US 20160239364A1

a9 United States

a2y Patent Application Publication (o) Pub. No.: US 2016/0239364 A1l

NAM et al. 43) Pub. Date: Aug. 18, 2016
(54) METHOD OF VERIFYING INTEGRITY OF Publication Classification
PROGRAM USING HASH
(51) Imt.CL
(71) Applicant: INKA ENTWORKS, INC., Seoul (KR) GO6F 1107 (2006.01)
. (52) US.CL
(72) Inventors: Jae Min NAM, Seoul (KR); Jung Geun CPC ... GOGF 11/079 (2013.01); GOGF 11/0727
PARK, Gyeonggi-do (KR); Jun Ho (2013.01); GOG6F 11/0751 (2013.01)
HONG, Gyeonggi-do (KR); Jun Seok
OH, Seoul (KR); Jung Soo KIM, Seoul
(KR) 57 ABSTRACT
(21) Appl. No.: 15/024,635 In a method for verifying the integrity of first to Nth binaries
) (N is a natural number greater than or equal to 2), the method
(22) PCT Filed: Sep. 3, 2014 may comprise: loading the first to Nth binaries into a main
memory in order to execute the binaries; verifying a self hash
(86) PCT No.: PCT/KR2014/008257 to verify, by the Kth binary (K=1, . . ., N-1) which has been
§371 (c)(1), loaded into the main memory, the integrity thereof by using a
(2) Date: Mar. 24, 2016 hash; and verifying a link hash by setting any one of the first
to Kth binaries as a verification binary and setting a (K+1)th
(30) Foreign Application Priority Data binary to be loaded into the main memory as a binary to be
verified so that the verification binary verifies the integrity of
Sep. 27,2013 (KR) eoevverercrcenenne 10-2013-0115631 the binary to be verified by using a hash.
110
Central
processin
unit (CPU 1/30
Auxiliary
1/2 0 memory unit

Main memory

150
Z

Input means

140
4

Display

Patent Application Publication Aug. 18,2016 Sheet1 of 7 US 2016/0239364 A1

Fig. 1
100
110
/
Central
N 130
Auxili
120 merlrj1)grlya[1ynit |
/
Main memory 140
——I /
150 Display I
/
Input means

Patent Application Publication Aug. 18,2016 Sheet 2 of 7 US 2016/0239364 A1

Fig. 2
210 220
/ /
Compared
Original file file
0110000 0110000

___/ /

@ 212 @ 222

/ / |
3FA234DF 3FA234DF maniou-
lation
Hash code Hash code
230
/
Compared
file
‘_
0110001

/

U 232

/

C23FEB77

Hash code

Patent Application Publication Aug. 18,2016 Sheet 3 of 7 US 2016/0239364 A1

Fig. 3

310
4

Main program

A hash
™ veritication 311

B hash
®1 veritication ——312

Chash ol—313

verification

320 330 340
/ / N

Program Program Program
file A file B file C

0110000 0110100 0010010

/ / /

Uw Un Ui

/ 4 4

3FA234DF 2AEE3CCH F33CA431

Patent Application Publication Aug. 18,2016 Sheet 4 of 7 US 2016/0239364 A1

Fig. 4

410
/

Program file A

|| B8 hash
412 verification [

] C hash
» eritication | 414

430 420
Z 4

Program file C Program file B

A hash | _| A hash
™ verification| 1431 421~ verification[**

ol Chash ||
| verification —422

L/

|] B hash
432 verification [

Patent Application Publication Aug. 18,2016 Sheet 5 of 7 US 2016/0239364 A1
Fig. 5
Link hash verification
510
/
Program file A
A hash
{_—_—_"-— verificaastion 1912
|
i B hash
: 514\/\verifica:tion -
|
L -
U s
530 / 520
/ 3FA234DF /
Program file C
Program file B
- ve/r\if?c?ast?on 1532
534~—C hasn
R Rt Verificaastion > vef')ifihcaastri]on —1—3522
]
i r_——- > veﬁfpca:tri]on —y—3524
. i L J
Self hash
verification
l l 536 U 526
/ /
2AEE3CC1 F33CA431

Patent Application Publication

Fig. 6

Aug. 18,2016 Sheet 6 of 7

{ Start '

\

Load Kth binary — 8610

Kth binary self

US 2016/0239364 Al

hash verification

Yes

A

5630

(K+1)th binary link
hash verification

Yes

Load (K+1)th binary L S640

S670

Increase | Yes

K value

$650

(K+1)th binary self No

hash verification

Yes

S660

5690
Y

First binary link
hash verification

End program

Patent Application Publication Aug. 18,2016 Sheet 7 of 7 US 2016/0239364 A1

Fig. 7
700
710
/
Self hash
verification
unit
730
/
1/30 1/20 Integrity verification unit
732 736
Auxiliary . Z /
memory unit Main memory
File hash
extraqtion
unit File
alter—
720 734 ation
/ P determ-|
inati_on
Link hash Hash unit
verification registry
unit storqge
unit

US 2016/0239364 Al

METHOD OF VERIFYING INTEGRITY OF
PROGRAM USING HASH

BACKGROUND OF THE INVENTION

[0001] 1. Field of the invention

[0002] The present invention relates to a method for veri-
fying the integrity of a program using a hash.

