US 20200218568A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2020/0218568 A1

Ronen et al. 43) Pub. Date: Jul. 9, 2020
(54) MECHANISM FOR ISSUING REQUESTS TO GOG6F 15/78 (2006.01)
f;g ﬁ*ECfDESLERATOR FROM MULTIPLE GOG6F 12/1027 (2006.01)
(52) US. CL
(71) Applicant: Intel Corporation, Santa Clara, CA CPC ... GO6F 9/4881 (2013.01); GOGF 9/3851
(US) (2013.01); GO6F 15/7807 (2013.01); GO6F
12/10 (2013.01); GO6F 12/1027 (2013.01);
(72) Inventors: Ronny Ronen, Haifa (IL); Boris GOG6F 2212/301 (2013.01); GOGF 9/3877
Ginzburg, Haifa (IL); Eliezer (2013.01)
Weissmann, Haifa (IL)
(21) Appl. No.: 16/729,760 57) ABSTRACT
(22) Filed: Dec. 30, 2019
Related U.S. Application Data An apparatus is described having multiple cores, each core
(63) Continuation of application No. 13/992.865, filed on having: a) a CPU; b) an accelerator; and, c) a controller and
Aug. 21, 2014, now Pat. No. 10,558,490, filed as a plurality of order buffers coupled between the CPU and the
application No. PCT/US12/31650 on Mar. 30, 2012. accelerator. Each of the order buffers is dedicated to a
L . . different one of the CPU’s threads. Each one of the order
Publication Classification buffers is to hold one or more requests issued to the
(51) Int.CL accelerator from its corresponding thread. The controller is
GO6F 9/48 (2006.01) to control issuance of the order buffers’ respective requests
GO6F 9/38 (2006.01) to the accelerator.
(~120
- 100_1 r'] 00 Q
G.P. GP.
CPU ACCEL. CPU ACCEL.
L1 01 (| **° L1
CACHE CACHE
\ 103
102

L2
CACHE

MEMORY
CONTROLLER

SYSTEM
MEMORY

Patent Application Publication Jul. 9,2020 Sheet 1 of 10 US 2020/0218568 A1

~ 120
~100_1 ~100.Q

G.P. G.P.

CPU ACCEL. CPU ACCEL.

K <) <D 101 o000 K <+> <D
CACHE \ CACHE

\ 103

102

A A

A A

L2 MEMORY
CACHE CONTROLLER
A
A
SYSTEM
MEMORY

FIG. 1

US 2020/0218568 A1

Jul. 9,2020 Sheet 2 of 10

Patent Application Publication

2 e ¢ 9Old
01z HOYYT SNLVLS

30VdS $SS3Haay — -

AYONAN che d¢/

1099018 v1vad 1NdNI MSV1

R
VLY 1NdNI . _
ANV %SVL S3HOL3S ww_hwmmmﬁowwm |

INVLINSTY 30VdS SS3daay
HOL1vd31300V N aQV3INHL 404 I
MOVE SILIYM v f " AMOW3I 40 M09
HOLYYI1I00V :) OLNI NILLIMM
/ ! aNVININOD
1
i
i ! ¥344ng
H ¥3ayo ol
! 13NSS| 1SINDIY
e 9z i /]
§ § § ! -
m U 3715
AL) :
¥OLYY3T1300V O€e
HITTOHLINOD L QYIYHL N 02z
MOLYYITI00V OL 1S3NDTY 404 d4344Nd 43040
S3ANSSI ANY ¥344N9 Y3IAHO WONS \ c0Z 4

1S3ND3Y SFOINYIS H3TT0HLNOD

Patent Application Publication

HEAD ——»

NEXT —»

TAL —»

POINTS
TO EARLIEST
N?

CNO |
y

MOVE
NEXT TO
POINTTO
EARLIEST
N

POINTS
TO LATEST
N?

-NO

4

MOVE
TAILTO
POINTTO
LATESTN

Jul. 9,2020 Sheet 3 of 10

320
4

11 PTR, INPUT SIZE,

PTR, INPUT SIZE,

PTR, INPUT SIZE,

PTR, INPUT SIZE,

PTR, INPUT SIZE,

PTR, INPUT SIZE,

2
3
4
5 | PTR, INPUT SIZE,
6
7
8

PTR, INPUT SIZE,

Z|l=2|1my Mmoo m}oilo

YES

REQUEST SERVICED
BY CONTROLLER)

YES

RECEIVED FROM

i
I
i
I
I
i
I
I
I
I
I
I
i
(NEW REQUEST !
I
CPU THREAD) !
I

I

i

I

I

I

i

I

I

THAT IS OLDER
THAN EARLIEST

YES

POINTS
TO EARLIEST
EORP?

(PREVIOUSLY
INO EARLIEST Now
COMPLETED (D))

MOVE
HEADTO
POINT TO
EARLIEST
EORP

ENTRY OF
D STATUS

E?

REMOVE
ENTRY OF
D STATUS

US 2020/0218568 A1

Patent Application Publication Jul. 9,2020 Sheet 4 of 10 US 2020/0218568 A1

401
ORDER BUFFERLOGIC }—~_/
RECEIVES INDICATION
THAT ORDER BUFFER'S

ASSOCIATED THREAD IS

BEING PLACED INTO

INACTIVE STATE
ORDER BUFFER IGNORES 402
»| ANY SUBSEQUENT REQUESTS [
RECEIVED FROM THREAD UNTIL
IT IS REACTIVATED
A\ 4
FLUSH AND PERSIST

