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FRAGMENT COMPRESSION FOR COARSE
PIXEL SHADING

CROSS-REFERENCE

This application claims priority to U.S. patent application
Ser. No. 17/723,328, filed Apr. 18, 2022, which is a con-
tinuation of U.S. application Ser. No. 16/922,094, filed Jul.
7, 2020, now issued as U.S. Pat. No. 11,315,311, which is a
continuation of U.S. patent application Ser. No. 15/493,214,
filed Apr. 21, 2017, issued as U.S. Pat. No. 10,706,616,
which is hereby incorporated herein by reference.

FIELD

Embodiments relate generally to data processing and
more particularly to data processing via a general-purpose
graphics processing unit.

BACKGROUND OF THE DESCRIPTION

Current parallel graphics data processing includes sys-
tems and methods developed to perform specific operations
on graphics data such as, for example, linear interpolation,
tessellation, rasterization, texture mapping, depth testing,
etc. Traditionally, graphics processors used fixed function
computational units to process graphics data; however, more
recently, portions of graphics processors have been made
programmable, enabling such processors to support a wider
variety of operations for processing vertex and fragment
data.

To further increase performance, graphics processors
typically implement processing techniques such as pipelin-
ing that attempt to process, in parallel, as much graphics data
as possible throughout the different parts of the graphics
pipeline. Parallel graphics processors with single instruc-
tion, multiple thread (SIMT) architectures are designed to
maximize the amount of parallel processing in the graphics
pipeline. In an SIMT architecture, groups of parallel threads
attempt to execute program instructions synchronously
together as often as possible to increase processing effi-
ciency. A general overview of software and hardware for
SIMT architectures can be found in Shane Cook, CUDA
Programming, Chapter 3, pages 37-51 (2013) and/or Nicho-
las Wilt, CUDA Handbook, A Comprehensive Guide to GPU
Programming, Sections 2.6.2 to 3.1.2 (June 2013).

BRIEF DESCRIPTION OF THE DRAWINGS

The features of the present invention are described refer-
ence to various embodiments, some of which are illustrated
in the appended drawings. It is to be noted, however, that the
appended drawings illustrate only typical embodiments and
are therefore not to be considered limiting of its scope, for
the invention may admit to other equally effective embodi-
ments.

FIG. 1 is a block diagram illustrating a computer system
configured to implement one or more aspects of the embodi-
ments described herein;

FIG. 2A-2D illustrate parallel processor components,
according to an embodiment;

FIG. 3A-3B are block diagrams of graphics multiproces-
sors, according to embodiments;

FIG. 4A-4F illustrate an exemplary architecture in which
a plurality of GPUs are communicatively coupled to a
plurality of multi-core processors;
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FIG. 5 is a conceptual diagram of a graphics processing
pipeline, according to an embodiment;

FIG. 6 is a block diagram of a pre-shader pipeline for
coarse pixel shading, according to an embodiment;

FIG. 7 illustrates a pixel processing system for shaded
coarse pixels, according to one embodiment;

FIG. 8 is an illustration of a pixel processing system,
according to embodiments;

FIG. 9 is a flow diagram illustrating a cacheline aware
fragment compression logic, according to an embodiment;

FIG. 10 is a flow diagram illustrating cacheline aware
fragment expansion logic, according to an embodiment;

FIG. 11 illustrates a cache hierarchy, according to an
embodiment;

FIG. 12 is a block diagram of a processing system,
according to an embodiment;

FIG. 13 is a block diagram of a processor according to an
embodiment;

FIG. 14 is a block diagram of a graphics processor,
according to an embodiment;

FIG. 15 is a block diagram of a graphics processing
engine of a graphics processor in accordance with some
embodiments;

FIG. 16 is a block diagram of a graphics processor
provided by an additional embodiment;

FIG. 17 illustrates thread execution logic including an
array of processing elements employed in some embodi-
ments;

FIG. 18 is a block diagram illustrating graphics processor
instruction formats according to some embodiments;

FIG. 19 is a block diagram of a graphics processor
according to another embodiment;

FIG. 20A-20B illustrate a graphics processor command
format and command sequence, according to some embodi-
ments;

FIG. 21 illustrates exemplary graphics software architec-
ture for a data processing system according to some embodi-
ments;

FIG. 22 is a block diagram illustrating an IP core devel-
opment system, according to an embodiment;

FIG. 23 is a block diagram illustrating an exemplary
system on a chip integrated circuit, according to an embodi-
ment;

FIG. 24 is a block diagram illustrating an additional
graphics processor, according to an embodiment; and

FIG. 25 is a block diagram illustrating an additional
exemplary graphics processor of a system on a chip inte-
grated circuit, according to an embodiment.

DETAILED DESCRIPTION

In some embodiments, a graphics processing unit (GPU)
is communicatively coupled to host/processor cores to accel-
erate graphics operations, machine-learning operations, pat-
tern analysis operations, and various general-purpose GPU
(GPGPU) functions. The GPU may be communicatively
coupled to the host processor/cores over a bus or another
interconnect (e.g., a high-speed interconnect such as PCle or
NVLink). In other embodiments, the GPU may be integrated
on the same package or chip as the cores and communica-
tively coupled to the cores over an internal processor bus/
interconnect (i.e., internal to the package or chip). Regard-
less of the manner in which the GPU is connected, the
processor cores may allocate work to the GPU in the form
of sequences of commands/instructions contained in a work
descriptor. The GPU then uses dedicated circuitry/logic for
efficiently processing these commands/instructions.
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In the following description, numerous specific details are
set forth to provide a more thorough understanding. How-
ever, it will be apparent to one of skill in the art that the
embodiments described herein may be practiced without one
or more of these specific details. In other instances, well-
known features have not been described to avoid obscuring
the details of the present embodiments.

System Overview

FIG. 1 is a block diagram illustrating a computing system
100 configured to implement one or more aspects of the
embodiments described herein. The computing system 100
includes a processing subsystem 101 having one or more
processor(s) 102 and a system memory 104 communicating
via an interconnection path that may include a memory hub
105. The memory hub 105 may be a separate component
within a chipset component or may be integrated within the
one or more processor(s) 102. The memory hub 105 couples
with an /O subsystem 111 via a communication link 106.
The 1/O subsystem 111 includes an 1/O hub 107 that can
enable the computing system 100 to receive input from one
or more input device(s) 108. Additionally, the I/O hub 107
can enable a display controller, which may be included in the
one or more processor(s) 102, to provide outputs to one or
more display device(s) 110A. In one embodiment the one or
more display device(s) 110A coupled with the I/O hub 107
can include a local, internal, or embedded display device.

In one embodiment the processing subsystem 101
includes one or more parallel processor(s) 112 coupled to
memory hub 105 via a bus or other communication link 113.
The communication link 113 may be one of any number of
standards based communication link technologies or proto-
cols, such as, but not limited to PCI Express, or may be a
vendor specific communications interface or communica-
tions fabric. In one embodiment the one or more parallel
processor(s) 112 form a computationally focused parallel or
vector processing system that can include a large number of
processing cores and/or processing clusters, such as a many
integrated core (MIC) processor. In one embodiment the one
or more parallel processor(s) 112 form a graphics processing
subsystem that can output pixels to one of the one or more
display device(s) 110A coupled via the I/O hub 107. The one
or more parallel processor(s) 112 can also include a display
controller and display interface (not shown) to enable a
direct connection to one or more display device(s) 110B.

Within the /O subsystem 111, a system storage unit 114
can connect to the I/O hub 107 to provide a storage mecha-
nism for the computing system 100. An /O switch 116 can
be used to provide an interface mechanism to enable con-
nections between the I/O hub 107 and other components,
such as a network adapter 118 and/or wireless network
adapter 119 that may be integrated into the platform, and
various other devices that can be added via one or more
add-in device(s) 120. The network adapter 118 can be an
Ethernet adapter or another wired network adapter. The
wireless network adapter 119 can include one or more of a
Wi-Fi, Bluetooth, near field communication (NFC), or other
network device that includes one or more wireless radios.

The computing system 100 can include other components
not explicitly shown, including USB or other port connec-
tions, optical storage drives, video capture devices, and the
like, may also be connected to the /O hub 107. Communi-
cation paths interconnecting the various components in FIG.
1 may be implemented using any suitable protocols, such as
PCI (Peripheral Component Interconnect) based protocols
(e.g., PCI-Express), or any other bus or point-to-point com-
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munication interfaces and/or protocol(s), such as the NV-
Link high-speed interconnect, or interconnect protocols
known in the art.

In one embodiment, the one or more parallel processor(s)
112 incorporate circuitry optimized for graphics and video
processing, including, for example, video output circuitry,
and constitutes a graphics processing unit (GPU). In another
embodiment, the one or more parallel processor(s) 112
incorporate circuitry optimized for general-purpose process-
ing, while preserving the underlying computational archi-
tecture, described in greater detail herein. In yet another
embodiment, components of the computing system 100 may
be integrated with one or more other system elements on a
single integrated circuit. For example, the one or more
parallel processor(s) 112, memory hub 105, processor(s)
102, and I/O hub 107 can be integrated into a system on chip
(SoC) integrated circuit. Alternatively, the components of
the computing system 100 can be integrated into a single
package to form a system in package (SIP) configuration. In
one embodiment at least a portion of the components of the
computing system 100 can be integrated into a multi-chip
module (MCM), which can be interconnected with other
multi-chip modules into a modular computing system.

It will be appreciated that the computing system 100
shown herein is illustrative and that variations and modifi-
cations are possible. The connection topology, including the
number and arrangement of bridges, the number of proces-
sor(s) 102, and the number of parallel processor(s) 112, may
be modified as desired. For instance, in some embodiments,
system memory 104 is connected to the processor(s) 102
directly rather than through a bridge, while other devices
communicate with system memory 104 via the memory hub
105 and the processor(s) 102. In other alternative topologies,
the parallel processor(s) 112 are connected to the I/O hub
107 or directly to one of the one or more processor(s) 102,
rather than to the memory hub 105. In other embodiments,
the I/O hub 107 and memory hub 105 may be integrated into
a single chip. Some embodiments may include two or more
sets of processor(s) 102 attached via multiple sockets, which
can couple with two or more instances of the parallel
processor(s) 112.

Some of the particular components shown herein are
optional and may not be included in all implementations of
the computing system 100. For example, any number of
add-in cards or peripherals may be supported, or some
components may be eliminated.

FIG. 2A illustrates a parallel processor 200, according to
an embodiment. The various components of the parallel
processor 200 may be implemented using one or more
integrated circuit devices, such as programmable processors,
application specific integrated circuits (ASICs), or field
programmable gate arrays (FPGA). The illustrated parallel
processor 200 is a variant of the one or more parallel
processor(s) 112 shown in FIG. 1, according to an embodi-
ment.

In one embodiment the parallel processor 200 includes a
parallel processing unit 202. The parallel processing unit
includes an I/O unit 204 that enables communication with
other devices, including other instances of the parallel
processing unit 202. The I/O unit 204 may be directly
connected to other devices. In one embodiment the I/O unit
204 connects with other devices via the use of a hub or
switch interface, such as memory hub 105. The connections
between the memory hub 105 and the I/O unit 204 form a
communication link 113. Within the parallel processing unit
202, the I/O unit 204 connects with a host interface 206 and
a memory crosshar 216, where the host interface 206
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receives commands directed to performing processing
operations and the memory crossbar 216 receives commands
directed to performing memory operations.

When the host interface 206 receives a command buffer
via the I/O unit 204, the host interface 206 can direct work
operations to perform those commands to a front end 208. In
one embodiment the front end 208 couples with a scheduler
210, which is configured to distribute commands or other
work items to a processing cluster array 212. In one embodi-
ment the scheduler 210 ensures that the processing cluster
array 212 is properly configured and in a valid state before
tasks are distributed to the processing clusters of the pro-
cessing cluster array 212.

The processing cluster array 212 can include up to “N”
processing clusters (e.g., cluster 214A, cluster 214B,
through cluster 214N). Each cluster 214A-214N of the
processing cluster array 212 can execute a large number of
concurrent threads. The scheduler 210 can allocate work to
the clusters 214A-214N of the processing cluster array 212
using various scheduling and/or work distribution algo-
rithms, which may vary depending on the workload arising
for each type of program or computation. The scheduling
can be handled dynamically by the scheduler 210, or can be
assisted in part by compiler logic during compilation of
program logic configured for execution by the processing
cluster array 212. In one embodiment, different clusters
214A-214N of the processing cluster array 212 can be
allocated for processing different types of programs or for
performing different types of computations.

The processing cluster array 212 can be configured to
perform various types of parallel processing operations. In
one embodiment the processing cluster array 212 is config-
ured to perform general-purpose parallel compute opera-
tions. For example, the processing cluster array 212 can
include logic to execute processing tasks including filtering
of video and/or audio data, performing modeling operations,
including physics operations, and performing data transfor-
mations.

In one embodiment the processing cluster array 212 is
configured to perform parallel graphics processing opera-
tions. In embodiments in which the parallel processor 200 is
configured to perform graphics processing operations, the
processing cluster array 212 can include additional logic to
support the execution of such graphics processing opera-
tions, including, but not limited to texture sampling logic to
perform texture operations, as well as tessellation logic and
other vertex processing logic. Additionally, the processing
cluster array 212 can be configured to execute graphics
processing related shader programs such as, but not limited
to vertex shaders, tessellation shaders, geometry shaders,
and pixel shaders. The parallel processing unit 202 can
transfer data from system memory via the 1/O unit 204 for
processing. During processing the transferred data can be
stored to on-chip memory (e.g., parallel processor memory
222) during processing, then written back to system
memory.

In one embodiment, when the parallel processing unit 202
is used to perform graphics processing, the scheduler 210
can be configured to divide the processing workload into
approximately equal sized tasks, to better enable distribution
of the graphics processing operations to multiple clusters
214A-214N of the processing cluster array 212. In some
embodiments, portions of the processing cluster array 212
can be configured to perform different types of processing.
For example a first portion may be configured to perform
vertex shading and topology generation, a second portion
may be configured to perform tessellation and geometry
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shading, and a third portion may be configured to perform
pixel shading or other screen space operations, to produce a
rendered image for display. Intermediate data produced by
one or more of the clusters 214A-214N may be stored in
buffers to allow the intermediate data to be transmitted
between clusters 214A-214N for further processing.

During operation, the processing cluster array 212 can
receive processing tasks to be executed via the scheduler
210, which receives commands defining processing tasks
from front end 208. For graphics processing operations,
processing tasks can include indices of data to be processed,
e.g., surface (patch) data, primitive data, vertex data, and/or
pixel data, as well as state parameters and commands
defining how the data is to be processed (e.g., what program
is to be executed). The scheduler 210 may be configured to
fetch the indices corresponding to the tasks or may receive
the indices from the front end 208. The front end 208 can be
configured to ensure the processing cluster array 212 is
configured to a valid state before the workload specified by
incoming command buffers (e.g., batch-bufters, push buf-
fers, etc.) is initiated.

Each of the one or more instances of the parallel process-
ing unit 202 can couple with parallel processor memory 222.
The parallel processor memory 222 can be accessed via the
memory crossbar 216, which can receive memory requests
from the processing cluster array 212 as well as the 1/O unit
204. The memory crossbar 216 can access the parallel
processor memory 222 via a memory interface 218. The
memory interface 218 can include multiple partition units
(e.g., partition unit 220A, partition unit 220B, through
partition unit 220N) that can each couple to a portion (e.g.,
memory unit) of parallel processor memory 222. In one
implementation the number of partition units 220A-220N is
configured to be equal to the number of memory units, such
that a first partition unit 220A has a corresponding first
memory unit 224A, a second partition unit 220B has a
corresponding memory unit 224B, and an Nth partition unit
220N has a corresponding Nth memory unit 224N. In other
embodiments, the number of partition units 220A-220N may
not be equal to the number of memory devices.

In various embodiments, the memory units 224A-224N
can include various types of memory devices, including
dynamic random access memory (DRAM) or graphics ran-
dom access memory, such as synchronous graphics random
access memory (SGRAM), including graphics double data
rate (GDDR) memory. In one embodiment, the memory
units 224A-224N may also include 3D stacked memory,
including but not limited to high bandwidth memory
(HBM). Persons skilled in the art will appreciate that the
specific implementation of the memory units 224A-224N
can vary, and can be selected from one of various conven-
tional designs. Render targets, such as frame buffers or
texture maps may be stored across the memory units 224 A-
224N, allowing partition units 220A-220N to write portions
of each render target in parallel to efficiently use the avail-
able bandwidth of parallel processor memory 222. In some
embodiments, a local instance of the parallel processor
memory 222 may be excluded in favor of a unified memory
design that utilizes system memory in conjunction with local
cache memory.

In one embodiment, any one of the clusters 214A-214N of
the processing cluster array 212 can process data that will be
written to any of the memory units 224A-224N within
parallel processor memory 222. The memory crossbar 216
can be configured to transfer the output of each cluster
214A-214N to any partition unit 220A-220N or to another
cluster 214A-214N, which can perform additional process-
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ing operations on the output. Each cluster 214A-214N can
communicate with the memory interface 218 through the
memory crossbar 216 to read from or write to various
external memory devices. In one embodiment the memory
crossbar 216 has a connection to the memory interface 218
to communicate with the I/O unit 204, as well as a connec-
tion to a local instance of the parallel processor memory 222,
enabling the processing units within the different processing
clusters 214A-214N to communicate with system memory
or other memory that is not local to the parallel processing
unit 202. In one embodiment the memory crossbar 216 can
use virtual channels to separate traffic streams between the
clusters 214A-214N and the partition units 220A-220N.