[0003] 2. Description of the Related Art

[0004] It should be noted that the contents described below
simply provide background information related to embodi-
ments of the present invention and does not constitute a prior
art.

[0005] A hash code is an output bit string of a Hash Func-
tion. Since a unique hash code is extracted according to an
input value of the hash function, the input of a binary file into
the hash function enables a hash code unique to each binary
file to be extracted. Therefore, if a hash is applied to a binary
file, a hash code may be referred to as a digital fingerprint of
the binary file which is an input value of the hash function.
[0006] Ifthereis a difference of even one bit in the contents
of two binary files which are desired to be compared with
each other, different hash codes are output respectively. In
case of using this point, although an original file is not com-
pared with all of compared files, the comparison of a hash
code of the original file with hash codes of the compared files
makes it possible to determine whether a file has been altered.
Inaddition, in order to verify whether the file has been altered,
the content of the original file is not required to be stored and
only the hash code of the original is required to be stored.
Therefore, the verification is simple and the hash code is
easily and conveniently stored and is not easily exposed to a
person who desires to attack a program.

[0007] A file hash method is generally used to verify the
integrity of a file. However, when there are a plurality of
binary files of a program which are verified, methods for
verifying the plurality of binary files provide different effi-
ciency and security. A program may be constituted by one
binary file but, when a dynamic library is used, a plurality of
binary files may constitute one program. Further, integrity
verification may be required between a plurality of applica-
tion programs.

[0008] When a program includes multiple binary files,
there are various verification methods for guaranteeing the
integrity by using a hash. However, such methods do not
consider a time point of verifying a hash which is verified.
One method, conveniently used, for verifying the integrity of
multiple binary files is to verify, by any one of a plurality of
binary files constituting a program, file hashes of the remain-
ing binary files. Another method is to arrange a plurality of
binaries constituting a program in a circulating form and
verify, by each binary, file hashes of binaries adjacent to both
sides thereof.

[0009] The method for verifying, by any one binary file of
a program including a plurality of binaries, file hashes of the
remaining binary files has a simple structure, in which one
binary verifies the integrity of other binary files, and therefore
can be easily developed. However, the method has security
vulnerability in that, when a code which verifies a hash, is
exposed, the hash verification ofall files can be invalidated by
a simple code change.

[0010] The method for arranging a plurality of binaries
constituting a program in a circulating form and verifying, by
each binary, file hashes of binaries adjacent to both sides
thereof provides more improved security than the first method

Aug. 18,2016

in that since two binaries verify each other, it is difficult to
determine the location of a code which verifies a file hash and
even when hash verification codes of some binary files is
exposed and invalidated, it is possible to verify the integrity of
other remaining files. However, the other remaining files are
verified not before a program file is loaded but when the
program file is loaded, and the method depends on the time
point of loading of the other remaining files. As a result, the
method may not be a fundamental solution in that a time gap
hole due to order is generated.

SUMMARY OF THE INVENTION

[0011] Embodiments of the present invention provides a
method for verifying the integrity of multiple binary files
included in a program against each other or the integrity of a
plurality of programs against each other.

[0012] According to one aspect of this embodiment, In a
method for verifying the integrity of first to Nth binaries (N is
a natural number greater than or equal to 2), the method may
comprise: loading the first to Nth binaries into a main memory
in order to execute the binaries; verifying a self hash to verify,
by the Kth binary (K=1, ..., N-1) which has been loaded into
the main memory, the integrity thereof by using a hash; and
verifying a link hash by setting any one of the first to Kth
binaries as a verification binary and setting a (K+1)th binary
to be loaded into the main memory as a binary to be verified
so that the verification binary verifies the integrity of the
binary to be verified by using a hash.

[0013] According to another aspect of this embodiment, in
a method for verifying the integrity of first to Nth script files
(N is a natural number greater than or equal to 2), the method
may comprise: sequentially calling the first to Nth scripts in
order to execute the scripts; verifying a self hash to verify, by
the called Kth script (K=1, . . ., N-1), the integrity of thereof
by using a hash; and verifying a link hash by setting any one
of' the first to Kth scripts as a verification script and setting a
(K+1)th script to be called as a script to be verified so that the
verification script verifies the integrity of the script to be
verified by using a hash.