ORDER BUFFER ENTRIES 403

BETWEEN HEAD AND TAL [~
POINTER THAT DO NOT

HAVE A DONE (D) STATUS

v
LOAD INTO ORDER BUFFER | 404

ENTRIES FORNEWLY [
ACTIVATED THREAD

\ 4

ORDER BUFFER RECEIVES 405
INDICATION THATNEWLY |,
ACTIVATED THREAD IS
BEING PLACED INTO
INACTIVE STATE

v

FIG. 4

Patent Application Publication Jul. 9,2020 Sheet 5 of 10

COMPUTER DETECTS PAGE FAULT
AND CHANGES STATUS IN
ORDER BUFFER FOR CORRESPONDING
REQUEST FROMETO P

A

CONTROLLER OR ACCELERATOR

INDICATES PAGE FAULT ERROR

INTO MEMORY ADDRESS SPACE
RESERVED FOR REQUEST

A4

PAGE FAULT IS HANDLED

A 4

UPON PAGE FAULT BEING
RESOLVED, MOVE NEXT POINTER
TO POSITION IN ORDER BUFFER

POINTED TO BY HEAD BUFFER

FIG. 5

501

502

503

504

US 2020/0218568 A1

Patent Application Publication Jul. 9,2020 Sheet 6 of 10 US 2020/0218568 A1

615
600 - — — 17
— 610

]

|
r I: — |PROCESSOR|™ = 7

| B /95'
_ s

| _— 640
| | [conTROLLER
co- |- B8 | vemory
| PROCESSOR | GHCH 520 |
. | |EE=
I
660 —_ |_ L
L omes |
I
| |

FIG. 6

US 2020/0218568 A1

Jul. 9,2020 Sheet 7 of 10

Patent Application Publication

— A E!
8¢l 0¢/
33009 | s3omnaa | 3snow
JOVHOLS Lel WINOD ¢cel JQEVOIATN
h 0¢. |/ E 1
Sl ¥el vz 81
HOSSIO0Nd o/ olany $30IA3A O/l 390144 Snd
o, - q _ _
96, —1 26, —1 _ 3¢/
06, — dd 067 13SdIHD JES _m_Ommmoomn_oo_
v6e. — _ — 1
¥G. 25]
08l d-d d-d d-d d-d 01
98, — w%L \ \ 8l P@R
06/
— 8. 2L —
NI NI
¥eL 28l
AHOWAW AHOWAN
HOSSID0UAOD
/40SS3008d HOSSIO0Nd

AN

—
=
oL
",
= 8 'Ol
S
S 578
& Ol AOVOI1
N
=)
= 066 966 — 4l
S
=]
s 265 — dd 13sdH0 Ly
g
7 Eml\a « Nmml\» &
—>]
g o |4d| |dd d-d dd| m
i 986 — gg5 — \ g5 Lo
E 056
J
— 1% b=z
i 3]
€6
AHOWN
¥0SS300Ud ¥0S53004d

€6
AHOW3INW

Patent Application Publication

/ 008

US 2020/0218568 A1

Jul. 9,2020 Sheet 9 of 10

Patent Application Publication

PT6 (S)LINN
(0§73 S 0%6 HITIOHINOD
LINN AY1dSIA £6 LINA vind LINN WSS AHOW3N
EIVARENN
916 (S)LINN
mmjmw%/_oo 206 (S)LINN LOANNODYILNI .
“ _
I 906 (S)LINN IHOVD AIFHVHS _
| | N#6 | | Vv 06
| | SUND | |e@e (SILINN
575 LINN |) 3HOVO | | JHOVD
INIOV WILISAS _. NZ06 3400 ._ V206 3400
076 H0SSID0¥d NOILYDI TddV

76 (S)40SS3008d0D

/ 006

dIHO ¥ NO W31SAS

6 "Old

US 2020/0218568 A1

Jul. 9,2020 Sheet 10 of 10

Patent Application Publication

$001 ¥371IdINOD 98X

9001 3000 AYVNIg 98X

¢007 IOVNONYT 13AITHOIH

800} 43TdWOD
13S NOILONHLSNI
JNLVYNIILTY

ZT0T Y3 14IANOD
NOILONYLSNI
0l 9I4 0107 3000 AYYNIE
13S NOILONYLSNI
JUYMLIOS IANLYNYILTY
IUVMAYVH
Y
o0l FT0T 340D 13S NOILONYLSNI
3409 135 NOILONYLSNI
885 ING LSvan 98X NV LNOHLIM HOSSIO0Md
1¥ HLIM H0SSI004d

US 2020/0218568 Al

MECHANISM FOR ISSUING REQUESTS TO
AN ACCELERATOR FROM MULTIPLE
THREADS

FIELD OF INVENTION

[0001] The field of invention relates generally to the
computing system design, and, more specifically, to a
mechanism for issuing requests to an accelerator from
multiple threads.

BACKGROUND

Traditional Integration of Co-Processors

[0002] As semiconductor manufacturing processes are
reaching an era that approaches 1 trillion transistors per die,
design engineers are presented with the issue of how to most
effectively put to use all the available transistors. One design
approach is to implement specific computation intensive
functions with dedicated hardware “acceleration” on die
along with one or more general purpose CPU cores.

[0003] Acceleration is achieved with dedicated logic
blocks designed to perform specific computation intensive
functions. Migrating intensive computations to such dedi-
cated logic blocks frees the general purpose CPU core(s)
from executing significant numbers of instructions thereby
increasing the effectiveness and efficiency of the CPU core
().

[0004] Although “acceleration” in the form of co-proces-
sors (such as graphics co-processors) is known in the art,
such traditional co-processors are viewed by the OS as a
separate “device” (within a larger computing system) that is
external to the CPU core(s) that the operating system (OS)
runs on. These co-processors are therefore accessed through
special device driver software and do not operate out of the
same virtual memory space as a CPU core. As such, tradi-
tional co-processors do not share or contemplate the virtual
addressing-to-physical address translation scheme imple-
mented on a general purpose CPU core.

