
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2017/0024167 A1

Lavasani

US 2017.0024167A1

(43) Pub. Date: Jan. 26, 2017

(54)

(71)

(72)

(21)

(22)

(63)

(60)

SYSTEMIS AND METHODS FOR IN-LINE
STREAM PROCESSING OF DISTRIBUTED
DATAFLOW BASED COMPUTATIONS

Applicant: BigStream Solutions, Inc., Sunnyvale,
CA (US)

Inventor: Maysam Lavasani, Cupertino, CA (US)

Appl. No.: 15/216,624

Filed: Jul. 21, 2016

Related U.S. Application Data
Continuation of application No. 15/215,374, filed on
Jul. 20, 2016, which is a continuation-in-part of
application No. 14/885,636, filed on Oct. 16, 2015.
Provisional application No. 62/194.885, filed on Jul.
21, 2015.

200

I/O
230

in-line in-line
Accelerator Accelerator

Shared Memory 142

Publication Classification

(51) Int. Cl.
G06F 3/06 (2006.01)
G06F 3/10 (2006.01)

(52) U.S. Cl.
CPC G06F 3/0659 (2013.01); G06F 13/102

(2013.01); G06F 3/0613 (2013.01); G06F
3/0683 (2013.01)

(57) ABSTRACT
A data processing system is disclosed that includes machines
having an in-line accelerator and a general purpose instruc
tion-based general purpose instruction-based processor. In
one example, a machine comprises storage to store data and
an Input/output (I/O) processing unit coupled to the storage.
The I/O processing unit includes an in-line accelerator that
is configured for in-line stream processing of distributed
multi stage dataflow based computations. For a first stage of
operations, the in-line accelerator is configured to read data
from the storage, to perform computations on the data, and
to shuffle a result of the computations to generate a first set
of shuffled data. The in-line accelerator performs the first
stage of operations with buffer less computations.

General
Purpose
Core

in-Line
Accelerator

US 2017/0024167 A1 Jan. 26, 2017. Sheet 1 of 19 Patent Application Publication

OZT 3400 | ?sodund-Ieuau39 |

?

• !! !! !! !!) ? ? ? ? ? ? ? ? ?

OTTZI?

US 2017/0024167 A1 Jan. 26, 2017. Sheet 2 of 19 Patent Application Publication

?u00 ?Sodund ?euau39

US 2017/0024167 A1 Jan. 26, 2017. Sheet 3 of 19 Patent Application Publication

GT8

Patent Application Publication Jan. 26, 2017. Sheet 4 of 19 US 2017/0024167 A1

32O 321
Receive input Data Elements

U

Execution Using an in-line
Accelerator

Bailout?

Yes - Jump to Cold Path

Execution Using
General Purpose

Core

Figure 3B

Patent Application Publication Jan. 26, 2017. Sheet 5 of 19 US 2017/0024167 A1

cy
O
Sir

O
C) -8aaaaaaaaaaaaaaaaa8.
O

5 e
s C) See

s <aaaaaaaaaaaaaaaaaa Sir n
O) va

S S

US 2017/0024167 A1 Jan. 26, 2017. Sheet 6 of 19 Patent Application Publication

G ?un 314

US 2017/0024167 A1 Jan. 26, 2017. Sheet 7 of 19 Patent Application Publication

US 2017/0024167 A1 Jan. 26, 2017. Sheet 8 of 19 Patent Application Publication

§ 333ff3333

Patent Application Publication Jan. 26, 2017. Sheet 9 of 19 US 2017/0024167 A1

Siriulated 8 2 O

Cortire

Figure 8

US 2017/0024167 A1 Jan. 26, 2017. Sheet 10 of 19 Patent Application Publication

Patent Application Publication Jan. 26, 2017. Sheet 11 of 19 US 2017/0024167 A1

US 2017/0024167 A1 Jan. 26, 2017. Sheet 12 of 19 Patent Application Publication

OZOT 3400 3Sodund ?ejau39

US 2017/0024167 A1 Jan. 26, 2017. Sheet 13 of 19 Patent Application Publication

IT ?un3}+

US 2017/0024167 A1 Jan. 26, 2017. Sheet 14 of 19 Patent Application Publication

9IZI *** Ozzt ***

OIZI ~~~~«

OOZT

Patent Application Publication Jan. 26, 2017. Sheet 15 of 19 US 2017/0024167 A1

Accelerator

Storage
34

Network
Coirectic

Remory

F.G. 13

Patent Application Publication Jan. 26, 2017. Sheet 16 of 19 US 2017/0024167 A1

Stage 401 -- Stage 1412- 149 Stage 1423
Shuffle

Source Compite Write Read Corpute Write Read Cofnpite Sink
1402 1403 1404 143 1414. 415 1424 425 1426

8 & { achine
43

X ,

Source Compute Shuffle Shuffle Cornpite Shiiie Shuffle Compute Sirik
45 ACS frie Read 1417 Write Read 1428 423

140 46 1418 4427

iO Processor it Storage
4S i:33

Network
Corfeign

4.

vachine -
$450 - ii. ProC&SSC init

35

intine Acceleratof

Network
Connection

48

Patent Application Publication

Source Coipute Shife
3.5 508 Write

1507

achie
iO Processor ini

53

nine Accelerator

Coecio
540

achine
550

Network
Connection

58

Shie Compite Shuffle

iO rocessor it

life ACCeteatof

Jan. 26, 2017. Sheet 17 of 19

Shuffle I shuffle
Read Coagute Write
1543 1514 1515 1524

Read
56

57 Wie
1518

Read
1527

: Storage
538

Storage

FIG. 15

Shis Campute
528

US 2017/0024167 A1

*Read Compute Sink
325 528

Sirk
S23

Patent Application Publication Jan. 26, 2017. Sheet 18 of 19 US 2017/0024167 A1

Sie
Solice Co?pite Write
1802 1603 1604

Shiite
Read Copite Sink
1624. 825 826

N facie
O 1830

achie
650

Read Cornpite Write
i843 164. 1615

v w &

Source Compite Shiie Shuffle Cospite Shuffie Shuffie Compute Sink
805 86 frie Read 87 fire Reac 828 829

1827

Network Y
Connection V sagi :::::::::::::::::::

r
3 834 635 183

if) Processor it

Network
Connection V W. occo8

68 sa s C res ro
' ' 'y

1653 1884, S55

inline Acceleratof

Patent Application Publication Jan. 26, 2017. Sheet 19 of 19 US 2017/0024167 A1

Perform, with an iO processing unit of a nachine (e.g., server) that includes an
in-line accelerator, in-line stream processing of distributed multi stage dataflow
based computations. For a first stage of operations, read data from the storage,
perform Coirptations on the data, and shuffle a result of the Computations to
generate a first set of shuffled data. in one example, the in-line accelerator

performs the first stage of operations with bufferiess compilations
72

iReceive, with the in-line accelerator that is further configured for a second
stage of operations, the first set of shuffled data from the first stage, perform

computations on the first set of shuffled data, and shuffle a result of the
Computations to generate a second set of shuffled data. in one exampie, the
in-line accelerator performs the second stage of operations with buffer less

Computations
4

Receive, with the i-ine accelerator that is further configured for a third
stage of operations, the second set of shuffled data from the second stage,
perform computations on the second set of shuffled data, and store a rests

of the Computations in the storage
706

US 2017/0024167 A1

SYSTEMIS AND METHODS FOR IN-LINE
STREAM PROCESSING OF DISTRIBUTED
DATAFLOW BASED COMPUTATIONS

RELATED APPLICATIONS

0001. This application is a continuation of U.S. Non
Provisional application Ser. No. 15/215,374, filed on Jul. 20,
2016, which is a continuation-in-part of U.S. Non-Provi
sional application Ser. No. 14/885,636, filed on Oct. 16,
2015, and claims the benefit of U.S. Provisional Application
No. 62/194,885, filed on Jul. 21, 2015, the entire contents of
these applications are hereby incorporated by reference.

TECHNICAL FIELD

0002 Embodiments described herein generally relate to
the field of data processing, and more particularly relates to
methods and systems of automated/controlled data transfer
between an auto-generated in-line accelerator and general
purpose instruction-based processors.

BACKGROUND

0003 Conventionally, system processing functionalities
are written in Software for execution in Some type of general
purpose instruction-based processor to accommodate for
future modifications and updates. However, a system func
tionality executed in software by general purpose instruc
tion-based processor(s) is typically slower than if that same
functionality was implemented and executed using accel
erators, either as special purpose processors or application
specific hardware dedicated to the particular function.
Accelerators can increase the performance, decrease the
processing latency, and decrease the power consumption of
computer systems.

0004 Since accelerators are customized to process only a
particular portion of an application, they are often paired
with general purpose instruction-based processor(s) in a
system to be able to execute the entire application. The part
of the application that is compatible with the accelerator is
executed by the accelerator. The remaining part is executed
by the general purpose instruction-based processor. Tradi
tionally, the accelerator is a slave component for a general
purpose instruction-based processor that functions as a mas
ter component. The applications run on the general purpose
instruction-based processor and for the part of the applica
tion that is amenable to acceleration, the general purpose
instruction-based processor transfers the control to the accel
erator. After finishing the accelerated part of the application,
the accelerator returns back the control to the general
purpose instruction-based processor.
0005. The conventional acceleration method described
above entails a high overhead. First, the input data elements
from an input interface must be copied to the general
purpose instruction-based processor and then they should be
stored in the accelerator. Next, the output data elements (if
any) from the accelerator must be copied to the general
purpose instruction-based processor and then they should be
stored in an output interface. There therefore remains a need
for a method and system of implementing an accelerator in
conjunction with a general purpose instruction-based pro
cessor that overcomes these challenges.

Jan. 26, 2017

SUMMARY

0006 For one embodiment of the present invention,
methods and systems of automated/controlled data transfer
between an auto-generated in-line accelerator and general
purpose instruction-based processors are disclosed herein. In
one embodiment, a machine comprises storage to store data
and an Input/output (I/O) processing unit coupled to the
storage. The I/O processing unit includes an in-line accel
erator that is configured for in-line stream processing of
distributed multi stage dataflow based computations. For a
first stage of operations, the in-line accelerator is configured
to read data from the storage, to perform computations on
the data, and to shuffle a result of the computations to
generate a first set of shuffled data. The in-line accelerator
performs the first stage of operations with buffer less com
putations.
0007. Other features and advantages of embodiments of
the present invention will be apparent from the accompa
nying drawings and from the detailed description that fol
lows below.

BRIEF DESCRIPTION OF THE DRAWINGS

0008 FIG. 1 illustrates the schematic diagram of a data
processing system according to an embodiment of the pres
ent invention.
0009 FIG. 2 illustrates the schematic diagram of a multi
layer in-line accelerator according to an embodiment of the
invention.
0010 FIG. 3A is a flow diagram illustrating a method
flowchart for system performance during compilation time
according to an embodiment of the invention.
0011 FIG. 3B is a flow diagram illustrating a method
flowchart for system performance during runtime according
to an embodiment of the invention.
0012 FIG. 4 illustrates the schematic diagram of a data
flow node according to an embodiment of the invention.
0013 FIG. 5 illustrates the schematic diagram of com
position of multiple nodes using lock -based synchroniza
tion mechanism to access a shared memory according to an
embodiment of the invention.
0014 FIG. 6 illustrates the schematic diagram of execu
tion of an application by data processing system according
to an embodiment of the invention.
0015 FIG. 7 illustrates the schematic diagram of execu
tion of an application sliced into hot/cold operations by the
data processing system according to an embodiment of the
invention.
0016 FIG. 8 illustrates the schematic diagram of a state
machine simulation mechanism in accordance with an
embodiment of the invention.
0017 FIG. 9A illustrates the schematic diagram of
memory block architecture in accordance with an embodi
ment of the invention.
0018 FIG. 9B illustrates the schematic diagram of
memory block architecture including a quasi-speculative
memory in accordance with an embodiment of the inven
tion.
0019 FIG. 10 illustrates the schematic diagram of imple
menting a bailout table in accordance with an embodiment
of the invention.
0020 FIG. 11 is a flow diagram illustrating a method
flowchart for transferring execution according to an embodi
ment of the invention.

US 2017/0024167 A1

0021 FIG. 12 is a diagram of a computer system includ
ing a data processing system according to an embodiment of
the invention.
0022 FIG. 13 illustrates a schematic diagram of a data
processing system 1300 having an accelerator that is an
offload entity.
0023 FIGS. 14-16 show an example of big data compu
tation that includes three stages running on multiple
machines (e.g., servers) in accordance with one embodi
ment.

0024 FIG. 17 is a flowchart illustrating a method 1700
for in-line stream processing of distributed multi stage
dataflow based computations according to an embodiment of
the disclosure.

