US 20230267731A1

asy United States

a2 Patent Application Publication o) Pub. No.: US 2023/0267731 A1
SHANG et al.

43) Pub. Date: Aug. 24, 2023

(54) MULTI-MODAL AQUATIC BIOMASS
ESTIMATION
(71) Applicant: Aquabyte, Inc., San Francisco, CA (US)
(72) Inventors: Bryton SHANG, San Francisco, CA
(US); Alok SAXENA, San Francisco,
CA (US)
(21) Appl. No.: 17/678,848
(22) Filed: Feb. 23, 2022
Publication Classification
(51) Int. CL
GO6V 20/05 (2006.01)
GOIN 33/12 (2006.01)
GO01S 15/96 (2006.01)
GO6V 10/764 (2006.01)
GO6T 7/70 (2006.01)
(52) US.CL
CPC ... GO6V 20/05 (2022.01); GOIN 33/12
(2013.01); GO1S 15/96 (2013.01); GO6T 7/70
(2017.01); GO6V 10/764 (2022.01);
Camera Winch 116
Bias Estimation
Sensors 286 )53
O (L) 2
g
Sample
120

aging Direction 118

Water
Surface
104

GO6T 2207/10016 (2013.01); GO6T
2207/30242 (2013.01);
GO6V 2201/07 (2022.01)

57 ABSTRACT
Computer-implemented techniques for multi-modal aquatic
biomass estimation includes determining a fish mass mea-
surement, a fish count, or a direct fish biomass estimate from
a sample of one or more digital images or digital video cap-
tured by a digital camera immersed underwater in a fish
farm enclosure. A technique further includes determining a
plurality of fish densities for a plurality of water volumes
within the fish farm enclosure based on analysis of signals
received from a plurality of bias estimation sensors
immersed underwater in the fish farm enclosure. The tech-
nique also includes computing a bias-adjusted fish mass
measurement, fish count, or direct fish biomass estimate
for the fish farm enclosure based on (i) the fish mass mea-
surement, the fish count, or the direct fish biomass estimate
determined from the sample of one or more digital images or
digital video captured by the digital camera immersed
underwater in the fish farm enclosure and (ii) the plurality
of fish densities determined for the plurality of water

volumes.
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MULTI-MODAL AQUATIC BIOMASS
ESTIMATION

BACKGROUND

[0001] The disclosed subject matter relates to computer-
implemented techniques for multi-modal aquatic biomass
estimation.

[0002] Aquaculture is the farming of aquatic organisms
(e.g., fish) in both coastal and inland areas involving inter-
ventions in the rearing process to enhance production.
Aquaculture has experienced dramatic growth in recent
years. The United Nations Food and Agriculture Organiza-
tion has estimated that aquaculture accounts for at least half
of the world’s fish that is used for food.

[0003] The rise of aquaculture has fostered interest in
techniques that improve the production processes in fish
farms. Along the same lines, there is interest in fish biomass
estimation techniques that can help fish farmers optimize
feeding, control stocking densities, and determine the opti-
mal time to harvest.

[0004] Traditional techniques to estimate fish biomass
involve manual sampling and weighing, which is often inva-
sive, time consuming, and labor-intensive. Thus, less inva-
sive, more efficient, and more cost-effective techniques are
desired.

[0005] The approaches described in this section are
approaches that could be pursued, but not necessarily
approaches that have been previously conceived or pursued.
Therefore, unless otherwise indicated, it should not be
assumed that any of the approaches described in this section
qualify as prior art merely by virtue of their inclusion in this
section.

BRIEF DESCRIPTION OF DRAWINGS

[0006] Various embodiments in accordance with the pre-
sent disclosure will be described with reference to the draw-
ings, in which:

[0007] FIG. 1 depicts a computer vision-based aquatic
biomass estimation system according to some embodiments.
[0008] FIG. 2 depicts the computer vision-based aquatic
biomass estimation system of FIG. 1 with the addition of a
bias estimation system according to some embodiments.
[0009] FIG. 3 depicts use of an active acoustic sensor for
bias adjustment according to some embodiments.

[0010] FIG. 4 is a block diagram illustrating an example
computer system that can be used in some embodiments.

DETAILED DESCRIPTION

[0011] The disclosed techniques for multi-modal aquatic
biomass estimation encompass a method implementation, a
non-transitory storage medium implementation, and a com-
puter system implementation.

[0012] In one implementation of the disclosed techniques,
the method for multi-modal aquatic biomass estimation is
performed by one or more computing devices. The perfor-
mance of the method by the one or more computing devices
includes the step of determining a fish mass measurement, a
fish count, or a direct fish biomass estimate from a sample of
one or more digital images or digital video captured by a
digital camera immersed underwater in a fish farm enclo-
sure. The method further includes the step of determining
a plurality of fish densities for a plurality of water volumes
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within the fish farm enclosure based on analysis of signals
received from a plurality of bias estimation sensors
immersed underwater in the fish farm enclosure. The
method also includes the step of computing a bias-adjusted
fish mass measurement, fish count, or direct fish biomass
estimate for the fish farm enclosure based on (i) the fish
mass measurement, the fish count, or the direct fish biomass
estimate determined from the sample of one or more digital
images or digital video captured by the digital camera
immersed underwater in the fish farm enclosure and (ii)
the plurality of fish densities determined for the plurality
of water volumes.

[0013] In one implementation of the disclosed techniques,
the non-transitory storage medium for multi-modal aquatic
biomass estimation stores instructions which, when exe-
cuted by one or more computing devices, cause the one or
more computing devices to perform the above method for
multi-modal aquatic biomass estimation.

[0014] In one implementation of the disclosed techniques,
the computer system for multi-modal aquatic biomass esti-
mation includes one or more hardware processors, storage
media, and instructions stored in the storage media which,
when executed by the one or more hardware processors,
cause the one or more hardware processors to perform the
above-method for multi-modal aquatic biomass estimation.
[0015] These and other implementations, as well as the
disclosed techniques generally, are described in greater
detail below with reference to drawings.

[0016] The disclosed techniques for multi-modal aquatic
biomass estimation include using a computer vision-based
fish biomass estimation system (“biomass estimation sys-
tem”), a bias estimation system, and an extrapolation sys-
tem. While the biomass estimation system, the bias estima-
tion system, and the extrapolation system are described and
depicted variously herein as being implemented using the
same computer system (e.g., the same one or more comput-
ing devices), there is no requirement that this be the case.
Instead, each can be implemented using a separate computer
system.

[0017] FIG. 1 depicts a computer vision-based aquatic
biomass estimation system 100. A monocular or stereo
vision camera 102 is immersed under the water surface
104 in a fish farm enclosure 106. Camera 102 uses visible
light to capture images or video of fish swimming freely in
enclosure 106. The captured images or video provide pixel
information from which quantitative information 1is
extracted and analyzed for object recognition.