[0005] Moreover, large latencies are encountered when a
task is offloaded by an OS to a traditional co-processor.
Specifically, as a CPU and a traditional co-processor essen-
tially correspond to separate, isolated sub-systems, signifi-
cant communication resources are expended when tasks
defined in an application running on a CPU core are passed
from the application through the OS “kernel” to the driver
which manages the co-processor. Such large latencies favor
system designs that invoke relatively infrequent tasks on the
co-processor from the main OS but with large associated
blocks of data per task. In effect, traditional co-processors
are primarily utilized in a coarse grain fashion rather than a
fine grain fashion.

[0006] As current system designers are interested in intro-
ducing more acceleration into computing systems with finer
grained usages, a new paradigm for integrating acceleration
in computing systems is emerging.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The present invention is illustrated by way of
example and not limitation in the figures of the accompa-
nying drawings, in which like references indicate similar
elements and in which:

Jul. 9, 2020

[0008] FIG. 1 shows a computing system whose process-
ing cores each include a general purpose CPU and an
accelerator that is tightly coupled to the general purpose
CPU,

[0009] FIG. 2 shows a technique for a thread on a general
purpose CPU to invoke an accelerator;

[0010] FIG. 3 shows an order buffer and associated state
diagrams;

[0011] FIG. 4 shows a thread switching process;

[0012] FIG. 5 shows a process for handling page faults.
[0013] FIG. 6 shows a first computing system embodi-
ment;

[0014] FIG. 7 shows a second computing system embodi-
ment;

[0015] FIG. 8 shows a third computing system embodi-
ment;

[0016] FIG. 9 shows a fourth computing system embodi-
ment;

[0017] FIG. 10 shows a software instruction converter.

DETAILED DESCRIPTION

[0018] FIG. 1 shows new processing core 100_1 architec-
ture in which an accelerator 101 akin to a large scale
functional unit that is designed into the core 100_1 and is
tightly coupled to the core’s general purpose CPU 102.
Multiple such cores 100_1 to 100_Q may be disposed on a
single processor 120 integrated into a semiconductor chip.
As described in more detail below, in a typical implemen-
tation, the accelerator 101 supports a plurality of different
computation intensive tasks.

[0019] Here, with respect to the operation of a single core
such as core 100_1, standard instructions are read from
memory and/or cache and executed by the core’s general
purpose CPU 102. Other types of instructions that are
received by the processing core 100_1, however, will trigger
the accelerator 101 into action. In a particular implementa-
tion, the underlying hardware support’s the software’s abil-
ity to call out a specific acceleration task in code. That is, a
specific command can be embodied into the code by the
software programmer (or by a compiler), where, the specific
command calls out and defines a specific acceleration task to
be performed by the accelerator 101 as well as the input
operand(s) for the specific task.

[0020] The command is ultimately represented in some
form of object code. During runtime, the underlying hard-
ware “executes” the object code and, in so-doing, invokes
the accelerator 101 and passes the associated input data to
the accelerator 101. FIG. 1 shows the accelerator 101 being
coupled to the general purpose CPU 102 to illustrate the
issuance of a command to the accelerator 101. More details
concerning a specific technique for invoking an acceleration
unit are discussed in more detail further below.

[0021] Upon being invoked, the accelerator 101 operates
out of the same memory space as the general purpose CPU
102. As such, data operands may be identified to/by the
accelerator with virtual addresses whose corresponding
translation into physical address space is the same as those
used by the general purpose CPU 102. Said another way, the
accelerator 101 operates out of the same virtual memory
space as the CPU 102. Moreover, generally, the execution
time of the accelerator’s execution of a command is longer
than that of a traditional/standard instruction within the
general purpose CPU 102 (owing to the complex nature of
the tasks being performed by the accelerator 101). The input

US 2020/0218568 Al

operand(s) and/or resultant may also be larger than the
standard register sizes used by the functional units of the
general purpose CPU 102.

[0022] The accelerator 101 can therefore be generally
viewed as being coarser grained (having larger execution
times and/or operating on larger data chunks) than the
traditional functional units and associated instructions of the
general purpose CPU 102. At the same time, the accelerator
101 can also generally be viewed as being finer grained, or
at least more tightly coupled to the general purpose CPU 102
than a traditional co-processor.

[0023] Specifically, the avoidance of a time expensive
“driver call” invocation of the accelerator and the sharing of
same memory space (including virtual to physical address
translations) by the accelerator 101 and the general purpose
CPU 102 correspond to tighter coupling to the general
purpose CPU 102 than a typical co-processor. Moreover, the
specific individual tasks that the accelerator 101 can be
called on to perform may also be more fine grained than the
larger, wholesale tasks traditionally performed by a co-
processor. Specific individual tasks that are suitable for
implementation with the accelerator as a single “invokable”
operation include texture sampling, motion search or motion
compensation, security related computations (e.g., cryptog-
raphy, encryption, etc.), specific financial computations,
and/or specific scientific computations.

[0024] Modern day general purpose CPU cores are typi-
cally capable of concurrently executing multiple threads (for
example Intel processors use Simultaneous Multi Threading
technology). Note that the general purpose CPU 102 may
have one or more pipelines to process traditional instruc-
tions. Concurrent execution of multiple threads with mul-
tiple pipelines is a straightforward concept. However, a
single pipeline can also be designed to support concurrent
execution of multiple threads as well.

[0025] Accordingly, as observed in FIG. 1, a processing
core 100_1 may be designed with special logic 103 designed
to permit any/all of the multiple threads that are executed by
the core’s general purpose CPU 102 to invoke the accelera-
tor 101. Recalling that a feature of tighter coupling between
the general purpose CPU 102 and the accelerator 101 is
utilization of the same virtual-to-physical address translation
between the two, in the case of a multi-threaded core, each
thread may have its own unique virtual-to-physical address
translation scheme.

[0026] As such, when the accelerator performs a task for
aparticular thread it adopts of the virtual-to-physical address
translation scheme of the thread (e.g., by maintain in itself
a same translation look-aside buffer (TLB) as within the
CPU 102 for the thread, and/or, utilizing the TLB in the CPU
102 for the thread). Details concerning possible designs for
the special logic 103 are presented in more detail further
below with respect to FIGS. 2 through 5.

