CISC), Reduced Instruction Set
Computing (RISC), or computing via a Very Long Instruc-
tion Word (VLIW). One or more processor cores 2107 may
process a different instruction set 2109, which may include
instructions to facilitate the emulation of other instruction
sets. Processor core 2107 may also include other processing
devices, such as a Digital Signal Processor (DSP).

[0270] Insome embodiments, the processor 2102 includes
cache memory 2104. Depending on the architecture, the
processor 2102 can have a single internal cache or multiple
levels of internal cache. In some embodiments, the cache
memory is shared among various components of the pro-
cessor 2102. In some embodiments, the processor 2102 also
uses an external cache (e.g., a Level-3 (L3) cache or Last
Level Cache (LLC)) (not shown), which may be shared
among processor cores 2107 using known cache coherency
techniques. A register file 2106 can be additionally included
in processor 2102 and may include different types of regis-
ters for storing different types of data (e.g., integer registers,
floating point registers, status registers, and an instruction
pointer register). Some registers may be general-purpose
registers, while other registers may be specific to the design
of the processor 2102.

Aug. 19, 2021

[0271] In some embodiments, one or more processor(s)
2102 are coupled with one or more interface bus(es) 2110 to
transmit communication signals such as address, data, or
control signals between processor 2102 and other compo-
nents in the system 2100. The interface bus 2110, in one
embodiment, can be a processor bus, such as a version of the
Direct Media Interface (DMI) bus. However, processor
busses are not limited to the DMI bus, and may include one
or more Peripheral Component Interconnect buses (e.g.,
PCI, PCI Express), memory busses, or other types of inter-
face busses. In one embodiment the processor(s) 2102
include an integrated memory controller 2116 and a platform
controller hub 2130. The memory controller 2116 facilitates
communication between a memory device and other com-
ponents of the system 2100, while the platform controller
hub (PCH) 2130 provides connections to I/O devices via a
local I/O bus.

[0272] The memory device 2120 can be a dynamic ran-
dom access memory (DRAM) device, a static random access
memory (SRAM) device, flash memory device, phase-
change memory device, or some other memory device
having suitable performance to serve as process memory. In
one embodiment the memory device 2120 can operate as
system memory for the system 2100, to store data 2122 and
instructions 2121 for use when the one or more processors
2102 executes an application or process. Memory controller
2116 also couples with an optional external graphics pro-
cessor 2112, which may communicate with the one or more
graphics processors 2108 in processors 2102 to perform
graphics and media operations. In some embodiments,
graphics, media, and or compute operations may be assisted
by an accelerator 2112, which is a coprocessor that can be
configured to perform a specialized set of graphics, media,
or compute operations. For example, in one embodiment the
accelerator 2112 is a matrix multiplication accelerator used
to optimize machine learning or compute operations. In one
embodiment the accelerator 2112 is a ray-tracing accelerator
that can be used to perform ray-tracing operations in concert
with the graphics processor 2108. In some embodiments a
display device 2111 can connect to the processor(s) 2102.
The display device 2111 can be one or more of an internal
display device, as in a mobile electronic device or a laptop
device or an external display device attached via a display
interface (e.g., DisplayPort, etc.). In one embodiment the
display device 2111 can be a head mounted display (HMD)
such as a stereoscopic display device for use in virtual reality
(VR) applications or augmented reality (AR) applications.

[0273] In some embodiments the platform controller hub
2130 enables peripherals to connect to memory device 2120
and processor 2102 via a high-speed 1/O bus. The 1/O
peripherals include, but are not limited to, an audio control-
ler 2146, a network controller 2134, a firmware interface
2128, a wireless transceiver 2126, touch sensors 2125, a data
storage device 2124 (e.g., non-volatile memory, volatile
memory, hard disk drive, flash memory, NAND, 3D NAND,
3D XPoint, etc.). The data storage device 2124 can connect
via a storage interface (e.g., SATA) or via a peripheral bus,
such as a Peripheral Component Interconnect bus (e.g., PCI,
PCI Express). The touch sensors 2125 can include touch
screen sensors, pressure sensors, or fingerprint sensors. The
wireless transceiver 2126 can be a Wi-Fi transceiver, a
Bluetooth transceiver, or a mobile network transceiver such
as a 3G, 4G, 5G, or Long Term Evolution (LTE) transceiver.
The firmware interface 2128 enables communication with

US 2021/0255957 Al

system firmware, and can be, for example, a unified exten-
sible firmware interface (UEFI). The network controller
2134 can enable a network connection to a wired network.
In some embodiments, a high-performance network control-
ler (not shown) couples with the interface bus 2110. The
audio controller 2146, in one embodiment, is a multi-
channel high definition audio controller. In one embodiment
the system 2100 includes an optional legacy I/O controller
2140 for coupling legacy (e.g., Personal System 2 (PS/2))
devices to the system. The platform controller hub 2130 can
also connect to one or more Universal Serial Bus (USB)
controllers 2142 connect input devices, such as keyboard
and mouse 2143 combinations, a camera 2144, or other USB
input devices.

[0274] It will be appreciated that the system 2100 shown
is exemplary and not limiting, as other types of data pro-
cessing systems that are differently configured may also be
used. For example, an instance of the memory controller
2116 and platform controller hub 2130 may be integrated
into a discreet external graphics processor, such as the
external graphics processor 2112. In one embodiment the
platform controller hub 2130 and/or memory controller 2116
may be external to the one or more processor(s) 2102. For
example, the system 2100 can include an external memory
controller 2116 and platform controller hub 2130, which
may be configured as a memory controller hub and periph-
eral controller hub within a system chipset that is in com-
munication with the processor(s) 2102.

[0275] For example, circuit boards (“sleds™) can be used
on which components such as CPUs, memory, and other
components are placed are designed for increased thermal
performance. In some examples, processing components
such as the processors are located on a top side of a sled
while near memory, such as DIMMs, are located on a bottom
side of the sled. As a result of the enhanced airflow provided
by this design, the components may operate at higher
frequencies and power levels than in typical systems,
thereby increasing performance. Furthermore, the sleds are
configured to blindly mate with power and data communi-
cation cables in a rack, thereby enhancing their ability to be
quickly removed, upgraded, reinstalled, and/or replaced.
Similarly, individual components located on the sleds, such
as processors, accelerators, memory, and data storage drives,
are configured to be easily upgraded due to their increased
spacing from each other. In the illustrative embodiment, the
components additionally include hardware attestation fea-
tures to prove their authenticity.

[0276] A data center can utilize a single network archi-
tecture (“fabric”) that supports multiple other network archi-
tectures including Ethernet and Omni-Path. The sleds can be
coupled to switches via optical fibers, which provide higher
bandwidth and lower latency than typical twisted pair
cabling (e.g., Category 5, Category Se, Category 6, etc.).
Due to the high bandwidth, low latency interconnections and
network architecture, the data center may, in use, pool
resources, such as memory, accelerators (e.g., GPUs, graph-
ics accelerators, FPGAs, ASICs, neural network and/or
artificial intelligence accelerators, etc.), and data storage
drives that are physically disaggregated, and provide them to
compute resources (e.g., processors) on an as needed basis,
enabling the compute resources to access the pooled
resources as if they were local.

[0277] A power supply or source can provide voltage
and/or current to system 2100 or any component or system

Aug. 19, 2021

described herein. In one example, the power supply includes
an AC to DC (alternating current to direct current) adapter
to plug into a wall outlet. Such AC power can be renewable
energy (e.g., solar power) power source. In one example,
power source includes a DC power source, such as an
external AC to DC converter. In one example, power source
or power supply includes wireless charging hardware to
charge via proximity to a charging field. In one example,
power source can include an internal battery, alternating
current supply, motion-based power supply, solar power
supply, or fuel cell source.

[0278] FIG. 22 is a block diagram of an embodiment of a
processor 2200 having one or more processor cores 2202 A-
2202N, an integrated memory controller 2214, and an inte-
grated graphics processor 2208. Those elements of FIG. 22
having the same reference numbers (or names) as the
elements of any other figure herein can operate or function
in any manner similar to that described elsewhere herein, but
are not limited to such. Processor 2200 can include addi-
tional cores up to and including additional core 2202N
represented by the dashed lined boxes. Each of processor
cores 2202A-2202N includes one or more internal cache
units 2204A-2204N. In some embodiments each processor
core also has access to one or more shared cached units
2206.

[0279] The internal cache units 2204A-2204N and shared
cache units 2206 represent a cache memory hierarchy within
the processor 2200. The cache memory hierarchy may
include at least one level of instruction and data cache within
each processor core and one or more levels of shared
mid-level cache, such as a Level 2 (L.2), Level 3 (L3), Level
4 (L4), or other levels of cache, where the highest level of
cache before external memory is classified as the LLC. In
some embodiments, cache coherency logic maintains coher-
ency between the various cache units 2206 and 2204A-
2204N.

[0280] In some embodiments, processor 2200 may also
include a set of one or more bus controller units 2216 and a
system agent core 2210. The one or more bus controller units
2216 manage a set of peripheral buses, such as one or more
PCI or PCI express busses. System agent core 2210 provides
management functionality for the various processor compo-
nents. In some embodiments, system agent core 2210
includes one or more integrated memory controllers 2214 to
manage access to various external memory devices (not
shown).

[0281] In some embodiments, one or more of the proces-
sor cores 2202A-2202N include support for simultaneous
multi-threading. In such embodiment, the system agent core
2210 includes components for coordinating and operating
cores 2202A-2202N during multi-threaded processing. Sys-
tem agent core 2210 may additionally include a power
control unit (PCU), which includes logic and components to
regulate the power state of processor cores 2202A-2202N
and graphics processor 2208.

[0282] Insome embodiments, processor 2200 additionally
includes graphics processor 2208 to execute graphics pro-
cessing operations. In some embodiments, the graphics
processor 2208 couples with the set of shared cache units
2206, and the system agent core 2210, including the one or
more integrated memory controllers 2214. In some embodi-
ments, the system agent core 2210 also includes a display
controller 2211 to drive graphics processor output to one or
more coupled displays. In some embodiments, display con-

US 2021/0255957 Al

troller 2211 may also be a separate module coupled with the
graphics processor via at least one interconnect, or may be
integrated within the graphics processor 2208.

[0283] In some embodiments, a ring based interconnect
unit 2212 is used to couple the internal components of the
processor 2200. However, an alternative interconnect unit
may be used, such as a point-to-point interconnect, a
switched interconnect, or other techniques, including tech-
niques well known in the art. In some embodiments, graph-
ics processor 2208 couples with the ring interconnect 2212
via an I/O link 2213.

[0284] The exemplary /O link 2213 represents at least one
of multiple varieties of /O interconnects, including an on
package 1/O interconnect which facilitates communication
between various processor components and a high-perfor-
mance embedded memory module 2218, such as an eDRAM
module. In some embodiments, each of the processor cores
2202A-2202N and graphics processor 2208 can use embed-
ded memory modules 2218 as a shared Last Level Cache.
[0285] In some embodiments, processor cores 2202A-
2202N are homogenous cores executing the same instruction
set architecture. In another embodiment, processor cores
2202A-2202N are heterogeneous in terms of instruction set
architecture (ISA), where one or more of processor cores
2202A-2202N execute a first instruction set, while at least
one of the other cores executes a subset of the first instruc-
tion set or a different instruction set. In one embodiment,
processor cores 2202A-2202N are heterogeneous in terms of
microarchitecture, where one or more cores having a rela-
tively higher power consumption couple with one or more
power cores having a lower power consumption. In one
embodiment, processor cores 2202A-2202N are heteroge-
neous in terms of computational capability. Additionally,
processor 2200 can be implemented on one or more chips or
as an SoC integrated circuit having the illustrated compo-
nents, in addition to other components.