DETAILED DESCRIPTION OF EMBODIMENTS

0025 Methods, systems and apparatuses for precise, effi
cient, and transparent transfer of control and data states
between an in-line accelerator and a general purpose instruc
tion-based processor are described. An embodiment of
invention includes a general purpose instruction-based pro
cessor and an in-line accelerator. The input data elements are
received by the in-line accelerator. In an embodiment, a
compiler may slice the computation associated with pro
cessing a data into a fast-path, compiled and/or synthesized
into an in-line accelerator, and a slow-path, processed by the
general purpose instruction-based processor. In an embodi
ment, upon premature termination of processing in the
fast-path, the execution is automatically transferred to the
general purpose instruction-based processor. The transition
ing of the computation associated with an input from the
in-line accelerator to the general purpose instruction-based
processor is referred to as a bailout.
0026. In an embodiment, upon a bailout, the general
purpose instruction-based processor (or another acceleration
layer in the case of multi-layer in-line acceleration) begins
processing the input data elements as if no processing is
done by the in-line accelerator. In Such an embodiment, the
execution of traces on the in-line accelerator is performed
speculatively before the bailout. Therefore, the side effects
of the computation must be rolled back. In another embodi
ment, the general purpose instruction-based processor (or
the accelerator in the next level in the case of multi-layer
in-line acceleration) continues the processing of the in-line
accelerator from the bailout point. In Such an embodiment,
the side effects of the computation by the in-line accelerator
are accessible by the general purpose instruction-based
processor (or the accelerator in the next level in the multi
level in-line acceleration scenario).
0027. In the following description, for purposes of expla
nation, numerous specific details are set forth in order to
provide a thorough understanding of the present invention.
It will be apparent, however, to one skilled in the art that the
present invention can be practiced without these specific
details. In other instances, well-known structures and
devices are shown in block diagram form in order to avoid
obscuring the present invention.
0028 Reference in the specification to “one embodi
ment” or “an embodiment’ means that a particular feature,
structure or characteristic described in connection with the
embodiment is included in at least one embodiment of the
present invention. Thus, the appearances of the phrase “in
one embodiment” appearing in various places throughout
the specification are not necessarily all referring to the same

Jan. 26, 2017

embodiment. Likewise, the appearances of the phrase “in
another embodiment,” or “in an alternate embodiment’
appearing in various places throughout the specification are
not all necessarily all referring to the same embodiment.
0029. The following glossary of terminology and acro
nyms serves to assist the reader by providing a simplified
quick-reference definition. A person of ordinary skill in the
art may understand the terms as used herein according to
general usage and definitions that appear in widely available
standards and reference books.

0030 HW: Hardware.
0031 SW: Software.
0032) I/O. Input/Output.
0033. DMA: Direct Memory Access.
0034 CPU: CentralProcessingUnit.
0035 FPGA: Field Programmable Gate Arrays.
0.036 CGRA: Coarse-Grain Reconfigurable Accelera
tOrS.

0037 GPGPU: General-Purpose Graphical Processing
Units.

0038 MLWC: ManyLight-weightCores.
0.039 ASIC: Application Specific Integrated Circuit.
0040 PCIe: Peripheral Component Interconnect
express.

0041 CDFG: Control and Data-Flow Graph.
0.042 FIFO: First In, First Out
0043 NIC: Network Interface Card
0044) HLS. High-Level Synthesis
0045 KPN: Kahn Processing Networks
0046 Dataflow analysis: An analysis performed by a
compiler on the CDFG of the program to determine
dependencies between a write operation on a variable
and the consequent operations which might be depen
dent on the written operation.

0047 Accelerator: a specialized HW/SW component
that is customized to run an application or a class of
applications efficiently.

0048. In-line accelerator: An accelerator for I/O-inten
sive applications that can send and receive data without
CPU involvement. If an in-line accelerator cannot
finish the processing of an input data, it passes the data
to the CPU for further processing.

0049 Bailout: The process of transitioning the com
putation associated with an input from an in-line accel
erator to a general purpose instruction-based processor
(i.e. general purpose core).

0050 Continuation: A kind of bailout that causes the
CPU to continue the execution of an input data on an
accelerator right after the bailout point.

0051 Rollback: A kind of bailout that causes the CPU
to restart the execution of an input data on an accel
erator from the beginning.

0052 Gorilla----. A programming model and language
with both dataflow and shared-memory constructs as
well as a toolset that generates HW/SW from a
Gorilla---- description.

0053 GDF: Gorilla dataflow (the execution model of
Gorilla----).

0054 GDF node: A building block of a GDF design
that receives an input, may apply a computation kernel
on the input, and generates corresponding outputs. A
GDF design consists of multiple GDF nodes. A GDF
node may be realized as a hardware module or a
software thread or a hybrid component. Multiple nodes

US 2017/0024167 A1

may be realized on the same virtualized hardware
module or on a same virtualized software thread.

0055 Engine: A special kind of component such as
GDF that contains computation.

0056 Infrastructure component: Memory, synchroni
Zation, and communication components.

0057 Computation kernel: The computation that is
applied to all input data elements in an engine.

0.058 Data state: A set of memory elements that con
tains the current state of computation in a Gorilla
program.

0059 Control State: A pointer to the current state in a
state machine, stage in a pipeline, or instruction in a
program associated to an engine.

0060 Dataflow token: Components input/output data
elements.

0061 Kernel operation: An atomic unit of computation
in a kernel. There might not be a one to one mapping
between kernel operations and the corresponding real
izations as states in a state machine, stages in a pipeline,
or instructions running on a general purpose instruc
tion-based processor.

0062 FIG. 1 illustrates the schematic diagram of data
processing system 100 according to an embodiment of the
present invention. Data processing system 100 includes I/O
processing unit 110 and general purpose instruction-based
processor 120. In an embodiment, general purpose instruc
tion-based processor 120 may include a general purpose
core or multiple general purpose cores. A general purpose
core is not tied to or integrated with any particular algorithm.
In an alternative embodiment, general purpose instruction
based processor 120 may be a specialized core. I/O process
ing unit 110 may include in-line accelerator 111. In-line
accelerators are a special class of accelerators that may be
used for I/O intensive applications. In-line accelerator 111
and general purpose instruction-based processor may or may
not be on a same chip. In-line accelerator 111 is coupled to
I/O interface 112. Considering the type of input interface or
input data, in one embodiment, the in-line accelerator 111
may receive any type of network packets from a network
130 and an input network interface card (NIC). In another
embodiment, the accelerator maybe receiving raw images or
Videos from the input cameras. In an embodiment, in-line
accelerator 111 may also receive voice data from an input
Voice sensor device.
0063. In an embodiment, in-line accelerator 111 is
coupled to multiple I/O interfaces (not shown in the figure).
In an embodiment, input data elements are received by I/O
interface 112 and the corresponding output data elements
generated as the result of the system computation are sent
out by I/O interface 112. In an embodiment, I/O data
elements are directly passed to/from in-line accelerator 111.
In processing the input data elements, in an embodiment,
in-line accelerator 111 may be required to transfer the
control to general purpose instruction-based processor 120.
In an alternative embodiment, in-line accelerator 111 com
pletes execution without transferring the control to general
purpose instruction-based processor 120. In an embodiment,
in-line accelerator 111 has a master role and general purpose
instruction-based processor 120 has a slave role.
0064. In an embodiment, in-line accelerator 111 partially
performs the computation associated with the input data
elements and transfers the control to other accelerators or the
main general purpose instruction-based processor in the

Jan. 26, 2017

system to complete the processing. The term "computation'
as used herein may refer to any computer task processing
including, but not limited to, any of arithmetic/logic opera
tions, memory operations, I/O operations, and offloading
part of the computation to other elements of the system Such
as general purpose instruction-based processors and accel
erators. In-line accelerator 111 may transfer the control to
general purpose instruction-based processor 120 to complete
the computation. In an alternative embodiment, in-line
accelerator 111 performs the computation completely and
passes the output data elements to I/O interface 112. In
another embodiment, in-line accelerator 111 does not per
form any computation on the input data elements and only
passes the data to general purpose instruction-based proces
Sor 120 for computation. In another embodiment, general
purpose instruction-based processor 120 may have in-line
accelerator 111 to take control and completes the computa
tion before sending the output data elements to the I/O
interface 112.

0065. In an embodiment, in-line accelerator 111 may be
implemented using any device known to be used as accel
erator, including but not limited to field-programmable gate
array (FPGA), Coarse-Grained Reconfigurable Architecture
(CGRA), general-purpose computing on graphics process
ing unit (GPGPU), many light-weight cores (MLWC), net
work general purpose instruction-based processor, I/O
general purpose instruction-based processor, and applica
tion-specific integrated circuit (ASIC). In an embodiment,
I/O interface 112 may provide connectivity to other inter
faces that may be used in networks, storages, cameras, or
other user interface devices. I/O interface 112 may include
receive first in first out (FIFO) storage 113 and transmit
FIFO storage 114. FIFO storages 113 and 114 may be
implemented using SRAM, flip-flops, latches or any other
suitable form of storage. The input packets are fed to the
in-line accelerator through receive FIFO storage 113 and the
generated packets are sent over the network by the in-line
accelerator and/or general purpose instruction-based proces
sor through transmit FIFO storage 114.
0066. In an embodiment, I/O processing unit 110 may be
Network Interface Card (NIC). In an embodiment of the
invention, in-line accelerator 111 is part of the NIC. In an
embodiment, the NIC is on the same chip as general purpose
instruction-based processor 120. In an alternative embodi
ment, the NIC 110 is on a separate chip coupled to general
purpose instruction-based processor 120. In an embodiment,
the NIC-based in-line accelerator receives an incoming
packet, as input data elements through I/O interface 112,
processes the packet and generates the response packet(s)
without involving general purpose instruction-based proces
sor 120. Only when in-line accelerator 112 cannot handle the
input packet by itself, the packet is transferred to general
purpose instruction-based processor 120. In an embodiment,
in-line accelerator 112 communicates with other I/O inter
faces, for example, storage elements through direct memory
access (DMA) to retrieve data without involving general
purpose instruction-based processor 120.
0067. In-line accelerator 111 and the general purpose
instruction-based processor 120 are coupled to shared
memory 143 through private cache memories 141 and 142
respectively. In an embodiment, shared memory 143 is a
coherent memory system. The coherent memory system
may be implemented as shared cache. In an embodiment, the

US 2017/0024167 A1

coherent memory system is implemented using multiples
caches with coherency protocol in front of a higher capacity
memory such as a DRAM.
0068 Processing data by forming two paths of compu
tations on in-line accelerators and general purpose instruc
tion-based processors (or multiple paths of computation
when there are multiple acceleration layers) have many
other applications apart from low-level network applica
tions. For example, most emerging big-data applications in
data centers have been moving toward Scale-out architec
tures, a technology for Scaling the processing power,
memory capacity and bandwidth, as well as persistent Stor
age capacity and bandwidth. These scale-out architectures
are highly network-intensive. Therefore, they can benefit
from in-line acceleration. These applications, however, have
a dynamic nature requiring frequent changes and modifica
tions. Therefore, it is highly beneficial to automate the
process of splitting an application into a fast-path that can be
executed by an in-line accelerator and a slow-path that can
be executed by a general purpose instruction-based proces
sor as disclosed herein.

0069. While embodiments of the invention are shown as
two accelerated and general-purpose layers throughout this
document, it is appreciated by one skilled in the art that the
invention can be implemented to include multiple layers of
in-line computation with different levels of acceleration and
generality. For example, an in-line FPGA accelerator can
backed by an in-line many-core hardware. In an embodi
ment, the in-line many-core hardware can be backed by a
general purpose instruction-based processor.
0070 Referring to FIG. 2, in an embodiment of inven

tion, a multi-layer system 200 is formed by a first in-line
accelerator 211 and several other in-line accelerators 211.