[0027] FIG. 2 depicts an embodiment of a mechanism by
which a thread can invoke the accelerator. As observed in
FIG. 2, the object code responsible for invoking a specific
accelerator first constructs a command for the accelerator in
a block of memory address space 210. Whether the contents
of the command are actually stored in memory or in a cache
that is on the same semiconductor chip as the core is a matter
of designer choice.

[0028] In writing the command, the general purpose CPU
202 writes within the block of memory address space 210
(whether in cache or in system memory): i) the task to be

Jul. 9, 2020

executed 211; and, 2) the input data for the task 212. The
block of memory space also has space for status information
concerning the task 213, and a field of space to indicate any
error in executing the task 214. The CPU 202 may initially
set status field 213 to indicate that the new request is
pending. The output/resultant 215 of the task may be written
in the memory space reserved for the input 212 and/or
additional address space within the block 210 beyond where
the input information is placed. The accelerator 201 can
write to any of fields 213, 214 and writes the output/resultant
in the memory address space.

[0029] Upon the command being written into the memory
address space, the general purpose CPU 202 issues a request
to an order buffer 220. The order buffer 220 is reserved for
the thread that has invoked the accelerator 201 and essen-
tially corresponds to a queue or other structure used to track
and control multiple requests made to the accelerator 201 by
the thread.

[0030] In an embodiment, there are N order buffers for
each of N threads supported by the general purpose CPU
202. According to one embodiment, if the general purpose
CPU 202 can support a maximum of N active threads, the
special logic 203 within the core 200 is designed to also
include N order buffers (one for each thread under a worst
case condition).

[0031] If the general purpose CPU 202 further supports
active thread switching, where M>N threads are recogniz-
able to the CPU 202 but only a maximum of N threads can
be simultaneously active (presently able to execute object
code), the content of an order buffer may be switched if the
thread it is supporting is switched “out” in favor of another
thread that is switched “in”. That is, when a thread is
switched out of the core 200 as part of its being taken out of
a currently active state, the context information within the
order buffer for the thread is switched out of the core 200
(e.g., into [.2 cache or memory) along with the general
purpose CPU’s associated context information for the thread
(e.g., internal register content). In its place, the correspond-
ing context information for the newly activated thread is
loaded (e.g., from 1.2 cache or memory) into the general
purpose CPU 202 and order buffer respectively. More infor-
mation concerning context switching is provided in more
detail further below.

[0032] Returning to a description of FIG. 2, upon a thread
having issued a request to its corresponding order buffer 220
for a particular task to be performed by the accelerator 201,
the request is effectively queued in the thread’s order buffer
220 until it is serviced by a controller 230 that controls
access to the accelerator 201. The controller 230 may be
designed to implement one or more various load balancing
techniques and/or fairness algorithms, such as, for example,
granting access to the accelerator 201 according to a round
robin servicing scheme across the N threads/order buffers.
This may be accomplished, for example, by the controller
230 polling each order buffer in a round robin fashion.

[0033] Upon the request being serviced by the controller
230, the request is essentially forwarded to the accelerator
201. In an embodiment the request 240 includes a memory
address pointer 216 of the aforementioned block of memory
address space 210 where the requested task 211 and asso-
ciated input data 212 resides. In a further embodiment, the
request also includes an indication of the size 217 of the
input data 212.

US 2020/0218568 Al

[0034] In response, the accelerator 201 fetches the task
211 and input data 212, executes the specific task and writes
back the resulting information back in the appropriate sec-
tion of the memory address space 210. The status field 213
associated with the task is set by the accelerator 201 to
indicate that the task is completed. The thread that originally
issued the request for the accelerator also monitors the status
field 213 and recognizes that the data resulting from the
accelerator’s operations is available. At this point, the thread
begins to make use of the resultant and moves forward with
whatever operations where dependent upon it.

[0035] Moreover, with the completion of the request, the
controller 230 is free to issue a next request from whatever
order buffer is appropriate in view of the controller’s load
balancing scheme. It is pertinent to note that the accelerator
201 may be designed to concurrently execute multiple tasks.
For example, the accelerator 201 may be designed to include
multiple functional units each designed to handle its own
task and that can operate concurrently or otherwise in
parallel with the operation of other functional units. As such,
the controller 230 may be designed to issue multiple
requests to the accelerator 201 prior to any of the requests
being completed by the accelerator. Moreover, if any two or
more of the functional units are designed to support the same
task, the controller can issue multiple requests of the same
task to the accelerator prior to the completion of any one of
them.

[0036] FIG. 3 shows an exemplary embodiment of an
order buffer 320 for a particular thread and associated state
diagrams. As observed in FIG. 3, head, tail and next pointers
point to specific entries within the order buffer 320. The
order buffer 320 essentially contains the recently issued
requests from the thread that the order buffer is dedicated to,
and, a status of each such request. As alluded to above, each
request may be embodied as a memory address pointer that
identifies where the requested task and input data can be
found. The request may also include, as described above, an
indication of the size of the input data (e.g., in units of cache
lines). The order buffer 320 may be implemented with
registers used to hold the actual requests and logic circuitry
may be used to implement the pointers and state diagrams
described below.

[0037] In an embodiment, besides its associated request,
each entry in the buffer 320 may specify the status of the
request. In a further embodiment, the status of each request
is one of:

[0038] 1) N...New: the request has not yet been serviced
by the controller;

[0039] 1ii) E ... Executing: the request has been serviced
by the controller and is presumed to be executing with an
accelerator;

[0040] iii) D . .. Done: the accelerator has performed the
task requested by the request;

[0041] iv) P ... Page Fault: a page fault has been raised
in attempting to execute the requested task;

[0042] v) 1. .. the entry is invalid

Each of the above statuses will be described more fully
below.