[0018] No type or configuration of camera 102 is required.
In a possible implementation, camera 102 is an approxi-
mately 12-megapixel color or monochrome camera with a
resolution of approximately 4096 pixels by 3000 pixels, and
a frame rate of 1 to 8 frames per second. Although different
cameras with different capabilities can be used according to
the requirements of the implementation at hand. The lens or
lenses or camera 102 can be selected based on an appropri-
ate baseline and focal length to capture images of fish swim-
ming in front of camera 102 in enclosure 106 where fish are
close enough to the lens(es) for proper pixel resolution and
feature detection in the captured image, but far enough away
from the lens or lenses such that the fish can fit entirely in
the image or video frame. For example, an 8-millimeter
focal length lens with high line pair count (1 p/mm) can be
used such that the pixels can be resolved. The baseline of
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camera 102 can have greater variance such as, for example,
within the range of 6 to 12-millimeter baseline.

[0019] Enclosure 106 can be framed by a plastic or steel
cage that provides a substantially conical, cubic, cylindrical,
spherical, or hemispherical shape. Enclosure 106 can hold
several fish of a particular type (e.g., Atlantic salmon)
depending on various factors such as the size of enclosure
106 and the maximum stocking density of the particular fish.
For example, an enclosure 106 for Atlantic salmon can be
50 meters in diameter, 20-50 meters deep, and hold up to
approximately 200,000 salmon assuming a maximum stock-
ing density of 10 to 25 kg/m3. While enclosure 106 can be a
net pen or sea-cage located in the open sea or open water,
enclosure 106 can be a fish farm pond, tank, or other fish
farm enclosure.

[0020] Camera 102 can be attached to winch system 116.
Winch 116 allows camera 102 to be relocated underwater in
enclosure 106. This allows camera 102 to capture images or
video of fish from different locations within enclosure 106.
For example, winch 116 can allow camera 102 to move
around the perimeter of enclosure 106 and at various depths
within enclosure 106. Winch 116 system can also allow con-
trol of pan and tilt of camera 102. Winch 116 can be oper-
ated manually by a human controller such as, for example,
by directing user input to a winch control system located
above water surface 104.

[0021] Winch 116 can operate autonomously according to
a winch control program configured to adjust the location of
camera 102 within enclosure 106. The autonomous winch
control system can adjust the location of camera 102 accord-
ing to a series of predefined or preprogrammed adjustments
or according to detected signals in enclosure 102 that indi-
cate better or more optimal locations within enclosure 106
for capturing images or video of fish relative a current posi-
tion or orientation of camera 102. A variety of signals can be
used such as, for example, machine learning and computer
visions techniques applied to images or video captured by
camera 102 to detect schools or clusters of fish currently
distant from camera 102 such that a location that is closer
to the school or cluster can be determined and the location,
tilt, or pan of camera 102 adjusted to capture more suitable
images of the fish. The same techniques can be used to auto-
matically determine that camera 102 should remain or linger
in a current location or orientation because camera 102 is
currently in a good position to capture suitable images of
fish. Instead of using winch 116 to position camera 102
within enclosure 106, the housing of camera 102 can include
underwater propulsion mechanisms such as propellers or
water jets. In this case, camera 102 can move within enclo-
sure 106 autonomously as in a self-driving fashion. Also in
this case, camera 102 can include components and software
to control autonomous navigation such as underwater
LiDAR and computer vision-software.

[0022] While camera 102 can operate using natural light
(sunlight), an ambient lighting apparatus can be attached to
camera 102 or otherwise located within enclosure 106. For
example, the light apparatus can illuminate a volume of
water in front of camera 102 lens(es) with ambient lighting
in the blue-green spectrum (450 nanometers to 570 nan-
ometers). This spectrum can be used to increase the length
of the daily sample period during which useful images of
fish in enclosure 106 can be captured. For example, depend-
ing on the current season (e.g., winter), time of day (e.g.,
sunrise or sunset), and latitude of enclosure 106, only a
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few hours during the middle of the day can be suitable for
capturing useful images without using ambient lighting.
This daily period can be extended with ambient lighting.
Use of fluorescent, LED, or other artificial lighting is also
possible.

[0023] Although not shown in FIG. 1, a mechanical feed
system that is connected by physical pipes to enclosure 106
can be present in the aquaculture environment. The feed
system can deliver food pellets via the pipes in doses to
the fish in enclosure 106. The feed system can include
other components such as a feed blower connected to an
air cooler which is connected to an air controller and a
feed dose-r which is connected to a feed selector that is con-
nected to the pipes to enclosure 106. The fish biomass esti-
mates generated according to the disclosed techniques can
be used as input to the feed system for determining the cor-
rect amount of feed in terms of dosage amounts and dosage
frequency, thereby improving the operation of the feed
system.

[0024] As well as being useful for determining the correct
amount of feed, the fish biomass estimates generated
according to the disclosed techniques are also useful for
determining more optimal feed formulation. Feed formula-
tion includes determining the ratio of fat, protein, and other
nutrients in the food pellets fed to the fish in enclosure 106.
Using accurate biomass estimates generated by the dis-
closed techniques for fish in a particular enclosure, precise
feed formulations for the fish in that enclosure can be deter-
mined. In this way, it is also possible to have different for-
mulations for the fish in different enclosures based on the
different biomass estimates determined by the disclosed
techniques for those enclosures.

[0025] In addition to being useful for feed dosage optimi-
zation and feed formulation optimization, the accurate bio-
mass estimates generated according to the disclosed techni-
ques are also useful for determining optimal harvest times
and maximizing sale profit for fish farmers. For example,
fish farmers can use the biomass estimates to determine
how much of different fish sizes they can harvest and
bring to market. For example, the different fish sizes can
be distinguished in the market by 1-kilogram increments.
Thus, accurate biomass estimates are important to fish farm-
ers to accurately determine which market bucket (e.g., the
4 kg to 5 kg bucket, the 5 kg to 6 kg bucket, etc.) the fish in
enclosure 106 belong to. Having accurate biomass estimates
also improves fish farmers’ relationships downstream in the
market such as with slaughterhouse operators and fish
futures markets. Along the same lines, an accurate fish bio-
mass estimate is useful for compliance with governmental
regulations. For example, in Norway, a salmon farming
license can impose a metric ton limit. Biomass estimates
generated according to the disclosed techniques can be use-
ful for ensuring compliance with such licenses.

[0026] System 100 includes various functional modules
including image acquisition 108, image processing 110,
and statistical analysis 112. Digital images or video captured
by camera 102 are sent via data communication channel 114
to system 100. Data communication channel 114 can be a
wired or wireless data communication channel. For exam-
ple, data communication channel 114 can be a wired fiber
data communication channel or a wireless data communica-
tion channel such as one based on a wireless data commu-
nication standard such as, for example, a satellite data com-
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munication standard or a standard in the [EEE 802.11 family
of wireless standards.

[0027] Ttis also possible for system 100 to be a component
of camera 102. In this case, data communication channel
114 is not needed to connect camera 102 to system 100.
Instead, data communication channel 114 can be used to
connect camera 102 to another system (not shown) that pro-
cesses the results produced by system 100.

[0028] Regardless of if data communication channel 114
is used to convey images, video, or results produced by sys-
tem 100, the results produced by system 100 can be pro-
vided to another system such as, for example, a web appli-
cation system that provides a web browser-based or a
mobile phone-based graphical user interface at client com-
puting devices. The graphical user interface can visually
present the results produced by system 100 or information
derived therefrom such as in a web dashboard or the like.
The results produced by system 100 or the information
derived therefrom presented in the graphical user interface
can include a measurement of the mass of fish in enclosure
106 (“fish mass measurement™), a count of fish in enclosure
106 (“fish count™), or a direct estimate of the biomass of fish
in enclosure 106 (“direct fish biomass estimate™).

