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SYSTEM AND METHODS FOR ANALYSIS OF
DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application claims priority to U.S. Pro-
visional Patent Application Ser. No. 61/706,583 filed Sep. 27,
2012 and U.S. Provisional Patent Application Ser. No.
61/762,100 filed Feb. 7, 2013, hereby incorporated by refer-
ence.

GOVERNMENT FUNDING

[0002] The invention was made with government support
under grant number ESS 8314 awarded by the Defense Threat
Reduction Agency (DTRA). The United States Government
has certain rights in the invention. The United States govern-
ment has certain rights in this invention.

FIELD OF THE INVENTION

[0003] The invention relates generally to data mining.
More specifically, the invention relates to the analysis of data
using a universal metric to quantify and estimate the similar-
ity and dissimilarity between sets of data.

BACKGROUND OF THE INVENTION

[0004] From automatic speech recognition to discovering
unusual stars, underlying almost all automated discovery
tasks is the ability to compare and contrast data. Yet despite
the prevalence of computing power and abundance of data,
understanding exactly how to perform this comparison has
resisted automation.

[0005] A key challenge is that most data comparison algo-
rithms today rely on a human expert to specify the important
distinguishing “features™ that characterize a particular data
set. Nearly all automated discovery systems today rely, at
their core, on the ability to compare data—from automatic
image recognition to discovering new astronomical
objects—, such systems must be able to compare and contrast
data records in order to group them, classity them, or identify
the odd-one-out. Despite rapid growth in the amount of data
collected and the increasing rate at which it can be processed,
analysis of quantitative data streams still relies heavily on
knowing what to look for.

[0006] Any time a data mining algorithm searches beyond
simple correlations, a human expert must help define a notion
of similarity—by specifying important distinguishing fea-
tures of the data to compare, or by training learning algo-
rithms using copious amounts of examples. Determining the
similarity between two data streams is key to any data mining
process, but relies heavily on human-prescribed criteria.
[0007] Research in machine learning is dominated by the
search for good “features”, which are typically understood to
be heuristically chosen discriminative attributes characteriz-
ing objects or phenomena of interest. The ability of experts to
manually define appropriate features for data summarization
is not keeping pace with the increasing volume, variety and
velocity of big data. Moreover, the number of characterizing
features i.e. the size of the feature set, needs to be relatively
small to avoid intractability of the subsequent learning algo-
rithms. Such small sets of discriminating attributes are often
hard to find. Additionally, their heuristic definition precludes
any notion of optimality; it is impossible to quantify the
quality of a given feature set in any absolute terms; thus, only
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allowing a comparison of how it performs in the context of a
specific task against a few selected variations.

[0008] A number of deep learning approaches have been
recently demonstrated that learn features automatically, but
typically require large amounts of data and computational
effort to train. In addition to the heuristic nature of feature
selection, machine learning algorithms typically necessitate
the choice of a distance metric in the feature space. For
example, the classic “nearest neighbor” k-NN classifier
requires definition of proximity, and the k-means algorithm
depends on pairwise distances in the feature space for clus-
tering. The choice of the metric crucially impacts both super-
vised and unsupervised learning algorithms, and has recently
led to approaches that learn appropriate metrics from data.
[0009] To side-step the heuristic metric problem, a number
of recent approaches attempt to learn appropriate metrics
directly from data. Some supervised approaches to metric
learning can “back out” a metric from side information or
labeled constraints. Unsupervised approaches have exploited
a connection to dimensionality reduction and embedding
strategies, essentially attempting to uncover the geometric
structure of geodesics in the feature space (e.g. manifold
learning). However, such inferred geometric structures are,
again, strongly dependent on the initial heuristic choice ofthe
feature set. Since Euclidean distances between feature vec-
tors are often misleading, heuristic features make it impos-
sible to conceive of a task-independent universal metric in the
feature space. While the advantage of considering the notion
of similarity between data instead of between feature vectors
has been recognized, the definition of similarity measures has
remained intrinsically heuristic and application dependent.
[0010] Thus, there is a need for an automated, universal
metric to estimate the differences and similarities between
arbitrary data streams in order to eliminate the reliance on
expert-defined features or training. The invention satisfies
this need.