[0014] According to yetanother aspect of this embodiment,
in a device for verifying the integrity of first to Nth binaries (N
is a natural number greater than or equal to 2), the device may
comprise: an auxiliary memory unit configured to store the
first to Nth binaries; a main memory configured to sequen-
tially load the first to Nth binaries in order to execute the
binaries; a self hash verification unit connected to the auxil-
iary memory unit and the main memory and configured to
verify, by a Kth binary (K=1, . .., N-1) which has been loaded
into the main memory, the integrity thereof by using a hash;
and a link hash verification unit connected to the auxiliary
memory unit and the main memory and configured to set any
one of the first to Kth binaries loaded into the main memory
as a verification binary and set a (K+1)th binary to be loaded
into the main memory as a binary to be verified so that the
verification binary verifies the integrity of the binary to be
verified by using a hash.

[0015] According to yetanother aspect of this embodiment,
in a method for verifying the integrity of first to Nth binaries
(N is a natural number greater than or equal to 2), the method
may comprise: loading a Kth binary (K=1, N) among the first
to Nth binaries into a main memory in order to execute the Kth
binary; verifying a self hash to verify, by the Kth binary
loaded into the main memory, the integrity thereof by using a
hash; and when an unverified binary, the integrity of which

US 2016/0239364 Al

has not been verified, is called while the loaded binaries are
operated, verifying a link hash by setting a calling binary as a
verification binary and setting the unverified binary to be
loaded into the main memory as a binary to be verified so that
the verification binary verifies the integrity of the binary to be
verified by using a hash and, when the integrity is verified,
returns to the loading step.

[0016] As described above, according to embodiments of
the present invention, when veritying the integrity of multiple
binary files included in a program against each other or the
integrity of a plurality of programs against each other, a use of
a link hash verification method mixed with a self hash veri-
fication method can minimize a time gap between the loading
of a binary and the verification of the binary by verifying the
integrity before and after a time point when the binary is
loaded, thereby increasing the validity of integrity verifica-
tion. In the link hash verification method, depending on an
order in which binaries are loaded into a main memory in
order to execute a binary file, a binary previously loaded into
the main memory verifies the integrity of a binary which is
about to be loaded into the main memory. In the self hash
verification method, a binary is loaded into the main memory
for the execution thereof and then immediately verifies the
integrity of a file thereof. Further, in case of the link hash
verification method, since a binary does not performs integ-
rity verification in a file thereof, it is difficult to know a
location at which the binary verifies integrity, and, even when
a self hash verification code is exposed and invalidated by a
static analysis tool, the verification can be repeatedly per-
formed in other adjacent binaries. Therefore, the integrity of
a file can be guaranteed.

[0017] Further, according to an embodiment of the present
invention, when any one of multiple binaries constituting a
program or a plurality of programs is loaded in violation of
the order in which they are loaded into a main memory, a file
is determined to have been altered and the program is ended.
Further, a binary, which will perform security verification, is
first loaded into the main memory, completes the security
verification of a binary to be verified, and then immediately
the binary to be verified is loaded into the main memory,
thereby minimizing a hole according to time and increasing
the validity of integrity verification. In case of trying to alter
any one of the multiple binaries and load altered binary into
the main memory, when a file stored in an auxiliary memory
unit has been altered, it is possible to detect that the file has
been altered in a link hash verification performed immedi-
ately before the binary is loaded into the main memory. Even
when a person desiring to attack a program manipulates the
program or alters the program in other ways and therefore an
original function of link hash verification is not performed, it
is possible to detect that the file has been altered, through the
self hash verification performed immediately after the binary
is loaded into the main memory. The above-described tech-
nical concept of the present invention can be applied to not
only a program made in the form of a binary but also a
program made in the form of a script.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] The above and other objects, features and advan-
tages of the present invention will be more apparent from the
following detailed description taken in conjunction with the
accompanying drawings, in which:

[0019] FIG. 1 is an exemplary view of a computer device
for executing a program which includes multiple binaries;

Aug. 18,2016

[0020] FIG. 2is a schematic view of a method for verifying
the integrity of a file by using a file hash;

[0021] FIG. 3 is an exemplary view of a method for verify-
ing, by any one of a plurality of binaries, the integrity of the
remaining binaries;

[0022] FIG. 4 is an exemplary view of a method for arrang-
ing a plurality of binaries in a circulating form and verifying,
by each binary, file hashes of binaries adjacent to the both
sides thereof.