... The multi-layer system 200 includes several accelerators,
each performing a particular level of acceleration. In Such a
system, execution may begin at a first layer by the first
in-line accelerator 211. Then, each Subsequent layer of
acceleration is invoked when the execution exits the layer
before it. For example, if the in-line accelerator 211 cannot
finish the processing of the input data, the input data and the
execution will be transferred to the next acceleration layer,
in-line accelerator 211. In an embodiment, the transfer of
data between different layers of accelerations may be done
through dedicated channels between layers (311 to 311). In
an embodiment, when the execution exits the last accelera
tion layer by in-line accelerator 211, the control will be
transferred to the general-purpose core 220.
0071 FIG. 3A is flow diagram illustrating a method
flowchart for automatic generation of an in-line accelerator
by synthesis to hardware model and/or compilation to soft
ware for a particular input program during the compilation.
FIG. 3B is flow diagram illustrating a method flowchart for
implementing the in-line accelerator in the runtime.
Although the blocks in the flowcharts with reference to
FIGS. 3A and 3B are shown in a particular order, the order
of the actions can be modified. Thus, the illustrated embodi
ments can be performed in a different order, and some
actions/blocks may be performed in parallel. Some of the
blocks and/or operations listed in FIGS. 3A and 3B are
optional in accordance with certain embodiments. The num
bering of the blocks presented is for the sake of clarity and
is not intended to prescribe an order of operations in which

Jan. 26, 2017

the various blocks must occur. Additionally, operations from
the various flows may be utilized in a variety of combina
tions.
0072. In the first step of compilation, at stage 311 of FIG.
3A, the input program is profiled. Profiling is done by
feeding a representative input data to the program, e.g. a set
of input requests to a server or a set of input images to an
image processing application. In an embodiment, the pro
filing is performed to identify the fast-path, the trace of
highly-executed kernel operations (e.g., basic blocks of the
program control and data flow graph (CDFG)). Since the
fast-path executes highly used kernel operations, it would be
beneficial to implement them by an in-line accelerator. In an
embodiment, the profiling may be done based on the data
access cost as explained in more details below.
0073 Referring to FIG. 3A, at stage 312 the program is
sliced into a fast path and a slow path based on the result of
the profiling step 311. In an embodiment, input data ele
ments are received by the server for processing. The pro
gram on the server reads the input data element and apply
the computation kernel on them. Each computation kernel
may have a CDFG which is graph describing the flow of
control and flow of the data in the program. At stage 312, the
CDFG is sliced to extract subgraphs that are most frequently
used. In case of multi-layer system, the CDFG may be sliced
to different levels of frequency. Fully connected subgraphs
are referred to as a trace. In an embodiment, the traces of
highly-executed basic blocks are extracted to form the hot
traces and the remaining traces are cold traces at stage 315.
0074. In an embodiment, a fast path may be formed to
execute hot traces by an in-line accelerator. In an embodi
ment, when an input data enters the in-line accelerator,
in-line accelerator can process data as long as the execution
trace remains in the fast path trace. If the execution trace
exits the fast-path, the accelerator cannot process the input
data anymore. As such, at stage 313, a bailout code is
automatically generated upon the termination of hot trace to
transfer execution from the in-line accelerator to a general
purpose core (slow path). In an embodiment, bailout code
facilitates transitioning between the fast path implemented
by an in-line accelerator to the slow path implemented by a
general purpose instruction-based processor.
0075. In a multi-layer acceleration, there may be multiple
fast path traces each for various execution frequencies
observed during profiling. In an embodiment, the first in-line
accelerator will run the trace of operations with maximum
execution frequency. Upon bailout the execution may be
transferred to the next in-line accelerator, which runs the
trace of operations with a lower execution frequency and so
on. Eventually the general purpose instruction-based pro
cessor runs the non-accelerated application.
0076. In an embodiment of the invention, a hardwired
in-line accelerator can be generated for the extracted fast
path by running the fast-path part of the application plus
bailout mechanism through an HLS (High-Level Synthesis)
tool. In an embodiment, the hardwired accelerator is imple
mented on an FPGA or an ASIC substrate. A programmable
in-line accelerator, e.g. a network general purpose instruc
tion-based processor or a CGRA, can be programmed by
compiling the fast-path plus bailout mechanism into the
corresponding micro-codes or instructions. This automation
makes the acceleration process transparent and amenable to
any arbitrary application. Similar mechanisms can be used
to generate accelerators for different acceleration level in a

US 2017/0024167 A1

multi-layer in-line acceleration system. Hot trace, bailout,
and cold trace occur at stage 317.
0077 FIG. 3B is flow diagram illustrating a method
flowchart for implementing the in-line accelerator in the
runtime. During the runtime, at stage 321, the in-line accel
erator receives the input data elements. In an embodiment,
the incoming packets as input data elements are directly
communicated to an in-line accelerator through an I/O
interface. At stage 322, the in-line accelerator starts process
ing the input data elements. In an embodiment, the input data
elements may be entirely processed by the in-line accelera
tor. In other embodiment, the execution of hot traces may
finish prematurely on the in-line accelerator (bailout). A
determination of a bailout occurs at stage 325. Upon occur
rence of a bailout, the bailout code is executed to transfer
control and data operation between the in-line accelerator
and the general purpose instruction-based processor (or the
accelerator in the next level in the case of multi-layer in-line
acceleration scenario). The implementation of bailouts is
discussed in further details below.
0078. In an embodiment, no bailout occurs in executing
the input data elements and the execution remains entirely in
the fast path. In an alternative embodiment, the in-line
accelerator fails to complete computation on input data
elements. As such, the in-line accelerator will send the data
state to a general purpose instruction-based processor (or the
accelerator in the next level in a multi-level in-line accel
eration scenario). A data State is a set of memory elements
that contains the current operation of computation. Subse
quently, at stage 323 the general purpose instruction-based
processor executes operations associated with processing
the input data elements.
0079 Referring to FIG. 3B, if the application requires
generating a response, a response is generated by the general
purpose instruction-based processor at stage 324. In an
embodiment, the in-line accelerator generates response
packets without involving the general purpose instruction
based processor. In an embodiment, the execution is first
transferred from the in-line accelerator to the general pur
pose instruction-based processor and the response packets
are generated by the general purpose instruction-based pro
CSSO.

0080. Any data parallel execution model including high
level dataflow execution models such as MapReduce,
Dryad, and Spark may be used to design the data processing
system in accordance with the disclosed invention. Embodi
ments of the invention can also be extended to sequential
languages such as C/C++ either by considering the sequen
tial code as a single (probably big) dataflow node or by
converting the sequential program to the parallel program
ming language to achieve better performance. For purposes
of providing an example only and without limiting the
structure, function, purposes and use of embodiment of the
invention, an exemplary implementation of the invention is
explained in the context of Gorilla---- programing model.
0081 Gorilla---- is an example of parallel programming
language and a toolset for designing high performance
streaming accelerators including networking and big-data
applications. Gorilla DataFlow (GDF) is the execution
model that Gorilla++ is built upon. GDF plays an essential
role in the Gorilla---- toolset. GDF is designed based on three
major goals: (i) generality to cover a wide range of appli
cations, (ii) expressiveness to facilitate the modeling of the
target applications, and (iii) analyzability to improve the

Jan. 26, 2017

quality of the results of Gorilla----compiler. An important
feature of GDF model that improves both programmability
and analyzability of the model is using structured compo
sition of the connectivity and interfaces of the nodes.
I0082 Referring to FIG.4, dataflow node 400, e.g. Gorilla
Dataflow (GDF) node, is shown according to an embodi
ment of the invention. Dataflow node 400 uses a rendezvous
mechanism for communication between dataflow nodes. Its
rendezvous mechanism may be implemented using FIFO
interfaces, adopted from the theory of latency-insensitive
designs. In addition to push-only, one-way interfaces, data
flow node 400 has two-way request/reply interfaces, also
known as offload interfaces.
I0083) Referring to FIG. 4, dataflow node 400 includes
input 401, output 403, and offload interface 402. In an
embodiment, the offload interface includes n offload inter
face nodes (402, 402 . . . and 402). Furthermore, each
node with offload interface may be split into multiple nodes
and each offload interface can be modeled as two one-way
interfaces. Therefore, in an embodiment of invention, data
flow node 400 is transformed into a dataflow graph without
requiring any two-way offload interface. In an embodiment,
dataflow node 400 uses offload interfaces as first-order
construct in order to improve the expressiveness and ana
lyzability of the model.
I0084. Referring back to FIG. 4, a dataflow node 400 may
have one input 401, one output 403, and several offload
interfaces nodes 402 (402, 402 . . . and 402). In an
alternative embodiment, a dataflow node may have zero
offload interface node. In an embodiment, dataflow node
may have multiple input/output interfaces, for example, for
the purpose of merging or distributing data elements. In Such
an embodiment, the nodes may only be able to reorder the
data elements and may not be able to change the data
elements themselves. These nodes may be transparent to the
programmers and may be used in composition of nodes. In
an embodiment, connecting the nodes together is done using
a predefined set of composition functions.
I0085 FIG. 5 illustrates the schematic diagram of com
position of multiple nodes using lock-based synchronization
mechanism to access a shared memory. In standard dataflow
centric models of computation, e.g., KPN model, every
dataflow node is Supposed to receive self-contained token(s)
that carry the data for processing. The nodes do not need any
global states to process the incoming tokens. Gorilla++
target applications, however, need to access global states,
e.g., shared data structures. Gorilla---- uses a lock-based
synchronization mechanism to solve this problem. Gorilla----
uses shared memories to save the global data.
I0086) Referring to FIG. 5, engines 511, 512, and 513 are
connected through their input/output interface represented
by the solid lines to process input 501 and generate output
502. Engines 511, 512, and 513 use offload interfaces to
access shared memory 540 represented by the dashed lines.
Shared memory 540 may be used to store global data. Since
multiple dataflow nodes may access a shared memory,
Gorilla---- may require a necessary synchronization mecha
nism to ensure mutual exclusion while accessing the data.
Referring to FIG. 5, lock engine 530 is used for synchroni
zation. Lock engine 530 is accessed by the engines 511, 512,
and 513 through offload interfaces represented by the dashed
lines. In an embodiment, lock engine 530 does not reply to
a lock request from the corresponding engines 511, 512, and
513 unless either (i) the lock is not taken in the first place or

US 2017/0024167 A1

(ii) the lock is released and the requester of the lock is the
winner among all other lock requesters. Blocks 521 and 522
represent the lock construct interface in Gorilla----.
0087 As and example, in an embodiment, pseudocode
below could be used to compose the two types of engines,
memory, and lock components to build the design presented
in FIG. 3:

add = Engine("add.c.); decrement = Engine(“decrement.c')
mem = mem(height = 1, width = 32); lock = lock(height = 1)
Design = Offload(Chain (Replicate(add, 2), decrement), mem, lock)

0088. The pseudocode above shows how the computation
engines are generated by calling Engine function and pass
ing the corresponding C code as the argument. Similarly, the
memory and lock components are generated by calling
appropriate functions. Replicate is a composition function
that creates multiple instances of its input component to
increase its throughput. In this example, a replicated version
of the add component is created with a replication factor of
two. Chain is used to connect the output of one component
to the input of another one and create a larger component. In
this example design, the “add and “decrement components
are chained. Finally, Offload connects one components
offload interface to another components input/output inter
face. In this example, “mem” and “lock’ components are
connected to the “add and “decrement components using
offload interface.

0089. In an embodiment, a computation consists of mul
tiple phases. In each phase, the dataflow nodes may execute
different computation kernels. In GDF, the current phase
may be attached to all data elements, which are moved
across the system in order to specify the changes in the
computation phases.
0090 Referring back to FIG. 5, each of engines 511, 512,
and 513 may have four distinct memories: (i) in-token
memories, (ii) out-token memories, (iii) context memories,
and (iv) shared memories. Incoming data elements are
copied into in-token memories and outgoing data elements
are copied into out-token memories. Context memories
include the data states private to the computation associated
to a given input token. When processing a new token, the
previous content of these memories does not affect the
output results. Shared memories are the data states, which
are shared between computations of different input data
elements for a single kernel or even computations of differ
ent kernels. A kernel needs to be explicitly defined as a client
of a shared memory Scope or the shared memory is not
accessible to the kernel.

0091 Different embodiments may use different imple
mentation of GDF. For example, different implementation of
GDP on a system with respect to realization of (i) compu
tation kernels, (ii) dataflow (streaming) channels, (iii)
memory components, and (iv) synchronization components
may be used. In an embodiment, a part of the GDF can be
implemented as hardwired hardware on an FPGA substrate
and the rest of GDF can be implemented in software on a
CPU. In such an embodiment, when there is a streaming
channel between two nodes and one node is on the hardware
and the other node is on the software, a special hybrid FIFO
with hardware interface on one side and software interface
on the other side may be used. In an embodiment where
multiple streaming channels are crossing the hardware/

Jan. 26, 2017

software boundaries, hybrid FIFOs can be virtualized over a
physical interface, e.g., PCIe interface.
0092. In an embodiment of the invention, the kernels may
be realized as hardwired control state machines, synthesized,
for example, in any of FPGA, ASIC, or CGRA substrate. In
an alternative embodiment, the kernels may be realized as
instruction-based computation cores with or without spe
cialized data-path operations. In an embodiment of the
invention, the communication channels may be imple
mented as hardware FIFO channels. In an alternative
embodiment, the communication channels are implemented
as software FIFOs. In an embodiment, all three types of
memories in Gorilla---- may be implemented in a global
monolithic memory. In an embodiment, each memory is
customized into local registers, local scratch-pads, local
coherent memory Subsystems, or global coherent memory
system. In an embodiment, synchronization components
may be implemented in hardware. In another embodiment,
the synchronization is implemented using Software-based
synchronization mechanisms. The software-based synchro
nization mechanism may be implemented on top of a
coherent and consistent memory system.
0093 FIG. 6 illustrates the schematic diagram of pro
cessing of an application by data processing system accord
ing to an embodiment of the invention. FIG. 6 illustrates
another embodiment in which the same reference numerals
have been used to denote similar elements, parts and com
ponents to those of the embodiment depicted in FIG. 1. A
detailed discussion of similar components and similar func
tionality will therefore not be repeated for the sake of
brevity, and only the differences between the first and second
embodiments will be described in detail.
0094. At compile time, the program is parsed and trans
lated to generate application control and data flow graph
(CDFG) 150. In an embodiment, high-level synthesis reads
a high-level description and translates it into a CDFG
intermediate form. The CDFG intermediate form should
represent all the necessary control and dataflow information.
Referring to FIG. 6, operations of the CDFG 150 have been
divided into hot operations and cold operations. The hot
operations are operations frequently used during the profil
ing phase of the application. On the other hand, the cold
operations are operations that are not frequently used during
the profiling phase. In FIG. 6, the hot operations are shaded
while the cold operations remain blank. The hot operations
of CDFG 150 provide the basis for formation of the system's
fast-path. The hot operations of CDFG 150 run on in-line
accelerator 111. In an embodiment, in-line accelerator 111 is
an FPGA. In an embodiment, in-line accelerator 111 is part
of I/O processing unit 110. In an embodiment, several in-line
accelerators may be used to implement hot operations of
CDFG 150. The cold operations are executed using general
purpose instruction-based processor 120.
0.095 Referring to FIG. 6, at runtime, the input packets
are fed to the in-line accelerator 111 through receive FIFO
storage 112 and the generated packets are sent over network
130 by the in-line accelerator 111 through transmit FIFO
storage 114. In an embodiment, when an input data enters
the in-line accelerator, the in-line accelerator can process the
data as long as the execution trace remains in the fast-path.
In FIG. 5, the operations that are actually executed in
run-time are shown with a bold border. Since the execution
trace exits the fast-path in the example illustrated in FIG. 6,
bailout from in-line accelerator to general purpose instruc

US 2017/0024167 A1

tion-based processor occurs. More specifically, referring to
the example of FIG. 6, the execution trace exits the fast-path
after the first state and therefore the in-line accelerator 111
cannot process the input data anymore. The in-line accel
erator 111 may terminate the execution for the given input
packet and bailout after the execution of the first state.
0096. Upon premature termination of execution by in
line accelerator 111 the execution may be automatically
transferred to software running on a general purpose instruc
tion-based processor. The general purpose instruction-based
processor may either continue the execution of the program
from a state following the bailout point (continuation
method) or it may restart the execution from the beginning
(rollback method). When rollback method is used, software
restarts the execution of the engine from the beginning.
When continuation method is used the software continues
the execution of the engine from the state following the
bailout point. Transfer of execution is discussed in more
details below.