While a single instance of the parallel processing unit 202
is illustrated within the parallel processor 200, any number
of instances of the parallel processing unit 202 can be
included. For example, multiple instances of the parallel
processing unit 202 can be provided on a single add-in card,
or multiple add-in cards can be interconnected. The different
instances of the parallel processing unit 202 can be config-
ured to inter-operate even if the different instances have
different numbers of processing cores, different amounts of
local parallel processor memory, and/or other configuration
differences. For example and in one embodiment, some
instances of the parallel processing unit 202 can include
higher precision floating point units relative to other
instances. Systems incorporating one or more instances of
the parallel processing unit 202 or the parallel processor 200
can be implemented in a variety of configurations and form
factors, including but not limited to desktop, laptop, or
handheld personal computers, servers, workstations, game
consoles, and/or embedded systems.

FIG. 2B is a block diagram of a partition unit 220,
according to an embodiment. In one embodiment the parti-
tion unit 220 is an instance of one of the partition units
220A-220N of FIG. 2A. As illustrated, the partition unit 220
includes an L2 cache 221, a frame buffer interface 225, and
a ROP 226 (raster operations unit). The L2 cache 221 is a
read/write cache that is configured to perform load and store
operations received from the memory crossbar 216 and ROP
226. Read misses and urgent write-back requests are output
by L2 cache 221 to frame buffer interface 225 for process-
ing. Updates can also be sent to the frame buffer via the
frame buffer interface 225 for processing. In one embodi-
ment the frame buffer interface 225 interfaces with one of
the memory units in parallel processor memory, such as the
memory units 224A-224N of FIG. 2A (e.g., within parallel
processor memory 222).

In graphics applications, the ROP 226 is a processing unit
that performs raster operations such as stencil, z test, blend-
ing, and the like. The ROP 226 then outputs processed
graphics data that is stored in graphics memory. In some
embodiments the ROP 226 includes compression logic to
compress depth or color data that is written to memory and
decompress depth or color data that is read from memory.
The compression logic can be lossless compression logic
that makes use of one or more of multiple compression
algorithms. The type of compression that is performed by
the ROP 226 can vary based on the statistical characteristics
of the data to be compressed. For example, in one embodi-
ment, delta color compression is performed on depth and
color data on a per-tile basis.

In some embodiments, the ROP 226 is included within
each processing cluster (e.g., cluster 214A-214N of FIG.
2A) instead of within the partition unit 220. In such embodi-
ment, read and write requests for pixel data are transmitted
over the memory crossbar 216 instead of pixel fragment
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data. The processed graphics data may be displayed on a
display device, such as one of the one or more display
device(s) 110A-110B of FIG. 1, routed for further process-
ing by the processor(s) 102, or routed for further processing
by one of the processing entities within the parallel proces-
sor 200 of FIG. 2A.

FIG. 2C is a block diagram of a processing cluster 214
within a parallel processing unit, according to an embodi-
ment. In one embodiment the processing cluster is an
instance of one of the processing clusters 214A-214N of
FIG. 2A. The processing cluster 214 can be configured to
execute many threads in parallel, where the term “thread”
refers to an instance of a particular program executing on a
particular set of input data. In some embodiments, single-
instruction, multiple-data (SIMD) instruction issue tech-
niques are used to support parallel execution of a large
number of threads without providing multiple independent
instruction units. In other embodiments, single-instruction,
multiple-thread (SIMT) techniques are used to support par-
allel execution of a large number of generally synchronized
threads, using a common instruction unit configured to issue
instructions to a set of processing engines within each one of
the processing clusters. Unlike a SIMD execution regime,
where all processing engines typically execute identical
instructions, SIMT execution allows different threads to
more readily follow divergent execution paths through a
given thread program. Persons skilled in the art will under-
stand that a SIMD processing regime represents a functional
subset of a SIMT processing regime.

Operation of the processing cluster 214 can be controlled
via a pipeline manager 232 that distributes processing tasks
to SIMT parallel processors. The pipeline manager 232
receives instructions from the scheduler 210 of FIG. 2A and
manages execution of those instructions via a graphics
multiprocessor 234 and/or a texture unit 236. The illustrated
graphics multiprocessor 234 is an exemplary instance of a
SIMT parallel processor. However, various types of SIMT
parallel processors of differing architectures may be
included within the processing cluster 214. One or more
instances of the graphics multiprocessor 234 can be included
within a processing cluster 214. The graphics multiprocessor
234 can process data and a data crossbar 240 can be used to
distribute the processed data to one of multiple possible
destinations, including other shader units. The pipeline
manager 232 can facilitate the distribution of processed data
by specifying destinations for processed data to be distrib-
uted via the data crossbar 240.

Each graphics multiprocessor 234 within the processing
cluster 214 can include an identical set of functional execu-
tion logic (e.g., arithmetic logic units, load-store units, etc.).
The functional execution logic can be configured in a
pipelined manner in which new instructions can be issued
before previous instructions are complete. The functional
execution logic supports a variety of operations including
integer and floating point arithmetic, comparison operations,
Boolean operations, bit-shifting, and computation of various
algebraic functions. In one embodiment the same functional-
unit hardware can be leveraged to perform different opera-
tions and any combination of functional units may be
present.

The instructions transmitted to the processing cluster 214
constitutes a thread. A set of threads executing across the set
of parallel processing engines is a thread group. A thread
group executes the same program on different input data.
Each thread within a thread group can be assigned to a
different processing engine within a graphics multiprocessor
234. A thread group may include fewer threads than the
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number of processing engines within the graphics multipro-
cessor 234. When a thread group includes fewer threads than
the number of processing engines, one or more of the
processing engines may be idle during cycles in which that
thread group is being processed. A thread group may also
include more threads than the number of processing engines
within the graphics multiprocessor 234. When the thread
group includes more threads than the number of processing
engines within the graphics multiprocessor 234, processing
can be performed over consecutive clock cycles. In one
embodiment multiple thread groups can be executed con-
currently on a graphics multiprocessor 234.

In one embodiment the graphics multiprocessor 234
includes an internal cache memory to perform load and store
operations. In one embodiment, the graphics multiprocessor
234 can forego an internal cache and use a cache memory
(e.g., L1 cache 248) within the processing cluster 214. Each
graphics multiprocessor 234 also has access to L2 caches
within the partition units (e.g., partition units 220A-220N of
FIG. 2A) that are shared among all processing clusters 214
and may be used to transfer data between threads. The
graphics multiprocessor 234 may also access off-chip global
memory, which can include one or more of local parallel
processor memory and/or system memory. Any memory
external to the parallel processing unit 202 may be used as
global memory. Embodiments in which the processing clus-
ter 214 includes multiple instances of the graphics multi-
processor 234 can share common instructions and data,
which may be stored in the [.1 cache 248.

Each processing cluster 214 may include an MMU 245
(memory management unit) that is configured to map virtual
addresses into physical addresses. In other embodiments,
one or more instances of the MMU 245 may reside within
the memory interface 218 of FIG. 2A. The MMU 245
includes a set of page table entries (PTEs) used to map a
virtual address to a physical address of a tile and optionally
a cache line index. The MMU 245 may include address
translation lookaside buffers (TLB) or caches that may
reside within the graphics multiprocessor 234 or the L1
cache or processing cluster 214. The physical address is
processed to distribute surface data access locality to allow
efficient request interleaving among partition units. The
cache line index may be used to determine whether a request
for a cache line is a hit or miss.

In graphics and computing applications, a processing
cluster 214 may be configured such that each graphics
multiprocessor 234 is coupled to a texture unit 236 for
performing texture mapping operations, e.g., determining
texture sample positions, reading texture data, and filtering
the texture data. Texture data is read from an internal texture
L1 cache (not shown) or in some embodiments from the [.1
cache within graphics multiprocessor 234 and is fetched
from an [.2 cache, local parallel processor memory, or
system memory, as needed. Each graphics multiprocessor
234 outputs processed tasks to the data crossbar 240 to
provide the processed task to another processing cluster 214
for further processing or to store the processed task in an [.2
cache, local parallel processor memory, or system memory
via the memory crossbar 216. A preROP 242 (pre-raster
operations unit) is configured to receive data from graphics
multiprocessor 234, direct data to ROP units, which may be
located with partition units as described herein (e.g., parti-
tion units 220A-220N of FIG. 2A). The preROP 242 unit can
perform optimizations for color blending, organize pixel
color data, and perform address translations.

It will be appreciated that the core architecture described
herein is illustrative and that variations and modifications
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are possible. Any number of processing units, e.g., graphics
multiprocessor 234, texture units 236, preROPs 242, etc.,
may be included within a processing cluster 214. Further,
while only one processing cluster 214 is shown, a parallel
processing unit as described herein may include any number
of instances of the processing cluster 214. In one embodi-
ment, each processing cluster 214 can be configured to
operate independently of other processing clusters 214 using
separate and distinct processing units, .1 caches, etc.

FIG. 2D shows a graphics multiprocessor 234, according
to one embodiment. In such embodiment the graphics mul-
tiprocessor 234 couples with the pipeline manager 232 of the
processing cluster 214. The graphics multiprocessor 234 has
an execution pipeline including but not limited to an instruc-
tion cache 252, an instruction unit 254, an address mapping
unit 256, a register file 258, one or more general-purpose
graphics processing unit (GPGPU) cores 262, and one or
more load/store units 266. The GPGPU cores 262 and
load/store units 266 are coupled with cache memory 272 and
shared memory 270 via a memory and cache interconnect
268.

In one embodiment, the instruction cache 252 receives a
stream of instructions to execute from the pipeline manager
232. The instructions are cached in the instruction cache 252
and dispatched for execution by the instruction unit 254. The
instruction unit 254 can dispatch instructions as thread
groups (e.g., warps), with each thread of the thread group
assigned to a different execution unit within GPGPU core
262. An instruction can access any of a local, shared, or
global address space by specifying an address within a
unified address space. The address mapping unit 256 can be
used to translate addresses in the unified address space into
a distinct memory address that can be accessed by the
load/store units 266.

The register file 258 provides a set of registers for the
functional units of the graphics multiprocessor 234. The
register file 258 provides temporary storage for operands
connected to the data paths of the functional units (e.g.,
GPGPU cores 262, load/store units 266) of the graphics
multiprocessor 234. In one embodiment, the register file 258
is divided between each of the functional units such that
each functional unit is allocated a dedicated portion of the
register file 258. In one embodiment, the register file 258 is
divided between the different warps being executed by the
graphics multiprocessor 234.

The GPGPU cores 262 can each include floating point
units (FPUs) and/or integer arithmetic logic units (ALUs)
that are used to execute instructions of the graphics multi-
processor 234. The GPGPU cores 262 can be similar in
architecture or can differ in architecture, according to
embodiments. For example and in one embodiment, a first
portion of the GPGPU cores 262 include a single precision
FPU and an integer ALU while a second portion of the
GPGPU cores include a double precision FPU. In one
embodiment the FPUs can implement the IEEE 754-2008
standard for floating point arithmetic or enable variable
precision floating point arithmetic. The graphics multipro-
cessor 234 can additionally include one or more fixed
function or special function units to perform specific func-
tions such as copy rectangle or pixel blending operations. In
one embodiment one or more of the GPGPU cores can also
include fixed or special function logic

The memory and cache interconnect 268 is an intercon-
nect network that connects each of the functional units of the
graphics multiprocessor 234 to the register file 258 and to
the shared memory 270. In one embodiment, the memory
and cache interconnect 268 is a crossbar interconnect that
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allows the load/store unit 266 to implement load and store
operations between the shared memory 270 and the register
file 258. shared memory 270 can be used to enable com-
munication between threads that execute on the functional
units within the graphics multiprocessor 234. The cache
memory 272 can be used as a data cache for example, to
cache texture data communicated between the functional
units and the texture unit 236. The shared memory 270 can
also be used as a program managed cached. Threads execut-
ing on the GPGPU cores 262 can programmatically store
data within the shared memory in addition to the automati-
cally cached data that is stored within the cache memory
272.

FIG. 3A-3B illustrate additional graphics multiproces-
sors, according to embodiments. The illustrated graphics
multiprocessors 325, 350 are variants of the graphics mul-
tiprocessor 234 of FIG. 2C. The illustrated graphics multi-
processors 325, 350 can be configured as a streaming
multiprocessor (SM) capable of simultaneous execution of a
large number of execution threads.

FIG. 3A shows a graphics multiprocessor 325 according
to an additional embodiment. The graphics multiprocessor
325 includes multiple additional instances of execution
resource units relative to the graphics multiprocessor 234 of
FIG. 2D. For example, the graphics multiprocessor 325 can
include multiple instances of the instruction unit 332A-
332B, register file 334A-334B, and texture unit(s) 344A-
344B. The graphics multiprocessor 325 also includes mul-
tiple sets of graphics or compute execution units (e.g.,
GPGPU core 336A-336B, GPGPU core 337A-337B,
GPGPU core 338A-338B) and multiple sets of load/store
units 340A-340B. In one embodiment the execution
resource units have a common instruction cache 330, texture
and/or data cache memory 342, and shared memory 346.

The various components can communicate via an inter-
connect fabric 327. In one embodiment the interconnect
fabric 327 includes one or more crossbar switches to enable
communication between the various components of the
graphics multiprocessor 325. In one embodiment the inter-
connect fabric 327 is a separate, high-speed network fabric
layer upon which each component of the graphics multipro-
cessor 325 is stacked. The components of the graphics
multiprocessor 325 communicate with remote components
via the interconnect fabric 327. For example, the GPGPU
cores 336A-336B, 337A-337B, and 3378A-338B can each
communicate with shared memory 346 via the interconnect
fabric 327. The interconnect fabric 327 can arbitrate com-
munication within the graphics multiprocessor 325 to ensure
a fair bandwidth allocation between components.

FIG. 3B shows a graphics multiprocessor 350 according
to an additional embodiment. The graphics processor
includes multiple sets of execution resources 356A-356D,
where each set of execution resource includes multiple
instruction units, register files, GPGPU cores, and load store
units, as illustrated in FIG. 2D and FIG. 3A. The execution
resources 356A-356D can work in concert with texture
unit(s) 360A-360D for texture operations, while sharing an
instruction cache 354, and shared memory 362. In one
embodiment the execution resources 356 A-356D can share
an instruction cache 354 and shared memory 362, as well as
multiple instances of a texture and/or data cache memory
358A-358B. The various components can communicate via
an interconnect fabric 352 similar to the interconnect fabric
327 of FIG. 3A.

Persons skilled in the art will understand that the archi-
tecture described in FIGS. 1, 2A-2D, and 3A-3B are descrip-
tive and not limiting as to the scope of the present embodi-
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ments. Thus, the techniques described herein may be
implemented on any properly configured processing unit,
including, without limitation, one or more mobile applica-
tion processors, one or more desktop or server central
processing units (CPUs) including multi-core CPUs, one or
more parallel processing units, such as the parallel process-
ing unit 202 of FIG. 2A, as well as one or more graphics
processors or special purpose processing units, without
departure from the scope of the embodiments described
herein.

In some embodiments a parallel processor or GPGPU as
described herein is communicatively coupled to host/pro-
cessor cores to accelerate graphics operations, machine-
learning operations, pattern analysis operations, and various
general-purpose GPU (GPGPU) functions. The GPU may be
communicatively coupled to the host processor/cores over a
bus or other interconnect (e.g., a high speed interconnect
such as PCle or NVLink). In other embodiments, the GPU
may be integrated on the same package or chip as the cores
and communicatively coupled to the cores over an internal
processor bus/interconnect (i.e., internal to the package or
chip). Regardless of the manner in which the GPU is
connected, the processor cores may allocate work to the
GPU in the form of sequences of commands/instructions
contained in a work descriptor. The GPU then uses dedicated
circuitry/logic for efficiently processing these commands/
instructions.

Techniques for GPU to Host Processor Interconnection

FIG. 4A illustrates an exemplary architecture in which a
plurality of GPUs 410-413 are communicatively coupled to
aplurality of multi-core processors 405-406 over high-speed
links 440A-440D (e.g., buses, point-to-point interconnects,
etc.). In one embodiment, the high-speed links 440A-440D
support a communication throughput of 4 GB/s, 30 GB/s, 80
GB/s or higher, depending on the implementation. Various
interconnect protocols may be used including, but not lim-
ited to, PCle 4.0 or 5.0 and NVLink 2.0. However, the
underlying principles of the invention are not limited to any
particular communication protocol or throughput.

In addition, in one embodiment, two or more of the GPUs
410-413 are interconnected over high-speed links 442A-
442B, which may be implemented using the same or dif-
ferent protocols/links than those used for high-speed links
440A-440D. Similarly, two or more of the multi-core pro-
cessors 405-406 may be connected over high speed link 443
which may be symmetric multi-processor (SMP) buses
operating at 20 GB/s, 30 GB/s, 120 GB/s or higher. Alter-
natively, all communication between the various system
components shown in FIG. 4A may be accomplished using
the same protocols/links (e.g., over a common interconnec-
tion fabric). As mentioned, however, the underlying prin-
ciples of the invention are not limited to any particular type
of interconnect technology.

In one embodiment, each of multi-core processor 405 and
multi-core processor 406 are communicatively coupled to a
processor memory 401-402, via memory interconnects
430A-430B, respectively, and each GPU 410-413 is com-
municatively coupled to GPU memory 420-423 over GPU
memory interconnects 450A-450D, respectively. The
memory interconnects 430A-430B and 450A-450D may
utilize the same or different memory access technologies. By
way of example, and not limitation, the processor memories
401-402 and GPU memories 420-423 may be volatile
memories such as dynamic random access memories
(DRAMSs) (including stacked DRAMs), Graphics DDR
SDRAM (GDDR) (e.g., GDDRS5, GDDR6), or High Band-
width Memory (HBM) and/or may be non-volatile memo-
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ries such as 3D XPoint or Nano-Ram. In one embodiment,
some portion of the memories may be volatile memory and
another portion may be non-volatile memory (e.g., using a
two-level memory (2LM) hierarchy).