[0286] FIG. 23 is a block diagram of a graphics processor
2300, which may be a discrete graphics processing unit, or
may be a graphics processor integrated with a plurality of
processing cores, or other semiconductor devices such as,
but not limited to, memory devices or network interfaces. In
some embodiments, the graphics processor communicates
via a memory mapped /O interface to registers on the
graphics processor and with commands placed into the
processor memory. In some embodiments, graphics proces-
sor 2300 includes a memory interface 2314 to access
memory. Memory interface 2314 can be an interface to local
memory, one or more internal caches, one or more shared
external caches, and/or to system memory.

[0287] In some embodiments, graphics processor 2300
also includes a display controller 2302 to drive display
output data to a display device 2320. Display controller 2302
includes hardware for one or more overlay planes for the
display and composition of multiple layers of video or user
interface elements. The display device 2320 can be an
internal or external display device. In one embodiment the
display device 2320 is a head mounted display device, such
as a virtual reality (VR) display device or an augmented
reality (AR) display device. In some embodiments, graphics
processor 2300 includes a video codec engine 2306 to
encode, decode, or transcode media to, from, or between one
or more media encoding formats, including, but not limited
to Moving Picture Experts Group (MPEG) formats such as
MPEG-2, Advanced Video Coding (AVC) formats such as

Aug. 19, 2021

H.264/MPEG-4 AVC, H.265/HEVC, Alliance for Open
Media (AOMedia) VP8, VP9, as well as the Society of
Motion Picture & Television Engineers (SMPTE) 421M/
VC-1, and Joint Photographic Experts Group (JPEG) for-
mats such as JPEG, and Motion JPEG (MJPEG) formats.
[0288] In some embodiments, graphics processor 2300
includes a block image transfer (BLIT) engine 2304 to
perform two-dimensional (2D) rasterizer operations includ-
ing, for example, bit-boundary block transfers. However, in
one embodiment, 2D graphics operations are performed
using one or more components of graphics processing
engine (GPE) 2310. In some embodiments, GPE 2310 is a
compute engine for performing graphics operations, includ-
ing three-dimensional (3D) graphics operations and media
operations.

[0289] In some embodiments, GPE 2310 includes a 3D
pipeline 2312 for performing 3D operations, such as ren-
dering three-dimensional images and scenes using process-
ing functions that act upon 3D primitive shapes (e.g.,
rectangle, triangle, etc.). The 3D pipeline 2312 includes
programmable and fixed function elements that perform
various tasks within the element and/or spawn execution
threads to a 3D/Media sub-system 2315. While 3D pipeline
2312 can be used to perform media operations, an embodi-
ment of GPE 2310 also includes a media pipeline 2316 that
is specifically used to perform media operations, such as
video post-processing and image enhancement.

[0290] In some embodiments, media pipeline 2316
includes fixed function or programmable logic units to
perform one or more specialized media operations, such as
video decode acceleration, video de-interlacing, and video
encode acceleration in place of, or on behalf of video codec
engine 2306. In some embodiments, media pipeline 2316
additionally includes a thread spawning unit to spawn
threads for execution on 3D/Media sub-system 2315. The
spawned threads perform computations for the media opera-
tions on one or more graphics execution units included in
3D/Media sub-system 2315.

[0291] In some embodiments, 3D/Media subsystem 2315
includes logic for executing threads spawned by 3D pipeline
2312 and media pipeline 2316. In one embodiment, the
pipelines send thread execution requests to 3D/Media sub-
system 2315, which includes thread dispatch logic for arbi-
trating and dispatching the various requests to available
thread execution resources. The execution resources include
an array of graphics execution units to process the 3D and
media threads. In some embodiments, 3D/Media subsystem
2315 includes one or more internal caches for thread instruc-
tions and data. In some embodiments, the subsystem also
includes shared memory, including registers and addressable
memory, to share data between threads and to store output
data.

[0292] Graphics Processing Engine

[0293] FIG. 24 is a block diagram of a graphics processing
engine 2410 of a graphics processor in accordance with
some embodiments. In one embodiment, the graphics pro-
cessing engine (GPE) 2410 is a version of the GPE 2310
shown in FIG. 23. Elements of FIG. 24 having the same
reference numbers (or names) as the elements of any other
figure herein can operate or function in any manner similar
to that described elsewhere herein, but are not limited to
such. For example, the 3D pipeline 2312 and media pipeline
2316 of FIG. 23 are illustrated. The media pipeline 2316 is
optional in some embodiments of the GPE 2410 and may not

US 2021/0255957 Al

be explicitly included within the GPE 2410. For example
and in at least one embodiment, a separate media and/or
image processor is coupled to the GPE 2410.

[0294] In some embodiments, GPE 2410 couples with or
includes a command streamer 2403, which provides a com-
mand stream to the 3D pipeline 2312 and/or media pipelines
2316. In some embodiments, command streamer 2403 is
coupled with memory, which can be system memory, or one
or more of internal cache memory and shared cache
memory. In some embodiments, command streamer 2403
receives commands from the memory and sends the com-
mands to 3D pipeline 2312 and/or media pipeline 2316. The
commands are directives fetched from a ring buffer, which
stores commands for the 3D pipeline 2312 and media
pipeline 2316. In one embodiment, the ring buffer can
additionally include batch command buffers storing batches
of multiple commands. The commands for the 3D pipeline
2312 can also include references to data stored in memory,
such as but not limited to vertex and geometry data for the
3D pipeline 2312 and/or image data and memory objects for
the media pipeline 2316. The 3D pipeline 2312 and media
pipeline 2316 process the commands and data by performing
operations via logic within the respective pipelines or by
dispatching one or more execution threads to a graphics core
array 2414. In one embodiment the graphics core array 2414
include one or more blocks of graphics cores (e.g., graphics
core(s) 2415A, graphics core(s) 2415B), each block includ-
ing one or more graphics cores. Each graphics core includes
a set of graphics execution resources that includes general-
purpose and graphics specific execution logic to perform
graphics and compute operations, as well as fixed function
texture processing and/or machine learning and artificial
intelligence acceleration logic.

[0295] In various embodiments the 3D pipeline 2312 can
include fixed function and programmable logic to process
one or more shader programs, such as vertex shaders,
geometry shaders, pixel shaders, fragment shaders, compute
shaders, or other shader programs, by processing the instruc-
tions and dispatching execution threads to the graphics core
array 2414. The graphics core array 2414 provides a unified
block of execution resources for use in processing these
shader programs. Multi-purpose execution logic (e.g.,
execution units) within the graphics core(s) 2415A-2414B
of the graphic core array 2414 includes support for various
3D API shader languages and can execute multiple simul-
taneous execution threads associated with multiple shaders.

[0296] In some embodiments, the graphics core array
2414 includes execution logic to perform media functions,
such as video and/or image processing. In one embodiment,
the execution units include general-purpose logic that is
programmable to perform parallel general-purpose compu-
tational operations, in addition to graphics processing opera-
tions. The general-purpose logic can perform processing
operations in parallel or in conjunction with general-purpose
logic within the processor core(s) 2107 of FIG. 21 or core
2202A-2202N as in FIG. 22.

[0297] Output data generated by threads executing on the
graphics core array 2414 can output data to memory in a
unified return buffer (URB) 2418. The URB 2418 can store
data for multiple threads. In some embodiments the URB
2418 may be used to send data between different threads
executing on the graphics core array 2414. In some embodi-
ments the URB 2418 may additionally be used for synchro-

Aug. 19, 2021

nization between threads on the graphics core array and
fixed function logic within the shared function logic 2420.
[0298] In some embodiments, graphics core array 2414 is
scalable, such that the array includes a variable number of
graphics cores, each having a variable number of execution
units based on the target power and performance level of
GPE 2410. In one embodiment the execution resources are
dynamically scalable, such that execution resources may be
enabled or disabled as needed.

[0299] The graphics core array 2414 couples with shared
function logic 2420 that includes multiple resources that are
shared between the graphics cores in the graphics core array.
The shared functions within the shared function logic 2420
are hardware logic units that provide specialized supple-
mental functionality to the graphics core array 2414. In
various embodiments, shared function logic 2420 includes
but is not limited to sampler 2421, math 2422, and inter-
thread communication (ITC) 2423 logic. Additionally, some
embodiments implement one or more cache(s) 2425 within
the shared function logic 2420.

[0300] A shared function is implemented at least in a case
where the demand for a given specialized function is insuf-
ficient for inclusion within the graphics core array 2414.
Instead a single instantiation of that specialized function is
implemented as a stand-alone entity in the shared function
logic 2420 and shared among the execution resources within
the graphics core array 2414. The precise set of functions
that are shared between the graphics core array 2414 and
included within the graphics core array 2414 varies across
embodiments. In some embodiments, specific shared func-
tions within the shared function logic 2420 that are used
extensively by the graphics core array 2414 may be included
within shared function logic 2416 within the graphics core
array 2414. In various embodiments, the shared function
logic 2416 within the graphics core array 2414 can include
some or all logic within the shared function logic 2420. In
one embodiment, all logic elements within the shared func-
tion logic 2420 may be duplicated within the shared function
logic 2416 of the graphics core array 2414. In one embodi-
ment the shared function logic 2420 is excluded in favor of
the shared function logic 2416 within the graphics core array
2414.

[0301] FIG. 25 is a block diagram of hardware logic of a
graphics processor core 2500, according to some embodi-
ments described herein. Elements of FIG. 25 having the
same reference numbers (or names) as the elements of any
other figure herein can operate or function in any manner
similar to that described elsewhere herein, but are not
limited to such. The illustrated graphics processor core
2500, in some embodiments, is included within the graphics
core array 2414 of FIG. 24. The graphics processor core
2500, sometimes referred to as a core slice, can be one or
multiple graphics cores within a modular graphics processor.
The graphics processor core 2500 is exemplary of one
graphics core slice, and a graphics processor as described
herein may include multiple graphics core slices based on
target power and performance envelopes. Each graphics
processor core 2500 can include a fixed function block 2530
coupled with multiple sub-cores 2501A-2501F, also referred
to as sub-slices, that include modular blocks of general-
purpose and fixed function logic.

[0302] In some embodiments, the fixed function block
2530 includes a geometry/fixed function pipeline 2536 that
can be shared by all sub-cores in the graphics processor core

US 2021/0255957 Al

2500, for example, in lower performance and/or lower
power graphics processor implementations. In various
embodiments, the geometry/fixed function pipeline 2536
includes a 3D fixed function pipeline (e.g., 3D pipeline 2312
as in FIG. 23 and FIG. 24) a video front-end unit, a thread
spawner and thread dispatcher, and a unified return buffer
manager, which manages unified return buffers, such as the
unified return buffer 2418 of FIG. 24.