0097 FIG. 7 illustrates the schematic diagram of pro
cessing of an application engine sliced into hot/cold opera
tions by the data processing system according to an embodi
ment of the invention. The diagram 700 includes engines A.
B, C, D and E interconnected to perform computation on
input data elements received from input 701. The compu
tation results are outputted through output 703. The diagram
700 may depict the slicing of a Gorilla kernel into hot states
and cold states as explained before. In such an embodiment,
each engine may be a GDF node. Each engine may include
several execution states, for example, engine D may include
states S1-S6. In the example of FIG. 7, states S1, S2, and S5
are hot states and States S3, S4, and S6 are cold states. In an
embodiment, each engine may be implemented by an in-line
accelerator, a general purpose instruction-based processor,
or the combination of the two.
0098. In case of a multi-layer acceleration system, each
engine may also be implemented in any of the different
acceleration levels depending on the hotness level of its
operations. For brevity, the rest of the document discusses
the transfer of data and control only between a single in-line
accelerator and the general purpose instruction-based pro
cessor. However, the same methodology can be used for
transferring data and control between multiple accelerator
levels between the general purpose instruction-based pro
cessor and in-line accelerator as well.

0099. The automated transferring of execution from the
in-line accelerator to the general purpose instruction-based
processor must be such that the flow of execution remains
consistent. In an embodiment, transferring of the execution
between the in-line accelerator and the general purpose
instruction-based processor may occur at the boundary of
two engines during an inter-engine transition. The transfer of
execution between dataflow nodes may also be referred to as
coarse-grain transfer. For example, in FIG. 7, the two
engines A and B are in a back-to-back dataflow relationship
(e.g., chain relationship). Engine A may be implemented as
a hard-wired hardware engine and engine B may be imple
mented as a Software engine. In an embodiment, the transfer
of execution may occur upon the completion of execution by
hardware engine A. In such a case, after hardware engine A
finishes its execution normally, its output data is passed to
the next engine, engine B, which is running as Software. In
Such an embodiment, the context memory, which is com
pletely dependent on the input token of hardware engine A,

Jan. 26, 2017

does not have to be transferred. In an embodiment, there
may be a shared memory between the two engines A and B.
The shared memory may be implemented using a coherency
mechanism across the in-line accelerator and the general
purpose instruction-based processor.
0100. In an embodiment, transferring of the execution
between an in-line accelerator and a general purpose instruc
tion-based processor may be required at any point of pro
cessing other than the boundary of two engines. For
example, in an embodiment, the transition may occur in the
middle of an execution by an engine. The transfer of
execution inside a data flow engine node may also be
referred to as fine-grain transfer. Under these circumstances,
the general purpose instruction-based processor is required
to continue the execution in a way that the flow of execution
remains consistent. This is especially important and chal
lenging as the realization of each program operation in the
accelerator may be in the form of Some atomic units includ
ing state(s) of a state machine or stage(s) of a pipeline in a
hardwired hardware, instruction(s) in SIMD lane(s) in a
GPGPU, or micro-code instruction(s) in a network general
purpose instruction-based processor. Each of these atomic
forms might cover one or more operations associated with
the computation of the corresponding kernel. An atomic
form might cover only part of an operation and consequently
realization of an operation might need multiple units of these
atomic units. As a result, when the execution of one of these
atomic units terminates on the in-line accelerator side, it is
challenging to jump to the right instruction on the general
purpose instruction-based processor side that can guarantee
a continuous flow of execution. Similar problem may exist
when transferring the execution from the general purpose
instruction-based processor to the in-line accelerator.
0101. In an embodiment of the invention, the bailing
point may be determined using a compilation analysis. The
compilation analysis of the engine currently executing the
application may suggest how far the execution has been
performed.
0102. In an embodiment of the invention, a state machine
simulation mechanism is used to achieve precise continua
tion from an engine, implemented as hardware state
machine, to Software. The state machine simulation mecha
nism may provide simulation of hardware state machine on
the slow-path state machine on the general purpose instruc
tion-based processor. In an embodiment, the slow-path State
machine simulation can be generated from the output of an
HLS tool that synthesizes the sliced engine code. In an
embodiment, for the accelerated engines, the software will
contain the simulated slow-path in addition to the original
Software engine. Upon occurrence of a bailout, the system
may decide to pursue the continuation method by transfer
ring the execution to the corresponding bailout stage in the
simulated slow-path state machine. In an embodiment, if the
system decides to pursue a rollback method, the execution is
transferred to the beginning of the corresponding software
engine that is running as natively.
0103 FIG. 8 illustrates the schematic diagram of a state
machine simulation mechanism in accordance with an
embodiment of the invention. Diagram 810 shows the sche
matic diagram of fast-path processing of an application
sliced into hot/cold operations. Diagram 820 shows the
schematic diagram of slow-path state machine simulation of
the fast-path according to an embodiment of the invention.
Fast-path diagram 810 includes engines A, B, C, D and E

US 2017/0024167 A1

interconnected to perform computation on input data ele
ments received from accelerator input 811 and to output the
generated output data elements from accelerator output 813.
Slow-path diagram 820 is a software simulation of fast-path
diagram 810. Upon termination of execution on the fast
path, the bailout point along with the necessary state values
is sent to the software engine that simulates the behavior of
the state machine.
0104 Referring to fast-path diagram 810, a bailout may
occur at first state 51 of engine D. There may be two bailout
points (BOP1 and BOP2) associated with different execution
routes of the application. As such, the execution terminates
in fast-path prematurely. Accordingly, bailout points BOP1
and BOP2 are communicated to the state machine simulator
in slow-path 820. In an embodiment, all necessary state
values are also communicated to the state machine simula
tor. Referring now to slow-path diagram 820, the state
machine simulator may determine the termination stage of
the execution on fast-path 810 and continue the execution on
slow-path 820. In an embodiment, the state machine simu
lator continues the execution of the engine at continuation
points CP1 and CP2 corresponding with bailout points
BOP1 and BOP2 respectively on simulated engine D. The
simulator may complete the execution of the application.
0105. In an embodiment, the state machine simulator
only emulates the engine that is currently engaged in the
execution. Upon termination of the execution by the current
engine, the next engines in the slow-path can be executed
natively. For example, after the execution of engine D is
completed in the state machine simulator, the result may be
passed to a native code (and not the simulated code) of
engine E for further computation. In Such an embodiment,
Some performance implications for the slow-path may be
avoided. In an embodiment, the slow-path part of the engine
may be re-factored into multiple engines in order to decrease
the overhead of state machine simulation by forcing the
execution to switch to native mode earlier.

0106. In an embodiment of the invention, upon premature
termination of execution on the in-line accelerator, the
general purpose instruction-based processor restarts the
execution of the input data as if no processing was done by
the in-line accelerator. In an embodiment, in contrast with
the continuation method that execution was transferred to
the corresponding bailout stage in the simulated slow-path
state machine, the execution may be transferred to the
beginning of the corresponding software engine that will be
running as natively. This method of transferring the execu
tion is referred to as a rollback method. Referring back to
FIG. 8, for example, upon termination of the execution by
engine D at State S1, the general purpose instruction-based
processor may begin the execution at state S1 again, instead
of continuing to S2. In such an embodiment, the execution
of the trace on the accelerator may be done speculatively. In
an embodiment, the side effects of the computation on
memories by the in-line accelerator may be rolled back and
the general purpose instruction-based processor (or the next
level accelerator) may reprocess the data.
0107 Another problem associated with transferring
execution between an in-line accelerator and a general
purpose instruction-based processor (or the next level accel
erator) is transferring the necessary data state between them.
The required data that is transferred between the in-line
accelerator and the general purpose instruction-based pro
cessor (or the next level accelerator) may depend on the type

Jan. 26, 2017

of control transfer method adopted by the system. In an
embodiment, the required data to be transferred using a
rollback method is different than the required data to be
transferred using a continuation method.
0.108 FIG. 9A illustrates the schematic diagram of
memory block architecture in accordance with an embodi
ment of the invention. The processing system 900 includes
an in-line accelerator 910 and a general purpose instruction
based processor 920. In an embodiment, the general purpose
instruction-based processor 920 may be a multi-core general
purpose instruction-based processor including core-1, core
2, and core-3. An operating system may divide the process
ing time of the multi-core general purpose instruction-based
processor and assign threads to the resulting time slots so
that the general purpose instruction-based processor runs
multiple threads concurrently. A thread is a unit of executing
programs. In FIG.9A, core-1 has been assigned the threads
1-3 for processing. In an embodiment, a multi-core general
purpose instruction-based processor system has a distributed
system structure Such that each central processing unit
(CPU) has dedicated memory and accesses shared memory
when other data is needed (not shown in the figure). In
another embodiment, a multi-core general purpose instruc
tion-based processor System has a centralized shared system
structure such that each CPU has only cache memory and
stores necessary data in shared memory (not shown in the
figure).
0109 Referring to FIG. 9A, general purpose instruction
based processor 920 includes coherent cache 921. Coherent
cache 92.1 may be used to manage conflicts between storage
mechanisms of core-1, core-2, and core-3. In an embodi
ment, coherent cache 921 may also maintain consistency
between the general purpose instruction-based processor
920 and main memory. To reduce latency, in alternative
embodiments, often one or more levels of high-speed cache
memory are used to hold a Subset of the data or instructions
that are stored in the main memory.
0110. In an embodiment of the invention, in-line accel
erator 910 may include multiple engines 1-3. Each engine
may execute multiple threads 1-3. Each engine includes
in-token memory 911, out-token memory 912, and context
memory 913. Incoming data elements are copied into in
token memory 911 and outgoing data elements are copied
into out-token memory 912. Context memory 913 stores
transient context data (e.g., packet/frame data) that is unique
to a specific process, along with pointers that reference data
structures and tables stored in. Context memory 913
includes data states private to the computation associated to
a given input token. When processing a new token, the
previous content of these memories does not affect the
output results.
0111. In an embodiment, in-line accelerator 910 further
includes accelerator level shared memory 914. Accelerator
level shared memory 914 stores data states that are shared
between computations of different input data elements for a
single kernel or computations of multiple kernels. A kernel
may need to be explicitly defined as a client of a shared
memory scope or the shared memory may not accessible to
the kernel. The shared memory must be coherent with the
global shared memory which shared between the process
and in-line accelerator (or other layers of acceleration in a
multilayer scenario). In-line accelerator 910 also includes
coherent memory 915. Coherent cache 915 may manage
conflicts between engine storage mechanisms and maintain

US 2017/0024167 A1

consistency between in-line accelerator 910 and main
memory. To reduce latency, in alternative embodiments,
often one or more levels of high-speed cache memory are
used to hold a subset of the data or instructions that are
stored in the main memory.
0112 In-line accelerator 910 (and other accelerators in
different acceleration layers) and general purpose instruc
tion-based processor 920 both are coupled to global shared
memory 930. Global shared memory may be in communi
cation with coherent caches 915 and 921. Global states, e.g.,
shared data structures, may be stored in global shared
memory 930 and may be accessed by both in-line accelera
tor 910 and general purpose instruction-based processor 920
(or other accelerators in a multilayer system). Synchroniza
tion mechanisms to ensure mutual exclusion of data may be
used as explained before to manage the access of shared data
in global shared memory 930.
0113. In transferring execution from the in-line accelera
tor to the general purpose instruction-based processor, it
may be necessary to transfer data between different memory
components. Once the in-line accelerator begins execution,
engine-1 accesses the input data elements stored in in-token
memory 911 for computation. Throughout the execution by
in-line accelerator 910, changes may be made to data stored
in context memory 913 and shared memories 914 and 930.
The output data elements generated by the engine-1 are also
stored in out-token memory 912. Therefore, upon termina
tion of the execution by the in-line accelerator 910 the state
of the stored data may be altered relative to the start of the
execution.
0114. In an embodiment, transferring of data between the
in-line accelerator and the general purpose instruction-based
processor may occur at the boundary of two engines during
an inter-engine transition. This kind of transfer of execution
between dataflow engine nodes may also be referred to as
coarse-grain transfer. For example, referring back to FIG. 8,
the two engines A and B are in a back-to-back dataflow
relationship (e.g., chain relationship). Engine A may be
implemented as a hard-wired hardware engine and engine B
may be implemented as a software engine. In an embodi
ment, the transfer of execution may occur upon the comple
tion of execution by hardware engine A.
0115. In such an embodiment, the system may perform
transfer of data using virtual channels to move the data
elements between the in-line accelerator and the general
purpose instruction-based processor. Multiple virtual chan
nels can be used on a single physical interface (e.g. a PCIe
interface). In an embodiment, the elements stored in the
in-token memory 911 and context memory 913 does not
need to be transferred. However, the changes to the global
shared memory must become visible to the Software engine.
In coarse-grain transfer, output token may also transferred to
the input token of the Software engine through virtual
channels as discussed before.

