
(19) United
INI

US 20200218569A1

States
(12) Patent Application Publication (10) Pub . No .: US 2020/0218569 A1

Ballantyne et al . (43) Pub . Date : Jul . 9 , 2020

(54) RESOURCE MANAGEMENT FOR BATCH
JOBS

Related U.S. Application Data
(63) Continuation of application No. 15 / 360,948 , filed on

Nov. 23 , 2016 , now Pat . No. 10,592,280 . (71) Applicant : Amazon Technologies , Inc. , Seattle ,
WA (US)

(72) Inventors : Dougal Stuart Ballantyne , Seattle , WA
(US) ; James Edward Kinney , JR . ,
Seattle , WA (US) ; Aswin Damodar ,
Seattle , WA (US) ; Chetan Hosmani ,
Seattle , WA (US) ; Rejith George
Joseph , Seattle , WA (US) ; Chris
William Ramsey , Seattle , WA (US) ;
Kiuk Chung , Seattle , WA (US) ; Jason
Roy Rupard , Renton , WA (US)

Publication Classification
(51) Int . Ci .

GOOF 9/48 (2006.01)
G06F 9/50 (2006.01)

(52) U.S. CI .
CPC G06F 9/4881 (2013.01) ; G06F 9/5016

(2013.01) ; G06F 9/5027 (2013.01) ; G06F
9/5072 (2013.01)

(57) ABSTRACT

(73) Assignee : Amazon Technologies , Inc. , Seattle ,
WA (US)

A scheduler of a batch job management service determines
that a set of resources a client is insufficient to execute one
or more jobs . The scheduler prepares a multi - dimensional
statistical representation of resource requirements of the
jobs , and transmits it to a resource controller . The resource
controller uses the multi - dimensional representation and
resource usage state information to make resource allocation
change decisions .

(21) Appl . No .: 16 / 818,297

(22) Filed : Mar. 13 , 2020

Batch job management service (BJMS) 102
Control plane components 105

Front - end request handler (FRM) 118

Data plane components 150
Customer C1's job mgmt environment (JME) 152A

Event - driven
scheduler instance ESI 153B

(ESI) 153A
Resource reports

(RRS) 179A Resource controller (RC) 112
Compute environment definitions 113

customer - defined constraints)
Queue 154A Queue 154B
Notification interfaces 755A

Events 166A
(e.g. , from
FRH ,

RC , RPS , ...) APR RRS 179B Optimization algorithms 114 (e.g. , multi
dimensional bin - packing) Customer C2's JME 152B

ESI 153K Resource scale - up / scale - down logic 115 .

Queue 154M
Notification interfaces 1558 Events 1668 :

Customer resou?ce intermediary 117

Allocation change
actions 191A

Allocation change
actions 1918

Resource provider (RP) 170A
(e.g. , Virtualized computing

service)
RP 170B (e.g. ,
storage service)

System 100

Batch job management service (BJMS) 102

Control plane components 105

Data plane components 150

1

Front - end request handler (FRH) 118

Resource reports (RRS) 179A

Customer C1's job mgmt environment (JME) 152A

Event - driven scheduler instance

ESI 153B

(ESI) 153A

Patent Application Publication

Resource controller (RC) 112

Events 166A (e.g. , from

Compute environment definitions 113 (customer - defined constraints)

Queue 154A

Queue 154B

FRH , RC , RPS , ...)

Notification interfaces 155A

RRS 179B

Optimization algorithms 114 (e.g. , multi dimensional bin - packing)

Customer C2's JME 152B

ESI 153K

Resource scale - up / scale - down logic 115

$

3

Queue 154M
Notification interfaces 155B

Events 166B

Jul . 9 , 2020 Sheet 1 of 11

1 1

Customer resoy?ce intermediary 117

Allocation change actions 191A

Allocation change actions 191B

Resource provider (RP) 170A

(e.g. , virtualized computing
service)

RP 170B (e.g. storage service)

US 2020/0218569 A1

FIG . 1

System 100

Patent Application Publication Jul . 9 , 2020 Sheet 2 of 11 US 2020/0218569 A1

Customer C1's job management environment 202

Queue 205A Queue 205B Queue 205C

Job 290A Job 290B Job 290K

Scheduler instance (SI)
210A SI 210B

Compute
environment
(CE) 212A

CE 212B CE 2120 CE 212D

Compute environment (CE) 212 Queue 205

CEName 222 QName 252
CEType 224 (e.g. ,

managed vs. unmanaged)
QStatus 254 (e.g. , enabled

vs. disabled)
CEStatus 226 (e.g. ,
enabled vs. disabled)

Priority order of CES 256
CE 257A

Resource Descriptor 228A
RType 230A (e.g. ,

compute vs. storage)
CE 257B

RMin 232A

RMax 234A JobDefinition 270 SubmittedJob 290
RDefault 236A JDName 272 JName 291

Rinstance Types 238A Queue 292 ResourceReq 274 (e.g. ,
N VCPUS , M GB mem)

RNetwork Details 240A Depends - on 293
Command 276

ReqParameters 277 RSecurity Details 242A ArraySize 294
JobDef 295 RTags 244A OptParameters 279
Params 296

ResourceDescriptor 228B Config Details 281 Retries 297
0 .

FIG . 2

Patent Application Publication Jul . 9 , 2020 Sheet 3 of 11 US 2020/0218569 A1

Resource report 310

Multi - dimensional
statistical representation of
pending job requirements

312A

Resource usage status
314A

T

Job requirements
340

Example two
dimensional cluster

330

12

0

8- 16 GB mem

Buckets for job resource requirement attribute A2 (e.g. , # GB of
memory) 352

4. 8 GB mem

< - 4 GB mem

< = 2 VCPUs 2-4 VCPUS 4-8 VCPUs

Buckets for job resource requirement attribute A1 (e.g. , # VCPUs) 350

FIG . 3

Patent Application Publication Jul . 9 , 2020 Sheet 4 of 11 US 2020/0218569 A1

N - dimensional statistical representation of pending job requirements 410
(max size = R KB)

N - tuple of required attribute values 412A Job count 414A

N - tuple of required attribute values 412B Job count 414B

Required values = max (range) s for VCPUs ,
mean (range) for memory 2 - tuple example 430

8 VCPUs , 6GB mem 5

4 VCPUS , 2GB mem 1

2 VCPUS , 6GB mem 1

2 VCPUS , 12GB mem 3

Queue state 450A

#pending jobs = 1,000,000 « R KB statistical representation 454A
(more approximate)

Queue state 450B

#pending jobs = 1,000 < = R KB statistical representation 454B

Queue state 450C Extent of approximation in requirements 470
#pending jobs = 10 < -R KB statistical representation 454C

(more exact)

FIG . 4

Patent Application Publication Jul . 9 , 2020 Sheet 5 of 11 US 2020/0218569 A1

Job resource
requirement attribute

examples 502

Processing attributes 510 (e.g. , #pCPUs of
specified clock frequency ,

#VCPUs , # GPUs , #FPGAs ...)
Memory attributes 512 (e.g. , memory size ,
memory technology , memory bandwidth ,

memory latency ...)

1 Storage attributes 514 (e.g. , storage size ,
storage technology , storage bandwidth , storage

latency , storage fault resilience ...)
Networking attributes 516 (e.g. , interconnect
type , message latency , message bandwidth ,

supported protocols ...)

Security attributes 518 (e.g. , multi - tenant vs.
dedicated , network isolation technology , TPM

availability , ...)

Time - related attributes 520 (e.g. , job start - by
deadline , job end - by deadline , job start latency

...)

Software stack attributes 522 (e.g. , OS ,
middleware , application set ...)

FIG . 5

Multi - dimensional job requirements 610

Patent Application Publication

Current resource usage information 612 Resource bring - up time metadata 614

Resource controller 630

Resource allocation changes 650
(e.g. , allocate / launch new resources ,

release resources , merge / split resources , ...)

Resource biling metadata 616

Jul . 9 , 2020 Sheet 6 of 11

Resource merging / splitting options 618 Optimization algorithm selection criteria 620

US 2020/0218569 A1

FIG . 6

Provider network 702

Storage / DB service 740

Machine learning service 750

Dynamic provisioning computing service 720 (no pre - allocation of resources to clients)

Virtual computing service 730 (virtual machines allocated to clients)

B

Patent Application Publication

.

Execution resource pool 724

.

Virtual machines 734

Storage resource pool 744

Algorithms and models 758

1 1

Registered programs / functions 726

1

Adapters 728

B 1

Jul . 9 , 2020 Sheet 7 of 11

B .

