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(57) ABSTRACT 
A data processing system is disclosed that includes machines 
having an in-line accelerator and a general purpose instruc 
tion-based general purpose instruction-based processor. In 
one example, a machine comprises storage to store data and 
an Input/output (I/O) processing unit coupled to the storage. 
The I/O processing unit includes an in-line accelerator that 
is configured for in-line stream processing of distributed 
multi stage dataflow based computations. For a first stage of 
operations, the in-line accelerator is configured to read data 
from the storage, to perform computations on the data, and 
to shuffle a result of the computations to generate a first set 
of shuffled data. The in-line accelerator performs the first 
stage of operations with buffer less computations. 
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SYSTEMIS AND METHODS FOR IN-LINE 
STREAM PROCESSING OF DISTRIBUTED 
DATAFLOW BASED COMPUTATIONS 

RELATED APPLICATIONS 

0001. This application is a continuation of U.S. Non 
Provisional application Ser. No. 15/215,374, filed on Jul. 20, 
2016, which is a continuation-in-part of U.S. Non-Provi 
sional application Ser. No. 14/885,636, filed on Oct. 16, 
2015, and claims the benefit of U.S. Provisional Application 
No. 62/194,885, filed on Jul. 21, 2015, the entire contents of 
these applications are hereby incorporated by reference. 

TECHNICAL FIELD 

0002 Embodiments described herein generally relate to 
the field of data processing, and more particularly relates to 
methods and systems of automated/controlled data transfer 
between an auto-generated in-line accelerator and general 
purpose instruction-based processors. 

BACKGROUND 

0003 Conventionally, system processing functionalities 
are written in Software for execution in Some type of general 
purpose instruction-based processor to accommodate for 
future modifications and updates. However, a system func 
tionality executed in software by general purpose instruc 
tion-based processor(s) is typically slower than if that same 
functionality was implemented and executed using accel 
erators, either as special purpose processors or application 
specific hardware dedicated to the particular function. 
Accelerators can increase the performance, decrease the 
processing latency, and decrease the power consumption of 
computer systems. 

0004 Since accelerators are customized to process only a 
particular portion of an application, they are often paired 
with general purpose instruction-based processor(s) in a 
system to be able to execute the entire application. The part 
of the application that is compatible with the accelerator is 
executed by the accelerator. The remaining part is executed 
by the general purpose instruction-based processor. Tradi 
tionally, the accelerator is a slave component for a general 
purpose instruction-based processor that functions as a mas 
ter component. The applications run on the general purpose 
instruction-based processor and for the part of the applica 
tion that is amenable to acceleration, the general purpose 
instruction-based processor transfers the control to the accel 
erator. After finishing the accelerated part of the application, 
the accelerator returns back the control to the general 
purpose instruction-based processor. 
0005. The conventional acceleration method described 
above entails a high overhead. First, the input data elements 
from an input interface must be copied to the general 
purpose instruction-based processor and then they should be 
stored in the accelerator. Next, the output data elements (if 
any) from the accelerator must be copied to the general 
purpose instruction-based processor and then they should be 
stored in an output interface. There therefore remains a need 
for a method and system of implementing an accelerator in 
conjunction with a general purpose instruction-based pro 
cessor that overcomes these challenges. 
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SUMMARY 

0006 For one embodiment of the present invention, 
methods and systems of automated/controlled data transfer 
between an auto-generated in-line accelerator and general 
purpose instruction-based processors are disclosed herein. In 
one embodiment, a machine comprises storage to store data 
and an Input/output (I/O) processing unit coupled to the 
storage. The I/O processing unit includes an in-line accel 
erator that is configured for in-line stream processing of 
distributed multi stage dataflow based computations. For a 
first stage of operations, the in-line accelerator is configured 
to read data from the storage, to perform computations on 
the data, and to shuffle a result of the computations to 
generate a first set of shuffled data. The in-line accelerator 
performs the first stage of operations with buffer less com 
putations. 
0007. Other features and advantages of embodiments of 
the present invention will be apparent from the accompa 
nying drawings and from the detailed description that fol 
lows below. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0008 FIG. 1 illustrates the schematic diagram of a data 
processing system according to an embodiment of the pres 
ent invention. 
0009 FIG. 2 illustrates the schematic diagram of a multi 
layer in-line accelerator according to an embodiment of the 
invention. 
0010 FIG. 3A is a flow diagram illustrating a method 
flowchart for system performance during compilation time 
according to an embodiment of the invention. 
0011 FIG. 3B is a flow diagram illustrating a method 
flowchart for system performance during runtime according 
to an embodiment of the invention. 
0012 FIG. 4 illustrates the schematic diagram of a data 
flow node according to an embodiment of the invention. 
0013 FIG. 5 illustrates the schematic diagram of com 
position of multiple nodes using lock -based synchroniza 
tion mechanism to access a shared memory according to an 
embodiment of the invention. 
0014 FIG. 6 illustrates the schematic diagram of execu 
tion of an application by data processing system according 
to an embodiment of the invention. 
0015 FIG. 7 illustrates the schematic diagram of execu 
tion of an application sliced into hot/cold operations by the 
data processing system according to an embodiment of the 
invention. 
0016 FIG. 8 illustrates the schematic diagram of a state 
machine simulation mechanism in accordance with an 
embodiment of the invention. 
0017 FIG. 9A illustrates the schematic diagram of 
memory block architecture in accordance with an embodi 
ment of the invention. 
0018 FIG. 9B illustrates the schematic diagram of 
memory block architecture including a quasi-speculative 
memory in accordance with an embodiment of the inven 
tion. 
0019 FIG. 10 illustrates the schematic diagram of imple 
menting a bailout table in accordance with an embodiment 
of the invention. 
0020 FIG. 11 is a flow diagram illustrating a method 
flowchart for transferring execution according to an embodi 
ment of the invention. 
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0021 FIG. 12 is a diagram of a computer system includ 
ing a data processing system according to an embodiment of 
the invention. 
0022 FIG. 13 illustrates a schematic diagram of a data 
processing system 1300 having an accelerator that is an 
offload entity. 
0023 FIGS. 14-16 show an example of big data compu 
tation that includes three stages running on multiple 
machines (e.g., servers) in accordance with one embodi 
ment. 

0024 FIG. 17 is a flowchart illustrating a method 1700 
for in-line stream processing of distributed multi stage 
dataflow based computations according to an embodiment of 
the disclosure. 

DETAILED DESCRIPTION OF EMBODIMENTS 

0025 Methods, systems and apparatuses for precise, effi 
cient, and transparent transfer of control and data states 
between an in-line accelerator and a general purpose instruc 
tion-based processor are described. An embodiment of 
invention includes a general purpose instruction-based pro 
cessor and an in-line accelerator. The input data elements are 
received by the in-line accelerator. In an embodiment, a 
compiler may slice the computation associated with pro 
cessing a data into a fast-path, compiled and/or synthesized 
into an in-line accelerator, and a slow-path, processed by the 
general purpose instruction-based processor. In an embodi 
ment, upon premature termination of processing in the 
fast-path, the execution is automatically transferred to the 
general purpose instruction-based processor. The transition 
ing of the computation associated with an input from the 
in-line accelerator to the general purpose instruction-based 
processor is referred to as a bailout. 
0026. In an embodiment, upon a bailout, the general 
purpose instruction-based processor (or another acceleration 
layer in the case of multi-layer in-line acceleration) begins 
processing the input data elements as if no processing is 
done by the in-line accelerator. In Such an embodiment, the 
execution of traces on the in-line accelerator is performed 
speculatively before the bailout. Therefore, the side effects 
of the computation must be rolled back. In another embodi 
ment, the general purpose instruction-based processor (or 
the accelerator in the next level in the case of multi-layer 
in-line acceleration) continues the processing of the in-line 
accelerator from the bailout point. In Such an embodiment, 
the side effects of the computation by the in-line accelerator 
are accessible by the general purpose instruction-based 
processor (or the accelerator in the next level in the multi 
level in-line acceleration scenario). 
0027. In the following description, for purposes of expla 
nation, numerous specific details are set forth in order to 
provide a thorough understanding of the present invention. 
It will be apparent, however, to one skilled in the art that the 
present invention can be practiced without these specific 
details. In other instances, well-known structures and 
devices are shown in block diagram form in order to avoid 
obscuring the present invention. 
0028 Reference in the specification to “one embodi 
ment” or “an embodiment’ means that a particular feature, 
structure or characteristic described in connection with the 
embodiment is included in at least one embodiment of the 
present invention. Thus, the appearances of the phrase “in 
one embodiment” appearing in various places throughout 
the specification are not necessarily all referring to the same 
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embodiment. Likewise, the appearances of the phrase “in 
another embodiment,” or “in an alternate embodiment’ 
appearing in various places throughout the specification are 
not all necessarily all referring to the same embodiment. 
0029. The following glossary of terminology and acro 
nyms serves to assist the reader by providing a simplified 
quick-reference definition. A person of ordinary skill in the 
art may understand the terms as used herein according to 
general usage and definitions that appear in widely available 
standards and reference books. 

0030 HW: Hardware. 
0031 SW: Software. 
0032) I/O. Input/Output. 
0033. DMA: Direct Memory Access. 
0034 CPU: CentralProcessingUnit. 
0035 FPGA: Field Programmable Gate Arrays. 
0.036 CGRA: Coarse-Grain Reconfigurable Accelera 
tOrS. 

0037 GPGPU: General-Purpose Graphical Processing 
Units. 

0038 MLWC: ManyLight-weightCores. 
0.039 ASIC: Application Specific Integrated Circuit. 
0040 PCIe: Peripheral Component Interconnect 
express. 

0041 CDFG: Control and Data-Flow Graph. 
0.042 FIFO: First In, First Out 
0043 NIC: Network Interface Card 
0044) HLS. High-Level Synthesis 
0045 KPN: Kahn Processing Networks 
0046 Dataflow analysis: An analysis performed by a 
compiler on the CDFG of the program to determine 
dependencies between a write operation on a variable 
and the consequent operations which might be depen 
dent on the written operation. 

0047 Accelerator: a specialized HW/SW component 
that is customized to run an application or a class of 
applications efficiently. 

0048. In-line accelerator: An accelerator for I/O-inten 
sive applications that can send and receive data without 
CPU involvement. If an in-line accelerator cannot 
finish the processing of an input data, it passes the data 
to the CPU for further processing. 

0049 Bailout: The process of transitioning the com 
putation associated with an input from an in-line accel 
erator to a general purpose instruction-based processor 
(i.e. general purpose core). 

0050 Continuation: A kind of bailout that causes the 
CPU to continue the execution of an input data on an 
accelerator right after the bailout point. 

0051 Rollback: A kind of bailout that causes the CPU 
to restart the execution of an input data on an accel 
erator from the beginning. 

0052 Gorilla----. A programming model and language 
with both dataflow and shared-memory constructs as 
well as a toolset that generates HW/SW from a 
Gorilla---- description. 

0053 GDF: Gorilla dataflow (the execution model of 
Gorilla----). 

0054 GDF node: A building block of a GDF design 
that receives an input, may apply a computation kernel 
on the input, and generates corresponding outputs. A 
GDF design consists of multiple GDF nodes. A GDF 
node may be realized as a hardware module or a 
software thread or a hybrid component. Multiple nodes 
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may be realized on the same virtualized hardware 
module or on a same virtualized software thread. 

0055 Engine: A special kind of component such as 
GDF that contains computation. 

0056 Infrastructure component: Memory, synchroni 
Zation, and communication components. 

0057 Computation kernel: The computation that is 
applied to all input data elements in an engine. 

0.058 Data state: A set of memory elements that con 
tains the current state of computation in a Gorilla 
program. 

0059 Control State: A pointer to the current state in a 
state machine, stage in a pipeline, or instruction in a 
program associated to an engine. 

0060 Dataflow token: Components input/output data 
elements. 

0061 Kernel operation: An atomic unit of computation 
in a kernel. There might not be a one to one mapping 
between kernel operations and the corresponding real 
izations as states in a state machine, stages in a pipeline, 
or instructions running on a general purpose instruc 
tion-based processor. 