[0303] In one embodiment the fixed function block 2530
also includes a graphics SoC interface 2537, a graphics
microcontroller 2538, and a media pipeline 2539. The
graphics SoC interface 2537 provides an interface between
the graphics processor core 2500 and other processor cores
within a system on a chip integrated circuit. The graphics
microcontroller 2538 is a programmable sub-processor that
is configurable to manage various functions of the graphics
processor core 2500, including thread dispatch, scheduling,
and pre-emption. The media pipeline 2539 (e.g., media
pipeline 2316 of FIG. 23 and FIG. 24) includes logic to
facilitate the decoding, encoding, pre-processing, and/or
post-processing of multimedia data, including image and
video data. The media pipeline 2539 implement media
operations via requests to compute or sampling logic within
the sub-cores 2501-2501F.

[0304] In one embodiment the SoC interface 2537 enables
the graphics processor core 2500 to communicate with
general-purpose application processor cores (e.g., CPUs)
and/or other components within an SoC, including memory
hierarchy elements such as a shared last level cache memory,
the system RAM, and/or embedded on-chip or on-package
DRAM. The SoC interface 2537 can also enable commu-
nication with fixed function devices within the SoC, such as
camera imaging pipelines, and enables the use of and/or
implements global memory atomics that may be shared
between the graphics processor core 2500 and CPUs within
the SoC. The SoC interface 2537 can also implement power
management controls for the graphics processor core 2500
and enable an interface between a clock domain of the
graphic core 2500 and other clock domains within the SoC.
In one embodiment the SoC interface 2537 enables receipt
of command buffers from a command streamer and global
thread dispatcher that are configured to provide commands
and instructions to each of one or more graphics cores within
a graphics processor. The commands and instructions can be
dispatched to the media pipeline 2539, when media opera-
tions are to be performed, or a geometry and fixed function
pipeline (e.g., geometry and fixed function pipeline 2536,
geometry and fixed function pipeline 2514) when graphics
processing operations are to be performed.

[0305] The graphics microcontroller 2538 can be config-
ured to perform various scheduling and management tasks
for the graphics processor core 2500. In one embodiment the
graphics microcontroller 2538 can perform graphics and/or
compute workload scheduling on the various graphics par-
allel engines within execution unit (EU) arrays 2502A-
2502F, 2504 A-2504F within the sub-cores 2501 A-2501F. In
this scheduling model, host software executing on a CPU
core of an SoC including the graphics processor core 2500
can submit workloads one of multiple graphic processor
doorbells, which invokes a scheduling operation on the
appropriate graphics engine. Scheduling operations include
determining which workload to run next, submitting a
workload to a command streamer, pre-empting existing
workloads running on an engine, monitoring progress of a

Aug. 19, 2021

workload, and notifying host software when a workload is
complete. In one embodiment the graphics microcontroller
2538 can also facilitate low-power or idle states for the
graphics processor core 2500, providing the graphics pro-
cessor core 2500 with the ability to save and restore registers
within the graphics processor core 2500 across low-power
state transitions independently from the operating system
and/or graphics driver software on the system.

[0306] The graphics processor core 2500 may have greater
than or fewer than the illustrated sub-cores 2501 A-2501F, up
to N modular sub-cores. For each set of N sub-cores, the
graphics processor core 2500 can also include shared func-
tion logic 2510, shared and/or cache memory 2512, a
geometry/fixed function pipeline 2514, as well as additional
fixed function logic 2516 to accelerate various graphics and
compute processing operations. The shared function logic
2510 can include logic units associated with the shared
function logic 2420 of FIG. 24 (e.g., sampler, math, and/or
inter-thread communication logic) that can be shared by
each N sub-cores within the graphics processor core 2500.
The shared and/or cache memory 2512 can be a last-level
cache for the set of N sub-cores 2501A-2501F within the
graphics processor core 2500, and can also serve as shared
memory that is accessible by multiple sub-cores. The geom-
etry/fixed function pipeline 2514 can be included instead of
the geometry/fixed function pipeline 2536 within the fixed
function block 2530 and can include the same or similar
logic units.

[0307] In one embodiment the graphics processor core
2500 includes additional fixed function logic 2516 that can
include various fixed function acceleration logic for use by
the graphics processor core 2500. In one embodiment the
additional fixed function logic 2516 includes an additional
geometry pipeline for use in position only shading. In
position-only shading, two geometry pipelines exist, the full
geometry pipeline within the geometry/fixed function pipe-
line 2516, 2536, and a cull pipeline, which is an additional
geometry pipeline which may be included within the addi-
tional fixed function logic 2516. In one embodiment the cull
pipeline is a trimmed down version of the full geometry
pipeline. The full pipeline and the cull pipeline can execute
different instances of the same application, each instance
having a separate context. Position only shading can hide
long cull runs of discarded triangles, enabling shading to be
completed earlier in some instances. For example and in one
embodiment the cull pipeline logic within the additional
fixed function logic 2516 can execute position shaders in
parallel with the main application and generally generates
critical results faster than the full pipeline, as the cull
pipeline fetches and shades only the position attribute of the
vertices, without performing rasterization and rendering of
the pixels to the frame buffer. The cull pipeline can use the
generated critical results to compute visibility information
for all the triangles without regard to whether those triangles
are culled. The full pipeline (which in this instance may be
referred to as a replay pipeline) can consume the visibility
information to skip the culled triangles to shade only the
visible triangles that are finally passed to the rasterization
phase.

[0308] In one embodiment the additional fixed function
logic 2516 can also include machine-learning acceleration
logic, such as fixed function matrix multiplication logic, for
implementations including optimizations for machine learn-
ing training or inferencing.

US 2021/0255957 Al

[0309] Within each graphics sub-core 2501A-2501F
includes a set of execution resources that may be used to
perform graphics, media, and compute operations in
response to requests by graphics pipeline, media pipeline, or
shader programs. The graphics sub-cores 2501A-2501F
include multiple EU arrays 2502A-2502F, 2504A-2504F,
thread dispatch and inter-thread communication (TD/IC)
logic 2503A-2503F, a 3D (e.g., texture) sampler 2505A-
2505F, a media sampler 2506A-2506F, a shader processor
2507A-2507F, and shared local memory (SLM) 2508A-
2508F. The EU arrays 2502A-2502F, 2504A-2504F each
include multiple execution units, which are general-purpose
graphics processing units capable of performing floating-
point and integer/fixed-point logic operations in service of a
graphics, media, or compute operation, including graphics,
media, or compute shader programs. The TD/IC logic
2503A-2503F performs local thread dispatch and thread
control operations for the execution units within a sub-core
and facilitate communication between threads executing on
the execution units of the sub-core. The 3D sampler 2505A-
2505F can read texture or other 3D graphics related data into
memory. The 3D sampler can read texture data differently
based on a configured sample state and the texture format
associated with a given texture. The media sampler 2506A-
2506F can perform similar read operations based on the type
and format associated with media data. In one embodiment,
each graphics sub-core 2501A-2501F can alternately
include a unified 3D and media sampler. Threads executing
on the execution units within each of the sub-cores 2501 A-
2501F can make use of shared local memory 2508 A-2508F
within each sub-core, to enable threads executing within a
thread group to execute using a common pool of on-chip
memory.

[0310] Execution Units

[0311] FIG. 26A-26B illustrate thread execution logic
2600 including an array of processing elements employed in
a graphics processor core according to embodiments
described herein. Elements of FIG. 26A-26B having the
same reference numbers (or names) as the elements of any
other figure herein can operate or function in any manner
similar to that described elsewhere herein, but are not
limited to such. FIG. 26A illustrates an overview of thread
execution logic 2600, which can include a variant of the
hardware logic illustrated with each sub-core 2501A-2501F
of FIG. 25. FIG. 26B illustrates exemplary internal details of
an execution unit.

[0312] As illustrated in FIG. 26A, in some embodiments
thread execution logic 2600 includes a shader processor
2602, a thread dispatcher 2604, instruction cache 2606, a
scalable execution unit array including a plurality of execu-
tion units 2608A-2608N, a sampler 2610, a data cache 2612,
and a data port 2614. In one embodiment the scalable
execution unit array can dynamically scale by enabling or
disabling one or more execution units (e.g., any of execution
unit 2608A, 2608B, 2608C, 2608D, through 2608N-1 and
2608N) based on the computational requirements of a work-
load. In one embodiment the included components are
interconnected via an interconnect fabric that links to each
of the components. In some embodiments, thread execution
logic 2600 includes one or more connections to memory,
such as system memory or cache memory, through one or
more of instruction cache 2606, data port 2614, sampler
2610, and execution units 2608 A-2608N. In some embodi-
ments, each execution unit (e.g. 2608A) is a stand-alone

Aug. 19, 2021

programmable general-purpose computational unit that is
capable of executing multiple simultaneous hardware
threads while processing multiple data elements in parallel
for each thread. In various embodiments, the array of
execution units 2608A-2608N is scalable to include any
number individual execution units.

[0313] In some embodiments, the execution units 2608 A-
2608N are primarily used to execute shader programs. A
shader processor 2602 can process the various shader pro-
grams and dispatch execution threads associated with the
shader programs via a thread dispatcher 2604. In one
embodiment the thread dispatcher includes logic to arbitrate
thread initiation requests from the graphics and media
pipelines and instantiate the requested threads on one or
more execution unit in the execution units 2608A-2608N.
For example, a geometry pipeline can dispatch vertex,
tessellation, or geometry shaders to the thread execution
logic for processing. In some embodiments, thread dis-
patcher 2604 can also process runtime thread spawning
requests from the executing shader programs.

[0314] In some embodiments, the execution units 2608 A-
2608N support an instruction set that includes native support
for many standard 3D graphics shader instructions, such that
shader programs from graphics libraries (e.g., Direct 3D and
OpenGL) are executed with a minimal translation. The
execution units support vertex and geometry processing
(e.g., vertex programs, geometry programs, vertex shaders),
pixel processing (e.g., pixel shaders, fragment shaders) and
general-purpose processing (e.g., compute and media shad-
ers). Each of the execution units 2608 A-2608N is capable of
multi-issue single instruction multiple data (SIMD) execu-
tion and multi-threaded operation enables an efficient execu-
tion environment in the face of higher latency memory
accesses. Each hardware thread within each execution unit
has a dedicated high-bandwidth register file and associated
independent thread-state. Execution is multi-issue per clock
to pipelines capable of integer, single and double precision
floating point operations, SIMD branch capability, logical
operations, transcendental operations, and other miscella-
neous operations. While waiting for data from memory or
one of the shared functions, dependency logic within the
execution units 2608A-2608N causes a waiting thread to
sleep until the requested data has been returned. While the
waiting thread is sleeping, hardware resources may be
devoted to processing other threads. For example, during a
delay associated with a vertex shader operation, an execu-
tion unit can perform operations for a pixel shader, fragment
shader, or another type of shader program, including a
different vertex shader. Various embodiments can apply to
use execution by use of Single Instruction Multiple Thread
(SIMT) as an alternate to use of SIMD or in addition to use
of SIMD. Reference to a SIMD core or operation can apply
also to SIMT or apply to SIMD in combination with SIMT.

[0315] Each execution unit in execution units 2608A-
2608N operates on arrays of data elements. The number of
data elements is the “execution size,” or the number of
channels for the instruction. An execution channel is a
logical unit of execution for data element access, masking,
and flow control within instructions. The number of chan-
nels may be independent of the number of physical Arith-
metic Logic Units (ALUs) or Floating Point Units (FPUs)
for a particular graphics processor. In some embodiments,
execution units 2608A-2608N support integer and floating-
point data types.