[0023] FIG. 5is an exemplary view of a method for verify-
ing multiple binaries by using link hash verification and self
hash verification according to an embodiment of the present
invention;

[0024] FIG. 6 is a flowchart which illustrates verifying the
integrity of an application program according to an embodi-
ment of the present invention;

[0025] FIG. 7 is a configuration view of a device for veri-
fying the integrity of an application program according to an
embodiment of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS

[0026] Hereinafter, embodiments of the present invention
will be described in detail with reference to accompanying
drawings.

[0027] When an application program includes a dynamic
library and thereby has a plurality of binaries, the application
program may be altered by precluding a dynamic library,
which is called by the application program, from performing
an originally intended function, by performing a function
which is not intended by a user (for example, acquiring a
game item through automatically performing a game in a
game program, performing transmission to a person whose
credit information is unauthorized, or the like), or by attach-
ing a new code, such as a virus, which causes harm. However,
when a plurality of dynamic libraries are used, the prior art
only verified whether a file had been altered and did not
consider a time point of hash verification. Hereinafter, in an
embodiment of the present invention, a description will be
given on a method for guaranteeing the integrity of a file
related to an application program and a dynamic library even
when a plurality of dynamic libraries are used. Here, the
dynamic library may be referred to as various names such as
a Dynamic Link Library, a Shared Library, a Run Time
Library, a Active X control, and the like.

[0028] However, the technical concept of the present inven-
tion is not limited a plurality of binaries which include a
dynamic library. The technical concept of the present inven-
tion may also be applied between a plurality of application
programs. Therefore, a first binary, which is firstly loaded into
a main memory, among binaries included in first and second
applications, may perform self hash verification and perform
link hash verification of a second binary which is secondly
loaded into the main memory, and the second binary may
perform self hash verification immediately after being loaded
into the main memory. Further the technical concept of the
present invention is not limited to a program converted in the
form of a binary. The technical concept is capable of being
similarly applied to a program made by a script language such
as a JavaScript or a VB script. When a program including a
plurality of JavaScripts is executed, a jscriptl.js firstly
executed performs self hash verification thereof and performs
link hash verification of a secondly executed jscript2.js. The
jscript2.js, in addition, performs selfhash verification. There-
fore, a binary set forth in claims should be construed to

US 2016/0239364 Al

include a program, etc. Hereinafter, the description of
embodiments will be focused on an application program
which includes a dynamic library.

[0029] FIG. 1 is an exemplary view of a computer device
for executing a program including multiple binaries.

[0030] An application program and a dynamic library
stored in an auxiliary memory unit 130 are loaded into a main
memory 120 and the application program is executed by a
central processing unit (CPU) 110. The application program
receives data necessary for the execution thereof from an
input device 150 and outputs a result of the execution in a
display device 140. The application program loaded into the
main memory 120 loads the dynamic library necessary there-
for from the auxiliary memory unit 130 to use the dynamic
library. When the application program is executed, a binary
file including a start point of the application program is firstly
loaded into the main memory 120 and is executed. While the
application program is executed, when a particular module is
required to be called, the dynamic library is loaded from the
auxiliary memory unit 130 into the main memory 120.
[0031] FIG.2isaschematic view of a method for verifying
the integrity of a file by using a file hash.

[0032] Inorderto verify the integrity of a file by using a file
hash, first of all, an original file 210 is input to a Hash Func-
tion (MDS5, SHA, Checksum, etc.) to extract a hash code 212
of the original file. The hash code 212 of the original file
should be stored in advance in order to compare, later on, the
hash code 212 of the original file with a hash code 222
extracted from a compared file 220. While preventing the
hash code 212 of the original file from being exposed to a
person attacking a program, the hash code 212 of the original
file and the compared file 220 are distributed. If a compared
file 230 is executed in a user system, the hash code 222 of the
compared file is extracted and compared with the hash code
212 of the original file, so that whether the compared file 220
has been altered can be determined.

[0033] In FIG. 2, the contents of the original file 210 are
shown as “0110000”. The compared file 220, which has the
same content as the original file 210, is distributed to a user
together with the hash code 212 of the original file. At this
time, the two files have the same hash code, “3FA23DF”
because the two files have the same contents.

[0034] However, after being distributed, when the com-
pared file 230 is altered and the contents thereof are altered to
“0110001”, and the altered compared file 230 is executed,
then a hash code 232 extracted from the altered compared file
230 becomes “C23FEB77”. Since the hash code 232 of the
compared file does not match the hash code 212 of the origi-
nal file, it is possible to detect that the compared file 230 has
been altered.

[0035] FIG. 3 is an exemplary view of a prior art for veri-
fying, by any one of a plurality of binaries, the integrity of the
remaining binaries.