[0029] Image acquisition 108 includes receiving the
images or video captured by camera 102 and storing the
images or video on a storage media (e.g., storage media of
system 100) for further processing by image processing 110
and statistical analysis 112. Image acquisition 108 can per-
form some basic filtering of images or video such as discard-
ing unusable images or video such as, for example, images
or video frames that do not appear to contain any aquatic
organisms or are of poor quality because of inadequate light-
ing or because camera 102 was in motion when the images
or video was captured resulting in blurry images or video.
[0030] Image acquisition 108 can also perform cataloging
of the images and video captured by camera 102. Cataloging
can include associating captured images or video with meta-
data reflecting the situation or environment in enclosure 106
in which or at the time the images or video were captured by
camera 102. Image acquisition 108 can associate captured
images or video with metadata in storage media (e.g., sto-
rage media of system 100). Such metadata can include, but
is not limited to, dates and times of when associated images
or video were captured by camera 102 and position informa-
tion for camera 102 when associated images or video were
captured. The dates and times can be provided by a clock
either of camera 102 or system 100. The position informa-
tion can be provided by a global positioning satellite sensor
affixed to camera 102, provided by camera winch system
116, or provided by an accelerator sensor of camera 102
such as, for example, a microelectromechanical system sen-
sor (MEMS).

[0031] However provided, the position information can
indicate the position of camera 102 underwater in enclosure
106 in one or more spatial dimensions. The position infor-
mation can indicate the position of camera 102 in the
volume of water within enclosure 106. For example, the
position information can indicate one or more coordinates
in a first plane and a coordinate in a second plane that is
perpendicular to the first plane. For example, the first
plane can be parallel to water surface 104. The position
information, then, can indicate an x-axis coordinate and a
y-axis coordinate in the first plane and a z-axis coordinate
in the second plane. For example, the x-axis coordinate, and
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the y-axis coordinate can correspond to the position of cam-
era 102 at water surface 104 and the z-axis coordinate can
correspond to the depth of camera 102 underwater at the
position of camera 102 at water surface 104 corresponding
to the x-axis coordinate and the y-axis coordinate. In this
example, the position of camera 102 within enclosure 106
is controllable by camera winch 116 in all three dimensions
X, ¥, and z. However, camera winch 116 can allow position-
ing of camera 102 within enclosure 106 in just one or two of
those dimensions. In this case, the dimension or dimensions
that are not controllable by winch 116 can be fixed or other-
wise predetermined.

[0032] The position information can also indicate the ima-
ging orientation of camera 102 within enclosure 106. In par-
ticular, the position information can indicate the direction of
the lens of camera 102 when images or video associated
with the position information were captured. For example,
the position information can indicate a compass heading or
an angular position. Here, the compass heading or angular
position can be with respect to a plane parallel with the ima-
ging direction of the lens where the imaging direction of the
lens is perpendicular to the plane of the lens. For example, in
system 100, imaging direction 118 of lens of camera 102 is
depicted as substantially parallel to water surface 104. How-
ever, imaging direction 118 of lens of camera 102 can
instead be substantially perpendicular to water surface 104
such as, for example, if camera 102 is positioned nearer to
the bottom of enclosure 106 and imaging direction 118 is
towards water surface 104 or if camera 102 is positioned
nearer to water surface 104 and imaging direction 118 is
towards the bottom of enclosure 106.

[0033] The position information can also indicate a pitch
angle of imaging direction 118 relative to a plane parallel to
water surface 104 or relative to a plane perpendicular to
water surface 104. For example, the pitch angle of imaging
direction 118 as depicted in FIG. 1 can be zero degrees rela-
tive to a plane parallel to water surface 104 or ninety degrees
relative to a plane perpendicular to water surface 104.
Depending on the pitch of image direction 118, the pitch
angle can range between -90 degrees and +90 degrees or
equivalently between 0 and 180 degrees.

[0034] Reference herein to the “position” of camera 102
can encompass any one of the following or a combination
two or more thereof: an x-axis position of camera 102, a y-
axis position of camera 102, a z-axis position of camera 102,
a compass heading of imaging direction 118 of camera 102,
an angular position of imaging direction 118 of camera 102,
a pitch angle of imaging direction 118 of camera 102, a
longitudinal position of camera 102, a latitudinal position
of camera 102, an elevation of camera 102, or a underwater
depth of camera 102.

[0035] The volumetric size of enclosure 106 and the num-
ber of fish in enclosure 106 can be such that, at a given
position in enclosure 106, camera 102 cannot capture suffi-
ciently high-quality images or video of all the fish in enclo-
sure 106 for use by system 100 to accurately estimate a fish
mass measurement, a fish count, or a direct fish biomass
estimate of all of the fish in enclosure 106. Characteristics
of the lens or lenses of camera 102 and the particular
requirements of the imaging application at hand such as
focal length, aperture, maximum aperture, and depth of
field can limit the volume of water within enclosure 106 of
which camera 102 at a given position can capture suffi-
ciently high-quality images or video. As a result, the images
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or video captured by camera 102 at a given position can be
only a sample 120 of all fish in enclosure 106. As used
herein, a “sample” as in, for example, sample 120, refers
to one or more images or video of one or more fish in enclo-
sure 106 captured by camera 102 and processed by system
100 to estimate a fish mass measurement, a fish count, or a
direct fish biomass estimate of the one or more fish.

[0036] Sample 120 may not be representative of the entire
fish population in enclosure 106. In other words, sample 120
can have a bias. The bias can be severe. Severe bias can
cause substantial overestimation or underestimation when
sample 120 is used by system 100 to estimate a fish mass
measurement, a fish count, or a direct fish biomass estimate
of all fish in enclosure 106. Various situational and environ-
ment conditions in enclosure 104 can contribute to the bias
of sample 120 (“sampling bias™). Such conditions can
include the position of camera 102 when sample 120 is cap-
tured and the location and spatial distribution of fish within
the enclosure 104 when sample 120 is captured.

[0037] To attempt to reduce bias, sample 120 can be cap-
tured when the fish in enclosure 106 are being fed. This
tends to reduce the spatial distribution of the fish population
in enclosure 106 as the fish tend to congregate around where
the feed is being dispensed into enclosure 106 by a mechan-
ical feed dispenser above, below, or at water surface 104.
Even so, sample 120 captured at feeding time can still
have significant bias. For example, sample 120 can include
mostly larger more powerful fish that are able to push out
the smaller weaker fish from the area in the enclosure 106
where the feed is being dispensed, or sample 120 can omit
fish that are satiated or sick or otherwise not feeding at the
time.