As described below, although the various processors
405-406 and GPUs 410-413 may be physically coupled to a
particular memory 401-402, 420-423, respectively, a unified
memory architecture may be implemented in which the
same virtual system address space (also referred to as the
“effective address” space) is distributed among all of the
various physical memories. For example, processor memo-
ries 401-402 may each comprise 64 GB of the system
memory address space and GPU memories 420-423 may
each comprise 32 GB of the system memory address space
(resulting in a total of 256 GB addressable memory in this
example).

FIG. 4B illustrates additional details for an interconnec-
tion between a multi-core processor 407 and a graphics
acceleration module 446 in accordance with one embodi-
ment. The graphics acceleration module 446 may include
one or more GPU chips integrated on a line card which is
coupled to the processor 407 via the high-speed link 440.
Alternatively, the graphics acceleration module 446 may be
integrated on the same package or chip as the processor 407.

The illustrated processor 407 includes a plurality of cores
460A-460D, each with a translation lookaside buffer 461 A-
461D and one or more caches 462A-462D. The cores may
include various other components for executing instructions
and processing data which are not illustrated to avoid
obscuring the underlying principles of the invention (e.g.,
instruction fetch units, branch prediction units, decoders,
execution units, reorder buffers, etc.). The caches 462A-
462D may comprise level 1 (I.1) and level 2 (L.2) caches. In
addition, one or more shared caches 456 may be included in
the caching hierarchy and shared by sets of the cores
460A-460D. For example, one embodiment of the processor
407 includes 24 cores, each with its own L1 cache, twelve
shared L2 caches, and twelve shared L3 caches. In this
embodiment, one of the [.2 and L3 caches are shared by two
adjacent cores. The processor 407 and the graphics accel-
erator integration module 446 connect with system memory
441, which may include processor memories 401-402.

Coherency is maintained for data and instructions stored
in the various caches 462A-462D, 456 and system memory
441 via inter-core communication over a coherence bus 464.
For example, each cache may have cache coherency logic/
circuitry associated therewith to communicate to over the
coherence bus 464 in response to detected reads or writes to
particular cache lines. In one implementation, a cache
snooping protocol is implemented over the coherence bus
464 to snoop cache accesses. Cache snooping/coherency
techniques are well understood by those of skill in the art
and will not be described in detail here to avoid obscuring
the underlying principles of the invention.

In one embodiment, a proxy circuit 425 communicatively
couples the graphics acceleration module 446 to the coher-
ence bus 464, allowing the graphics acceleration module
446 to participate in the cache coherence protocol as a peer
of the cores. In particular, an interface 435 provides con-
nectivity to the proxy circuit 425 over high-speed link 440
(e.g., a PCle bus, NVLink, etc.) and an interface 437
connects the graphics acceleration module 446 to the high-
speed link 440.

In one implementation, an accelerator integration circuit
436 provides cache management, memory access, context
management, and interrupt management services on behalf
of a plurality of graphics processing engines 431, 432, N of
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the graphics acceleration module 446. The graphics process-
ing engines 431, 432, N may each comprise a separate
graphics processing unit (GPU). Alternatively, the graphics
processing engines 431, 432, N may comprise different
types of graphics processing engines within a GPU such as
graphics execution units, media processing engines (e.g.,
video encoders/decoders), samplers, and blit engines. In
other words, the graphics acceleration module may be a
GPU with a plurality of graphics processing engines 431-
432, N or the graphics processing engines 431-432, N may
be individual GPUs integrated on a common package, line
card, or chip.

In one embodiment, the accelerator integration circuit 436
includes a memory management unit (MMU) 439 for per-
forming various memory management functions such as
virtual-to-physical memory translations (also referred to as
effective-to-real memory translations) and memory access
protocols for accessing system memory 441. The MMU 439
may also include a translation lookaside buffer (TLB) (not
shown) for caching the virtual/effective to physical/real
address translations. In one implementation, a cache 438
stores commands and data for efficient access by the graph-
ics processing engines 431-432, N. In one embodiment, the
data stored in cache 438 and graphics memories 433-434, M
is kept coherent with the core caches 462A-462D, 456 and
system memory 411. As mentioned, this may be accom-
plished via proxy circuit 425 which takes part in the cache
coherency mechanism on behalf of cache 438 and memories
433-434, M (e.g., sending updates to the cache 438 related
to modifications/accesses of cache lines on processor caches
462A-462D, 456 and receiving updates from the cache 438).

A set of registers 445 store context data for threads
executed by the graphics processing engines 431-432, N and
a context management circuit 448 manages the thread con-
texts. For example, the context management circuit 448 may
perform save and restore operations to save and restore
contexts of the various threads during contexts switches
(e.g., where a first thread is saved and a second thread is
stored so that the second thread can be execute by a graphics
processing engine). For example, on a context switch, the
context management circuit 448 may store current register
values to a designated region in memory (e.g., identified by
a context pointer). It may then restore the register values
when returning to the context. In one embodiment, an
interrupt management circuit 447 receives and processes
interrupts received from system devices.

In one implementation, virtual/effective addresses from a
graphics processing engine 431 are translated to real/physi-
cal addresses in system memory 411 by the MMU 439. One
embodiment of the accelerator integration circuit 436 sup-
ports multiple (e.g., 4, 8, 16) graphics accelerator modules
446 and/or other accelerator devices. The graphics accelera-
tor module 446 may be dedicated to a single application
executed on the processor 407 or may be shared between
multiple applications. In one embodiment, a virtualized
graphics execution environment is presented in which the
resources of the graphics processing engines 431-432, N are
shared with multiple applications or virtual machines
(VMs). The resources may be subdivided into “slices” which
are allocated to different VMs and/or applications based on
the processing requirements and priorities associated with
the VM and/or applications.

Thus, the accelerator integration circuit acts as a bridge to
the system for the graphics acceleration module 446 and
provides address translation and system memory cache
services. In addition, the accelerator integration circuit 436
may provide virtualization facilities for the host processor to
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manage virtualization of the graphics processing engines,
interrupts, and memory management.

Because hardware resources of the graphics processing
engines 431-432, N are mapped explicitly to the real address
space seen by the host processor 407, any host processor can
address these resources directly using an effective address
value. One function of the accelerator integration circuit
436, in one embodiment, is the physical separation of the
graphics processing engines 431-432, N so that they appear
to the system as independent units.

As mentioned, in the illustrated embodiment, one or more
graphics memories 433-434, M are coupled to each of the
graphics processing engines 431-432, N, respectively. The
graphics memories 433-434, M store instructions and data
being processed by each of the graphics processing engines
431-432, N. The graphics memories 433-434, M may be
volatile memories such as DRAMSs (including stacked
DRAMs), GDDR memory (e.g., GDDRS5, GDDR6), or
HBM, and/or may be non-volatile memories such as 3D
XPoint or Nano-Ram.

In one embodiment, to reduce data traffic over the high-
speed link 440, biasing techniques are used to ensure that the
data stored in graphics memories 433-434, M is data which
will be used most frequently by the graphics processing
engines 431-432, N and preferably not used by the cores
460A-460D (at least not frequently). Similarly, the biasing
mechanism attempts to keep data needed by the cores (and
preferably not the graphics processing engines 431-432, N)
within the caches 462A-462D, 456 of the cores and system
memory 411.

FIG. 4C illustrates another embodiment in which the
accelerator integration circuit 436 is integrated within the
processor 407. In this embodiment, the graphics processing
engines 431-432, N communicate directly over the high-
speed link 440 to the accelerator integration circuit 436 via
interface 437 and interface 435 (which, again, may be utilize
any form of bus or interface protocol). The accelerator
integration circuit 436 may perform the same operations as
those described with respect to FIG. 4B, but potentially at a
higher throughput given its close proximity to the coherence
bus 464 and caches 462A-462D, 456.

One embodiment supports different programming models
including a dedicated-process programming model (no
graphics acceleration module virtualization) and shared pro-
gramming models (with virtualization). The latter may
include programming models which are controlled by the
accelerator integration circuit 436 and programming models
which are controlled by the graphics acceleration module
446.

In one embodiment of the dedicated process model,
graphics processing engines 431-432, N are dedicated to a
single application or process under a single operating sys-
tem. The single application can funnel other application
requests to the graphics engines 431-432, N, providing
virtualization within a VM/partition.

In the dedicated-process programming models, the graph-
ics processing engines 431-432, N, may be shared by
multiple VM/application partitions. The shared models
require a system hypervisor to virtualize the graphics pro-
cessing engines 431-432, N to allow access by each oper-
ating system. For single-partition systems without a hyper-
visor, the graphics processing engines 431-432, N are owned
by the operating system. In both cases, the operating system
can virtualize the graphics processing engines 431-432, N to
provide access to each process or application.

For the shared programming model, the graphics accel-
eration module 446 or an individual graphics processing
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engine 431-432, N selects a process element using a process
handle. In one embodiment, process elements are stored in
system memory 411 and are addressable using the effective
address to real address translation techniques described
herein. The process handle may be an implementation-
specific value provided to the host process when registering
its context with the graphics processing engine 431-432, N
(that is, calling system software to add the process element
to the process element linked list). The lower 16-bits of the
process handle may be the offset of the process element
within the process element linked list.

FIG. 4D illustrates an exemplary accelerator integration
slice 490. As used herein, a “slice” comprises a specified
portion of the processing resources of the accelerator inte-
gration circuit 436. Application effective address space 482
within system memory 411 stores process elements 483. In
one embodiment, the process elements 483 are stored in
response to GPU invocations 481 from applications 480
executed on the processor 407. A process element 483
contains the process state for the corresponding application
480. A work descriptor (WD) 484 contained in the process
element 483 can be a single job requested by an application
or may contain a pointer to a queue of jobs. In the latter case,
the WD 484 is a pointer to the job request queue in the
application’s address space 482.

The graphics acceleration module 446 and/or the indi-
vidual graphics processing engines 431-432, N can be
shared by all or a subset of the processes in the system.
Embodiments of the invention include an infrastructure for
setting up the process state and sending a WD 484 to a
graphics acceleration module 446 to start a job in a virtu-
alized environment.

In one implementation, the dedicated-process program-
ming model is implementation-specific. In this model, a
single process owns the graphics acceleration module 446 or
an individual graphics processing engine 431. Because the
graphics acceleration module 446 is owned by a single
process, the hypervisor initializes the accelerator integration
circuit 436 for the owning partition and the operating system
initializes the accelerator integration circuit 436 for the
owning process at the time when the graphics acceleration
module 446 is assigned.

In operation, a WD fetch unit 491 in the accelerator
integration slice 490 fetches the next WD 484 which
includes an indication of the work to be done by one of the
graphics processing engines of the graphics acceleration
module 446. Data from the WD 484 may be stored in
registers 445 and used by the MMU 439, interrupt manage-
ment circuit 447 and/or context management circuit 448 as
illustrated. For example, one embodiment of the MMU 439
includes segment/page walk circuitry for accessing segment/
page tables 486 within the OS virtual address space 485. The
interrupt management circuit 447 may process interrupt
events 492 received from the graphics acceleration module
446. When performing graphics operations, an effective
address 493 generated by a graphics processing engine
431-432, N is translated to a real address by the MMU 439.

In one embodiment, the same set of registers 445 are
duplicated for each graphics processing engine 431-432, N
and/or graphics acceleration module 446 and may be ini-
tialized by the hypervisor or operating system. Each of these
duplicated registers may be included in an accelerator inte-
gration slice 490. Exemplary registers that may be initialized
by the hypervisor are shown in Table 1.
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TABLE 1

Hypervisor Initialized Registers

Slice Control Register

Real Address (RA) Scheduled Processes Area Pointer

Authority Mask Override Register

Interrupt Vector Table Entry Offset

Interrupt Vector Table Entry Limit

State Register

Logical Partition ID

Real address (RA) Hypervisor Accelerator Utilization Record Pointer
Storage Description Register

NoNE-CEEN I NV NI VT S

Exemplary registers that may be initialized by the oper-
ating system are shown in Table 2.

TABLE 2

Operating System Initialized Registers

Process and Thread Identification

Effective Address (EA) Context Save/Restore Pointer
Virtual Address (VA) Accelerator Utilization Record Pointer
Virtual Address (VA) Storage Segment Table Pointer
Authority Mask

Work descriptor

[ N T R S

In one embodiment, each WD 484 is specific to a par-
ticular graphics acceleration module 446 and/or graphics
processing engine 431-432, N. It contains all the information
a graphics processing engine 431-432, N requires to do its
work or it can be a pointer to a memory location where the
application has set up a command queue of work to be
completed.

FIG. 4E illustrates additional details for one embodiment
of a shared model. This embodiment includes a hypervisor
real address space 498 in which a process element list 499
is stored. The hypervisor real address space 498 is accessible
via a hypervisor 496 which virtualizes the graphics accel-
eration module engines for the operating system 495.

The shared programming models allow for all or a subset
of processes from all or a subset of partitions in the system
to use a graphics acceleration module 446. There are two
programming models where the graphics acceleration mod-
ule 446 is shared by multiple processes and partitions:
time-sliced shared and graphics directed shared.

In this model, the system hypervisor 496 owns the graph-
ics acceleration module 446 and makes its function available
to all operating systems 495. For a graphics acceleration
module 446 to support virtualization by the system hyper-
visor 496, the graphics acceleration module 446 may adhere
to the following requirements: 1) An application’s job
request must be autonomous (that is, the state does not need
to be maintained between jobs), or the graphics acceleration
module 446 must provide a context save and restore mecha-
nism. 2) An application’s job request is guaranteed by the
graphics acceleration module 446 to complete in a specified
amount of time, including any translation faults, or the
graphics acceleration module 446 provides the ability to
preempt the processing of the job. 3) The graphics accel-
eration module 446 must be guaranteed fairness between
processes when operating in the directed shared program-
ming model.

In one embodiment, for the shared model, the application
480 is required to make an operating system 495 system call
with a graphics acceleration module 446 type, a work
descriptor (WD), an authority mask register (AMR) value,
and a context save/restore area pointer (CSRP). The graphics
acceleration module 446 type describes the targeted accel-
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eration function for the system call. The graphics accelera-
tion module 446 type may be a system-specific value. The
WD is formatted specifically for the graphics acceleration
module 446 and can be in the form of a graphics acceleration
module 446 command, an effective address pointer to a
user-defined structure, an effective address pointer to a
queue of commands, or any other data structure to describe
the work to be done by the graphics acceleration module
446. In one embodiment, the AMR value is the AMR state
to use for the current process. The value passed to the
operating system is similar to an application setting the
AMR. If the accelerator integration circuit 436 and graphics
acceleration module 446 implementations do not support a
User Authority Mask Override Register (UAMOR), the
operating system may apply the current UAMOR value to
the AMR value before passing the AMR in the hypervisor
call. The hypervisor 496 may optionally apply the current
Authority Mask Override Register (AMOR) value before
placing the AMR into the process element 483. In one
embodiment, the CSRP is one of the registers 445 containing
the effective address of an area in the application’s address
space 482 for the graphics acceleration module 446 to save
and restore the context state. This pointer is optional if no
state is required to be saved between jobs or when a job is
preempted. The context save/restore area may be pinned
system memory.

Upon receiving the system call, the operating system 495
may verify that the application 480 has registered and been
given the authority to use the graphics acceleration module
446. The operating system 495 then calls the hypervisor 496
with the information shown in Table 3.

TABLE 3

OS to Hypervisor Call Parameters

A work descriptor (WD)

An Authority Mask Register (AMR) value (potentially masked).

An effective address (EA) Context Save/Restore Area Pointer (CSRP)
A process ID (PID) and optional thread ID (TID)

A virtual address (VA) accelerator utilization record pointer (AURP)
The virtual address of the storage segment table pointer (SSTP)

A logical interrupt service number (LISN)

R Y N

Upon receiving the hypervisor call, the hypervisor 496
verifies that the operating system 495 has registered and
been given the authority to use the graphics acceleration
module 446. The hypervisor 496 then puts the process
element 483 into the process element linked list for the
corresponding graphics acceleration module 446 type. The
process element may include the information shown in Table
4.

TABLE 4

Process Element Information

1 A work descriptor (WD)
2 An Authority Mask Register (AMR) value (potentially masked).
3 An effective address (EA) Context Save/Restore Area Pointer (CSRP)
4 A process ID (PID) and optional thread ID (TID)
5 A virtual address (VA) accelerator utilization record pointer (AURP)
6 The virtual address of the storage segment table pointer (SSTP)
7 A logical interrupt service number (LISN)
8 Interrupt vector table, derived from the hypervisor call parameters.
9 A state register (SR) value
10 A logical partition ID (LPID)
11 A real address (RA) hypervisor accelerator utilization record pointer
12 The Storage Descriptor Register (SDR)
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In one embodiment, the hypervisor initializes a plurality
of accelerator integration slice 490 registers 445.

As illustrated in FIG. 4F, one embodiment of the inven-
tion employs a unified memory addressable via a common
virtual memory address space used to access the physical
processor memories 401-402 and GPU memories 420-423.
In this implementation, operations executed on the GPUs
410-413 utilize the same virtual/effective memory address
space to access the processors memories 401-402 and vice
versa, thereby simplifying programmability. In one embodi-
ment, a first portion of the virtual/effective address space is
allocated to the processor memory 401, a second portion to
the second processor memory 402, a third portion to the
GPU memory 420, and so on. The entire virtual/effective
memory space (sometimes referred to as the effective
address space) is thereby distributed across each of the
processor memories 401-402 and GPU memories 420-423,
allowing any processor or GPU to access any physical
memory with a virtual address mapped to that memory.

In one embodiment, bias/coherence management circuitry
494A-494E within one or more of the MMUs 439A-439E
ensures cache coherence between the caches of the host
processors (e.g., 405) and the GPUs 410-413 and imple-
ments biasing techniques indicating the physical memories
in which certain types of data should be stored. While
multiple instances of bias/coherence management circuitry
494A-494E are illustrated in FIG. 4F, the bias/coherence
circuitry may be implemented within the MMU of one or
more host processors 405 and/or within the accelerator
integration circuit 436.

