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METHOD AND DEVICE FOR DETERMINING 
A TRANSFORMATION BETWEEN AN IMAGE 
COORONATE SYSTEMAND AN OBJECT 
COORONATE SYSTEMASSOCATED WITH 

AN OBJECT OF INTEREST 

BACKGROUND OF THE INVENTION 

0001 1. Technical Field 
0002 The present disclosure is related to a method and 
device for determining a transformation between an image 
coordinate systemandan object coordinate system associated 
with an object of interest. 
0003 2. Background Information 
0004 Three dimensional (3D) reconstruction is a com 
mon task in multiple application fields. For example, in Aug 
mented Reality (“AR”) applications, virtual visual content 
(such as computer generated objects) may be overlaid onto an 
image of an object of interest based on a reconstructed 3D 
model of the object of interest. 3D reconstruction is com 
monly referred to as to build a 3D geometrical shape and/or 
textures of an object. One exemplary approach is to use range 
sensors. The range sensors may only provide very few mea 
surements at one time which introduces difficulty to the 3D 
reconstruction. According to another approach, vision based 
approaches are commonly used for reconstructing a 3D 
model of an object according to one or more two dimensional 
(2D) images of the object. 
0005. In AR applications, images of the object of interest 
are captured to provide a real view of the object of interest. 
These images may be directly used to reconstruct the 3D 
model. Recently, depth images, i.e. 2D images with depth 
information for pixels, are also available for 3D reconstruc 
tion. Generally, more than one depth image may have to be 
acquired in order to reconstruct a large part of the object 
(build a 3D model covering a large part of the object). A new 
input depth image is often merged to an existing 3D model of 
the object in order to extend the 3D model to cover additional 
parts of the object. For this, an accurate spatial transformation 
between the coordinate systems of the new input depth image 
and the existing 3D model are crucial for adding the informa 
tion of the new input depth image to the existing 3D model. 
0006 Rusinkiewicz et al. “Real-time 3D model acquisi 

tion.” ACM Transactions on Graphics (TOG). Vol. 21. No. 3. 
ACM, 2002 propose a 3D reconstruction method based on 
frame-to-frame tracking to align a new input image with an 
existing 3D model. The pose of each new input image is 
estimated by registration against just the last input image 
based on iterative closest point (ICP). Accumulation of errors 
resulted from each registration may lead to poor estimated 
poses and thus a poor reconstruction is obtained. 
0007 Newcombe et al. “KinectFusion: Real-time dense 
Surface mapping and tracking. Mixed and augmented reality 
(ISMAR), 2011 10th IEEE international symposium on. 
IEEE, 2011 propose to estimate a pose of a new input image 
by using an iterative closest point method to align depth 
measurement of the new input image with a prediction model 
generated from an existing 3D model according to the pose of 
the last input image. Then the information of the new input 
image is merged into the existing 3D model according to the 
estimated pose. 
0008 Anasosalu et al. in “Compact and Accurate 3-D Face 
Modeling. Using an RGB-D Camera: Let's Open the Door to 
3-D Video Conference.” Proc. of 3rd IEEE Workshop on 
Consumer Depth Cameras for Computer Vision 
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(CDC4CV2013), pp. 67-74, 2013 develop a method for face 
3D reconstruction based on depth images captured by a depth 
camera. In their system setup, the depth camera locates at a 
fixed position relative to a real world, while the head moves 
relative to the depth camera during depth image acquisition. 
One constraint of their method is that the relative movement 
of the head between acquiring two Successive depth images 
must be Small. 
0009. One common problem in the above-cited references 

is that the new input image and the last input image must have 
Sufficient overlap, i.e. the two images have to be captured by 
the camera at close positions. Iterative closest point methods 
require a good initial guess, otherwise convergence at an 
incorrect local minimum (i.e. incorrect result) may be 
obtained. Therefore, if there is a large displacement between 
the new input image and the last input image, the methods in 
the above-cited references may fail. 
0010 Several works have been developed to initialize 
iterative closest point methods. 
0011 Aghili, Farhad, et al. “Fault-tolerant position/atti 
tude estimation of free-floating space objects using a laser 
range sensor.” Sensors Journal, IEEE 11.1 (2011): 176-185 
develops an initialization method for iterative closest point 
methods based on a closed-loop cycle with an Extended Kal 
man Filter (EKF). 
0012. Different methods (see Joung, J. H. et al. "3D envi 
ronment reconstruction using modified color ICP algorithm 
by fusion of a camera and a 3D laser range inder, Intelligent 
Robots and Systems (IROS), WEE/RSJ International Confer 
ence on, pp. 3082-3088, October 2009; Henry et al. “RGB-D 
mapping: Using depth cameras for dense 3D modeling of 
indoor environments.” In Proceedings of the International 
Symposium on Experimental Robotics (ISER), December 
2010; N. Engelhard et al. “Real-time 3D visual slam with a 
hand-held rgb-d camera'. In Proc. of the RGB-D Workshop 
on 3D Perception in Robotics at the European Robotics 
Forum, April 2011; S. Druonet al. “Color constrained ICP for 
registration of large unstructured 3D color data sets”. In IEEE 
International Conference on Information Acquisition, pages 
249-255, August 2006) propose to use color information and/ 
or high level feature descriptor (e.g. SIFT and SURF) 
extracted in two depth images in order to estimate an initial 
match between two 3D point clouds of the two depth images 
for iterative closest point methods. 
0013. It would be desirable to provide a method and device 
for determining a transformation between an image coordi 
nate system and an object coordinate system associated with 
an object of interest which is capable of having less con 
straints about displacement between any input images. 

SUMMARY OF THE INVENTION 

0014. According to an aspect, there is disclosed a method 
of determining a transformation between animage coordinate 
system and an object coordinate system associated with an 
object of interest, comprising: 
00.15 (a) providing an object coordinate system associ 
ated with the object of interest, 

0016 (b) providing a 3D model of at least part of the object 
of interest, wherein the 3D model comprises 3D features, 

0017 (c) providing an N-th input depth image of at least 
part of the object of interest, wherein an N-th image coor 
dinate system is associated with the N-th input depth 
image, with N being a positive integer, 
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0018 (d) providing an N-th plurality of 3D features in the 
N-th image coordinate system according to the N-th input 
depth image, 

0019 (e) estimating an N-th coarse transformation 
between the object coordinate system and the N-th image 
coordinate system according to a trained pose model and 
the N-th input depth image, and 

0020 (f) determining an N-th accurate transformation 
between the N-th image coordinate system and the object 
coordinate system according to the N-th coarse transfor 
mation, at least part of the N-th plurality of 3D features, and 
at least part of the 3D features of the 3D model. 

0021. According to another aspect, there is disclosed a 
device for determining a transformation between an image 
coordinate systemandan object coordinate system associated 
with an object of interest, comprising at least one processing 
device which is configured to: 
0022 (a) provide an object coordinate system associated 
with the object of interest, 

0023 (b) provide a 3D model of at least part of the object 
of interest, wherein the 3D model comprises 3D features, 

0024 (c) receive an N-th input depth image of at least part 
of the object of interest, and to provide an N-th image 
coordinate system associated with the N-th input depth 
image, with N being a positive integer, 

0025 (d) provide an N-th plurality of 3D features in the 
N-th image coordinate system according to the N-th input 
depth image, 

0026 (e) estimate an N-th coarse transformation between 
the object coordinate system and the N-th image coordi 
nate system according to a trained pose model and the N-th 
input depth image, and 

0027 (f) to determine an N-th accurate transformation 
between the N-th image coordinate system and the object 
coordinate system according to the N-th coarse transfor 
mation, at least part of the N-th plurality of 3D features, and 
at least part of the 3D features of the 3D model. 