[0038] For fish mass measurement, statistical analysis 112
can use a polynomial, linear, power curve, or other mathe-
matical model for computing a fish weight (mass) of a target
fish based on one or more fish size parameters for the target
fish. Image processing 110 can identify the target fish in
sample 120. For example, image processing 110 can use
machine learning-aided image segmentation to identify por-
tions of images or video frames that contain an image of a
fish. In some implementations, image processing 110 incor-
porates a deep convolutional neural network to aid in seg-
mentation of target fish from sample 120. Image processing
120 can then use two-dimensional (2D) or three-dimen-
sional (3D) image processing techniques to determine
from sample 120 the one or more fish size parameters of
the target fish for input to the model. A fish size parameter
can include an estimated length, area, width, or perimeter of
the target fish. The model can be target fish species-specific
and can incorporate a bend model to account for a bend of
the target fish in sample 120 in case the body of the target
fish is not straight in sample 120. Multiple fish mass mea-
surements of multiple target fish identified in sample 120
can be determined.

[0039] Various computer vision techniques can be
employed by image processing 110 to obtain a fish count
of sample 120. Such computer vision techniques can include
one or more of the following methods: neural network, data
fitting, area counting, curve evolution, fish localization,
image thinning, connected component, or object tracking.
[0040] For direct fish biomass estimation, statistical ana-
lysis 112 can compute a weight (mass) of a target fish
directly by its volume and its density (mass = volume X
density). The density of the target fish can be predetermined
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such as by the particular species of the target fish. The
volume of the target fish can be determined by image pro-
cessing 110 from sample 120 using various techniques
including computer vision technology such as 2D or 3D
image processing techniques aided by deep learning such
as a convolutional neural network. The computer vision
techniques can be aided by laser scanning technology. For
example, a LiDAR suitable for underwater use can be
affixed to camera 102 for laser scanning fish in imaging
direction 118. For example, a laser scanner in combination
with a monocular camera 102 can be used. The laser scanner
projects structural light onto the fish and 2D or 3D cartesian
coordinates of the fish’s surface can be determined based on
sample 120 by image processing 110 to represent the fish’s
shape.

[0041] An overall fish mass measurement, fish count, or
direct fish biomass estimate for sample 120 can be deter-
mined by statistical analysis 112 as an average, mean, or
probability  distribution of individual corresponding
determinations.

[0042] As mentioned, sample 120 can be biased. Thus, a
simple extrapolation method to compute the overall fish
mass measurement, fish count, or direct fish biomass esti-
mate for entire enclosure 106 such as by using a fixed multi-
ple applied to sample 120 can result in substantial overesti-
mation or underestimation. To correct for the bias of sample
120, the disclosed techniques use a bias estimation system.
Generally speaking, the bias estimation system obtains data
from multiple sensors located underwater in enclosure 106.
The sensors are positioned to sample different volumes of
water within enclosure 106 including the volume from
which sample 120 was captured. The sensor data provides
an estimate of the density of fish in each water volume at a
time corresponding to when sample 120 was captured by
camera 102. The extrapolation system computes an overall
bias-adjusted fish mass measurement, fish count, or direct
fish biomass estimate for entire enclosure 106 based on the
fish mass measurement, fish count, or direct fish biomass
estimate for sample 120 and the densities determined from
the active acoustics sensor data.

[0043] FIG. 2 depicts the computer vision-based aquatic
biomass estimation system of FIG. 1 with the addition of a
bias estimation system. Bias estimation system encom-
passes bias estimation sensors 226, bias estimation function-
ality 222, and extrapolation functionality 224. Bias estima-
tion sensors 226 is sometimes referred to herein as bias
estimation sensor array 226.

[0044] In an implementation, bias estimation sensors 226
are active acoustics sensors. The active acoustics sensors
emit sound waves in different directions within enclosure
106 at a certain frequency or set of frequencies to remotely
detect fish in enclosure 106. An active acoustic sensor can
be an echosounder or other fish finding transducer, for
example.

[0045] An echosounder can have a transducer that emits
acoustic waves that propagate within a volume of water
within enclosure 106. When the acoustic waves encounter
fish in enclosure 106, the acoustic waves are reflected back
toward the echosounder as an echo signal. Scattered echo
signals received back at the transducer of the echosounder
are converted into voltage parameters recorded for subse-
quent analysis. Several fish can be estimated based on the
physical characteristic that the strength of the echo signal is
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proportional to the number of fish (fish density) in the water
volume targeted by the echosounder (target water volume).
[0046] Split-beam technology can be used to measure the
target strength of fish. An echosounder can project a beam of
sound within enclosure 106. The center of the beam of
sound can have more concentrated power. As such, a fish
within or near the center of the acoustic beam can result in
a strong echo signal. However, the same fish nearer to the
edge of the acoustic beam can result in a relatively weaker
echo signal. To avoid mistakenly interpreting the weaker
echo signal returning from a fish near the edge of the acous-
tic beam as a smaller sized fish than if the same fish were
nearer to the center of the acoustic beam, an echosounder
can be configured with a transducer that emits multiple
(e.g., three or more) acoustic beams instead of just a single
acoustic beam. For example, an echosounder can emit four
acoustic beams. By emitting multiple acoustic beams, the
position of fish within the overall acoustic beam can be
determined to compensate for the difference in echo signal
intensity when the fish is nearer to the edge of the overall
acoustic beam compared to closer to the center of the overall
acoustic beam.

[0047] While an echo sounder can employ split-beam
technology, it is not required in an implementation. Instead,
an echosounder can emit a single acoustic beam such as, for
example, an acoustic beam with a relatively wide cone
angle.

[0048] When the fish density is low in the target water
volume, an echo counting method can be used to measure
fish density by dividing the fish number obtained directly
from the echosounder by the volume of the target water
volume. When the fish density is relatively high in the target
water volume when fish are congregating and cannot be
easily identified as single fish, an echo integration method
can be used to estimate the number of fishes by dividing the
integral value of the echo signal intensity of the fish shoal in
the target water volume by the target strength of an indivi-
dual fish. In either case, an estimate of the number of fish in
the target water volume is obtained. More generally, an esti-
mate of the fish density of the target water volume is
obtained.

[0049] At least two and up to eight active acoustics sen-
sors can be positioned underwater within enclosure 106. In
the example of FIG. 2, bias estimation sensors 226 are
affixed to the housing of camera 102 and are configured to
emit acoustic waves in a plane parallel to imaging direction
118. For example, two, four, six, or eight bias estimation
sensors 226 can be affixed to housing of camera 102, each
positioned in different directions so as to cover different
target water volumes within enclosure 106.

[0050] However, it is also possible for bias estimation sen-
sors 226 to be positioned in a fixed position such as affixed
to the cage of enclosure 106. For example, an active acous-
tics sensor can be positioned at the bottom of enclosure 106
and configured to emit acoustic waves toward water surface
104 or an active acoustics sensor can be positioned at the top
of enclosure 106 configured to emit acoustic waves toward
the bottom of enclosure 106. It is also possible for active
acoustic sensors 226 be positioned along the perimeter of
enclosure 106 and configured to emit acoustic waves toward
the center of enclosure 106.

[0051] In any case, each bias estimation sensor 226 pro-
vides data and information by which bias estimation 222 can
determine a fish density for a corresponding target bias esti-
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mation sensor water volume (target water volume) within
enclosure 106. The fish density can be based on sensor
data and information that is obtained from or determined
by bias estimation sensors 226 at a time corresponding to
when camera 102 captures sample 120. In this way, bias
estimation sensors 226 provide a general estimate of the
fish density in enclosure 106 at a time corresponding to
when camera 102 captures sample 120. Bias estimation
222 can break this total estimate down by target water
volume for each bias estimation sensor 226 to obtain a gen-
eral model of the distribution of the fish density within
enclosure 106. A fish density determined by bias estimation
222 based on data and information obtained from bias esti-
mation sensors 226 can be a fish measurement, a fish count,
or a direct fish biomass estimate.