0062 FIG. 1 illustrates the schematic diagram of data 
processing system 100 according to an embodiment of the 
present invention. Data processing system 100 includes I/O 
processing unit 110 and general purpose instruction-based 
processor 120. In an embodiment, general purpose instruc 
tion-based processor 120 may include a general purpose 
core or multiple general purpose cores. A general purpose 
core is not tied to or integrated with any particular algorithm. 
In an alternative embodiment, general purpose instruction 
based processor 120 may be a specialized core. I/O process 
ing unit 110 may include in-line accelerator 111. In-line 
accelerators are a special class of accelerators that may be 
used for I/O intensive applications. In-line accelerator 111 
and general purpose instruction-based processor may or may 
not be on a same chip. In-line accelerator 111 is coupled to 
I/O interface 112. Considering the type of input interface or 
input data, in one embodiment, the in-line accelerator 111 
may receive any type of network packets from a network 
130 and an input network interface card (NIC). In another 
embodiment, the accelerator maybe receiving raw images or 
Videos from the input cameras. In an embodiment, in-line 
accelerator 111 may also receive voice data from an input 
Voice sensor device. 
0063. In an embodiment, in-line accelerator 111 is 
coupled to multiple I/O interfaces (not shown in the figure). 
In an embodiment, input data elements are received by I/O 
interface 112 and the corresponding output data elements 
generated as the result of the system computation are sent 
out by I/O interface 112. In an embodiment, I/O data 
elements are directly passed to/from in-line accelerator 111. 
In processing the input data elements, in an embodiment, 
in-line accelerator 111 may be required to transfer the 
control to general purpose instruction-based processor 120. 
In an alternative embodiment, in-line accelerator 111 com 
pletes execution without transferring the control to general 
purpose instruction-based processor 120. In an embodiment, 
in-line accelerator 111 has a master role and general purpose 
instruction-based processor 120 has a slave role. 
0064. In an embodiment, in-line accelerator 111 partially 
performs the computation associated with the input data 
elements and transfers the control to other accelerators or the 
main general purpose instruction-based processor in the 
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system to complete the processing. The term "computation' 
as used herein may refer to any computer task processing 
including, but not limited to, any of arithmetic/logic opera 
tions, memory operations, I/O operations, and offloading 
part of the computation to other elements of the system Such 
as general purpose instruction-based processors and accel 
erators. In-line accelerator 111 may transfer the control to 
general purpose instruction-based processor 120 to complete 
the computation. In an alternative embodiment, in-line 
accelerator 111 performs the computation completely and 
passes the output data elements to I/O interface 112. In 
another embodiment, in-line accelerator 111 does not per 
form any computation on the input data elements and only 
passes the data to general purpose instruction-based proces 
Sor 120 for computation. In another embodiment, general 
purpose instruction-based processor 120 may have in-line 
accelerator 111 to take control and completes the computa 
tion before sending the output data elements to the I/O 
interface 112. 

0065. In an embodiment, in-line accelerator 111 may be 
implemented using any device known to be used as accel 
erator, including but not limited to field-programmable gate 
array (FPGA), Coarse-Grained Reconfigurable Architecture 
(CGRA), general-purpose computing on graphics process 
ing unit (GPGPU), many light-weight cores (MLWC), net 
work general purpose instruction-based processor, I/O 
general purpose instruction-based processor, and applica 
tion-specific integrated circuit (ASIC). In an embodiment, 
I/O interface 112 may provide connectivity to other inter 
faces that may be used in networks, storages, cameras, or 
other user interface devices. I/O interface 112 may include 
receive first in first out (FIFO) storage 113 and transmit 
FIFO storage 114. FIFO storages 113 and 114 may be 
implemented using SRAM, flip-flops, latches or any other 
suitable form of storage. The input packets are fed to the 
in-line accelerator through receive FIFO storage 113 and the 
generated packets are sent over the network by the in-line 
accelerator and/or general purpose instruction-based proces 
sor through transmit FIFO storage 114. 
0066. In an embodiment, I/O processing unit 110 may be 
Network Interface Card (NIC). In an embodiment of the 
invention, in-line accelerator 111 is part of the NIC. In an 
embodiment, the NIC is on the same chip as general purpose 
instruction-based processor 120. In an alternative embodi 
ment, the NIC 110 is on a separate chip coupled to general 
purpose instruction-based processor 120. In an embodiment, 
the NIC-based in-line accelerator receives an incoming 
packet, as input data elements through I/O interface 112, 
processes the packet and generates the response packet(s) 
without involving general purpose instruction-based proces 
sor 120. Only when in-line accelerator 112 cannot handle the 
input packet by itself, the packet is transferred to general 
purpose instruction-based processor 120. In an embodiment, 
in-line accelerator 112 communicates with other I/O inter 
faces, for example, storage elements through direct memory 
access (DMA) to retrieve data without involving general 
purpose instruction-based processor 120. 
0067. In-line accelerator 111 and the general purpose 
instruction-based processor 120 are coupled to shared 
memory 143 through private cache memories 141 and 142 
respectively. In an embodiment, shared memory 143 is a 
coherent memory system. The coherent memory system 
may be implemented as shared cache. In an embodiment, the 
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coherent memory system is implemented using multiples 
caches with coherency protocol in front of a higher capacity 
memory such as a DRAM. 
0068 Processing data by forming two paths of compu 
tations on in-line accelerators and general purpose instruc 
tion-based processors (or multiple paths of computation 
when there are multiple acceleration layers) have many 
other applications apart from low-level network applica 
tions. For example, most emerging big-data applications in 
data centers have been moving toward Scale-out architec 
tures, a technology for Scaling the processing power, 
memory capacity and bandwidth, as well as persistent Stor 
age capacity and bandwidth. These scale-out architectures 
are highly network-intensive. Therefore, they can benefit 
from in-line acceleration. These applications, however, have 
a dynamic nature requiring frequent changes and modifica 
tions. Therefore, it is highly beneficial to automate the 
process of splitting an application into a fast-path that can be 
executed by an in-line accelerator and a slow-path that can 
be executed by a general purpose instruction-based proces 
sor as disclosed herein. 

0069. While embodiments of the invention are shown as 
two accelerated and general-purpose layers throughout this 
document, it is appreciated by one skilled in the art that the 
invention can be implemented to include multiple layers of 
in-line computation with different levels of acceleration and 
generality. For example, an in-line FPGA accelerator can 
backed by an in-line many-core hardware. In an embodi 
ment, the in-line many-core hardware can be backed by a 
general purpose instruction-based processor. 
0070 Referring to FIG. 2, in an embodiment of inven 

tion, a multi-layer system 200 is formed by a first in-line 
accelerator 211 and several other in-line accelerators 211. 

... The multi-layer system 200 includes several accelerators, 
each performing a particular level of acceleration. In Such a 
system, execution may begin at a first layer by the first 
in-line accelerator 211. Then, each Subsequent layer of 
acceleration is invoked when the execution exits the layer 
before it. For example, if the in-line accelerator 211 cannot 
finish the processing of the input data, the input data and the 
execution will be transferred to the next acceleration layer, 
in-line accelerator 211. In an embodiment, the transfer of 
data between different layers of accelerations may be done 
through dedicated channels between layers (311 to 311). In 
an embodiment, when the execution exits the last accelera 
tion layer by in-line accelerator 211, the control will be 
transferred to the general-purpose core 220. 
0071 FIG. 3A is flow diagram illustrating a method 
flowchart for automatic generation of an in-line accelerator 
by synthesis to hardware model and/or compilation to soft 
ware for a particular input program during the compilation. 
FIG. 3B is flow diagram illustrating a method flowchart for 
implementing the in-line accelerator in the runtime. 
Although the blocks in the flowcharts with reference to 
FIGS. 3A and 3B are shown in a particular order, the order 
of the actions can be modified. Thus, the illustrated embodi 
ments can be performed in a different order, and some 
actions/blocks may be performed in parallel. Some of the 
blocks and/or operations listed in FIGS. 3A and 3B are 
optional in accordance with certain embodiments. The num 
bering of the blocks presented is for the sake of clarity and 
is not intended to prescribe an order of operations in which 

Jan. 26, 2017 

the various blocks must occur. Additionally, operations from 
the various flows may be utilized in a variety of combina 
tions. 
0072. In the first step of compilation, at stage 311 of FIG. 
3A, the input program is profiled. Profiling is done by 
feeding a representative input data to the program, e.g. a set 
of input requests to a server or a set of input images to an 
image processing application. In an embodiment, the pro 
filing is performed to identify the fast-path, the trace of 
highly-executed kernel operations (e.g., basic blocks of the 
program control and data flow graph (CDFG)). Since the 
fast-path executes highly used kernel operations, it would be 
beneficial to implement them by an in-line accelerator. In an 
embodiment, the profiling may be done based on the data 
access cost as explained in more details below. 
0073 Referring to FIG. 3A, at stage 312 the program is 
sliced into a fast path and a slow path based on the result of 
the profiling step 311. In an embodiment, input data ele 
ments are received by the server for processing. The pro 
gram on the server reads the input data element and apply 
the computation kernel on them. Each computation kernel 
may have a CDFG which is graph describing the flow of 
control and flow of the data in the program. At stage 312, the 
CDFG is sliced to extract subgraphs that are most frequently 
used. In case of multi-layer system, the CDFG may be sliced 
to different levels of frequency. Fully connected subgraphs 
are referred to as a trace. In an embodiment, the traces of 
highly-executed basic blocks are extracted to form the hot 
traces and the remaining traces are cold traces at stage 315. 
0074. In an embodiment, a fast path may be formed to 
execute hot traces by an in-line accelerator. In an embodi 
ment, when an input data enters the in-line accelerator, 
in-line accelerator can process data as long as the execution 
trace remains in the fast path trace. If the execution trace 
exits the fast-path, the accelerator cannot process the input 
data anymore. As such, at stage 313, a bailout code is 
automatically generated upon the termination of hot trace to 
transfer execution from the in-line accelerator to a general 
purpose core (slow path). In an embodiment, bailout code 
facilitates transitioning between the fast path implemented 
by an in-line accelerator to the slow path implemented by a 
general purpose instruction-based processor. 
0075. In a multi-layer acceleration, there may be multiple 
fast path traces each for various execution frequencies 
observed during profiling. In an embodiment, the first in-line 
accelerator will run the trace of operations with maximum 
execution frequency. Upon bailout the execution may be 
transferred to the next in-line accelerator, which runs the 
trace of operations with a lower execution frequency and so 
on. Eventually the general purpose instruction-based pro 
cessor runs the non-accelerated application. 
0076. In an embodiment of the invention, a hardwired 
in-line accelerator can be generated for the extracted fast 
path by running the fast-path part of the application plus 
bailout mechanism through an HLS (High-Level Synthesis) 
tool. In an embodiment, the hardwired accelerator is imple 
mented on an FPGA or an ASIC substrate. A programmable 
in-line accelerator, e.g. a network general purpose instruc 
tion-based processor or a CGRA, can be programmed by 
compiling the fast-path plus bailout mechanism into the 
corresponding micro-codes or instructions. This automation 
makes the acceleration process transparent and amenable to 
any arbitrary application. Similar mechanisms can be used 
to generate accelerators for different acceleration level in a 
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multi-layer in-line acceleration system. Hot trace, bailout, 
and cold trace occur at stage 317. 
0077 FIG. 3B is flow diagram illustrating a method 
flowchart for implementing the in-line accelerator in the 
runtime. During the runtime, at stage 321, the in-line accel 
erator receives the input data elements. In an embodiment, 
the incoming packets as input data elements are directly 
communicated to an in-line accelerator through an I/O 
interface. At stage 322, the in-line accelerator starts process 
ing the input data elements. In an embodiment, the input data 
elements may be entirely processed by the in-line accelera 
tor. In other embodiment, the execution of hot traces may 
finish prematurely on the in-line accelerator (bailout). A 
determination of a bailout occurs at stage 325. Upon occur 
rence of a bailout, the bailout code is executed to transfer 
control and data operation between the in-line accelerator 
and the general purpose instruction-based processor (or the 
accelerator in the next level in the case of multi-layer in-line 
acceleration scenario). The implementation of bailouts is 
discussed in further details below. 
0078. In an embodiment, no bailout occurs in executing 
the input data elements and the execution remains entirely in 
the fast path. In an alternative embodiment, the in-line 
accelerator fails to complete computation on input data 
elements. As such, the in-line accelerator will send the data 
state to a general purpose instruction-based processor (or the 
accelerator in the next level in a multi-level in-line accel 
eration scenario). A data State is a set of memory elements 
that contains the current operation of computation. Subse 
quently, at stage 323 the general purpose instruction-based 
processor executes operations associated with processing 
the input data elements. 
0079 Referring to FIG. 3B, if the application requires 
generating a response, a response is generated by the general 
purpose instruction-based processor at stage 324. In an 
embodiment, the in-line accelerator generates response 
packets without involving the general purpose instruction 
based processor. In an embodiment, the execution is first 
transferred from the in-line accelerator to the general pur 
pose instruction-based processor and the response packets 
are generated by the general purpose instruction-based pro 
CSSO. 