0028 Advantageously, aspects of the invention as dis 
closed herein propose a method for 3D reconstruction with 
less or even without constraints about displacement between 
any input images by using a machine learning method to 
estimate an initial guess for ICP. Any new input image does 
not have to have any overlap with any preceding input image. 
0029 Particularly, aspects of the invention as disclosed 
herein propose a method to estimate an accurate spatial trans 
formation between the coordinate systems of a new input 
depth image and an existing 3D model. Further, aspects of the 
invention as disclosed herein propose an efficient way of 
merging the information of the new input depth image to the 
existing 3D model. N is a positive integer, according to an 
embodiment is at least 1. 
0030 The following aspects and embodiments as 
described below may be applied individually or in any com 
bination with the aspects of the invention as described above 
and in any combination with other aspects and embodiments 
of the present invention as described below. 
0031. According to an embodiment, the method further 
comprises a step (g) of merging at least part of the N-th 
plurality of 3D features with the 3D model according to the 
N-th accurate transformation. Particularly, by merging at 
least part of the N-th plurality of 3D features with the 3D 
model according to the N-th accurate transformation, the 3D 
model is updated. According to an embodiment. Such updated 
3D model may be used in a following iteration loop (particu 
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larly in step 1009), wherein steps (c) to (g) are iterated at least 
once or multiple times and N is increased by 1 in each itera 
tion loop. 
0032. According to an embodiment, the method further 
comprises providing a first input depth image of at least part 
of the object of interest, wherein a first image coordinate 
system is associated with the first input depth image, provid 
ing a first plurality of 3D features in a first image coordinate 
system according to the first input depth image, estimating a 
first coarse transformation between the object coordinate sys 
tem and the first image coordinate system according to the 
trained pose model and the first input depth image, and deter 
mining the 3D model for step (b) defined in the object coor 
dinate system according to the first plurality of 3D features. In 
this embodiment, N in steps (c) to (f), or (c) to (g) is at least 2 
or higher (depending on which iteration loop is currently 
being performed, wherein N is increased by 1 in eachiteration 
loop, see embodiment below). Thus, for example, in the first 
iteration loop, in which steps (c) to (f), or (c) to (g) are iterated 
for the first time (i.e., steps (c) to (f), or (c) to (g) are per 
formed for the second time), N is increased from 2 by 1, so 
that N is 3 (see also FIG. 1B described below). 
0033 According to an embodiment, steps (c) to (f) are 
iterated at least once, wherein N is increased by 1 in each 
iteration loop. According to another embodiment, steps (c) to 
(g) are iterated at least once, wherein N is increased by 1 in 
each iteration loop. 
0034 Particularly, the N-th input depth image may be an 
image of a real environment captured by a camera (herein also 
referred to as real image) or may be a synthetic image. 
0035 Advantageously, the object of interest is a face of a 
living object, such as a human or animal, particularly is a 
human face. 
0036. According to an embodiment, the trained pose 
model is determined according to a machine learning method. 
For example, determining the trained pose model comprises 
using the machine learning method according to a plurality of 
training images of training objects which are associated with 
poses of the training objects. The trained pose model may be 
a forest structure comprising a plurality of binary tree struc 
tures, wherein each leaf of the binary tree structures of the 
forest structure is associated with values about rotation 
according to at least one of ground truth rotations. For 
example, each respective training image of the plurality of 
training images is an image of a real environment captured by 
a camera or a synthetic image generated as captured by a 
camera, and a ground truth rotation of the training object in 
one of the training images is relative to the camera. 
0037 According to an embodiment, the accurate transfor 
mation describes a spatial relationship. 
0038. The method as described herein may be performed 
by a computer. All embodiments, aspects and examples 
described herein with respect to the method can equally be 
implemented by the processing device as described herein 
being configured (by software and/or hardware) to perform 
the respective steps. Any used processing device may com 
municate via a communication network, e.g. via a server 
computer or a point to point communication, with a camera 
and/or any other components. 
0039 For example, the processing device (which may be a 
component or a distributed System) is at least partially com 
prised in a mobile device which is associated with a camera 
for capturing images of a real environment, and/or in a com 
puter device which is adapted to remotely communicate with 
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the camera, Such as a server computer adapted to communi 
cate with a camera or mobile device associated with a camera. 
The system described according to the invention may be 
comprised in only one of these components, or may be a 
distributed system in which one or more processing tasks are 
distributed and processed by one or more components which 
are communicating with each other, e.g. by point to point 
communication or via a network. 
0040. According to another aspect, the invention is also 
related to a computer program product comprising Software 
code sections which are adapted to perform a method accord 
ing to the invention. Particularly, the software code sections 
are contained on a computer readable medium which is non 
transitory. The software code sections may be loaded into a 
memory of one or more processing devices. Any used pro 
cessing devices may communicate via a communication net 
work, e.g. via a server computer or a point to point commu 
nication, as described herein. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0041 Aspects and embodiments of the invention will now 
be described with respect to the drawings, in which: 
0042 FIG. 1A shows a flow diagram of a method accord 
ing to an embodiment of the invention for determining a 
transformation between an image coordinate system and an 
object coordinate system associated with an object of interest. 
0043 FIG. 1B shows a flow diagram of a method accord 
ing to another embodiment of the invention for determining a 
transformation between an image coordinate system and an 
object coordinate system associated with an object of interest. 
0044 FIG. 2 shows an embodiment of a system setup for 
determining a transformation between an image coordinate 
system and an object coordinate system associated with an 
object of interest according to an example of the invention. 
0045 FIG. 3 shows an example of a bump image as used 
according to embodiments of the invention. 
0046 FIG. 4A shows a workflow diagram of an embodi 
ment of determining a trained pose model according to a 
machine learning method. 
0047 FIG. 4B shows an exemplary forest structure com 
prising binary trees. 
0048 FIG. 5 shows examples of patches extracted in an 
image. 