[0052] The size and shape of the target water volume for
each bias estimation sensor 226 can be based on a model of
the water volume that the sensor is configured to scan which
can depend on various such factors including environmental
factors such as turbidity of the water within enclosure 106.
The location of the target water volume within enclosure
106 can be based on the location of the corresponding bias
estimation sensor 226 and its beam direction. If the sensor is
affixed to the housing of camera 102, then the position of
camera 102 when sample 120 is captured can be used to
determine the location of the target water volume within
enclosure 106 for the sensor. In any case, when camera
102 captures sample 120, bias estimation sensors 226 can
provide data and information for a corresponding set of tar-
get water volumes within enclosure 106 from which a fish
density can be estimated by bias estimation 222 for each
target water volume. Bias estimation 222 can then determine
the target water volume or volumes from which sample 120
was captured by camera 102 based on the position of camera
102 at the time sample 120 was captured and the positions of
the target water volumes for the sensors 226 at the time
sample 120 was captured.

[0053] Bias estimation 222 and extrapolation 224 can then
compute a bias adjusted fish mass measurement, fish count,
or direct fish biomass estimate for the entire enclosure 106.
The bias adjusted fish mass measurement, fish count, or
direct fish biomass estimate can be computed based on the
fish mass measurement, fish count, or direct fish biomass
estimate computed for sample 120 and the per-target water
volume fish densities.

[0054] Generally speaking, a bias adjustment can be com-
puted that reflects how representative the target water
volume from which sample 120 was captured (the sample
target water volume) is compared to the other target water
volumes for the other active acoustics sensors 226. For
example, the fish density for each target water volume can
be compared to the total (sum) of all fish densities for all
target water volumes for all bias estimation sensors 226 to
obtain an estimate of the percentage of the total fish density
in enclosure 106 at the time sample 120 was captured. These
percentages can be then used to extrapolate the fish mass
measurement, the fish count, or the direct fish biomass esti-
mate for the entire enclosure 106 from the fish mass mea-
surement, fish count, or direct fish biomass estimate com-
puted for sample 120. For example, the extrapolated or
bias adjusted fish mass measurement, the fish count, or the
direct fish biomass estimate for the entire enclosure 106 can
be computed as: Xe=3 """ Pi=xs
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[0055] Here, Xe represents the extrapolated or bias
adjusted fish mass measurement, the fish count, or the direct
fish biomass estimate for the entire enclosure 106. The para-
meter n represents the number of bias estimation sensors
226 and hence the number of target water volumes. For
example, n can range between two and eight or more. The
parameter Pi represents the percentage of the total fish den-
sity across all target water volumes that is allocated to target
water volume i. The parameter Xs represents the fish mass
measurement, fish count, or direct fish biomass estimate
computed for sample 120.

[0056] FIG. 3 depicts use of an active acoustic sensor 328
for bias adjustment. In this example, active acoustic sensor
328 is affixed to the housing of camera 102. Sensor 208 is
positioned on the housing of camera 102 to emit the center
of'its acoustic beam in the same general direction as imaging
direction 118. The housing of camera 102 can be configured
with additional active acoustic sensors but positioned to
emit the center of their respective acoustic beams in differ-
ent directions so as to provide greater directional coverage
of enclosure 106. For example, camera 102 can be affixed
with four active acoustic sensors with one positioned in the
same direction as imaging direction 118, another positioned
in the opposite direction as imaging direction 118, yet
another positioned in a direction perpendicular to imaging
direction 118, and finally another positioned in a direction
opposite to the fore mentioned sensor positioning perpendi-
cularly to imaging direction 118. As an alternative, camera
102 can include four additional active acoustic sensors each
positioned to emit the center of its acoustic beam at approxi-
mately forty-five degrees between a different pair of active
acoustic sensors in the prior example. The number of active
acoustic sensors used in an implementation can vary
depending on a variety of factors including cost and the
maximum effective cone angle of each acoustic beam
emitted from the sensors.

[0057] The maximum effective cone angle (swathe angle)
of each acoustic beam emitted from the sensors can vary
depending on whether the sensors are single-beam or use
split-beam technology. For example, a single-beam active
acoustic sensor can have an acoustic beam with a cone
angle between two (2) and fifteen (15) degrees while a
multi-beam or split-beam active acoustic sensor can have
an overall acoustic beam with a cone angle (swathe angle)
between one hundred and twenty (12) and one hundred and
seventy (170) degrees.

[0058] It should be noted that when active acoustic sensor
328 is a multi-beam or split-beam sensor, sensor 328 can
emit multiple beams at different frequencies, with different
cone angles (different swath angles), and in different direc-
tions. In this case, unless the context clearly indicates other-
wise, reference above and elsewhere herein to the center of
the acoustic beam of sensor 328 encompasses to the center
of the centermost acoustic beam emitted by sensor 320.
[0059] While in the example of FIG. 3, active acoustic
sensor 328 is positioned to emit the center of its acoustic
beam substantially parallel to a plane of imaging direction
118, sensor 328 can be positioned in the housing of camera
102 to emit the center of its acoustic beam at a positive or
negative angle upward or downward from a plane of ima-
ging direction 118. For example, sensor 328 (and the other
active acoustic sensors affixed to the housing of camera 102)
can be positioned to emit the center of its acoustic beam at
an upward or downward angle between zero (0) and fifteen
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(15) degrees above or below a plane of imaging direction
118.

[0060] Camera 102 has a target imaging water volume 332
within which camera 102 can capture usable quality images
or video of fish that freely swim within enclosure 106.
Images or video of fish outside target imaging water volume
332 captured by camera 102 can be unusable by image pro-
cessing 110 for determining a fish measurement, a fish
count, or a direct fish biomass estimate of sample 120. For
example, unable images or video frames can include out-of-
focus fish or fish at too low a resolution that result because
the fish is outside target imaging water volume 332 when
imaged by camera 102.

[0061] The size and shape of target imaging water volume
332 can vary depending on a variety of characteristics of
camera 102 and the application at hand including the desired
working distance and depth of focus of camera 102 config-
uration. Further, size and shape of target imaging water
volume 332 can change at times depending on the environ-
mental conditions within enclosure 106 such as the water
turbidity and ambient lighting.