US 2021/0255957 Al

[0316] The execution unit instruction set includes SIMD
instructions. The various data elements can be stored as a
packed data type in a register and the execution unit will
process the various elements based on the data size of the
elements. For example, when operating on a 256-bit wide
vector, the 256 bits of the vector are stored in a register and
the execution unit operates on the vector as four separate
64-bit packed data elements (Quad-Word (QW) size data
elements), eight separate 32-bit packed data elements
(Double Word (DW) size data elements), sixteen separate
16-bit packed data elements (Word (W) size data elements),
or thirty-two separate 8-bit data elements (byte (B) size data
elements). However, different vector widths and register
sizes are possible.

[0317] In one embodiment one or more execution units
can be combined into a fused execution unit 2609A-2609N
having thread control logic (2607A-2607N) that is common
to the fused EUs. Multiple EUs can be fused into an EU
group. Each EU in the fused EU group can be configured to
execute a separate SIMD hardware thread. The number of
EUs in a fused EU group can vary according to embodi-
ments. Additionally, various SIMD widths can be performed
per-EU, including but not limited to SIMDS8, SIMD16, and
SIMD32. Each fused graphics execution unit 2609A-2609N
includes at least two execution units. For example, fused
execution unit 2609A includes a first EU 2608A, second EU
2608B, and thread control logic 2607A that is common to
the first EU 2608A and the second EU 2608B. The thread
control logic 2607 A controls threads executed on the fused
graphics execution unit 2609A, allowing each EU within the
fused execution units 2609A-2609N to execute using a
common instruction pointer register.

[0318] One or more internal instruction caches (e.g., 2606)
are included in the thread execution logic 2600 to cache
thread instructions for the execution units. In some embodi-
ments, one or more data caches (e.g., 2612) are included to
cache thread data during thread execution. In some embodi-
ments, a sampler 2610 is included to provide texture sam-
pling for 3D operations and media sampling for media
operations. In some embodiments, sampler 2610 includes
specialized texture or media sampling functionality to pro-
cess texture or media data during the sampling process
before providing the sampled data to an execution unit.

[0319] During execution, the graphics and media pipelines
send thread initiation requests to thread execution logic 2600
via thread spawning and dispatch logic. Once a group of
geometric objects has been processed and rasterized into
pixel data, pixel processor logic (e.g., pixel shader logic,
fragment shader logic, etc.) within the shader processor
2602 is invoked to further compute output information and
cause results to be written to output surfaces (e.g., color
buffers, depth buffers, stencil buffers, etc.). In some embodi-
ments, a pixel shader or fragment shader calculates the
values of the various vertex attributes that are to be inter-
polated across the rasterized object. In some embodiments,
pixel processor logic within the shader processor 2602 then
executes an application programming interface (API)-sup-
plied pixel or fragment shader program. To execute the
shader program, the shader processor 2602 dispatches
threads to an execution unit (e.g., 2608A) via thread dis-
patcher 2604. In some embodiments, shader processor 2602
uses texture sampling logic in the sampler 2610 to access
texture data in texture maps stored in memory. Arithmetic
operations on the texture data and the input geometry data

Aug. 19, 2021

compute pixel color data for each geometric fragment, or
discards one or more pixels from further processing.
[0320] In some embodiments, the data port 2614 provides
a memory access mechanism for the thread execution logic
2600 to output processed data to memory for further pro-
cessing on a graphics processor output pipeline. In some
embodiments, the data port 2614 includes or couples to one
or more cache memories (e.g., data cache 2612) to cache
data for memory access via the data port.

[0321] As illustrated in FIG. 26B, a graphics execution
unit 2608 can include an instruction fetch unit 2637, a
general register file array (GRF) 2624, an architectural
register file array (ARF) 2626, a thread arbiter 2622, a send
unit 2630, a branch unit 2632, a set of SIMD floating point
units (FPUs) 2634, and in one embodiment a set of dedicated
integer SIMD ALUs 2635. The GRF 2624 and ARF 2626
includes the set of general register files and architecture
register files associated with each simultaneous hardware
thread that may be active in the graphics execution unit
2608. In one embodiment, per thread architectural state is
maintained in the ARF 2626, while data used during thread
execution is stored in the GRF 2624. The execution state of
each thread, including the instruction pointers for each
thread, can be held in thread-specific registers in the ARF
2626.

[0322] In one embodiment the graphics execution unit
2608 has an architecture that is a combination of Simulta-
neous Multi-Threading (SMT) and fine-grained Interleaved
Multi-Threading (IMT). The architecture has a modular
configuration that can be fine-tuned at design time based on
a target number of simultaneous threads and number of
registers per execution unit, where execution unit resources
are divided across logic used to execute multiple simulta-
neous threads.

[0323] In one embodiment, the graphics execution unit
2608 can co-issue multiple instructions, which may each be
different instructions. The thread arbiter 2622 of the graphics
execution unit thread 2608 can dispatch the instructions to
one of the send unit 2630, branch unit 2632, or SIMD
FPU(s) 2634 for execution. Each execution thread can
access 128 general-purpose registers within the GRF 2624,
where each register can store 32 bytes, accessible as an
8-element vector of 32-bit data elements. In one embodi-
ment, each execution unit thread has access to 4 Kbytes
within the GRF 2624, although embodiments are not so
limited, and greater or fewer register resources may be
provided in other embodiments. In one embodiment up to
seven threads can execute simultaneously, although the
number of threads per execution unit can also vary accord-
ing to embodiments. In an embodiment in which seven
threads may access 4 Kbytes, the GRF 2624 can store a total
of 28 Kbytes. Flexible addressing modes can permit regis-
ters to be addressed together to build effectively wider
registers or to represent strided rectangular block data struc-
tures.

[0324] In one embodiment, memory operations, sampler
operations, and other longer-latency system communica-
tions are dispatched via “send” instructions that are executed
by the message passing send unit 2630. In one embodiment,
branch instructions are dispatched to a dedicated branch unit
2632 to facilitate SIMD divergence and eventual conver-
gence.

[0325] In one embodiment the graphics execution unit
2608 includes one or more SIMD floating point units

US 2021/0255957 Al

(FPU(s)) 2634 to perform floating-point operations. In one
embodiment, the FPU(s) 2634 also support integer compu-
tation. In one embodiment the FPU(s) 2634 can SIMD
execute up to M number of 32-bit floating-point (or integer)
operations, or SIMD execute up to 2M 16-bit integer or
16-bit floating-point operations. In one embodiment, at least
one of the FPU(s) provides extended math capability to
support high-throughput transcendental math functions and
double precision 64-bit floating-point. In some embodi-
ments, a set of 8-bit integer SIMD ALUs 2635 are also
present and may be specifically optimized to perform opera-
tions associated with machine learning computations.
[0326] In one embodiment, arrays of multiple instances of
the graphics execution unit 2608 can be instantiated in a
graphics sub-core grouping (e.g., a sub-slice). For scalabil-
ity, product architects can choose the exact number of
execution units per sub-core grouping. In one embodiment
the execution unit 2608 can execute instructions across a
plurality of execution channels. In a further embodiment,
each thread executed on the graphics execution unit 2608 is
executed on a different channel.

[0327] FIG. 27 is a block diagram illustrating a graphics
processor instruction formats 2700 according to some
embodiments. In one or more embodiment, the graphics
processor execution units support an instruction set having
instructions in multiple formats. The solid lined boxes
illustrate the components that are generally included in an
execution unit instruction, while the dashed lines include
components that are optional or that are only included in a
sub-set of the instructions. In some embodiments, instruc-
tion format 2700 described and illustrated are macro-instruc-
tions, in that they are instructions supplied to the execution
unit, as opposed to micro-operations resulting from instruc-
tion decode once the instruction is processed.

[0328] In some embodiments, the graphics processor
execution units natively support instructions in a 128-bit
instruction format 2710. A 64-bit compacted instruction
format 2730 is available for some instructions based on the
selected instruction, instruction options, and number of
operands. The native 128-bit instruction format 2710 pro-
vides access to all instruction options, while some options
and operations are restricted in the 64-bit format 2730. The
native instructions available in the 64-bit format 2730 vary
by embodiment. In some embodiments, the instruction is
compacted in part using a set of index values in an index
field 2713. The execution unit hardware references a set of
compaction tables based on the index values and uses the
compaction table outputs to reconstruct a native instruction
in the 128-bit instruction format 2710. Other sizes and
formats of instruction can be used.

[0329] For each format, instruction opcode 2712 defines
the operation that the execution unit is to perform. The
execution units execute each instruction in parallel across
the multiple data elements of each operand. For example, in
response to an add instruction the execution unit performs a
simultaneous add operation across each color channel rep-
resenting a texture element or picture element. By default,
the execution unit performs each instruction across all data
channels of the operands. In some embodiments, instruction
control field 2714 enables control over certain execution
options, such as channels selection (e.g., predication) and
data channel order (e.g., swizzle). For instructions in the
128-bit instruction format 2710 an exec-size field 2716
limits the number of data channels that will be executed in

Aug. 19, 2021

parallel. In some embodiments, exec-size field 2716 is not
available for use in the 64-bit compact instruction format
2730.

[0330] Some execution unit instructions have up to three
operands including two source operands, src0 2720, srcl
2722, and one destination 2718. In some embodiments, the
execution units support dual destination instructions, where
one of the destinations is implied. Data manipulation
instructions can have a third source operand (e.g., SRC2
2724), where the instruction opcode 2712 determines the
number of source operands. An instruction’s last source
operand can be an immediate (e.g., hard-coded) value passed
with the instruction.

[0331] In some embodiments, the 128-bit instruction for-
mat 2710 includes an access/address mode field 2726 speci-
fying, for example, whether direct register addressing mode
or indirect register addressing mode is used. When direct
register addressing mode is used, the register address of one
or more operands is directly provided by bits in the instruc-
tion.

[0332] In some embodiments, the 128-bit instruction for-
mat 2710 includes an access/address mode field 2726, which
specifies an address mode and/or an access mode for the
instruction. In one embodiment the access mode is used to
define a data access alignment for the instruction. Some
embodiments support access modes including a 16-byte
aligned access mode and a 1-byte aligned access mode,
where the byte alignment of the access mode determines the
access alignment of the instruction operands. For example,
when in a first mode, the instruction may use byte-aligned
addressing for source and destination operands and when in
a second mode, the instruction may use 16-byte-aligned
addressing for all source and destination operands.

[0333] In one embodiment, the address mode portion of
the access/address mode field 2726 determines whether the
instruction is to use direct or indirect addressing. When
direct register addressing mode is used bits in the instruction
directly provide the register address of one or more oper-
ands. When indirect register addressing mode is used, the
register address of one or more operands may be computed
based on an address register value and an address immediate
field in the instruction.

[0334] In some embodiments, instructions are grouped
based on opcode 2712 bit-fields to simplify Opcode decode
2740. For an 8-bit opcode, bits 4, 5, and 6 allow the
execution unit to determine the type of opcode. The precise
opcode grouping shown is merely an example. In some
embodiments, a move and logic opcode group 2742 includes
data movement and logic instructions (e.g., move (mov),
compare (cmp)). In some embodiments, move and logic
group 2742 shares the five most significant bits (MSB),
where move (mov) instructions are in the form of
0000xxxxb and logic instructions are in the form of
0001xxxxb. A flow control instruction group 2744 (e.g., call,
jump (jmp)) includes instructions in the form of 0010xxxxb
(e.g., 0x20). A miscellaneous instruction group 2746
includes a mix of instructions, including synchronization
instructions (e.g., wait, send) in the form of 0011xxxxb (e.g.,
0x30). A parallel math instruction group 2748 includes
component-wise arithmetic instructions (e.g., add, multiply
(mul)) in the form of 0100xxxxb (e.g., 0x40). The parallel
math group 2748 performs the arithmetic operations in
parallel across data channels. The vector math group 2750
includes arithmetic instructions (e.g., dp4) in the form of

US 2021/0255957 Al

0101xxxxb (e.g., 0x50). The vector math group performs
arithmetic such as dot product calculations on vector oper-
ands.