DETAILED DESCRIPTION OF THE INVENTION 

0049. In the following, embodiments and exemplary sce 
narios are described, which however shall not be construed as 
limiting the invention. 
0050 FIG. 1A and FIG. 1B shows a flow diagram of a 
method according to an embodiment of the invention for 
determining a transformation between an image coordinate 
system and an object coordinate system associated with an 
object of interest. Further, the FIGS. 1A and 1B each show an 
embodiment of a method for determining a 3D model of at 
least part of the object of interest. 
0051 FIG. 2 shows an illustration of an exemplary 
arrangement of components according to an embodiment of 
the invention. Particularly, it shows a scenario with a 3D 
model of at least part of a human head 2001 which is deter 
mined according to depth images 2003 and 2005 captured by 
a depth camera 2010 at two different locations 2011 and 2012. 
It may also be two different depth cameras at two different 
locations 2011 and 2012. 
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0052. In FIGS. 1A and 1B, the steps 1005 to 1010 are the 
same. A difference between the method according to FIG. 1A 
and the method according to FIG. 1B is that, in the method 
according to FIG. 1B, the 3D model of the object of interest is 
determined in steps 1001b to 1004b, whereas in the method 
according to FIG. 1A, the object coordinate system associ 
ated with the object of interestand a 3D model of the object of 
interest are provided in steps 1001a and 1004a. 
0053 More particularly, referring to FIG. 1A, in step 
1001a an object coordinate system (COS) associated with an 
object of interest is provided. Step 1004a provides a 3D 
model of the object of interest in the object COS, wherein the 
3D model comprises 3D features. This 3D model may be used 
as a basis 3D model in the following steps 1005 to 1010 as 
described herein below. For example, the 3D model may be 
provided in the form of a data structure of a bump image, Such 
as shown in FIG. 3. 
0054 Referring to FIG. 1B, step 1001b provides a first 
input depth image of an object of interest, wherein the object 
of interest is associated with an object coordinate system 
(COS) and the first input depth image is associated with a first 
image COS. For example, the first input depth image may be 
the depth image 2003 captured by the depth camera 2010 at 
the location 2011. The depth image 2003 captures apart of the 
human face 2001, which here is the object of interest. The 
human face 2001 has an associated COS 2002, which is the 
object COS. The depth image 2003 has an associated COS 
2004, which is the image COS of the first input depth image. 
In this example, COS 2004 is the same as the camera COS of 
the depth camera 2010 at location 2011 while the depth cam 
era 2010 captures the depth image 2003. 
0055 Step 1002b provides a first plurality of 3D features 
in the first image COS according to the first input depth 
image. In the example shown in FIG. 2, the first plurality of 
3D features at least contains features of the human face 2001. 
For example, the first plurality of 3D features is a point cloud 
consisting of 3D points on at least part of the surface of the 
human face 2001. 
0056. For a point feature detected in the depth image 2003, 
determining its 3D coordinates in 3D space from its 2D coor 
dinates (e.g. pixel) may be performed according to camera 
intrinsic parameters of the depth camera 2010 and depth 
information associated with the depth image 2003. The deter 
mined 3D coordinates are in the image COS 2004 (here the 
camera COS of the depth camera 2010 at the location 2011). 
0057 Step 1003b estimates a first coarse transformation 
between the object COS and the first image COS according to 
a pose estimation method (here trained pose model) and the 
first input depth image. In the example shown in FIG. 2, the 
transformation 2007 (indicated by dash lines 2007 in FIG.2) 
between the face COS 2002 and the image COS 2004 is 
determined as the first coarse transformation. In this example, 
the transformation 2007 describes a pose of the depth camera 
2010 relative to the face 2001 when the depth camera 2010 
captures the depth image 2003. The transformation 2007 is a 
rigid transformation including a translational component 
and/or a rotational component. Before determining the first 
coarse transformation, the first input depth image may be 
smoothed and hole filled using a bilateral filter. 
0058. The transformation 2007 (i.e. the first coarse trans 
formation) may be determined by using a machine learning 
method according to a trained pose model and at least part of 
the input image. The machine learning method could be ran 
dom forest. The trained pose model may be represented by a 
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data structure of a forest comprising a plurality of binary 
decision trees. In step 1003b, the depth information and/or 
color information associated with the image 2003 may not be 
necessary to be considered for determining the first coarse 
transformation. Section "Machine learning based coarse 
transformation estimation' below describes building the 
trained pose model according to a machine learning method 
and estimating the coarse transformation. 
0059 Step 1004b determines a 3D model of at least part of 
the object of interest in the object COS according to the first 
plurality of 3D features and the estimated first coarse trans 
formation. In this step, the first plurality of 3D features may 
be first transformed from the first image COS to the object 
coordinate system according to the estimated first coarse 
transformation. The 3D model may be constructed by at least 
part of the first plurality of 3D features. The 3D model may be 
represented by a data structure of bump image. 
0060. In the example shown in FIG. 2, the bump image is 
a 2-D unwrapped spherical map of the head or face 2001. The 
bump image could represent the whole surface of the head or 
face 2001 with spherical coordinates. One location (indicated 
by spherical coordinates) of the bump image may be used to 
denote a 3D feature and one of the first plurality of 3D fea 
tures may be represented at one location of the bump image. 
For example, one of the spherical coordinates could be used to 
denote a 3D point on the surface of the head or face 2001, 
when the first plurality of 3D features is a 3D point cloud of 
the head or face 2001. 
0061. It may not be possible to generate values at each of 
the locations (i.e. spherical coordinates) of the bump image 
by using the first plurality of 3D features determined from the 
first input depth image, as the first input depth image may 
only cover a part of the head or face 2001. Thus, a part of the 
bump image may not have values according to the first input 
depth image. Further, a value at one location of the bump 
image may be updated multiple times from several different 
input depth images. 
0062. A confidence mask with the same dimension as the 
bump image may be used to record how many times or if a 
certain location in the bump image has been processed. For 
example, each pixel of the confidence mask counts the num 
ber of times where the point at corresponding spherical coor 
dinates in the Bump Image has been observed. 
0063 Steps 1005-1010 in both FIGS. 1A and 1B will be 
performed at least once and may be iteratively performed 
multiple times, wherein N increases by 1 in each iteration 
loop. One iteration loop comprises performing the sequence 
of steps 1005 to 1010 once, as evident from FIGS. 1A and 1B 
by the right arrow. 
0064 N is a positive integer, i.e. N=1, 2, 3, 4, 5, etc. 
According to the embodiment of FIG. 1A, N is at least 1, 
wherein N increases by 1 in each iteration loop. According to 
the embodiment of FIG. 1B, N is at least 2, wherein N 
increases by 1 in each iteration loop. 
0065 Step 1005 provides an N-th (e.g. a first (FIG. 1A) or 
second (FIG. 1B)) input depth image of the object of interest, 
wherein an N-th image COS is associated with the N-th input 
depth image. In the example shown in FIG. 2, the N-th input 
depth image is the depth image 2005 captured by the depth 
camera 2010 at the location 2012. The depth image 2005 
captures a part of the head or face 2001 and is associated with 
the COS 2006 that is the Nth image COS. The COS 2006, in 
this example, is the same as the camera COS of the depth 
camera 2010 at the location 2012. 
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0066 Step 1006 provides an N-th plurality of 3D features 
in the N-th image COS according to the Nth input depth 
image in a similar way as in step 1002b. In the example shown 
in FIG. 2, the N-th plurality of 3D features at least contains 
features of the human head or face 2001. For example, the 
N-th plurality of 3D features is a point cloud comprising 3D 
points of the head surface. 3D features (e.g. 3D points) of at 
least one rigid part of the object of interest may be preferred 
to be determined to be as at least part of the N-th plurality of 
3D features. For example, rigid parts of the head may be nose, 
cheek, and ear. Points of the nose may be selected as at least 
part of the N-th plurality of 3D features. Points of the cheek 
may be selected as at least part of the N-th plurality of 3D 
features. Points of the nose and points of the cheek may be 
comprised in the 3D model. Further, 3D features (e.g. 3D 
points) of deformable parts of the object of interest may not be 
selected as at least part of the N-th plurality of 3D features. 
For example, deformable parts of the head are, but not limited 
to, mouth. Points of the mouth may not be selected as at least 
part of the N-th plurality of 3D features. Points of the deform 
able parts may introduce inaccuracy to some standard ICP 
methods. 