[0036] FIG. 3 illustrates an example of a method for veri-
fying, by any one of a plurality of binaries included in a
program, whether the remaining binaries have been altered,
by using a file hash. In FIG. 3, among the plurality of binaries
included in the program, a main program 310 verifies the
integrity of a program file A 320, a program file B 330, and a
program file C 340. The hash code 322 of the program file A
is “3FA234DF”, the hash code 332 of the program file B is
“2FEE3CC17”, and the hash code 342 of the program file C is
“F33CA431”. While being executed, the main program 310
loads the program file A 320, the program file B 330, or the

Aug. 18,2016

program file 340 into the main memory 120. In order to verify
whether a binary file has been altered while loading the binary
file, the main program 310 extracts a hash code of a file to be
loaded and verifies whether a hash code, which matches the
extracted hash code, exists in a hash registry which includes
pre-stored hash codes. If there is no hash code which matches
the extracted hash code in the hash registry, the file is deter-
mined to have been altered. Therefore, the main program 310
may take a measure, such as stopping the program execution.

[0037] However, the above-described method has security
vulnerability in that if a code, which is included in the main
program 310 performing verification and performs verifica-
tion, is invalidated, verification of all binaries is invalidated.

[0038] FIG. 4 is an exemplary view of a method for arrang-
ing a plurality of binaries in a circulating form and verifying,
by each binary, file hashes of binaries adjacent to the both
sides thereof.

[0039] FIG. 4 illustrates an example of a prior link hash
verification art for arranging a program file A 410, a program
file B 420, and a program file C 430, which are binary files
constituting an application program, in a circulating form and
verifying, by each binary, file hashes of two binaries adjacent
to the both sides thereof. If the application program is
executed, the program file A 410 is firstly loaded into the main
memory 120. After being loaded into the main memory 120,
the program file A 410 performs hash verification 412 on the
program file B and hash verification 414 on the program file
C. After being loaded into the main memory 120, the program
file B 420 also performs, in the same manner, hash verifica-
tion 421 on the program file A and hash verification 422 onthe
program file C, and the program file C 430 also performs, in
the same manner, hash verification 431 on the program file A
and hash verification 432 on the program file B.

[0040] The method, as described in FIG. 4, which verifies
each other of files while rotating among files, may provide
more improved security than the prior art described in FIG. 3,
since, even when a code performing verification in some
binaries is invalidated, verification of the remaining binaries
is valid. This method provides excellent security. However,
this method is not to verify a program file before the program
file is loaded but to veritfy other files at a time point when the
file is loaded, thus this method depends on a time point when
the other files are loaded. Therefore, a time gap hole due to an
order is generated. For example, assuming that, since the
program file C 430 loaded at last is late loaded, the program
file C 430 is loaded 5 seconds after the program file A 410 and
the program file B 420 are loaded, then a hole during which an
attack can be made is generated for 5 seconds from the time
hash verification has been performed on the program file C
430 up to the time the program file C 430 is loaded into the
main memory 120. Therefore, in case of the program file C
430, the validity of integrity verification may be considered to
be low.

[0041] FIG. 5is an exemplary view of a method for verify-
ing multiple binaries by using link hash verification and self
hash verification according to an embodiment of the present
invention.

[0042] FIG. 5 illustrates an example of a method for over-
coming a security hole, which is a problem of the prior art, by
combining a link hash verification method and a self hash
verification method in verifying the integrity of a plurality of
binary files included in a program. In FIG. 5, among a pro-
gram file A 510, a program file B 520, and a program file C

US 2016/0239364 Al

530 included in an application program, the program file A
510 is firstly loaded into the main memory 120.

[0043] Hereinafter, the self hash verification and the link
hash verification will be described. Immediately after being
loaded into the main memory 120, the program file A 510
performs hash verification on a self binary file. This is
referred to as self hash verification. The program file A 510
extracts a hash code 516 of its own file and performs hash
verification 512 on itself to determine whether the extracted
hash code 516 matches any one of hash codes included in a
hash registry. If there is no matching value, the program file A
510 is determined to have been altered and the program is
ended.

[0044] While the program file A 510 is being executed, a
particular module included in the program file B 520 may be
called. Here, immediately before program file B 520 is
loaded, the program file A 510 performs hash verification 514
on the program file B. This is referred to as link hash verifi-
cation. First, the program file A 510 extracts a hash code 526
of the program file B and determines whether the extracted
hash code 526 matches any one of hash codes included in a
hash registry. The program file A 510 becomes verification
binary and the program file B 520 becomes a binary to be
verified. The verification binary performs hash verification on
the binary to be verified. If there is no hash code matching the
hash code 526 of the program file B in the hash registry, the
program file B 520 is determined to have been altered and the
program is ended. Immediately after being loaded into the
main memory 120, the program file B 520 performs self hash
verification which is hash verification 524 on the program file
B.