0080. Any data parallel execution model including high 
level dataflow execution models such as MapReduce, 
Dryad, and Spark may be used to design the data processing 
system in accordance with the disclosed invention. Embodi 
ments of the invention can also be extended to sequential 
languages such as C/C++ either by considering the sequen 
tial code as a single (probably big) dataflow node or by 
converting the sequential program to the parallel program 
ming language to achieve better performance. For purposes 
of providing an example only and without limiting the 
structure, function, purposes and use of embodiment of the 
invention, an exemplary implementation of the invention is 
explained in the context of Gorilla---- programing model. 
0081 Gorilla---- is an example of parallel programming 
language and a toolset for designing high performance 
streaming accelerators including networking and big-data 
applications. Gorilla DataFlow (GDF) is the execution 
model that Gorilla++ is built upon. GDF plays an essential 
role in the Gorilla---- toolset. GDF is designed based on three 
major goals: (i) generality to cover a wide range of appli 
cations, (ii) expressiveness to facilitate the modeling of the 
target applications, and (iii) analyzability to improve the 

Jan. 26, 2017 

quality of the results of Gorilla----compiler. An important 
feature of GDF model that improves both programmability 
and analyzability of the model is using structured compo 
sition of the connectivity and interfaces of the nodes. 
I0082 Referring to FIG.4, dataflow node 400, e.g. Gorilla 
Dataflow (GDF) node, is shown according to an embodi 
ment of the invention. Dataflow node 400 uses a rendezvous 
mechanism for communication between dataflow nodes. Its 
rendezvous mechanism may be implemented using FIFO 
interfaces, adopted from the theory of latency-insensitive 
designs. In addition to push-only, one-way interfaces, data 
flow node 400 has two-way request/reply interfaces, also 
known as offload interfaces. 
I0083) Referring to FIG. 4, dataflow node 400 includes 
input 401, output 403, and offload interface 402. In an 
embodiment, the offload interface includes n offload inter 
face nodes (402, 402 . . . and 402). Furthermore, each 
node with offload interface may be split into multiple nodes 
and each offload interface can be modeled as two one-way 
interfaces. Therefore, in an embodiment of invention, data 
flow node 400 is transformed into a dataflow graph without 
requiring any two-way offload interface. In an embodiment, 
dataflow node 400 uses offload interfaces as first-order 
construct in order to improve the expressiveness and ana 
lyzability of the model. 
I0084. Referring back to FIG. 4, a dataflow node 400 may 
have one input 401, one output 403, and several offload 
interfaces nodes 402 (402, 402 . . . and 402). In an 
alternative embodiment, a dataflow node may have zero 
offload interface node. In an embodiment, dataflow node 
may have multiple input/output interfaces, for example, for 
the purpose of merging or distributing data elements. In Such 
an embodiment, the nodes may only be able to reorder the 
data elements and may not be able to change the data 
elements themselves. These nodes may be transparent to the 
programmers and may be used in composition of nodes. In 
an embodiment, connecting the nodes together is done using 
a predefined set of composition functions. 
I0085 FIG. 5 illustrates the schematic diagram of com 
position of multiple nodes using lock-based synchronization 
mechanism to access a shared memory. In standard dataflow 
centric models of computation, e.g., KPN model, every 
dataflow node is Supposed to receive self-contained token(s) 
that carry the data for processing. The nodes do not need any 
global states to process the incoming tokens. Gorilla++ 
target applications, however, need to access global states, 
e.g., shared data structures. Gorilla---- uses a lock-based 
synchronization mechanism to solve this problem. Gorilla---- 
uses shared memories to save the global data. 
I0086) Referring to FIG. 5, engines 511, 512, and 513 are 
connected through their input/output interface represented 
by the solid lines to process input 501 and generate output 
502. Engines 511, 512, and 513 use offload interfaces to 
access shared memory 540 represented by the dashed lines. 
Shared memory 540 may be used to store global data. Since 
multiple dataflow nodes may access a shared memory, 
Gorilla---- may require a necessary synchronization mecha 
nism to ensure mutual exclusion while accessing the data. 
Referring to FIG. 5, lock engine 530 is used for synchroni 
zation. Lock engine 530 is accessed by the engines 511, 512, 
and 513 through offload interfaces represented by the dashed 
lines. In an embodiment, lock engine 530 does not reply to 
a lock request from the corresponding engines 511, 512, and 
513 unless either (i) the lock is not taken in the first place or 



US 2017/0024167 A1 

(ii) the lock is released and the requester of the lock is the 
winner among all other lock requesters. Blocks 521 and 522 
represent the lock construct interface in Gorilla----. 
0087 As and example, in an embodiment, pseudocode 
below could be used to compose the two types of engines, 
memory, and lock components to build the design presented 
in FIG. 3: 

add = Engine("add.c.); decrement = Engine(“decrement.c') 
mem = mem(height = 1, width = 32); lock = lock(height = 1) 
Design = Offload(Chain (Replicate(add, 2), decrement), mem, lock) 

0088. The pseudocode above shows how the computation 
engines are generated by calling Engine function and pass 
ing the corresponding C code as the argument. Similarly, the 
memory and lock components are generated by calling 
appropriate functions. Replicate is a composition function 
that creates multiple instances of its input component to 
increase its throughput. In this example, a replicated version 
of the add component is created with a replication factor of 
two. Chain is used to connect the output of one component 
to the input of another one and create a larger component. In 
this example design, the “add and “decrement components 
are chained. Finally, Offload connects one components 
offload interface to another components input/output inter 
face. In this example, “mem” and “lock’ components are 
connected to the “add and “decrement components using 
offload interface. 

0089. In an embodiment, a computation consists of mul 
tiple phases. In each phase, the dataflow nodes may execute 
different computation kernels. In GDF, the current phase 
may be attached to all data elements, which are moved 
across the system in order to specify the changes in the 
computation phases. 
0090 Referring back to FIG. 5, each of engines 511, 512, 
and 513 may have four distinct memories: (i) in-token 
memories, (ii) out-token memories, (iii) context memories, 
and (iv) shared memories. Incoming data elements are 
copied into in-token memories and outgoing data elements 
are copied into out-token memories. Context memories 
include the data states private to the computation associated 
to a given input token. When processing a new token, the 
previous content of these memories does not affect the 
output results. Shared memories are the data states, which 
are shared between computations of different input data 
elements for a single kernel or even computations of differ 
ent kernels. A kernel needs to be explicitly defined as a client 
of a shared memory Scope or the shared memory is not 
accessible to the kernel. 

0091 Different embodiments may use different imple 
mentation of GDF. For example, different implementation of 
GDP on a system with respect to realization of (i) compu 
tation kernels, (ii) dataflow (streaming) channels, (iii) 
memory components, and (iv) synchronization components 
may be used. In an embodiment, a part of the GDF can be 
implemented as hardwired hardware on an FPGA substrate 
and the rest of GDF can be implemented in software on a 
CPU. In such an embodiment, when there is a streaming 
channel between two nodes and one node is on the hardware 
and the other node is on the software, a special hybrid FIFO 
with hardware interface on one side and software interface 
on the other side may be used. In an embodiment where 
multiple streaming channels are crossing the hardware/ 
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software boundaries, hybrid FIFOs can be virtualized over a 
physical interface, e.g., PCIe interface. 
0092. In an embodiment of the invention, the kernels may 
be realized as hardwired control state machines, synthesized, 
for example, in any of FPGA, ASIC, or CGRA substrate. In 
an alternative embodiment, the kernels may be realized as 
instruction-based computation cores with or without spe 
cialized data-path operations. In an embodiment of the 
invention, the communication channels may be imple 
mented as hardware FIFO channels. In an alternative 
embodiment, the communication channels are implemented 
as software FIFOs. In an embodiment, all three types of 
memories in Gorilla---- may be implemented in a global 
monolithic memory. In an embodiment, each memory is 
customized into local registers, local scratch-pads, local 
coherent memory Subsystems, or global coherent memory 
system. In an embodiment, synchronization components 
may be implemented in hardware. In another embodiment, 
the synchronization is implemented using Software-based 
synchronization mechanisms. The software-based synchro 
nization mechanism may be implemented on top of a 
coherent and consistent memory system. 
0093 FIG. 6 illustrates the schematic diagram of pro 
cessing of an application by data processing system accord 
ing to an embodiment of the invention. FIG. 6 illustrates 
another embodiment in which the same reference numerals 
have been used to denote similar elements, parts and com 
ponents to those of the embodiment depicted in FIG. 1. A 
detailed discussion of similar components and similar func 
tionality will therefore not be repeated for the sake of 
brevity, and only the differences between the first and second 
embodiments will be described in detail. 
0094. At compile time, the program is parsed and trans 
lated to generate application control and data flow graph 
(CDFG) 150. In an embodiment, high-level synthesis reads 
a high-level description and translates it into a CDFG 
intermediate form. The CDFG intermediate form should 
represent all the necessary control and dataflow information. 
Referring to FIG. 6, operations of the CDFG 150 have been 
divided into hot operations and cold operations. The hot 
operations are operations frequently used during the profil 
ing phase of the application. On the other hand, the cold 
operations are operations that are not frequently used during 
the profiling phase. In FIG. 6, the hot operations are shaded 
while the cold operations remain blank. The hot operations 
of CDFG 150 provide the basis for formation of the system's 
fast-path. The hot operations of CDFG 150 run on in-line 
accelerator 111. In an embodiment, in-line accelerator 111 is 
an FPGA. In an embodiment, in-line accelerator 111 is part 
of I/O processing unit 110. In an embodiment, several in-line 
accelerators may be used to implement hot operations of 
CDFG 150. The cold operations are executed using general 
purpose instruction-based processor 120. 
0.095 Referring to FIG. 6, at runtime, the input packets 
are fed to the in-line accelerator 111 through receive FIFO 
storage 112 and the generated packets are sent over network 
130 by the in-line accelerator 111 through transmit FIFO 
storage 114. In an embodiment, when an input data enters 
the in-line accelerator, the in-line accelerator can process the 
data as long as the execution trace remains in the fast-path. 
In FIG. 5, the operations that are actually executed in 
run-time are shown with a bold border. Since the execution 
trace exits the fast-path in the example illustrated in FIG. 6, 
bailout from in-line accelerator to general purpose instruc 



US 2017/0024167 A1 

tion-based processor occurs. More specifically, referring to 
the example of FIG. 6, the execution trace exits the fast-path 
after the first state and therefore the in-line accelerator 111 
cannot process the input data anymore. The in-line accel 
erator 111 may terminate the execution for the given input 
packet and bailout after the execution of the first state. 
0096. Upon premature termination of execution by in 
line accelerator 111 the execution may be automatically 
transferred to software running on a general purpose instruc 
tion-based processor. The general purpose instruction-based 
processor may either continue the execution of the program 
from a state following the bailout point (continuation 
method) or it may restart the execution from the beginning 
(rollback method). When rollback method is used, software 
restarts the execution of the engine from the beginning. 
When continuation method is used the software continues 
the execution of the engine from the state following the 
bailout point. Transfer of execution is discussed in more 
details below. 

0097 FIG. 7 illustrates the schematic diagram of pro 
cessing of an application engine sliced into hot/cold opera 
tions by the data processing system according to an embodi 
ment of the invention. The diagram 700 includes engines A. 
B, C, D and E interconnected to perform computation on 
input data elements received from input 701. The compu 
tation results are outputted through output 703. The diagram 
700 may depict the slicing of a Gorilla kernel into hot states 
and cold states as explained before. In such an embodiment, 
each engine may be a GDF node. Each engine may include 
several execution states, for example, engine D may include 
states S1-S6. In the example of FIG. 7, states S1, S2, and S5 
are hot states and States S3, S4, and S6 are cold states. In an 
embodiment, each engine may be implemented by an in-line 
accelerator, a general purpose instruction-based processor, 
or the combination of the two. 
0098. In case of a multi-layer acceleration system, each 
engine may also be implemented in any of the different 
acceleration levels depending on the hotness level of its 
operations. For brevity, the rest of the document discusses 
the transfer of data and control only between a single in-line 
accelerator and the general purpose instruction-based pro 
cessor. However, the same methodology can be used for 
transferring data and control between multiple accelerator 
levels between the general purpose instruction-based pro 
cessor and in-line accelerator as well. 