SUMMARY OF THE INVENTION

[0011] The invention is a system and methods that esti-
mates the similarity between the sources of arbitrary data
streams without any use of domain knowledge or training.
This is accomplished through use of anti-streams.

[0012] Specifically, the invention comprises a new
approach to feature-free classification based on a new appli-
cation-independent notion of similarity between quantized
sample paths observed from hidden stochastic processes. In
short, the invention formalizes an abstract notion of inversion
and pairwise summation of sample paths, and a universal
metric quantifies the degree to which the summation of the
inverted copy of any one set to the other annihilates the
existing statistical dependencies, leaving behind flat white
noise. Specifically, the invention presents a new featureless
approach to unsupervised classification that circumvents the
need for features altogether and does not require training, and
hence is of substantial practical and theoretical interest to data
analysis and pattern discovery, especially when dealing with
large amounts of data where we do not know what features to
look for.

[0013] According to the invention, every data set or data
stream has an anti-stream, which is used for “data smashing”.
For purposes of this application, the term “data smashing”
refers to algorithmically colliding a data set of information
and its corresponding inverse of anti-information to reveal the
differences and similarities between the data.
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[0014] The term “anti-information” is also referred to as
“anti-stream”, which contains the “opposite” information
from the original data stream, and is produced by algorithmi-
cally inverting the statistical distribution of symbol sequences
appearing in the original stream. For example, sequences of
digits that were common in the original stream are rare in the
anti-stream, and vice versa. Streams and anti-streams are
algorithmically collided in a way that systematically cancels
any common statistical structure in the original streams, leav-
ing only information relating to their statistically significant
differences.

[0015] Data smashing involves at least two data streams
and proceeds by quantizing the raw data, for example, by
converting or mapping a continuous value to a string of sym-
bols. The simplest example of such quantization is where all
positive values are mapped to the symbol “1”” and all negative
values to “0”, thus generating a series of symbols. Next, one
of the quantized input streams is selected and its anti-stream
generated. Finally, this anti-stream is annihilated against the
remaining quantized input stream and the information that
remains is measured or identified. The remaining information
is estimated from the deviation of the resultant stream from a
baseline stream, for example flat white noise (FWN).

[0016] Since a data stream is perfectly annihilated by a
correct realization of its anti-stream, any deviation of the
collision product or remaining information from noise quan-
tifies statistical dissimilarity. Using this causal similarity met-
ric, streams can be clustered, classified, or identified, for
example identifying stream segments that are unusual or dif-
ferent. The algorithms are linear in input data, implying they
can be applied efficiently to streams in near-real time. Impor-
tantly, data smashing can be applied without understanding
where the streams were generated, how they are encoded, and
what they represent.

[0017] Ultimately, from a collection of data streams and
their pairwise similarities, it is possible to automatically
“back out” the underlying metric embedding of the data,
revealing its hidden structure for use with traditional machine
learning methods.

[0018] The invention differs from “mutual information™ in
that mutual information measures dependence between data
streams whereas “data smashing” computes a distance
between the generative processes themselves. As an example,
two independent streams from a series of independent coin-
flips necessarily have zero mutual information, but data
smashing is able to identify the streams as similar, being
generated by the same stochastic process (sequence of inde-
pendent coin flips). Similarity computed via data smashing is
clearly a function of the statistical information buried in the
input streams. The invention reveals this hidden information,
particularly without expert knowledge or a training set.
[0019] The invention is capable of analyzing data from a
variety of real-world challenge problems, including for
example, the disambiguation of electro-encephalograph pat-
terns pertaining to epileptic seizures, the detection of anoma-
lous cardiac activity from heart sound recordings, and the
classification of astronomical objects from raw photometry.
More specifically, the invention is pertinent to any application
that utilizes data in the form of an ordered series of symbols.
The term “symbol” includes any letter, number, digit, char-
acter, sign, figure, mark, icon, image, vector, matrix, polyno-
mial, element or representation. The term “number” includes,
for example, integers, rational numbers, real numbers, or
complex numbers.
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[0020] Further examples of data in the form of an ordered
series of symbols includes, for example, such as acoustic
waves from a microphone, light intensity over time from a
telescope, traffic density along a road, or network activity
from a router.

[0021] Without access to any domain knowledge, data
smashing results in performance that meets or exceeds the
accuracy of specialized algorithms exploiting heuristics
tuned by domain experts, which may open the door to under-
standing complex phenomena in diverse fields of science,
especially when experts don’t know what to look for.