Batch job management service 710

1

Third - party networks 760

Customer network 770

Execution / storage resources 762

US 2020/0218569 A1

Execution / storage resources 772

FIG . 7

Patent Application Publication Jul . 9 , 2020 Sheet 8 of 11 US 2020/0218569 A1

At batch job management service , set up logical compute environments , job
definitions , resource definitions , and job queues in response to client requests

received via programmatic interfaces ; clients may also specify mappings between
queues and compute environments from which resources are to be used for the

queued jobs 801

Instantiate one or more scheduler instances , e.g. , configured to receive event
notifications from various sources , for client C1 804

A scheduler instance receives next event notification (e.g. , from front - end component
indicating job submissions / cancellations , or from resource providers indicating

termination completion of jobs , or from timer) 807

Triggering condition for generating
next resource report met ? 810 No

Yes

Generate multi - dimensional statistical representation (MSR) of resource requirements
of pending jobs whose dependencies have been met (e.g. , based on requirements

indicated in job definitions) 813

Transmit , from scheduler to resource controller , a resource report which includes
MSR and most recent resource usage state information 816

At resource controller , use selected algorithm (e.g. , largest - job - first bin - packing) to
map pending jobs to resources based on MSR and constraints , determine whether
any resource allocation changes (e.g. , allocation / activation of new resources) are

needed 819

Transmit any resource allocation change requests to customer resource intermediary
for client account - level actions ; if needed , generate event notification (s) 822

Schedule jobs on currently - allocated resources as needed ; wait for next event 825

FIG . 8

Patent Application Publication Jul . 9 , 2020 Sheet 9 of 11 US 2020/0218569 A1

Determine number of dimensions / attributes D , number of distinct aggregates or tuples T
to include in report (based on selected report size) , and total number of jobs] ; for this

example , assume D = 2 (attributes are VCPUs and memory) , T = 16 , and J = 64 , and that
attribute values are numerical 901

Calculate number of buckets / clusters B to be identified for each attribute = (T ̂ (1 / D)) ; in
this example , B = 16 (72) = 4 , so four buckets have to be populated for each attribute

904

Select order of attributes in which bucketing is to be performed , e.g. , in this example ,
VCPUs first followed by memory ; start determining and splitting value range of each

attribute in the selected order 907

Al attributes have been bucketed ? 910
Yes

No

For next attribute , split the jobs in each bucket identified thus far (if any) into B new child
buckets using selected splitting strategy , e.g. , recursive balanced binary splitting 913

Optionally , for each bucket and each attribute , set attribute value boundaries to min and
max values for the bucket 916

Depending on type of attribute , for each bucket , determine " aggregate required " value for
each attribute for resource allocation calculations of the resource controller : e.g. , for

VCPUs , the max #vCPUs of the bucket's range may be set as the aggregated required
value , while for memory , the mean or median may be selected 919

Populate tuples for all T = 16 buckets based on aggregate required values and
corresponding bucket populations 922

FIG . 9

Patent Application Publication Jul . 9 , 2020 Sheet 10 of 11 US 2020/0218569 A1

Receive next resource report with statistical representations of requirements for > = 1 queues ; (= j = k = 0 1001

Sort free currently allocated resources of compute environments (CES) 1004

Yes All queues analyzed ? 1007
No ; ++

Consider next queue Qi 1013 Estimation phase
for CE ready jobs
complete 1010

Sort Qi's jobs by resource requirements 1016

Yes
All runnable jobs analyzed ? 1019

No ; ++
Consider next job jj 1022

Yes AllCEs configured for
queue analyzed ? 1025

No : ++
Consider next CE CEK 1028

No can be run using Ceks
free resources ? 1031

Yes
Assign resources to Jj , adjust free resources of CEK

1034

No Jj can be run by adding resources to
CEK , without violating constraints ? 1037

Yes

Add Jj to CEk's (logical) ready queue 1040

For each CE which has a non - empty ready queue , identify resource allocation
changes to be requested from resource providers (e.g. , potentially consolidating /

splitting instances) ; submit requests to intermediary service 1043

For each CE which has unused allocated resources , determine whether any
resources should be de - allocated and submit corresponding requests 1046

FIG . 10

Patent Application Publication Jul . 9 , 2020 Sheet 11 of 11 US 2020/0218569 A1

Computing device
9000

Processor
9010a

Processor
90106

Processor
9010n

VO interface 9030

System memory 9020 Network interface
9040 Code

9025
Data
9026

Network (s)
9050

Other device (s)
9060

FIG . 11

US 2020/0218569 A1 Jul . 9. 2020
1

RESOURCE MANAGEMENT FOR BATCH
JOBS

BACKGROUND

be gener

[0001] This application is a continuation of U.S. patent
application Ser . No. 15 / 360,948 , filed Nov. 23 , 2016 , which
is hereby incorporated by reference herein in its entirety .
[0002] Many companies and other organizations operate
computer networks that interconnect numerous computing
systems to support their operations , such as with the com
puting systems being co - located (e.g. , as part of a local
network) or instead located in multiple distinct geographical
locations (e.g. , connected via one or more private or public
intermediate networks) . For example , distributed systems
housing significant numbers of interconnected computing
systems have become commonplace . Such distributed sys
tems may provide back - end services to servers that interact
with clients . Such distributed systems may also include data
centers that are operated by entities to provide computing
resources to customers . Some data center operators provide
network access , power , and secure installation facilities for
hardware owned by various customers , while other data
center operators provide “ full service ” facilities that also
include hardware resources made available for use by their
customers . Such resources at data centers , when accessed by
remote customers , may be said to reside “ in the cloud ” and
may be referred to as cloud computing resources .
[0003] The advent of virtualization technologies for com
modity hardware has provided benefits with respect to
managing large - scale computing resources for many clients
with diverse needs . For example , virtualization technologies
may allow a single physical computing device to be shared
among multiple users by providing each user with one or
more virtual machines hosted by the single physical com
puting device . Each such virtual machine may be a software
simulation acting as a distinct logical computing system that
provides users with the illusion that they are the sole
operators and administrators of a given hardware computing
resource , while also providing application isolation and
security among the various virtual machines . With virtual
ization , the single physical computing device can create ,
maintain , or delete virtual machines in a dynamic manner .
[0004] The use of virtualization with cloud computing
resources to run client programs may enable some clients to
access a much greater amount of computing capacity at a
given time than would be possible with the clients ' on
premises resources . Some clients , for example , may wish to
execute large sets of analytics and other compute - intensive
computations that could easily exhaust the resource capaci
ties of on - premises resources . Some such computations may
have dependencies with respect to others , and the combina
tions of resources needed may vary for different computa
tions . Managing the allocation of cloud resources efficiently
for varying computational workloads may present a non
trivial problem .

[0006] FIG . 2 illustrates examples of relationships
between job queues , compute environments , and schedulers ,
as well as example data structures which may be used for
batch job management , according to at least some embodi
ments .

[0007] FIG . 3 illustrates example contents of a resource
report which may be generated by a scheduler , according to
at least some embodiments .
[0008] FIG . 4 illustrates examples of space - efficient rep
resentations of resource requirements which may
ated by batch job schedulers , according to at least some
embodiments .
[0009] FIG . 5 illustrates examples of resource attributes
which may be represented in resource requirements gener
ated by batch job schedulers , according to at least some
embodiments .
[0010] FIG . 6 illustrates examples of factors which may be
taken into account to determine resource allocation changes
by a resource controller , according to at least some embodi
ments .
[0011] FIG . 7 illustrates an example provider network
environment at which a service for managing batch jobs may
be implemented , according to at least some embodiments .
[0012] FIG . 8 is a flow diagram illustrating aspects of
operations which may be performed by schedulers and
resource controllers of a batch job management service ,
according to at least some embodiments .
[0013] FIG . 9 is a flow diagram illustrating aspects of
operations which may be performed to generate statistical
representations of job requirements in one example scenario ,
according to at least some embodiments .
[0014] FIG . 10 is a flow diagram illustrating aspects of
operations that may be performed at a resource controller in
response to receiving a resource report , according to at least
some embodiments .
[0015] FIG . 11 is a block diagram illustrating an example
computing device that may be used in at least some embodi
ments .
[0016] While embodiments are described herein by way of
example for several embodiments and illustrative drawings ,
those skilled in the art will recognize that embodiments are
not limited to the embodiments or drawings described . It
should be understood , that the drawings and detailed
description thereto are not intended to limit embodiments to
the particular form disclosed , but on the contrary , the inten
tion is to cover all modifications , equivalents and alterna
tives falling within the spirit and scope as defined by the
appended claims . The headings used herein are for organi
zational purposes only and are not meant to be used to limit
the scope of the description or the claims . As used through
out this application , the word “ may ” is used in a permissive
sense (i.e. , meaning having the potential to) , rather than the
mandatory sense (i.e. , meaning must) . Similarly , the words
“ include , ” “ including , ” and “ includes ” mean including , but
not limited to . When used in the claims , the term “ or ” is used
as an inclusive or and not as an exclusive or . For example ,
the phrase “ at least one of x , y , or z ” means any one of x , y ,
and z , as well as any combination thereof . BRIEF DESCRIPTION OF DRAWINGS

DETAILED DESCRIPTION [0005] FIG . 1 illustrates an example system environment
in which a resource controller may fulfill multi - dimensional
resource requirements identified by event - driven schedulers
for batch job processing , according to at least some embodi
ments .

[0017] Various embodiments of methods and apparatus for
managing the allocation of resources to be used to fulfill job
requests submitted by clients of a batch job management
service are described . In at least some embodiments , a

US 2020/0218569 A1 Jul . 9. 2020
3

[0022] The data plane components may comprise respec
tive job management environments (JMEs) 152 for various
clients or customers of the batch job management service
102. For example , customer Cl’s JME 152A may include
job queues 154A and 154B , as well as event - driven sched
uler instances (ESIS) 153A and 153B , while customer C2's
JME 152B may comprise queue 154M and ESI 153K . In
some embodiments , job queues may be established in
response to programmatic requests submitted to the front
end request handler 118 by clients , while the ESIs may be set
up by the resource controller based , for example on the
number of job queues and / or the expected rate of job
submissions . In one embodiment , for example , more ESIS
may be established by the resource controller as the number
of jobs pending increases , or more computational or
memory resources may be added to existing ESIs . In another
embodiment , ESIs may be created in response to client
requests instead of or in addition to being managed by the
resource controller .
[0023] The ESIs 153 may receive event notifications 166
(e.g. , 166A and 166B) from a number of different types of
sources in the depicted embodiment via respective notifica
tion interfaces 155 , such as 155A or 155B . Some event
notifications may be generated by the front - end request
handlers 118 , e.g. , when new jobs are submitted by clients ,
when existing jobs are canceled / terminated by client
requests , and so on . Other event notifications may be gen
erated when running jobs complete at the resource providers
in various embodiments . In addition , in at least one embodi
ment information regarding the current usage of various
resources may be reported to the ESIs in the form of event
notifications . In response to receiving at least some types of
event notifications , an ESI 153 may analyze the current state
of the job queues 154 for which it is responsible . A resource
report 179 (e.g. , resource report 179A or 179B) may be
prepared and transmitted to the resource controller , e.g. ,
based on the state of the queue (s) and the resources which
are already available to the scheduler for jobs . As discussed
below in further detail , the resource report 179 may com
prise one or more of the following elements in the depicted
embodiment : a multi - dimensional statistical representation
of the requirements of a selected set of queued jobs , and
resource usage status information for one or more compute
environments configured for the client . The multi - dimen
sional representation may indicate the distribution of values
along several different attributes or dimensions of job
requirements of a given queue_e.g . the distribution of
processing (virtual or physical CPU) requirements , the dis
tribution of memory requirements , deadlines for starting or
ending jobs , and so on . In some embodiments , one such
multi - dimensional representation may be generated per
queue in the client's JME , while in other embodiments a
single multi - dimensional representation may be generated
for more than one queue .
[0024] The resource controller 112 may have access to
customers ' compute environment definitions 113 , which
may indicate constraints on the maximum (or minimum) set
of resources that are to be allocated on behalf of a given
client such as C1 or C2 . Using one or more optimization
algorithms 114 such as various types of bin - packing algo
rithms the resource controller's scale - up / scale - down logic
115 may determine whether the set of resources currently
allocated to a client is to be scaled up (by allocating /
activating new resources without violating the constraints in