One embodiment allows GPU-attached memory 420-423
to be mapped as part of system memory and accessed using
shared virtual memory (SVM) technology, but without suf-
fering the typical performance drawbacks associated with
full system cache coherence. The ability to GPU-attached
memory 420-423 to be accessed as system memory without
onerous cache coherence overhead provides a beneficial
operating environment for GPU offload. This arrangement
allows the host processor 405 software to setup operands
and access computation results, without the overhead of
tradition I/O DMA data copies. Such traditional copies
involve driver calls, interrupts and memory mapped 1/O
(MMIO) accesses that are all inefficient relative to simple
memory accesses. At the same time, the ability to access
GPU attached memory 420-423 without cache coherence
overheads can be critical to the execution time of an off-
loaded computation. In cases with substantial streaming
write memory traffic, for example, cache coherence over-
head can significantly reduce the effective write bandwidth
seen by a GPU 410-413. The efficiency of operand setup, the
efficiency of results access, and the efficiency of GPU
computation all play a role in determining the effectiveness
of GPU offload.

In one implementation, the selection of between GPU bias
and host processor bias is driven by a bias tracker data
structure. A bias table may be used, for example, which may
be a page-granular structure (i.e., controlled at the granu-
larity of a memory page) that includes 1 or 2 bits per
GPU-attached memory page. The bias table may be imple-
mented in a stolen memory range of one or more GPU-
attached memories 420-423, with or without a bias cache in
the GPU 410-413 (e.g., to cache frequently/recently used
entries of the bias table). Alternatively, the entire bias table
may be maintained within the GPU.

In one implementation, the bias table entry associated
with each access to the GPU-attached memory 420-423 is
accessed prior the actual access to the GPU memory, causing
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the following operations. First, local requests from the GPU
410-413 that find their page in GPU bias are forwarded
directly to a corresponding GPU memory 420-423. Local
requests from the GPU that find their page in host bias are
forwarded to the processor 405 (e.g., over a high-speed link
as discussed above). In one embodiment, requests from the
processor 405 that find the requested page in host processor
bias complete the request like a normal memory read.
Alternatively, requests directed to a GPU-biased page may
be forwarded to the GPU 410-413. The GPU may then
transition the page to a host processor bias if it is not
currently using the page.

The bias state of a page can be changed cither by a
software-based mechanism, a hardware-assisted software-
based mechanism, or, for a limited set of cases, a purely
hardware-based mechanism.

One mechanism for changing the bias state employs an
API call (e.g. OpenCL), which, in turn, calls the GPU’s
device driver which, in turn, sends a message (or enqueues
a command descriptor) to the GPU directing it to change the
bias state and, for some transitions, perform a cache flushing
operation in the host. The cache flushing operation is
required for a transition from host processor 405 bias to
GPU bias, but is not required for the opposite transition.

In one embodiment, cache coherency is maintained by
temporarily rendering GPU-biased pages uncacheable by
the host processor 405. To access these pages, the processor
405 may request access from the GPU 410 which may or
may not grant access right away, depending on the imple-
mentation. Thus, to reduce communication between the
processor 405 and GPU 410 it is beneficial to ensure that
GPU-biased pages are those which are required by the GPU
but not the host processor 405 and vice versa.

Graphics Processing Pipeline

FIG. 5 illustrates a graphics processing pipeline 500,
according to an embodiment. In one embodiment a graphics
processor can implement the illustrated graphics processing
pipeline 500. The graphics processor can be included within
the parallel processing subsystems as described herein, such
as the parallel processor 200 of FIG. 2A, which, in one
embodiment, is a variant of the parallel processor(s) 112 of
FIG. 1. The various parallel processing systems can imple-
ment the graphics processing pipeline 500 via one or more
instances of the parallel processing unit (e.g., parallel pro-
cessing unit 202 of FIG. 2A) as described herein. For
example, a shader unit (e.g., graphics multiprocessor 234 of
FIG. 2C) may be configured to perform the functions of one
or more of a vertex processing unit 504, a tessellation
control processing unit 508, a tessellation evaluation pro-
cessing unit 512, a geometry processing unit 516, and a
fragment/pixel processing unit 524. The functions of data
assembler 502, primitive assemblers 506, 514, 518, tessel-
lation unit 510, rasterizer 522, and raster operations unit 526
may also be performed by other processing engines within
aprocessing cluster (e.g., processing cluster 214 of FIG. 2A)
and a corresponding partition unit (e.g., partition unit 220A-
220N of FIG. 2A). The graphics processing pipeline 500
may also be implemented using dedicated processing units
for one or more functions. In one embodiment, one or more
portions of the graphics processing pipeline 500 can be
performed by parallel processing logic within a general-
purpose processor (e.g., CPU). In one embodiment, one or
more portions of the graphics processing pipeline 500 can
access on-chip memory (e.g., parallel processor memory
222 as in FIG. 2A) via a memory interface 528, which may
be an instance of the memory interface 218 of FIG. 2A.
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In one embodiment the data assembler 502 is a processing
unit that collects vertex data for surfaces and primitives. The
data assembler 502 then outputs the vertex data, including
the vertex attributes, to the vertex processing unit 504. The
vertex processing unit 504 is a programmable execution unit
that executes vertex shader programs, lighting and trans-
forming vertex data as specified by the vertex shader pro-
grams. The vertex processing unit 504 reads data that is
stored in cache, local or system memory for use in process-
ing the vertex data and may be programmed to transform the
vertex data from an object-based coordinate representation
to a world space coordinate space or a normalized device
coordinate space. Vertex processing unit 504 may read data
that is stored in cache, local or system memory for use in
processing the vertex data.

A first instance of a primitive assembler 506 receives
vertex attributes from the vertex processing unit 504. The
primitive assembler 506 reads stored vertex attributes as
needed and constructs graphics primitives for processing by
tessellation control processing unit 508. The graphics primi-
tives include triangles, line segments, points, patches, and so
forth, as supported by various graphics processing applica-
tion programming interfaces (APIs).

The tessellation control processing unit 508 treats the
input vertices as control points for a geometric patch. The
control points are transformed from an input representation
from the patch (e.g., the patch’s bases) to a representation
that is suitable for use in surface evaluation by the tessel-
lation evaluation processing unit 512. The tessellation con-
trol processing unit 508 can also compute tessellation factors
for edges of geometric patches. A tessellation factor applies
to a single edge and quantifies a view-dependent level of
detail associated with the edge. A tessellation unit 510 is
configured to receive the tessellation factors for edges of a
patch and to tessellate the patch into multiple geometric
primitives such as line, triangle, or quadrilateral primitives,
which are transmitted to a tessellation evaluation processing
unit 512. The tessellation evaluation processing unit 512
operates on parameterized coordinates of the subdivided
patch to generate a surface representation and vertex attri-
butes for each vertex associated with the geometric primi-
tives.

A second instance of a primitive assembler 514 receives
vertex attributes from the tessellation evaluation processing
unit 512, reading stored vertex attributes as needed, and
constructs graphics primitives for processing by the geom-
etry processing unit 516. The geometry processing unit 516
is a programmable execution unit that executes geometry
shader programs to transform graphics primitives received
from primitive assembler 514 as specified by the geometry
shader programs. In one embodiment the geometry process-
ing unit 516 is programmed to subdivide the graphics
primitives into one or more new graphics primitives and
calculate parameters used to rasterize the new graphics
primitives.

In some embodiments the geometry processing unit 516
can add or delete elements in the geometry stream. The
geometry processing unit 516 outputs the parameters and
vertices specifying new graphics primitives to primitive
assembler 518. The primitive assembler 518 receives the
parameters and vertices from the geometry processing unit
516 and constructs graphics primitives for processing by a
viewport scale, cull, and clip unit 520. The geometry pro-
cessing unit 516 reads data that is stored in parallel processor
memory or system memory for use in processing the geom-
etry data. The viewport scale, cull, and clip unit 520 per-
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forms clipping, culling, and viewport scaling and outputs
processed graphics primitives to a rasterizer 522.

The rasterizer 522 can perform depth culling and other
depth-based optimizations. The rasterizer 522 also performs
scan conversion on the new graphics primitives to generate
fragments and output those fragments and associated cov-
erage data to the fragment/pixel processing unit 524. The
fragment/pixel processing unit 524 is a programmable
execution unit that is configured to execute fragment shader
programs or pixel shader programs. The fragment/pixel
processing unit 524 transforming fragments or pixels
received from rasterizer 522, as specified by the fragment or
pixel shader programs. For example, the fragment/pixel
processing unit 524 may be programmed to perform opera-
tions included but not limited to texture mapping, shading,
blending, texture correction and perspective correction to
produce shaded fragments or pixels that are output to a raster
operations unit 526. The fragment/pixel processing unit 524
can read data that is stored in either the parallel processor
memory or the system memory for use when processing the
fragment data. Fragment or pixel shader programs may be
configured to shade at sample, pixel, tile, or other granu-
larities depending on the sampling rate configured for the
processing units.

The raster operations unit 526 is a processing unit that
performs raster operations including, but not limited to
stencil, z test, blending, and the like, and outputs pixel data
as processed graphics data to be stored in graphics memory
(e.g., parallel processor memory 222 as in FIG. 2A, and/or
system memory 104 as in FIG. 1), to be displayed on the one
or more display device(s) 110A-110B or for further process-
ing by one of the one or more processor(s) 102 or parallel
processor(s) 112. In some embodiments the raster operations
unit 526 is configured to compress z or color data that is
written to memory and decompress z or color data that is
read from memory.

Coarse Pixel Shading and Pixel Quad Fragmentation

Conventional coarse pixel shading techniques do not
enable fragment compression during coarse pixel shading.
The lack of fragment compression can reduce efficiency and
result in occasional inaccuracies in the rendering process.
Embodiments described herein enable intelligent fragment
compression and expansion on coarse pixel quads flowing
down a pixel pipeline to maximize the backend processing
throughput of coarse pixels, resulting in an overall increase
in pixel throughput.

FIG. 6 is a block diagram of a pre-shader pipeline 600 for
coarse pixel shading, according to an embodiment. The
pre-shader pipeline 600 includes a rasterizer 602 and shader
unit 610, which may be versions of the rasterizer 522 and the
fragment/pixel processing unit 524 as in FIG. 5. In one
embodiment the pre-shader pipeline 600 additionally
includes an early fragment test module 604, a tile buffer 606,
a coarse quad generator 608, and a coarse pixel size evalu-
ator 612. The rasterizer 602 transforms a stream of vertices
into corresponding two-dimensional (2D) points. The 2D
points may be pixels or, if multi-sample rendering is
enabled, multi-samples for each pixel. In one embodiment
the rasterizer 602 outputs a quad fragment 603 for shading
by the shader unit 610.

A fragment is the data output by a rasterizer that is used
to generate a pixel. The quad fragment 603 includes data to
generate four pixels. If multisampling is enabled, the quad
fragment can also include data for multiple sample locations
within the pixel. The early fragment test module 604 can test
fragment data output from the rasterizer 602 and reject
fragments that fail a depth test, which prevents the shader
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unit 610 from shading fragments that will ultimately not be
visible. Only quad fragments with at least one covered
sample will be output from the early fragment test module
604. In one embodiment a tile buffer 606 is used to buffer
multiple quad fragments that pass the early fragment test
module 604. The coarse quad generator 608 can then com-
bine the quad fragments in the tile buffer 606 into a coarse
quad fragment 609 for shading by the shader unit 610.

The shader unit can shade the coarse quad fragment 609
to output a coarse pixel quad 611. The shader unit 610 can
determine a course pixel value for each coarse pixel within
the coarse pixel quad 611 and output the coarse pixel value
to each pixel within the coarse pixel. While each coarse pixel
is illustrated as a 2x2 pixel quad, the size of the coarse pixel
can vary. In one embodiment a coarse pixel size evaluator
612 is configured to dynamically adjust a coarse pixel
scaling factor to adjust the size of the coarse pixels. Adjust-
ing the size of the coarse pixels enables the shader unit 610
to implement multi-rate shading. Multi-rate shading can be
used to increase shading rate over particularly detailed
portions of a scene, while reducing shading rate for less
detailed portions of a scene.

FIG. 7 illustrates a pixel processing system 700 for shaded
coarse pixels, according to one embodiment. A pixel pipe-
line 710 can process coarse pixels that retire from a pro-
cessing cluster 702. The processing cluster 702 is a process-
ing cluster such as the processing cluster 214 as described
herein, and can perform operations of the shader unit 610 as
in FIG. 6. One or more portions of the pixel pipeline 710,
including the pixel processing unit 716, can be included in
a raster operations unit such as the ROP 226 of FIG. 2B and
can be a portion of the fragment/pixel processing unit 524 of
FIG. 5. In one embodiment the pixel processing unit 716 can
perform pixel processing operations including but not lim-
ited to a stencil test, a depth test, and alpha blending.

In the illustrated configuration the pixel processing unit
716 operates at coarse pixel granularity, while pixel data is
written to the render cache 720 as pixel quads. The pixel
pipeline 710 fragments the retiring coarse pixels via a pixel
quad fragmentation unit 712 for storage in the render cache
720 and for submission down the pixel pipeline 710. Pixel
source data is output from the pixel quad fragmentation unit
712 at N pixel quads per clock, with N varying based on the
width of the pixel pipeline. A latency buffer 713 can be used
to manage throughput differences between the front end and
the back end of the pixel pipeline 710, with some pixel quads
stored in the latency buffer 713 for immediate processing
and other pixel quads stored in the render cache 720. An
allocation unit 722 can allocate space in the render cache
data banks 724 to store fragmented pixel quad data. A cache
read unit 714 can read pixel quads from the latency buffer
713 or can submit a pixel quad read request to the render
cache 720 to read cached pixel quads. The pixel processing
unit 716 can then read and process pixel data at coarse pixel
granularity, outputting one or more coarse pixel quads per
clock to a cache write unit 718 for writing to the render
cache 720. The cache write unit 718 can write coarse pixel
data on a pixel quad granularity, outputting N pixel quads
per clock, with N varying based on the width of the pixel
pipeline.

When merging pixel quads into coarse quads for process-
ing by the pixel processing unit 716, it is possible for a read
to the render cache 720 to hit on a cacheline that is in the
write-only state. This occurrence is referred to as a read hit
write only (RHWO) event. An RHWO event can trigger
when merging pixel quads to coarse quads for processing.
RHWO data is evicted to memory, which can be a higher-
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level cache memory (e.g., L.2, L3 cache, etc.), read back
from the memory, and merged with an RHWO merge unit
728. Byte enables for the evicted data can be stored in a
RHWO byte enable victim cache 726 and used by the
RHWO merge unit 728 to merge the pixel data back into the
render cache data banks 724. While the pixel processing
system 700 realizes improved pixel throughput via the use
the coarse pixel shading, additional improvements to the
pixel processing system 700 are possible. For example,
postponing the coarse pixel quad fragmentation that is
performed by the pixel quad fragmentation unit 712 can
significantly improve the pixel throughput. In one embodi-
ment, postponing pixel quad fragmentation can be per-
formed by the pixel processing system of FIG. 8.
Coalescing Fragments for Efficient Pixel Processing

FIG. 8 is an illustration of a pixel processing system 800,
according to embodiments. The pixel processing system 800
is similar to the pixel processing system 700 of FIG. 7, but
is configured to maintain coarse pixel granularity throughout
the pixel pipeline 810 as long as possible for a given coarse
pixel. A cacheline aware fragment compression unit 812
configures pixels belonging to the same cacheline in the
render cache 820 to be rendered by the pixel pipeline 810 as
coarse pixels. The cache read module 814 and cache write
module 818 are also configurable to read and write to the
render cache 820 at coarse pixel quad granularity.

The pixel processing system 800 enables pixel quad
fragmentation to be postponed or avoided for coarse pixels.
Instead of automatically fragmenting coarse pixel quads
received from the processing cluster 702 may be pipeline as
coarse pixel quads or, if necessary, expanded into constituent
pixel quads. Whether a coarse pixel quad is pipelined as a
coarse pixel quad or expanded into the constituent pixel
quads can be determined based on factors including the size
of the cache lines of the render cache data banks 824, the
coarse pixel scaling factor, and the pixel mask of the coarse
pixel quad. The pixel mask is a bit mask in which each bit
represents whether a corresponding coarse pixel inside the
input coarse pixel quad has been lit by the shader unit. For
a fully lit coarse pixel quad, all bits in the pixel mask will
be 1. For a partially lit coarse pixel quad, one or more of the
bits in the pixel mask bits will be 0.

For coarse pixel quads that will be expanded into the
constitute pixel quads, cacheline aware fragment expansion
can be performed. In one embodiment cacheline aware
fragment expansion is performed at the allocation unit 822.
Performing expansion at the allocation unit 822 can mini-
mize the number of expansions of coarse pixels to regular
pixels, as coarse pixel expansion introduces a performance
penalty due to a reduction in throughput of the pixel pipeline
810. Performing the cacheline aware fragment expansion at
allocation also enables reuse the existing RHWO victim
cache framework to enable seamless pixel expansion. The
allocation unit 822 includes logic to example the status of
the render cacheline associated with a coarse pixel, the
coarse pixel masks of the coarse pixel, and the dirty status
of the previously rendered coarse pixels to the same cache-
line. Using the examined data, the allocation unit 822 can
either allow expansion of the coarse pixel into a regular pixel
or defer expansion of the coarse pixel. In one embodiment
the RHWO eviction logic can be augmented to enable
support for coarse pixel storage within the render cache 820.
The augmentations can include an RHWO byte enable
victim cache 826 configured to store coarse pixel data and
dirty bits for use by a coarse pixel merge unit 828.