[0022] The invention and its attributes and advantages may
be further understood and appreciated with reference to the
detailed description below of one contemplated embodiment,
taken in conjunction with the accompanying drawings.

DESCRIPTION OF THE DRAWING

[0023] The accompanying drawings, which are incorpo-
rated in and constitute a part of this specification, illustrate an
implementation of the invention and, together with the
description, serve to explain the advantages and principles of
the invention:

[0024] FIG. 1 illustrates a flow chart of method steps
according to one embodiment of the invention.

[0025] FIG. 2 illustrates algorithmic components accord-
ing to one embodiment of the invention.

[0026] FIG. 3 illustrates an exemplary computer system
that may be used to implement the methods according to the
invention.

DETAILED DESCRIPTION OF THE INVENTION

[0027] According to the invention, data smashing is based
on an application-independent notion of similarity between
quantized sample paths observed from hidden stochastic pro-
cesses using a universal metric. The universal metric quanti-
fies the degree to which the summation of the inverted copy of
any one stream to the other annihilates the existing statistical
dependencies, leaving behind flat white noise thereby cir-
cumventing the need for features altogether and without the
requirement of training.

[0028] Despite the fact that the estimation of similarities
between two data streams is performed in absence of the
knowledge of the underlying source structure or its param-
eters, the universal metric is causal, i.e., with sufficient data it
converges to a well-defined distance between the hidden sto-
chastic sources themselves, without ever knowing them
explicitly.

[0029] FIG. 1 illustrates a flow chart 100 of method steps
according to one embodiment of the invention. At step 102, a
first data set is encoded to obtain a first encoded data set. At
step 104, a second data set is encoded to obtain a second
encoded data set. At step 106, the second encoded data set is
inverted to obtain an inverted data set. Summation is per-
formed at step 108 in which the first encoded data set and the
inverted data set are combined to generate a combined stream
or summed data set. At step 110, a baseline data set is encoded
to obtain a baseline encoded data set. At step 112, the summed
data set and the baseline encoded data set are compared to
identify one or more dissimilarities between the first data set
and the second data set at step 114.

[0030] The data sets can be encoded into a series of sym-
bols, for example any letter, number, digit, character, sign,
figure, mark, icon, image, vector, matrix, polynomial, ele-
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ment or representation. In one embodiment, the series of
symbols include the number “1” and the number “0”; how-
ever, any number is contemplated. Encoding data sets may
further comprise quantizing the data set and mapping one or
more portions of the quantized data set to a symbol, which is
then used to “data smash” with a symbol of the baseline data
set. The baseline data set can be any set of data used for a
comparison. In one embodiment, the baseline data set is flat
white noise.

[0031] Quantized Stochastic Processes (QSPs) which cap-
ture the statistical structure of symbolic streams can be mod-
eled using probabilistic automata, provided the processes are
ergodic and stationary. For the purpose of computing a simi-
larity metric, it is required that the number of states in the
automata be finite. In other words, the existence of a genera-
tive Probabilistic Finite State Automata (PFSA) is assumed.
A slightly restricted subset of the space of all PFSA over a
fixed alphabet admits an Abelian group structure, wherein the
operations of commutative addition and inversion are well-
defined. The term “alphabet” refers to a series of symbols or
symbols arranged in a sequential order.

[0032] A trivial example of an Abelian group is the set of
reals with the usual addition operation; addition of real num-
bers is commutative and each real number “a” has a unique
inverse “—a”, which when summed produces a unique iden-
tity. Key group operations, necessary for classification, can be
carried out on the observed sequences alone, without any
state synchronization or reference to the hidden generators of
the sequences.

[0033] Existence of a group structure implies that given
PFSAs G and H, sums G+H, G-H, and unique inverses -G
and -H are well-defined. Since individual symbols have no
notion of a “sign”, the anti-stream of a sequence is a fragment
that has inverted statistical properties in terms of the occur-
rence patterns of the symbols. Therefore, for a PFSA G, the
unique inverse -G is the PFSA which when added to G yields
the group identity W =G+(-G), referred to as the “zero
model”. It should be noted that the zero model W is charac-
terized by the property that for any arbitrary PFSA H in the
group, then H+W=W+H=H.