the compute environment definitions 113) or scaled down
(e.g. , by de - allocating / deactivating resources that are likely
to be idle , or by consolidating resource instances) , given the
requirements indicated in the resource report . Representa
tions of the scale - up or scale - down decisions may be trans
mitted to the customer resource intermediary 117 , and the
corresponding actions may be initiated by the intermediary
at the appropriate resource providers 170 in the depicted
embodiment . The allocation changes may result in event
notifications being sent to the affected ESIs 153 , which may
then schedule various jobs from queues 154 onto the appro
priate resources of the RPs in various embodiments .
[0025] Any desired combination of a wide variety of
resources may be allocated or activated for clients ' batch
jobs in different embodiments , such as guest virtual
machines instantiated at a virtualized computing service
170A , physical hosts or servers , storage devices of a storage
service 170B , database instances , graphics processing
devices (e.g. , GPU - based appliances or virtual machine) ,
appliances optimized for machine learning , program execu
tion containers , and the like . At a given point in time , the
resources of a given compute environment may be in one of
several states in various embodiments . For example , in one
embodiment a given resource may be allocated and in - use
(executing or assisting with the execution of a running job) ,
allocated and free (available for execution of a pending job
if one exists , but not currently designated for any particular
job) , or unallocated (yet to be allocated and designated for
a job , although the constraints of the compute environment
permit such an allocation) . In one implementation , some free
resources may be placed in a dormant or deactivated state ,
from which they may be transitioned to an activated state
when assigned to a job .

Mappings Between Queues and Compute Environments
[0026] FIG . 2 illustrates examples of relationships
between job queues , compute environments , and schedulers ,
as well as example data structures which may be used for
batch job management , according to at least some embodi
ments . As shown , a given customer's (Cl’s) job manage
ment environment 202 may comprise some number of job
queues 205 (e.g. , queues 205A - 205C) , some number of
compute environments 212 (e.g. , CEs 212A - 212D) , and
some number of scheduler instances 210 (e.g. , 210A or
210B) . As mentioned earlier , a given compute environment
may represent a logical grouping of resources with associ
ated constraints specified by a client . The resources of a
given compute environment may in effect represent place
holders in the depicted embodiment , for which correspond
ing actual resources (such as virtual or physical machines or
devices) may be allocated as and when needed . Submitted
jobs 290 of a given queue (such as jobs 290A and 290B of
queue 205A , or job 290K of queue 205C) may be fulfilled
using resources corresponding to one or more compute
environment 212 , and a given compute environment 212
may be used for executing jobs from several different queues
205 in the depicted embodiment , so that an m : n relationship
may be said to exist between queues and compute environ
ments . A given scheduler instance 210 may be configured to
schedule the executions of the jobs of one or more queues
205 at the appropriate set of compute environments associ
ated with the queues in the depicted embodiment . In other
embodiments , the relationships between queues and sched

US 2020/0218569 A1 Jul . 9. 2020
4

uler instances may be more constrained — e.g . , a given
scheduler may be responsible for exactly one queue in one
embodiment .
[0027] Contents of data structures or objects which may be
used to represent compute environments , queues , job defi
nitions and jobs (submitted instances of the job definitions)
are also shown with respect to the depicted embodiment . An
object representing a compute environment 212 may
include , for example , respective entries for a unique name or
identifier (CEName 222) , a type (CEType 224) , a status
(CEStatus 226) , and one or more resource descriptors
indicative of the kinds and numbers of resources that the
environment may include . The CEType element may be set ,
for example , to “ managed ” or “ unmanaged ” in the depicted
example scenario . In a managed environment , resource
allocations may be handled by the batch job management
service , while in an unmanaged environment , changes to
resource allocations may have to be requested by the client
on whose behalf the unmanaged environment is set up .
Unmanaged compute environments may be useful , for
example , for special - purpose jobs which require custom
configuration of resources , or which require resources out
side the provider network at which the job management
service runs . The CEStatus field may indicate whether the
compute environment 212 is currently enabled (i.e. , usable
for jobs) or disabled .
[0028] A resource descriptor 228 , such as 228A or 228B ,
may comprise several subfields in the depicted embodiment .
An RType subfield (230A in the case of resource descriptor
228A) may indicate a resource type (such as compute or
storage) . The RMin , RMax and RDefault subfields 232A ,
234A and 236A may indicate , respectively , the minimum
permitted resources of RType , the maximum permitted
resources of RType , and a default amount of resources of
RType which are to be instantiated or enabled when the
compute environment is initially enabled . The units for the
minimum , maximum , and default resource amounts may
vary depending on RType — for example , for virtual or
physical CPUs , the units may be integer processor counts ,
while for memory or storage , the units may be expressed in
gigabytes or the like . In some cases , the resources of a given
RType (such as virtual machines) may be classified into
several instance types , and the RinstanceTypes subfield
238A may indicate the instance types permitted in the
compute environment . For example , in one embodiment ,
virtual machines may be available in three instance types
from a virtualized computing service : small , medium and
large , with one large instance the logical equivalent of eight
small instances or four medium instances . As such , it may be
possible to consolidate small instances of a given compute
environment into logically equivalent medium or large
instances , or to split large instances into logically equivalent
smaller instances , and such consolidation or split decisions
may be made by the resource controller in some embodi
ments . In some embodiments , some resource instances may
differ from others based on an acquisition mode e.g. , some
virtual machines may be reserved for long periods , others
may be acquired on demand , while others may be acquired
using a spot - pricing mechanism if the resource provider has
sufficient free resources . The RinstanceTypes subfield may
indicate the acquisition mode in at least some such embodi
ments . In at least some embodiments , a resource descriptor
may also include information about networking constraints
(e.g. , a particular subnet or isolated virtual network to be

used for the resources , indicated via subfield RNetworkDe
tails 240A) , security constraints (indicated via RSecuri
ty Details 242A) , and / or text tags (RTags 244A) that a client
wishes to use to classify the resource descriptor .
[0029] A queue object 205 may have an associated iden
tifier QName 252 , a status field QStatus 254 (e.g. , settable to
enabled or disabled) , and a priority ordering 256 of compute
environments (CEs) which are to be used for jobs of the
queue in the depicted embodiment . If CE 257A is assigned
a higher priority than CE 257B for a given queue , an attempt
to find resources in CE 257A for a given job of the queue
may be made first , and an attempt to find resources from CE
257B may be made only if CE 257A does not have enough
resources for the job .
[0030] A job definition object 270 may comprise fields for
a unique name (JDName 272) , resource requirements 274
for each submitted job instance corresponding to the job
definition , a command 276 to be executed for fulfilling the
job instance , and in some cases other configuration details
281 in the depicted embodiment . Required and optional
parameters 277 and 279 respectively for the command may
be indicated in a job definition in some embodiments . In
some embodiments , a given job queue may be designated
exclusively for jobs with a single job definition . In other
embodiments , a given job queue may be used for instances
of several job definitions .
[0031] In the depicted embodiment , a submitted job object
290 (which may also be referred to as a job instance) may
comprise a job name (JName 291) , an identifier of the queue
292 into which the job is to be inserted , and Depends - on
information 293 indicating dependencies on other jobs (e.g. ,
whether the job can only be started under certain conditions
regarding the status of one or more other jobs) . An ArraySize
field 294 may be set to an integer greater than one to submit
a set of jobs which can be executed concurrently (if suffi
cient resources are available) in some embodiments . The
definition of the job may be indicated via the JobDef field
295 , actual parameters for the job's command may be
indicated via Params field 296 , and a maximum number of
attempts to be made to execute the job may be indicated via
the Retries field 297. It is noted that various other fields and
sub - fields may be used for the different kinds of objects or
data structures shown in different embodiments ; the example
fields shown are not intended to be restrictive . In various
embodiments respective programmatic interfaces of the
batch job management service may be utilized by clients to
create , view / list , delete or modify the kinds of data struc
tures shown in FIG . 2. For example , application program
ming interfaces (APIs) for compute environments may
include createComputeEnvironment , listComputeEnviron
ments , updateComputeEnvironment , delete ComputeEnvi
ronment and the like in one embodiment . Programmatic
interfaces other than APIs , such as web - based consoles ,
command - line tools or graphical user interfaces may be use
by clients to interact with the batch job management service
in at least some embodiments .