0067. The determined 3D coordinates of the point cloud 
are in the image COS 2006 (here the camera COS of the depth 
camera 2010 at the location 2012). 
0068 Step 1007 estimates an N-th coarse transformation 
between the object COS and the N-th image COS according 
to a trained pose model and the N-th input depth image in a 
similar way as in step 1003. 
0069. In the example shown in FIG. 2, the transformation 
2008 (indicated by dash lines 2008 in FIG. 2) between the 
face COS 2002 and the image COS 2006 is determined as the 
N-th coarse transformation. In this example, the transforma 
tion 2008 describes a pose of the depth camera 2010 relative 
to the head or face 2001 when the depth camera 2010 captures 
the depth image 2005. The transformation 2008 is a rigid 
transformation including a translational component and/or a 
rotational component. Before determining the N-th coarse 
transformation, the N-th input depth image may be Smoothed 
and hole filled using a bilateral filter. 
(0070. The transformation 2008 (i.e. the N-th coarse trans 
formation) may be determined by using a machine learning 
method according to a trained pose model and at least part of 
the input image. The machine learning method could be ran 
dom forest. The trained pose model may be represented by a 
data structure of a forest consisting of a plurality of binary 
decision trees. In step 1008, the depth information associated 
with the image 2005 may not be necessary to be considered 
for determining the N-th coarse transformation. 
(0071. The N-th coarse transformation is not accurate 
enough, particularly by using the machine learning method to 
estimate the transformation. A Kalman filter may be used to 
Smooth the coarse transformation estimated by the machine 
learning method. 
0072. In most cases, it is necessary to obtain a more accu 
rate transformation. This is particularly important for recon 
structing a 3D model of the object of interest from multiple 
images of the object of interest. The 3D reconstruction 
requires accurate spatial transformations between the mul 
tiple images or accurate spatial transformations of the object 
of interest relative to each of the multiple images. 
(0073 Step 1009 determines an N-th accurate transforma 
tion between the N-th image COS and the object COS accord 
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ing to the N-th coarse transformation, the N-th plurality of 3D 
features, and the (updated) 3D model. 
0074. If the 3D features are point features, different kinds 
of iterative closed point (ICP) methods may be employed to 
determine the N-th accurate transformation by matching at 
least part of the N-th plurality of 3D features with at least part 
of the 3D features of the 3D model. The ICP method requires 
an initial guess. The estimated N-th coarse transformation 
may be used as an initial guess for the ICP method to match 
between the at least part of the N-th plurality of 3D features 
and the at least part of the 3D features of the 3D model. 
Estimation of a good initial guess for ICP is a remaining 
challenge in state of the art. None of the references 2, 3, 7, 8, 
9, 10, 11, 12 proposes to train a pose estimation model by a 
machine learning method (e.g. random forest method) with a 
plurality of training images in order to estimate an initial 
guess for the ICP method. 
0075. In step 1009 of determining the N-th accurate trans 
formation, points (i.e. 3D features) from different rigid parts 
(e.g. nose and cheek of the head) may be treated differently in 
ICP when aligning the N-th plurality of 3D features with the 
3D features of the 3D model. In one embodiment, error tol 
erance for aligning between the 3D points of the nose con 
tained in the at least part of the N-th plurality of 3D features 
and the 3D points of the nose contained in the at least part of 
the 3D features of the 3D model may be smaller than aligning 
between the 3D points of the nose and cheek contained in the 
at least part of the N-th plurality of 3D features and the 3D 
points of the nose and cheek contained in the at least part of 
the 3D features of the 3D model. The error tolerance may be 
used as a criteria of stopping the iteration in ICP. 
0076 A Kalman filter may be used to smooth the deter 
mined N-th accurate transformation. This is explained below 
in section “Smoothing the transformation estimation'. 
0077 Step 1010 optionally updates the 3D model by 
merging at least part of the N-th plurality of 3D features with 
the 3D model according to the N-th accurate transformation. 
The following shows an example embodiment of steps 1009 
and 1010 of updating a 3D model of a head by merging a 
depth image of the head to the existing 3D model. The 3D 
model of the head is represented by a bump image. In this 
example, 3D features are point features. 
0078. The frame-to-global model (FGM) framework is 
superior over the frame-to-reference frame (FRF) frame 
work. The FGM framework comprises dynamically updating 
the model with live depth measurements while using it to 
register incoming depth images. Particularly, the 3D model 
(bump Image in the present case) is initialized with the first 
input depth image and then augmented by the Subsequent 
input depth images. For the N-th input depth image, a current 
projected depth image may be generated from the current 3D 
model by transforming the 3D model with a previously esti 
mated pose (i.e. the coarse or accurate transformation of a 
(N-1)-th input depth image) or with the N-th coarse transfor 
mation and rendering the transformed 3D model in OpenGL 
context, and then the N-th depth image is aligned to the 
current projected depth image. 
0079 Compared to using the previously estimated pose 
(like in references 3,7), an advantage of using the N-th 
coarse transformation estimated from a trained pose model 
according to the present invention is that the method accord 
ing to the invention does not require the (N-1)-th and N-th 
input depth images captured from two close viewpoints. 
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0080. To efficiently perform the FGM framework, two 
tasks are of major importance: (1) integration part (i.e. how to 
update the 3D model with incoming frames) and (2) depth 
image prediction (i.e. how to quickly and accurately generate 
a depth image from the updated 3D model). For the task (1) 
we employ the view-centric integration strategy that takes 
into account the directional bias of the noise in the depth 
image, and we contribute in the task (2) by demonstrating the 
potential of interoperability between OpenGL and CUDA for 
fast depth image generation using a spherical Bump Image. 
0081 
I0082 We employ the running average to integrate new 
measurements (i.e. a plurality of 3D features determined from 
the N-th input depth image) in the 3D model while reducing 
input noise. In order to minimize the noise a temporal mean 
filter is employed and points lying within, e.g., 1 cm deviation 
to the 3D model are subjected to mean filtering. In order to 
perform temporal mean filtering, another buffer with similar 
dimensions of the Bump Image is maintained, this buffer/ 
image also known as confidence mask has one-to-one corre 
spondence to all the pixels in the Bump Image and it records 
the weighted frequency of appearance of each pixel in the 
Bump Image. Note that an implicit assumption for this 
approach to be efficient is that all measurements that are 
averaged together should come from the same point on the 
head (i.e. the object of interest). A glaring example is that 
averaging points belonging to the nose with those belonging 
to the ear does not work. This is why registering input image 
(i.e. estimating a transformation between the image COS of 
the input image and the object COS) has to be done before 
integration. However, even if the registration process is suc 
cessful, a problem may arise due to noise when integrating 
new depth measurements (i.e. 3D features) into the Bump 
Image. The fact is that, due to noise the same point viewed in 
two different images may be projected into different pixel 
coordinates in the Bump Image, and also two different points 
of the head may be projected into the same pixel of the Bump 
Image. This results in erroneous averaging computations. 
I0083. In order to avoid this problem, the integration pro 
cess should be executed directly in the camera plane domain 
rather than in the Bump Image domain. This is because the 
noise in a depth image obtained with an RGB-D camera is 
mainly distributed along the viewing direction. From the 
current projected depth image, we first align the N-th input 
depth image (i.e. incoming depth image) to the projected 
depth image using ICP using a point to plane metric and the 
N-th coarse transformation as initial guess. From this, the 
N-th accurate transformation may be obtained. The N-th 
input depth image or the 3D model may be transformed 
according to the N-th accurate transformation in order to 
align them with each other. In one embodiment, the 3D model 
may be transformed according to the N-th accurate transfor 
mation to obtain an aligned 3D model, which is aligned with 
the image COS of the N-th input depth image (e.g. the camera 
plane domain when the camera captures the N-th depth 
image). 
I0084. From the above explanation it is evident that the 
depth measurement integration should take place in the cam 
era plane domain. At this stage the images to be merged are 
the N-th input depth image and the current projected depth 
image. The pose from ICP, i.e. the N-th accurate transforma 
tion, is used to align the current projected depth image with 
the N-th input depth image. The temporal mean between the 
aligned images (frames) is performed with the help of confi 

Depth Measurements' Integration: 
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dence values that are recorded for each point in the 3D model, 
i.e. the confidence mask. To perform the depth integration the 
confidence mask which is in the Bump Image domain must be 
projected to the camera plane domain. This projection is 
carried out during the stage where the current projected depth 
image in the camera plane is generated. Thus at every pixel in 
the current projected depth image, there is a confidence value 
associated with it. 
0085. To perform temporal mean between the two depth 
images (N-th input depth image and aligned current projected 
depth image), it is essential to weigh the depth from the 
current projected depth image based on the weighted fre 
quency of its appearance, i.e. its corresponding confidence 
value. The word “weighted' is stressed as every new depth 
pixel in the N-th input depth image can have a weight of at 
most 1. Since the depth precision changes with distance it is 
better to encode the uncertainty of depth at different distances 
in the weights. This is done by weighing each new depth pixel 
in the N-th input depth image by a confidence of 

Mask(i,i)=min (1.0...'ari,2) 

I0086. The confidence value associated with current pro 
jected depth at pixel (i,j) is denoted as tMask(i,j). Given 
D(i,j) as depth in the N-th input depth image at pixel (i,j) and 
ItD(i,j) as aligned current projected depth image at pixel (i,j), 
the averaged depth is estimated as 

Dnean (i, j) = MaskN (i, j): DN(i, j) + Mask(i, j): 7tlD(i, j) 
meant, J) MaskN + Mask s 

a similar expression is used to compute the texture at pixel 

Maskw (i, j): rgby (i, j) + Mask(i, j): Irgb(i, j) 
Masky + tMask rgbe (i, j) = 

where rgby is the texture information in the N-th image and 
Jurgb is the texture of the current projected 3D model. The 
confidence value is updated after computing the weighted 
average, 