[0043] State diagram 301 depicts operation of the “next”
pointer. The “next” pointer points to the next request in the
order buffer to be offered to the controller for subsequent
execution by the accelerator. According to state diagram
301, the next pointer continually adjusts itself to point to the
earliest entry in the order buffer that has a New (N) status.

Jul. 9, 2020

Here, entries are listed in the order buffer in the order that
their corresponding requests were received from the buffer’s
corresponding thread (e.g., the request of entry 2 was
received after the request of entry 1). As such, the order
buffer is designed to provide requests to the controller in the
same order that they were issued by the thread. When a
request of status N is serviced by the controller, the status of
the request changes to E (Executing). As such, the next
pointer adjusts to the next earliest request that has a status of
N. Frequently this is the next later entry in the buffer.

[0044] State diagram 302 depicts operation of the “head”
pointer. The head pointer points to the earliest entry in the
order buffer that does not have a status of D (Done) or New
(N). As such, the head pointer essentially points to the
earliest “live” request (or, said another way, earliest request
that has not yet completed). In a typical flow, the earliest
entry that does have a status of D or N, is the earliest request
with a status of E (Executing). That is, the “head” pointer
typically points to the earliest request that is still executing
in the accelerator.

[0045] When the request that is pointed to by the head
pointer finally completes successfully, its status in the order
buffer changes from E to D. As such, the head pointer has to
move to the next earliest request in the buffer that does not
have a status of D or N. Typically this entails changing the
head pointer to point to the next later entry in the buffer.
Note that although this may be a common situation it is not
guaranteed as the accelerator may simultaneously entertain
multiple requests from a same buffer, and different tasks may
have different execution time to completion. As such, a later
request may finish earlier than an earlier request. As such, a
status pattern of “EDE” and the like (with a D between two
Es) may exist across the buffer entries.

[0046] State diagram 303 depicts operation of the tail
pointer which points to the latest entry having an status of N.
Frequently the latest entry in the buffer having a status of N
is the last entry in the buffer (being the most recently
received (latest) request and not having been serviced yet).

[0047] State diagram 304 shows a state diagram for
removing entries from the order buffer. According to the
state diagram, any entry having a status of D that is earlier
than the earliest entry having a status of E is removed from
the order buffer.

[0048] In an embodiment, any entries not between the
head and tail pointers inclusive are given a status of invalid.

[0049] FIG. 4 pertains to the specifics of context switch-
ing. As observed in FIG. 4, the order buffer’s associated
logic receives an indication that the thread that the buffer is
dedicated to is being switched out of the active state 401.
Thereafter, any requests received from the thread are
ignored 402 (until the thread is changed back to the active
state). All the entries in the buffer between the head and tail
pointers that do not have a done (D) status are then flushed
from the buffer and externally persisted 403 (e.g., saved in
memory or cache).

[0050] Here, for each entry, the memory address pointer,
input data size and status indication are persisted. The
accelerator context (e.g., data values in accelerator register
space) for each of the tasks whose entries are being persisted
is also persisted as is the context of the thread that is being
deactivated. The context of the thread may include, for
example, values in registers of the general purpose CPU
being used to support the thread (apart from operand data,

US 2020/0218568 Al

other values stored in such registers may correspond to
virtual to physical address translations).

[0051] Subsequently, the persisted entries of the newly
activated thread that the buffer is to be newly dedicated to
are loaded into the buffer 404. The persisted state of the
newly activated thread as well as the accelerator state for any
of the buffer entries being loaded are loaded into the general
purpose CPU and accelerator respectively. In an embodi-
ment, if the accelerator does not have room for the state
information of an accelerator task of a newly activated
thread (e.g., because the accelerator task that is being
reinstated is the same as a valid task of another thread that
is currently executing), the accelerator is configured to load
the persisted state information when space becomes avail-
able.

[0052] The controller, with knowledge of the situation,
may be designed to prevent any further issues of the specific
task to the accelerator from another thread until the newly
restored accelerator task is loaded and completed. Once the
buffer is loaded with the persisted entries and the state of the
persisted accelerator task(s) is loaded in the accelerator, the
accelerator can “pick up where it left oft” when the newly
restored thread was first put into the inactive state.

[0053] Some time later, the newly activated thread is
deactivated 405 and the original thread that was inactivated
in processes 401-403 is re-instated by essentially the same
process described above with respect to process 404.
[0054] FIG. 5 depicts the handling of page faults. Here,
recall that the accelerator may be designed to refer to the
same virtual address space and utilize the same virtual to
physical address translation as the thread of the general
purpose CPU that has invoked the accelerator. As such, just
as the general purpose CPU can suffer a page fault, so too
can the accelerator. A page fault essentially corresponds to
recognition of a problem in the virtual to physical address
translation by hardware that is attempting to locate data or
an instruction through the translation (e.g., a translation is
missing, the virtual address is invalid, etc.).

[0055] As observed in FIG. 5, when the accelerator detects
a page fault in executing a particular requested task, the
controller or the accelerator changes the status in the cor-
responding buffer entry from executing (F) to page fault
(PF) 501. In an embodiment, the controller or accelerator
also indicates a page fault in the error status portion of the
block of memory address space reserved for the request,
and, writes a code specifying the type of page fault in the
error portion of the block of memory address space 502.
[0056] The page fault is then handled 503. Page fault
handling is known in the art and therefore need not be
repeated at length here. Page fault handling is a process by
which a detected page fault is resolved, often with the
improper translation being cured or otherwise fixed. Gen-
erally, page faults can be handled in software or in hardware.
In the case of hardware page fault handling, special logic
circuitry is designed to investigate the type of fault (e.g.,
missing translation, invalid virtual address, etc.) and provide
corrective action if possible.