FIG. 9 is a flow diagram illustrating a cacheline aware
fragment compression logic 900, according to an embodi-
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ment. In one embodiment, cacheline aware fragment com-
pression is performed by a cacheline aware fragment com-
pression unit 712 within a pixel pipeline 710, as illustrated
in FIG. 7. However, fragment compression as illustrated can
be performed by other logic units within a pixel pipeline.

In one embodiment, the cacheline aware fragment com-
pression logic 900 receives an input quad and determines, at
block 901, whether the input quad is a coarse pixel quad. If
the input quad is not a coarse pixel quad, the logic 900 can
perform a cacheline aware combination of the pixel quads,
as shown at block 911. The logic 900 can then send the pixel
quads to the pixel pipeline, as shown at block 921. If the
input quad is a coarse pixel quad the logic 900 can deter-
mine, at block 903, whether the coarse pixel quad covers one
or more cache lines within the render cache. Whether the
coarse pixel quad covers one or more render cachelines can
be determine based factors including the coarse pixel scaling
factor and pixel mask. If the coarse pixel quad does not
cover at least one cacheline in the render cache, the logic 900
can fragment the coarse pixel quad into constituent pixel
quads at block 913. The logic 900 can then perform a
cacheline aware combination of pixel quads at block 911.

If at block 903 the coarse pixel quad cover one or more
render cachelines, the logic 900 can fragment the coarse
pixel quad into multiple sub coarse pixel quads, where each
sub coarse pixel quad covers a render cacheline, as shown at
block 904. For each coarse pixel in the sub coarse pixel
quad, the cacheline aware fragment compression logic 900
can determine if the coarse pixel is fully lit at block 914. If
the coarse pixel is not fully lit, the logic 900 can fragment
the coarse pixel into pixel quads at 913. If the coarse pixel
is fully lit at block 914, the logic 900 can add the coarse
pixel to a coarse transaction at block 924. Adding the coarse
pixel to the coarse transaction includes setting a bit in the
pixel mask of a coarse pixel quad to one, to indicate a lit
coarse pixel in the coarse pixel quad. The logic 900 then
determines if the processed coarse pixel is the last coarse
pixel of the sub coarse pixel quad at block 934. If the
processed pixel is not the last coarse pixel, the next coarse
pixel is selected at block 906. If the coarse pixel is the last
coarse pixel, then the logic can send the coarse transaction
to the pixel pipe at block 923.

FIG. 10 is a flow diagram illustrating cacheline aware
fragment expansion logic 1000, according to an embodi-
ment. In one embodiment the cacheline aware fragment
expansion logic 1000 is included within the allocation unit
722 of a render cache 720 as in FIG. 7. However, the
cacheline aware fragment expansion logic 1000 can also be
enabled by other pixel processing components.

For a given incoming quad, the cacheline aware fragment
expansion logic 1000 can determine if the incoming quad is
a coarse pixel quad at block 1001. If the incoming quad is
a coarse pixel quad, the logic 1000 can determine if a cache
line to store the coarse pixel quad is in a read/write state at
block 1003. If the cache line is not in a read/write state at
1003 (e.g., is in a read-only state), the logic 1000 can
determine if the cache line is configured to a pixel quad state
or a coarse pixel quad state at block 1011. If the cache line
is in pixel quad state, the logic 1000 can determine if the
coarse pixel quad covers the full cache line and is fully lit at
block 1021. If the coarse pixel quad is fully lit and covers the
entire cache line at block 1021, the cacheline aware frag-
ment expansion logic 1000 notes a coarse pixel quad cache
line hit at block 1037 and sets the cache line to the coarse
pixel quad state (CPQ Status=1). The logic 1000 can also
realize a cache hit at block 1037 if the cache line is in coarse
pixel quad state at block 1011 and the coarse pixel cache line
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dirty bits are equal to the pixel mask at block 1033 (indi-
cating that data for lit coarse pixels has been modified. The
logic 1000 can also realize a cache hit at block 1037 if the
cache line is in coarse pixel quad state at block 1025
(indicating that the cache line is in a read/write state) and the
full cache line is dirty at block 1035.

If the incoming coarse pixel quad cannot be processed as
a coarse pixel quad, cacheline aware fragment expansion is
performed on the coarse pixel quad at block 1023. This
expansion can occur if the cache line is in the read/write
state at block 1003 and is in the pixel quad state at block
1025. Expansion can also be performed at block 1023 if the
cache line is not in the read/write state at block 1003 and the
coarse pixel quad does not cover a full cache line or is not
fully lit, as determined at block 1021.

If the incoming quad is not a coarse pixel quad at block
1001 or the coarse pixel dirty bits are not equal to the pixel
mask at block 1033, the cacheline aware fragment expansion
logic 1000 can trigger a coarse pixel expansion of the cache
line by setting the cache line to the pixel quad state (CPQ
status=0) at block 1040. The coarse pixel expansion can
trigger a read hit write only RHWO eviction for the cache
line at block 1042. The logic 1000 will then write the coarse
pixel dirty bits and coarse pixel data associated with the read
hit to a victim cache, as shown at block 1044. The logic 1000
will then send a read request for the pixel data to memory,
as shown at block 1046, where the memory can be an
additional cache memory, such as an [.2 or L3 cache. Upon
the coarse pixel expansion data return at block 1050, the
logic 1000 can read the coarse pixel data and dirty bits from
the victim cache at block 1052, the data and dirty bits having
been stored to the victim cache at block 1044. The logic
1000 can perform a coarse pixel merge at block 1054, for
example, via a coarse pixel merge unit 828 as in FIG. 8. The
logic 1000 can then write the coarse pixel quad into the
render data cache at block 1056.

FIG. 11 illustrates a cache hierarchy 1100, according to an
embodiment. The cache hierarchy 1100 shows that embodi-
ments described herein can configure the pixel pipeline 810
to store coarse pixel data in the render cache 820, as
illustrated in FIG. 8. As described herein, various embodi-
ments can perform coarse pixel processing in which a
processing cluster implements coarse pixel shading opera-
tions to output coarse pixel quads to a post-shader pixel
pipeline (e.g., pixel pipeline 810). The post-shader pixel
pipeline can maintain a coarse pixel status for coarse pixels
output by the pixel shader and can perform cacheline aware
fragment compression in which pixels belonging to the same
cacheline in the render cache 820 are rendered by the pixel
pipeline 810 as coarse pixels. A cacheline aware combina-
tion of pixel quads can be performed and those pixel quads
can be merged into a coarse pixel or coarse pixel quad when
written to the render cache 820.

In one embodiment, coarse pixel data can also be stored
in higher level cache memories, such as an L3 cache
memory 1122. In some embodiments, other cache memories
in the graphics processing systems described herein can be
configured to support coarse pixel storage. For example and
in one embodiment the partition unit 220 in FIG. 2B can be
configured to handle coarse pixel data and can store pixel
data and coarse pixel data to the .2 cache 221. In one
embodiment some of the coarse pixel quads can be
expanded (e.g., fragmented) into pixel quads if the coarse
pixel quads, for example, if the coarse pixel quad does not
cover a full cache line of the render cache. Expanded pixel
quads can then be recombined into coarse pixel quads once
a cache line of pixel quads is assembled.
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Additional Exemplary Graphics Processing System

Details of the embodiments described above can be
incorporated within graphics processing systems and
devices described below. The graphics processing system
and devices of FIG. 12 through FIG. 25 illustrate alternative
systems and graphics processing hardware that can imple-
ment any and all of the techniques described above.
Additional Exemplary Graphics Processing System Over-
view

FIG. 12 is a block diagram of a processing system 1200,
according to an embodiment. In various embodiments the
system 1200 includes one or more processors 1202 and one
or more graphics processors 1208, and may be a single
processor desktop system, a multiprocessor workstation
system, or a server system having a large number of pro-
cessors 1202 or processor cores 1207. In one embodiment,
the system 1200 is a processing platform incorporated
within a system-on-a-chip (SoC) integrated circuit for use in
mobile, handheld, or embedded devices.

An embodiment of system 1200 can include, or be incor-
porated within a server-based gaming platform, a game
console, including a game and media console, a mobile
gaming console, a handheld game console, or an online
game console. In some embodiments system 1200 is a
mobile phone, smart phone, tablet computing device or
mobile Internet device. Data processing system 1200 can
also include, couple with, or be integrated within a wearable
device, such as a smart watch wearable device, smart
eyewear device, augmented reality device, or virtual reality
device. In some embodiments, data processing system 1200
is a television or set top box device having one or more
processors 1202 and a graphical interface generated by one
or more graphics processors 1208.

In some embodiments, the one or more processors 1202
each include one or more processor cores 1207 to process
instructions which, when executed, perform operations for
system and user software. In some embodiments, each of the
one or more processor cores 1207 is configured to process a
specific instruction set 1209. In some embodiments, instruc-
tion set 1209 may facilitate Complex Instruction Set Com-
puting (CISC), Reduced Instruction Set Computing (RISC),
or computing via a Very Long Instruction Word (VLIW).
Multiple processor cores 1207 may each process a different
instruction set 1209, which may include instructions to
facilitate the emulation of other instruction sets. Processor
core 1207 may also include other processing devices, such
a Digital Signal Processor (DSP).

In some embodiments, the processor 1202 includes cache
memory 1204. Depending on the architecture, the processor
1202 can have a single internal cache or multiple levels of
internal cache. In some embodiments, the cache memory is
shared among various components of the processor 1202. In
some embodiments, the processor 1202 also uses an external
cache (e.g., a Level-3 (L3) cache or Last Level Cache
(LLC)) (not shown), which may be shared among processor
cores 1207 using known cache coherency techniques. A
register file 1206 is additionally included in processor 1202
which may include different types of registers for storing
different types of data (e.g., integer registers, floating point
registers, status registers, and an instruction pointer regis-
ter). Some registers may be general-purpose registers, while
other registers may be specific to the design of the processor
1202.

In some embodiments, processor 1202 is coupled with a
processor bus 1210 to transmit communication signals such
as address, data, or control signals between processor 1202
and other components in system 1200. In one embodiment
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the system 1200 uses an exemplary ‘hub’ system architec-
ture, including a memory controller hub 1216 and an Input
Output (I/0) controller hub 1230. A memory controller hub
1216 facilitates communication between a memory device
and other components of system 1200, while an /O Con-
troller Hub (ICH) 1230 provides connections to I/O devices
via a local 1/O bus. In one embodiment, the logic of the
memory controller hub 1216 is integrated within the pro-
Cessor.

Memory device 1220 can be a dynamic random-access
memory (DRAM) device, a static random access memory
(SRAM) device, flash memory device, phase-change
memory device, or some other memory device having
suitable performance to serve as process memory. In one
embodiment the memory device 1220 can operate as system
memory for the system 1200, to store data 1222 and instruc-
tions 1221 for use when the one or more processors 1202
executes an application or process. Memory controller hub
1216 also couples with an optional external graphics pro-
cessor 1212, which may communicate with the one or more
graphics processors 1208 in processors 1202 to perform
graphics and media operations.

In some embodiments, ICH 1230 enables peripherals to
connect to memory device 1220 and processor 1202 via a
high-speed 1/O bus. The I/O peripherals include, but are not
limited to, an audio controller 1246, a firmware interface
1228, a wireless transceiver 1226 (e.g., Wi-Fi, Bluetooth), a
data storage device 1224 (e.g., hard disk drive, flash
memory, etc.), and a legacy I/O controller 1240 for coupling
legacy (e.g., Personal System 2 (PS/2)) devices to the
system. One or more Universal Serial Bus (USB) controllers
1242 connect input devices, such as keyboard and mouse
1244 combinations. A network controller 1234 may also
couple with ICH 1230. In some embodiments, a high-
performance network controller (not shown) couples with
processor bus 1210. It will be appreciated that the system
1200 shown is exemplary and not limiting, as other types of
data processing systems that are differently configured may
also be used. For example, the I/O controller hub 1230 may
be integrated within the one or more processor 1202, or the
memory controller hub 1216 and I/O controller hub 1230
may be integrated into a discreet external graphics proces-
sor, such as the external graphics processor 1212.

FIG. 13 is a block diagram of an embodiment of a
processor 1300 having one or more processor cores 1302A-
1302N, an integrated memory controller 1314, and an inte-
grated graphics processor 1308. Those elements of FIG. 13
having the same reference numbers (or names) as the
elements of any other figure herein can operate or function
in any manner similar to that described elsewhere herein, but
are not limited to such. Processor 1300 can include addi-
tional cores up to and including additional core 1302N
represented by the dashed lined boxes. Each of processor
cores 1302A-1302N includes one or more internal cache
units 1304A-1304N. In some embodiments each processor
core also has access to one or more shared cached units
1306.

The internal cache units 1304A-1304N and shared cache
units 1306 represent a cache memory hierarchy within the
processor 1300. The cache memory hierarchy may include at
least one level of instruction and data cache within each
processor core and one or more levels of shared mid-level
cache, such as a Level 2 (1.2), Level 3 (L3), Level 4 (L4),
or other levels of cache, where the highest level of cache
before external memory is classified as the LLC. In some
embodiments, cache coherency logic maintains coherency
between the various cache units 1306 and 1304A-1304N.
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In some embodiments, processor 1300 may also include
a set of one or more bus controller units 1316 and a system
agent core 1310. The one or more bus controller units 1316
manage a set of peripheral buses, such as one or more
Peripheral Component Interconnect buses (e.g., PCI, PCI
Express). System agent core 1310 provides management
functionality for the various processor components. In some
embodiments, system agent core 1310 includes one or more
integrated memory controllers 1314 to manage access to
various external memory devices (not shown).

In some embodiments, one or more of the processor cores
1302A-1302N include support for simultaneous multi-
threading. In such embodiment, the system agent core 1310
includes components for coordinating and operating cores
1302A-1302N during multi-threaded processing. System
agent core 1310 may additionally include a power control
unit (PCU), which includes logic and components to regu-
late the power state of processor cores 1302A-1302N and
graphics processor 1308.

In some embodiments, processor 1300 additionally
includes graphics processor 1308 to execute graphics pro-
cessing operations. In some embodiments, the graphics
processor 1308 couples with the set of shared cache units
1306, and the system agent core 1310, including the one or
more integrated memory controllers 1314. In some embodi-
ments, a display controller 1311 is coupled with the graphics
processor 1308 to drive graphics processor output to one or
more coupled displays. In some embodiments, display con-
troller 1311 may be a separate module coupled with the
graphics processor via at least one interconnect or may be
integrated within the graphics processor 1308 or system
agent core 1310.

In some embodiments, a ring-based interconnect 1312 is
used to couple the internal components of the processor
1300. However, an alternative interconnect unit may be
used, such as a point-to-point interconnect, a switched
interconnect, or other techniques, including techniques well
known in the art. In some embodiments, graphics processor
1308 couples with the ring-based interconnect 1312 via an
1/0 link 1313.

The exemplary I/O link 1313 represents at least one of
multiple varieties of /O interconnects, including an on
package 1/O interconnect which facilitates communication
between various processor components and a high-perfor-
mance embedded memory module 1318, such as an eDRAM
module. In some embodiments, each of the processor cores
1302A-1302N and graphics processor 1308 use embedded
memory modules 1318 as a shared Last Level Cache.

In some embodiments, processor cores 1302A-1302N are
homogenous cores executing the same instruction set archi-
tecture. In another embodiment, processor cores 1302A-
1302N are heterogeneous in terms of instruction set archi-
tecture (ISA), where one or more of processor cores 1302A-
1302N execute a first instruction set, while at least one of the
other cores executes a subset of the first instruction set or a
different instruction set. In one embodiment processor cores
1302A-1302N are heterogeneous in terms of microarchitec-
ture, where one or more cores having a relatively higher
power consumption couple with one or more power cores
having a lower power consumption. Additionally, processor
1300 can be implemented on one or more chips or as an SoC
integrated circuit having the illustrated components, in addi-
tion to other components.

FIG. 14 is a block diagram of a graphics processor 1400,
which may be a discrete graphics processing unit, or may be
a graphics processor integrated with a plurality of processing
cores. In some embodiments, the graphics processor com-
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municates via a memory mapped /O interface to registers
on the graphics processor and with commands placed into
the processor memory. In some embodiments, graphics
processor 1400 includes a memory interface 1414 to access
memory. Memory interface 1414 can be an interface to local
memory, one or more internal caches, one or more shared
external caches, and/or to system memory.

In some embodiments, graphics processor 1400 also
includes a display controller 1402 to drive display output
data to a display device 1420. Display controller 1402
includes hardware for one or more overlay planes for the
display and composition of multiple layers of video or user
interface elements. In some embodiments, graphics proces-
sor 1400 includes a video codec engine 1406 to encode,
decode, or transcode media to, from, or between one or more
media encoding formats, including, but not limited to Mov-
ing Picture Experts Group (MPEG) formats such as MPEG-
2, Advanced Video Coding (AVC) formats such as H.264/
MPEG-4 AVC, as well as the Society of Motion Picture &
Television Engineers (SMPTE) 421M/VC-1, and Joint Pho-
tographic Experts Group (JPEG) formats such as JPEG, and
Motion JPEG (MJPEG) formats.

In some embodiments, graphics processor 1400 includes
a block image transfer (BLIT) engine 1404 to perform
two-dimensional (2D) rasterizer operations including, for
example, bit-boundary block transfers. However, in one
embodiment, 2D graphics operations are performed using
one or more components of graphics processing engine
(GPE) 1410. In some embodiments, GPE 1410 is a compute
engine for performing graphics operations, including three-
dimensional (3D) graphics operations and media operations.

In some embodiments, GPE 1410 includes a 3D pipeline
1412 for performing 3D operations, such as rendering three-
dimensional images and scenes using processing functions
that act upon 3D primitive shapes (e.g., rectangle, triangle,
etc.). The 3D pipeline 1412 includes programmable and
fixed function elements that perform various tasks within the
element and/or spawn execution threads to a 3D/Media
sub-system 1415. While 3D pipeline 1412 can be used to
perform media operations, an embodiment of GPE 1410 also
includes a media pipeline 1416 that is specifically used to
perform media operations, such as video post-processing
and image enhancement.