[0335] Graphics Pipeline

[0336] FIG. 28 is a block diagram of another embodiment
of a graphics processor 2800. Elements of FIG. 28 having
the same reference numbers (or names) as the elements of
any other figure herein can operate or function in any
manner similar to that described elsewhere herein, but are
not limited to such.

[0337] In some embodiments, graphics processor 2800
includes a geometry pipeline 2820, a media pipeline 2830,
a display engine 2840, thread execution logic 2850, and a
render output pipeline 2870. In some embodiments, graphics
processor 2800 is a graphics processor within a multi-core
processing system that includes one or more general-pur-
pose processing cores. The graphics processor is controlled
by register writes to one or more control registers (not
shown) or via commands issued to graphics processor 2800
via a ring interconnect 2802. In some embodiments, ring
interconnect 2802 couples graphics processor 2800 to other
processing components, such as other graphics processors or
general-purpose processors. Commands from ring intercon-
nect 2802 are interpreted by a command streamer 2803,
which supplies instructions to individual components of the
geometry pipeline 2820 or the media pipeline 2830.
[0338] In some embodiments, command streamer 2803
directs the operation of a vertex fetcher 2805 that reads
vertex data from memory and executes vertex-processing
commands provided by command streamer 2803. In some
embodiments, vertex fetcher 2805 provides vertex data to a
vertex shader 2807, which performs coordinate space trans-
formation and lighting operations to each vertex. In some
embodiments, vertex fetcher 2805 and vertex shader 2807
execute vertex-processing instructions by dispatching
execution threads to execution units 2852A-2852B via a
thread dispatcher 2831.

[0339] In some embodiments, execution units 2852A-
28528 are an array of vector processors having an instruc-
tion set for performing graphics and media operations. In
some embodiments, execution units 2852A-2852B have an
attached L1 cache 2851 that is specific for each array or
shared between the arrays. The cache can be configured as
a data cache, an instruction cache, or a single cache that is
partitioned to contain data and instructions in different
partitions.

[0340] In some embodiments, geometry pipeline 2820
includes tessellation components to perform hardware-ac-
celerated tessellation of 3D objects. In some embodiments,
a programmable hull shader 2811 configures the tessellation
operations. A programmable domain shader 2817 provides
back-end evaluation of tessellation output. A tessellator
2813 operates at the direction of hull shader 2811 and
contains special purpose logic to generate a set of detailed
geometric objects based on a coarse geometric model that is
provided as input to geometry pipeline 2820. In some
embodiments, if tessellation is not used, tessellation com-
ponents (e.g., hull shader 2811, tessellator 2813, and domain
shader 2817) can be bypassed.

[0341] In some embodiments, complete geometric objects
can be processed by a geometry shader 2819 via one or more
threads dispatched to execution units 2852A-2852B, or can
proceed directly to the clipper 2829. In some embodiments,
the geometry shader operates on entire geometric objects,

Aug. 19, 2021

rather than vertices or patches of vertices as in previous
stages of the graphics pipeline. If the tessellation is disabled,
the geometry shader 2819 receives input from the vertex
shader 2807. In some embodiments, geometry shader 2819
is programmable by a geometry shader program to perform
geometry tessellation if the tessellation units are disabled.

[0342] Before rasterization, a clipper 2829 processes ver-
tex data. The clipper 2829 may be a fixed function clipper or
a programmable clipper having clipping and geometry
shader functions. In some embodiments, a rasterizer and
depth test component 2873 in the render output pipeline
2870 dispatches pixel shaders to convert the geometric
objects into per pixel representations. In some embodiments,
pixel shader logic is included in thread execution logic 2850.
In some embodiments, an application can bypass the raster-
izer and depth test component 2873 and access un-rasterized
vertex data via a stream out unit 2823.

[0343] The graphics processor 2800 has an interconnect
bus, interconnect fabric, or some other interconnect mecha-
nism that allows data and message passing amongst the
major components of the processor. In some embodiments,
execution units 2852A-2852B and associated logic units
(e.g., L1 cache 2851, sampler 2854, texture cache 2858, etc.)
interconnect via a data port 2856 to perform memory access
and communicate with render output pipeline components of
the processor. In some embodiments, sampler 2854, L1
cache 2851, texture cache 2858, and execution units 2852A-
2852B each have separate memory access paths. In one
embodiment the texture cache 2858 can also be configured
as a sampler cache.

[0344] In some embodiments, render output pipeline 2870
contains a rasterizer and depth test component 2873 that
converts vertex-based objects into an associated pixel-based
representation. In some embodiments, the rasterizer logic
includes a windower/masker unit to perform fixed function
triangle and line rasterization. An associated render cache
2878 and depth cache 2879 are also available in some
embodiments. A pixel operations component 2877 performs
pixel-based operations on the data, though in some
instances, pixel operations associated with 2D operations
(e.g. bit block image transfers with blending) are performed
by the 2D engine 2841, or substituted at display time by the
display controller 2843 using overlay display planes. In
some embodiments, a shared .3 cache 2875 is available to
all graphics components, allowing the sharing of data with-
out the use of main system memory.

[0345] In some embodiments, graphics processor media
pipeline 2830 includes a media engine 2837 and a video
front-end 2834. In some embodiments, video front-end 2834
receives pipeline commands from the command streamer
2803. In some embodiments, media pipeline 2830 includes
a separate command streamer. In some embodiments, video
front-end 2834 processes media commands before sending
the command to the media engine 2837. In some embodi-
ments, media engine 2837 includes thread spawning func-
tionality to spawn threads for dispatch to thread execution
logic 2850 via thread dispatcher 2831.

[0346] In some embodiments, graphics processor 2800
includes a display engine 2840. In some embodiments,
display engine 2840 is external to processor 2800 and
couples with the graphics processor via the ring interconnect
2802, or some other interconnect bus or fabric. In some
embodiments, display engine 2840 includes a 2D engine
2841 and a display controller 2843. In some embodiments,

US 2021/0255957 Al

display engine 2840 contains special purpose logic capable
of operating independently of the 3D pipeline. In some
embodiments, display controller 2843 couples with a display
device (not shown), which may be a system integrated
display device, as in a laptop computer, or an external
display device attached via a display device connector.
[0347] In some embodiments, the geometry pipeline 2820
and media pipeline 2830 are configurable to perform opera-
tions based on multiple graphics and media programming
interfaces and are not specific to any one application pro-
gramming interface (API). In some embodiments, driver
software for the graphics processor translates API calls that
are specific to a particular graphics or media library into
commands that can be processed by the graphics processor.
In some embodiments, support is provided for the Open
Graphics Library (OpenGL), Open Computing [anguage
(OpenCL), and/or Vulkan graphics and compute API, all
from the Khronos Group. In some embodiments, support
may also be provided for the Direct3D library from the
Microsoft Corporation. In some embodiments, a combina-
tion of these libraries may be supported. Support may also
be provided for the Open Source Computer Vision Library
(OpenCV). A future API with a compatible 3D pipeline
would also be supported if a mapping can be made from the
pipeline of the future API to the pipeline of the graphics
processor.

[0348] Graphics Pipeline Programming

[0349] FIG. 29A is a block diagram illustrating a graphics
processor command format 2900 according to some embodi-
ments. FIG. 29B is a block diagram illustrating a graphics
processor command sequence 2910 according to an embodi-
ment. The solid lined boxes in FIG. 29A illustrate the
components that are generally included in a graphics com-
mand while the dashed lines include components that are
optional or that are only included in a sub-set of the graphics
commands. The exemplary graphics processor command
format 2900 of FIG. 29A includes data fields to identify a
client 2902, a command operation code (opcode) 2904, and
data 2906 for the command. A sub-opcode 2905 and a
command size 2908 are also included in some commands.

[0350] In some embodiments, client 2902 specifies the
client unit of the graphics device that processes the com-
mand data. In some embodiments, a graphics processor
command parser examines the client field of each command
to condition the further processing of the command and
route the command data to the appropriate client unit. In
some embodiments, the graphics processor client units
include a memory interface unit, a render unit, a 2D unit, a
3D unit, and a media unit. Each client unit has a correspond-
ing processing pipeline that processes the commands. Once
the command is received by the client unit, the client unit
reads the opcode 2904 and, if present, sub-opcode 2905 to
determine the operation to perform. The client unit performs
the command using information in data field 2906. For some
commands an explicit command size 2908 is expected to
specify the size of the command. In some embodiments, the
command parser automatically determines the size of at least
some of the commands based on the command opcode. In
some embodiments, commands are aligned via multiples of
a double word. Other command formats can be used.

[0351] The flow diagram in FIG. 29B illustrates an exem-
plary graphics processor command sequence 2910. In some
embodiments, software or firmware of a data processing
system that features an embodiment of a graphics processor

Aug. 19, 2021

uses a version of the command sequence shown to set up,
execute, and terminate a set of graphics operations. A sample
command sequence is shown and described for purposes of
example only as embodiments are not limited to these
specific commands or to this command sequence. Moreover,
the commands may be issued as batch of commands in a
command sequence, such that the graphics processor will
process the sequence of commands in at least partially
concurrence.

[0352] Insomeembodiments, the graphics processor com-
mand sequence 2910 may begin with a pipeline flush
command 2912 to cause any active graphics pipeline to
complete the currently pending commands for the pipeline.
In some embodiments, the 3D pipeline 2922 and the media
pipeline 2924 do not operate concurrently. The pipeline flush
is performed to cause the active graphics pipeline to com-
plete any pending commands. In response to a pipeline flush,
the command parser for the graphics processor will pause
command processing until the active drawing engines com-
plete pending operations and the relevant read caches are
invalidated. Optionally, any data in the render cache that is
marked ‘dirty’ can be flushed to memory. In some embodi-
ments, pipeline flush command 2912 can be used for pipe-
line synchronization or before placing the graphics proces-
sor into a low power state.

[0353] In some embodiments, a pipeline select command
2913 is used when a command sequence requires the graph-
ics processor to explicitly switch between pipelines. In some
embodiments, a pipeline select command 2913 is required
only once within an execution context before issuing pipe-
line commands unless the context is to issue commands for
both pipelines. In some embodiments, a pipeline flush
command 2912 is required immediately before a pipeline
switch via the pipeline select command 2913.

[0354] Insome embodiments, a pipeline control command
2914 configures a graphics pipeline for operation and is used
to program the 3D pipeline 2922 and the media pipeline
2924. In some embodiments, pipeline control command
2914 configures the pipeline state for the active pipeline. In
one embodiment, the pipeline control command 2914 is
used for pipeline synchronization and to clear data from one
or more cache memories within the active pipeline before
processing a batch of commands.