[0045] When the program file A 510 or the program file B
520 calls a particular module included in the program file C
530, the program file B 520 extracts a hash code 536 of the
program file C and performs link hash verification which is
hash verification 522 on the program file C; and, immediately
after being loaded into the main memory 120, the program file
C 530 extracts the hash code 536 thereof and performs self
hash verification which is hash verification 534 on the pro-
gram file C. Here, since the program file A 510 as well as the
program file B 520 is loaded into the main memory 120 and is
being operated, the program file A 510 may call the particular
module included in the program file C 530. Such a method
considers even an integrity verification time point according
to program loading and thus may increase the validity of
integrity verification. Generally, file hash verification is the
most effective when being performed immediately before and
immediately after a file is loaded. This is because the longer a
verification time before or after loading time point, the longer
a time during which an attack can made. This is, because for
example, if a file hash is verified a few seconds after a file is
loaded, it is difficult to guarantee the integrity of the file when
a hacker alters a file before the file is loaded and replaces an
original file with the altered file within a few seconds after the
file is loaded. Therefore, the integrity verification is per-
formed immediately before and immediately after a program
is loaded.

[0046] Ifthe program file C 530, which is a binary loaded at
last into the main memory 120 while an application program
is being executed, is set as a verification binary, the program
file A, which is firstly loaded into the main memory 120 is set
as abinary to be verified, the hash code 516 ofthe program file
A is extracted, and link hash verification 532, which is hash

Aug. 18,2016

verification on the program file A, is performed, then the link
hash verification and self hash verification on all binaries is
completed.

[0047] Itis illustrated in FIG. 5 that the link hash verifica-
tion is performed in rotation. However, this illustration is
made in order to understand the concept of the present inven-
tion. Therefore, the link hash verification may not be per-
formed on all programs, depending upon the design of pro-
gram files.

[0048] FIG. 6 is a flowchart which illustrates verifying the
integrity of an application program according to an embodi-
ment of the present invention.

[0049] In verifying the integrity of an application program
which includes N binaries, first to Nth binaries are sequen-
tially loaded into the main memory 120 for the execution
thereof. A Kth binary is loaded into the main memory 120
(S610) and self hash verification on the Kth binary is per-
formed (S620). Here, K begins from 1. In the self hash veri-
fication, when a file is determined not to have been altered, the
Kth binary verifies a link hash of a (K+1)th binary immedi-
ately before the (K+1)th binary is loaded into the main
memory 120 (S630). Here, if the file is determined not to have
been altered, the (K+1)th binary is loaded into the main
memory 120 (S640). Immediately after being loaded into the
main memory 120, the (K+1)th binary performs self hash
verification thereon (S650). Further, if (K+1) is less than N
when compared with N (S660), a K value increases by 1
(S670) and the process moves to a step of link hash verifica-
tion on a binary to be loaded next (S630).

[0050] Further, if (K+1) becomes equal to N by repeatedly
performing link hash verification on a binary to be loaded
next into the main memory 120 and selfhash verification after
the binary is loaded into the main memory 120, the Nth binary
loaded into the main memory 120 at last verifies a link hash of
the first binary firstly loaded into the main memory 120
(S680). If, in the self hash verification and the link hash
verification, a file is determined to have been altered, the
program ends (S690).

[0051] In case of a program made by using a script, integ-
rity may be verified in the same manner. In verifying the
integrity of the program made by using N scripts, first to Nth
scripts are sequentially called for the execution thereof. If a
Kth script is called, the Kth script firstly verifies a selfhash (K
begins from 1). The Kth script verifies a link hash ofa (K+1)th
script to be called next. If the (K+1)th script is executed, self
hash verification is firstly performed. Such a process is
repeatedly performed whenever (K+1) is less than N. If (K+1)
becomes equal to N, an Nth script performs self hash verifi-
cation on itself and performs link hash verification on the first
script.

[0052] FIG. 7 is a configuration view of a device for veri-
fying the integrity of an application program according to an
embodiment of the present invention.

[0053] A device for verifying the integrity of an application
program which includes a plurality of binaries comprises a
main memory 120, an auxiliary memory unit 130, a self hash
verification unit 710, a link hash verification unit 720, a
integrity verification unit 730, a file hash extraction unit 732
in the integrity verification unit 730, a hash registry storage
unit 734, and a file alteration determination unit 736.