[0034] For any fixed alphabet size, the zero model is the
unique single-state PFSA up to minimal description that gen-
erates symbols as consecutive realizations of independent
random variables with uniform distribution over the symbol
alphabet. Thus W generates flat white noise (FWN), and the
entropy rate of FWN achieves the theoretical upper bound
among the sequences generated by arbitrary PFSA in the
model space. Two PFSAs G and H are identical if and only if
G+(-H)=W.

[0035] In addition to the Abelian group, the PFSA space
admits a metric structure. The distance between two models
thus can be interpreted as the deviation of their group-theo-
retic difference from a FWN process. Information annihila-
tion exploits the possibility of estimating causal similarity
between observed data streams by estimating this distance
from the observed sequences alone without requiring the
models themselves.

[0036] FIG. 2 illustrates algorithmic components accord-
ing to one embodiment of the invention. The distance of the
hidden generative model from FWN can be estimated given
only an observed stream s. This is achieved by the function C.
Intuitively, given an observed sequence fragment x, the first
computation is the deviation of the distribution of the next
symbol from the uniform distribution over the alphabet. The
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sum of these deviations is C (s,1) for all historical fragments x
with length up to 1, weighted by 1/IZ1*"*'. The weighted sum
ensures that deviation of the distributions for longer x have
smaller contribution to € (s,1), which addresses the issue that
the occurrence frequencies of longer sequences are more
variable.

[0037] According to the invention two sets of sequential
observations have the same generative process if the inverted
copy of one can annihilate the statistical information con-
tained in the other. Given two symbol streams s, and s,, the
underlying PFSAs (say G,;G,) can be checked to determine if
they satisfy the annihilation equality: G,+(-G,)=W without
explicitly knowing or constructing the models themselves.
[0038] Data smashing is predicated on being able to invert
and sum streams, and to compare streams to noise. Inversion
generates a stream s' given a stream s, such that if PFSA G is
the source for s, then -G is the source for s'. Summation
collides two streams s, and s, to generate a new stream s'
whichis a realization of FWN if and only if the hidden models
G ;G , satisty G, +G,=W. Finally, deviation of a stream s
from that generated by a FWN process can be calculated
directly.

[0039] Importantly, for a stream s (with generator (), the
inverted stream s' is not unique. Any symbol stream generated
from the inverse model -G qualifies as an inverse for s; thus
anti-streams are non-unique. What is indeed unique is the
generating inverse PFSA model. Since the invention com-
pares the hidden stochastic processes and not their possibly
non-unique realizations, the non-uniqueness of anti-streams
is not problematic.

[0040] Despite the possibility of mis-synchronization
between hidden model states, applicability of the algorithms
shown in FIG. 2 for disambiguation of hidden dynamics is
valid. Algorithmic components of a computer method for
analyzing data include generating a sample path from a hid-
den stochastic source and generating a sample path from the
inverse model of the hidden stochastic source. A third sample
path is generated from a sum of hidden stochastic sources so
that a deviation of a symbolic stream from flat white noise can
be estimated.

[0041] Estimating the deviation of a stream from FWN is
straightforward (as specified by T (s,]) in FIG. 2, row 4). All
subsequences of a given length must necessarily occur with
the same frequency for a FWN process; and the deviation is
estimated from this behavior in the observed sequence. The
other two tasks are carried out via selective erasure of sym-
bols from the input stream(s) (See FIG. 2, rows 1-3). For
example, summation of streams is realized as follows: given
two streams s, and s,, a symbol is read from each stream and
if they match then it forms part of the combined stream, and
the symbols are ignored when they do not match. Thus, data
smashing allows the manipulation of streams via selective
erasure, to estimate a distance between the hidden stochastic
sources.

[0042] FIG. 3 illustrates an exemplary computer system
300 that may be used to implement the methods according to
the invention. One or more computer systems 300 may carry
out the methods presented herein as computer code.

[0043] Computer system 300 includes an input/output dis-
play interface 302 connected to communication infrastruc-
ture 304—such as a bus—, which forwards data such as
graphics, text, and information, from the communication
infrastructure 304 or from a frame buffer (not shown) to other
components of the computer system 300. The input/output
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display interface 302 may be, for example, a keyboard, touch
screen, joystick, trackball, mouse, monitor, speaker, printer,
any other computer peripheral device, or any combination
thereof, capable of entering and/or viewing data.