[0355] In some embodiments, commands to configure the
return buffer state 2916 are used to configure a set of return
buffers for the respective pipelines to write data. Some
pipeline operations require the allocation, selection, or con-
figuration of one or more return buffers into which the
operations write intermediate data during processing. In
some embodiments, the graphics processor also uses one or
more return buffers to store output data and to perform cross
thread communication. In some embodiments, the return
buffer state 2916 includes selecting the size and number of
return buffers to use for a set of pipeline operations.
[0356] The remaining commands in the command
sequence differ based on the active pipeline for operations.
Based on a pipeline determination 2920, the command
sequence is tailored to the 3D pipeline 2922 beginning with
the 3D pipeline state 2930 or the media pipeline 2924
beginning at the media pipeline state 2940.

[0357] The commands to configure the 3D pipeline state
2930 include 3D state setting commands for vertex buffer
state, vertex element state, constant color state, depth buffer
state, and other state variables that are to be configured

US 2021/0255957 Al

before 3D primitive commands are processed. The values of
these commands are determined at least in part based on the
particular 3D API in use. In some embodiments, 3D pipeline
state 2930 commands are also able to selectively disable or
bypass certain pipeline elements if those elements will not
be used.

[0358] In some embodiments, 3D primitive 2932 com-
mand is used to submit 3D primitives to be processed by the
3D pipeline. Commands and associated parameters that are
passed to the graphics processor via the 3D primitive 2932
command are forwarded to the vertex fetch function in the
graphics pipeline. The vertex fetch function uses the 3D
primitive 2932 command data to generate vertex data struc-
tures. The vertex data structures are stored in one or more
return buffers. In some embodiments, 3D primitive 2932
command is used to perform vertex operations on 3D
primitives via vertex shaders. To process vertex shaders, 3D
pipeline 2922 dispatches shader execution threads to graph-
ics processor execution units.

[0359] In some embodiments, 3D pipeline 2922 is trig-
gered via an execute 2934 command or event. In some
embodiments, a register write triggers command execution.
In some embodiments, execution is triggered via a ‘go’ or
‘kick’ command in the command sequence. In one embodi-
ment, command execution is triggered using a pipeline
synchronization command to flush the command sequence
through the graphics pipeline. The 3D pipeline will perform
geometry processing for the 3D primitives. Once operations
are complete, the resulting geometric objects are rasterized
and the pixel engine colors the resulting pixels. Additional
commands to control pixel shading and pixel back end
operations may also be included for those operations.
[0360] Insomeembodiments, the graphics processor com-
mand sequence 2910 follows the media pipeline 2924 path
when performing media operations. In general, the specific
use and manner of programming for the media pipeline 2924
depends on the media or compute operations to be per-
formed. Specific media decode operations may be offloaded
to the media pipeline during media decode. In some embodi-
ments, the media pipeline can also be bypassed and media
decode can be performed in whole or in part using resources
provided by one or more general-purpose processing cores.
In one embodiment, the media pipeline also includes ele-
ments for general-purpose graphics processor unit (GPGPU)
operations, where the graphics processor is used to perform
SIMD vector operations using computational shader pro-
grams that are not explicitly related to the rendering of
graphics primitives.

[0361] In some embodiments, media pipeline 2924 is
configured in a similar manner as the 3D pipeline 2922. A
set of commands to configure the media pipeline state 2940
are dispatched or placed into a command queue before the
media object commands 2942. In some embodiments, com-
mands for the media pipeline state 2940 include data to
configure the media pipeline elements that will be used to
process the media objects. This includes data to configure
the video decode and video encode logic within the media
pipeline, such as encode or decode format. In some embodi-
ments, commands for the media pipeline state 2940 also
support the use of one or more pointers to “indirect” state
elements that contain a batch of state settings.

[0362] In some embodiments, media object commands
2942 supply pointers to media objects for processing by the
media pipeline. The media objects include memory buffers

Aug. 19, 2021

containing video data to be processed. In some embodi-
ments, all media pipeline states must be valid before issuing
a media object command 2942. Once the pipeline state is
configured and media object commands 2942 are queued,
the media pipeline 2924 is triggered via an execute com-
mand 2944 or an equivalent execute event (e.g., register
write). Output from media pipeline 2924 may then be post
processed by operations provided by the 3D pipeline 2922 or
the media pipeline 2924. In some embodiments, GPGPU
operations are configured and executed in a similar manner
as media operations.

[0363]

[0364] FIG. 30 illustrates an exemplary graphics software
architecture for a data processing system 3000 according to
some embodiments. In some embodiments, software archi-
tecture includes a 3D graphics application 3010, an operat-
ing system 3020, and at least one processor 3030. In some
embodiments, processor 3030 includes a graphics processor
3032 and one or more general-purpose processor core(s)
3034. The graphics application 3010 and operating system
3020 each execute in the system memory 3050 of the data
processing system.

[0365] In some embodiments, 3D graphics application
3010 contains one or more shader programs including
shader instructions 3012. The shader language instructions
may be in a high-level shader language, such as the High-
Level Shader Language (HL.SL) of Direct3D, the OpenGL
Shader Language (GLSL), and so forth. The application also
includes executable instructions 3014 in a machine language
suitable for execution by the general-purpose processor core
3034. The application also includes graphics objects 3016
defined by vertex data.

[0366] In some embodiments, operating system 3020 is a
Microsoft® Windows® operating system from the
Microsoft Corporation, a proprietary UNIX-like operating
system, or an open source UNIX-like operating system
using a variant of the Linux kernel. The operating system
3020 can support a graphics API 3022 such as the Direct3D
API, the OpenGL API, or the Vulkan API. When the
Direct3D API is in use, the operating system 3020 uses a
front-end shader compiler 3024 to compile any shader
instructions 3012 in HLSL into a lower-level shader lan-
guage. The compilation may be a just-in-time (JIT) compi-
lation or the application can perform shader pre-compila-
tion. In some embodiments, high-level shaders are compiled
into low-level shaders during the compilation of the 3D
graphics application 3010. In some embodiments, the shader
instructions 3012 are provided in an intermediate form, such
as a version of the Standard Portable Intermediate Repre-
sentation (SPIR) used by the Vulkan API.

[0367] In some embodiments, user mode graphics driver
3026 contains a back-end shader compiler 3027 to convert
the shader instructions 3012 into a hardware specific repre-
sentation. When the OpenGL API is in use, shader instruc-
tions 3012 in the GLSL high-level language are passed to a
user mode graphics driver 3026 for compilation. In some
embodiments, user mode graphics driver 3026 uses operat-
ing system kernel mode functions 3028 to communicate
with a kernel mode graphics driver 3029. In some embodi-
ments, kernel mode graphics driver 3029 communicates
with graphics processor 3032 to dispatch commands and
instructions.

Graphics Software Architecture

US 2021/0255957 Al

[0368] IP Core Implementations

[0369] One or more aspects of at least one embodiment
may be implemented by representative code stored on a
machine-readable medium which represents and/or defines
logic within an integrated circuit such as a processor. For
example, the machine-readable medium may include
instructions which represent various logic within the pro-
cessor. When read by a machine, the instructions may cause
the machine to fabricate the logic to perform the techniques
described herein. Such representations, known as “IP cores,”
are reusable units of logic for an integrated circuit that may
be stored on a tangible, machine-readable medium as a
hardware model that describes the structure of the integrated
circuit. The hardware model may be supplied to various
customers or manufacturing facilities, which load the hard-
ware model on fabrication machines that manufacture the
integrated circuit. The integrated circuit may be fabricated
such that the circuit performs operations described in asso-
ciation with any of the embodiments described herein.
[0370] FIG. 31A is a block diagram illustrating an IP core
development system 3100 that may be used to manufacture
an integrated circuit to perform operations according to an
embodiment. The IP core development system 3100 may be
used to generate modular, re-usable designs that can be
incorporated into a larger design or used to construct an
entire integrated circuit (e.g., an SOC integrated circuit). A
design facility 3130 can generate a software simulation 3110
of an IP core design in a high-level programming language
(e.g., C/C++). The software simulation 3110 can be used to
design, test, and verify the behavior of the IP core using a
simulation model 3112. The simulation model 3112 may
include functional, behavioral, and/or timing simulations. A
register transfer level (RTL) design 3115 can then be created
or synthesized from the simulation model 3112. The RTL
design 3115 is an abstraction of the behavior of the inte-
grated circuit that models the flow of digital signals between
hardware registers, including the associated logic performed
using the modeled digital signals. In addition to an RTL
design 3115, lower-level designs at the logic level or tran-
sistor level may also be created, designed, or synthesized.
Thus, the particular details of the initial design and simula-
tion may vary.

[0371] The RTL design 3115 or equivalent may be further
synthesized by the design facility into a hardware model
3120, which may be in a hardware description language
(HDL), or some other representation of physical design data.
The HDL may be further simulated or tested to verify the IP
core design. The IP core design can be stored for delivery to
a 3™ party fabrication facility 3165 using non-volatile
memory 3140 (e.g., hard disk, flash memory, or any non-
volatile storage medium). Alternatively, the IP core design
may be transmitted (e.g., via the Internet) over a wired
connection 3150 or wireless connection 3160. The fabrica-
tion facility 3165 may then fabricate an integrated circuit
that is based at least in part on the IP core design. The
fabricated integrated circuit can be configured to perform
operations in accordance with at least one embodiment
described herein.

[0372] FIG. 31B illustrates a cross-section side view of an
integrated circuit package assembly 3170, according to
some embodiments described herein. The integrated circuit
package assembly 3170 illustrates an implementation of one
or more processor or accelerator devices as described herein.
The package assembly 3170 includes multiple units of

Aug. 19, 2021

hardware logic 3172, 3174 connected to a substrate 3180.
The logic 3172, 3174 may be implemented at least partly in
configurable logic or fixed-functionality logic hardware, and
can include one or more portions of any of the processor
core(s), graphics processor(s), or other accelerator devices
described herein. Each unit of logic 3172, 3174 can be
implemented within a semiconductor die and coupled with
the substrate 3180 via an interconnect structure 3173. The
interconnect structure 3173 may be configured to route
electrical signals between the logic 3172, 3174 and the
substrate 3180, and can include interconnects such as, but
not limited to bumps or pillars. In some embodiments, the
interconnect structure 3173 may be configured to route
electrical signals such as, for example, input/output (1/O)
signals and/or power or ground signals associated with the
operation of the logic 3172, 3174. In some embodiments, the
substrate 3180 is an epoxy-based laminate substrate. The
substrate 3180 may include other suitable types of substrates
in other embodiments. The package assembly 3170 can be
connected to other electrical devices via a package inter-
connect 3183. The package interconnect 3183 may be
coupled to a surface of the substrate 3180 to route electrical
signals to other electrical devices, such as a motherboard,
other chipset, or multi-chip module.

[0373] In some embodiments, the units of logic 3172,
3174 are electrically coupled with a bridge 3182 that is
configured to route electrical signals between the logic 3172,
3174. The bridge 3182 may be a dense interconnect structure
that provides a route for electrical signals. The bridge 3182
may include a bridge substrate composed of glass or a
suitable semiconductor material. Electrical routing features
can be formed on the bridge substrate to provide a chip-to-
chip connection between the logic 3172, 3174.