0087. The merged depth image estimated by the temporal 
mean process (as explained above) is used to update the Bump 
Image. The updating of Bump Image depends on the confi 
dence values associated with each pixel in the Bump Image 
and the newly estimated confidence values. A pixel in the 
Bump image is updated if and only if the estimated confi 
dence value at that location has a higher confidence than what 
it previously had. After updating the Bump Image which is the 
3D model, it is projected back to the camera plane to form the 
new projected depth image and then transform the new pro 
jected depth image according to a previously estimated pose 
in the N-th frame. This serves as the projected depth for 
(N+1)-th frame. It may also be possible to apply an estimated 
(N+1)-th coarse transformation to transform the new pro 
jected depth image that will serve as the projected depth 
image for a (N+1)-th input depth image. Compared to using 
the previously estimated pose for the N-th frame (like in 
reference Anasosalu Pavan Kumar et al. "Compact and Accu 
rate 3-D Face Modeling Using an RGB-D Camera: Let's 
Open the Door to 3-D Video Conference.” Proc. of 3rd IEEE 
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Workshop on Consumer Depth Cameras for ComputerVision 
(CDC4CV2013), pp. 67-74, 2013), one advantage of using 
the (N+1)-th coarse transformation estimated from a trained 
pose model according to the present invention is that the 
method does not require both the N-th and (N+1)-th input 
depth images captured from two close viewpoints. 
0088 
I0089. We employ a filter (for example, a Kalman filter) to 
Smooth the temporal inconsistencies and stay on the trajec 
tory when there is an erroneous or no pose/location output 
from the random forest. Likewise, particle filter could also be 
employed here. For face pose estimation from RGBD data, 
knowing an estimated location of the face center in the image 
can help achieve higher processing speed and accuracy. For 
most practical videos, the face center changes only by a few 
pixels from one frame to the next. We use the face center (nose 
tip) from the previous frame as the expected location of the 
face center in the current frame. This assumption works well 
in a majority of the frames. However occasionally the face 
position changes by more than a few pixels and the above 
approximation fails. To avoid this situation, we use a Kalman 
filter to track and smooth the estimated 3D location of the 
nose tip. 
0090. A Kalman filter is a 2-step filtering process that 
maintains a state for the object and uses the observations from 
the data to update the state. The first step is to predict the state 
in the current frame based on the state in the previous frame. 
The second step is to update the predicted State by taking into 
account the observations in the current frame. In our system, 
the nose tip location (x,y,z values) and Velocity of the nose tip 
(along X.y.z directions) are maintained as the state. The obser 
Vations are the predicted nose tip location from the random 
forest. In frames where the random forest returns a reliable 
nose tip estimate, we perform Kalman prediction and update 
steps to obtain the filtered nose tip location. In frames where 
the random forest does not return a reliable nose tip estimate, 
only the Kalman prediction step is performed. This allows the 
Kalman filter to continuously track and Smooth the face cen 
ter. By varying the covariance values associated with the 
states and the observations in the Kalman filter, the filter can 
be designed to track the observations with different amount of 
lags. The usefulness of the Kalman filter is in estimating a 
good prediction for the estimated nose tip when the random 
forest fails to obtain a confident pose prediction using the 
previous frame's unfiltered nose tip. 

Smoothing the Transformation Estimation: 

0091 Machine Learning Based Coarse Transformation 
Estimation: 

0092 FIG. 4A shows a workflow diagram according to an 
embodiment of determining a trained pose model. Step 4001 
provides a plurality of training images. Like the input image, 
each respective training image of the plurality of training 
images may be a real image captured by a camera (i.e. an 
image of a real environment captured by a camera) or a 
synthetic image. The synthetic image may be generated as 
captured by a camera. Each respective training image 
includes (e.g. captures or visualizes) at least part of a training 
object. A part of the plurality of the training objects captured 
in the plurality of training images may be same or different 
objects. For example, a same human face may be captured in 
a plurality of images by one or more cameras. In another 
example, different faces of different people may be captured 
in a plurality of images by one or more cameras. 
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0093 Step 4002 includes steps 4021, 4022, and 4032 that 
are performed for each respective training image of the plu 
rality of training images. 
0094 Step 4021 provides a ground truth pose (e.g. ground 
truth rotation) of the training object captured or visualized in 
the respective training image. The ground truth rotation may 
be relative to a camera that captures the respective training 
image. The ground truth rotations may be obtained by using 
Suitable sensors or expensive and accurate tracking setups. 
0095 Step 4022 determines or provides image areas of at 
least part of a training object in the respective training image 
as an object region. There may exist one image area or more 
disconnected image areas of the at least part of the training 
object. In one example as shown in FIG. 5, the detection of the 
face 5010 using an off-the-shelf face detector generates the 
face bounding box 5020 (dash line) in the image 5001. In this 
case, the face bounding box 5020 is an object region. 
0096 Step 4032 determines or provides a plurality of posi 

tive and negative patches extracted from the respective train 
ing image. A patch is positive if the patch is within the object 
region and a patch is negative if the patch is out of the object 
region. When a part of a patch is within the object region and 
rest part of the patch is out of the object region, the patch is 
rejected and it is neither positive nor negative. A patch is an 
image region within the image, for example, a rectangle 
region. 
0097. In one example as shown in FIG.5, the patches 5002 
and 5003 arenegative patches. The patches 5004 and 5005 are 
positive patches. The patch 5006, which is rejected, is neither 
positive nor negative. 
0098. The head or face orientation from ground truth data 

is obtained by using a marker based tracking method that uses 
a known marker pose with respect to the camera coordinate 
system. Positive patches are extracted from facial region and 
negative patches are extracted from non-facial region. Each 
positive patch is annotated with a vector V (v.V.) that joins 
the center of the patch to the nose tip and the head orientation 
0=(0, 0, 0). A number of such positive patches are 
extracted from each depth image. For negative patches how 
ever, there is no associated vector V and orientation 0. These 
extracted positive and negative patches are then used to train 
the Random Forests algorithm. 
0099 Step 4003 determines (i.e. trains) the trained pose 
model by using a machine learning method according to the 
plurality of positive and negative patches and the ground truth 
rotations. In an example, the trained pose model is a forest 
structure comprising a plurality of binary tree structures, 
wherein each leaf of the binary tree structures of the forest 
structure is associated with values about rotation. The values 
about rotation may be determined according to at least one of 
the ground truth rotations. The machine learning method 
could be a random forest method (as described in Breiman, 
Leo. "Random forests.” Machine learning 45.1 (2001): 5-32) 
for determining the forest structure. 
0100 FIG. 4B shows a forest structure 4000 comprising 
three binary trees 4010, 4020, and 4030. For each of the 
binary trees, circles without fill indicate internal node and 
squares indicate leafs. The circles with the fill indicate the 
root and each of the binary tress has one root node. 
0101. A trained forest structure may comprise at least one 
decision tree. For example, the at least one decision tree may 
be a binary decision tree 4010 as shown in FIG. 4B. At the 
nodes 4011, 4012, 4013 and 4015, the object poses are used 
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for decision, while at the nodes 4014 and 4016, the object 
feature locations are used for decision. 