In some embodiments, media pipeline 1416 includes fixed
function or programmable logic units to perform one or
more specialized media operations, such as video decode
acceleration, video de-interlacing, and video encode accel-
eration in place of, or on behalf of video codec engine 1406.
In some embodiments, media pipeline 1416 additionally
includes a thread spawning unit to spawn threads for execu-
tion on 3D/Media sub-system 1415. The spawned threads
perform computations for the media operations on one or
more graphics execution units included in 3D/Media sub-
system 1415.

In some embodiments, 3D/Media sub-system 1415
includes logic for executing threads spawned by 3D pipeline
1412 and media pipeline 1416. In one embodiment, the
pipelines send thread execution requests to 3D/Media sub-
system 1415, which includes thread dispatch logic for arbi-
trating and dispatching the various requests to available
thread execution resources. The execution resources include
an array of graphics execution units to process the 3D and
media threads. In some embodiments, 3D/Media sub-system
1415 includes one or more internal caches for thread instruc-
tions and data. In some embodiments, the subsystem also
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includes shared memory, including registers and addressable
memory, to share data between threads and to store output
data.

Additional Exemplary Graphics Processing Engine

FIG. 15 is a block diagram of a graphics processing
engine 1510 of a graphics processor in accordance with
some embodiments. In one embodiment, the graphics pro-
cessing engine (GPE) 1510 is a version of the GPE 1410
shown in FIG. 14. Elements of FIG. 15 having the same
reference numbers (or names) as the elements of any other
figure herein can operate or function in any manner similar
to that described elsewhere herein, but are not limited to
such. For example, the 3D pipeline 1412 and media pipeline
1416 of FIG. 14 are illustrated. The media pipeline 1416 is
optional in some embodiments of the GPE 1510 and may not
be explicitly included within the GPE 1510. For example
and in at least one embodiment, a separate media and/or
image processor is coupled to the GPE 1510.

In some embodiments, GPE 1510 couples with or
includes a command streamer 1503, which provides a com-
mand stream to the 3D pipeline 1412 and/or media pipelines
1416. In some embodiments, command streamer 1503 is
coupled with memory, which can be system memory, or one
or more of internal cache memory and shared cache
memory. In some embodiments, command streamer 1503
receives commands from the memory and sends the com-
mands to 3D pipeline 1412 and/or media pipeline 1416. The
commands are directives fetched from a ring buffer, which
stores commands for the 3D pipeline 1412 and media
pipeline 1416. In one embodiment, the ring buffer can
additionally include batch command buffers storing batches
of multiple commands. The commands for the 3D pipeline
1412 can also include references to data stored in memory,
such as but not limited to vertex and geometry data for the
3D pipeline 1412 and/or image data and memory objects for
the media pipeline 1416. The 3D pipeline 1412 and media
pipeline 1416 process the commands and data by performing
operations via logic within the respective pipelines or by
dispatching one or more execution threads to a graphics core
array 1514.

In various embodiments the 3D pipeline 1412 can execute
one or more shader programs, such as vertex shaders,
geometry shaders, pixel shaders, fragment shaders, compute
shaders, or other shader programs, by processing the instruc-
tions and dispatching execution threads to the graphics core
array 1514. The graphics core array 1514 provides a unified
block of execution resources. Multi-purpose execution logic
(e.g., execution units) within the graphics core array 1514
includes support for various 3D API shader languages and
can execute multiple simultaneous execution threads asso-
ciated with multiple shaders.

In some embodiments the graphics core array 1514 also
includes execution logic to perform media functions, such as
video and/or image processing. In one embodiment, the
execution units additionally include general-purpose logic
that is programmable to perform parallel general-purpose
computational operations, in addition to graphics processing
operations. The general-purpose logic can perform process-
ing operations in parallel or in conjunction with general-
purpose logic within the processor core(s) 1207 of FIG. 12
or core 1302A-1302N as in FIG. 13.

Output data generated by threads executing on the graph-
ics core array 1514 can output data to memory in a unified
return buffer (URB) 1518. The URB 1518 can store data for
multiple threads. In some embodiments the URB 1518 may
be used to send data between different threads executing on
the graphics core array 1514. In some embodiments the
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URB 1518 may additionally be used for synchronization
between threads on the graphics core array and fixed func-
tion logic within the shared function logic 1520.

In some embodiments, graphics core array 1514 is scal-
able, such that the array includes a variable number of
graphics cores, each having a variable number of execution
units based on the target power and performance level of
GPE 1510. In one embodiment the execution resources are
dynamically scalable, such that execution resources may be
enabled or disabled as needed.

The graphics core array 1514 couples with shared func-
tion logic 1520 that includes multiple resources that are
shared between the graphics cores in the graphics core array.
The shared functions within the shared function logic 1520
are hardware logic units that provide specialized supple-
mental functionality to the graphics core array 1514. In
various embodiments, shared function logic 1520 includes
but is not limited to sampler 1521, math 1522, and inter-
thread communication (ITC) 1523 logic. Additionally, some
embodiments implement one or more cache(s) 1525 within
the shared function logic 1520. A shared function is imple-
mented where the demand for a given specialized function
is insufficient for inclusion within the graphics core array
1514. Instead a single instantiation of that specialized func-
tion is implemented as a stand-alone entity in the shared
function logic 1520 and shared among the execution
resources within the graphics core array 1514. The precise
set of functions that are shared between the graphics core
array 1514 and included within the graphics core array 1514
varies between embodiments.

FIG. 16 is a block diagram of another embodiment of a
graphics processor 1600. Elements of FIG. 16 having the
same reference numbers (or names) as the elements of any
other figure herein can operate or function in any manner
similar to that described elsewhere herein, but are not
limited to such.

In some embodiments, graphics processor 1600 includes
a ring interconnect 1602, a pipeline front-end 1604, a media
engine 1637, and graphics cores 1680A-1680N. In some
embodiments, ring interconnect 1602 couples the graphics
processor to other processing units, including other graphics
processors or one or more general-purpose processor cores.
In some embodiments, the graphics processor is one of many
processors integrated within a multi-core processing system.

In some embodiments, graphics processor 1600 receives
batches of commands via ring interconnect 1602. The
incoming commands are interpreted by a command streamer
1603 in the pipeline front-end 1604. In some embodiments,
graphics processor 1600 includes scalable execution logic to
perform 3D geometry processing and media processing via
the graphics core(s) 1680A-1680N. For 3D geometry pro-
cessing commands, command streamer 1603 supplies com-
mands to geometry pipeline 1636. For at least some media
processing commands, command streamer 1603 supplies the
commands to a video front end 1634, which couples with a
media engine 1637. In some embodiments, media engine
1637 includes a Video Quality Engine (VQE) 1630 for video
and image post-processing and a multi-format encode/de-
code (MFX) 1633 engine to provide hardware-accelerated
media data encode and decode. In some embodiments,
geometry pipeline 1636 and media engine 1637 each gen-
erate execution threads for the thread execution resources
provided by at least one graphics core 1680A.

In some embodiments, graphics processor 1600 includes
scalable thread execution resources featuring modular cores
1680A-1680N (sometimes referred to as core slices), each
having multiple sub-cores 1650A-550N, 1660A-1660N
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(sometimes referred to as core sub-slices). In some embodi-
ments, graphics processor 1600 can have any number of
graphics cores 1680A through 1680N. In some embodi-
ments, graphics processor 1600 includes a graphics core
1680A having at least a first sub-core 1650A and a second
sub-core 1660A. In other embodiments, the graphics pro-
cessor is a low power processor with a single sub-core (e.g.,
1650A). In some embodiments, graphics processor 1600
includes multiple graphics cores 1680A-1680N, each
including a set of first sub-cores 1650A-1650N and a set of
second sub-cores 1660A-1660N. Each sub-core in the set of
first sub-cores 1650A-1650N includes at least a first set of
execution units 1652A-1652N and media/texture samplers
1654A-1654N. Each sub-core in the set of second sub-cores
1660A-1660N includes at least a second set of execution
units 1662A-1662N and samplers 1664A-1664N. In some
embodiments, each sub-core 1650A-1650N, 1660A-1660N
shares a set of shared resources 1670A-1670N. In some
embodiments, the shared resources include shared cache
memory and pixel operation logic. Other shared resources
may also be included in the various embodiments of the
graphics processor.

Additional Exemplary Execution Units

FIG. 17 illustrates thread execution logic 1700 including
an array of processing elements employed in some embodi-
ments of a GPE. Elements of FIG. 17 having the same
reference numbers (or names) as the elements of any other
figure herein can operate or function in any manner similar
to that described elsewhere herein, but are not limited to
such.

In some embodiments, thread execution logic 1700
includes a shader processor 1702, a thread dispatcher 1704,
instruction cache 1706, a scalable execution unit array
including a plurality of execution units 1708A-1708N, a
sampler 1710, a data cache 1712, and a data port 1714. In
one embodiment the scalable execution unit array can
dynamically scale by enabling or disabling one or more
execution units (e.g., any of execution unit 1708A, 1708B,
1708C, 1708D, through 1708N-1 and 1708N) based on the
computational requirements of a workload. In one embodi-
ment the included components are interconnected via an
interconnect fabric that links to each of the components. In
some embodiments, thread execution logic 1700 includes
one or more connections to memory, such as system memory
or cache memory, through one or more of instruction cache
1706, data port 1714, sampler 1710, and execution units
1708A-1708N. In some embodiments, each execution unit
(e.g., 1708A) is a stand-alone programmable general-pur-
pose computational unit that is capable of executing multiple
simultaneous hardware threads while processing multiple
data elements in parallel for each thread. In various embodi-
ments, the array of execution units 1708 A-1708N is scalable
to include any number individual execution units.

In some embodiments, the execution units 1708 A-1708N
are primarily used to execute shader programs. A shader
processor 1702 can process the various shader programs and
dispatch execution threads associated with the shader pro-
grams via a thread dispatcher 1704. In one embodiment the
thread dispatcher includes logic to arbitrate thread initiation
requests from the graphics and media pipelines and instan-
tiate the requested threads on one or more execution unit in
the execution units 1708 A-1708N. For example, the geom-
etry pipeline (e.g., 1636 of FIG. 16) can dispatch vertex,
tessellation, or geometry shaders to the thread execution
logic 1700 (FIG. 17) for processing. In some embodiments,
thread dispatcher 1704 can also process runtime thread
spawning requests from the executing shader programs.
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In some embodiments, the execution units 1708A-1708N
support an instruction set that includes native support for
many standard 3D graphics shader instructions, such that
shader programs from graphics libraries (e.g., Direct 3D and
OpenGL) are executed with a minimal translation. The
execution units support vertex and geometry processing
(e.g., vertex programs, geometry programs, vertex shaders),
pixel processing (e.g., pixel shaders, fragment shaders) and
general-purpose processing (e.g., compute and media shad-
ers). Each of the execution units 1708 A-1708N is capable of
multi-issue single instruction multiple data (SIMD) execu-
tion and multi-threaded operation enables an efficient execu-
tion environment in the face of higher latency memory
accesses. Each hardware thread within each execution unit
has a dedicated high-bandwidth register file and associated
independent thread-state. Execution is multi-issue per clock
to pipelines capable of integer, single and double precision
floating point operations, SIMD branch capability, logical
operations, transcendental operations, and other miscella-
neous operations. While waiting for data from memory or
one of the shared functions, dependency logic within the
execution units 1708 A-1708N causes a waiting thread to
sleep until the requested data has been returned. While the
waiting thread is sleeping, hardware resources may be
devoted to processing other threads. For example, during a
delay associated with a vertex shader operation, an execu-
tion unit can perform operations for a pixel shader, fragment
shader, or another type of shader program, including a
different vertex shader.

Each execution unit in execution units 1708A-1708N
operates on arrays of data elements. The number of data
elements is the “execution size,” or the number of channels
for the instruction. An execution channel is a logical unit of
execution for data element access, masking, and flow control
within instructions. The number of channels may be inde-
pendent of the number of physical Arithmetic Logic Units
(ALUs) or Floating Point Units (FPUs) for a particular
graphics processor. In some embodiments, execution units
1708A-1708N support integer and floating-point data types.

The execution unit instruction set includes SIMD instruc-
tions. The various data elements can be stored as a packed
data type in a register and the execution unit will process the
various elements based on the data size of the elements. For
example, when operating on a 256-bit wide vector, the 256
bits of the vector are stored in a register and the execution
unit operates on the vector as four separate 64-bit packed
data elements (Quad-Word (QW) size data elements), eight
separate 32-bit packed data elements (Double Word (DW)
size data elements), sixteen separate 16-bit packed data
elements (Word (W) size data elements), or thirty-two
separate 8-bit data elements (byte (B) size data elements).
However, different vector widths and register sizes are
possible.

One or more internal instruction caches (e.g., 1706) are
included in the thread execution logic 1700 to cache thread
instructions for the execution units. In some embodiments,
one or more data caches (e.g., 1712) are included to cache
thread data during thread execution. In some embodiments,
a sampler 1710 is included to provide texture sampling for
3D operations and media sampling for media operations. In
some embodiments, sampler 1710 includes specialized tex-
ture or media sampling functionality to process texture or
media data during the sampling process before providing the
sampled data to an execution unit.

During execution, the graphics and media pipelines send
thread initiation requests to thread execution logic 1700 via
thread spawning and dispatch logic. Once a group of geo-
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metric objects has been processed and rasterized into pixel
data, pixel processor logic (e.g., pixel shader logic, fragment
shader logic, etc.) within the shader processor 1702 is
invoked to further compute output information and cause
results to be written to output surfaces (e.g., color buffers,
depth buffers, stencil buffers, etc.). In some embodiments, a
pixel shader or fragment shader calculates the values of the
various vertex attributes that are to be interpolated across the
rasterized object. In some embodiments, pixel processor
logic within the shader processor 1702 then executes an
application programming interface (API)-supplied pixel or
fragment shader program. To execute the shader program,
the shader processor 1702 dispatches threads to an execution
unit (e.g., 1708A) via thread dispatcher 1704. In some
embodiments, shader processor 1702 uses texture sampling
logic in the sampler 1710 to access texture data in texture
maps stored in memory. Arithmetic operations on the texture
data and the input geometry data compute pixel color data
for each geometric fragment, or discards one or more pixels
from further processing.

In some embodiments, the data port 1714 provides a
memory access mechanism for the thread execution logic
1700 output processed data to memory for processing on a
graphics processor output pipeline. In some embodiments,
the data port 1714 includes or couples to one or more cache
memories (e.g., data cache 1712) to cache data for memory
access via the data port.

FIG. 18 is a block diagram illustrating graphics processor
instruction formats 1800 according to some embodiments.
In one or more embodiment, the graphics processor execu-
tion units support an instruction set having instructions in
multiple formats. The solid lined boxes illustrate the com-
ponents that are generally included in an execution unit
instruction, while the dashed lines include components that
are optional or that are only included in a sub-set of the
instructions. In some embodiments, instruction format 1800
described and illustrated are macro-instructions, in that they
are instructions supplied to the execution unit, as opposed to
micro-operations resulting from instruction decode once the
instruction is processed.

In some embodiments, the graphics processor execution
units natively support instructions in a 128-bit instruction
format 1810. A 64-bit compacted instruction format 1830 is
available for some instructions based on the selected instruc-
tion, instruction options, and number of operands. The
native 128-bit instruction format 1810 provides access to all
instruction options, while some options and operations are
restricted in the 64-bit format 1830. The native instructions
available in the 64-bit format 1830 vary by embodiment. In
some embodiments, the instruction is compacted in part
using a set of index values in an index field 1813. The
execution unit hardware references a set of compaction
tables based on the index values and uses the compaction
table outputs to reconstruct a native instruction in the 128-bit
instruction format 1810.

For each format, instruction opcode 1812 defines the
operation that the execution unit is to perform. The execu-
tion units execute each instruction in parallel across the
multiple data elements of each operand. For example, in
response to an add instruction the execution unit performs a
simultaneous add operation across each color channel rep-
resenting a texture element or picture element. By default,
the execution unit performs each instruction across all data
channels of the operands. In some embodiments, instruction
control field 1814 enables control over certain execution
options, such as channels selection (e.g., predication) and
data channel order (e.g., swizzle). For instructions in the

10

15

20

25

30

35

40

45

50

55

60

36
128-bit instruction format 1810 an exec-size field 1816
limits the number of data channels that will be executed in
parallel. In some embodiments, exec-size field 1816 is not
available for use in the 64-bit compact instruction format
1830.

Some execution unit instructions have up to three oper-
ands including two source operands, src0 1820, srcl 1822,
and one destination 1818. In some embodiments, the execu-
tion units support dual destination instructions, where one of
the destinations is implied. Data manipulation instructions
can have a third source operand (e.g., SRC2 1824), where
the instruction opcode 1812 determines the number of
source operands. An instruction’s last source operand can be
an immediate (e.g., hard-coded) value passed with the
instruction.

In some embodiments, the 128-bit instruction format
1810 includes an access/address mode field 1826 specifying,
for example, whether direct register addressing mode or
indirect register addressing mode is used. When direct
register addressing mode is used, the register address of one
or more operands is directly provided by bits in the instruc-
tion.

In some embodiments, the 128-bit instruction format
1810 includes an access/address mode field 1826, which
specifies an address mode and/or an access mode for the
instruction. In one embodiment the access mode is used to
define a data access alignment for the instruction. Some
embodiments support access modes including a 16-byte
aligned access mode and a 1-byte aligned access mode,
where the byte alignment of the access mode determines the
access alignment of the instruction operands. For example,
when in a first mode, the instruction may use byte-aligned
addressing for source and destination operands and when in
a second mode, the instruction may use 16-byte-aligned
addressing for all source and destination operands.