0099. The automated transferring of execution from the 
in-line accelerator to the general purpose instruction-based 
processor must be such that the flow of execution remains 
consistent. In an embodiment, transferring of the execution 
between the in-line accelerator and the general purpose 
instruction-based processor may occur at the boundary of 
two engines during an inter-engine transition. The transfer of 
execution between dataflow nodes may also be referred to as 
coarse-grain transfer. For example, in FIG. 7, the two 
engines A and B are in a back-to-back dataflow relationship 
(e.g., chain relationship). Engine A may be implemented as 
a hard-wired hardware engine and engine B may be imple 
mented as a Software engine. In an embodiment, the transfer 
of execution may occur upon the completion of execution by 
hardware engine A. In such a case, after hardware engine A 
finishes its execution normally, its output data is passed to 
the next engine, engine B, which is running as Software. In 
Such an embodiment, the context memory, which is com 
pletely dependent on the input token of hardware engine A, 
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does not have to be transferred. In an embodiment, there 
may be a shared memory between the two engines A and B. 
The shared memory may be implemented using a coherency 
mechanism across the in-line accelerator and the general 
purpose instruction-based processor. 
0100. In an embodiment, transferring of the execution 
between an in-line accelerator and a general purpose instruc 
tion-based processor may be required at any point of pro 
cessing other than the boundary of two engines. For 
example, in an embodiment, the transition may occur in the 
middle of an execution by an engine. The transfer of 
execution inside a data flow engine node may also be 
referred to as fine-grain transfer. Under these circumstances, 
the general purpose instruction-based processor is required 
to continue the execution in a way that the flow of execution 
remains consistent. This is especially important and chal 
lenging as the realization of each program operation in the 
accelerator may be in the form of Some atomic units includ 
ing state(s) of a state machine or stage(s) of a pipeline in a 
hardwired hardware, instruction(s) in SIMD lane(s) in a 
GPGPU, or micro-code instruction(s) in a network general 
purpose instruction-based processor. Each of these atomic 
forms might cover one or more operations associated with 
the computation of the corresponding kernel. An atomic 
form might cover only part of an operation and consequently 
realization of an operation might need multiple units of these 
atomic units. As a result, when the execution of one of these 
atomic units terminates on the in-line accelerator side, it is 
challenging to jump to the right instruction on the general 
purpose instruction-based processor side that can guarantee 
a continuous flow of execution. Similar problem may exist 
when transferring the execution from the general purpose 
instruction-based processor to the in-line accelerator. 
0101. In an embodiment of the invention, the bailing 
point may be determined using a compilation analysis. The 
compilation analysis of the engine currently executing the 
application may suggest how far the execution has been 
performed. 
0102. In an embodiment of the invention, a state machine 
simulation mechanism is used to achieve precise continua 
tion from an engine, implemented as hardware state 
machine, to Software. The state machine simulation mecha 
nism may provide simulation of hardware state machine on 
the slow-path state machine on the general purpose instruc 
tion-based processor. In an embodiment, the slow-path State 
machine simulation can be generated from the output of an 
HLS tool that synthesizes the sliced engine code. In an 
embodiment, for the accelerated engines, the software will 
contain the simulated slow-path in addition to the original 
Software engine. Upon occurrence of a bailout, the system 
may decide to pursue the continuation method by transfer 
ring the execution to the corresponding bailout stage in the 
simulated slow-path state machine. In an embodiment, if the 
system decides to pursue a rollback method, the execution is 
transferred to the beginning of the corresponding software 
engine that is running as natively. 
0103 FIG. 8 illustrates the schematic diagram of a state 
machine simulation mechanism in accordance with an 
embodiment of the invention. Diagram 810 shows the sche 
matic diagram of fast-path processing of an application 
sliced into hot/cold operations. Diagram 820 shows the 
schematic diagram of slow-path state machine simulation of 
the fast-path according to an embodiment of the invention. 
Fast-path diagram 810 includes engines A, B, C, D and E 
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interconnected to perform computation on input data ele 
ments received from accelerator input 811 and to output the 
generated output data elements from accelerator output 813. 
Slow-path diagram 820 is a software simulation of fast-path 
diagram 810. Upon termination of execution on the fast 
path, the bailout point along with the necessary state values 
is sent to the software engine that simulates the behavior of 
the state machine. 
0104 Referring to fast-path diagram 810, a bailout may 
occur at first state 51 of engine D. There may be two bailout 
points (BOP1 and BOP2) associated with different execution 
routes of the application. As such, the execution terminates 
in fast-path prematurely. Accordingly, bailout points BOP1 
and BOP2 are communicated to the state machine simulator 
in slow-path 820. In an embodiment, all necessary state 
values are also communicated to the state machine simula 
tor. Referring now to slow-path diagram 820, the state 
machine simulator may determine the termination stage of 
the execution on fast-path 810 and continue the execution on 
slow-path 820. In an embodiment, the state machine simu 
lator continues the execution of the engine at continuation 
points CP1 and CP2 corresponding with bailout points 
BOP1 and BOP2 respectively on simulated engine D. The 
simulator may complete the execution of the application. 
0105. In an embodiment, the state machine simulator 
only emulates the engine that is currently engaged in the 
execution. Upon termination of the execution by the current 
engine, the next engines in the slow-path can be executed 
natively. For example, after the execution of engine D is 
completed in the state machine simulator, the result may be 
passed to a native code (and not the simulated code) of 
engine E for further computation. In Such an embodiment, 
Some performance implications for the slow-path may be 
avoided. In an embodiment, the slow-path part of the engine 
may be re-factored into multiple engines in order to decrease 
the overhead of state machine simulation by forcing the 
execution to switch to native mode earlier. 

0106. In an embodiment of the invention, upon premature 
termination of execution on the in-line accelerator, the 
general purpose instruction-based processor restarts the 
execution of the input data as if no processing was done by 
the in-line accelerator. In an embodiment, in contrast with 
the continuation method that execution was transferred to 
the corresponding bailout stage in the simulated slow-path 
state machine, the execution may be transferred to the 
beginning of the corresponding software engine that will be 
running as natively. This method of transferring the execu 
tion is referred to as a rollback method. Referring back to 
FIG. 8, for example, upon termination of the execution by 
engine D at State S1, the general purpose instruction-based 
processor may begin the execution at state S1 again, instead 
of continuing to S2. In such an embodiment, the execution 
of the trace on the accelerator may be done speculatively. In 
an embodiment, the side effects of the computation on 
memories by the in-line accelerator may be rolled back and 
the general purpose instruction-based processor (or the next 
level accelerator) may reprocess the data. 
0107 Another problem associated with transferring 
execution between an in-line accelerator and a general 
purpose instruction-based processor (or the next level accel 
erator) is transferring the necessary data state between them. 
The required data that is transferred between the in-line 
accelerator and the general purpose instruction-based pro 
cessor (or the next level accelerator) may depend on the type 
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of control transfer method adopted by the system. In an 
embodiment, the required data to be transferred using a 
rollback method is different than the required data to be 
transferred using a continuation method. 
0.108 FIG. 9A illustrates the schematic diagram of 
memory block architecture in accordance with an embodi 
ment of the invention. The processing system 900 includes 
an in-line accelerator 910 and a general purpose instruction 
based processor 920. In an embodiment, the general purpose 
instruction-based processor 920 may be a multi-core general 
purpose instruction-based processor including core-1, core 
2, and core-3. An operating system may divide the process 
ing time of the multi-core general purpose instruction-based 
processor and assign threads to the resulting time slots so 
that the general purpose instruction-based processor runs 
multiple threads concurrently. A thread is a unit of executing 
programs. In FIG.9A, core-1 has been assigned the threads 
1-3 for processing. In an embodiment, a multi-core general 
purpose instruction-based processor system has a distributed 
system structure Such that each central processing unit 
(CPU) has dedicated memory and accesses shared memory 
when other data is needed (not shown in the figure). In 
another embodiment, a multi-core general purpose instruc 
tion-based processor System has a centralized shared system 
structure such that each CPU has only cache memory and 
stores necessary data in shared memory (not shown in the 
figure). 
0109 Referring to FIG. 9A, general purpose instruction 
based processor 920 includes coherent cache 921. Coherent 
cache 92.1 may be used to manage conflicts between storage 
mechanisms of core-1, core-2, and core-3. In an embodi 
ment, coherent cache 921 may also maintain consistency 
between the general purpose instruction-based processor 
920 and main memory. To reduce latency, in alternative 
embodiments, often one or more levels of high-speed cache 
memory are used to hold a Subset of the data or instructions 
that are stored in the main memory. 
0110. In an embodiment of the invention, in-line accel 
erator 910 may include multiple engines 1-3. Each engine 
may execute multiple threads 1-3. Each engine includes 
in-token memory 911, out-token memory 912, and context 
memory 913. Incoming data elements are copied into in 
token memory 911 and outgoing data elements are copied 
into out-token memory 912. Context memory 913 stores 
transient context data (e.g., packet/frame data) that is unique 
to a specific process, along with pointers that reference data 
structures and tables stored in. Context memory 913 
includes data states private to the computation associated to 
a given input token. When processing a new token, the 
previous content of these memories does not affect the 
output results. 
0111. In an embodiment, in-line accelerator 910 further 
includes accelerator level shared memory 914. Accelerator 
level shared memory 914 stores data states that are shared 
between computations of different input data elements for a 
single kernel or computations of multiple kernels. A kernel 
may need to be explicitly defined as a client of a shared 
memory scope or the shared memory may not accessible to 
the kernel. The shared memory must be coherent with the 
global shared memory which shared between the process 
and in-line accelerator (or other layers of acceleration in a 
multilayer scenario). In-line accelerator 910 also includes 
coherent memory 915. Coherent cache 915 may manage 
conflicts between engine storage mechanisms and maintain 
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consistency between in-line accelerator 910 and main 
memory. To reduce latency, in alternative embodiments, 
often one or more levels of high-speed cache memory are 
used to hold a subset of the data or instructions that are 
stored in the main memory. 
0112 In-line accelerator 910 (and other accelerators in 
different acceleration layers) and general purpose instruc 
tion-based processor 920 both are coupled to global shared 
memory 930. Global shared memory may be in communi 
cation with coherent caches 915 and 921. Global states, e.g., 
shared data structures, may be stored in global shared 
memory 930 and may be accessed by both in-line accelera 
tor 910 and general purpose instruction-based processor 920 
(or other accelerators in a multilayer system). Synchroniza 
tion mechanisms to ensure mutual exclusion of data may be 
used as explained before to manage the access of shared data 
in global shared memory 930. 
0113. In transferring execution from the in-line accelera 
tor to the general purpose instruction-based processor, it 
may be necessary to transfer data between different memory 
components. Once the in-line accelerator begins execution, 
engine-1 accesses the input data elements stored in in-token 
memory 911 for computation. Throughout the execution by 
in-line accelerator 910, changes may be made to data stored 
in context memory 913 and shared memories 914 and 930. 
The output data elements generated by the engine-1 are also 
stored in out-token memory 912. Therefore, upon termina 
tion of the execution by the in-line accelerator 910 the state 
of the stored data may be altered relative to the start of the 
execution. 
0114. In an embodiment, transferring of data between the 
in-line accelerator and the general purpose instruction-based 
processor may occur at the boundary of two engines during 
an inter-engine transition. This kind of transfer of execution 
between dataflow engine nodes may also be referred to as 
coarse-grain transfer. For example, referring back to FIG. 8, 
the two engines A and B are in a back-to-back dataflow 
relationship (e.g., chain relationship). Engine A may be 
implemented as a hard-wired hardware engine and engine B 
may be implemented as a software engine. In an embodi 
ment, the transfer of execution may occur upon the comple 
tion of execution by hardware engine A. 
0115. In such an embodiment, the system may perform 
transfer of data using virtual channels to move the data 
elements between the in-line accelerator and the general 
purpose instruction-based processor. Multiple virtual chan 
nels can be used on a single physical interface (e.g. a PCIe 
interface). In an embodiment, the elements stored in the 
in-token memory 911 and context memory 913 does not 
need to be transferred. However, the changes to the global 
shared memory must become visible to the Software engine. 
In coarse-grain transfer, output token may also transferred to 
the input token of the Software engine through virtual 
channels as discussed before. 

0116. In an embodiment, transferring of the execution 
between an in-line accelerator and a general purpose instruc 
tion-based processor may be required at any point of pro 
cessing other than the boundary of two engines. In an 
embodiment, the transition may occur in the middle of an 
execution by an engine. For example, referring back to FIG. 
8, engine D may terminate execution at very first state S1. 
As such, transfer of data between the in-line accelerator and 
general purpose instruction-based processor may occur 
inside a dataflow node. Upon termination of execution on 
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engine D, the bailout point along with the necessary state 
values is sent to a software engine. The Software engine may 
be a state machine simulator that emulates the behavior of 
the state machine, as explained above with respect to con 
tinuation method. 

0117. In such an embodiment, the input data elements 
stored in in-token memory 911 may be needed to complete 
the execution. Therefore, the input data elements may be 
copied to an in-token memory of the Software engine on 
general purpose instruction-based processor. Since part of 
output data might be constructed already, the output data 
elements stored in out-token memory 912 may be required 
to be transferred to the Subsequent engine. As such, the 
content of out-token memory 912 may be copied to an 
out-token memory of the Software engine. Similarly, the 
changes to the context memory 913 may be copied to a 
dedicated place visible to the software engine in order to 
continue execution from the bailing point. In an embodi 
ment, the changes to content of global shared memory 930 
may already be visible and coherent from the general 
purpose instruction-based processor side. In such an 
embodiment, no further action may be required. In an 
alternative embodiment, at least a portion of the changes 
made by in-line accelerator 910 to content of the global 
shared memory 930 may not be visible or coherent form the 
general purpose instruction-based processor perspective. As 
Such, those changes may be copied to a dedicated place 
visible to the Software engine on the general purpose instruc 
tion-based processor 920. In an embodiment, the content of 
the context memory 913 is made available to the general 
purpose instruction-based processor 920. In other embodi 
ments, the content of the context memory 913 is only copied 
to a memory accessible to the Software engine if the content 
is predicted to be used in the future computation of the 
Software engine. In an embodiment, such a predication will 
be based on a prediction mechanism at the compilation time, 
using profiling or static data-flow analysis. 
0118. In an embodiment of the invention, upon termina 
tion of the execution on the in-line accelerator, the general 
purpose instruction-based processor restarts the execution of 
the input data as if no processing was done by the in-line 
accelerator (rollback method). Referring back to FIG. 8, for 
example, upon termination of the execution by engine D at 
state S1, the general purpose instruction-based processor 
may begin the execution at State S1 again, instead of 
continuing to S2. 
0119. In such an embodiment, the input data elements 
stored in in-token memory 911 may be required to perform 
the necessary computation. As such, the content of in-token 
memory 911 must be copied to a memory accessible to the 
general purpose instruction-based processor. On the other 
hand, because general purpose instruction-based processor 
920 restarts the execution as if no processing was done by 
in-line accelerator 910, the content of out-token memory 
912 and context memory 913 may be ignored. In an embodi 
ment, the changes made to shared memory 930 by in-line 
accelerator 910 may be rolled back. In an embodiment, if 
reversing the changes is not possible the system may not be 
able to perform the rollback method and may perform the 
continuation method instead. 