0102. In an embodiment of determining the trained pose 
model for determining a face pose, a set of patches (typically 
a few tens) are extracted from each training image (example 
patches are 5001-5006 shown in the FIG. 5). Patches that 
happen to lie on the face (face regions are marked in the 
training images) are considered positive patches and 
patches that do not lie on the face are negative patches. The 
ground truth poses of the face for each training image may be 
stored along with the patch information. The goal of the 
model is to then learn an association between the information 
in the patches and the expected output variable. Many 
machine learning models such as boosting and Support Vec 
tor Machines can be used for this purpose. 
0103 Random forests (such as in Lowe, David G. "Object 
recognition from local scale-invariant features. Computer 
vision, 1999. The proceedings of the seventh IEEE interna 
tional conference on. Vol. 2. Ieee, 1999) may be used to train 
the pose model, which are known for their robustness and 
learning ability. The random forest algorithm can be replaced 
by any suitable machine learning algorithm. The learning 
algorithm for the random forest implementation basically 
learns a tree where a decision is made at each internal node on 
how to split the observed patches into two subsets. The deci 
sion rule at each internal node acts as a test that determines 
which subtree (left or right) to push an observed patch to. The 
key to learning an effective random forest is to ensure that the 
split made at each node results in subtrees that are meaningful 
towards the eventual goal (estimating the rotation of the face). 
This is achieved by choosing a decision rule (from a set of 
randomly generated rules) that splits the patches into two 
groups such that the sum of the entropies of the distribution of 
rotation values in the two groups is minimized. In practice, a 
decision rules consists of two rectangular regions within the 
patch and a threshold value. If the difference between the 
cumulative feature values of the two rectangles is greater than 
the threshold, the patch is considered to have passed the test 
and sent to the left subtree. If the difference is less than the 
threshold value, then the patch fails the test and is sent to the 
right Subtree. By cumulative feature values, it means the Sum 
of all feature values within the given rectangular region. The 
rectangular regions are generated to be of random size and at 
random locations within the given patch. The thresholds for 
each decision rule are picked from a set of randomly gener 
ated threshold values. When a given maximum depth is 
reached or number of patches reaches a node, a node is 
considered to be a leaf and the mean and variance of all the 
rotation values are computed for patches that have reached the 
leaf. When all the input patches have been pushed to their 
destination leaf nodes, the training phase of one tree is com 
plete. Multiple trees are learned with different decision rules 
thus resulting in a forest of trees. 
0104. An embodiment implementation is based on ran 
dom forests for estimating the coarse transformations (e.g. in 
steps 1003b and 1008). 
0105. In the scenario shown in FIG. 2, when a random 
forest is to be used to estimate the coarse pose from an input 
image (e.g. image 2003 or 2005), patches are extracted (either 
at random or in a dense sampling scheme) from the input 
image using face detection. Then, the patches are propagated 
through the trained pose model (i.e. a trained forest of binary 
trees in this example). When the patches reach leaf nodes, the 
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trained mean and variance values for profile angle values at 
these leaves are used to estimate the coarse pose for the 
observed face image. 
0106 Mean shift or other robust techniques are used to 
obtain a confident solution from multiple trees in the forest. 
0107 The method described above could also be used for 
step 4012 of determining a rotation of the training object 
according to the trained pose model. 
0108 Possible System Setup: 
0109 FIG. 2 shows an exemplary system setup for deter 
mining a transformation between an image coordinate system 
and an object coordinate system associated with an object of 
interest (here: object COS 2002 associated with head or face 
2001). The system setup is also appropriate for determining a 
3D model of the head or face 2001. The camera 2010 captures 
two input depth images 2003 and 2005 at two different loca 
tions 2011 and 2012. The camera 2010 may communicate 
with a processing device 2020. Such as a microprocessor of a 
computer, via cable or wirelessly. The method according to 
the invention as disclosed herein may be performed at least in 
part by the processing device 2020. 
0110. The camera 2010 may be integrated into a mobile 
device 2013, Such as a Smartphone or mobile computer, com 
prising a processing device (not shown) where the procedure 
and embodiments thereofas disclosed herein may also be 
performed at least partly. The mobile device 2013 and pro 
cessing device 2020 can also build a distributed system, or 
they can perform the procedure individually. The processing 
device 2020 may generally be implemented in, e.g., a mobile 
device worn or held by the user, a server computer or in any of 
the cameras described herein. It may be configured by hard 
ware and/or software to perform one or more tasks as 
described herein. 
0111. In Augmented Reality (AR) applications, virtual 
visual content (like a computer generated object) may be 
overlaid onto an image of an object of interest based on a 
reconstructed 3D model of the object of interest. In one 
example of AR applications, a virtual glasses may be gener 
ated and overlaid onto an image of a human head. A 3D model 
of the human head may be required to select a proper size of 
the virtual glasses or adjust the shape of the virtual glasses. 
Depth images of the head may be captured by using a depth 
camera. The 3D model of the head could be generated accord 
ing to the method disclosed in this invention. The virtual 
glasses could be overlaid onto any of the captured depth 
images of the head according to at least part of the recon 
structed 3D model of the head. An embodiment of determin 
ing poses of the head and a 3D model of the head may be used 
in AR shopping applications, e.g. shopping glasses or hat. 
Particularly, as deformable parts of the head (mouth) may not 
be selected as 3D features, the accuracy of pose estimation 
and 3D reconstruction would be improved for upper parts 
(rigid parts, e.g. nose, cheek) of the head. This is highly 
valuable for the AR applications of glasses or hat shopping. 
0112 According to an embodiment, determining the N-th 
accurate transformation between the N-th image coordinate 
system and the object coordinate system comprises generat 
ing a current plurality of 3D features (i.e. a current depth 
image) by transforming the 3D features of the 3D model, with 
determining the N-th accurate transformation being per 
formed by aligning the N-th plurality of 3D features and the 
current plurality of 3D features, wherein an initial guess for 
the aligning is determined from the N-th coarse transforma 
tion. 
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0113. As described herein, the merging of at least part of 
the N-th plurality of 3D features with the 3D model is further 
performed according to confidence values associated with the 
3D model. For example, the 3D model is represented by a 
bump image, wherein coordinates in the bump image each 
have an associated confidence value. 
0114. According to the present invention, a significant 
advantage over SLAM is that SLAM has undetermined scale 
factor, while the coarse transformation according to the 
present invention has a scale as the object of interest. Further 
SLAM estimates a pose of a current image relative to a 
reconstructed model of an object, but not relative to the 
object. Thus, the pose has undetermined scale factor. 
0115 Generally, the following aspects and embodiments 
may be applied in connection with aspects of the present 
invention. 
0116 Image: 
0117. According to the present invention, an image (e.g. 
an input image or training image) is any data depicting or 
recording visual information or perception. The image could 
be a 2-dimensional image. The image could also be a depth 
image. The image could be a real image or a synthetic image. 
The real image may be captured by a camera capturing a real 
environment. For example, the camera could capture an 
object of interest or a part of the object of interest in a real 
image. A synthetic image may be generated automatically by 
a computer or manually by a human. For example, a computer 
rendering program (e.g. based on openGL) may generate a 
synthetic image of an object of interest or a part of the object 
of interest. The synthetic image may be generated from a 
perspective projection as it is captured by a camera. The 
synthetic image may be generated according to orthogonal 
projection. 
0118. A depth image particularly is a 2D image with a 
corresponding depth map. The depth images do not need to be 
provided in the same resolution as a 2D (color/grayscale) 
image. 
0119) An image coordinate system (COS) associated with 
an image is a 3D coordinate system with unit, such as, but not 
limited to, pixel, millimeter, or inch. Scale factors relating 
pixels to distance, such as pixels per inch (PPI), may be used 
to convert coordinates in the image COS between different 
units. 

0120 
I0121 The present invention can be applied to any camera 
providing images. It is not restricted to cameras providing 
color images in the RGB format. It can also be applied to any 
other color format and also to monochrome images, for 
example to cameras providing images in grayscale format or 
YUV format. The camera may further provide an image with 
depth data (herein referred to as input depth image). 
0.122 The depth data does not need to be provided in the 
same resolution as the (color/grayscale) image. A camera 
providing an image with depth data is often called depth 
camera. A depth camera system could be a time of flight 
(TOF) camera system, or a passive stereo camera, oran active 
Stereo camera based on structured light. The invention may 
further use a light field camera. The depth camera system 
could be a time of flight (TOF) camera system. Kolb et al. in 
“Time-of-Flight Sensors in Computer Graphics’. Eurograph 
ics 2009 give an overview on state of the art of time of flight 
camera sensors and applications which may be applied 
herein. 