In one embodiment, the address mode portion of the
access/address mode field 1826 determines whether the
instruction is to use direct or indirect addressing. When
direct register addressing mode is used bits in the instruction
directly provide the register address of one or more oper-
ands. When indirect register addressing mode is used, the
register address of one or more operands may be computed
based on an address register value and an address immediate
field in the instruction.

In some embodiments instructions are grouped based on
opcode 1812 bit-fields to simplify Opcode decode 1840. For
an 8-bit opcode, bits 4, 5, and 6 allow the execution unit to
determine the type of opcode. The precise opcode grouping
shown is merely an example. In some embodiments, a move
and logic opcode group 1842 includes data movement and
logic instructions (e.g., move (mov), compare (cmp)). In
some embodiments, move and logic group 1842 shares the
five most significant bits (MSB), where move (mov) instruc-
tions are in the form of 0000xxxxb and logic instructions are
in the form of 0001xxxxb. A flow control instruction group
1844 (e.g., call, jump (jmp)) includes instructions in the
form of 0010xxxxb (e.g., 0x20). A miscellaneous instruction
group 1846 includes a mix of instructions, including syn-
chronization instructions (e.g., wait, send) in the form of
0011xxxxb (e.g., 0x30). A parallel math instruction group
1848 includes component-wise arithmetic instructions (e.g.,
add, multiply (mul)) in the form of 0100xxxxb (e.g., The
parallel math group 1848 performs the arithmetic operations
in parallel across data channels. The vector math group 1850
includes arithmetic instructions (e.g., dp4) in the form of
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0101xxxxb (e.g., 0x50). The vector math group performs
arithmetic such as dot product calculations on vector oper-
ands.

Graphics Pipeline

FIG. 19 is a block diagram of another embodiment of a
graphics processor 1900. Elements of FIG. 19 having the
same reference numbers (or names) as the elements of any
other figure herein can operate or function in any manner
similar to that described elsewhere herein, but are not
limited to such.

In some embodiments, graphics processor 1900 includes
a graphics pipeline 1920, a media pipeline 1930, a display
engine 1940, thread execution logic 1950, and a render
output pipeline 1970. In some embodiments, graphics pro-
cessor 1900 is a graphics processor within a multi-core
processing system that includes one or more general-pur-
pose processing cores. The graphics processor is controlled
by register writes to one or more control registers (not
shown) or via commands issued to graphics processor 1900
via a ring interconnect 1902. In some embodiments, ring
interconnect 1902 couples graphics processor 1900 to other
processing components, such as other graphics processors or
general-purpose processors. Commands from ring intercon-
nect 1902 are interpreted by a command streamer 1903,
which supplies instructions to individual components of
graphics pipeline 1920 or media pipeline 1930.

In some embodiments, command streamer 1903 directs
the operation of a vertex fetcher 1905 that reads vertex data
from memory and executes vertex-processing commands
provided by command streamer 1903. In some embodi-
ments, vertex fetcher 1905 provides vertex data to a vertex
shader 1907, which performs coordinate space transforma-
tion and lighting operations to each vertex. In some embodi-
ments, vertex fetcher 1905 and vertex shader 1907 execute
vertex-processing instructions by dispatching execution
threads to execution units 1952A-1952B via a thread dis-
patcher 1931.

In some embodiments, execution units 1952A-1952B are
an array of vector processors having an instruction set for
performing graphics and media operations. In some embodi-
ments, execution units 1952A-1952B have an attached L1
cache 1951 that is specific for each array or shared between
the arrays. The cache can be configured as a data cache, an
instruction cache, or a single cache that is partitioned to
contain data and instructions in different partitions.

In some embodiments, graphics pipeline 1920 includes
tessellation components to perform hardware-accelerated
tessellation of 3D objects. In some embodiments, a pro-
grammable hull shader 1911 configures the tessellation
operations. A programmable domain shader 1917 provides
back-end evaluation of tessellation output. A tessellator
1913 operates at the direction of hull shader 1911 and
contains special purpose logic to generate a set of detailed
geometric objects based on a coarse geometric model that is
provided as input to graphics pipeline 1920. In some
embodiments, if tessellation is not used, tessellation com-
ponents (e.g., hull shader 1911, tessellator 1913, and domain
shader 1917) can be bypassed.

In some embodiments, complete geometric objects can be
processed by a geometry shader 1919 via one or more
threads dispatched to execution units 1952A-1952B, or can
proceed directly to the clipper 1929. In some embodiments,
the geometry shader operates on entire geometric objects,
rather than vertices or patches of vertices as in previous
stages of the graphics pipeline. If the tessellation is disabled
the geometry shader 1919 receives input from the vertex
shader 1907. In some embodiments, geometry shader 1919
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is programmable by a geometry shader program to perform
geometry tessellation if the tessellation units are disabled.

Before rasterization, a clipper 1929 processes vertex data.
The clipper 1929 may be a fixed function clipper or a
programmable clipper having clipping and geometry shader
functions. In some embodiments, a rasterizer and depth test
component 1973 in the render output pipeline 1970 dis-
patches pixel shaders to convert the geometric objects into
their per pixel representations. In some embodiments, pixel
shader logic is included in thread execution logic 1950. In
some embodiments, an application can bypass the rasterizer
and depth test component 1973 and access un-rasterized
vertex data via a stream out unit 1923.

The graphics processor 1900 has an interconnect bus,
interconnect fabric, or some other interconnect mechanism
that allows data and message passing amongst the major
components of the processor. In some embodiments, execu-
tion units 1952A-1952B and associated cache(s) 1951, tex-
ture and media sampler 1954, and texture/sampler cache
1958 interconnect via a data port 1956 to perform memory
access and communicate with render output pipeline com-
ponents of the processor. In some embodiments, sampler
1954, caches 1951, 1958 and execution units 1952A-19528B
each have separate memory access paths.

In some embodiments, render output pipeline 1970 con-
tains a rasterizer and depth test component 1973 that con-
verts vertex-based objects into an associated pixel-based
representation. In some embodiments, the rasterizer logic
includes a windower/masker unit to perform fixed function
triangle and line rasterization. An associated render cache
1978 and depth cache 1979 are also available in some
embodiments. A pixel operations component 1977 performs
pixel-based operations on the data, though in some
instances, pixel operations associated with 2D operations
(e.g. bit block image transfers with blending) are performed
by the 2D engine 1941, or substituted at display time by the
display controller 1943 using overlay display planes. In
some embodiments, a shared .3 cache 1975 is available to
all graphics components, allowing the sharing of data with-
out the use of main system memory.

In some embodiments, graphics processor media pipeline
1930 includes a media engine 1937 and a video front-end
1934. In some embodiments, video front-end 1934 receives
pipeline commands from the command streamer 1903. In
some embodiments, media pipeline 1930 includes a separate
command streamer. In some embodiments, video front-end
1934 processes media commands before sending the com-
mand to the media engine 1937. In some embodiments,
media engine 1937 includes thread spawning functionality
to spawn threads for dispatch to thread execution logic 1950
via thread dispatcher 1931.

In some embodiments, graphics processor 1900 includes
a display engine 1940. In some embodiments, display engine
1940 is external to processor 1900 and couples with the
graphics processor via the ring interconnect 1902, or some
other interconnect bus or fabric. In some embodiments,
display engine 1940 includes a 2D engine 1941 and a display
controller 1943. In some embodiments, display engine 1940
contains special purpose logic capable of operating inde-
pendently of the 3D pipeline. In some embodiments, display
controller 1943 couples with a display device (not shown),
which may be a system integrated display device, as in a
laptop computer, or an external display device attached via
a display device connector.

In some embodiments, graphics pipeline 1920 and media
pipeline 1930 are configurable to perform operations based
on multiple graphics and media programming interfaces and
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are not specific to any one application programming inter-
face (API). In some embodiments, driver software for the
graphics processor translates API calls that are specific to a
particular graphics or media library into commands that can
be processed by the graphics processor. In some embodi-
ments, support is provided for the Open Graphics Library
(OpenGL), Open Computing Language (OpenCL), and/or
Vulkan graphics and compute API, all from the Khronos
Group. In some embodiments, support may also be provided
for the Direct3D library from the Microsoft Corporation. In
some embodiments, a combination of these libraries may be
supported. Support may also be provided for the Open
Source Computer Vision Library (OpenCV). A future API
with a compatible 3D pipeline would also be supported if a
mapping can be made from the pipeline of the future API to
the pipeline of the graphics processor.

Additional Exemplary Graphics Pipeline Programming

FIG. 20A is a block diagram illustrating a graphics
processor command format 2000 according to some embodi-
ments. FIG. 20B is a block diagram illustrating a graphics
processor command sequence 2010 according to an embodi-
ment. The solid lined boxes in FIG. 20A illustrate the
components that are generally included in a graphics com-
mand while the dashed lines include components that are
optional or that are only included in a sub-set of the graphics
commands. The exemplary graphics processor command
format 2000 of FIG. 20A includes data fields to identify a
target client 2002 of the command, a command operation
code (opcode) 2004, and the relevant data 2006 for the
command. A sub-opcode 2005 and a command size 2008 are
also included in some commands.

In some embodiments, client 2002 specifies the client unit
of the graphics device that processes the command data. In
some embodiments, a graphics processor command parser
examines the client field of each command to condition the
further processing of the command and route the command
data to the appropriate client unit. In some embodiments, the
graphics processor client units include a memory interface
unit, a render unit, a 2D unit, a 3D unit, and a media unit.
Each client unit has a corresponding processing pipeline that
processes the commands. Once the command is received by
the client unit, the client unit reads the opcode 2004 and, if
present, sub-opcode 2005 to determine the operation to
perform. The client unit performs the command using infor-
mation in data field 2006. For some commands an explicit
command size 2008 is expected to specify the size of the
command. In some embodiments, the command parser auto-
matically determines the size of at least some of the com-
mands based on the command opcode. In some embodi-
ments commands are aligned via multiples of a double word.

The flow diagram in FIG. 20B shows an exemplary
graphics processor command sequence 2010. In some
embodiments, software or firmware of a data processing
system that features an embodiment of a graphics processor
uses a version of the command sequence shown to set up,
execute, and terminate a set of graphics operations. A sample
command sequence is shown and described for purposes of
example only as embodiments are not limited to these
specific commands or to this command sequence. Moreover,
the commands may be issued as batch of commands in a
command sequence, such that the graphics processor will
process the sequence of commands in at least partially
concurrence.

In some embodiments, the graphics processor command
sequence 2010 may begin with a pipeline flush command
2012 to cause any active graphics pipeline to complete the
currently pending commands for the pipeline. In some
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embodiments, the 3D pipeline 2022 and the media pipeline
2024 do not operate concurrently. The pipeline flush is
performed to cause the active graphics pipeline to complete
any pending commands. In response to a pipeline flush, the
command parser for the graphics processor will pause
command processing until the active drawing engines com-
plete pending operations and the relevant read caches are
invalidated. Optionally, any data in the render cache that is
marked ‘dirty’ can be flushed to memory. In some embodi-
ments, pipeline flush command 2012 can be used for pipe-
line synchronization or before placing the graphics proces-
sor into a low power state.

In some embodiments, a pipeline select command 2013 is
used when a command sequence requires the graphics
processor to explicitly switch between pipelines. In some
embodiments, a pipeline select command 2013 is required
only once within an execution context before issuing pipe-
line commands unless the context is to issue commands for
both pipelines. In some embodiments, a pipeline flush
command 2012 is required immediately before a pipeline
switch via the pipeline select command 2013.

In some embodiments, a pipeline control command 2014
configures a graphics pipeline for operation and is used to
program the 3D pipeline 2022 and the media pipeline 2024.
In some embodiments, pipeline control command 2014
configures the pipeline state for the active pipeline. In one
embodiment, the pipeline control command 2014 is used for
pipeline synchronization and to clear data from one or more
cache memories within the active pipeline before processing
a batch of commands.

In some embodiments, return buffer state commands 2016
are used to configure a set of return buffers for the respective
pipelines to write data. Some pipeline operations require the
allocation, selection, or configuration of one or more return
buffers into which the operations write intermediate data
during processing. In some embodiments, the graphics pro-
cessor also uses one or more return buffers to store output
data and to perform cross thread communication. In some
embodiments, the return buffer state 2016 includes selecting
the size and number of return buffers to use for a set of
pipeline operations.

The remaining commands in the command sequence
differ based on the active pipeline for operations. Based on
a pipeline determination 2020, the command sequence is
tailored to the 3D pipeline 2022 beginning with the 3D
pipeline state 2030 or the media pipeline 2024 beginning at
the media pipeline state 2040.

The commands to configure the 3D pipeline state 2030
include 3D state setting commands for vertex buffer state,
vertex element state, constant color state, depth buffer state,
and other state variables that are to be configured before 3D
primitive commands are processed. The values of these
commands are determined at least in part based on the
particular 3D API in use. In some embodiments, 3D pipeline
state 2030 commands are also able to selectively disable or
bypass certain pipeline elements if those elements will not
be used.

In some embodiments, 3D primitive 2032 command is
used to submit 3D primitives to be processed by the 3D
pipeline. Commands and associated parameters that are
passed to the graphics processor via the 3D primitive 2032
command are forwarded to the vertex fetch function in the
graphics pipeline. The vertex fetch function uses the 3D
primitive 2032 command data to generate vertex data struc-
tures. The vertex data structures are stored in one or more
return buffers. In some embodiments, 3D primitive 2032
command is used to perform vertex operations on 3D
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primitives via vertex shaders. To process vertex shaders, 3D
pipeline 2022 dispatches shader execution threads to graph-
ics processor execution units.

In some embodiments, 3D pipeline 2022 is triggered via
an execute 2034 command or event. In some embodiments,
a register write triggers command execution. In some
embodiments execution is triggered via a ‘go’ or ‘kick’
command in the command sequence. In one embodiment,
command execution is triggered using a pipeline synchro-
nization command to flush the command sequence through
the graphics pipeline. The 3D pipeline will perform geom-
etry processing for the 3D primitives. Once operations are
complete, the resulting geometric objects are rasterized and
the pixel engine colors the resulting pixels. Additional
commands to control pixel shading and pixel back end
operations may also be included for those operations.

In some embodiments, the graphics processor command
sequence 2010 follows the media pipeline 2024 path when
performing media operations. In general, the specific use
and manner of programming for the media pipeline 2024
depends on the media or compute operations to be per-
formed. Specific media decode operations may be offloaded
to the media pipeline during media decode. In some embodi-
ments, the media pipeline can also be bypassed and media
decode can be performed in whole or in part using resources
provided by one or more general-purpose processing cores.
In one embodiment, the media pipeline also includes ele-
ments for general-purpose graphics processor unit (GPGPU)
operations, where the graphics processor is used to perform
SIMD vector operations using computational shader pro-
grams that are not explicitly related to the rendering of
graphics primitives.

In some embodiments, media pipeline 2024 is configured
in a similar manner as the 3D pipeline 2022. A set of
commands to configure the media pipeline state 2040 are
dispatched or placed into a command queue before the
media object commands 2042. In some embodiments, media
pipeline state commands 2040 include data to configure the
media pipeline elements that will be used to process the
media objects. This includes data to configure the video
decode and video encode logic within the media pipeline,
such as encode or decode format. In some embodiments,
media pipeline state commands 2040 also support the use of
one or more pointers to “indirect” state elements that contain
a batch of state settings.

In some embodiments, media object commands 2042
supply pointers to media objects for processing by the media
pipeline. The media objects include memory buffers con-
taining video data to be processed. In some embodiments, all
media pipeline states must be valid before issuing a media
object command 2042. Once the pipeline state is configured
and media object commands 2042 are queued, the media
pipeline 2024 is triggered via an execute command 2044 or
an equivalent execute event (e.g., register write). Output
from media pipeline 2024 may then be post processed by
operations provided by the 3D pipeline 2022 or the media
pipeline 2024. In some embodiments, GPGPU operations
are configured and executed in a similar manner as media
operations.

Graphics Software Architecture

FIG. 21 illustrates exemplary graphics software architec-
ture for a data processing system 2100 according to some
embodiments. In some embodiments, software architecture
includes a 3D graphics application 2110, an operating sys-
tem 2120, and at least one processor 2130. In some embodi-
ments, processor 2130 includes a graphics processor 2132
and one or more general-purpose processor core(s) 2134.
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The graphics application 2110 and operating system 2120
each execute in the system memory 2150 of the data
processing system.

In some embodiments, 3D graphics application 2110
contains one or more shader programs including shader
instructions 2112. The shader language instructions may be
in a high-level shader language, such as the High Level
Shader Language (HLSL) or the OpenGL Shader Language
(GLSL). The application also includes executable instruc-
tions 2114 in a machine language suitable for execution by
the general-purpose processor core 2134. The application
also includes graphics objects 2116 defined by vertex data.

In some embodiments, operating system 2120 is a
Microsoft® Windows® operating system from the
Microsoft Corporation, a proprietary UNIX-like operating
system, or an open source UNIX-like operating system
using a variant of the Linux kernel. The operating system
2120 can support a graphics API 2122 such as the Direct3D
API, the OpenGL API, or the Vulkan API. When the
Direct3D API is in use, the operating system 2120 uses a
front-end shader compiler 2124 to compile any shader
instructions 2112 in HLSL into a lower-level shader lan-
guage. The compilation may be a just-in-time (JIT) compi-
lation or the application can perform shader pre-compila-
tion. In some embodiments, high-level shaders are compiled
into low-level shaders during the compilation of the 3D
graphics application 2110. In some embodiments, the shader
instructions 2112 are provided in an intermediate form, such
as a version of the Standard Portable Intermediate Repre-
sentation (SPIR) used by the Vulkan API.

In some embodiments, user mode graphics driver 2126
contains a back-end shader compiler 2127 to convert the
shader instructions 2112 into a hardware specific represen-
tation. When the OpenGL API is in use, shader instructions
2112 in the GLSL high-level language are passed to a user
mode graphics driver 2126 for compilation. In some
embodiments, user mode graphics driver 2126 uses operat-
ing system kernel mode functions 2128 to communicate
with a kernel mode graphics driver 2129. In some embodi-
ments, kernel mode graphics driver 2129 communicates
with graphics processor 2132 to dispatch commands and
instructions.