Resource Report Contents
[0032] FIG . 3 illustrates example contents of a resource
report which may be generated by a scheduler , according to
at least some embodiments . As shown , a resource report 310
may comprise at least one multi - dimensional statistical
representation of pending job requirements 312A , and at
least one resource usage status report 314A . In some

US 2020/0218569 A1 Jul . 9. 2020
5

anced clusters with a minimum cluster population of 1 out
of a total population of 10 jobs , and a maximum cluster
population of 5 jobs . In at least some embodiments , a more
balanced clustering approach may be used than that shown
in FIG . 3 : e.g. , a recursive binary splitting algorithm of the
kind shown in FIG . 9 may be employed in an attempt to
achieve buckets with roughly equal populations , which may
be more conducive for certain kinds of resource allocation
algorithms employed at the resource controller . In at least
one embodiment , a clustering machine learning algorithm
(such as any of various versions of k - means clustering) may
be employed to automatically generate the multi - dimen
sional statistical distribution for a resource report .

embodiments , a respective statistical representation 312 may
be produced for each queue for which the scheduler is
responsible , and a respective resource usage status object
314A may be generated for each compute environment
available for the queue or queues being managed by the
scheduler . In other embodiments , a consolidated statistical
representation of the pending job requirements of more than
one queue may be created , and / or a consolidated resource
usage status object may be created for more than one
compute environment . As indicated earlier , the resource
report 310 may be generated in some embodiments in
response to an event notification received by the scheduler ,
and the resource report may be transmitted to a resource
controller of the service . In at least one embodiment ,
resource reports may submitted periodically (e.g. , once
every T seconds or minutes) by each scheduler as part of a
“ heartbeat ” mechanism which informs the resource control
ler that the scheduler is still active , e.g. , in addition to or
instead of being submitted after being triggered by event
notifications associated with job state changes . In effect , a
notification generated by a timer or other similar timeout
mechanism may be considered another example of an event
to which a scheduler may respond by generating a resource
report . In one embodiment , a resource report may only be
generated by a scheduler if there is at least one pending job
whose resource requirements are such that the job cannot be
scheduled using the free resources of the compute environ
ments associated with the queue to which the job belongs .
[0033] A two - dimensional cluster 330 represents one
example of a multi - dimensional representation of require
ments 340 of the pending jobs of a given queue in the
embodiment depicted in FIG . 3. The two resource attributes
or dimensions included in the representation are (a) the
number of virtual CPUs (vCPUs) required per job and (b)
the amount of memory , in gigabytes , required per job . A
clustering algorithm may be used to group the VCPU
requirements into at least three buckets : < = 2 VCPUs ,
between 2 and 4 vCPUs , and between 4 and 8 VCPUs . Then ,
with respect to the jobs of each vCPU cluster , the distribu
tion of memory requirements may be used to group the jobs
into at least three memory - requirement buckets : < = 4 giga
bytes , between 4 and 8 gigabytes , and between 8 and 16
gigabytes . As a result of the two - dimensional clustering , the
jobs may be grouped into four distinct clusters : one cluster
with a population of 5 jobs corresponding to the combina
tion (4 to 8 VCPUs , 4 to 8 GB of memory) , a second cluster
with a population of 3 jobs corresponding to (< = 2 VCPUs ,
8-16 GB memory) , a third cluster of a single job corre
sponding to (< = 2 VCPUs , 4-8 GB memory) , and fourth
cluster of a single job , corresponding to the combination
(2-4 vCPUs , < = 4 GB memory) . Respective tuples may be
created as discussed below for each of the 2 - dimensional
buckets with non - zero populations in various embodiments
by a scheduler , indicating the required values of the attri
butes for the individual buckets and the corresponding job
populations , and transmitted in a resource report to the
resource controller .
[0034] In various embodiments , the boundaries of the
buckets for each of the attributes (e.g. , boundaries of buckets
350A and 350B) may be identified using any appropriate
range splitting approaches - e.g . , boundaries corresponding
to commonly - used resource configurations may be used ,
such as multiples of 2 GB for memory . In the depicted
example , the boundary selection has resulted in fairly unbal

Queue Size - Independent Representations of Job Resource
Requirements
[0035] FIG . 4 illustrates examples of space - efficient rep
resentations of resource requirements which may be gener
ated by batch job schedulers , according to at least some
embodiments . In a scenario in which N distinct requirement
attributes are being considered , a statistical representation
410 of resource requirements of pending jobs of one or more
queues may comprise one or more N - tuples of required
resource attribute values 412 , such as N - tuples 412A and
412B , corresponding to the multidimensional buckets with
non - zero populations which were identified by the sched
uler . Corresponding to each of the N - tuples , a respective job
population count 414 (e.g. , 414A or 414B) may be included
in the statistical representation . In the depicted embodiment ,
a maximum size of R kilobytes has been designated for the
statistical representation , which may constrain the number
of tuples or buckets which can be included in the represen
tation . As a result of such a size limit , the information
conveyed via the statistical representation may vary in
accuracy or exactness regarding job requirements in the
depicted embodiment ; for larger queue sizes , the require
ment information may be expressed in a more summarized
form , losing some of the accuracy while ensuring that the
size of the resource report message to the resource controller
remains unchanged compared to the size used for smaller
queue sizes .
[0036] The two - dimensional distribution of vCPU and
memory requirements , shown in FIG . 3 , may be represented
by the corresponding 2 - tuple example 430. As shown , a total
of four 2 - tuples , each indicating the required number of
VCPUs and the required amount of memory for each bucket ,
may be generated . Recall that each bucket corresponded to
a range of values (e.g. , between 4 and 8 GB of memory , or
between 2 and 4 vCPUs) in the example shown in FIG . 3 .
From the range for each attribute for each bucket / cluster , a
corresponding aggregate required value may be determined
in various embodiments based on attribute - dependent rules .
Thus , if a particular bucket indicates a range of 2-4 vCPUs ,
in the depicted embodiment the required number of vCPUs
may be set to the maximum value of the range (4 vCPUs) ,
e.g. , because allocating less than the maximum value may
potentially result in a job from that bucket not being able to
complete its execution in a targeted timeframe . In contrast ,
according to the rule being enforced with respect to memory ,
the mean value of the range for the memory attribute may be
set as the required value in the depicted example (e.g. , based
on the assumption that a job may be able to execute with
reasonable performance with somewhat less memory than
indicated in its definition) . In the case of the fourth tuple

US 2020/0218569 Al Jul . 9. 2020
6

shown , for example , the memory required value is set to 12
GB , corresponding to a range of 8-16 GB of memory for the
bucket .
[0037] As mentioned above , the size of the representation
of job requirements may be limited to a maximum of R
kilobytes in the embodiment shown in FIG . 4. If each of the
N - tuples and the corresponding job population information
occupies a maximum of M bytes , this means that the
maximum number of tuples that can be included is approxi
mately floor (R * 1024 / M) in the depicted example . As the
combination of N required values of each N - tuple corre
sponds to a single point in the N - dimensional space , this
means that , as the total number of jobs being represented
increases , the accuracy or exactness of the requirements may
decrease , since more and more job requirements may be
mapped onto a single point . Three job queue sizes and the
corresponding statistical representations are depicted in FIG .
4. In queue state 450C , the number of pending jobs is quite
low (10) , and as a result the corresponding statistical rep
resentation 454C may be quite accurate or exact . E.g. , the 10
jobs may potentially be represented by 10 different buckets ,
so the requirements for each job may be indicated exactly .
In queue state 450B , there may be 1000 pending jobs being
mapped to roughly the same number of tuples , so the
accuracy of the requirement information may be somewhat
less , whole the size of the resource report containing rep
resentation 454B may remain more or less unchanged . Even
if the queue size is a million jobs as in queue state 450A , the
size of the resource report containing representation 454A
may remain unchanged , although the requirement data may
be somewhat more approximate than in the 10 - job or
1000 - job case . In some embodiments , the size of the
resource requirement representation may be a tunable
parameter of the system or service , and may therefore be
adjusted as needed to achieve desired tradeoffs between
resource report message size and accuracy .

memory technology (e.g. , the type of SDRAM , DDRAM
etc. to use) , the memory bandwidth , and / or the memory
latency may be represented as distinct requirements in some
embodiments .
[0040] Storage attributes 516 may be used to indicate , for
example , requirements for storage size , storage technology ,
storage bandwidth , storage latencies for various object sizes ,
fault resilience levels , and so on . Networking attributes 516
may indicate , for example , preferred interconnect types ,
message latencies for various message sizes , bandwidth ,
supported networking protocols , etc.
[0041] Security attributes 518 may indicate , for example ,
requirements for multi - tenant versus dedicated resources ,
the type of network isolation technology being supported at
the resources , the availability of TPMs (trusted platform
modules) , and the like . Time - related attributes may include ,
for example , deadlines for staring or ending the jobs (start
by or end - by deadlines) , the maximum delay between
requesting a job and the initiation of the job (startup
latency) , Software stack related attributes may indicate , for
example , desired operating system versions , middleware
programs , application stacks and so on . It is noted that in
various embodiments , only a subset of the attributes indi
cated in FIG . 5 may be considered when specifying job
requirements (e.g. , in job definitions or in job submissions) ,
and therefore only a subset may be represented in the
resource reports . Other attributes , not shown in FIG . 5 , may
be used to indicate additional characteristics of the resources
needed for the jobs in some embodiments .