Camera: 
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0123. The camera may also be simulated by a virtual cam 
era. The virtual camera is defined by a set of parameters and 
can create images of virtual objects or scenes, which are 
synthetic images. A crucial parameter of a virtual camera may 
be its pose, i.e. 3D translation and 3D orientation with respect 
to the virtual object or scene. Virtual cameras may use the 
pinhole camera model and in this case the camera's intrinsic 
parameters include the focal length and the principal point. 
Common implementations of virtual cameras use the 
OpenGL rasterization pipeline, ray casting or ray tracing. In 
any case virtual cameras create views (i.e. two-dimensional 
images) of (potentially 3D) virtual objects by approximations 
of the capturing process happening when a real camera 
images a real object. In Augmented Reality, the intrinsic and 
extrinsic parameters of a camera are usually chosen to be 
consistent either with a real camera or Such that they corre 
spond to a setup of an Augmented Reality system. 
0124. An image coordinate system associated with an 
image may be the same as a camera coordinate system asso 
ciated with a camera while the camera captures the image. 
0.125 Obtaining, for a feature in a depth image, 3D coor 
dinates in 3D space from its 2D coordinates (e.g. pixel) may 
be performed according to camera intrinsic parameters and 
associated depth information. 
0126 Object: 
0127. In the present invention, an object (e.g. object of 
interest or training object) is any real object or computer 
generated object. A real object may be any object existing in 
a real environment and having physical appearance or struc 
ture. For example, the real object may be a person, a face of a 
person or a heart of a person. The real object could also be a 
tree, a car, a paper or a city. The real object may be captured 
by a camera in an image. The real object may also be visual 
ized in a synthetic image. 
0128. A computer-generated object may be generated by a 
computer and have visual appearance. The computer-gener 
ated object could be a computer-generated figure, e.g. a com 
puter-generated 2D or 3D model of a human face or head. The 
computer-generated object may be displayed on a screen or 
projected to a wall using a projector. The computer-generated 
object may be captured by a camera by using the camera to 
take an image of the screen or the wall while displaying the 
object. The computer-generated object may also be recorded 
or visualized in a synthetic image. 
0129 
0130. Features are for example, but not limited to, points, 
edges, lines, segments, corners, or any other geometrical 
shapes. A feature may describe a specific color and/or struc 
ture, such as a blob, an edge point, a particular region, and/or 
a more complex structure of an object. A feature may be 
represented by an image patch (e.g. pixel intensity) or a high 
level descriptor (e.g. SIFT, as described in Lowe, David G. 
“Object recognition from local scale-invariant features.” 
Computer vision, 1999. The proceedings of the seventh IEEE 
international conference on. Vol. 2. Ieee, 1999. 
0131 Features may also be color information or textures 
of the object. For example, facial features associated with a 
face could be eye corners, nose tips, mouth corners, silhouette 
of mouth, silhouette of eye, and color of skin or eye. Features 
of an object may be visualized or captured in an image of at 
least part of the object. Object features may also be repre 
sented in a 3D model of the object. The position of an object 

Feature: 
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feature in the image or in the 3D model may be represented by 
one or more coordinates or represented by one or more math 
ematical formulas. 

0.132. A 3D feature may have 3D position and/or 3D ori 
entation information in 3D Euclidean space relative to a ref 
erence coordinate. A feature may also be expressed in 2D 
space, which is a 2D feature. For example, a feature may be 
extracted from a 2D image, and thus the feature may have a 
2D image position (e.g. pixel position) and/or orientation. 
When a depth image could provide depth information, 3D 
features may be extracted from the depth image, and 3D 
position and/or orientation information of the 3D features in 
a coordinate system of the depth image could be determined 
from image properties, such as pixels per inch (PPI) and pixel 
positions of corresponding 2D features. 
0.133 Features may be mathematically represented by at 
least one coordinate (discrete representation) or by at least 
one mathematic formula (continuous representation) in a 2D 
or 3D coordinate system. For example, a circle or a sphere 
may be represented by a set of points or by an equation in a 2D 
or 3D coordinate system. A circle that is a 2D shape may be 
defined in a 2D or 3D space. The sphere that is a 3D geometry 
may be defined in a 2D space as a projection of the sphere (i.e. 
3D shape) onto the 2D space. 
0134) 
0.135 A transformation typically describes a spatial rela 
tionship between objects or coordinate systems, e.g. between 
two objects or between two coordinate systems, or between 
an object and a coordinate system. It specifies how an object 
or a coordinate system is located in 2D or 3D space in relation 
to an object or coordinate system in terms of translation, 
and/or rotation, and/or scale. The transformation may be a 
rigid transformation or could also be a similarity transforma 
tion. A pose of a camera orofan object relative to a coordinate 
system is a rigid transformation. 
0.136 3D Model: 
0.137. A 3D model may describe a geometry for an object 
or a generic geometry for a group of objects. For example, a 
3D model may be specific for an object. A 3D model may not 
be specific for an object, but may describe a generic geometry 
for a group of similar objects. A similar object may belong to 
the same type of object and share some common properties. 
For example, faces of different people are of same type since 
they are a respective face that has eye, mouth, ear, nose, etc. 
Cars of different types or brand are of same type since they are 
a car that has four tires, at least two doors, and a front window 
glass, etc. 
0.138 A3D model of a face may not be the same as any real 
existing individual face, but it is similar to the existing indi 
vidual face. For example, the silhouette of the face of the 3D 
model may not exactly match the silhouette of the existing 
individual face, but they have all the shape of eclipse. 
0.139 Geometry refers to one or more attributes of the 
object including, but not limited to, shape, form, Surface, 
symmetry, geometrical size, dimensions, and structure. The 
model of the real object or the computer-generated object 
could be represented by a CAD model, a polygon model, a 
point cloud, a Volumetric dataset, an edge model, or use any 
other representation. The model may further describe the 
material of the object. The material of the object could be 
represented by textures and/or colors in the model. A model 
of an object may use different representations for different 
parts of the object. 

Transformation: 
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0140. The 3D model can further, for example, be repre 
sented as a model comprising 3D vertices and polygonal faces 
and/or edges spanned by these vertices. Edges and faces of the 
model may also be represented as splines or NURBS Sur 
faces. The 3D model may in this case be accompanied by a 
bitmap file describing its texture and material where every 
Vertex in the polygon model has a texture coordinate describ 
ing where in the bitmap texture the material for this vertex is 
stored. The 3D model can also be represented by a set of 3D 
points as, for example, captured with a laser scanner. The 
points might carry additional information on their color or 
intensity. 
0141. The 3D model may also be a bitmap. In this case, the 
geometry of the object may be a rectangle while its material 
may be described for every pixel in the bitmap. Additionally, 
pixels in the bitmap might contain additional information on 
the depth of the imaged pixel from the capturing device (cam 
era). Such RGB-D images are also a possible representation 
for the 3D model and comprise, both, information on the 
geometry and the material of the object. 
0142. The 3D model may also be a bump image (see FIG. 

3). The bump image is also called canonical 2-D map (e.g., 
unwrapped sphere or a cylinder) to represent an object (e.g. a 
face or a car). The main advantage of using Bump Images 
compared to other standard 3-D representations such as Vol 
umes, cloud of points or Surfels is that it requires less amount 
of memory during processing or storing while guaranteeing 
similar accuracy. It is possible to employ an extension of the 
Bump Image representation to obtained 3-D models, namely, 
(1) use spherical coordinates instead of cylindrical coordi 
nates (this allows to reconstruct the whole head but not just 
the face for example) and (2) use two additional displacement 
channels for the polar and azimuthal angles, as well as RGB 
channels. 