I0120 Table 1 below shows the summary of state transfer 
for different memory types when transitioning from hard 
ware accelerator to software under different scenarios 
according to an embodiment of invention. 
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TABLE 1. 

Data state transfer for different memory types upon bailout. 

Fine-grain 
rollback 

Fine-grain 
Coarse-grain Continuation 

Control Jump to the next Jump to the SW 
transfer SW engine engine associated 

with this 
accelerated engine 
(with the native 

Jump to the 
corresponding 
operation in the 
simulated slow-path 
engine of this HW 

execution) engine 
In-token No action Copy to in-token Copy to in-token 
memory necessary memory of SW memory of simulated 

engine HW engine if used 
later 

Out- Copy the output No action necessary If changed, copy to 
token token to the input out-token memory of 
memory of the next SW simulated HW engine 

engine if used later 
Context No action No action necessary If used later, changes 
memory necessary must be copied to 

context memory of the 
simulated HW engine 

Shared Changes must The changes must Changes must become 
memory become visible to be rolled back visible to the 

SW simulated HW engine 

0121. The transfer of data state from context and shared 
memories in continuation method can be complicated and 
may generate a high overhead. The next section discusses 
mechanisms to implement these transferS more efficiently. 
0122. In an embodiment, during the bailout, the system 
maps all the shared memories that have a client engine with 
the possibility of bailout as part of a memory space that is 
coherent from the general purpose instruction-based proces 
Sor point of view. Therefore, upon continuation, the latest 
data states in these memories may become automatically 
visible by the software engines on the general purpose 
instruction-based processor. In an alternative embodiment, 
the system changes the shared memories in a way that they 
are not coherent from the general purpose instruction-based 
processor side before the bailout and becomes coherent only 
after the bailout point. This will reduce the overhead of 
keeping all shared memories coherent all the time. 
0123. In an embodiment, in addition to the shared memo 
ries, all the state data may be required to become available 
to the engine software, e.g. simulator, on the general purpose 
instruction-based processor side. In an embodiment, all 
in-token, out-token, and context memories are copied to the 
general purpose instruction-based processor side. In an 
embodiment, a bailout table is used to minimize the over 
head of the transfer as explained further below. 
0.124 FIG. 10 illustrates the schematic diagram of imple 
menting a bailout table in accordance with an embodiment 
of the invention. In an embodiment, transfer of data between 
in-line accelerator 1010 and general purpose instruction 
based processor 1020 is managed by bailout table 1030. 
Bailout table 1030 keeps track of a set of variables for each 
bailout case. The set may include only the necessary vari 
ables to continue execution. In an embodiment, for each 
bailout point, the bailout table 1030 may include a set 
indicating which variables might have been used in a write 
operation and later be used in a read operation. In an 
embodiment, the bailout table includes two sections. The 
first section 1031 keeps track of the memory elements 
written by previous operations in the engine. The second 
section 1032 keeps track of the memory elements that later 
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might be read by next operations after bailout. In an embodi 
ment, these memory elements may belong to any of the 
in-?out-token, context or shared memories explained in 
previous section. 
(0.125. In an embodiment, bailout table 1030 may be 
generated in a fully static (compiler based) approach. In an 
embodiment, bailout table 1030 is populated using a static 
compiler analysis. In an embodiment, the analysis may be 
performed while the accelerated engine code is being gen 
erated during compilation time. In an embodiment, the 
compiler may use a conservative data-flow analysis to find 
the possible write set before the bailout and possible read set 
after the bailout. The compiler may use classic dataflow 
dependency analysis to generate the bailout table. 
I0126. In an embodiment, bailout table 1030 may be 
generated in a fully dynamic (runtime based) approach. In an 
embodiment, tracking the variables that have been used in a 
write operation in the bailout table can be maintained 
dynamically using an extra bit added to each value (for 
example, in memories or registers). In compiler-based 
approach, a more conservative data-flow analysis may be 
used and the bailout table 1030 may store unnecessary 
variables (or memory ranges). The dynamic written-bit 
tracking method may be more costly at runtime. The 
dynamic method may not determine if the marked variables 
will be used after continuation. 

0127. In an embodiment, the combination of the runtime 
based and complier-based approach is used to populate 
bailout table 1030. In an embodiment, the compiler statically 
generates the table for candidates using a compile time 
analysis. At runtime, however, the accelerator may only 
transfer the variables or rangers in the table that have their 
written-bit set. 

I0128. In an embodiment, big data structures such as 
arrays may be tracked in bailout table 1030 as a set of 
memory ranges in the table. In other embodiments, the big 
data structures are tracked in bailout table 1030 by just 
storing the start of the array and a metadata representing the 
part(s) of the array that are modified and will be used by the 
Software following continuation. In an embodiment, the 
metadata may be a data structure similar to interval trees 
stored as bitmaps out of bailout table. Each node in the tree 
may represent a range of the corresponding array elements 
that is modified by the accelerator and used later by the 
Software following continuation. For example, in an 
embodiment, each node in the tree may be 32 bits and 
divided to four 8-bit components. The first two 8-bit com 
ponents may store the range indexes for the array and the 
next two 8-bit components are pointers to the left and right 
children nodes of the node (8-bit offsets relative to the 
beginning of the tree data structure). 
I0129. According to an embodiment of the invention, the 
bailout table 1030 is compressed by grouping the variables. 
In Such an embodiment, the group identifiers are stored in 
the list rather than the variables themselves. In an alternative 
embodiment, instead of listing individual variables, the table 
can only include data groups where each group represents an 
address interval of the memory ranges modified by the 
hardware in-line accelerator 1010 and may be used later by 
a Software engine in the general purpose instruction-based 
processor 1020. 
0.130. In an embodiment, the copied values of the vari 
ables with high probability of being used by the remaining 
code in the slow-path are pushed to the lower level of cache 
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hierarchy. In an embodiment, these variables are copied 
directly to the general purpose instruction-based processor 
cache. Therefore, an embodiment of the invention proposes 
having two sets of shared variables for each bailout point in 
bailout table 1030. The first may be the set of variables (or 
memory ranges) that are simply copied to the coherent 
global shared memory and become visible to the general 
purpose instruction-based processor immediately. The sec 
ond set may be the set of variables which are pushed to the 
next level cache (evicted from accelerator local cache) in 
addition to get copied. The variables with high read prob 
ability on the slow-path may be identified using profiling of 
the application. 
0131 Table 2 is an example of a bailout table according 

to an embodiment of the invention. The bailout table pro 
vides the variables to track two bailout points (State-1 and 
State-2). The variables are divided in to two sets of “move 
set and “move and push set'. The variables under “move 
set are the set of variables (or memory ranges) that are 
simply copied to the global shared memory that is coherent 
and become visible to the general purpose instruction-based 
processor. The variables under “move and push set are the 
set of variables which are pushed to the next level cache 
(evicted from in-line accelerator local cache) in addition to 
get copied. In the example table below, State-1 includes a 
first set of variables vidl, vid21 under “move set category 
and a second set of variables {id} under “move and push set” 
category. State-2, however, only includes one set of vari 
ables (L1, U1), (L2, U2)} under “move set category. In an 
embodiment, the bailout point may only include variables 
under “move and push set category. These variables or 
ranges may belong to any one of in-token, out-token, context 
or shared memories. 

TABLE 2 

An exemplary bailout table according to an embodiment 

Bailout point Move set Move and push set 

State-1 {vid1, vid2} {id3} 
State-2 {(L1, U1), (L2, U2). 

0.132. In many cases, the overhead of computing the 
move set and performing the move is very high. This is 
particularly important given the fact that the in-line accel 
erator needs to be utilized for fast-path operations and 
having to store and move much information can be prohibi 
tive. In such cases, it might be beneficial to roll back some 
of the accelerator computation. A pure rollback mechanism, 
however, may require an unbounded speculative memory to 
revert the modifications to the shared memories. 

0133. In an embodiment of the invention, the continua 
tion and rollback methods are combined to make a more 
efficient transfer of execution from the in-line accelerator to 
the general purpose instruction-based processor. In an 
embodiment, certain pre-determined rollback points are 
defined in the fast path. The system may keep data written 
into the shared memory in a speculative state as long as 
possible. Upon a bailout, a rollback method may be used if 
the speculative data is not changed to non-speculative. 
0134 FIG. 9B illustrates the schematic diagram of 
memory block architecture including quasi-speculative 
cache in accordance with an embodiment of the invention. 
FIG.9B illustrates another embodiment in which the same 
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reference numerals have been used to denote similar ele 
ments, parts and components to those of the embodiment 
depicted in FIG. 9A. A detailed discussion of similar com 
ponents and similar functionality will therefore not be 
repeated for the sake of brevity, and only the differences 
between the first and second embodiments will be described 
in detail. 

I0135) In an embodiment, quasi-speculative memory 916 
is used to postpone committing of the speculative data as 
long as possible. In a rollback method, quasi-speculative 
memory 916 may be used to rollback changes to the shared 
memory 930. In a continuation method, quasi-speculative 
memory 916 may be used to copy the changes on shared 
memory 930 for continuation purpose. While quasi-specu 
lative memory 916 delays committing of the speculative 
data, it may not guarantee the rollback on speculative data 
when it runs out of speculative storage. In an embodiment, 
for a given input data, a rollback-based bailout can be done 
as long as all the data associated with the input is still not 
committed. In an embodiment, if any of the data associated 
with the input is committed only continuation method is 
possible. 
0.136. In an embodiment of the invention, quasi-specula 
tive memory 916, apart from standard load/store commands, 
includes commands to start, end, and abort a speculative 
session. 

0.137 Referring to table 3 below, some of the quasi 
speculative cache commands are provided. The “begin 
speculative session' command may start a speculative ses 
sion and get a thread id as an argument. From this point on, 
all the load and stores from this thread will be associated 
with the session. Later, when “end speculative session' is 
called, the memory may commit the speculative values to 
non-speculative ones. The “abort speculative session 
instruction may abort all the changes associated with this 
speculative session or if abortion is not possible anymore, 
the memory may report it. At this stage, the set of variables, 
which are written by the thread during the speculative 
session, can be read using "get written-back set'. The write 
set may be in form of a bit vector in that each bit indicates 
whether a memory word/block is written by the thread 
during the speculative session. “Write-back’ command may 
be used when continuation happens and we know that the 
write-set of a thread will be used soon used by the slow path. 
In Such situation writing back the write-set can improve the 
performance of the system. 
0.138. In an embodiment, unlike conventional transac 
tional memories, the abort mechanism is not an internal 
event. The abortion may occur based on an external request 
to the cache when bailout happens. An abort mechanism 
may be the desired bailout scenario. In quasi-speculative 
cache when there are conflicts between accesses from dif 
ferent threads and there is no more space to save the 
speculative value, the default behavior may commit the 
oldest speculative value to non-speculative state. This may 
make the session associated with the committed speculative 
value non-speculative. Therefore, the chance of using roll 
back for that particular speculative session may be elimi 
nated. In an embodiment, unlike conventional transactional 
memory, the speculative memory does not need to Support 
atomicity of transactions. If atomicity is required, it may be 
provided using synchronization mechanisms, e.g. lock 
engines explained in previous sections. 
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TABLE 3 

Speculative cache commands 

Command Input Output 

Begin speculative session Thread id No output 
End speculative session Thread id No output 
Get written-back set Thread id, address Write set bit vector 

range 
Abort speculative session Thread id Status (Successful 

abort or not) 
Standard loadstore Read data or no output Thread id, Address 

and/or store data 
Write-back Thread id No output 

0.139. In an embodiment of the invention, the system 
performs a cost analysis to determine whether to use con 
tinuation method or rollback method for a given bailout. 
Depending on the amount of data that needs to be transferred 
as well as the amount of pre-bailout computation, the cost of 
rollback or continuation may change. In an embodiment, the 
compiler may be used to calculate the cost of each method. 
The compiler may perform a static analysis and profiling 
phase to suggest rollback or continuation for a given bailout 
point. The in-line accelerator may later use these Suggestions 
to perform rollback or continuation method. The following 
formulas can be used to estimate the cost for rollback and 
continuation: 