[0374] Although two units of logic 3172, 3174 and a
bridge 3182 are illustrated, embodiments described herein
may include more or fewer logic units on one or more dies.
The one or more dies may be connected by zero or more
bridges, as the bridge 3182 may be excluded when the logic
is included on a single die. Alternatively, multiple dies or
units of logic can be connected by one or more bridges.
Additionally, multiple logic units, dies, and bridges can be
connected together in other possible configurations, includ-
ing three-dimensional configurations.

[0375] Exemplary System on a Chip Integrated Circuit
[0376] FIG. 32-33 illustrated exemplary integrated cir-
cuits and associated graphics processors that may be fabri-
cated using one or more IP cores, according to various
embodiments described herein. In addition to what is illus-
trated, other logic and circuits may be included, including
additional graphics processors/cores, peripheral interface
controllers, or general-purpose processor cores.

[0377] FIG. 32 is a block diagram illustrating an exem-
plary system on a chip integrated circuit 3200 that may be
fabricated using one or more IP cores, according to an
embodiment. Exemplary integrated circuit 3200 includes
one or more application processor(s) 3205 (e.g., CPUs), at
least one graphics processor 3210, and may additionally
include an image processor 3215 and/or a video processor
3220, any of which may be a modular IP core from the same
or multiple different design facilities. Integrated circuit 3200
includes peripheral or bus logic including a USB controller
3225, UART controller 3230, an SPI/SDIO controller 3235,
and an I°S/I°C controller 3240. Additionally, the integrated
circuit can include a display device 3245 coupled to one or

US 2021/0255957 Al

more of a high-definition multimedia interface (HDMI)
controller 3250 and a mobile industry processor interface
(MIPI) display interface 3255. Storage may be provided by
a flash memory subsystem 3260 including flash memory and
a flash memory controller. Memory interface may be pro-
vided via a memory controller 3265 for access to SDRAM
or SRAM memory devices. Some integrated circuits addi-
tionally include an embedded security engine 3270.

[0378] FIG. 33A-33B are block diagrams illustrating
exemplary graphics processors for use within an SoC,
according to embodiments described herein. FIG. 33 A illus-
trates an exemplary graphics processor 3310 of a system on
a chip integrated circuit that may be fabricated using one or
more IP cores, according to an embodiment. FIG. 33B
illustrates an additional exemplary graphics processor 3340
of a system on a chip integrated circuit that may be fabri-
cated using one or more IP cores, according to an embodi-
ment. Graphics processor 3310 of FIG. 33A is an example
of'a low power graphics processor core. Graphics processor
3340 of FIG. 33B is an example of a higher performance
graphics processor core. Each of the graphics processors
3310, 3340 can be variants of the graphics processor 3210
of FIG. 32.

[0379] As shown in FIG. 33A, graphics processor 3310
includes a vertex processor 3305 and one or more fragment
processor(s) 3315A-3315N (e.g., 3315A, 3315B, 3315C,
3315D, through 3315N-1, and 3315N). Graphics processor
3310 can execute different shader programs via separate
logic, such that the vertex processor 3305 is optimized to
execute operations for vertex shader programs, while the one
or more fragment processor(s) 3315A-3315N execute frag-
ment (e.g., pixel) shading operations for fragment or pixel
shader programs. The vertex processor 3305 performs the
vertex processing stage of the 3D graphics pipeline and
generates primitives and vertex data. The fragment proces-
sor(s) 3315A-3315N use the primitive and vertex data
generated by the vertex processor 3305 to produce a frame-
buffer that is displayed on a display device. In one embodi-
ment, the fragment processor(s) 3315A-3315N are opti-
mized to execute fragment shader programs as provided for
in the OpenGL API, which may be used to perform similar
operations as a pixel shader program as provided for in the
Direct 3D APIL

[0380] Graphics processor 3310 additionally includes one
or more memory management units (MMU5s) 3320A-3320B,
cache(s) 3325A-3325B, and circuit interconnect(s) 3330A-
3330B. The one or more MMU(s) 3320A-3320B provide for
virtual to physical address mapping for the graphics proces-
sor 3310, including for the vertex processor 3305 and/or
fragment processor(s) 3315A-3315N, which may reference
vertex or image/texture data stored in memory, in addition to
vertex or image/texture data stored in the one or more
cache(s) 3325A-3325B. In one embodiment the one or more
MMU(s) 3320A-3320B may be synchronized with other
MMUs within the system, including one or more MMUSs
associated with the one or more application processor(s)
3205, image processor 3215, and/or video processor 3220 of
FIG. 32, such that each processor 3205-3220 can participate
in a shared or unified virtual memory system. The one or
more circuit interconnect(s) 3330A-3330B enable graphics
processor 3310 to interface with other IP cores within the
SoC, either via an internal bus of the SoC or via a direct
connection, according to embodiments.

Aug. 19, 2021

[0381] As shown FIG. 33B, graphics processor 3340
includes the one or more MMU(s) 3320A-3320B, cache(s)
3325A-3325B, and circuit interconnect(s) 3330A-3330B of
the graphics processor 3310 of FIG. 33A. Graphics proces-
sor 3340 includes one or more shader cores 3355A-3355N
(e.g., 3355A, 33558, 3355C, 3355D, 3355E, 3355F, through
3355N-1, and 3355N), which provides for a unified shader
core architecture in which a single core or type or core can
execute all types of programmable shader code, including
shader program code to implement vertex shaders, fragment
shaders, and/or compute shaders. The exact number of
shader cores present can vary among embodiments and
implementations. Additionally, graphics processor 3340
includes an inter-core task manager 3345, which acts as a
thread dispatcher to dispatch execution threads to one or
more shader cores 3355A-3355N and a tiling unit 3358 to
accelerate tiling operations for tile-based rendering, in
which rendering operations for a scene are subdivided in
image space, for example to exploit local spatial coherence
within a scene or to optimize use of internal caches.
[0382] In some embodiments, an apparatus includes one
or more processors including one or more graphics process-
ing units (GPUs); and a plurality of caches to provide
storage for the one or more GPUs, the plurality of caches
including at least an [.1 cache and an [.3 cache, wherein the
apparatus to provide intelligent prefetching of data by a
prefetcher of a first GPU of the one or more GPUs including:
measuring a hit rate for the L1 cache, upon determining that
the hit rate for the L1 cache is equal to or greater than a
threshold value, limiting a prefetch of data to storage in the
L3 cache, and upon determining that the hit rate for the [.1
cache is less than a threshold value, allowing the prefetch of
data to the L1 cache.

[0383] In some embodiments, the apparatus further
includes an interface to receive prefetch instructions from
prefetchers of the one or more GPUs, and wherein the
interface is to detect and eliminate unnecessary prefetches.
[0384] In some embodiments, upon the interface detecting
two or more prefetches having a duplicate address, the
apparatus is to eliminate one or more of the prefetches
having the duplicate address.

[0385] Insome embodiments, upon the interface detecting
a prefetch that relates to data that is uncacheable, the
interface is to eliminate the prefetch.

[0386] In some embodiments, the apparatus further
includes an execution unit of the one or more GPUs, the
execution unit including a hardware preprocessor, the hard-
ware preprocessor to have access to a table of IP addresses
that a kernel is using.

[0387] In some embodiments, the hardware preprocessor
is to commence prefetching of IP addresses from the table of
IP addresses ahead of execution of a thread.

[0388] Insomeembodiments, a prefetcher of a GPU of'the
one or more GPUs is to prefetch an instruction directly into
an instruction cache (I-cache).

[0389] In some embodiments, the prefetch of the instruc-
tion directly into the I-cache is to occur upon an application
driver being aware of a next kernel, and the prefetch being
issued for the next kernel when starting execution of a
current kernel.

[0390] In some embodiments, upon a compute operation
operating out of the .3 cache, the apparatus is to utilize a
memory link to perform memory scrubbing to maintain
activity of a memory bandwidth.

US 2021/0255957 Al

[0391] In some embodiments, one or more non-transitory
computer-readable storage mediums having stored thereon
executable computer program instructions that, when
executed by one or more processors, cause the one or more
processors to perform operations including measuring a hit
rate for an L1 cache for a first graphics processing unit
(GPU) of one or more GPUs of a computing system, the
computing system further including an L3 cache; receiving
a prefetch of data for the first GPU; upon determining that
the hit rate for the L1 cache is equal to or greater than a
threshold value, limiting the prefetch of the data to storage
in the L3 cache; and upon determining that the hit rate for
the L1 cache is less than the threshold value, allowing the
prefetch of the data to the .1 cache.

[0392] In some embodiments, the instructions further
include instructions for detecting and eliminating unneces-
sary prefetches received for the one or more GPUs.

[0393] In some embodiments, detecting and eliminating
unnecessary prefetches includes detecting two or more
prefetches having a duplicate address and eliminating one or
more of the prefetches having the duplicate address.
[0394] In some embodiments, detecting and eliminating
unnecessary prefetches includes detecting a prefetch that
relates to data that is uncacheable and eliminating the
prefetch.

[0395] In some embodiments, the instructions further
include instructions for prefetching IP addresses from a table
of IP addresses ahead of execution of a thread utilizing a
hardware preprocessor.

[0396] In some embodiments, the instructions further
include instructions for prefetching an instruction directly
into an instruction cache (I-cache).

[0397] In some embodiments, the prefetching of the
instruction directly into the I-cache is to occur upon an
application driver being aware of a next kernel, and the
prefetch being issued for the next kernel when starting
execution of a current kernel.

[0398] In some embodiments, the instructions further
include instructions for utilizing a memory link to perform
memory scrubbing to maintain activity of a memory band-
width upon a compute operation operating out of the L3
cache.

[0399] In some embodiments, a method includes measur-
ing a hit rate for an [.1 cache for a first graphics processing
unit (GPU) of one or more GPUs of a computing system, the
computing system further including an L3 cache; receiving
a prefetch of data for the first GPU; upon determining that
the hit rate for the L1 cache is equal to or greater than a
threshold value, limiting the prefetch of the data to storage
in the L3 cache; and upon determining that the hit rate for
the L1 cache is less than the threshold value, allowing the
prefetch of the data to the L1 cache.

[0400] In some embodiments, the method further includes
detecting and eliminating unnecessary prefetches received
for the one or more GPUs.

[0401] In some embodiments, detecting and eliminating
unnecessary prefetches includes detecting two or more
prefetches having a duplicate address and eliminating one or
more of the prefetches having the duplicate address.
[0402] In some embodiments, detecting and eliminating
unnecessary prefetches includes detecting a prefetch that
relates to data that is uncacheable and eliminating the
prefetch.

Aug. 19, 2021

[0403] In some embodiments, the method further includes
prefetching 1P addresses from a table of IP addresses ahead
of execution of a thread utilizing a hardware preprocessor.
[0404] In some embodiments, the method further includes
prefetching an instruction directly into an instruction cache
(I-cache).

[0405] In some embodiments, the prefetching of the
instruction directly into the I-cache is to occur upon an
application driver being aware of a next kernel, and the
prefetch being issued for the next kernel when starting
execution of a current kernel.

[0406] In some embodiments, the method further includes
utilizing a memory link to perform memory scrubbing to
maintain activity of a memory bandwidth upon a compute
operation operating out of the L3 cache.

[0407] In some embodiments, an apparatus includes
means for measuring a hit rate for an L1 cache for a first
graphics processing unit (GPU) of one or more GPUs of a
computing system, the computing system further including
an L3 cache; means for receiving a prefetch of data for the
first GPU; upon determining that the hit rate for the L1 cache
is equal to or greater than a threshold value, limiting the
prefetch of the data to storage in the 1.3 cache; and means for
allowing the prefetch of the data to the L1 cache upon
determining that the hit rate for the L1 cache is less than the
threshold value.