0116. In an embodiment, transferring of the execution
between an in-line accelerator and a general purpose instruc
tion-based processor may be required at any point of pro
cessing other than the boundary of two engines. In an
embodiment, the transition may occur in the middle of an
execution by an engine. For example, referring back to FIG.
8, engine D may terminate execution at very first state S1.
As such, transfer of data between the in-line accelerator and
general purpose instruction-based processor may occur
inside a dataflow node. Upon termination of execution on

Jan. 26, 2017

engine D, the bailout point along with the necessary state
values is sent to a software engine. The Software engine may
be a state machine simulator that emulates the behavior of
the state machine, as explained above with respect to con
tinuation method.

0117. In such an embodiment, the input data elements
stored in in-token memory 911 may be needed to complete
the execution. Therefore, the input data elements may be
copied to an in-token memory of the Software engine on
general purpose instruction-based processor. Since part of
output data might be constructed already, the output data
elements stored in out-token memory 912 may be required
to be transferred to the Subsequent engine. As such, the
content of out-token memory 912 may be copied to an
out-token memory of the Software engine. Similarly, the
changes to the context memory 913 may be copied to a
dedicated place visible to the software engine in order to
continue execution from the bailing point. In an embodi
ment, the changes to content of global shared memory 930
may already be visible and coherent from the general
purpose instruction-based processor side. In such an
embodiment, no further action may be required. In an
alternative embodiment, at least a portion of the changes
made by in-line accelerator 910 to content of the global
shared memory 930 may not be visible or coherent form the
general purpose instruction-based processor perspective. As
Such, those changes may be copied to a dedicated place
visible to the Software engine on the general purpose instruc
tion-based processor 920. In an embodiment, the content of
the context memory 913 is made available to the general
purpose instruction-based processor 920. In other embodi
ments, the content of the context memory 913 is only copied
to a memory accessible to the Software engine if the content
is predicted to be used in the future computation of the
Software engine. In an embodiment, such a predication will
be based on a prediction mechanism at the compilation time,
using profiling or static data-flow analysis.
0118. In an embodiment of the invention, upon termina
tion of the execution on the in-line accelerator, the general
purpose instruction-based processor restarts the execution of
the input data as if no processing was done by the in-line
accelerator (rollback method). Referring back to FIG. 8, for
example, upon termination of the execution by engine D at
state S1, the general purpose instruction-based processor
may begin the execution at State S1 again, instead of
continuing to S2.
0119. In such an embodiment, the input data elements
stored in in-token memory 911 may be required to perform
the necessary computation. As such, the content of in-token
memory 911 must be copied to a memory accessible to the
general purpose instruction-based processor. On the other
hand, because general purpose instruction-based processor
920 restarts the execution as if no processing was done by
in-line accelerator 910, the content of out-token memory
912 and context memory 913 may be ignored. In an embodi
ment, the changes made to shared memory 930 by in-line
accelerator 910 may be rolled back. In an embodiment, if
reversing the changes is not possible the system may not be
able to perform the rollback method and may perform the
continuation method instead.

I0120 Table 1 below shows the summary of state transfer
for different memory types when transitioning from hard
ware accelerator to software under different scenarios
according to an embodiment of invention.

US 2017/0024167 A1

TABLE 1.

Data state transfer for different memory types upon bailout.

Fine-grain
rollback

Fine-grain
Coarse-grain Continuation

Control Jump to the next Jump to the SW
transfer SW engine engine associated

with this
accelerated engine
(with the native

Jump to the
corresponding
operation in the
simulated slow-path
engine of this HW

execution) engine
In-token No action Copy to in-token Copy to in-token
memory necessary memory of SW memory of simulated

engine HW engine if used
later

Out- Copy the output No action necessary If changed, copy to
token token to the input out-token memory of
memory of the next SW simulated HW engine

engine if used later
Context No action No action necessary If used later, changes
memory necessary must be copied to

context memory of the
simulated HW engine

Shared Changes must The changes must Changes must become
memory become visible to be rolled back visible to the

SW simulated HW engine

0121. The transfer of data state from context and shared
memories in continuation method can be complicated and
may generate a high overhead. The next section discusses
mechanisms to implement these transferS more efficiently.
0122. In an embodiment, during the bailout, the system
maps all the shared memories that have a client engine with
the possibility of bailout as part of a memory space that is
coherent from the general purpose instruction-based proces
Sor point of view. Therefore, upon continuation, the latest
data states in these memories may become automatically
visible by the software engines on the general purpose
instruction-based processor. In an alternative embodiment,
the system changes the shared memories in a way that they
are not coherent from the general purpose instruction-based
processor side before the bailout and becomes coherent only
after the bailout point. This will reduce the overhead of
keeping all shared memories coherent all the time.
0123. In an embodiment, in addition to the shared memo
ries, all the state data may be required to become available
to the engine software, e.g. simulator, on the general purpose
instruction-based processor side. In an embodiment, all
in-token, out-token, and context memories are copied to the
general purpose instruction-based processor side. In an
embodiment, a bailout table is used to minimize the over
head of the transfer as explained further below.
0.124 FIG. 10 illustrates the schematic diagram of imple
menting a bailout table in accordance with an embodiment
of the invention. In an embodiment, transfer of data between
in-line accelerator 1010 and general purpose instruction
based processor 1020 is managed by bailout table 1030.
Bailout table 1030 keeps track of a set of variables for each
bailout case. The set may include only the necessary vari
ables to continue execution. In an embodiment, for each
bailout point, the bailout table 1030 may include a set
indicating which variables might have been used in a write
operation and later be used in a read operation. In an
embodiment, the bailout table includes two sections. The
first section 1031 keeps track of the memory elements
written by previous operations in the engine. The second
section 1032 keeps track of the memory elements that later

Jan. 26, 2017

might be read by next operations after bailout. In an embodi
ment, these memory elements may belong to any of the
in-?out-token, context or shared memories explained in
previous section.
(0.125. In an embodiment, bailout table 1030 may be
generated in a fully static (compiler based) approach. In an
embodiment, bailout table 1030 is populated using a static
compiler analysis. In an embodiment, the analysis may be
performed while the accelerated engine code is being gen
erated during compilation time. In an embodiment, the
compiler may use a conservative data-flow analysis to find
the possible write set before the bailout and possible read set
after the bailout. The compiler may use classic dataflow
dependency analysis to generate the bailout table.
I0126. In an embodiment, bailout table 1030 may be
generated in a fully dynamic (runtime based) approach. In an
embodiment, tracking the variables that have been used in a
write operation in the bailout table can be maintained
dynamically using an extra bit added to each value (for
example, in memories or registers). In compiler-based
approach, a more conservative data-flow analysis may be
used and the bailout table 1030 may store unnecessary
variables (or memory ranges). The dynamic written-bit
tracking method may be more costly at runtime. The
dynamic method may not determine if the marked variables
will be used after continuation.

0127. In an embodiment, the combination of the runtime
based and complier-based approach is used to populate
bailout table 1030. In an embodiment, the compiler statically
generates the table for candidates using a compile time
analysis. At runtime, however, the accelerator may only
transfer the variables or rangers in the table that have their
written-bit set.

I0128. In an embodiment, big data structures such as
arrays may be tracked in bailout table 1030 as a set of
memory ranges in the table. In other embodiments, the big
data structures are tracked in bailout table 1030 by just
storing the start of the array and a metadata representing the
part(s) of the array that are modified and will be used by the
Software following continuation. In an embodiment, the
metadata may be a data structure similar to interval trees
stored as bitmaps out of bailout table. Each node in the tree
may represent a range of the corresponding array elements
that is modified by the accelerator and used later by the
Software following continuation. For example, in an
embodiment, each node in the tree may be 32 bits and
divided to four 8-bit components. The first two 8-bit com
ponents may store the range indexes for the array and the
next two 8-bit components are pointers to the left and right
children nodes of the node (8-bit offsets relative to the
beginning of the tree data structure).
I0129. According to an embodiment of the invention, the
bailout table 1030 is compressed by grouping the variables.
In Such an embodiment, the group identifiers are stored in
the list rather than the variables themselves. In an alternative
embodiment, instead of listing individual variables, the table
can only include data groups where each group represents an
address interval of the memory ranges modified by the
hardware in-line accelerator 1010 and may be used later by
a Software engine in the general purpose instruction-based
processor 1020.
0.130. In an embodiment, the copied values of the vari
ables with high probability of being used by the remaining
code in the slow-path are pushed to the lower level of cache

US 2017/0024167 A1

hierarchy. In an embodiment, these variables are copied
directly to the general purpose instruction-based processor
cache. Therefore, an embodiment of the invention proposes
having two sets of shared variables for each bailout point in
bailout table 1030. The first may be the set of variables (or
memory ranges) that are simply copied to the coherent
global shared memory and become visible to the general
purpose instruction-based processor immediately. The sec
ond set may be the set of variables which are pushed to the
next level cache (evicted from accelerator local cache) in
addition to get copied. The variables with high read prob
ability on the slow-path may be identified using profiling of
the application.
0131 Table 2 is an example of a bailout table according

to an embodiment of the invention. The bailout table pro
vides the variables to track two bailout points (State-1 and
State-2). The variables are divided in to two sets of “move
set and “move and push set'. The variables under “move
set are the set of variables (or memory ranges) that are
simply copied to the global shared memory that is coherent
and become visible to the general purpose instruction-based
processor. The variables under “move and push set are the
set of variables which are pushed to the next level cache
(evicted from in-line accelerator local cache) in addition to
get copied. In the example table below, State-1 includes a
first set of variables vidl, vid21 under “move set category
and a second set of variables {id} under “move and push set”
category. State-2, however, only includes one set of vari
ables (L1, U1), (L2, U2)} under “move set category. In an
embodiment, the bailout point may only include variables
under “move and push set category. These variables or
ranges may belong to any one of in-token, out-token, context
or shared memories.

TABLE 2

An exemplary bailout table according to an embodiment

Bailout point Move set Move and push set

State-1 {vid1, vid2} {id3}
State-2 {(L1, U1), (L2, U2).

0.132. In many cases, the overhead of computing the
move set and performing the move is very high. This is
particularly important given the fact that the in-line accel
erator needs to be utilized for fast-path operations and
having to store and move much information can be prohibi
tive. In such cases, it might be beneficial to roll back some
of the accelerator computation. A pure rollback mechanism,
however, may require an unbounded speculative memory to
revert the modifications to the shared memories.

0133. In an embodiment of the invention, the continua
tion and rollback methods are combined to make a more
efficient transfer of execution from the in-line accelerator to
the general purpose instruction-based processor. In an
embodiment, certain pre-determined rollback points are
defined in the fast path. The system may keep data written
into the shared memory in a speculative state as long as
possible. Upon a bailout, a rollback method may be used if
the speculative data is not changed to non-speculative.
0134 FIG. 9B illustrates the schematic diagram of
memory block architecture including quasi-speculative
cache in accordance with an embodiment of the invention.
FIG.9B illustrates another embodiment in which the same

Jan. 26, 2017

reference numerals have been used to denote similar ele
ments, parts and components to those of the embodiment
depicted in FIG. 9A. A detailed discussion of similar com
ponents and similar functionality will therefore not be
repeated for the sake of brevity, and only the differences
between the first and second embodiments will be described
in detail.

I0135) In an embodiment, quasi-speculative memory 916
is used to postpone committing of the speculative data as
long as possible. In a rollback method, quasi-speculative
memory 916 may be used to rollback changes to the shared
memory 930. In a continuation method, quasi-speculative
memory 916 may be used to copy the changes on shared
memory 930 for continuation purpose. While quasi-specu
lative memory 916 delays committing of the speculative
data, it may not guarantee the rollback on speculative data
when it runs out of speculative storage. In an embodiment,
for a given input data, a rollback-based bailout can be done
as long as all the data associated with the input is still not
committed. In an embodiment, if any of the data associated
with the input is committed only continuation method is
possible.
0.136. In an embodiment of the invention, quasi-specula
tive memory 916, apart from standard load/store commands,
includes commands to start, end, and abort a speculative
session.