0140 
I0141 Move set size (continuation)-in-token and 

out-token move set size--context move set size-- 
shared memory move set size 

I0142 Rollback Cost={(AlphaxMove set size)+(Betax 
Compute overhead)+(Gammaxrollback size) 
0.143 Move set size (continuation)-in-token move 
set size 

0144) 
size 

Continuation Cost={AlphaxMove set size} 

Rollback overhead-shared memory move set 

0145 The Alpha, Beta, and Gamma constants can be 
tuned for a specific architecture by running and profiling 
several workloads while measuring the actual latency of 
move set Tuning can be done once for a set of applications 
and later used for any other application. Alpha models the 
cost of moving data between the in-line accelerator and 
general purpose instruction-based processor (or, the next 
layer of in-line accelerator). Therefore, if in a system mov 
ing data is more expensive we will have higher Alpha value. 
Beta models the cost of computation in in-line accelerator. 
Therefore, in a system with a high performance in-line 
accelerator Beta is low and in a system with a low perfor 
mance in-line accelerator Beta is high. Gamma models the 
cost associated with rolling back the speculative data (e.g. in 
quasi-speculative cache). 
0146 FIG. 11 is a flow diagram illustrating a method 
flowchart for transferring execution according to an embodi 
ment of the disclosure. Although the stages in the flowcharts 
with reference to FIG. 11 are shown in a particular order, the 
order of the actions can be modified. Thus, the illustrated 
embodiments can be performed in a different order, and 
some actions/blocks may be performed in parallel. Some of 
the blocks and/or operations listed in FIG. 11 are optional in 
accordance with certain embodiments. The numbering of the 
blocks presented is for the sake of clarity and is not intended 
to prescribe an order of operations in which the various 
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blocks must occur. Additionally, operations from the various 
flows may be utilized in a variety of combinations. 
0147 At stage 1101 of FIG. 11 the execution by the 
in-line accelerator terminates prematurely. The processing 
point at which the execution of the application terminates is 
called the bailout point. To complete the execution of the 
application, the in-line accelerator may transfer the execu 
tion to another in-line accelerator or a general purpose 
instruction-based processor. The bailout point may occur at 
the boundary of two engines during an inter-engine transi 
tion or during execution by an engine. 
0.148. At stage 1102 the in-line accelerator determines the 
appropriate method to implement the bailout. Bailout is the 
process of transitioning the computation associated with an 
input from the in-line accelerator to the general purpose 
instruction-based processor. In an embodiment, the in-line 
accelerator implements the bailout using a continuation 
method 1110. The continuation method 1110 is a kind of 
bailout in which the general purpose instruction-based pro 
cessor continues the execution of input data on the accel 
erator from the bailout point. In another embodiment, the 
in-line accelerator implements the bailout using a rollback 
method 1120. In the rollback method 1120 the general 
purpose instruction-based processor restarts the execution of 
an input data from the beginning. In other embodiments, a 
combination of the continuation and rollback methods may 
be adopted by the in-line accelerator. 
0.149 The determination of whether a continuation 
method 1110 is used or a rollback method 1120 depends 
upon multiple factors. In an embodiment, a cost analysis is 
performed according to this disclosure to determine the 
more efficient method under the circumstances. In an 
embodiment, the cost of transferring execution based on 
each method depends upon the amount data required to be 
transferred. In an embodiment, the default method of trans 
ferring execution is rollback method 1120. The implemen 
tation of rollback method 1120 may not be possible, how 
ever, where data has been committed to non-speculative 
storages. In an embodiment, the quasi-speculative cache is 
used to delay committing data to non-speculative storages. 
0150. At stage 1111 of continuation method 1110, the 
system determines the bailout point at which the execution 
of the application terminated prematurely. The determina 
tion of bailout stage facilitates continuation of execution by 
the general purpose instruction-based processor. In an 
embodiment, the execution is prematurely terminated at the 
boundary of two engines. In an embodiment, as shown in 
FIGS. 7 and 8, a state machine simulator on slow-path is 
used to emulate the in-line accelerator behavior. Upon 
occurrence of a bailout, the state machine simulator contin 
ues execution from the bailout point. 
0151. At stage 1112 of the continuation method 1110, the 
in-line accelerator transfers the necessary data to general 
purpose instruction-based processor to continue execution. 
In the continuation method 1110, all content of in-token, 
out-token, and context memory may be required to be 
available to the general purpose instruction-based processor. 
In an embodiment, the changes made to the shared memory 
by the in-line accelerator may be required to become visible 
to the general purpose process. In an embodiment, a bailout 
table, as shown in FIG. 10, is used to selectively transfer 
only the required data states and avoid the overhead of 
transferring unnecessary additional data. 



US 2017/0024167 A1 

0152. At stage 1113, the general purpose instruction 
based processor continues execution of the application. In an 
embodiment, the execution is continued on a software 
engine, for example, a state machine simulator, on the 
slow-path. 
0153. In an embodiment of the invention, at stage 1102 
the system may decide to transfer execution using rollback 
method 1120. In an embodiment, the rollback method 1120 
may be the preferred method of bailout. At stage 1121 of the 
rollback method 1120 the necessary data may be transferred 
from the in-line accelerator to the general purpose instruc 
tion-based processor for execution. In an embodiment, the 
input data elements stored in in-token memory is trans 
ferred. In an embodiment, the out-token memory and con 
text memory may be ignored. 
0154) At stage 1122, the changes to the shared memory 
must be rolled back. In an embodiment, a quasi-speculative 
cache is used to roll back changes made to the memory. In 
an embodiment, if the changes made by the in-line accel 
erator to the shared memory cannot be rolled back, rollback 
method 1120 may not be possible and continuation method 
1110 is pursued. 
0155. At stage 1123, the general purpose instruction 
based processor restarts the execution of the application as 
if no processing was done by the in-line accelerator. In an 
embodiment, at stage 1123 the execution of the CDFG is 
started by Software from the beginning. 
0156. At stage 1103, the execution is finished by software 
engine on the general purpose instruction-based processor. 
In an embodiment, the application may be transferred to 
other software engines or may be transferred to a hardware 
in-line accelerator for further processing. In an embodiment, 
a response packet is generated at stage 1103. 
0157 FIG. 12 is a diagram of a computer system includ 
ing a data processing system according to an embodiment of 
the invention. Within the computer system 1200 is a set of 
instructions for causing the machine to perform any one or 
more of the methodologies discussed herein. In alternative 
embodiments, the machine may be connected (e.g., net 
worked) to other machines in a LAN, an intranet, an 
extranet, or the Internet. The machine can operate in the 
capacity of a server or a client in a client-server network 
environment, or as a peer machine in a peer-to-peer (or 
distributed) network environment, the machine can also 
operate in the capacity of a web appliance, a server, a 
network router, Switch or bridge, or any machine capable of 
executing a set of instructions (sequential or otherwise) that 
specify actions to be taken by that machine. Further, while 
only a single machine is illustrated, the term “machine' shall 
also be taken to include any collection of machines (e.g., 
computers) that individually or jointly execute a set (or 
multiple sets) of instructions to perform any one or more of 
the methodologies discussed herein. 
0158 Data processing system 1202, as disclosed above, 
includes a general purpose instruction-based processor 1227 
and an in-line accelerator 1226. The general purpose instruc 
tion-based processor may be one or more general purpose 
instruction-based processors or processing devices (e.g., 
microprocessor, central processing unit, or the like). More 
particularly, data processing system 1202 may be a complex 
instruction set computing (CISC) microprocessor, reduced 
instruction set computing (RISC) microprocessor, very long 
instruction word (VLIW) microprocessor, general purpose 
instruction-based processor implementing other instruction 
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sets, or general purpose instruction-based processors imple 
menting a combination of instruction sets. The in-line accel 
erator may be one or more special-purpose processing 
devices such as an application specific integrated circuit 
(ASIC), a field programmable gate array (FPGA), a digital 
signal general purpose instruction-based processor (DSP), 
network general purpose instruction-based processor, many 
light-weight cores (MLWC) or the like. Data processing 
system 1202 is configured to implement the data processing 
system for performing the operations and steps discussed 
herein. 
0159. The exemplary computer system 1200 includes a 
data processing system 1202, a main memory 1204 (e.g., 
read-only memory (ROM), flash memory, dynamic random 
access memory (DRAM) such as synchronous DRAM 
(SDRAM) or DRAM (RDRAM), etc.), a static memory 
1206 (e.g., flash memory, static random access memory 
(SRAM), etc.), and a data storage device 1216 (e.g., a 
secondary memory unit in the form of a drive unit, which 
may include fixed or removable computer-readable storage 
medium), which communicate with each other via a bus 
1208. The storage units disclosed in computer system 1200 
may be configured to implement the data storing mecha 
nisms for performing the operations and steps discussed 
herein. 
0160 The computer system 1200 may further include a 
network interface device 1222. In an alternative embodi 
ment, the data processing system disclose is integrated into 
the network interface device 1222 as disclosed herein. The 
computer system 1200 also may include a video display unit 
1210 (e.g., a liquid crystal display (LCD), LED, or a cathode 
ray tube (CRT)) connected to the computer system through 
a graphics port and graphics chipset, an input device 1212 
(e.g., a keyboard, a mouse), a camera 1214, and a Graphic 
User Interface (GUI) device 1220 (e.g., a touch-screen with 
input & output functionality). 
0.161 The computer system 1200 may further include a 
RF transceiver 1224 provides frequency shifting, converting 
received RF signals to baseband and converting baseband 
transmit signals to RF. In some descriptions a radio trans 
ceiver or RF transceiver may be understood to include other 
signal processing functionality Such as modulation/demodu 
lation, coding/decoding, interleaving/de-interleaving, 
spreading/dispreading, inverse fast Fourier transforming 
(IFFT)/fast Fourier transforming (F-F-T), cyclic prefix 
appending/removal, and other signal processing functions. 
0162 The Data Storage Device 1216 may include a 
machine-readable storage medium (or more specifically a 
computer-readable storage medium) on which is stored one 
or more sets of instructions embodying any one or more of 
the methodologies or functions described herein. Disclosed 
data storing mechanism may be implemented, completely or 
at least partially, within the main memory 1204 and/or 
within the data processing system 1202 by the computer 
system 1200, the main memory 1204 and the data processing 
system 1202 also constituting machine-readable storage 
media. 
0163 The computer-readable storage medium 1224 may 
also be used to one or more sets of instructions embodying 
any one or more of the methodologies or functions described 
herein. While the computer-readable storage medium 1224 
is shown in an exemplary embodiment to be a single 
medium, the term "computer-readable storage medium’ 
should be taken to include a single medium or multiple 
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media (e.g., a centralized or distributed database, and/or 
associated caches and servers) that stores the one or more 
sets of instructions. The terms “computer-readable storage 
medium’ shall also be taken to include any medium that is 
capable of storing or encoding a set of instructions for 
execution by the machine and that cause the machine to 
performany one or more of the methodologies of the present 
invention. The term “computer-readable storage medium’ 
shall accordingly be taken to include, but not be limited to, 
Solid-state memories, and optical and magnetic media. 
0164. The above description of illustrated implementa 
tions of the invention, including what is described in the 
Abstract, is not intended to be exhaustive or to limit the 
invention to the precise forms disclosed. While specific 
implementations of, and examples for, the invention are 
described herein for illustrative purposes, various equivalent 
modifications are possible within the scope of the invention, 
as those skilled in the relevant art will recognize. 
0.165. These modifications may be made to the invention 
in light of the above detailed description. The terms used in 
the following claims should not be construed to limit the 
invention to the specific implementations disclosed in the 
specification and the claims. Rather, the scope of the inven 
tion is to be determined entirely by the following claims, 
which are to be construed in accordance with established 
doctrines of claim interpretation. 
0166 Embodiments of the invention include a data pro 
cessing system. The system includes a processing device, an 
Input/output (I/O) interface to receive incoming data, and an 
in-line accelerator configured to receive the incoming data 
from the I/O interface and begin a computation by executing 
at least a part of operations associated with processing the 
incoming data. The in-line accelerator is configured to 
automatically transfer the prematurely terminated computa 
tion upon reaching a bailout point from the in-line accel 
erator to the processing device for execution. 
0167 Additional embodiment of invention may include a 
data processing system wherein the in-line accelerator is 
configured to accelerate a fast path of execution that is 
generated by Static or dynamic slicing of control and data 
flow graphs (CDFG) of programs. Additional embodiment 
of invention may include a data processing system wherein 
the bailout point and necessary state values are determined 
at compilation time. 
0168 Additional embodiment of invention may include a 
data processing system wherein the processing device 
restarts execution of the entire operations associated with 
processing the incoming data. 
0169. Additional embodiment of invention may include a 
data processing system wherein the processing device con 
tinues computation associated with processing the incoming 
from the bailout point. Additional embodiment of invention 
may include a data processing system wherein a software 
based simulator is used to simulate the in-line accelerator 
execution from the bailout point. Additional embodiment of 
invention may include a data processing system wherein 
upon termination of the execution by the software-based 
simulator a Software-based engine continues the computa 
tion natively. 
0170 Additional embodiment of invention may include a 
data processing system wherein the in-line accelerator is 
implemented on a Field Programmable Gate Array (FPGA). 
0171 Embodiments of the invention include a data pro 
cessing system. The system includes a processing device, at 
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least one in-line accelerator, and a shared memory coupled 
to the processing device and the at least one in-line accel 
erator. The at least one in-line accelerator is configured to 
receive incoming data and execute at least a part of opera 
tions associated with processing the incoming data to gen 
erate output data elements. The at least one in-line accel 
erator is configured to store at least part of data state 
elements with respect to execution of the incoming data in 
the shared memory. The at least one in-line accelerator is 
configured to transfer data state elements upon reaching a 
bailout point from the at least one in-line accelerator to the 
processing device for execution. 
0172. Additional embodiment of invention may include a 
data processing system wherein the data state elements 
stored in the shared memory becomes coherent from the 
processing device side after the bailout point. 
0173 Additional embodiment of invention may include a 
data processing system wherein the in-line accelerator stores 
data in the shared memory speculatively. 
0.174. Additional embodiment of invention may include a 
data processing system further comprising a quasi-specula 
tive cache memory to store the data state elements in a 
speculative state. In an embodiment, the quasi-speculative 
cache is configured to delay committing data state elements 
to non-speculative storages. In an embodiment, the quasi 
speculative cache is configured to copy changes to the data 
state element to the shared memory. In an embodiment, the 
in-line accelerator is configured to transfer data state ele 
ments based on a probability of being read by next opera 
tions after the bailout. 
(0175 Embodiments of the invention include a method of 
data processing. The method includes receiving incoming 
data elements by an in-line accelerator for execution, execut 
ing at least part of a computation to process incoming data 
elements before a premature termination, transferring the 
incoming data elements to a processing device, and process 
ing the incoming data elements by the processing device. 
(0176). In an additional embodiment the method of data 
processing includes processing device continues execution 
of the computation associated with the incoming data ele 
mentS. 