Example Dimensions of Job Resource Requirements
[0038] FIG . 5 illustrates examples of resource attributes
which may be represented in resource requirements gener
ated by batch job schedulers , according to at least some
embodiments . Any desired combination of several catego
ries of resource attributes may be used to indicate job
requirements in different embodiments . As shown , the attri
butes 502 may be classified into at least the following
categories in the depicted embodiment : processing attributes
510 , memory attributes 512 , storage attributes 514 , network
ing attributes 516 , security attributes 518 , time - related attri
butes 520 , and software stack attributes 522. It is noted that
for at least some attributes , the feasible range of values may
not necessarily be numerical in various embodiments
instead , for example , categorical values may be appropriate
in some cases . Furthermore , in those cases in which the
feasible range of values is numerical in a given embodiment ,
the feasible values may be discrete (e.g. , integers only) in
some cases and continuous (e.g. , real - valued) in others .
[0039] With respect to processing , depending on the kinds
of jobs a client wishes to run , the attribute values 510 may
indicate the number of physical CPUs (PCPUs) having a
particular clock frequency , virtual CPUs (VCPUs) with a
specified computation capacity , GPUs , FPGAs (Field Pro
grammable Gate Arrays) , or the like in the depicted embodi
ment . With respect to memory attributes 514 , memory size
(e.g. , expressed in gigabytes as in the examples above) ,

Example Factors Considered in Resource Allocation Change
Decisions

[0042] As mentioned earlier , a scheduler may transmit
resource reports , e.g. , in response to event notifications
and / or based on a schedule , to a resource controller in
various embodiments . FIG . 6 illustrates examples of factors
which may be taken into account to determine resource
allocation changes by a resource controller , according to at
least some embodiments . In addition to the multi - dimen
sional job requirements 610 and the current resource usage
information 612 , which may be included in the resource
reports received from the scheduler , a resource controller
630 may also consider several other parameters when mak
ing its decisions in the depicted embodiment . (It is noted that
the resource usage information 612 may be collected from
sources other than the resource reports in at least one
embodimente.g . , the resource controller may be provided
resource usage data by various monitoring services affiliated
with the resource providers being used for the batch jobs .)
[0043] Resource bring - up time metadata 614 may indicate
the time it takes to start up or activate various types of
resources , such as guest virtual machines , storage devices ,
and the like . Some clients may have applications which may
not work well if there are long delays between the time a job
is submitted and the time at which the job's execution
begins . In one embodiment , the resource controller may
decide to keep a pool of resources with relatively long
bring - up times activated even if there are no jobs currently
queued , so that if and when jobs needing such resources are
submitted , the jobs can begin execution more quickly than
if new instances of the resources had to be activated .
[0044] Resource billing metadata 616 may include the
granularity at which clients are billed for resources allocated
on their behalf - e.g . , some resources may be billed at

US 2020/0218569 A1 Jul . 9 , 2020
7

the like) in the depicted embodiment . Other factors , not
shown in FIG . 6 , may also be taken into account in some
embodiments .

Provider Network Environment

[0048] FIG . 7 illustrates an example provider network
environment at which a service for managing batch jobs may
be implemented , according to at least some embodiments .
As shown , provider network 702 may comprise , in addition
to batch job management service 710 , a dynamic provision
ing computing service 720 , a virtual computing service 730 ,
one or more storage or database services 740 , and a machine
learning service 750. In the depicted embodiment , the batch
job management service 710 may utilize resources of one or
more of the other services , e.g. , to execute jobs submitted by
clients and / or to perform one or more control - plane func
tions of the batch job management service itself . For
example , in one embodiment , with respect to control plane
functions , storage resources from pool 744 may be used to
house persistent representations of some or all of the data
objects discussed earlier in the context of FIG . 2 , compute
resources of services 720 or 730 may be used to execute
optimization algorithms for resource allocation decisions ,
machine learning algorithms from service 750 may be used
to cluster pending job requirements by schedulers , and so
on .

per - hour granularity , others on a per - minute or per - day
granularity . The granularity may impact the controller's
decisions as to exactly when an idle resource should be freed
or de - allocated . For example , consider the case of a resource
with a per - hour billing granularity , which is allocated to a
client but has remained idle for some threshold time and is
therefore a candidate for release . If , at the time that the
decision regarding possibly releasing the resource is to be
made , a new billing hour has recently begun for the resource ,
it may be reasonable to retain the resource until (say) ten
minutes before the hour completes , as there would be no
savings accrued to the client by releasing the resource
immediately , and there may be a non - zero probability that a
new job which could use the resource may be submitted by
the client before the current billing hour completes .
[0045] In some cases , as mentioned earlier , resources may
be classified into size - based or capability - based resource
instance categories . For example , compute instances (guest
virtual machines) of a virtualized computing service may be
designated as being large , medium or small in one imple
mentation , with the computing capacity of a large compute
instance being (approximately) K times the computing
capacity of a medium compute instance , and the computing
capacity of a medium compute instance being (approxi
mately) L times the computing capacity of a small compute
instance . As such , from the perspective of computing capac
ity , K * L small compute instances could , at least in principle ,
be replaced by one large compute instance or by K medium

stances , and vice versa . Depending on the preferences of
the clients , the batch job management service's own rules
for consolidating / splitting resources when possible , the
requirements of the pending jobs , and the applicable
resource merging / splitting options 618 available , the
resource controller could decide to substitute resource
instances of one type with logically equivalent resources
instances of other types in some embodiments . In one
embodiment , for example , it may reduce billing costs (and /
or administrative resources consumed) to use M instances of
one type rather than N instances of another type .
[0046] A number of different optimization algorithms may
be available for mapping pending jobs to resources in some
embodiments , given the compute environment constraints of
the client . For example , a biggest - job - first bin - packing algo
rithm may be available , a first - in - first - out algorithm may be
available in which the sizes of the resource requirements are
not used to determine the order in which resources are
allocated , various priority - based algorithms may be avail
able , and so on . The particular optimization algorithm
selected for a given queue or a given client may be governed
by criteria 620 , which may be indicated by the client
programmatically (e.g. , at the time of queue creation) or
determined by the job management service in various
embodiments . In at least one embodiment , the resource
controller may monitor the completion rates or jobs for
various queues , and change the optimization algorithm (or
adjust the algorithm's parameters) based on analysis of the
monitored data .

[0047] Any combination of the different criteria shown in
FIG . 6 may be used by resource controller 630 to determine
resource allocation changes 650 (such as allocating / launch
ing new resources , releasing allocated resources for poten
tial use by other clients , merging or splitting resources , and

[0049] A dynamic provisioning computing service 720
may enable clients to register executable programs for
execution without pre - allocating execution platforms for the
clients (and hence may sometimes be referred to as a
“ server - less ” computing service) . A program may be sub
mitted at service 720 by a client , and one or more triggering
conditions which are to cause the execution of the program
(such as the scheduling of a job by a scheduler of the batch
job management service) may be indicated . Instead of
reserving or provisioning compute resources for the client in
advance , the service 720 may simply select compute
resources for a registered program 726 from a pool 724 of
execution platforms whenever execution of the program is
triggered . The client may not even aware of the kind of
virtual or physical machine used to execute the program , and
may simply be provided with the result of the execution . As
such , clients of the dynamic provisioning computing service
may not have to be concerned with identifying the number
or computing capacities of platforms to be used for their
programs , and may only be charged for the amount of
computing actually performed when their programs are
executed (measured , for example , in relatively fine - grained
increments of seconds or even fractions of seconds of
computation) in at least some embodiments . The computing
resources offered by such a service 720 may be an ideal fit
for implementing some types of jobs . In the depicted
embodiment , dynamic provisioning service 720 may also
make a number of adapters 728 accessible to the registered
programs , enabling the registered programs to utilize
resources external to the service 720. As a result , a program
registered for execution at service 720 may be able to access
resources , for example , at other services of the provider
network and / or outside the provider network .
[0050] In contrast to the dynamic provisioning service
720 , the virtualized computing service 730 may pre - allocate
computing resources (e.g. , virtual machines) to its clients in
a somewhat more static fashion , e.g. , for specified time
intervals , and enable the clients to run programs on the

US 2020/0218569 A1 Jul . 9 , 2020
8

allocated virtual machines . In at least some embodiments ,
programs running on such virtual machines may be used for
batch jobs . Some such programs may implement web ser
vices interfaces , enabling a given program to be utilized by
transmitting commands to an HTTP (HyperText Transfer
Protocol) -based address associated with the program . Vari
ous infrastructure management capabilities supported at the
virtualized computing service , such as automated scaling
and load balancing , may be utilized by the batch job
management service . Programs run to implement batch jobs
at the virtualized computing service 720 and / or the dynamic
provisioning computing service 710 may invoke each other
(or other programs at other services) in some embodi
ments — that is , a given job may not be restricted to utilizing
resources of a given service of the provider network .
[0051] In various embodiments , one or more storage and /
or database services 740 may also be utilized for executing
batch jobs . For example , data sets used for analytics jobs
may be stored at such services , intermediate or final results
of job executions may be stored at such services , and so on .
As mentioned above , various data objects used for job
management , such as objects representing queues , submitted
job instances , compute environments , and the like may also
be stored at such services .
[0052] Some provider networks may include a machine
learning service 750 which can be utilized by various other
services and / or by external clients directly . The machine
learning service 750 may provide a variety of algorithms and
models 758 , such as various models for supervised or
unsupervised learning , which may be invoked by some jobs
submitted to the batch job management service 710. Clus
tering algorithms of the machine learning service may be
invoked by job schedulers of the batch job management
service in some embodiments to generate the multi - dimen
sional statistical representations of job requirements .
[0053] For some jobs submitted to batch job management
service 710 , resources outside the provider network 702 may
be used , e.g. , at execution or storage resources 772 located
within application - owner networks 770 or at execution or
storage resources 762 located in third - party networks 760
(e.g. , networks owned or managed by a third party applica
tion vendor or service vendor , other than the client submit
ting the jobs and other than the provider network operator) .
Other resources or services inside or outside the provider
network may be used for batch jobs in various embodiments .
In some embodiments , the batch job management service
710 may simplify the integration required to utilize the
various types of resources , e.g. , by automatically invoking
appropriate communication modules , formatting modules ,
data structure transformation code , plug - in modules and the
like when executing the jobs . It is noted that at least in one
embodiment , the techniques associated with resource allo
cation decisions discussed herein may be implemented with
out utilizing a provider network .