[0057] In the case of software page fault handling, typi-
cally, the hardware that detects the page fault throws an
exception and writes an error code indicating the type of
error. A user, operating system or virtual machine monitor
process then detects the thrown exception and attempts to
cure the problem. In the present discussion, the hardware
and/or software responsible for handling a page fault is

Jul. 9, 2020

responsive to the detection of the fault and looks to the core
in the error portion of the memory address block to under-
stand the precise nature of the problem.

[0058] When the page fault is resolved, for example by
fixing the translation problem, the order buffer is checked to
see which requests in the order buffer having the page
faulting request have not yet completed 504. Here, it is
altogether possible that other requests—even requests issued
(to the order buffer and/or accelerator) later than the faulting
request—may not suffer a page fault and complete accord-
ingly. As such, only those requests that remain outstanding
at the time the page fault is deemed handled are reissued
from the controller to the accelerator 504. In an embodi-
ment, this is accomplished simply by moving the next
pointer to point to the head position in the queue.

[0059] Exemplary Computer Architectures

[0060] FIGS. 6-9 are block diagrams of exemplary com-
puter architectures. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs,
personal digital assistants, engineering workstations, serv-
ers, network devices, network hubs, switches, embedded
processors, digital signal processors (DSPs), graphics
devices, video game devices, set-top boxes, micro control-
lers, cell phones, portable media players, hand held devices,
and various other electronic devices, are also suitable. In
general, a huge variety of systems or electronic devices
capable of incorporating a processor and/or other execution
logic as disclosed herein are generally suitable.

[0061] Referring now to FIG. 6, shown is a block diagram
of a system 600 in accordance with one embodiment of the
present invention. The system 600 may include one or more
processors 610, 615, which are coupled to a controller hub
620. In one embodiment the controller hub 620 includes a
graphics memory controller hub (GMCH) 690 and an Input/
Output Hub (IOH) 650 (which may be on separate chips);
the GMCH 690 includes memory and graphics controllers to
which are coupled memory 640 and a coprocessor 645; the
IOH 650 is couples input/output (I/0) devices 660 to the
GMCH 690. Alternatively, one or both of the memory and
graphics controllers are integrated within the processor (as
described herein), the memory 640 and the coprocessor 645
are coupled directly to the processor 610, and the controller
hub 620 in a single chip with the IOH 650.

[0062] The optional nature of additional processors 615 is
denoted in FIG. 6 with broken lines. Each processor 610,
615 may include one or more of the processing cores
described herein and may be some version of the processor
1100.

[0063] The memory 640 may be, for example, dynamic
random access memory (DRAM), phase change memory
(PCM), or a combination of the two. For at least one
embodiment, the controller hub 620 communicates with the
processor(s) 610, 615 via a multi-drop bus, such as a
frontside bus (FSB), point-to-point interface such as Quick-
Path Interconnect (QPI), or similar connection 695.

[0064] In one embodiment, the coprocessor 645 is a spe-
cial-purpose processor, such as, for example, a high-
throughput MIC processor, a network or communication
processor, compression engine, graphics processor, GPGPU,
embedded processor, or the like. In one embodiment, con-
troller hub 620 may include an integrated graphics accel-
erator.

[0065] There can be a variety of differences between the
physical resources 610, 615 in terms of a spectrum of

US 2020/0218568 Al

metrics of merit including architectural, microarchitectural,
thermal, power consumption characteristics, and the like.
[0066] In one embodiment, the processor 610 executes
instructions that control data processing operations of a
general type. Embedded within the instructions may be
coprocessor instructions. The processor 610 recognizes
these coprocessor instructions as being of a type that should
be executed by the attached coprocessor 645. Accordingly,
the processor 610 issues these coprocessor instructions (or
control signals representing coprocessor instructions) on a
coprocessor bus or other interconnect, to coprocessor 645.
Coprocessor(s) 645 accept and execute the received copro-
cessor instructions.

[0067] Referring now to FIG. 7, shown is a block diagram
of a first more specific exemplary system 700 in accordance
with an embodiment of the present invention. As shown in
FIG. 7, multiprocessor system 700 is a point-to-point inter-
connect system, and includes a first processor 770 and a
second processor 780 coupled via a point-to-point intercon-
nect 750. Each of processors 770 and 780 may be some
version of the processor 1100. In one embodiment of the
invention, processors 770 and 780 are respectively proces-
sors 610 and 615, while coprocessor 738 is coprocessor 645.
In another embodiment, processors 770 and 780 are respec-
tively processor 610 coprocessor 645.

[0068] Processors 770 and 780 are shown including inte-
grated memory controller (IMC) units 772 and 782, respec-
tively. Processor 770 also includes as part of its bus con-
troller units point-to-point (P-P) interfaces 776 and 778;
similarly, second processor 780 includes P-P interfaces 786
and 788. Processors 770, 780 may exchange information via
a point-to-point (P-P) interface 750 using P-P interface
circuits 778, 788. As shown in FIG. 7, IMCs 772 and 782
couple the processors to respective memories, namely a
memory 732 and a memory 734, which may be portions of
main memory locally attached to the respective processors.
[0069] Processors 770, 780 may each exchange informa-
tion with a chipset 790 via individual P-P interfaces 752, 754
using point to point interface circuits 776, 794, 786, 798.
Chipset 790 may optionally exchange information with the
coprocessor 738 via a high-performance interface 739. In
one embodiment, the coprocessor 738 is a special-purpose
processor, such as, for example, a high-throughput MIC
processor, a network or communication processor, compres-
sion engine, graphics processor, GPGPU, embedded proces-
sor, or the like.

[0070] A shared cache (not shown) may be included in
either processor or outside of both processors, yet connected
with the processors via P-P interconnect, such that either or
both processors’ local cache information may be stored in
the shared cache if a processor is placed into a low power
mode.