0.137 Referring to table 3 below, some of the quasi
speculative cache commands are provided. The “begin
speculative session' command may start a speculative ses
sion and get a thread id as an argument. From this point on,
all the load and stores from this thread will be associated
with the session. Later, when “end speculative session' is
called, the memory may commit the speculative values to
non-speculative ones. The “abort speculative session
instruction may abort all the changes associated with this
speculative session or if abortion is not possible anymore,
the memory may report it. At this stage, the set of variables,
which are written by the thread during the speculative
session, can be read using "get written-back set'. The write
set may be in form of a bit vector in that each bit indicates
whether a memory word/block is written by the thread
during the speculative session. “Write-back’ command may
be used when continuation happens and we know that the
write-set of a thread will be used soon used by the slow path.
In Such situation writing back the write-set can improve the
performance of the system.
0.138. In an embodiment, unlike conventional transac
tional memories, the abort mechanism is not an internal
event. The abortion may occur based on an external request
to the cache when bailout happens. An abort mechanism
may be the desired bailout scenario. In quasi-speculative
cache when there are conflicts between accesses from dif
ferent threads and there is no more space to save the
speculative value, the default behavior may commit the
oldest speculative value to non-speculative state. This may
make the session associated with the committed speculative
value non-speculative. Therefore, the chance of using roll
back for that particular speculative session may be elimi
nated. In an embodiment, unlike conventional transactional
memory, the speculative memory does not need to Support
atomicity of transactions. If atomicity is required, it may be
provided using synchronization mechanisms, e.g. lock
engines explained in previous sections.

US 2017/0024167 A1

TABLE 3

Speculative cache commands

Command Input Output

Begin speculative session Thread id No output
End speculative session Thread id No output
Get written-back set Thread id, address Write set bit vector

range
Abort speculative session Thread id Status (Successful

abort or not)
Standard loadstore Read data or no output Thread id, Address

and/or store data
Write-back Thread id No output

0.139. In an embodiment of the invention, the system
performs a cost analysis to determine whether to use con
tinuation method or rollback method for a given bailout.
Depending on the amount of data that needs to be transferred
as well as the amount of pre-bailout computation, the cost of
rollback or continuation may change. In an embodiment, the
compiler may be used to calculate the cost of each method.
The compiler may perform a static analysis and profiling
phase to suggest rollback or continuation for a given bailout
point. The in-line accelerator may later use these Suggestions
to perform rollback or continuation method. The following
formulas can be used to estimate the cost for rollback and
continuation:

0140
I0141 Move set size (continuation)-in-token and

out-token move set size--context move set size--
shared memory move set size

I0142 Rollback Cost={(AlphaxMove set size)+(Betax
Compute overhead)+(Gammaxrollback size)
0.143 Move set size (continuation)-in-token move
set size

0144)
size

Continuation Cost={AlphaxMove set size}

Rollback overhead-shared memory move set

0145 The Alpha, Beta, and Gamma constants can be
tuned for a specific architecture by running and profiling
several workloads while measuring the actual latency of
move set Tuning can be done once for a set of applications
and later used for any other application. Alpha models the
cost of moving data between the in-line accelerator and
general purpose instruction-based processor (or, the next
layer of in-line accelerator). Therefore, if in a system mov
ing data is more expensive we will have higher Alpha value.
Beta models the cost of computation in in-line accelerator.
Therefore, in a system with a high performance in-line
accelerator Beta is low and in a system with a low perfor
mance in-line accelerator Beta is high. Gamma models the
cost associated with rolling back the speculative data (e.g. in
quasi-speculative cache).
0146 FIG. 11 is a flow diagram illustrating a method
flowchart for transferring execution according to an embodi
ment of the disclosure. Although the stages in the flowcharts
with reference to FIG. 11 are shown in a particular order, the
order of the actions can be modified. Thus, the illustrated
embodiments can be performed in a different order, and
some actions/blocks may be performed in parallel. Some of
the blocks and/or operations listed in FIG. 11 are optional in
accordance with certain embodiments. The numbering of the
blocks presented is for the sake of clarity and is not intended
to prescribe an order of operations in which the various

Jan. 26, 2017

blocks must occur. Additionally, operations from the various
flows may be utilized in a variety of combinations.
0147 At stage 1101 of FIG. 11 the execution by the
in-line accelerator terminates prematurely. The processing
point at which the execution of the application terminates is
called the bailout point. To complete the execution of the
application, the in-line accelerator may transfer the execu
tion to another in-line accelerator or a general purpose
instruction-based processor. The bailout point may occur at
the boundary of two engines during an inter-engine transi
tion or during execution by an engine.
0.148. At stage 1102 the in-line accelerator determines the
appropriate method to implement the bailout. Bailout is the
process of transitioning the computation associated with an
input from the in-line accelerator to the general purpose
instruction-based processor. In an embodiment, the in-line
accelerator implements the bailout using a continuation
method 1110. The continuation method 1110 is a kind of
bailout in which the general purpose instruction-based pro
cessor continues the execution of input data on the accel
erator from the bailout point. In another embodiment, the
in-line accelerator implements the bailout using a rollback
method 1120. In the rollback method 1120 the general
purpose instruction-based processor restarts the execution of
an input data from the beginning. In other embodiments, a
combination of the continuation and rollback methods may
be adopted by the in-line accelerator.
0.149 The determination of whether a continuation
method 1110 is used or a rollback method 1120 depends
upon multiple factors. In an embodiment, a cost analysis is
performed according to this disclosure to determine the
more efficient method under the circumstances. In an
embodiment, the cost of transferring execution based on
each method depends upon the amount data required to be
transferred. In an embodiment, the default method of trans
ferring execution is rollback method 1120. The implemen
tation of rollback method 1120 may not be possible, how
ever, where data has been committed to non-speculative
storages. In an embodiment, the quasi-speculative cache is
used to delay committing data to non-speculative storages.
0150. At stage 1111 of continuation method 1110, the
system determines the bailout point at which the execution
of the application terminated prematurely. The determina
tion of bailout stage facilitates continuation of execution by
the general purpose instruction-based processor. In an
embodiment, the execution is prematurely terminated at the
boundary of two engines. In an embodiment, as shown in
FIGS. 7 and 8, a state machine simulator on slow-path is
used to emulate the in-line accelerator behavior. Upon
occurrence of a bailout, the state machine simulator contin
ues execution from the bailout point.
0151. At stage 1112 of the continuation method 1110, the
in-line accelerator transfers the necessary data to general
purpose instruction-based processor to continue execution.
In the continuation method 1110, all content of in-token,
out-token, and context memory may be required to be
available to the general purpose instruction-based processor.
In an embodiment, the changes made to the shared memory
by the in-line accelerator may be required to become visible
to the general purpose process. In an embodiment, a bailout
table, as shown in FIG. 10, is used to selectively transfer
only the required data states and avoid the overhead of
transferring unnecessary additional data.

US 2017/0024167 A1

0152. At stage 1113, the general purpose instruction
based processor continues execution of the application. In an
embodiment, the execution is continued on a software
engine, for example, a state machine simulator, on the
slow-path.
0153. In an embodiment of the invention, at stage 1102
the system may decide to transfer execution using rollback
method 1120. In an embodiment, the rollback method 1120
may be the preferred method of bailout. At stage 1121 of the
rollback method 1120 the necessary data may be transferred
from the in-line accelerator to the general purpose instruc
tion-based processor for execution. In an embodiment, the
input data elements stored in in-token memory is trans
ferred. In an embodiment, the out-token memory and con
text memory may be ignored.
0154) At stage 1122, the changes to the shared memory
must be rolled back. In an embodiment, a quasi-speculative
cache is used to roll back changes made to the memory. In
an embodiment, if the changes made by the in-line accel
erator to the shared memory cannot be rolled back, rollback
method 1120 may not be possible and continuation method
1110 is pursued.
0155. At stage 1123, the general purpose instruction
based processor restarts the execution of the application as
if no processing was done by the in-line accelerator. In an
embodiment, at stage 1123 the execution of the CDFG is
started by Software from the beginning.
0156. At stage 1103, the execution is finished by software
engine on the general purpose instruction-based processor.
In an embodiment, the application may be transferred to
other software engines or may be transferred to a hardware
in-line accelerator for further processing. In an embodiment,
a response packet is generated at stage 1103.
0157 FIG. 12 is a diagram of a computer system includ
ing a data processing system according to an embodiment of
the invention. Within the computer system 1200 is a set of
instructions for causing the machine to perform any one or
more of the methodologies discussed herein. In alternative
embodiments, the machine may be connected (e.g., net
worked) to other machines in a LAN, an intranet, an
extranet, or the Internet. The machine can operate in the
capacity of a server or a client in a client-server network
environment, or as a peer machine in a peer-to-peer (or
distributed) network environment, the machine can also
operate in the capacity of a web appliance, a server, a
network router, Switch or bridge, or any machine capable of
executing a set of instructions (sequential or otherwise) that
specify actions to be taken by that machine. Further, while
only a single machine is illustrated, the term “machine' shall
also be taken to include any collection of machines (e.g.,
computers) that individually or jointly execute a set (or
multiple sets) of instructions to perform any one or more of
the methodologies discussed herein.
0158 Data processing system 1202, as disclosed above,
includes a general purpose instruction-based processor 1227
and an in-line accelerator 1226. The general purpose instruc
tion-based processor may be one or more general purpose
instruction-based processors or processing devices (e.g.,
microprocessor, central processing unit, or the like). More
particularly, data processing system 1202 may be a complex
instruction set computing (CISC) microprocessor, reduced
instruction set computing (RISC) microprocessor, very long
instruction word (VLIW) microprocessor, general purpose
instruction-based processor implementing other instruction

Jan. 26, 2017

sets, or general purpose instruction-based processors imple
menting a combination of instruction sets. The in-line accel
erator may be one or more special-purpose processing
devices such as an application specific integrated circuit
(ASIC), a field programmable gate array (FPGA), a digital
signal general purpose instruction-based processor (DSP),
network general purpose instruction-based processor, many
light-weight cores (MLWC) or the like. Data processing
system 1202 is configured to implement the data processing
system for performing the operations and steps discussed
herein.
0159. The exemplary computer system 1200 includes a
data processing system 1202, a main memory 1204 (e.g.,
read-only memory (ROM), flash memory, dynamic random
access memory (DRAM) such as synchronous DRAM
(SDRAM) or DRAM (RDRAM), etc.), a static memory
1206 (e.g., flash memory, static random access memory
(SRAM), etc.), and a data storage device 1216 (e.g., a
secondary memory unit in the form of a drive unit, which
may include fixed or removable computer-readable storage
medium), which communicate with each other via a bus
1208. The storage units disclosed in computer system 1200
may be configured to implement the data storing mecha
nisms for performing the operations and steps discussed
herein.
0160 The computer system 1200 may further include a
network interface device 1222. In an alternative embodi
ment, the data processing system disclose is integrated into
the network interface device 1222 as disclosed herein. The
computer system 1200 also may include a video display unit
1210 (e.g., a liquid crystal display (LCD), LED, or a cathode
ray tube (CRT)) connected to the computer system through
a graphics port and graphics chipset, an input device 1212
(e.g., a keyboard, a mouse), a camera 1214, and a Graphic
User Interface (GUI) device 1220 (e.g., a touch-screen with
input & output functionality).
0.161 The computer system 1200 may further include a
RF transceiver 1224 provides frequency shifting, converting
received RF signals to baseband and converting baseband
transmit signals to RF. In some descriptions a radio trans
ceiver or RF transceiver may be understood to include other
signal processing functionality Such as modulation/demodu
lation, coding/decoding, interleaving/de-interleaving,
spreading/dispreading, inverse fast Fourier transforming
(IFFT)/fast Fourier transforming (F-F-T), cyclic prefix
appending/removal, and other signal processing functions.
0162 The Data Storage Device 1216 may include a
machine-readable storage medium (or more specifically a
computer-readable storage medium) on which is stored one
or more sets of instructions embodying any one or more of
the methodologies or functions described herein. Disclosed
data storing mechanism may be implemented, completely or
at least partially, within the main memory 1204 and/or
within the data processing system 1202 by the computer
system 1200, the main memory 1204 and the data processing
system 1202 also constituting machine-readable storage
media.
0163 The computer-readable storage medium 1224 may
also be used to one or more sets of instructions embodying
any one or more of the methodologies or functions described
herein. While the computer-readable storage medium 1224
is shown in an exemplary embodiment to be a single
medium, the term "computer-readable storage medium’
should be taken to include a single medium or multiple