Mappings between queues and compute environments , e.g. ,
indicating the order in which different compute environ
ments should be considered when attempting to find
resources for a given job of a given queue , may also be
indicated programmatically by clients in the depicted
embodiment . Any combination of a variety of programmatic
interface types may be used in various embodiments , such as
a set of APIs , a web - based console , a command line tool , or
a graphical user interface .
[0055] One or more scheduler instances (e.g. , respective
processes or threads of execution) may be instantiated to
handle the jobs associated with one or more queues created
on behalf of a client (element 814) . The schedulers may be
event - driven in at least some embodiments — e.g . , they may
receive event notifications from various sources , and take
actions in response to the events , remaining largely idle
during intervals in which no notifications are received . The
event sources may , for example , include components of the
batch job management service , such as front - end request
handlers (which may generate events when requests for job
submissions , terminations , completions or cancellations are
received) , resource controllers , and the like , resource moni
toring agents associated with various resource providers
(such as some of the other provider network services shown
in FIG . 7) , and so on . In some embodiments , timer events
may also cause a scheduler to take actions e.g. , a scheduler
may be configured to prepare and transmit a heartbeat
message periodically to a resource controller .
[0056] The next event notification may be received at a
given scheduler (element 807) , e.g. , from a front end request
handler indicating submissions , completions , cancellations
or terminations of one or more jobs , from resource providers
indicating completion / termination of one or more jobs , or
from a timer indicating that a message is to be sent to a
resource controller . In response , the scheduler may examine
the state of one or more job queues and make a determina
tion as to whether a new resource report is to be generated .
In some cases , the scheduler may not need to transmit a
resource report e.g. , if there are no outstanding or pending
jobs in its queue (s) which can be executed , or if the
resources which are already usable by the scheduler are
sufficient to execute the set of pending runnable jobs .
[0057] If the scheduler determines that a triggering con
dition for generating a resource report has been met (element
810) , e.g. , if there is at least one pending job whose
dependencies (if any) have been met and for which insuf
ficient resources are available to the scheduler , the resource
requirements of at least a subset of the pending runnable jobs
may be examined in the depicted embodiment . A multi
dimensional statistical representation (MSR) of the require
ments of such jobs may be created (element 813) , e.g. , using
the kinds of clustering / bucketing techniques discussed ear
lier . In one embodiment , instead of generating buckets or
clusters , measures such as mean requirements , median
requirements , standard deviations of requirements , and the
like may be provided for various attributes or dimensions in
an MSR . In some embodiments , if the scheduler is respon
sible for multiple queues , one such MSR may be created for
each queue ; in other embodiments , a single MSR may be
used to represent requirements from multiple queues . Addi
tional details regarding the generation of an MSR are
provided below in the context of FIG . 9 for some embodi
ments .

Methods for Resource Allocation for Batch Jobs

[0054] FIG . 8 is a flow diagram illustrating aspects of
operations which may be performed by schedulers and
resource controllers of a batch job management service ,
according to at least some embodiments . As shown in
element 801 , at a batch job management service , compute
environments , job queues , job definitions and resource defi
nitions may be set up or established , e.g. , in response to
programmatic requests submitted via clients of the service .

US 2020/0218569 Al Jul . 9. 2020
9

[0058] The scheduler may transmit a resource report
which includes (a) the MSR (s) and (b) the most recent
resource usage status information available at the scheduler
to a resource controller in the depicted embodiment (element
816) . The resource usage status may include data at various
granularities in different embodiments - e.g . , in one embodi
ment , measurements of CPU usage , memory usage and the
like may be included for various hosts / servers , while in
another embodiment , the mappings between running job and
various resources may be included .
[0059] At the resource controller , a selected optimization
algorithm such as a largest - job - first bin - packing algorithm ,
may be used to map pending jobs to resources given the
constraints imposed for example by the compute environ
ment definitions indicated by the client (element 819) . The
results of executing the optimization algorithm may indicate
whether any resource allocation changes should be made
e.g. , whether new resources that do not violate with the
constraints should be allocated or activated , whether some
resources can be freed or de - activated , etc. A wide variety of
resources may be allocated / activated (or freed / de - activated)
in different embodiments , such as guest virtual machines
instantiated at a virtualized computing service , physical
hosts or servers , storage devices , database instances , graph
ics processing devices , appliances optimized for machine
learning , program execution containers , and the like . Addi
tional details regarding a specific technique which may be
used to map pending job requirements to resources in some
embodiments are provided below in the context of FIG . 10 .
[0060] If a determination is made that one or more allo
cation changes should be made , corresponding requests may
be transmitted by the resource controller to a customer
resource intermediary in the depicted embodiment (element
822) . The intermediary may then initiate the requested
actions , e.g. , using the appropriate client credentials to issue
allocation - related requests via programmatic interfaces of
one or more resource providers such as various services of
a provider network . It is noted that in at least one embodi
ment , an intermediary may not be used , and the resource
controller may itself issue the resource requests to the
appropriate providers .
[0061] If , in operations corresponding to element 810 , the
scheduler determines that a new resource report is not
required , the scheduler may schedule pending jobs (if any)
on currently allocated resources (element 825) and wait for
the next event notification . When the next event notification
is received , operations corresponding to elements 807
onwards may be repeated in the depicted embodiment .
[0062] FIG . 9 is a flow diagram illustrating aspects of
operations which may be performed to generate statistical
representations of job requirements in one example scenario ,
according to at least some embodiments . In FIG . 9 , to
simplify the presentation , only two resource attributes or
dimensions (the number of vCPUs and the number of
gigabytes of memory) are considered for inclusion in the
statistical representation by way of example , and both attri
butes are assumed to take on numerical values . It is noted
that an approach similar to that illustrated in FIG.9 may be
applied regardless of the number of resource attributes /
dimensions being considered , and regardless of whether the
attributes values are numerical or not (for example , categori
cal attributes may be mapped to numerical values before the
statistical analysis is performed) . As shown in element 901 ,
the number of distinct dimensions / attributes D , the number

of distinct aggregates or tuples T to be included in the
statistical representation (which may depend for example on
the selected maximum size of the resource report) , and the
total number of jobs J which are to be represented may be
determined . In the example scenario being considered , D is
2 , T is 16 and J is 64 .
[0063] Asymmetrical statistical representation with
respect to the number of distinct dimensions being consid
ered in the depicted example scenario may be prepared
that is , an equal number of distinct buckets or clusters B may
be targeted for each of the dimensions . As 16 tuples are to
be generated taking 2 attributes into consideration , the
number of buckets B for each attribute may be computed as
(16 ^ (1/2)) = 4 (element 904) . In general , for a symmetrical
treatment of D attributes , Tl / D buckets may be created for
each attribute in at least some embodiments . Such symmetry
may not be imposed in some embodiments — that is , the
number of buckets created for a given dimension or attribute
may not necessarily be the same as the number of buckets
created for at least some other dimension or attribute .
[0064] An order in which the attributes are to be bucketed
may be selected (element 907) , e.g. , the vCPU requirements
of the 64 jobs may be bucketed first , followed by the
memory requirements for the jobs in each vCPU bucket . The
range of values among the J pending jobs for the next
dimension in the order (e.g. , the range in the number of
VCPUs required for the J jobs) may be determined and the
splitting of the range may be begun .
[0065] As long as at least one attribute remains un
bucketed (as determined in element 910) , each bucket cre
ated thus far may be split into B child buckets using a
selected range splitting strategy , such as recursive balanced
binary splitting (element 913) . In the very first iteration of
the splitting , the entire set of J jobs may be examined and
split along the first dimension , since no buckets as such have
been created yet in the depicted embodiment . In a recursive
binary balanced splitting , the range of values being consid
ered may be subdivided into two near - equal or equal sub
ranges . For example , if the eight values for vCPUs (1,4,4 ,
4,4,8,8,12) were to be split using recursive balanced binary
splitting into four buckets , in the first split the range 1-12
may be divided into two , resulting in (1,4,4,4,4) and (8,8 ,
12) . Then , the range of the larger of the two groups (if there
is a larger sub - group) may be subdivided into 2 again :
(1,4,4,4,4) may be split into (1) and (4,4,4,4) , thus resulting
in sub - groups (1) , (4,4,4,4) and (8,8,12) . At this point , the
range of the largest sub - group (4,4,4,4) can no longer be
split , and one more split is required to reach the targeted four
buckets , so the range of the second - largest sub - group (8,8 ,
12) may be split . The final four buckets may thus be
identified as (1) , (4,4,4,4) , (8,8) and (12) in this example .
[0066] For each bucket identified using the split strategy ,
in the depicted embodiment , the range may optionally be set
to the maximum and minimum actually indicated in the jobs
of the bucket (element 916) , rather than the numerical values
obtained by the binary split . Thus , for example , if the range
determined for a given bucket by binary splitting for some
attribute value was set to (10-20) , but the actual require
ments for the value for those jobs that were placed in the
bucket were , say (12 , 14 , 17) , the range of the bucket may
optionally be changed from (10-20) to (12-17) .
[0067] The splitting technique of elements 913 and 916
may be repeated for each of the remaining attributes , until all
the attribute value ranges have been split and the member