[0054] The application program which includes the plural-
ity of binaries is stored in the auxiliary memory unit 130, and
then is loaded into the main memory 120 when the application
program is executed. A binary loaded into the main memory

US 2016/0239364 Al

verifies its own file hash by using the self hash verification
unit 710 and the integrity verification unit 730 connected to
the self hash verification unit 710. The file hash extraction
unit 732 of the integrity verification unit 730 extracts a hash
code of a binary received from the self hash verification unit
710 and transfers the hash code to the file alteration determi-
nation unit 736. The file alteration determination unit 736
determines whether the received hash code matches any one
of hash codes stored in the hash registry storage unit 734,
thereby determining whether a file has been altered.

[0055] The binary loaded into the main memory 120 per-
forms link hash verification on a binary to be loaded next, by
using the link hash verification unit 720. The link hash veri-
fication unit 720 transfers a binary file to be verified to the
integrity verification unit 730 connected to the link hash
verification unit 720 and verifies a file hash.

[0056] In the process of the self hash verification and the
link hash verification, when the file alteration determination
unit 736 determines that the file has been altered, the appli-
cation program ends.

[0057] Itispreferable that, in case of starting a program, the
present invention is performed while program files are being
loaded. However, the present invention may be applied while
the program is being operated, depending upon the design of
the program.

[0058] Device 700 for verifying the integrity of an applica-
tion program according o an embodiment of the present
invention may be a user terminal such as a personal computer
(PC), a notebook computer, a tablet, a personal digital assis-
tant (PDA), game console, a portable multimedia player
(PMP), a PlayStation Portable (PSP), a wireless communica-
tion terminal, a smart phone, TV and a media player.

[0059] The device 700 for verifying the integrity of an
application program according to an embodiment of the
present invention may he a server terminal such as an appli-
cation server and a service server. The device 700 for verify-
ing the integrity of an application program according to an
embodiment of the present invention may respectively refer
to various devices provided with (i) a communication device
such as a communication modem for performing communi-
cation with various devices or a wired/wireless communica-
tion network, (ii) a memory for storing data to execute the
program, (iii) a microprocessor for performing computation
and control by executing the program, and the like. In accor-
dance with at least one embodiment, the memory may be a
computer-readable recording/storage medium such as a Ran-
dom Access Memory(RAM), a Read Only Memory(ROM), a
flash memory, an optical disk, a magnetic disk, a solid state
disk (SSD). In accordance with at least one embodiment, the
microprocessor may be programmed to perform optionally at
least one of operations and functions described herein. In
accordance with at least one embodiment, the microprocessor
may be implemented on the whole or on the part thereof by
using hardware such as an application specific integrated
circuit (ASIC) of a particular configuration.

[0060] Theabovedescription is simply to describe the tech-
nical concept of the embodiments by way of examples. Those
skilled in the art of the embodiments may make various
modifications, additions and substitutions, without departing
from principles of this disclosure. Accordingly, the embodi-
ments are intended for illustrating rather than for limiting the
technical scope of this embodiment. The scope of the techni-
cal concept of the embodiments is not limited by the embodi-
ments. The scope of the embodiment is to he interpreted by

Aug. 18,2016

the following claims. All such modifications and variations
are to be construed as being included within the scope of this
embodiment.

What is claimed is:

1. A method for verifying the integrity of first to Nth bina-
ries (N is a natural number greater than or equal to 2), the
method comprising:

loading the first to Nth binaries into a main memory in

order to execute the binaries;

verifying a self hash to verify, by the Kth binary (K =1, . .

., N-1) which has been loaded into the main memory, the
integrity thereof by using a hash; and
verifying a link hash by setting any one of the first to Kth
binaries as a verification binary and setting a (K+1)th
binary to be loaded into the main memory as a binary to
be verified so that the verification binary verifies the
integrity of the binary to be verified by using a hash.
2. The method according to claim 1, further comprising:
verifying a self hash by the Nth binary after the Nth binary
is loaded into the main memory, and verifying a link
hash by setting any one of second to the Nth binaries as
the verification binary and setting a first binary as the
binary to be verified.
3. The method according to claim 1, in the verifying of the
link hash, when the binary to be verified is the (K+1)th binary,
the Kth binary is a verification binary.
4. The method according to claim 1, wherein the verifying
of'the self hash is performed by a binary loaded into the main
memory immediately after the binary is loaded into the main
memory.
5. The method according to claim 1, wherein the verifying
of'the link hash is performed by the verification binary imme-
diately before the binary to be verified is loaded into the main
memory.
6. The method according to claim 1, comprising reading
hash registries for original binaries in order to verify the
integrity of the first to Nth binaries.
7. The method according to claim 6, wherein the verifying
of the self hash comprises:
extracting a self file hash code by inputting the binary
loaded into the main memory to a Hash Function;

determining whether the extracted self file hash code
matches any one of hash codes included in the hash
registries; and

stopping the execution of a program when a file is deter-

mined to have been altered.
8. The method according to claim 6, wherein the verifying
of the link hash comprises:
extracting a link file hash code of the binary to be verified
by inputting the binary to be verified to a Hash Function;

determining whether the extracted link file hash code
matches any one of hash codes included in the hash
registries; and

stopping the execution of a program when a file is deter-

mined to have been altered.