[0062] Target water volume 330 represents the volume of
water that can be effectively scanned by sensor 328. Typi-
cally, the size of target water volume 330 is greater than the
size of target imaging water volume 332. While in FIG. 3
target imaging water volume 332 is depicted entirely within
target water volume 330, this need not be the case and the
volumes can only partially overlap in an implementation.
[0063] In an implementation, instead of bias estimation
sensors 226 being active acoustic sensors such as echosoun-
ders, bias estimation sensors 226 are active electric field
sensors. In such an implementation, a plurality of active
electric field electrodes can be placed in enclosure 106 to
set an active alternating polarity electric field within enclo-
sure 106. The frequency of the alternating polarity can
sweep over a range of frequencies. An object or objects,
conductive or non-conductive, within a target water volume
within the electric field can change the capacitance behavior
in the target water volume in accordance with the size and
the composition of the object(s). Sensor electrodes can be
placed in the electric fields to detect the local capacitance
signals. From the local capacitance signals, the amount of
fish biomass within the target water volume can be deter-
mined by bias estimation 222. A bias estimation sensor
226 can also be the camera itself. In this scenario, computer
vision techniques are applied by bias estimation 222 to
video captured by the camera as the camera moves about
underwater to determine amounts of fish biomass within
various target water volumes.

[0064] In some embodiments, in addition to or instead of
determine a bias-adjusted biomass estimate, a variance esti-
mate is determined. Additionally, or alternatively, a bias-
adjusted biomass estimate, or a variance estimate can be
determined based on applying deep learning-based compu-
ter vision techniques to video captured by the camera
immersed underwater in the net pen. Such techniques can
be used to determine the orientation of fish in the video
images and swimming direction and this information used
to determine a bias-adjusted biomass estimate or variance
estimate.

[0065] In some embodiments, a system that implements a
portion or all of the techniques described herein can include
a general-purpose computer system, such as the computer
system 400 illustrated in FIG. 4, that includes, or is config-
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ured to access, one or more computer-accessible media. In
the illustrated embodiment, the computer system 400
includes one or more processors 410 coupled to a system
memory 420 via an input/output (I/O) interface 430. The
computer system 400 further includes a network interface
440 coupled to the /O interface 430. While FIG. 4 shows
the computer system 400 as a single computing device, in
various embodiments the computer system 400 can include
one computing device or any number of computing devices
configured to work together as a single computer system
400.

[0066] In various embodiments, the computer system 400
can be a uniprocessor system including one processor 410,
or a multiprocessor system including several processors 410
(e.g., two, four, eight, or another suitable number). The pro-
cessor(s) 410 can be any suitable processor(s) capable of
executing instructions. For example, in various embodi-
ments, the processor(s) 410 can be general-purpose or
embedded processors implementing any of a variety of
instruction set architectures (ISAs), such as the x86, ARM,
PowerPC, SPARC, or MIPS ISAs, or any other suitable ISA.
In multiprocessor systems, each of the processors 410 can
commonly, but not necessarily, implement the same ISA.
[0067] The system memory 420 can store instructions and
data accessible by the processor(s) 410. In various embodi-
ments, the system memory 420 can be implemented using
any suitable memory technology, such as random-access
memory (RAM), static RAM (SRAM), synchronous
dynamic RAM (SDRAM), nonvolatile/Flash-type memory,
or any other type of memory. In the illustrated embodiment,
program instructions and data implementing one or more
desired functions, such as those methods, techniques, and
data described above, are shown stored within the system
memory 420 as biomass estimation code 425 (e.g., execu-
table to implement, in whole or in part, to implement the
biomass estimation techniques disclosed herein) and data
426.

[0068] In some embodiments, the [/O interface 430 can be
configured to coordinate I/O traffic between the processor
410, the system memory 420, and any peripheral devices
in the device, including the network interface 440 and/or
other peripheral interfaces (not shown). In some embodi-
ments, the I/O interface 430 can perform any necessary pro-
tocol, timing, or other data transformations to convert data
signals from one component (e.g., the system memory 420)
into a format suitable for use by another component (e.g.,
the processor 410). In some embodiments, the I/O interface
430 can include support for devices attached through var-
ious types of peripheral buses, such as a variant of the Per-
ipheral Component Interconnect (PCI) bus standard or the
Universal Serial Bus (USB) standard, for example. In some
embodiments, the function of the I/O interface 430 can be
split into two or more separate components, such as a north
bridge and a south bridge, for example. Also, in some embo-
diments, some or all of the functionality of the /O interface
430, such as an interface to the system memory 420, can be
incorporated directly into the processor 410.

[0069] The network interface 440 can be configured to
allow data to be exchanged between the computer system
400 and other devices 460 attached to a network or networks
450, such as other computer systems or devices as illustrated
other figures, for example. In various embodiments, the net-
work interface 440 can support communication via any sui-
table wired or wireless general data networks, such as types

Aug. 24, 2023

of Ethernet network, for example. Additionally, the network
interface 440 can support communication via telecommuni-
cations/telephony networks, such as analog voice networks
or digital fiber communications networks, via storage area
networks (SANs), such as Fibre Channel SANs, and/or via
any other suitable type of network and/or protocol.

[0070] In some embodiments, the computer system 400
includes one or more offload cards 470A or 470B (including
one or more processors 475, and possibly including the one
or more network interfaces 440) that are connected using the
/O interface 430 (e.g., a bus implementing a version of the
Peripheral Component Interconnect - Express (PCI-E) stan-
dard, or another interconnect such as a QuickPath intercon-
nect (QPI) or UltraPath interconnect (UPI)). For example, in
some embodiments the computer system 400 can act as a
host electronic device (e.g., operating as part of a hardware
virtualization service) that hosts compute resources such as
compute instances, and the one or more offload cards 470A
or 470B execute a virtualization manager that can manage
compute instances that execute on the host electronic
device. As an example, in some embodiments the offload
card(s) 470A or 470B can perform compute instance man-
agement operations, such as pausing and/or un-pausing
compute instances, launching and/or terminating compute
instances, performing memory transfer/copying operations,
etc. These management operations can, in some embodi-
ments, be performed by the offload card(s) 470A or 470B
in coordination with a hypervisor (e.g., upon a request from
a hypervisor) that is executed by the other processors 410A-
310N of the computer system 400. However, in some embo-
diments the virtualization manager implemented by the off-
load card(s) 470A or 470B can accommodate requests from
other entities (e.g., from compute instances themselves), and
cannot coordinate with (or service) any separate hypervisor.
[0071] In some embodiments, the system memory 420 can
be one embodiment of a computer-accessible medium con-
figured to store program instructions and data as described
above. However, in other embodiments, program instruc-
tions and/or data can be received, sent, or stored upon dif-
ferent types of computer-accessible media. Generally speak-
ing, a computer-accessible medium can include any non-
transitory storage media or memory media such as magnetic
or optical media, e.g., disk or DVD/CD coupled to the com-
puter system 400 via the [/O interface 430. A non-transitory
computer-accessible storage medium can also include any
volatile or non-volatile media such as RAM (e.g,
SDRAM, double data rate (DDR) SDRAM, SRAM, etc.),
read only memory (ROM), etc., that can be included in
some embodiments of the computer system 400 as the sys-
tem memory 420 or another type of memory. Further, a
computer-accessible medium can include transmission
media or signals such as electrical, electromagnetic, or digi-
tal signals, conveyed via a communication medium such as
a network and/or a wireless link, such as can be implemen-
ted via the network interface 440.