0143 FIG.3 shows an example of a Bump Image as used 
according to embodiments of the invention. The Bump Image 
that represents a 3D model of an object is a 2-D unwrapped 
spherical map of the object. In one example, the object may be 
ahead represented by a 3D model 3001 (e.g. a point cloud) in 
a coordinate system 3002. To build this spherical map, we 
have to first obtain points in the local coordinate system of the 
head. Once the points are transformed to the local coordinate 
system, explained below, the coordinate representation is 
changed from local Cartesian coordinates (indicated by 3003) 
to local spherical coordinates (indicated by 3004). The map 
3010 is formed such that the horizontal distance on the map 
corresponds to (p and the vertical distance corresponds to 0. In 
FIGS. 3,3005 and 3006 indicate coordinates in the map and 
3007 indicates channel indices. The value (indicated by 3008) 
in the third channel can be represented by R(cp; 0), which 
denotes the radius value at a pixel corresponding to a speci 
fied (p and 0. The p and 0 are rounded off by discarding the 
decimal values, which gives a resolution of 1.0 degree. By 
losing out on decimal values a really coarse map is obtained, 
hence the lost precision in the first and second channels of the 
Bump Image could be recorded. The second channel encodes 
the lost precision of 0 while forming the map; similarly the 
first channel encodes the lost precision of p while forming the 
map. The lost precision can be computed as 

precision =0-floor(0) sprecision =p-floor(cp). 

The remaining three channels encode the color (RGB) infor 
mation. 
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0144. In order to create the Bump Image, a local axis 3002 
must be assigned to the head. The local axis is defined at the 
head location with help of pose estimated (e.g. from Random 
forest nose tip estimation), i.e. we transform the global axes 
centered at the camera to the head location using the pose 
estimated (e.g. from Random Forest estimation). Once local 
axes are known segmented points are transformed to the local 
Cartesian axes from global Cartesian axes before performing 
the transformation to spherical coordinates. 
(0145 The 3D model may comprise 3D features. The 3D 
features may be point features. The 3D features of the 3D 
model may be defined at spherical coordinates of a Bump 
Image when the 3D model is represented by the bump image. 
0146 Although various embodiments are described 
herein with reference to certain components or devices, any 
other configuration of components or devices, as described 
herein or evident to the skilled person, can also be used when 
implementing any of these embodiments. Any of the devices 
or components as described herein may be or may comprise a 
respective processing device (not explicitly shown), such as a 
microprocessor, for performing all or some of the tasks as 
described herein. One or more of the processing tasks may be 
processed by one or more of the components or their process 
ing devices which are communicating with each other, e.g. by 
a respective point to point communication or via a network, 
e.g. via a server computer. 

1. A method of determining a transformation between an 
image coordinate system and an object coordinate system 
associated with an object of interest, comprising the steps of: 

(a) providing an object coordinate system associated with 
the object of interest; 

(b) providing a 3D model of at least part of the object of 
interest, wherein the 3D model comprises 3D features; 

(c) providing an N-th input depth image of at least part of 
the object of interest, wherein an N-th image coordinate 
system is associated with the N-th input depth image, 
with N being a positive integer: 

(d) providing an N-th plurality of 3D features in the N-th 
image coordinate system according to the N-th input 
depth image: 

(e) estimating an N-th coarse transformation between the 
object coordinate system and the N-th image coordinate 
system according to a trained pose model and the N-th 
input depth image; and 

(f) determining an N-th accurate transformation between 
the N-th image coordinate system and the object coor 
dinate system according to the N-th coarse transforma 
tion, at least part of the N-th plurality of 3D features, and 
at least part of the 3D features of the 3D model. 

2. The method according to claim 1, further comprising the 
step of: 

(g) merging at least part of the N-th plurality of 3D features 
with the 3D model according to the N-th accurate trans 
formation. 

3. The method according to claim 1, wherein steps (c) to (f) 
are iterated at least once, wherein N is increased by 1 in each 
iteration loop. 

4. The method according to claim 2, wherein steps (c) to (g) 
are iterated at least once, wherein N is increased by 1 in each 
iteration loop. 

5. The method according to claim 1, the method further 
comprising the steps of 
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providing a first input depth image of at least part of the 
object of interest, wherein a first image coordinate sys 
tem is associated with the first input depth image: 

providing a first plurality of 3D features in a first image 
coordinate system according to the first input depth 
image; 

estimating a first coarse transformation between the object 
coordinate system and the first image coordinate system 
according to the trained pose model and the first input 
depth image; and 

determining the 3D model for step (b) defined in the object 
coordinate system according to the first plurality of 3D 
features, wherein N is at least 2. 

6. The method according to claim 5, wherein steps (c) to (f) 
are iterated at least once, wherein N is increased by 1 in each 
iteration loop. 

7. The method according to claim 1, wherein the determin 
ing the N-th accurate transformation between the N-th image 
coordinate system and the object coordinate system model is 
performed by aligning the N-th plurality of 3D features and 
the current plurality of 3D features, wherein an initial guess 
for the aligning is determined from the N-th coarse transfor 
mation. 

8. The method according to claim 2, wherein the merging at 
least part of the N-th plurality of 3D features with the 3D 
model is further performed according to confidence values 
associated with the 3D model 

9. The method according to claim 8, wherein the model is 
represented by a bump image, wherein coordinates in the 
bump image each have an associated confidence value. 

10. The method according to claim 1, wherein the N-th 
input depth image is an image of a real environment captured 
by a camera or is a synthetic image. 

11. The method according to claim 1, wherein the object of 
interest is a face of a living object. 

12. The method according to claim 1, wherein the trained 
pose model is determined according to a machine learning 
method. 

13. The method according to claim 12, wherein determin 
ing the trained pose model comprises using the machine 
learning method according to a plurality of training images of 
training objects which are associated with poses of the train 
ing objects. 

14. The method according to claim 13, wherein the trained 
pose model is a forest structure comprising a plurality of 
binary tree structures, wherein each leaf of the binary tree 
structures of the forest structure is associated with values 
about rotation according to at least one of the poses of the 
training objects. 

15. The method according to claim 13, wherein each 
respective training image of the plurality of training images is 
an image of a real environment captured by a camera or a 
synthetic image generated as captured by a camera, and the 
pose of the training object in one of the training images is 
relative to the camera. 

16. The method according to claim 1, wherein the accurate 
transformation describes a spatial relationship. 
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17. A non-transitory computer readable medium compris 
ing software code sections which are adapted to perform a 
method of determining a transformation between an image 
coordinate system and an object coordinate system associated 
with an object of interest when running on a processing 
device, the method comprising: 

(a) providing an object coordinate system associated with 
the object of interest; 

(b) providing a 3D model of at least part of the object of 
interest, wherein the 3D model comprises 3D features; 

(c) receiving an N-th input depth image of at least part of 
the object of interest, and providing an N-th image coor 
dinate system associated with the N-th input depth 
image, with N being a positive integer, 

(d) providing an N-th plurality of 3D features in the N-th 
image coordinate system according to the N-th input 
depth image: 

(e) estimating an N-th coarse transformation between the 
object coordinate system and the N-th image coordinate 
system according to a trained pose model and the N-th 
input depth image; and 

(f) determining an N-th accurate transformation between 
the N-th image coordinate system and the object coor 
dinate system according to the N-th coarse transforma 
tion, at least part of the N-th plurality of 3D features, and 
at least part of the 3D features of the 3D model. 

18. A device for determining a transformation between an 
image coordinate system and an object coordinate system 
associated with an object of interest, comprising at least one 
processing device which is configured to: 

(a) provide an object coordinate system associated with the 
object of interest; 

(b) provide a 3D model of at least part of the object of 
interest, wherein the 3D model comprises 3D features; 

(c) receive an N-th input depth image of at least part of the 
object of interest, and to provide an N-th image coordi 
nate system associated with the N-th input depth image, 
with N being a positive integer: 

(d) provide an N-th plurality of 3D features in the N-th 
image coordinate system according to the N-th input 
depth image: 

(e) estimate an N-th coarse transformation between the 
object coordinate system and the N-th image coordinate 
system according to a trained pose model and the N-th 
input depth image; and 

(f) to determine an N-th accurate transformation between 
the N-th image coordinate system and the object coor 
dinate system according to the N-th coarse transforma 
tion, at least part of the N-th plurality of 3D features, and 
at least part of the 3D features of the 3D model. 

19. The device according to claim 18, wherein the at least 
one processing device is further configured to: 

(g) merge at least part of the N-th plurality of 3D features 
with the 3D model according to the N-th accurate trans 
formation. 