9. The method according to claim 1, wherein the extracting
of' the link file hash code comprises

acquiring, by the verification binary, information on

whether any one of'the first to Nth binaries except for the
verification binary becomes the binary to be verified.

10. The method according to claim 1, wherein the verifying
of the link hash comprises

US 2016/0239364 Al

stopping the program execution when, except for the first
binary, the verification binary is not loaded into the main
memory but the binary to be verified is loaded into the
main memory, .

11. A method for verifying the integrity of first to Nth script
files (N is a natural number greater than or equal to 2), the
method comprising:

sequentially calling the first to Nth scripts in order to
execute the scripts;

verifying a self hash to verify, by the called Kth script
(K=1, ..., N-1), the integrity thereof by using a hash;
and

verifying a link hash by setting any one of the first to Kth
scripts as a verification script and setting a (K+1)th script
to be called as a script to be verified so that the verifica-
tion script verifies the integrity of the script to be verified
by using a hash.

12. A device for veritying the integrity of first to Nth
binaries (N is a natural number greater than or equal to 2), the
device comprising:

an auxiliary memory unit configured to store the first to Nth
binaries;

a main memory configured to load the first to Nth binaries
in order to execute the binaries from the auxiliary
memory Unit;

a self hash verification unit configured to verify, by a Kth
binary (K=1, . . ., N-1) which has been loaded into the
main memory, the integrity thereof by using a hash; and

alink hash verification unit configured to set any one of the
first to Kth binaries loaded into the main memory as a
verification binary and set a (K+1)th binary to be loaded
into the main memory as a binary to be verified so that
the verification binary verifies the integrity of the binary
to be verified by using a hash.

13. The device according to claim 12, wherein the link hash
verification unit verifies a self hash by using the Nth binary
after the Nth binary is loaded into the main memory, and
verifies a link hash by setting any one of second to Nth
binaries as the verification binary and setting a first binary as
the binary to be verified.

14. The device according to claim 12, comprising a hash
registry storage unit configured to store hash registries for
original binaries in order to verify the integrity of the first to
Nth binaries.

15. The device according to claim 14, wherein the self hash
verification unit comprises:

a self file hash extraction unit configured to extract a self
file hash code by inputting the binary loaded into the
main memory to a Hash Function;

afile alteration determination unit configured to determine
whether the hash code extracted by the self file hash
extraction unit matches any one of hash codes included

Aug. 18,2016

in the hash registries, and to stop the execution of a
program when a file is determined to have been altered.

16. The device according to claim 14, wherein the link hash
verification unit comprises:

a link file hash extraction unit configured to input the
binary to be verified to the Hash Function in the verifi-
cation binary and extract a link file hash code; and

a file alteration determination unit configured to determine
whether the hash code extracted by the link file hash
extraction unit matches any one of hash codes included
in the hash registries, and configured to stop the execu-
tion of a program when a file is determined to have been
altered.

17. A method for verifying the integrity of first to Nth
binaries (N is a natural number greater than or equal to 2), the
method comprising:

loading a Kth binary (K=1, N) among the first to Nth
binaries into a main memory in order to execute the Kth
binary;

verifying a self hash to verify, by the Kth binary loaded into
the main memory, the integrity thereof by using a hash;
and

when an unverified binary, the integrity of which has not
been verified, is called while the loaded binaries are
operated, verifying a link hash by setting a calling binary
as a verification binary and setting the unverified binary
to be loaded into the main memory as a binary to be
verified so that the verification binary verifies the integ-
rity ofthe binary to be verified by using a hash and, when
the integrity is verified, returns to the loading step.

18. The method according to claim 17, comprising

reading hash registries for original binaries in order to
verify the integrity of the first to Nth binaries.

19. The method according to claim 18, wherein the verify-

ing of the self hash comprises:

extracting a self file hash code by inputting the binary
loaded into the main memory to a Hash Function;

determining whether the extracted self file hash code
matches any one of hash codes included in the hash
registries; and

stopping the execution of a program when a file is deter-
mined to have been altered.

20. The method according to claim 18, wherein the verify-

ing of the link hash comprises:

extracting a link file hash code of the binary to be verified
by inputting the binary to be verified to a Hash Function
and;

determining whether the extracted link file hash code
matches any one of hash codes included in the hash
registries; and

stopping the execution of a program when a file is deter-
mined to have been altered.

#* #* #* #* #*