[0072] Various embodiments discussed or suggested
herein can be implemented in a wide variety of operating
environments, which in some cases can include one or
more user computers, computing devices, or processing
devices which can be used to operate any of a number of
applications. User or client devices can include any of a
number of general-purpose personal computers, such as
desktop or laptop computers running a standard operating
system, as well as cellular, wireless, and handheld devices
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running mobile software and capable of supporting a num-
ber of networking and messaging protocols. Such a system
also can include a number of workstations running any of a
variety of commercially available operating systems and
other known applications for purposes such as development
and database management. These devices also can include
other electronic devices, such as dummy terminals, thin-cli-
ents, gaming systems, and/or other devices capable of com-
municating via a network.

[0073] Most embodiments use at least one network that
would be familiar to those skilled in the art for supporting
communications using any of a variety of widely-available
protocols, such as Transmission Control Protocol / Internet
Protocol (TCP/IP), File Transfer Protocol (FTP), Universal
Plug and Play (UPnP), Network File System (NFS), Com-
mon Internet File System (CIFS), Extensible Messaging and
Presence Protocol (XMPP), AppleTalk, etc. The network(s)
can include, for example, a local area network (LAN), a
wide-area network (WAN), a virtual private network
(VPN), the Internet, an intranet, an extranet, a public
switched telephone network (PSTN), an infrared network,
a wireless network, and any combination thereof.

[0074] In embodiments using a web server, the web server
can run any of a variety of server or mid-tier applications,
including HTTP servers, File Transfer Protocol (FTP) ser-
vers, Common Gateway Interface (CGI) servers, data ser-
vers, Java servers, business application servers, etc. The ser-
ver(s) also can be capable of executing programs or scripts
in response requests from user devices, such as by executing
one or more Web applications that can be implemented as
one or more scripts or programs written in any programming
language, such as Java®, C, C# or C++, or any scripting
language, such as Perl, Python, PHP, or TCL, as well as
combinations thereof. The server(s) can also include data-
base servers, including without limitation those commer-
cially available from Oracle(®, Microsoft®, Sybase®,
IBM®, etc. The database servers can be relational or non-
relational (e.g., “NoSQL”), distributed or non-distributed,
etc.

[0075] Environments disclosed herein can include a vari-
ety of data stores and other memory and storage media as
discussed above. These can reside in a variety of locations,
such as on a storage medium local to (and/or resident in) one
or more of the computers or remote from any or all of the
computers across the network. In a particular set of embodi-
ments, the information can reside in a storage-area network
(SAN) familiar to those skilled in the art. Similarly, any
necessary files for performing the functions attributed to
the computers, servers, or other network devices can be
stored locally and/or remotely, as appropriate. Where a sys-
tem includes computerized devices, each such device can
include hardware elements that can be electrically coupled
via a bus, the elements including, for example, at least one
central processing unit (CPU), at least one input device (e.g.,
a mouse, keyboard, controller, touch screen, or keypad),
and/or at least one output device (e.g., a display device, prin-
ter, or speaker). Such a system can also include one or more
storage devices, such as disk drives, optical storage devices,
and solid-state storage devices such as random-access mem-
ory (RAM) or read-only memory (ROM), as well as remo-
vable media devices, memory cards, flash cards, etc.

[0076] Such devices also can include a computer-readable
storage media reader, a communications device (e.g., a
modem, a network card (wireless or wired), an infrared
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communication device, etc.), and working memory as
described above. The computer-readable storage media
reader can be connected with, or configured to receive, a
computer-readable storage medium, representing remote,
local, fixed, and/or removable storage devices as well as
storage media for temporarily and/or more permanently
containing, storing, transmitting, and retrieving computer-
readable information. The system and various devices also
typically will include a number of software applications,
modules, services, or other elements located within at least
one working memory device, including an operating system
and application programs, such as a client application or
web browser. It should be appreciated that alternate embo-
diments can have numerous variations from that described
above. For example, customized hardware might also be
used and/or particular elements might be implemented in
hardware, software (including portable software, such as
applets), or both. Further, connection to other computing
devices such as network input/output devices can be
employed.

[0077] Storage media and computer readable media for
containing code, or portions of code, can include any appro-
priate media known or used in the art, including storage
media and communication media, such as but not limited
to volatile and non-volatile, removable and non-removable
media implemented in any method or technology for storage
and/or transmission of information such as computer read-
able instructions, data structures, program modules, or other
data, including RAM, ROM, Electrically Erasable Program-
mable Read-Only Memory (EEPROM), flash memory or
other memory technology, Compact Disc-Read Only Mem-
ory (CD-ROM), Digital Versatile Disk (DVD) or other opti-
cal storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any
other medium which can be used to store the desired infor-
mation and which can be accessed by a system device.
Based on the disclosure and teachings provided herein, a
person of ordinary skill in the art will appreciate other
ways and/or methods to implement the various
embodiments.

[0078] In the preceding description, various embodiments
are described. For purposes of explanation, specific config-
urations and details are set forth to provide a thorough
understanding of the embodiments. However, it will also
be apparent to one skilled in the art that the embodiments
can be practiced without the specific details. Furthermore,
well-known features can be omitted or simplified in order
not to obscure the embodiment being described.

[0079] Bracketed text and blocks with dashed borders
(e.g., large dashes, small dashes, dot-dash, and dots) are
used herein to illustrate optional operations that add addi-
tional features to some embodiments. However, such nota-
tion should not be taken to mean that these are the only
options or optional operations, or that blocks with solid bor-
ders are not optional in certain embodiments.

[0080] Unless the context clearly indicates otherwise, the
term “or” is used in the foregoing specification and in the
appended claims in its inclusive sense (and not in its exclu-
sive sense) so that when used, for example, to connect a list
of elements, the term “or” means one, some, or all of the
elements in the list.

[0081] Unless the context clearly indicates otherwise, the
terms “comprising,” “including,” “having,” “based on,”
“encompassing,” and the like, are used in the foregoing spe-
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cification and in the appended claims in an open-ended fash-
ion, and do not exclude additional elements, features, acts,
or operations.

[0082] Unless the context clearly indicates otherwise, con-
junctive language such as the phrase “at least one of X, Y,
and Z,” is to be understood to convey that an item, term, etc.
can be either X, Y, or Z, or a combination thereof. Thus,
such conjunctive language is not intended to require by
default implication that at least one of X, at least one of Y,
and at least one of Z to each be present.

[0083] Unless the context clearly indicates otherwise, as
used in the foregoing detailed description and in the
appended claims, the singular forms “a,” “an,” and “the”
are intended to include the plural forms as well.

[0084] Unless the context clearly indicates otherwise, in
the foregoing detailed description and in the appended
claims, although the terms first, second, etc. are, in some
instances, used herein to describe various elements, these
elements should not be limited by these terms. These terms
are only used to distinguish one element from another. For
example, a first computing device could be termed a second
computing device, and, similarly, a second computing
device could be termed a first computing device. The first
computing device and the second computing device are both
computing devices, but they are not the same computing
device.

[0085] In the foregoing specification, the techniques have
been described with reference to numerous specific details
that can vary from implementation to implementation. The
specification and drawings are, accordingly, to be regarded
in an illustrative rather than a restrictive sense.