US 2020/0218569 A1 Jul . 9 , 2020
10

jobs of the targeted number of buckets T has been identified .
After all T buckets have been populated (as determined in
element 910) , a single aggregate required value may be
determined for each attribute represented in each bucket
(element 919) . The aggregate required value may be set to
the maximum , average , median , or some other statistical
measure from the different values represented in the bucket ,
depending on the nature of the attribute and how the jobs are
expected to behave if less than the actual amount indicated
in the job is made available . For example , consider a trivial
example in which the range of vCPUs needed for the jobs in
a given bucket are (2,2,4,4) : that is , there are four jobs in the
bucket , needing 2 , 2 , 4 and 4 vCPUs respectively . Since each
of the jobs requiring 4 vCPUs would (presumably) not work
well if less than 4 vCPUs were provided for them , while the
jobs requiring 2 vCPUs would presumably work well even
if 4 vCPUs were supplied , the aggregate - required value for
the bucket may be set to the maximum vCPU count from the
range (i.e. , 4 in this example) . For other attributes , such as
memory or deadlines , in some implementations the mean /
median may be used as the aggregate - required value instead
of the maximum of the range .
[0068] After the aggregate - required values are deter
mined , the tuples of the space - efficient statistical represen
tation may be generated (element 922) . For each tuple , the
aggregate - required value may be indicated for each dimen
sion , and the job population of the tuple may be indicated .
It is noted that variants of the above approach may be used
in some embodiments - e.g . , in one embodiment , the bound
ary values for the buckets may be predetermined rather than
computed based on the actual job definitions .
[0069] FIG . 10 is a flow diagram illustrating aspects of
operations that may be performed at a resource controller in
response to receiving a resource report , according to at least
some embodiments . In the depicted embodiment , the
resource controller may attempt to first determine whether
already - allocated resources which happen to be unused or
free are sufficient to accommodate at least some jobs , and
then , if some jobs remain unaccommodated , assign jobs to
logical “ ready ” queues for respective cor environments
if possible before actually issuing resource allocation change
requests . As shown in element 1001 , a resource report
containing the statistical representations of job resource
requirements for one or more queues may be obtained at the
resource controller . Each of the queues may comprise one or
more jobs , and be associated with one or more compute
environments . Corresponding to each of the compute envi
ronments , zero or more resources may already have been
allocated in the depicted embodiment ; of the allocated
resources , some may be in use (for one or more currently
running jobs) and others may currently be free . Variables i ,
j and k , used as index variables for queues , jobs and compute
environments respectively , may be initialized to zero .
[0070] The free resources of each compute environment
may be sorted , e.g. , in an order from the largest free resource
to the smallest free resource (element 1004) . If there is at
least one queue whose requirements have not yet been
examined / analyzed (as detected in element 1007) , the index
variable I may be incremented and the next queue Qi may be
examined (element 1013) . Using the multi - dimensional rep
resentation of requirements , the jobs in Qi may be sorted
based on their requirements . Any of several approaches may
be used to perform a multi - dimensional sort in various
embodiments — e.g . , values for multiple attributes may be

sorted in a selected order , or an aggregating function may be
used to translate the multiple values into a single value
which can then be used for sorting , and so on .
[0071] If all the runnable jobs of the queue Qi have been
examined (as detected in element 1019) , the next queue (if
any remains unexamined) may be analyzed . Otherwise , the
job index variable j may be incremented , and the next job Jj
may be analyzed in the sorted order of jobs (element 1022) .
[0072] If all the compute environments whose resources
can be applied for Jj have been examined (as detected in
element 1025) , operations corresponding to element 1019
onwards may be repeated . If at least one compute environ
ment remains unexamined with respect to Jj , the index
variable k for compute environments may be incremented
and the next compute environment (CEk) may be examined
(element 1028) .
[0073] The resources of CEk may be examined in two
phases on behalf of job Jj in the depicted embodiment . First ,
the resource controller may check whether the free (cur
rently - allocated but currently unused) resources of CEk are
sufficient for Jj (element 1031) . If so , those resources may be
logically assigned to Jj , and the count of free resources of
CEk may be reduced accordingly (element 1034) , and the
next job of Qi may be examined (if any jobs remain) .
[0074] If Jj cannot be executed using the currently - free
resources of CEk (as also determined in element 1031) , the
resource controller may determine whether sufficient addi
tional resources could be allocated in CEk for Jj , without
violating the resource limits set for CEk by the client on
whose behalf CEk was created (element 1037) . If so , Jj may
be added to a logical ready queue simulated by the resource
controller for CEk (element 1040) . If allocating additional
resources to allow Jj to be executed using CEk without
violating constraints is not possible (as also detected in
element 1037) , the next compute environment configured
for Qi may be examined (if any is available) , and operations
corresponding to elements 1025 onwards may be repeated
until all the compute environments are exhausted . Under
some circumstances , depending on the constraints set by the
client and the requirements of Jj , it may not be possible to
find enough resources for Jj without violating constraints ,
and the scheduling of Jj may have to wait (e.g. , until one or
more other jobs complete or are terminated) .
[0075] After all the jobs in Qi have been analyzed , the next
queue may be examined , using operations corresponding to
elements 1007 onwards . After all the queues represented in
the resource report have been analyzed with respect to the
associated compute environments , the estimation phase of
the analysis , in which jobs are either assigned free resources
or placed in logical ready queues , may be considered com
plete (element 1010) . At this point , those ready queues
which are non - empty may be examined and the correspond
ing resource allocation changes to be requested from
resource providers may be determined (element 1043) . In
some cases , the resource controller may be able to identify
opportunities for resource consolidation (e.g. , replacing two
smaller instances of a resource with a single larger instance)
or splitting (e.g. , replacing one larger instance with multiple
smaller instances) , depending on the resource merging /
splitting options available for the compute environments .
The requests for the allocation changes may be submitted to
intermediaries associated with the resource providers corre
sponding to various compute environments . In addition , in
some embodiments , based on various factors such as billing

US 2020/0218569 A1 Jul . 9. 2020
11

metadata discussed in the context of FIG . 6 , the resource
controller may be able to identify resources that can be
de - allocated (e.g. , resources which have remained unused
for beyond some threshold interval) , and transmit the cor
responding requests via the intermediaries to the resource
providers (element 1046) .
[0076] It is noted that in various embodiments , at least
some operations other than those illustrated in the flow
diagrams of FIG . 8 , FIG . 9 , and FIG . 10 may be used to
implement the resource allocation techniques for batch jobs
described above . Some of the operations shown may not be
implemented in some embodiments or may be implemented
in a different order , or in parallel rather than sequentially .
Use Cases

[0077] The techniques described above , of separating the
responsibilities for resource allocation changes from the
scheduling of the batch jobs for which the resources are to
be used , may be useful in a variety of embodiments . Many
data analysis tasks in various problem domains , including
for example finance , security , medicine , and the like may be
well suited to batch processing . A batch job management
service which allows clients to define constraints on the
resources to be used for their jobs , and then allows the
clients to submit jobs as desired , leaving the task of man
aging those resources to the service , may simplify the
workload for application designers in such problem
domains . By generating small statistical representations of
the job requirements for various job queues , regardless of
the number of jobs pending in a given queue , the technique
discussed above may enable efficient handling of a wide
variety of client needs with respect to batch job processing .

[0080] System memory 9020 may be configured to store
instructions and data accessible by processor (s) 9010. In at
least some embodiments , the system memory 9020 may
comprise both volatile and non - volatile portions ; in other
embodiments , only volatile memory may be used . In various
embodiments , the volatile portion of system memory 9020
may be implemented using any suitable memory technology ,
such as static random access memory (SRAM) , synchronous
dynamic RAM or any other type of memory . For the
non - volatile portion of system memory (which may com
prise one or more NVDIMMs , for example) , in some
embodiments flash - based memory devices , including
NAND - flash devices , may be used . In at least some embodi
ments , the non - volatile portion of the system memory may
include a power source , such as a supercapacitor or other
power storage device (e.g. , a battery) . In various embodi
ments , memristor based resistive random access memory
(ReRAIVI) , three - dimensional NAND technologies , Ferro
electric RAM , magnetoresistive RAM (MRAM) , or any of
various types of phase change memory (PCM) may be used
at least for the non - volatile portion of system memory . In the
illustrated embodiment , program instructions and data
implementing one or more desired functions , such as those
methods , techniques , and data described above , are shown
stored within system memory 9020 as code 9025 and data
9026 .

[0081] In one embodiment , I / O interface 9030 may be
configured to coordinate I / O traffic between processor 9010 ,
system memory 9020 , and any peripheral devices in the
device , including network interface 9040 or other peripheral
interfaces such as various types of persistent and / or volatile
storage devices . In some embodiments , I / O interface 9030
may perform any necessary protocol , timing or other data
transformations to convert data signals from one component
(e.g. , system memory 9020) into a format suitable for use by
another component (e.g. , processor 9010) . In some embodi
ments , I / O interface 9030 may include support for devices
attached through various types of peripheral buses , such
a variant of the Peripheral Component Interconnect (PCI)
bus standard or the Universal Serial Bus (USB) standard , for
example . In some embodiments , the function of 1/0 inter
face 9030 may be split into two or more separate compo
nents , such as a north bridge and a south bridge , for example .
Also , in some embodiments some or all of the functionality
of I / O interface 9030 , such as an interface to system memory
9020 , may be incorporated directly into processor 9010 .
[0082] Network interface 9040 may be configured to allow
data to be exchanged between computing device 9000 and
other devices 9060 attached to a network or networks 9050 ,
such as other computer systems or devices as illustrated in
FIG . 1 through FIG . 10 , for example . In various embodi
ments , network interface 9040 may support communication
via any suitable wired or wireless general data networks ,
such as types of Ethernet network , for example . Addition
ally , network interface 9040 may support communication
via telecommunications / telephony networks such as analog
voice networks or digital fiber communications networks ,
via storage area networks such as Fibre Channel SANs , or
via any other suitable type of network and / or protocol .
[0083] In some embodiments , system memory 9020 may
be one embodiment of a computer - accessible medium con
figured to store program instructions and data as described
above for FIG . 1 through FIG . 10 for implementing embodi
ments of the corresponding methods and apparatus . How

Illustrative Computer System

as

[0078] In at least some embodiments , a server that imple
ments a portion or all of one or more of the technologies
described herein , including the techniques to implement
various data plane and control plane components of a batch
job processing service and associated services , including
schedulers , resource controllers and the like , may include a
general - purpose computer system that includes or is config
ured to access one or more computer - accessible media . FIG .
11 illustrates such a general - purpose computing device
9000. In the illustrated embodiment , computing device 9000
includes one or more processors 9010 coupled to a system
memory 9020 (which may comprise both non - volatile and
volatile memory modules) via an input / output (I / O) interface
9030. Computing device 9000 further includes a network
interface 9040 coupled to I / O interface 9030 .
[0079] In various embodiments , computing device 9000
may be a uniprocessor system including one processor 9010 ,
or a multiprocessor system including several processors
9010 (e.g. , two , four , eight , or another suitable number) .
Processors 9010 may be any suitable processors capable of
executing instructions . For example , in various embodi
ments , processors 9010 may be general - purpose or embed
ded processors implementing any of a variety of instruction
set architectures (ISAs) , such as the x86 , PowerPC , SPARC ,
or MIPS ISAs , or any other suitable ISA . In multiprocessor
systems , each of processors 9010 may commonly , but not
necessarily , implement the same ISA . In some implemen
tations , graphics processing units (GPUs) may be used
instead of , or in addition to , conventional processors .