[0044] Computer system 300 includes one or more proces-
sors 306, which may be a special purpose or a general-pur-
pose digital signal processor that processes certain informa-
tion. Computer system 300 also includes a main memory 308,
for example random access memory (“RAM”), read-only
memory (“ROM”), mass storage device, or any combination
thereof. Computer system 300 may also include a secondary
memory 310 such as a hard disk unit 312, a removable storage
unit 314, or any combination thereof. Computer system 300
may also include a communication interface 316, for
example, a modem, a network interface (such as an Ethernet
card or Ethernet cable), a communication port, a PCMCIA
slot and card, wired or wireless systems (such as Wi-Fi,
Bluetooth, Infrared), local area networks, wide area net-
works, intranets, etc.

[0045] It is contemplated that the main memory 308, sec-
ondary memory 310, communication interface 316, ora com-
bination thereof, function as a computer usable storage
medium, otherwise referred to as a computer readable storage
medium, to store and/or access computer software including
computer instructions. For example, computer programs or
other instructions may be loaded into the computer system
300 such as through a removable storage device, for example,
a floppy disk, ZIP disks, magnetic tape, portable flash drive,
optical disk such as a CD or DVD or Blu-ray, Micro-Electro-
Mechanical Systems (“MEMS”), nanotechnological appara-
tus. Specifically, computer software including computer
instructions may be transferred from the removable storage
unit 314 or hard disc unit 312 to the secondary memory 310 or
through the communication infrastructure 304 to the main
memory 308 of the computer system 300.

[0046] Communication interface 316 allows software,
instructions and data to be transferred between the computer
system 300 and external devices or external networks. Soft-
ware, instructions, and/or data transferred by the communi-
cation interface 316 are typically in the form of signals that
may be electronic, electromagnetic, optical or other signals
capable of being sent and received by the communication
interface 316. Signals may be sent and received using wire or
cable, fiber optics, a phone line, a cellular phone link, a Radio
Frequency (“RF”) link, wireless link, or other communica-
tion channels.

[0047] Computer programs, when executed, enable the
computer system 300, particularly the processor 306, to
implement the methods of the invention according to com-
puter software including instructions.

[0048] The computer system 300 described herein may
perform any one of, or any combination of; the steps of any of
the methods presented herein. It is also contemplated that the
methods according to the invention may be performed auto-
matically, or may be invoked by some form of manual inter-
vention.

[0049] The computer system 300 of FIG. 3 is provided only
for purposes of illustration, such that the invention is not
limited to this specific embodiment. It is appreciated that a
person skilled in the relevant art knows how to program and
implement the invention using any computer system.

[0050] The computer system 300 may be a handheld device
and include any small-sized computer device including, for
example, a personal digital assistant (“PDA”), smart hand-
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held computing device, cellular telephone, or a laptop or
netbook computer, hand held console or MP3 player, tablet,
or similar hand held computer device, such as an iPad® , iPad
Touch® or Phone®.

[0051] Inoneembodiment, the invention is considered with
respect to sequential observations, for example, a time series
of sensor data. The possibly continuous-valued sensory
observations are mapped to discrete symbols via pre-speci-
fied quantization of the data range. Each symbol represents a
slice of the data range, and the total number of slices define
the symbol alphabet = (where |1Z| denotes the alphabet size).
The coarsest quantization has a binary alphabet consisting of
0 and 1 (it is not important what symbols are used for
example, the letters of the alphabet can be represented by “a”
and “b”), but finer quantizations with larger alphabets are also
possible. An observed data stream is thus mapped to a sym-
bolic sequence over this pre-specified alphabet with the
assumption that the symbol alphabet and its interpretation is
fixed for a particular task. Quantization involves some infor-
mation loss which can be reduced with finer alphabets at the
expense of increased computational complexity. Quantiza-
tion schemes are used that require no domain expertise such
as expert knowledge or a training set.

[0052] In other embodiments, the universal metric of the
invention is utilized in applications to identify epileptic
pathology, identify a heart murmur, and classify variable stars
from photometry. Data smashing begins with quantizing
streams to symbolic sequences, followed by the use of the
annihilation circuit (FIG. 2) to compute pairwise causal simi-
larities.