0177. In an additional embodiment the method of data 
processing includes the processing device restarts the com 
putation associated with processing the incoming data ele 
mentS. 

0.178 In an additional embodiment the method of data 
processing further includes determining whether to continue 
or restart execution of the computation associated with 
processing the incoming data elements based on a cost 
analysis mechanism. 
0179 Big data applications can be used for predictive 
analytics, artificial intelligence, and machine learning to 
improve efficiency of operations, revenue opportunities, 
and/or quality of user experience for various businesses. Big 
data applications however require significant computing 
power, storage, and network throughput. Consequently, a 
large amount of hardware resources in terms of servers, 
networking devices, and storage devices are required to run 
these applications. These expensive resources are a barrier 
for using Big data applications. 
0180 Big data applications are often described as dis 
tributed data flow programs in that data are fed to a pipeline 
of computational nodes, in which outputs of producer nodes 
are copied to the inputs of consumer nodes. This creates a 
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large amount of I/O traffic, including the traffic from/to 
storage system and the traffic to/from the network system. 
0181 Conventional general purpose instruction-based 
processors are not designed for processing large amount of 
IO traffic. Consequently, there are many expensive move 
ments (e.g., copying of data) when conventional hardware 
runs Big data applications. FIG. 13 illustrates a schematic 
diagram of a data processing system 1300 having an accel 
erator that is an offload entity for a conventional acceleration 
architecture. The data processing system 1300 includes a 
network connection 1304 for accessing an I/O processing 
unit 1310 (network interface card (NIC) 1310) of a server 
1312. The NIC 1310 may include features such as interrupt 
and DMA interfaces to the CPU 1320, support for multiple 
receive and transmit queues, partitioning into multiple logi 
cal interfaces, and on-controller network traffic processing 
such as the TCP offload engine. The NIC 1310 is directly 
coupled to storage 1314, CPU 1320, and memory 1330. In 
one example, the NIC 1310 receives an incoming packet, 
processes the packet, generates response packet(s), stores 
the response packet(s) in storage 1314 and memory 1330, 
processes the response packet(s) with CPU 1320, and then 
sends the processing packet(s) to accelerator 1311 for addi 
tional processing as indicated by data path 1340. The 
accelerator performs computations 1313-1315 and then 
sends outgoing packet(s) on a data path 1350 that includes 
the CPU 1320, memory 1330, NIC 1310, and network 
connection 1304. 
0182. In the example embodiment of FIG. 13, the accel 
erator 1311 functions as an offload entity rather than an 
in-line entity. In such a case, the CPU 1320 receives the data 
(e.g., response packet(s)) and then offloads the computation 
to the accelerator 1311 and then after the accelerator 1311 
completes the computation it returns back the control to the 
CPU so the CPU can move the result (e.g., outgoing 
packet(s)) to the network connection 1304 and next stage. 
0183 Processing data going from an I/O device (storage) 
to an accelerator, which is not in-line, causes delays. The 
result from the accelerator is also going to an I/O (network) 
access. Input data to the accelerator first goes through CPU 
and output data from accelerator also needs to go through the 
CPU. This causes unnecessary copying from the CPU to the 
accelerator and then from the accelerator to the CPU and 
thus causes performance deterioration for the exemplary 
embodiment of FIG. 13. 
0184. This present design provides in-line acceleration to 
avoid such time consuming operations that cause perfor 
mance deterioration. This in-line acceleration is done in a 
completely automated way to provide seamless acceleration 
and complete autonomy for the users (except the fact that the 
application is running much faster). 
0185. Conventional methods capture data parallelism as 
well as producer-consumer parallelism in big data/streaming 
applications using parallel micro-architecture techniques, 
including multi-cores and multi-threads. These conventional 
methods also utilize customized hardware with higher 
energy efficiency and lower areas. 
0186 For applications that use external data extensively, 
IO operations that copy the data to the accelerator and vice 
versa, become a bottleneck. Consequently, this limits the 
amount of performance gain achieved from the accelerators. 
0187. In machine-learning, big-data, and web engines a 
large amount of data that is received/sent from/to storage 
and/or network is processed. Consequently, these applica 
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tions are amenable to in-line acceleration. Many operations 
which are essential in these applications require buffering 
(e.g., checksum calculation, compression, retransmission 
mechanisms (for reliability), sort algorithms, etc.). In-line 
acceleration works especially well in conjunction with buf 
fer less computation. Otherwise, the merit of specialization 
will be limited by the high overhead associated with off-chip 
memory communications for buffering. The present design 
utilizes the following techniques to have buffer less and 
in-line acceleration: use alternative algorithms with mini 
mal/no buffer (e.g., multi-stage sort), use reliable commu 
nications (i.e., to avoid buffering and retransmission), use 
components with minimum throughput guarantees to avoid 
buffering, use buffering at the end of bulk-synchronous 
computation models (e.g., Spark). Using above techniques, 
the present design can have all of the computation stages 
with maximum throughput and only use the buffers at bulk 
synchronization points (e.g., communications between first 
and second servers of a data processing system). 
0188 Based on observations, processing in big data 
applications are mostly done on the data coming from I/O 
operations, either from a network interface when shuffle 
operations between different servers occur, or from the 
storage when data is read from the external storage, or from 
a stream messaging server. Consequently, if the present 
design has a first feature that accelerates these big data 
applications in which the accelerator processes the data 
coming from input IO without involving the general purpose 
instruction-based processor, not only does the present design 
reduce the overhead of copying data from I/O to CPU and 
Vice versa, but the present design also has a second feature 
of processing data in a much higher throughput than general 
purpose CPUs. 
0189 One important point of these features of the present 
design is that both of these features are required to gain a 
higher performance improvement, for accelerating an appli 
cation. 

0190. A Big data application can be translated into a 
dataflow graph that includes multiple nodes in the graph for 
many execution engines. An execution platform for a Big 
data application breaks-down the graph into multiple stages 
(e.g., map and reduce stages in Hadoop, computation stages 
in Spark). A cluster of machines is responsible to execute the 
computation stages. At any given stage, a machine process 
part of the whole data is distributed in the cluster. Since in 
a particular stage a machine might require data from other 
machines (from the previous stage), a shuffle operation 
happens between the stages. In each shuffle operation, the 
data from a previous stage is redistributed among the 
machines. This makes the layout of the data ready for the 
next stage. In one example, the data can be redistributed 
among the machines in accordance with at least one system 
invariant or at least one rule that requires certain data of a 
first stage to be distributed to a certain machine for a second 
Stage. 
0191 FIGS. 14-16 show an example of big data compu 
tation that includes three stages running on multiple servers 
in accordance with one embodiment. In a first stage 1401 of 
a data processing system 1400 as illustrated in FIG. 14, the 
present design reads data from a source storage 1402 and 
1405, performs computations 1403 and 1406 on data, and 
shuffles (e.g., reorganization, aggregation) the data between 
the computation nodes at shuffle write operations 1404 and 
1407 that output 1408-1411 this data to a shuffle read 
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operations 1413 and 1416 of the second stage 1412. The 
second stage also includes computations 1414 and 1417. 
shuffle write operations 1415 and 1418, and outputs 1419 
1422. Shuffle read operations 1424 and 1427 of the third 
stage 1423 receive the outputs, computations 1425 and 1428 
are performed, and results are written into sink storage 1426 
and 1429. A machine 1430 (e.g., server 1430) performs the 
operations 1402-1404, 1413-1415, and 1424–1426. The 
server 1430 includes an I/O processing unit 1431 (e.g., 
network interface card 1431) having an in-line accelerator 
1432. The server 1430 also includes storage 1436, general 
purpose instruction-based processor 1437, and memory 
1438. A data path 1439 illustrates the data flow for server 
1430 for stage 1401. For example, data is read from a source 
storage 1402 of storage 1436 (e.g., operation 1433) and 
computations 1403 (e.g., operation 1434) and shuffle write 
operations 1404 (e.g., operation 1435) are performed by the 
in-line accelerator 1432. The outputs 1408 and 1411 are sent 
to a second stage 1412 via a network connection 1440. 
(0192. A machine 1450 (e.g., server 1450) performs the 
operations 1405-1407, 1416-1418, and 1427-1429. The 
server 1450 includes an I/O processing unit 1451 (e.g., 
network interface card 1451) having an in-line accelerator 
1452. The server 1450 also includes storage 1456, general 
purpose instruction-based processor 1457, and memory 
1458. The server 1450 also includes storage 1456, general 
purpose instruction-based processor 1457, and memory 
1458. A data path 1459 illustrates the data flow for server 
1450 for stage 1401. For example, data is read from a source 
storage 1405 of storage 1456 (e.g., operation 1453), com 
putations 1406 (e.g., operation 1454) and shuffle write 
operations 1407 (e.g., operation 1455) are performed by the 
in-line accelerator 1452. The outputs 1409-1410 are sent to 
a second stage 1412 via a network connection 1460. 
0193 FIG. 15 illustrates a second stage of a data pro 
cessing system in accordance with one embodiment. The 
stages 1501, 1512, and 1523 may correspond to the stages 
1401, 1412, and 1423, respectively of FIG. 14. The opera 
tions 1502-1507, 1513-1518, 1524-1529 of the stages of 
FIG. 15 may correspond to the operations 1402-1407, 1413 
1418, and 1424-1429, respectively of FIG. 14. For the 
present design in the second stage 1512, the result of 
shuffled data is gathered from the previous stage at shuffle 
read operations 1513 and 1516. Another computation is 
done on the data at operations 1514 and 1517, and another 
shuffle 1515 and 1518 happens on the result of the compu 
tation. 
(0194 A machine 1530 (e.g., server 1530) performs the 
operations 1502-1504, 1513-1515, and 1524-1526. The 
server 1530 includes an I/O processing unit 1531 (e.g., 
network interface card 1531) having an in-line accelerator 
1532. The server 1530 also includes storage 1536, general 
purpose instruction-based processor 1537, and memory 
1538. A data path 1539 illustrates the data flow for server 
1530 for stage 1512. For example, the result of shuffled data 
is gathered from the previous stage at shuffle read operation 
1513 (e.g., operation 1533), computation 1514 (e.g., opera 
tion 1534) and shuffle write operation 1515 (e.g., operation 
1535) are performed by the in-line accelerator 1532. The 
outputs 1519 and 1522 are sent to a third stage 1523 via a 
network connection 1540. 