US 2020/0218569 A1 Jul . 9 , 2020
12

ever , in other embodiments , program instructions and / or
data may be received , sent or stored upon different types of
computer - accessible media . Generally speaking , a com
puter - accessible medium may include non - transitory storage
media or memory media such as magnetic or optical media ,
e.g. , disk or DVD / CD coupled to computing device 9000 via
I / O interface 9030. A non - transitory computer - accessible
storage medium may also include any volatile or non
volatile media such as RAM (e.g. SDRAM , DDR SDRAM ,
RDRAM , SRAM , etc.) , ROM , etc. , that may be included in
some embodiments of computing device 9000 as system
memory 9020 or another type of memory . Further , a com
puter - accessible medium may include transmission media or
signals such as electrical , electromagnetic , or digital signals ,
conveyed via a communication medium such as a network
and / or a wireless link , such as may be implemented via
network interface 9040. Portions or all of multiple comput
ing devices such as that illustrated in FIG . 11 may be used
to implement the described functionality in various embodi
ments ; for example , software components running on a
variety of different devices and servers may collaborate to
provide the functionality . In some embodiments , portions of
the described functionality may be implemented using stor
age devices , network devices , or special - purpose computer
systems , in addition to or instead of being implemented
using general - purpose computer systems . The term “ com
puting device ” , as used herein , refers to at least all these
types of devices , and is not limited to these types of devices .

CONCLUSION
[0084] Various embodiments may further include receiv
ing , sending or storing instructions and / or data implemented
in accordance with the foregoing description upon a com
puter - accessible medium . Generally speaking , a computer
accessible medium may include storage media or memory
media such as magnetic or optical media , e.g. , disk or
DVD / CD - ROM , volatile or non - volatile media such as
RAM (e.g. SDRAM , DDR , RDRAM , SRAM , etc.) , ROM ,
etc. , as well as transmission media or signals such as
electrical , electromagnetic , or digital signals , conveyed via
a communication medium such as network and / or a wireless
link .
[0085] The various methods as illustrated in the Figures
and described herein represent exemplary embodiments of
methods . The methods may be implemented in software ,
hardware , or a combination thereof . The order of method
may be changed , and various elements may be added ,
reordered , combined , omitted , modified , etc.
[0086] Various modifications and changes may be made as
would be obvious to a person skilled in the art having the
benefit of this disclosure . It is intended to embrace all such
modifications and changes and , accordingly , the above
description to be regarded in an illustrative rather than a
restrictive sense .

1. - 20 . (canceled)
21. A method , comprising :
performing , at one or more computing devices :

determining (a) a limit on the size of a report to be
prepared on resource requirements of pending jobs
of one or more job queues and (b) the number of
resource attributes of the pending jobs which are to
be indicated in the report ;

computing , based at least in part on the limit and the
number of resource attributes , a number of buckets

to be used to represent requirements of the pending
jobs in the report with respect to individual ones of
the resource attributes ; and

preparing the report , wherein said preparing comprises
determining at least one aggregate requirement cor
responding to individual ones of the buckets .

22. The method as recited in claim 21 , wherein the limit
on the size is independent of the number of pending jobs in
the one or more queues , such that the size of a first report
which represents the resource requirement of a first number
of pending jobs is no larger than the size of a second report
which represents the resource requirements of a second
number of pending jobs , wherein the first number is greater
than the second number .

23. The method as recited in claim 21 , wherein the
aggregate requirement corresponding to a particular bucket
comprises one of : (a) an average of a set of resource
requirements mapped to the particular bucket , (b) a maxi
mum of a set of resource requirements mapped to the
particular bucket or (c) a median of a set of resource
requirements mapped to the particular bucket .

24. The method as recited in claim 21 , wherein said
preparing comprises utilizing a balanced splitting strategy to
determine a range of requirements with respect to a particu
lar resource for a particular bucket .

25. The method as recited in claim 21 , wherein said
determining the aggregate requirement comprises :

selecting a type of aggregate requirement to be indicated
in the report for a particular bucket based at least in part
on an expected behavior of a job in response to pro
viding a particular resource to the job in a quantity
smaller than a maximum requirement of the job for the
particular resource .

26. The method as recited in claim 21 , further comprising
performing , at the one or more computing devices :

obtaining an event notification at a scheduler ; and
determining , based at least in part on the event notifica

tion , that the report is to be prepared .
27. The method as recited in claim 21 , wherein at least one

resource requirement indicated in the report is a requirement
for a particular software stack .

28. A system , comprising :
one or more computing devices ;
wherein the one or more computing devices include

instructions that upon execution on or across one or
more processors cause the one or more computing
devices to :
determine (a) a limit on the size of a report to be

prepared on resource requirements of pending jobs
of one or more job queues and (b) the number of
resource attributes of the pending jobs which are to
be indicated in the report ;

compute , based at least in part on the limit and the
number of resource attributes , a number of buckets
to be used to represent requirements of the pending
jobs in the report with respect to individual ones of
the resource attributes ; and

prepare the report , wherein preparation of the report
comprises determining at least one aggregate
requirement corresponding to individual ones of the
buckets .

29. The system as recited in claim 28 , wherein the limit
on the size is independent of the number of pending jobs in
the one or more queues , such that the size of a first report

US 2020/0218569 A1 Jul . 9 , 2020
13

which represents the resource requirement of a first number
of pending jobs is no larger than the size of a second report
which represents the resource requirements of a second
number of pending jobs , wherein the first number is greater
than the second number .

30. The system as recited in claim 28 , wherein the
aggregate requirement corresponding to a particular bucket
comprises one of : (a) an average of a set of resource
requirements mapped to the particular bucket , (b) a maxi
mum of a set of resource requirements mapped to the
particular bucket or (c) a median of a set of resource
requirements mapped to the particular bucket .

31. The system as recited in claim 28 , wherein to prepare
the report , the one or more computing devices include
further instructions that upon execution on or across the one
or more processors further cause the one or more computing
devices to :

utilize a balanced splitting strategy to determine a range
of requirements with respect to a particular resource for
a particular bucket .

32. The system as recited in claim 28 , wherein to deter
mine the aggregate requirement , the one or more computing
devices include further instructions that upon execution on
or across the one or more processors further cause the one
or more computing devices to :

select a type of aggregate requirement to be indicated in
the report for a particular bucket based at least in part
on an expected behavior of a job in response to pro
viding a particular resource to the job in a quantity
smaller than a maximum requirement of the job for the
particular resource .

33. The system as recited in claim 28 , wherein the one or
more computing devices include further instructions that
upon execution on or across the one or more processors
further cause the one or more computing devices to :

obtain an event notification at a scheduler ; and
determine , based at least in part on the event notification ,

that the report is to be prepared .
34. The system as recited in claim 28 , wherein at least one

requirement indicated in the report is a requirement with
respect to a time interval between a request for a job and an
initiation of that job .

35. One or more non - transitory computer - accessible stor
age media storing program instructions that when executed
on or across one or more processors cause one or more
computer systems to :

determine (a) a limit on the size of a report to be prepared
on resource requirements of pending jobs of one or
more job queues and (b) the number of resource
attributes of the pending jobs which are to be indicated
in the report ;

compute , based at least in part on the limit and the number
of resource attributes , a number of buckets to be used
to represent requirements of the pending jobs in the
report with respect to individual ones of the resource
attributes ; and

prepare the report , wherein preparation of the report
comprises determining at least one aggregate require
ment corresponding to individual ones of the buckets .

36. The one or more non - transitory computer - accessible
storage media as recited in claim 35 , storing further program
instructions that when executed on or across the one or more
processors cause one or more computer systems to :

select an order in which the determined resource attributes
of the pending jobs are to be assigned to the buckets ;
and

in accordance with the selected order , perform a plurality
of bucket splitting iterations to subdivide a plurality of
buckets into respective groups of child buckets ,
wherein individual ones of the bucket splitting itera
tions correspond to respective ones of the determined
resource attributes .

37. The one or more non - transitory computer - accessible
storage media as recited in claim 35 , wherein the aggregate
requirement corresponding to a particular bucket comprises
one of : (a) an average of a set of resource requirements
mapped to the particular bucket , (b) a maximum of a set of
resource requirements mapped to the particular bucket or (c)
a median of a set of resource requirements mapped to the
particular bucket .
38. The one or more non - transitory computer - accessible

storage media as recited in claim 35 , wherein to prepare the
report , the one or more non - transitory computer - accessible
storage media store further program instructions that when
executed on or across the one or more processors further
cause one or more computer systems to :

utilize a balanced splitting strategy to determine a range
of requirements with respect to a particular resource for
a particular bucket .

39. The one or more non - transitory computer - accessible
storage media as recited in claim 35 , wherein to determine
the aggregate requirement , the one or more computing
devices include further instructions that upon execution on
or across the one or more processors further cause the one
or more computing devices to :

select a type of aggregate requirement to be indicated in
the report for a particular bucket based at least in part
on an expected behavior of a job in response to pro
viding a particular resource to the job in a quantity
smaller than a maximum requirement of the job for the
particular resource .

40. The one or more non - transitory computer - accessible
storage media as recited in claim 35 , wherein at least one
resource requirement represented in the report is a require
ment for a resource located within a provider network , and
wherein at least one resource requirement represented in the
report is a requirement for a resource located outside the
provider network .