What is claimed is:

1. A method for multi-modal aquatic biomass estimation,
comprising:

determining a fish mass measurement, a fish count, or a

direct fish biomass estimate from a sample of one or

more digital images or digital video captured by a digital
camera immersed underwater in a fish farm enclosure;

determining afish density for awater volume within the fish
farm enclosure based on an analysis of signals received
from a bias estimation sensor immersed underwater in
the fish farm enclosure; and

computing a bias-adjusted fish mass measurement, fish

count, or direct fish biomass estimate for the fish farm

enclosure based on:

(1) the fish mass measurement, the fish count, or the direct
fish biomass estimate determined from the sample of
one or more digital images or digital video captured by
the digital camera immersed underwater in the fish
farm enclosure, and

(i1) the fish density determined for the water volume;

wherein the method is performed by one or more comput-

ing devices.

2. The method of claim 1, wherein the fish density for the
water volume within the fish farm enclosure comprises a fish
count for the water volume.

3. The method of claim 1, wherein the bias estimation sen-
sor comprises an active acoustic sensor, and wherein the
method further comprises:

determining the fish density for the water volume within the

fish farm enclosure based on analysis of echo signals

received from the active acoustic sensor.
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4. The method of claim 1, wherein the bias estimation sen-
sor comprises an active electric field sensor, and wherein the
method further comprises:

determining the fish density for the water volume within the

fish farm enclosure based on analysis of capacitance sig-

nals received from the active electric field sensor.

5. The method of claim 1, further comprising:

determining a particular water volume of a plurality of

water volumes from which atleasta portion of the sample

of one or more digital images or digital video is captured
by the digital camera immersed underwater in the fish
farm enclosure;

determining a particular fish density of a plurality of fish

densities determined for the particular water volume; and

computing the bias-adjusted fish mass measurement, fish
count, or direct fish biomass estimate for the fish farm
enclosure based on a percentage of the particular fish
density of the plurality of fish densities.

6. The method of claim 1, wherein the bias estimation sen-
sor is affixed to the camera, and wherein the method further
comprises determining a particular water volume of the plur-
ality of water volumes from which at least the portion of the
sample of one or more digital images or digital video is cap-
tured by the digital camera immersed underwater in the fish
farm enclosure based on a position of the camera in the fish
farm enclosure at a time the sample of one or more digital
images or digital video is captured by the digital camera.

7. The method of claim 1, wherein the bias estimation sen-
sor is the digital video camera, the signals received from the
bias estimation sensor comprise digital video, and the analysis
of the signals comprises applying deep learning computer
vision techniques to the digital video to determine the fish
density.

8. A method for multi-modal aquatic biomass estimation,
comprising:

determining a fish mass measurement, a fish count, or a

direct fish biomass estimate from a sample of one or

more digital images or digital video captured by a digital
camera immersed underwater in a fish farm enclosure;

determining a position of the digital camera in the fish farm
enclosure at a time the sample of the one or more digital
images or digital video is captured by the digital camera;
and

computing a bias-adjusted fish mass measurement, fish

count, or direct fish biomass estimate for the fish farm

enclosure based on:

(1) the fishmass measurement, the fish count, or the direct
fish biomass estimate determined from the sample of
the one or more digital images or digital video cap-
tured by the digital camera immersed underwater in
the fish farm enclosure, and

(1) the position of the digital camera in the fish farm
enclosure at the time the sample of the one or more
digital images or digital video is captured by the digital
camera.

9. The method of claim 8, further comprising:

determining a fish density fora water volume within the fish

farm enclosure based on an analysis of signals received

from a bias estimation sensor immersed underwater in
the fish farm enclosure; and

computing the bias-adjusted fish mass measurement, fish

count, or direct fish biomass estimate for the fish farm

enclosure based on:

the fish density for the water volume.
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10. The method of claim 9, wherein the fish density for the
water volume within the fish farm enclosure comprises a fish
count for the water volume.

11. The method of claim 9, wherein the bias estimation sen-
sor comprises an active acoustic sensor, and wherein the
instructions, when executed by one or more computing
devices, cause the one or more computing devices to perform:

determining the fish density for the water volume within the

fish farm enclosure based on analysis of echo signals
received from the active acoustic sensor.

12. The method of claim 9, wherein the bias estimation sen-
sor comprises an active electric field sensor, and wherein the
instructions, when executed by one or more computing
devices, cause the one or more computing devices to perform:

determining the fish density for the water volume within the

fish farm enclosure based on analysis of capacitance sig-
nals received from the active electric field sensor.

13. The method of claim 9, wherein the bias estimation sen-
sor is the digital video camera, the signals received from the
bias estimation sensor comprise digital video, and the analysis
of the signals comprises applying deep learning computer
vision techniques to the digital video to determine the fish
density.

14. A method for multi-modal aquatic biomass estimation,
comprising:

determining a fish mass measurement, a fish count, or a

direct fish biomass estimate from a sample of one or

more digital images or digital video captured by a digital
camera immersed underwater in a fish farm enclosure;

determining afish density for awater volume within the fish
farm enclosure based on an analysis of signals received
from a bias estimation sensor immersed underwater in
the fish farm enclosure;

determining a position of the digital camera in the fish farm

enclosure at a time the sample of the one or more digital

images or digital video is captured by the digital camera;
and

computing a bias-adjusted fish mass measurement, fish

count, or direct fish biomass estimate for the fish farm

enclosure based on:

(1) the fish mass measurement, the fish count, or the direct
fish biomass estimate determined from the sample of
the one or more digital images or digital video cap-
tured by the digital camera immersed underwater in
the fish farm enclosure,

(i1) the fish density for the water volume, and

(iii) the position of the digital camera in the fish farm
enclosure at the time the sample of the one or more
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digital images or digital video is captured by the digital
camera.

15. The method of claim 14, wherein the fish density for the
water volume within the fish farm enclosure comprises a fish
count for the water volume.

16. The method of claim 14, wherein the bias estimation
sensor comprises an active acoustic sensor, and wherein the
method further comprises:

determining the fish density for the water volume within the
fish farm enclosure based on analysis of echo signals
received from the active acoustic sensor.

17. The method of claim 14, wherein the bias estimation
sensor comprises an active electric field sensor, and wherein
the method further comprises:

determining the fish density for the water volume within the
fish farm enclosure based on analysis of capacitance sig-
nals received from the active electric field sensor.

18. The method of claim 14, further comprising:

determining a particular water volume of a plurality of
water volumes from which atleasta portion of the sample
of one or more digital images or digital video is captured
by the digital camera immersed underwater in the fish
farm enclosure;

determining a particular fish density of a plurality of fish
densities determined for the particular water volume; and

computing the bias-adjusted fish mass measurement, fish
count, or direct fish biomass estimate for the fish farm
enclosure based on a percentage of the particular fish
density of the plurality of fish densities.

19. The method of claim 14, wherein the bias estimation
sensor is affixed to the camera, and wherein the method
further comprises determining a particular water volume of
the plurality of water volumes from which at least the portion
of the sample of one or more digital images or digital video is
captured by the digital camera immersed underwater in the
fish farm enclosure based on a position of the camera in the
fish farm enclosure at a time the sample of one or more digital
images or digital video is captured by the digital camera.

20. The method of claim 14, wherein the bias estimation
sensor is the digital video camera, the signals received from
the bias estimation sensor comprise digital video, and the ana-
lysis of the signals comprises applying deep learning compu-
ter vision techniques to the digital video to determine the fish
density.
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