[0071] Chipset 790 may be coupled to a first bus 716 via
an interface 796. In one embodiment, first bus 716 may be
a Peripheral Component Interconnect (PCI) bus, or a bus
such as a PCI Express bus or another third generation 1/0
interconnect bus, although the scope of the present invention
is not so limited.

[0072] As shown in FIG. 7, various /O devices 714 may
be coupled to first bus 716, along with a bus bridge 718
which couples first bus 716 to a second bus 720. In one
embodiment, one or more additional processor(s) 715, such
as coprocessors, high-throughput MIC processors, GPG-
PU’s, accelerators (such as, e.g., graphics accelerators or

Jul. 9, 2020

digital signal processing (DSP) units), field programmable
gate arrays, or any other processor, are coupled to first bus
716. In one embodiment, second bus 720 may be a low pin
count (LPC) bus. Various devices may be coupled to a
second bus 720 including, for example, a keyboard and/or
mouse 722, communication devices 727 and a storage unit
728 such as a disk drive or other mass storage device which
may include instructions/code and data 730, in one embodi-
ment. Further, an audio /O 724 may be coupled to the
second bus 720. Note that other architectures are possible.
For example, instead of the point-to-point architecture of
FIG. 7, a system may implement a multi-drop bus or other
such architecture.

[0073] Referring now to FIG. 8, shown is a block diagram
of a second more specific exemplary system 800 in accor-
dance with an embodiment of the present invention. Like
elements in FIGS. 7 and 8 bear like reference numerals, and
certain aspects of FIG. 7 have been omitted from FIG. 8 in
order to avoid obscuring other aspects of FIG. 8.

[0074] FIG. 8 illustrates that the processors 770, 780 may
include integrated memory and I/O control logic (“CL”) 772
and 782, respectively. Thus, the CL 772, 782 include inte-
grated memory controller units and include I/O control
logic. FIG. 8 illustrates that not only are the memories 732,
734 coupled to the CL 772, 782, but also that I/O devices
814 are also coupled to the control logic 772, 782. Legacy
1/0O devices 815 are coupled to the chipset 790.

[0075] Referring now to FIG. 9, shown is a block diagram
of a SoC 900 in accordance with an embodiment of the
present invention. Dashed lined boxes are optional features
on more advanced SoCs. In FIG. 9, an interconnect unit(s)
902 is coupled to: an application processor 910 which
includes a set of one or more cores 902A-N and shared cache
unit(s) 906; a system agent unit 910; a bus controller unit(s)
916; an integrated memory controller unit(s) 914; a set or
one or more coprocessors 920 which may include integrated
graphics logic, an image processor, an audio processor, and
a video processor; an static random access memory (SRAM)
unit 930; a direct memory access (DMA) unit 932; and a
display unit 940 for coupling to one or more external
displays. In one embodiment, the coprocessor(s) 920 include
a special-purpose processor, such as, for example, a network
or communication processor, compression engine, GPGPU,
a high-throughput MIC processor, embedded processor, or
the like.

[0076] Embodiments of the mechanisms disclosed herein
may be implemented in hardware, software, firmware, or a
combination of such implementation approaches. Embodi-
ments of the invention may be implemented as computer
programs or program code executing on programmable
systems comprising at least one processor, a storage system
(including volatile and non-volatile memory and/or storage
elements), at least one input device, and at least one output
device.

[0077] Program code, such as code 730 illustrated in FIG.
7, may be applied to input instructions to perform the
functions described herein and generate output information.
The output information may be applied to one or more
output devices, in known fashion. For purposes of this
application, a processing system includes any system that
has a processor, such as, for example; a digital signal
processor (DSP), a microcontroller, an application specific
integrated circuit (ASIC), or a microprocessor.

US 2020/0218568 Al

[0078] The program code may be implemented in a high
level procedural or object oriented programming language to
communicate with a processing system. The program code
may also be implemented in assembly or machine language,
if desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

[0079] One or more aspects of at least one embodiment
may be implemented by representative instructions stored on
a machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

[0080] Such machine-readable storage media may
include, without limitation, non-transitory, tangible arrange-
ments of articles manufactured or formed by a machine or
device, including storage media such as hard disks, any
other type of disk including floppy disks, optical disks,
compact disk read-only memories (CD-ROMs), compact
disk rewritable’s (CD-RWs), and magneto-optical disks,
semiconductor devices such as read-only memories
(ROMs), random access memories (RAMs) such as dynamic
random access memories (DRAMs), static random access
memories (SRAMs), erasable programmable read-only
memories (EPROMs), flash memories, electrically erasable
programmable read-only memories (EEPROMs), phase
change memory (PCM), magnetic or optical cards, or any
other type of media suitable for storing electronic instruc-
tions.

[0081] Accordingly, embodiments of the invention also
include non-transitory, tangible machine-readable media
containing instructions or containing design data, such as
Hardware Description Language (HDL), which defines
structures, circuits, apparatuses, processors and/or system
features described herein. Such embodiments may also be
referred to as program products.

[0082] Emulation (including binary translation, code mor-
phing, etc.)
[0083] In some cases, an instruction converter may be

used to convert an instruction from a source instruction set
to a target instruction set. For example, the instruction
converter may translate (e.g., using static binary translation,
dynamic binary translation including dynamic compilation),
morph, emulate, or otherwise convert an instruction to one
or more other instructions to be processed by the core. The
instruction converter may be implemented in software, hard-
ware, firmware, or a combination thereof. The instruction
converter may be on processor, off processor, or part on and
part off processor.