[0408] In some embodiments, the apparatus further
includes means for detecting and eliminating unnecessary
prefetches received for the one or more GPUs.

[0409] In some embodiments, detecting and eliminating
unnecessary prefetches includes detecting two or more
prefetches having a duplicate address and eliminating one or
more of the prefetches having the duplicate address.
[0410] In some embodiments, detecting and eliminating
unnecessary prefetches includes detecting a prefetch that
relates to data that is uncacheable and eliminating the
prefetch.

[0411] In some embodiments, the apparatus further
includes means for prefetching IP addresses from a table of
IP addresses ahead of execution of a thread utilizing a
hardware preprocessor.

[0412] In some embodiments, the apparatus further
includes means for prefetching an instruction directly into an
instruction cache (I-cache).

[0413] In some embodiments, the prefetching of the
instruction directly into the I-cache is to occur upon an
application driver being aware of a next kernel, and the
prefetch being issued for the next kernel when starting
execution of a current kernel.

[0414] In some embodiments, the apparatus further
includes means for utilizing a memory link to perform
memory scrubbing to maintain activity of a memory band-
width upon a compute operation operating out of the L3
cache.

[0415] In the description above, for the purposes of expla-
nation, numerous specific details are set forth in order to
provide a thorough understanding of the described embodi-
ments. It will be apparent, however, to one skilled in the art
that embodiments may be practiced without some of these
specific details. In other instances, well-known structures
and devices are shown in block diagram form. There may be
intermediate structure between illustrated components. The
components described or illustrated herein may have addi-
tional inputs or outputs that are not illustrated or described.

US 2021/0255957 Al

[0416] Various embodiments may include various pro-
cesses. These processes may be performed by hardware
components or may be embodied in computer program or
machine-executable instructions, which may be used to
cause a general-purpose or special-purpose processor or
logic circuits programmed with the instructions to perform
the processes. Alternatively, the processes may be performed
by a combination of hardware and software.

[0417] Portions of various embodiments may be provided
as a computer program product, which may include a
computer-readable medium having stored thereon computer
program instructions, which may be used to program a
computer (or other electronic devices) for execution by one
or more processors to perform a process according to certain
embodiments. The computer-readable medium may include,
but is not limited to, magnetic disks, optical disks, read-only
memory (ROM), random access memory (RAM), erasable
programmable read-only memory (EPROM), electrically-
erasable programmable read-only memory (EEPROM),
magnetic or optical cards, flash memory, or other type of
computer-readable medium suitable for storing electronic
instructions. Moreover, embodiments may also be down-
loaded as a computer program product, wherein the program
may be transferred from a remote computer to a requesting
computer. In some embodiments, a non-transitory computer-
readable storage medium has stored thereon data represent-
ing sequences of instructions that, when executed by a
processor, cause the processor to perform certain operations.
[0418] Many of the methods are described in their most
basic form, but processes can be added to or deleted from
any of the methods and information can be added or sub-
tracted from any of the described messages without depart-
ing from the basic scope of the present embodiments. It will
be apparent to those skilled in the art that many further
modifications and adaptations can be made. The particular
embodiments are not provided to limit the concept but to
illustrate it. The scope of the embodiments is not to be
determined by the specific examples provided above but
only by the claims below.

[0419] Ifitis said that an element “A” is coupled to or with
element “B,” element A may be directly coupled to element
B or be indirectly coupled through, for example, element C.
When the specification or claims state that a component,
feature, structure, process, or characteristic A “causes” a
component, feature, structure, process, or characteristic B, it
means that “A” is at least a partial cause of “B” but that there
may also be at least one other component, feature, structure,
process, or characteristic that assists in causing “B.” If the
specification indicates that a component, feature, structure,
process, or characteristic “may”, “might”, or “could” be
included, that particular component, feature, structure, pro-
cess, or characteristic is not required to be included. If the
specification or claim refers to “a” or “an” element, this does
not mean there is only one of the described elements.

[0420] An embodiment is an implementation or example.
Reference in the specification to “an embodiment,” “one
embodiment,” “some embodiments,” or “other embodi-
ments” means that a particular feature, structure, or charac-
teristic described in connection with the embodiments is
included in at least some embodiments, but not necessarily
all embodiments. The various appearances of “an embodi-
ment,” “one embodiment,” or “some embodiments” are not
necessarily all referring to the same embodiments. It should
be appreciated that in the foregoing description of exem-

Aug. 19, 2021

plary embodiments, various features are sometimes grouped
together in a single embodiment, figure, or description
thereof for the purpose of streamlining the disclosure and
aiding in the understanding of one or more of the various
novel aspects. This method of disclosure, however, is not to
be interpreted as reflecting an intention that the claimed
embodiments requires more features than are expressly
recited in each claim. Rather, as the following claims reflect,
novel aspects lie in less than all features of a single fore-
going disclosed embodiment. Thus, the claims are hereby
expressly incorporated into this description, with each claim
standing on its own as a separate embodiment.

1-20. (canceled)

21. An apparatus comprising:

one or more processors including one or more graphics

processing units (GPUs); and

a plurality of caches to provide storage for the one or more

GPUs, the plurality of caches including at least a lower
level cache and a higher level cache; and

wherein the apparatus to provide intelligent prefetching of

data by a prefetcher of a first GPU of the one or more

GPUs including:

measuring a hit rate for the lower level cache over a
sampling period,

comparing the hit rate for the lower level cache to a
threshold value number of hits;

upon determining that the hit rate for the lower level
cache is equal to or greater than the threshold value,
limiting a prefetch of data to storage in the higher
level cache, and

upon determining that the hit rate for the lower level
cache is less than a threshold value, allowing the
prefetch of data to both the lower level cache and the
higher level cache.

22. The apparatus of claim 21, wherein, upon a compute
operation operating out of the higher level cache, the appa-
ratus is further to utilize a memory link during the operation
of the higher level cache to maintain activity of memory
bandwidth.

23. The apparatus of claim 22, wherein the one or more
processors are further to determine higher level cache and
memory activity at least in part utilizing the memory band-
width.

24. The apparatus of claim 23, wherein the one or more
processors are further to trigger prefetching and memory
scrubbing activities based at least in part on the determined
higher level cache and memory activity.

25. The apparatus of claim 21, wherein the apparatus
further includes an interface to receive prefetch instructions
from prefetchers of the one or more GPUs, and wherein the
apparatus is to detect and eliminate unnecessary prefetches,
including:

upon the apparatus detecting two or more prefetches

having a duplicate address, the apparatus is to eliminate
one or more of the prefetches having the duplicate
address; or

upon the apparatus detecting a prefetch that relates to data

that is uncacheable, the apparatus is to eliminate the
prefetch.

26. The apparatus of claim 21, further comprising an
execution unit of the one or more GPUs, the execution unit
including a hardware preprocessor, the hardware preproces-
sor to have access to a table of IP addresses that a kernel is
using, wherein the hardware preprocessor is to commence

US 2021/0255957 Al

prefetching of IP addresses from the table of 1P addresses
ahead of execution of a thread.

27. The apparatus of claim 21, wherein a prefetcher of a
GPU of the one or more GPUs is to prefetch an instruction
directly into an instruction cache (I-cache), and wherein the
prefetch of the instruction directly into the I-cache is to
occur upon an application driver being aware of a next
kernel, and the prefetch being issued for the next kernel
when starting execution of a current kernel.

28. One or more non-transitory computer-readable stor-
age mediums having stored thereon executable computer
program instructions that, when executed by one or more
processors, cause the one or more processors to perform
operations comprising:

measuring a hit rate for an lower level cache over a

sampling period for a first graphics processing unit
(GPU) of one or more GPUs of a computing system,
the computing system further including an higher level
cache;

receiving a prefetch of data for the first GPU;

comparing the hit rate for the lower level cache to a

threshold value number of hits;

upon determining that the hit rate for the lower level cache

is equal to or greater than a threshold value, limiting the
prefetch of the data to storage in the higher level cache;
and

upon determining that the hit rate for the lower level cache

is less than the threshold value, allowing the prefetch of
the data to both the lower level cache and the higher
level cache.

29. The one or more computer-readable storage mediums
of claim 28, further comprising instructions for, upon a
compute operation operating out of the higher level cache,
utilizing a memory link during the operation of the higher
level cache to maintain activity of memory bandwidth.

30. The one or more computer-readable storage mediums
of claim 29, further comprising instructions for determining
higher level cache and memory activity at least in part
utilizing the memory bandwidth.

31. The one or more computer-readable storage mediums
of claim 30, further comprising instructions for triggering
prefetching and memory scrubbing activities based at least
in part on the determined higher level cache and memory
activity.

32. The one or more computer-readable storage mediums
of claim 28, further comprising instructions for detecting
and eliminating unnecessary prefetches, including:

upon detecting two or more prefetches having a duplicate

address, eliminating one or more of the prefetches
having the duplicate address; or

upon detecting a prefetch that relates to data that is

uncacheable, eliminating the prefetch.

33. The one or more computer-readable storage mediums
of claim 28, further comprising instructions for commencing

Aug. 19, 2021

prefetching of IP addresses ahead of execution of a thread
from a table of IP addresses that a kernel is using, wherein
an execution unit of the one or more GPUs includes a
hardware preprocessor, the hardware preprocessor having
access to the table of IP addresses.

34. The one or more computer-readable storage mediums
of claim 28, further comprising instructions for prefetching
an instruction directly into an instruction cache (I-cache),
wherein the prefetch of the instruction directly into the
I-cache is to occur upon an application driver being aware of
a next kernel, and wherein the prefetch being issued for the
next kernel when starting execution of a current kernel.

35. A method comprising:

measuring a hit rate for an lower level cache over a

sampling period for a first graphics processing unit
(GPU) of one or more GPUs of a computing system,
the computing system further including an higher level
cache;

receiving a prefetch of data for the first GPU;

comparing the hit rate for the lower level cache to a

threshold value number of hits;

upon determining that the hit rate for the lower level cache

is equal to or greater than a threshold value, limiting the
prefetch of the data to storage in the higher level cache;
and

upon determining that the hit rate for the lower level cache

is less than the threshold value, allowing the prefetch of
the data to both the lower level cache and the higher
level cache.

36. The method of claim 35, further comprising, upon a
compute operation operating out of the higher level cache,
utilizing a memory link during the operation of the higher
level cache to maintain activity of memory bandwidth.

37. The method of claim 36, further comprising deter-
mining higher level cache and memory activity at least in
part utilizing the memory bandwidth.

38. The method of claim 37, further comprising triggering
prefetching and memory scrubbing activities based at least
in part on the determined higher level cache and memory
activity.

39. The method of claim 35, further comprising detecting
and eliminating unnecessary prefetches, including:

upon detecting two or more prefetches having a duplicate

address, eliminating one or more of the prefetches
having the duplicate address; or

upon detecting a prefetch that relates to data that is

uncacheable, eliminating the prefetch.

40. The method of claim 35, further comprising com-
mencing prefetching of IP addresses ahead of execution of
a thread from a table of IP addresses that a kernel is using,
wherein an execution unit of the one or more GPUs includes
a hardware preprocessor, the hardware preprocessor having
access to the table of IP addresses.

#* #* #* #* #*