IP Core Implementations

One or more aspects of at least one embodiment may be
implemented by representative code stored on a machine-
readable medium which represents and/or defines logic
within an integrated circuit such as a processor. For
example, the machine-readable medium may include
instructions which represent various logic within the pro-
cessor. When read by a machine, the instructions may cause
the machine to fabricate the logic to perform the techniques
described herein. Such representations, known as “IP cores,”
are reusable units of logic for an integrated circuit that may
be stored on a tangible, machine-readable medium as a
hardware model that describes the structure of the integrated
circuit. The hardware model may be supplied to various
customers or manufacturing facilities, which load the hard-
ware model on fabrication machines that manufacture the
integrated circuit. The integrated circuit may be fabricated
such that the circuit performs operations described in asso-
ciation with any of the embodiments described herein.

FIG. 22 is a block diagram illustrating an IP core devel-
opment system 2200 that may be used to manufacture an
integrated circuit to perform operations according to an
embodiment. The IP core development system 2200 may be
used to generate modular, re-usable designs that can be
incorporated into a larger design or used to construct an
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entire integrated circuit (e.g., an SOC integrated circuit). A
design facility 2230 can generate a software simulation 2210
of an IP core design in a high level programming language
(e.g., C/C++). The software simulation 2210 can be used to
design, test, and verify the behavior of the IP core using a
simulation model 2212. The simulation model 2212 may
include functional, behavioral, and/or timing simulations. A
register transfer level (RTL) design 2215 can then be created
or synthesized from the simulation model 2212. The RTL
design 2215 is an abstraction of the behavior of the inte-
grated circuit that models the flow of digital signals between
hardware registers, including the associated logic performed
using the modeled digital signals. In addition to an RTL
design 2215, lower-level designs at the logic level or tran-
sistor level may also be created, designed, or synthesized.
Thus, the particular details of the initial design and simula-
tion may vary.

The RTL design 2215 or equivalent may be further
synthesized by the design facility into a hardware model
2220, which may be in a hardware description language
(HDL), or some other representation of physical design data.
The HDL may be further simulated or tested to verify the IP
core design. The IP core design can be stored for delivery to
a 3™ party fabrication facility 2265 using non-volatile
memory 2240 (e.g., hard disk, flash memory, or any non-
volatile storage medium). Alternatively, the IP core design
may be transmitted (e.g., via the Internet) over a wired
connection 2250 or wireless connection 2260. The fabrica-
tion facility 2265 may then fabricate an integrated circuit
that is based at least in part on the IP core design. The
fabricated integrated circuit can be configured to perform
operations in accordance with at least one embodiment
described herein.

Exemplary System on a Chip Integrated Circuit

FIG. 23-25 illustrated exemplary integrated circuits and
associated graphics processors that may be fabricated using
one or more IP cores, according to various embodiments
described herein. In addition to what is illustrated, other
logic and circuits may be included, including additional
graphics processors/cores, peripheral interface controllers,
or general-purpose processor cores.

FIG. 23 is a block diagram illustrating an exemplary
system on a chip integrated circuit 2300 that may be
fabricated using one or more IP cores, according to an
embodiment. Exemplary integrated circuit 2300 includes
one or more application processor(s) 2305 (e.g., CPUs), at
least one graphics processor 2310, and may additionally
include an image processor 2315 and/or a video processor
2320, any of which may be a modular IP core from the same
or multiple different design facilities. Integrated circuit 2300
includes peripheral or bus logic including a USB controller
2325, UART controller 2330, an SPI/SDIO controller 2335,
and an I°S/I°C controller 2340. Additionally, the integrated
circuit can include a display device 2345 coupled to one or
more of a high-definition multimedia interface (HDMI)
controller 2350 and a mobile industry processor interface
(MIPI) display interface 2355. Storage may be provided by
a flash memory subsystem 2360 including flash memory and
a flash memory controller. Memory interface may be pro-
vided via a memory controller 2365 for access to SDRAM
or SRAM memory devices. Some integrated circuits addi-
tionally include an embedded security engine 2370.

FIG. 24 is a block diagram illustrating an exemplary
graphics processor 2410 of a system on a chip integrated
circuit that may be fabricated using one or more IP cores,
according to an embodiment. Graphics processor 2410 can
be a variant of the graphics processor 2310 of FIG. 23.
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Graphics processor 2410 includes a vertex processor 2405
and one or more fragment processor(s) 2415A-2415N (e.g.,
2415A, 2415B, 2415C, 2415D, through 2415N-1, and
2415N). Graphics processor 2410 can execute different
shader programs via separate logic, such that the vertex
processor 2405 is optimized to execute operations for vertex
shader programs, while the one or more fragment
processor(s) 2415A-2415N execute fragment (e.g., pixel)
shading operations for fragment or pixel shader programs.
The vertex processor 2405 performs the vertex processing
stage of the 3D graphics pipeline and generates primitives
and vertex data. The fragment processor(s) 2415A-2415N
use the primitive and vertex data generated by the vertex
processor 2405 to produce a framebuffer that is displayed on
a display device. In one embodiment, the fragment
processor(s) 2415A-2415N are optimized to execute frag-
ment shader programs as provided for in the OpenGL API,
which may be used to perform similar operations as a pixel
shader program as provided for in the Direct 3D API.

Graphics processor 2410 additionally includes one or
more memory management units (MMUs) 2420A-24208,
cache(s) 2425A-2425B, and circuit interconnect(s) 2430A-
2430B. The one or more MMU(s) 2420A-2420B provide for
virtual to physical address mapping for the graphics proces-
sor 2410, including for the vertex processor 2405 and/or
fragment processor(s) 2415A-2415N, which may reference
vertex or image/texture data stored in memory, in addition to
vertex or image/texture data stored in the one or more
cache(s) 2425A-2425B. In one embodiment the one or more
MMU(s) 2425A-2425B may be synchronized with other
MMUs within the system, including one or more MMUSs
associated with the one or more application processor(s)
2305, image processor 2315, and/or video processor 2320 of
FIG. 23, such that each processor 2305-2320 can participate
in a shared or unified virtual memory system. The one or
more circuit interconnect(s) 2430A-2430B enable graphics
processor 2410 to interface with other IP cores within the
SoC, either via an internal bus of the SoC or via a direct
connection, according to embodiments.

FIG. 25 is a block diagram illustrating an additional
exemplary graphics processor 2510 of a system on a chip
integrated circuit that may be fabricated using one or more
IP cores, according to an embodiment. Graphics processor
2510 can be a variant of the graphics processor 2310 of FIG.
23. Graphics processor 2510 includes the one or more
MMU(s) 2420A-2420B, caches 2425A-24258B, and circuit
interconnects 2430A-2430B of the graphics processor 2410
of FIG. 24.

Graphics processor 2510 includes one or more shader
core(s) 2515A-2515N (e.g., 2515A, 25158, 2515C, 2515D,
2515E, 2515F, through 2515N-1, and 2515N), which pro-
vides for a unified shader core architecture in which a single
core or type or core can execute all types of programmable
shader code, including shader program code to implement
vertex shaders, fragment shaders, and/or compute shaders.
The exact number of shader cores present can vary among
embodiments and implementations. Additionally, graphics
processor 2510 includes an inter-core task manager 2505,
which acts as a thread dispatcher to dispatch execution
threads to one or more shader cores 2515A-2515N and a
tiling unit 2518 to accelerate tiling operations for tile-based
rendering, in which rendering operations for a scene are
subdivided in image space, for example to exploit local
spatial coherence within a scene or to optimize use of
internal caches.

The following clauses and/or examples pertain to specific
embodiments or examples thereof. Specifics in the examples
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may be used anywhere in one or more embodiments. The
various features of the different embodiments or examples
may be variously combined with some features included and
others excluded to suit a variety of different applications.
Examples may include subject matter such as a method,
means for performing acts of the method, at least one
machine-readable medium including instructions that, when
performed by a machine cause the machine to perform acts
of the method, or of an apparatus or system according to
embodiments and examples described herein. Various com-
ponents can be a means for performing the operations or
functions described.

One embodiment provides for a general-purpose graphics
processor including a hardware graphics rendering pipeline
configured to perform multi-sample and multi-rate shading.
The hardware graphics rendering pipeline can shade and
process coarse pixel data. In some instances coarse pixel
data can be processed by the post-shader pixel pipeline
without requiring expansion of the coarse pixels into pixel
data.

One embodiment provides for a graphics processing unit
comprising a processing cluster to perform coarse pixel
shading and output shaded coarse pixels for processing by a
pixel pipeline and a render cache to store coarse pixel data
for input to or output from a pixel processing unit of the
pixel pipeline. In one embodiment the processing cluster is
configurable to adjust a scale factor of a coarse pixel during
the coarse pixel shading. In one embodiment the pixel
pipeline includes a fragment compression unit to implement
cacheline aware fragment compression. The fragment com-
pression unit can configure a set of pixels associated with a
single cacheline of the render cache to be rendered by the
pixel pipeline as a coarse pixel. The pixel pipeline can
additionally include a cache read module to issue a read
request to the render cache to read a coarse pixel quad from
the render cache. The pixel pipeline can additionally include
a cache write module to issue a write request to the render
cache, the write request to write a coarse pixel quad to the
render cache. In one embodiment the pixel pipeline includes
a pixel processing unit to perform a post-shader pixel
processing operation on the coarse pixel. The post-shader
pixel processing operation can include a stencil, depth, or
blend operation. In one embodiment the render cache
includes a cache allocation unit to perform cacheline aware
fragment expansion of a coarse pixel. The cache allocation
unit can expand a coarse pixel quad into a pixel quad based
on a cache line status associated with the coarse pixel quad.

One embodiment provides for a method of coarse pixel
processing on a graphics processing unit, the method com-
prising performing a coarse pixel shading operation on a
coarse pixel quad fragment via a parallel processing cluster
to generate a coarse pixel quad, outputting the coarse pixel
quad to a post-shader pixel pipeline, performing coarse pixel
operations on multiple coarse pixels within the coarse pixel
quad via a pixel processing unit, and writing a processed
coarse pixel quad to a render cache.

One embodiment provides for a data processing system
comprising a non-transitory machine-readable medium to
store instructions for execution by one or more processors of
the data processing system, a memory module to store a
render target, and a graphics processing unit comprising a
processing cluster to perform coarse pixel shading and
output shaded coarse pixels for processing by a pixel pipe-
line and a render cache to store coarse pixel data output from
a pixel processing unit of the pixel pipeline.

The embodiments described herein refer to specific con-
figurations of hardware, such as application specific inte-

10

15

20

25

30

35

40

45

50

55

60

65

46

grated circuits (ASICs), configured to perform certain opera-
tions or having a predetermined functionality. Such
electronic devices typically include a set of one or more
processors coupled to one or more other components, such
as one or more storage devices (non-transitory machine-
readable storage media), user input/output devices (e.g., a
keyboard, a touchscreen, and/or a display), and network
connections. The coupling of the set of processors and other
components is typically through one or more busses and
bridges (also termed as bus controllers). The storage device
and signals carrying the network traffic respectively repre-
sent one or more machine-readable storage media and
machine-readable communication media. Thus, the storage
devices of a given electronic device typically store code
and/or data for execution on the set of one or more proces-
sors of that electronic device.

Of course, one or more parts of an embodiment may be
implemented using different combinations of software, firm-
ware, and/or hardware. Throughout this detailed description,
for the purposes of explanation, numerous specific details
were set forth in order to provide a thorough understanding
of'the present invention. It will be apparent, however, to one
skilled in the art that the embodiments may be practiced
without some of these specific details. In certain instances,
well-known structures and functions were not described in
elaborate detail to avoid obscuring the inventive subject
matter of the embodiments. Accordingly, the scope and spirit
of the invention should be judged in terms of the claims that
follow.

What is claimed is:

1. A graphics processing unit comprising:

a processing cluster to perform multi-rate shading via
coarse pixel shading, wherein the processing cluster
includes circuitry to vary a shading rate via a coarse
pixel shading operation on a coarse pixel quad frag-
ment to generate a coarse pixel quad and output the
coarse pixel quad; and

a post-shader pixel pipeline including circuitry to:
receive the coarse pixel quad from the processing

cluster;

perform coarse pixel operations on multiple coarse pixels
within the coarse pixel quad via a pixel processing unit
of the post-shader pixel pipeline; and
write, via the post-shader pixel pipeline, a processed

coarse pixel quad to a render cache.

2. The graphics processing unit as in claim 1, wherein the
processing cluster is to write constituent pixel quads of the
coarse pixel quad to the render cache.

3. The graphics processing unit as in claim 2, wherein to
receive the coarse pixel quad from the processing cluster, the
post-shader pixel pipeline is to read the constituent pixel
quads of the coarse pixel quad from the render cache.

4. The graphics processing unit as in claim 3, wherein the
post-shader pixel pipeline includes circuitry to perform
cacheline aware fragment compression on the constituent
pixel quads of the coarse pixel quad and process the con-
stituent pixel quads as a coarse pixel in response to a
determination that the constituent pixel quads cover a cache-
line of the render cache.

5. The graphics processing unit as in claim 4, wherein
post-shader pixel pipeline includes circuitry to perform
cacheline aware fragment expansion on the coarse pixel
quad to expand the coarse pixel quad into the constituent
pixel quads in response to a determination that the coarse
pixel quad is not fully lit.

6. The graphics processing unit as in claim 4, wherein the
post-shader pixel pipeline includes circuitry to perform
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cacheline aware fragment expansion on a coarse pixel quad
to expand the coarse pixel quad into the constituent pixel
quads in response to a determination that the coarse pixel
quad does not cover a full cacheline of the render cache.

7. The graphics processing unit as in claim 4, wherein the
coarse pixel quad is determined to cover the cacheline of the
render cache based on a size of a cacheline and a coarse pixel
scaling factor.

8. The graphics processing unit as in claim 7, wherein the
processing cluster includes circuitry to adjust the coarse
pixel scaling factor of a coarse pixel during the coarse pixel
shading.

9. The graphics processing unit as in claim 8, wherein
processing cluster is to implement multi-rate shading via
adjustment of the coarse pixel scaling factor.

10. A data processing system comprising:

a display device;

a memory device to store pixel data for display via the

display device; and

a graphics processor to generate the pixel data, the graph-

ics processor including:

a graphics processor cache memory; and

a processing cluster to perform multi-rate shading via

coarse pixel shading, wherein the processing cluster
includes circuitry to vary a shading rate via a coarse
pixel shading operation on a coarse pixel quad frag-
ment to generate a coarse pixel quad and output the
coarse pixel quad; and

a post-shader pixel pipeline including circuitry to:

receive the coarse pixel quad from the processing
cluster;

perform coarse pixel operations on multiple coarse pixels

within the coarse pixel quad via a pixel processing unit

of the post-shader pixel pipeline; and

write, via the post-shader pixel pipeline, a processed
coarse pixel quad to a render cache.

11. The data processing system as in claim 10, wherein the
graphics processor is to write the processed coarse pixel
quad evicted to the graphics processor cache memory to the
memory device as the pixel data.

12. The data processing system as in claim 10, wherein
the processing cluster is to write constituent pixel quads of
the coarse pixel quad to the render cache.

13. The data processing system as in claim 12, wherein to
receive the coarse pixel quad from the processing cluster, the
post-shader pixel pipeline is to read the constituent pixel
quads of the coarse pixel quad from the render cache.

14. The data processing system as in claim 13, wherein
the post-shader pixel pipeline includes circuitry to perform
cacheline aware fragment compression on the constituent
pixel quads of the coarse pixel quad and process the con-
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stituent pixel quads as a coarse pixel in response to a
determination that the constituent pixel quads cover a cache-
line of the render cache.

15. The data processing system as in claim 14, wherein
post-shader pixel pipeline includes circuitry to perform
cacheline aware fragment expansion on the coarse pixel
quad to expand the coarse pixel quad into the constituent
pixel quads in response to a determination that the coarse
pixel quad is not fully lit.

16. The data processing system as in claim 14, wherein
the post-shader pixel pipeline includes circuitry to perform
cacheline aware fragment expansion on a coarse pixel quad
to expand the coarse pixel quad into the constituent pixel
quads in response to a determination that the coarse pixel
quad does not cover a full cacheline of the render cache.

17. The data processing system as in claim 14, wherein
the coarse pixel quad is determined to cover the cacheline of
the render cache based on a size of a cacheline and a coarse
pixel scaling factor.

18. The data processing system as in claim 17, wherein
the processing cluster includes circuitry to implement multi-
rate shading via adjustment of the coarse pixel scaling factor.

19. A method of post shader pixel processing on a
post-shader pixel pipeline, the method comprising:

receiving a coarse pixel quad from a processing cluster

configured to perform a multi-rate shading via coarse
pixel shading operations on coarse pixel quad frag-
ments to generate coarse pixel quads;

varying a shading rate by performing coarse pixel opera-

tions on multiple coarse pixels within the coarse pixel
quad via a pixel processing unit of the post-shader pixel
pipeline;

writing via the post-shader pixel pipeline, a processed

coarse pixel quad to a render cache;

evicting the processed coarse pixel quad from the render

cache to a graphics processor cache memory as a coarse
pixel; and

writing the processed coarse pixel quad evicted to the

graphics processor cache memory to a memory device
as pixel data.

20. The method as in claim 19, wherein receiving the
coarse pixel quad from the processing cluster includes:

reading constituent pixel quads of the coarse pixel quad

from the render cache; performing cacheline aware
fragment compression on the constituent pixel quads of
the coarse pixel quad; and

processing the constituent pixel quads as a coarse pixel in

response to a determination that the constituent pixel
quads cover a cacheline of the render cache.
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