[0053] In the classification of brain electrical activity from
different physiological and pathological brain states, sets of
data included electroencephalographic (EEG) data sets con-
sisting of surface EEG recordings from healthy volunteers
with eyes closed and open, and intracranial recordings from
epilepsy patients during seizure free intervals from within and
from outside the seizure generating area, as well as intracra-
nial recordings of seizures.

[0054] Starting with the data sets of electric potentials,
sequences of relative changes between consecutive values
before quantization were generated. This step allows a com-
mon alphabet for sequences with wide variability in the
sequence mean values. The distance matrix from pairwise
smashing yielded clear clusters corresponding to seizure, nor-
mal eyes open (EO), normal eyes closed (EC) and epileptic
pathology in non-seizure conditions.

[0055] In the classification of cardiac rhythms from noisy
heat-sound data recorded using a digital stethoscope, data sets
were analyzed corresponding to healthy rhythms and mur-
mur, to verity if clusters could be identified without supervi-
sion that correspond to the expert-assigned labels. Classifi-
cation precision for murmur was 75.2%).

[0056] In the classification of variable stars using light
intensity series (photometry) from the Optical Gravitational
Lensing Experiment (OGLE) survey, supervised classifica-
tion of photometry proceeds by first “folding” each light-
curve to its known period to correct phase mismatches. In one
analysis, starting with folded light-curves, a data set is gen-
erated data of the relative changes between consecutive
brightness values in the curves before quantization, which
allows for the use of a common alphabet for light curves with
wide variability in the mean brightness values. A classifica-
tion accuracy of 99:8% was observed. In another analysis,
data smashing worked without knowledge ofthe period of the
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variable star; skipping the folding step as described above.
Smashing raw photometry data yielded a classification accu-
racy of 94.3% for the two classes The described embodiments
are to be considered in all respects only as illustrative and not
restrictive, and the scope of the invention is not limited to the
foregoing description. Those of skill in the art may recognize
changes, substitutions, adaptations and other modifications
that may nonetheless come within the scope of the invention
and range of the invention.

1. A computer method for analyzing data, comprising the
steps of:

encoding a first data set to obtain a first encoded data set;

encoding a second data set to obtain a second encoded data

set;

inverting the second encoded data set to obtain an inverted

data set;

performing summation of the first encoded data set and the

inverted data set to generate a summed data set;
encoding a baseline data set to obtain a baseline encoded
data set;

comparing the summed data set to the baseline encoded

data set; and

identifying one or more dissimilarities between the first

data set and the second data set.

2. The computer method for analyzing data according to
claim 1, wherein the baseline data set is flat white noise.

3. The computer method for analyzing data according to
claim 1, wherein the first data set in encoded into a series of
symbols.

4. The computer method for analyzing data according to
claim 1, wherein the second data set in encoded into a series
of symbols.

5. The computer method for analyzing data according to
claim 1, wherein the baseline data set in encoded into a series
of symbols.

6. The computer method for analyzing data according to
claim 3, wherein the ordered series of symbols comprises a
number 1 and a number 0.
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7. The computer method for analyzing data according to
claim 4, wherein the ordered series of symbols comprises a
number 1 and a number 0.

8. The computer method for analyzing data according to
claim 5, wherein the ordered series of symbols comprises a
number 1 and a number 0.

9. The computer method for analyzing data according to
claim 1, wherein the step of encoding a first data set further
comprises the steps of:

quantizing the first data set to obtain a quantized data set;

and

mapping one or more portions of the quantized data set to

a symbol.

10. The computer method for analyzing data according to
claim 1, wherein the step of encoding a second data set further
comprises the steps of:

quantizing the second data set to obtain a quantized data

set; and

mapping one or more portions of the quantized data set to

a symbol.

11. The computer method for analyzing data according to
claim 1, wherein the step of encoding a baseline data set
further comprises the steps of:

quantizing the baseline data set to obtain a quantized data

set; and

mapping one or more portions of the quantized data set to

a symbol.

12. Algorithmic components of a computer method for
analyzing data, comprising the steps of:

generating a first sample path from a hidden stochastic

source;

generating a second sample path from the inverse model of

the hidden stochastic source;

generating a third sample path from a sum of hidden sto-

chastic sources;

estimating a deviation of a symbolic stream from flat white

noise.