US 2017/0024167 A1

media (e.g., a centralized or distributed database, and/or
associated caches and servers) that stores the one or more
sets of instructions. The terms “computer-readable storage
medium’ shall also be taken to include any medium that is
capable of storing or encoding a set of instructions for
execution by the machine and that cause the machine to
performany one or more of the methodologies of the present
invention. The term “computer-readable storage medium’
shall accordingly be taken to include, but not be limited to,
Solid-state memories, and optical and magnetic media.
0164. The above description of illustrated implementa
tions of the invention, including what is described in the
Abstract, is not intended to be exhaustive or to limit the
invention to the precise forms disclosed. While specific
implementations of, and examples for, the invention are
described herein for illustrative purposes, various equivalent
modifications are possible within the scope of the invention,
as those skilled in the relevant art will recognize.
0.165. These modifications may be made to the invention
in light of the above detailed description. The terms used in
the following claims should not be construed to limit the
invention to the specific implementations disclosed in the
specification and the claims. Rather, the scope of the inven
tion is to be determined entirely by the following claims,
which are to be construed in accordance with established
doctrines of claim interpretation.
0166 Embodiments of the invention include a data pro
cessing system. The system includes a processing device, an
Input/output (I/O) interface to receive incoming data, and an
in-line accelerator configured to receive the incoming data
from the I/O interface and begin a computation by executing
at least a part of operations associated with processing the
incoming data. The in-line accelerator is configured to
automatically transfer the prematurely terminated computa
tion upon reaching a bailout point from the in-line accel
erator to the processing device for execution.
0167 Additional embodiment of invention may include a
data processing system wherein the in-line accelerator is
configured to accelerate a fast path of execution that is
generated by Static or dynamic slicing of control and data
flow graphs (CDFG) of programs. Additional embodiment
of invention may include a data processing system wherein
the bailout point and necessary state values are determined
at compilation time.
0168 Additional embodiment of invention may include a
data processing system wherein the processing device
restarts execution of the entire operations associated with
processing the incoming data.
0169. Additional embodiment of invention may include a
data processing system wherein the processing device con
tinues computation associated with processing the incoming
from the bailout point. Additional embodiment of invention
may include a data processing system wherein a software
based simulator is used to simulate the in-line accelerator
execution from the bailout point. Additional embodiment of
invention may include a data processing system wherein
upon termination of the execution by the software-based
simulator a Software-based engine continues the computa
tion natively.
0170 Additional embodiment of invention may include a
data processing system wherein the in-line accelerator is
implemented on a Field Programmable Gate Array (FPGA).
0171 Embodiments of the invention include a data pro
cessing system. The system includes a processing device, at

Jan. 26, 2017

least one in-line accelerator, and a shared memory coupled
to the processing device and the at least one in-line accel
erator. The at least one in-line accelerator is configured to
receive incoming data and execute at least a part of opera
tions associated with processing the incoming data to gen
erate output data elements. The at least one in-line accel
erator is configured to store at least part of data state
elements with respect to execution of the incoming data in
the shared memory. The at least one in-line accelerator is
configured to transfer data state elements upon reaching a
bailout point from the at least one in-line accelerator to the
processing device for execution.
0172. Additional embodiment of invention may include a
data processing system wherein the data state elements
stored in the shared memory becomes coherent from the
processing device side after the bailout point.
0173 Additional embodiment of invention may include a
data processing system wherein the in-line accelerator stores
data in the shared memory speculatively.
0.174. Additional embodiment of invention may include a
data processing system further comprising a quasi-specula
tive cache memory to store the data state elements in a
speculative state. In an embodiment, the quasi-speculative
cache is configured to delay committing data state elements
to non-speculative storages. In an embodiment, the quasi
speculative cache is configured to copy changes to the data
state element to the shared memory. In an embodiment, the
in-line accelerator is configured to transfer data state ele
ments based on a probability of being read by next opera
tions after the bailout.
(0175 Embodiments of the invention include a method of
data processing. The method includes receiving incoming
data elements by an in-line accelerator for execution, execut
ing at least part of a computation to process incoming data
elements before a premature termination, transferring the
incoming data elements to a processing device, and process
ing the incoming data elements by the processing device.
(0176). In an additional embodiment the method of data
processing includes processing device continues execution
of the computation associated with the incoming data ele
mentS.

0177. In an additional embodiment the method of data
processing includes the processing device restarts the com
putation associated with processing the incoming data ele
mentS.

0.178 In an additional embodiment the method of data
processing further includes determining whether to continue
or restart execution of the computation associated with
processing the incoming data elements based on a cost
analysis mechanism.
0179 Big data applications can be used for predictive
analytics, artificial intelligence, and machine learning to
improve efficiency of operations, revenue opportunities,
and/or quality of user experience for various businesses. Big
data applications however require significant computing
power, storage, and network throughput. Consequently, a
large amount of hardware resources in terms of servers,
networking devices, and storage devices are required to run
these applications. These expensive resources are a barrier
for using Big data applications.
0180 Big data applications are often described as dis
tributed data flow programs in that data are fed to a pipeline
of computational nodes, in which outputs of producer nodes
are copied to the inputs of consumer nodes. This creates a

US 2017/0024167 A1

large amount of I/O traffic, including the traffic from/to
storage system and the traffic to/from the network system.
0181 Conventional general purpose instruction-based
processors are not designed for processing large amount of
IO traffic. Consequently, there are many expensive move
ments (e.g., copying of data) when conventional hardware
runs Big data applications. FIG. 13 illustrates a schematic
diagram of a data processing system 1300 having an accel
erator that is an offload entity for a conventional acceleration
architecture. The data processing system 1300 includes a
network connection 1304 for accessing an I/O processing
unit 1310 (network interface card (NIC) 1310) of a server
1312. The NIC 1310 may include features such as interrupt
and DMA interfaces to the CPU 1320, support for multiple
receive and transmit queues, partitioning into multiple logi
cal interfaces, and on-controller network traffic processing
such as the TCP offload engine. The NIC 1310 is directly
coupled to storage 1314, CPU 1320, and memory 1330. In
one example, the NIC 1310 receives an incoming packet,
processes the packet, generates response packet(s), stores
the response packet(s) in storage 1314 and memory 1330,
processes the response packet(s) with CPU 1320, and then
sends the processing packet(s) to accelerator 1311 for addi
tional processing as indicated by data path 1340. The
accelerator performs computations 1313-1315 and then
sends outgoing packet(s) on a data path 1350 that includes
the CPU 1320, memory 1330, NIC 1310, and network
connection 1304.
0182. In the example embodiment of FIG. 13, the accel
erator 1311 functions as an offload entity rather than an
in-line entity. In such a case, the CPU 1320 receives the data
(e.g., response packet(s)) and then offloads the computation
to the accelerator 1311 and then after the accelerator 1311
completes the computation it returns back the control to the
CPU so the CPU can move the result (e.g., outgoing
packet(s)) to the network connection 1304 and next stage.
0183 Processing data going from an I/O device (storage)
to an accelerator, which is not in-line, causes delays. The
result from the accelerator is also going to an I/O (network)
access. Input data to the accelerator first goes through CPU
and output data from accelerator also needs to go through the
CPU. This causes unnecessary copying from the CPU to the
accelerator and then from the accelerator to the CPU and
thus causes performance deterioration for the exemplary
embodiment of FIG. 13.
0184. This present design provides in-line acceleration to
avoid such time consuming operations that cause perfor
mance deterioration. This in-line acceleration is done in a
completely automated way to provide seamless acceleration
and complete autonomy for the users (except the fact that the
application is running much faster).
0185. Conventional methods capture data parallelism as
well as producer-consumer parallelism in big data/streaming
applications using parallel micro-architecture techniques,
including multi-cores and multi-threads. These conventional
methods also utilize customized hardware with higher
energy efficiency and lower areas.
0186 For applications that use external data extensively,
IO operations that copy the data to the accelerator and vice
versa, become a bottleneck. Consequently, this limits the
amount of performance gain achieved from the accelerators.
0187. In machine-learning, big-data, and web engines a
large amount of data that is received/sent from/to storage
and/or network is processed. Consequently, these applica

Jan. 26, 2017

tions are amenable to in-line acceleration. Many operations
which are essential in these applications require buffering
(e.g., checksum calculation, compression, retransmission
mechanisms (for reliability), sort algorithms, etc.). In-line
acceleration works especially well in conjunction with buf
fer less computation. Otherwise, the merit of specialization
will be limited by the high overhead associated with off-chip
memory communications for buffering. The present design
utilizes the following techniques to have buffer less and
in-line acceleration: use alternative algorithms with mini
mal/no buffer (e.g., multi-stage sort), use reliable commu
nications (i.e., to avoid buffering and retransmission), use
components with minimum throughput guarantees to avoid
buffering, use buffering at the end of bulk-synchronous
computation models (e.g., Spark). Using above techniques,
the present design can have all of the computation stages
with maximum throughput and only use the buffers at bulk
synchronization points (e.g., communications between first
and second servers of a data processing system).
0188 Based on observations, processing in big data
applications are mostly done on the data coming from I/O
operations, either from a network interface when shuffle
operations between different servers occur, or from the
storage when data is read from the external storage, or from
a stream messaging server. Consequently, if the present
design has a first feature that accelerates these big data
applications in which the accelerator processes the data
coming from input IO without involving the general purpose
instruction-based processor, not only does the present design
reduce the overhead of copying data from I/O to CPU and
Vice versa, but the present design also has a second feature
of processing data in a much higher throughput than general
purpose CPUs.
0189 One important point of these features of the present
design is that both of these features are required to gain a
higher performance improvement, for accelerating an appli
cation.

0190. A Big data application can be translated into a
dataflow graph that includes multiple nodes in the graph for
many execution engines. An execution platform for a Big
data application breaks-down the graph into multiple stages
(e.g., map and reduce stages in Hadoop, computation stages
in Spark). A cluster of machines is responsible to execute the
computation stages. At any given stage, a machine process
part of the whole data is distributed in the cluster. Since in
a particular stage a machine might require data from other
machines (from the previous stage), a shuffle operation
happens between the stages. In each shuffle operation, the
data from a previous stage is redistributed among the
machines. This makes the layout of the data ready for the
next stage. In one example, the data can be redistributed
among the machines in accordance with at least one system
invariant or at least one rule that requires certain data of a
first stage to be distributed to a certain machine for a second
Stage.
0191 FIGS. 14-16 show an example of big data compu
tation that includes three stages running on multiple servers
in accordance with one embodiment. In a first stage 1401 of
a data processing system 1400 as illustrated in FIG. 14, the
present design reads data from a source storage 1402 and
1405, performs computations 1403 and 1406 on data, and
shuffles (e.g., reorganization, aggregation) the data between
the computation nodes at shuffle write operations 1404 and
1407 that output 1408-1411 this data to a shuffle read

US 2017/0024167 A1

operations 1413 and 1416 of the second stage 1412. The
second stage also includes computations 1414 and 1417.
shuffle write operations 1415 and 1418, and outputs 1419
1422. Shuffle read operations 1424 and 1427 of the third
stage 1423 receive the outputs, computations 1425 and 1428
are performed, and results are written into sink storage 1426
and 1429. A machine 1430 (e.g., server 1430) performs the
operations 1402-1404, 1413-1415, and 1424–1426. The
server 1430 includes an I/O processing unit 1431 (e.g.,
network interface card 1431) having an in-line accelerator
1432. The server 1430 also includes storage 1436, general
purpose instruction-based processor 1437, and memory
1438. A data path 1439 illustrates the data flow for server
1430 for stage 1401. For example, data is read from a source
storage 1402 of storage 1436 (e.g., operation 1433) and
computations 1403 (e.g., operation 1434) and shuffle write
operations 1404 (e.g., operation 1435) are performed by the
in-line accelerator 1432. The outputs 1408 and 1411 are sent
to a second stage 1412 via a network connection 1440.
(0192. A machine 1450 (e.g., server 1450) performs the
operations 1405-1407, 1416-1418, and 1427-1429. The
server 1450 includes an I/O processing unit 1451 (e.g.,
network interface card 1451) having an in-line accelerator
1452. The server 1450 also includes storage 1456, general
purpose instruction-based processor 1457, and memory
1458. The server 1450 also includes storage 1456, general
purpose instruction-based processor 1457, and memory
1458. A data path 1459 illustrates the data flow for server
1450 for stage 1401. For example, data is read from a source
storage 1405 of storage 1456 (e.g., operation 1453), com
putations 1406 (e.g., operation 1454) and shuffle write
operations 1407 (e.g., operation 1455) are performed by the
in-line accelerator 1452. The outputs 1409-1410 are sent to
a second stage 1412 via a network connection 1460.
0193 FIG. 15 illustrates a second stage of a data pro
cessing system in accordance with one embodiment. The
stages 1501, 1512, and 1523 may correspond to the stages
1401, 1412, and 1423, respectively of FIG. 14. The opera
tions 1502-1507, 1513-1518, 1524-1529 of the stages of
FIG. 15 may correspond to the operations 1402-1407, 1413
1418, and 1424-1429, respectively of FIG. 14. For the
present design in the second stage 1512, the result of
shuffled data is gathered from the previous stage at shuffle
read operations 1513 and 1516. Another computation is
done on the data at operations 1514 and 1517, and another
shuffle 1515 and 1518 happens on the result of the compu
tation.
(0194 A machine 1530 (e.g., server 1530) performs the
operations 1502-1504, 1513-1515, and 1524-1526. The
server 1530 includes an I/O processing unit 1531 (e.g.,
network interface card 1531) having an in-line accelerator
1532. The server 1530 also includes storage 1536, general
purpose instruction-based processor 1537, and memory
1538. A data path 1539 illustrates the data flow for server
1530 for stage 1512. For example, the result of shuffled data
is gathered from the previous stage at shuffle read operation
1513 (e.g., operation 1533), computation 1514 (e.g., opera
tion 1534) and shuffle write operation 1515 (e.g., operation
1535) are performed by the in-line accelerator 1532. The
outputs 1519 and 1522 are sent to a third stage 1523 via a
network connection 1540.