(0195 A machine 1550 (e.g., server 1550) performs the 
operations 1505-1507, 1516-1518, and 1527-1529. The 
server 1550 includes an I/O processing unit 1551 (e.g., 
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network interface card 1551) having an in-line accelerator 
1552. The server 1550 also includes storage 1556, general 
purpose instruction-based processor 1557, and memory 
1558. A data path 1559 illustrates the data flow for server 
1550 for stage 1512. For example, the result of shuffled data 
is gathered from the previous stage at shuffle read operation 
1516 (e.g., operation 1553), computation 1517 (e.g., opera 
tion 1554) and shuffle write operation 1518 (e.g., operation 
1585) are performed by the in-line accelerator 1552. The 
outputs 1520-1521 are sent to a third stage 1523 via a 
network connection 1540. 
0.196 FIG. 16 illustrates a third stage of a data processing 
system in accordance with one embodiment. The stages 
1601, 1612, and 1623 may correspond to the stages 1501, 
1512, and 1523, respectively of FIG. 15 and also may 
correspond to the stages 1401, 1412, and 1423, respectively 
of FIG. 14. The operations 1602-1607, 1613-1618, 1624 
1629 of the stages of FIG. 16 may correspond to the 
operations 1502-1507, 1513-1518, 1524-1529, respectively 
of the stages of FIG. 15 and also may correspond to the 
operations 1402-1407, 1413-1418, and 1424-1429, respec 
tively of FIG. 14. For the present design in the third stage 
1623, the result of a second shuffle is collected at shuffle read 
operations 1624 and 1627 and after another computation 
1625 and 1628, the result is written into a sink storage, the 
final storage of the data in memory or file system at 
operations 1626 and 1629 upon completion of the third stage 
(e.g., upon completion of a Hadoop or Spark job). 
(0197) A machine 1630 (e.g., server 1630) performs the 
operations 1602-1604, 1613-1615, and 1624-1626. The 
server 1630 includes an I/O processing unit 1631 (e.g., 
network interface card 1631) having an in-line accelerator 
1632. The server 1630 also includes storage 1636, general 
purpose instruction-based processor 1637, and memory 
1638. A data path 1659 illustrates the data flow for server 
1630 for stage 1623. For example, the result of shuffled data 
is gathered from the previous stage at shuffle read operation 
1624 (e.g., operation 1633), computation 1625 (e.g., opera 
tion 1634) is performed by the in-line accelerator 1632, and 
the result is written into a sink storage 1636 or final storage 
of the data in memory or file system (e.g., operation 1635). 
(0198 A machine 1650 (e.g., server 1650) performs the 
operations 1605-1607, 1616-1618, and 1627-1629. The 
server 1650 includes an I/O processing unit 1651 (e.g., 
network interface card 1651) having an in-line accelerator 
1652. The server 1650 also includes storage 1656, general 
purpose instruction-based processor 1657, and memory 
1658. A data path 1659 illustrates the data flow for server 
1650 for stage 1623. For example, the result of shuffled data 
is gathered from the previous stage at shuffle read operation 
1627 (e.g., operation 1653), computation 1628 (e.g., opera 
tion 1654) is performed by the in-line accelerator 1652, and 
the result is written into a sink storage 1656 or final storage 
of the data in memory or file system (e.g., operation 1655). 
0199. In an embodiment, I/O processing unit (e.g., 1431, 
1451, 1531, 1551, 1631, 1651) may be Network Interface 
Card (NIC). In an embodiment of the invention, the in-line 
accelerator is part of the NIC. In an embodiment, the NIC is 
on the same chip as the general purpose instruction-based 
processor (e.g., 1437, 1457, 1537, 1557, 1637, 1657) 120. In 
an alternative embodiment, the NIC is on a separate chip 
coupled to the general purpose instruction-based processor. 
0200. In these data paths for three stages, data is coming 
from an I/O component then sent to another I/O device. 
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Although this is not always the case, in most scenarios at the 
end of each stage, the result is first buffered in temporary 
memory and/or storage and the Subsequent next stage pulls 
the data from this temporary memory and/or storage. Based 
on our observation, the in-line accelerator performs the 
compute phase on the incoming data immediately after 
receiving it from network or storage. 
0201 In order to do the above, the present design auto 
matically compiles the computations associated with each 
stage in an in-line accelerator, which has (i) direct access to 
a network and storage and (ii) higher performance using 
specialization and parallelization techniques. The present 
design eliminates extra copying of data between I/O com 
ponents and a CPU. The present design also improves the 
processing throughput beyond the performance of conven 
tional CPUs for I/O intensive applications. The present 
design is structurally unique in utilizing an in-line accelera 
tor in big data servers. The present design is functional 
unique based on having a compiler that generates in-line 
accelerators or automatically compiles code into an in-line 
accelerator from computation stages. 
0202. In an embodiment, in-line accelerators as discussed 
herein may be implemented using any device known to be 
used as accelerator, including but not limited to field 
programmable gate array (FPGA), Coarse-Grained Recon 
figurable Architecture(CGRA), general-purpose computing 
on graphics processing unit (GPGPU), many light-weight 
cores (MLWC), network general purpose instruction-based 
processor, I/O general purpose instruction-based processor, 
many-cores, DSPs, and application-specific integrated cir 
cuit (ASIC). 
0203 FIG. 17 is a flow diagram illustrating a method 
1700 for in-line stream processing of distributed multi stage 
dataflow based computations according to an embodiment of 
the disclosure. Although the operations in the method 1700 
are shown in a particular order, the order of the actions can 
be modified. Thus, the illustrated embodiments can be 
performed in a different order, and some operations may be 
performed in parallel. Some of the operations listed in FIG. 
17 are optional in accordance with certain embodiments. 
The numbering of the operations presented is for the sake of 
clarity and is not intended to prescribe an order of operations 
in which the various operations must occur. Additionally, 
operations from the various flows may be utilized in a 
variety of combinations. 
0204. The operations of method 1700 may be executed 
by a data processing system, a machine, a server, a web 
appliance, or any system, which includes an in-line accel 
erator. The in-line accelerator may include hardware (cir 
cuitry, dedicated logic, etc.), software (such as is run on a 
general purpose computer system or a dedicated machine or 
a device), or a combination of both. In one embodiment, an 
in-line accelerator performs the operations of method 1700. 
0205 At operation 1702, the method includes performing 
in-line stream processing of distributed multi stage dataflow 
based computations with an I/O processing unit of a 
machine (e.g., server) having an in-line accelerator that is 
configured for a first stage of operations to read data from 
the storage, to perform computations on the data, and to 
shuffle a result of the computations to generate a first set of 
shuffled data. In one example, the in-line accelerator per 
forms the first stage of operations with buffer less compu 
tations. At operation 1704, the method further includes 
receiving, with the in-line accelerator that is further config 

Jan. 26, 2017 

ured for a second stage of operations, the first set of shuffled 
data from the first stage, performing computations on the 
first set of shuffled data, and shuffling a result of the 
computations to generate a second set of shuffled data. In 
one example, the in-line accelerator performs the second 
stage of operations with buffer less computations. At opera 
tion 1706, the method further includes receiving, with the 
in-line accelerator that is further configured for a third stage 
of operations, the second set of shuffled data from the second 
stage, performing computations on the second set of shuffled 
data, and storing a result of the computations in the storage. 
In one embodiment, the machine includes a general purpose 
instruction-based processor that is coupled to an I/O pro 
cessing unit. The in-line accelerator is configured to perform 
the operations of the first stage, the second stage, and the 
third stage without utilizing the general purpose instruction 
based processor. 

1. A machine comprising: 
storage to store data; and 
an Input/output (I/O) processing unit coupled to the 

storage, the I/O processing unit having an in-line accel 
erator that is configured for in-line stream processing of 
distributed multi stage dataflow based computations 
including for a first stage of operations to read data 
from the storage and to perform computations on the 
data with buffer less computations. 

2. The machine of claim 1, wherein the in-line accelerator 
is further configured to shuffle a result of the computations 
to generate a first set of shuffled data. 

3. The machine of claim 2, wherein the in-line accelerator 
is further configured for a second stage of operations to 
receive the first set of shuffled data from the first stage, to 
perform computations on the first set of shuffled data, and to 
shuffle a result of the computations to generate a second set 
of shuffled data. 

4. The machine of claim3, wherein the in-line accelerator 
performs the second stage of operations with buffer less 
computations. 

5. The machine of claim3, wherein the in-line accelerator 
is further configured for a third stage of operations to receive 
the second set of shuffled data from the second stage, to 
perform computations on the second set of shuffled data, and 
to store a result of the computations in the storage. 

6. The machine of claim 1, further comprising: 
a general purpose instruction-based processor coupled to 

the I/O processing unit, wherein the in-line accelerator 
is configured to perform the operations of the first 
stage, the second stage, and the third stage without 
utilizing the general purpose instruction-based proces 
SO. 

7. The machine of claim 1, wherein the in-line accelerator 
is implemented on a Field Programmable Gate Array 
(FPGA), a many-core, a graphical processing unit (GPU), or 
an application specific integrated circuit (ASIC). 

8. A data processing system comprising: 
a first server having a network connection, storage to store 

data, and a first Input/output (I/O) processing unit 
having a first in-line accelerator that is configured for 
in-line stream processing of distributed multi stage 
dataflow based computations including for a first stage 
of operations to read data from the storage, to perform 
computations on the data, and to shuffle a result of the 
computations to generate a first set of shuffled data; and 
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a second server coupled to the first server, a second server 
having a network connection, storage to store data, and 
a second Input/output (I/O) processing unit having a 
second in-line accelerator that is configured for in-line 
stream processing of distributed multi stage dataflow 
based computations including for the first stage of 
operations to read data from the storage, to perform 
computations on the data, and to shuffle a result of the 
computations to generate a second set of shuffled data. 

9. The data processing system of claim 9, wherein the first 
and second in-line accelerators perform the first stage of 
operations with buffer less computations. 

10. The data processing system of claim 9, wherein the 
first in-line accelerator is further configured for a second 
stage of operations to receive the first and second sets of 
shuffled data from the first stage, to perform computations 
on the first and second sets of shuffled data, and to shuffle a 
result of the computations to generate a third set of shuffled 
data. 

11. The data processing system of claim 10, wherein the 
second in-line accelerator is further configured for the 
second stage of operations to receive the first and second sets 
of shuffled data from the first stage, to perform computations 
on the first and second sets of shuffled data, and to shuffle a 
result of the computations to generate a fourth set of shuffled 
data. 

12. The data processing system of claim 11, wherein the 
first and second in-line accelerators perform the second 
stage of operations with buffer less computations. 

13. The data processing system of claim 12, wherein the 
first in-line accelerator is further configured for a third stage 
of operations to receive the third and fourth set of shuffled 
data from the second stage, to perform computations on the 
third and fourth sets of shuffled data, and to store a result of 
the computations in the storage. 

14. The data processing system of claim 13, wherein the 
second in-line accelerator is further configured for the third 
stage of operations to receive the third and fourth sets of 
shuffled data from the second stage, to perform computa 
tions on the third and fourth sets of shuffled data, and to store 
a result of the computations in the storage. 

15. The data processing system of claim 8, wherein the 
first server further comprising: 

a first general purpose instruction-based processor 
coupled to the first I/O processing unit, wherein the first 
in-line accelerator is configured to perform the opera 
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tions of the first stage, the second stage, and the third 
stage without utilizing the first general purpose instruc 
tion-based processor. 

16. The data processing system of claim 8, wherein the 
second server further comprising: 

a second general purpose instruction-based processor 
coupled to the second I/O processing unit, wherein the 
second in-line accelerator is configured to perform the 
operations of the first stage, the second stage, and the 
third stage without utilizing the second general purpose 
instruction-based processor. 

17. The data processing system of claim 8, wherein the 
first and second in-line accelerators are each implemented 
on a Field Programmable Gate Array (FPGA). 

18. A computer-implemented method comprising: 
performing in-line stream processing of distributed multi 

stage dataflow based computations with an input/output 
(I/O) processing unit of a machine having an in-line 
accelerator that is configured for a first stage of opera 
tions to read data from a storage of the machine, to 
perform computations on the data, and to shuffle a 
result of the computations to generate a first set of 
shuffled data. 

19. The computer-implemented method of claim 18, 
wherein the in-line accelerator performs the first stage of 
operations with buffer less computations. 

20. The computer-implemented method of claim 19, fur 
ther comprising: 

receiving, with the in-line accelerator for a second stage 
of operations, the first set of shuffled data from the first 
Stage, 
performing computations on the first set of shuffled 

data; and 
shuffling a result of the computations to generate a 

second set of shuffled data. 
21. The computer-implemented method of claim 20, 

wherein the in-line accelerator performs the second stage of 
operations with buffer less computations. 

22. The computer-implemented method of claim 21, fur 
ther comprising: 

receiving, with the in-line accelerator for a third stage of 
operations, the second set of shuffled data from the 
Second stage; 
performing computations on the second set of shuffled 

data; and 
storing a result of the computations in the storage. 
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