[0084] FIG. 10 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the invention.
In the illustrated embodiment, the instruction converter is a
software instruction converter, although alternatively the
instruction converter may be implemented in software, firm-
ware, hardware, or various combinations thereof. FIG. 10
shows a program in a high level language 1002 may be
compiled using an x86 compiler 1004 to generate x86 binary

Jul. 9, 2020

code 1006 that may be natively executed by a processor with
at least one x86 instruction set core 1016. The processor with
at least one x86 instruction set core 1016 represents any
processor that can perform substantially the same functions
as an Intel processor with at least one x86 instruction set
core by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel x86
instruction set core or (2) object code versions of applica-
tions or other software targeted to run on an Intel processor
with at least one x86 instruction set core, in order to achieve
substantially the same result as an Intel processor with at
least one x86 instruction set core. The x86 compiler 1004
represents a compiler that is operable to generate x86 binary
code 1006 (e.g., object code) that can, with or without
additional linkage processing, be executed on the processor
with at least one x86 instruction set core 1016. Similarly,
FIG. 10 shows the program in the high level language 1002
may be compiled using an alternative instruction set com-
piler 1008 to generate alternative instruction set binary code
1010 that may be natively executed by a processor without
at least one x86 instruction set core 1014 (e.g., a processor
with cores that execute the MIPS instruction set of MIPS
Technologies of Sunnyvale, Calif. and/or that execute the
ARM instruction set of ARM Holdings of Sunnyvale,
Calif.). The instruction converter 1012 is used to convert the
x86 binary code 1006 into code that may be natively
executed by the processor without an x86 instruction set
core 1014. This converted code is not likely to be the same
as the alternative instruction set binary code 1010 because
an instruction converter capable of this is difficult to make;
however, the converted code will accomplish the general
operation and be made up of instructions from the alterna-
tive instruction set. Thus, the instruction converter 1012
represents software, firmware, hardware, or a combination
thereof that, through emulation, simulation or any other
process, allows a processor or other electronic device that
does not have an x86 instruction set processor or core to
execute the x86 binary code 1006.
1. An apparatus, comprising:
multiple cores, each core having:
a) a CPU;
b) an accelerator;
¢) a controller and a plurality of order buffers coupled
between said CPU and said accelerator, each of said
order buffers dedicated to a different one of said
CPU’s threads, each one of said order buffers to hold
one or more requests issued to said accelerator from
its corresponding thread, said controller to control
issuance of said order buffers’ respective requests to
said accelerator.

2. The apparatus of claim 1 wherein one of said requests
is composed of a pointer identifying a memory address
where said request’s associated input data for said accelera-
tor can be found.

3. The apparatus of claim 2 wherein said request is also
composed of an indicator of how large said input data is.

4. The apparatus of claim 3 wherein said input data’s size
is specified as a number of cache lines.

5. The apparatus of claim 1 wherein status information of
said request is stored along with said input data.

6. The apparatus of claim 1 wherein said accelerator uses
same virtual-to-physical address translations as a thread on
said CPU that has requested said accelerator to perform a
task.

US 2020/0218568 Al

7. The apparatus of claim 1 wherein said accelerator has
multiple functional units so as to make said accelerator
capable of executing multiple tasks simultaneously.

8. The apparatus of claim 7 wherein said accelerator can
execute different instances of the same task simultaneously.

9. A method, comprising:

executing first and second threads on a CPU in a core of

a multiple core semiconductor chip;
issuing a first acceleration request from said first thread to
a first order buffer that is dedicated to said first thread;
issuing a second acceleration request from said second
thread to a second order buffer that is dedicated to said
second thread;
issuing said first acceleration request from said first order
buffer to an accelerator, said accelerator processing said
first request utilizing a first virtual to physical address
translation scheme utilized by said first thread; and,

issuing said second acceleration request from said second
order buffer to said accelerator, said accelerator pro-
cessing said second request utilizing a second virtual to
physical address translation scheme utilized by said
second thread.

10. The method of claim 9 wherein said first request
contains a memory address pointer that identifies where
input data for said first task can be found.

11. The method of claim 10 wherein said first request also
contains an indication of how large said input data is.

12. The method of claim 11 where said indication is
articulated as a number of cache lines.

13. The method of claim 9 further comprising, identifying
said first request’s status as a new request in said first order
buffer upon said first request being received by said first
order buffer, and, adjusting a tail pointer to point to said first
request’s entry in said order buffer.

14. The method of claim 13 further comprising adjusting
a next pointer to point to said first request’s entry in said
order buffer when said first request is the earliest new entry
in said first order buffer.

15. The method of claim 14 further comprising changing
said first request’s status in said order buffer from new to
executing when said first request is passed to said accelera-
tor and adjusting a head pointer to point to said first request’s

Jul. 9, 2020

entry in said first order buffer when said first request is an
oldest uncompleted request in said first order buffer.

16. The method of claim 15 further comprising changing
said first request’s status from executing to done upon said
accelerator completing said first request’s associated task
and deleting said first request from said first order buffer.

17. A method, comprising:

executing first and second threads on a CPU in a core of

a multiple core semiconductor chip;
issuing a first acceleration request from said first thread to
a first order buffer that is dedicated to said first thread;
issuing a second acceleration request from said second
thread to a second order buffer that is dedicated to said
second thread;
issuing said first acceleration request from said first order
buffer to an accelerator, said accelerator processing said
first request utilizing a first virtual to physical address
translation scheme utilized by said first thread; and,

issuing said second acceleration request from said second
order buffer to said accelerator, said accelerator pro-
cessing said second request utilizing a second virtual to
physical address translation scheme utilized by said
second thread; and,

switching said first thread from an active state to an

inactive state and switching a third thread from an
inactive state to an active state, including, replacing
said first order buffer’s content with requests from said
first thread with requests from said third thread.

18. The method of claim 17 wherein said switching said
first thread and said switching said third thread includes
switching virtual to physical address translations of said first
thread out of said CPU, and, switching virtual to physical
address translations of said third thread into said CPU.

19. The method of claim 18 wherein said accelerator
processes said first and second requests simultaneously.

20. The method of claim 17 wherein said accelerator
detects a page fault in processing said second request and
writes an indication of said page fault in a block of memory
address space where said second request’s input data is
stored.