(0195 A machine 1550 (e.g., server 1550) performs the
operations 1505-1507, 1516-1518, and 1527-1529. The
server 1550 includes an I/O processing unit 1551 (e.g.,

Jan. 26, 2017

network interface card 1551) having an in-line accelerator
1552. The server 1550 also includes storage 1556, general
purpose instruction-based processor 1557, and memory
1558. A data path 1559 illustrates the data flow for server
1550 for stage 1512. For example, the result of shuffled data
is gathered from the previous stage at shuffle read operation
1516 (e.g., operation 1553), computation 1517 (e.g., opera
tion 1554) and shuffle write operation 1518 (e.g., operation
1585) are performed by the in-line accelerator 1552. The
outputs 1520-1521 are sent to a third stage 1523 via a
network connection 1540.
0.196 FIG. 16 illustrates a third stage of a data processing
system in accordance with one embodiment. The stages
1601, 1612, and 1623 may correspond to the stages 1501,
1512, and 1523, respectively of FIG. 15 and also may
correspond to the stages 1401, 1412, and 1423, respectively
of FIG. 14. The operations 1602-1607, 1613-1618, 1624
1629 of the stages of FIG. 16 may correspond to the
operations 1502-1507, 1513-1518, 1524-1529, respectively
of the stages of FIG. 15 and also may correspond to the
operations 1402-1407, 1413-1418, and 1424-1429, respec
tively of FIG. 14. For the present design in the third stage
1623, the result of a second shuffle is collected at shuffle read
operations 1624 and 1627 and after another computation
1625 and 1628, the result is written into a sink storage, the
final storage of the data in memory or file system at
operations 1626 and 1629 upon completion of the third stage
(e.g., upon completion of a Hadoop or Spark job).
(0197) A machine 1630 (e.g., server 1630) performs the
operations 1602-1604, 1613-1615, and 1624-1626. The
server 1630 includes an I/O processing unit 1631 (e.g.,
network interface card 1631) having an in-line accelerator
1632. The server 1630 also includes storage 1636, general
purpose instruction-based processor 1637, and memory
1638. A data path 1659 illustrates the data flow for server
1630 for stage 1623. For example, the result of shuffled data
is gathered from the previous stage at shuffle read operation
1624 (e.g., operation 1633), computation 1625 (e.g., opera
tion 1634) is performed by the in-line accelerator 1632, and
the result is written into a sink storage 1636 or final storage
of the data in memory or file system (e.g., operation 1635).
(0198 A machine 1650 (e.g., server 1650) performs the
operations 1605-1607, 1616-1618, and 1627-1629. The
server 1650 includes an I/O processing unit 1651 (e.g.,
network interface card 1651) having an in-line accelerator
1652. The server 1650 also includes storage 1656, general
purpose instruction-based processor 1657, and memory
1658. A data path 1659 illustrates the data flow for server
1650 for stage 1623. For example, the result of shuffled data
is gathered from the previous stage at shuffle read operation
1627 (e.g., operation 1653), computation 1628 (e.g., opera
tion 1654) is performed by the in-line accelerator 1652, and
the result is written into a sink storage 1656 or final storage
of the data in memory or file system (e.g., operation 1655).
0199. In an embodiment, I/O processing unit (e.g., 1431,
1451, 1531, 1551, 1631, 1651) may be Network Interface
Card (NIC). In an embodiment of the invention, the in-line
accelerator is part of the NIC. In an embodiment, the NIC is
on the same chip as the general purpose instruction-based
processor (e.g., 1437, 1457, 1537, 1557, 1637, 1657) 120. In
an alternative embodiment, the NIC is on a separate chip
coupled to the general purpose instruction-based processor.
0200. In these data paths for three stages, data is coming
from an I/O component then sent to another I/O device.

US 2017/0024167 A1

Although this is not always the case, in most scenarios at the
end of each stage, the result is first buffered in temporary
memory and/or storage and the Subsequent next stage pulls
the data from this temporary memory and/or storage. Based
on our observation, the in-line accelerator performs the
compute phase on the incoming data immediately after
receiving it from network or storage.
0201 In order to do the above, the present design auto
matically compiles the computations associated with each
stage in an in-line accelerator, which has (i) direct access to
a network and storage and (ii) higher performance using
specialization and parallelization techniques. The present
design eliminates extra copying of data between I/O com
ponents and a CPU. The present design also improves the
processing throughput beyond the performance of conven
tional CPUs for I/O intensive applications. The present
design is structurally unique in utilizing an in-line accelera
tor in big data servers. The present design is functional
unique based on having a compiler that generates in-line
accelerators or automatically compiles code into an in-line
accelerator from computation stages.
0202. In an embodiment, in-line accelerators as discussed
herein may be implemented using any device known to be
used as accelerator, including but not limited to field
programmable gate array (FPGA), Coarse-Grained Recon
figurable Architecture(CGRA), general-purpose computing
on graphics processing unit (GPGPU), many light-weight
cores (MLWC), network general purpose instruction-based
processor, I/O general purpose instruction-based processor,
many-cores, DSPs, and application-specific integrated cir
cuit (ASIC).
0203 FIG. 17 is a flow diagram illustrating a method
1700 for in-line stream processing of distributed multi stage
dataflow based computations according to an embodiment of
the disclosure. Although the operations in the method 1700
are shown in a particular order, the order of the actions can
be modified. Thus, the illustrated embodiments can be
performed in a different order, and some operations may be
performed in parallel. Some of the operations listed in FIG.
17 are optional in accordance with certain embodiments.
The numbering of the operations presented is for the sake of
clarity and is not intended to prescribe an order of operations
in which the various operations must occur. Additionally,
operations from the various flows may be utilized in a
variety of combinations.
0204. The operations of method 1700 may be executed
by a data processing system, a machine, a server, a web
appliance, or any system, which includes an in-line accel
erator. The in-line accelerator may include hardware (cir
cuitry, dedicated logic, etc.), software (such as is run on a
general purpose computer system or a dedicated machine or
a device), or a combination of both. In one embodiment, an
in-line accelerator performs the operations of method 1700.
0205 At operation 1702, the method includes performing
in-line stream processing of distributed multi stage dataflow
based computations with an I/O processing unit of a
machine (e.g., server) having an in-line accelerator that is
configured for a first stage of operations to read data from
the storage, to perform computations on the data, and to
shuffle a result of the computations to generate a first set of
shuffled data. In one example, the in-line accelerator per
forms the first stage of operations with buffer less compu
tations. At operation 1704, the method further includes
receiving, with the in-line accelerator that is further config

Jan. 26, 2017

ured for a second stage of operations, the first set of shuffled
data from the first stage, performing computations on the
first set of shuffled data, and shuffling a result of the
computations to generate a second set of shuffled data. In
one example, the in-line accelerator performs the second
stage of operations with buffer less computations. At opera
tion 1706, the method further includes receiving, with the
in-line accelerator that is further configured for a third stage
of operations, the second set of shuffled data from the second
stage, performing computations on the second set of shuffled
data, and storing a result of the computations in the storage.
In one embodiment, the machine includes a general purpose
instruction-based processor that is coupled to an I/O pro
cessing unit. The in-line accelerator is configured to perform
the operations of the first stage, the second stage, and the
third stage without utilizing the general purpose instruction
based processor.

1. A machine comprising:
storage to store data; and
an Input/output (I/O) processing unit coupled to the

storage, the I/O processing unit having an in-line accel
erator that is configured for in-line stream processing of
distributed multi stage dataflow based computations
including for a first stage of operations to read data
from the storage and to perform computations on the
data with buffer less computations.

2. The machine of claim 1, wherein the in-line accelerator
is further configured to shuffle a result of the computations
to generate a first set of shuffled data.

3. The machine of claim 2, wherein the in-line accelerator
is further configured for a second stage of operations to
receive the first set of shuffled data from the first stage, to
perform computations on the first set of shuffled data, and to
shuffle a result of the computations to generate a second set
of shuffled data.

4. The machine of claim3, wherein the in-line accelerator
performs the second stage of operations with buffer less
computations.

5. The machine of claim3, wherein the in-line accelerator
is further configured for a third stage of operations to receive
the second set of shuffled data from the second stage, to
perform computations on the second set of shuffled data, and
to store a result of the computations in the storage.

6. The machine of claim 1, further comprising:
a general purpose instruction-based processor coupled to

the I/O processing unit, wherein the in-line accelerator
is configured to perform the operations of the first
stage, the second stage, and the third stage without
utilizing the general purpose instruction-based proces
SO.

7. The machine of claim 1, wherein the in-line accelerator
is implemented on a Field Programmable Gate Array
(FPGA), a many-core, a graphical processing unit (GPU), or
an application specific integrated circuit (ASIC).

8. A data processing system comprising:
a first server having a network connection, storage to store

data, and a first Input/output (I/O) processing unit
having a first in-line accelerator that is configured for
in-line stream processing of distributed multi stage
dataflow based computations including for a first stage
of operations to read data from the storage, to perform
computations on the data, and to shuffle a result of the
computations to generate a first set of shuffled data; and

US 2017/0024167 A1

a second server coupled to the first server, a second server
having a network connection, storage to store data, and
a second Input/output (I/O) processing unit having a
second in-line accelerator that is configured for in-line
stream processing of distributed multi stage dataflow
based computations including for the first stage of
operations to read data from the storage, to perform
computations on the data, and to shuffle a result of the
computations to generate a second set of shuffled data.

9. The data processing system of claim 9, wherein the first
and second in-line accelerators perform the first stage of
operations with buffer less computations.

10. The data processing system of claim 9, wherein the
first in-line accelerator is further configured for a second
stage of operations to receive the first and second sets of
shuffled data from the first stage, to perform computations
on the first and second sets of shuffled data, and to shuffle a
result of the computations to generate a third set of shuffled
data.

11. The data processing system of claim 10, wherein the
second in-line accelerator is further configured for the
second stage of operations to receive the first and second sets
of shuffled data from the first stage, to perform computations
on the first and second sets of shuffled data, and to shuffle a
result of the computations to generate a fourth set of shuffled
data.

12. The data processing system of claim 11, wherein the
first and second in-line accelerators perform the second
stage of operations with buffer less computations.

13. The data processing system of claim 12, wherein the
first in-line accelerator is further configured for a third stage
of operations to receive the third and fourth set of shuffled
data from the second stage, to perform computations on the
third and fourth sets of shuffled data, and to store a result of
the computations in the storage.

14. The data processing system of claim 13, wherein the
second in-line accelerator is further configured for the third
stage of operations to receive the third and fourth sets of
shuffled data from the second stage, to perform computa
tions on the third and fourth sets of shuffled data, and to store
a result of the computations in the storage.

15. The data processing system of claim 8, wherein the
first server further comprising:

a first general purpose instruction-based processor
coupled to the first I/O processing unit, wherein the first
in-line accelerator is configured to perform the opera

Jan. 26, 2017

tions of the first stage, the second stage, and the third
stage without utilizing the first general purpose instruc
tion-based processor.

16. The data processing system of claim 8, wherein the
second server further comprising:

a second general purpose instruction-based processor
coupled to the second I/O processing unit, wherein the
second in-line accelerator is configured to perform the
operations of the first stage, the second stage, and the
third stage without utilizing the second general purpose
instruction-based processor.

17. The data processing system of claim 8, wherein the
first and second in-line accelerators are each implemented
on a Field Programmable Gate Array (FPGA).

18. A computer-implemented method comprising:
performing in-line stream processing of distributed multi

stage dataflow based computations with an input/output
(I/O) processing unit of a machine having an in-line
accelerator that is configured for a first stage of opera
tions to read data from a storage of the machine, to
perform computations on the data, and to shuffle a
result of the computations to generate a first set of
shuffled data.

19. The computer-implemented method of claim 18,
wherein the in-line accelerator performs the first stage of
operations with buffer less computations.

20. The computer-implemented method of claim 19, fur
ther comprising:

receiving, with the in-line accelerator for a second stage
of operations, the first set of shuffled data from the first
Stage,
performing computations on the first set of shuffled

data; and
shuffling a result of the computations to generate a

second set of shuffled data.
21. The computer-implemented method of claim 20,

wherein the in-line accelerator performs the second stage of
operations with buffer less computations.

22. The computer-implemented method of claim 21, fur
ther comprising:

receiving, with the in-line accelerator for a third stage of
operations, the second set of shuffled data from the
Second stage;
performing computations on the second set of shuffled

data; and
storing a result of the computations in the storage.

k k k k k

