US 20230393838A1

a2y Patent Application Publication o) Pub. No.: US 2023/0393838 A1

a9y United States

Cameron et al.

43) Pub. Date: Dec. 7, 2023

(54) PROCESS FOR AUTOMATICALLY
UPGRADING AN OPERATING SYSTEM ON
A COMPUTER

(71) Applicant: Cristie Software Ltd, Stroud (GB)
(72) Inventors: Ian Cameron, Stroud (GB); Scott
Sterry, Stroud (GB); Sam Kendall,

Stroud (GB); Jordan Stopford, Stroud
(GB)

(21) Appl. No.: 18/203,077

Publication Classification

(51) Int. CL

GOGF 8/65 (2006.01)
(52) US.CL

[SR GOGF 8/65 (2013.01)
(57) ABSTRACT

A method for automatically upgrading an operating system
on a computer is provided. The method includes collecting
system state information from the computer, and querying a
knowledge base to identify state modification actions. Que-
rying the knowledge base may include use of a classification
algorithm, for example the k-nearest-neighbours algorithm,
to identify non-exact matches in the knowledge base. The

(22) Filed: May 30, 2023 system is modified according to identified state modification
actions and an upgrade is attempted. In the event that the
(30) Foreign Application Priority Data upgrade fails, information from collected log files is used to
update the knowledge base to propose further state modifi-
Jun. 1, 2022 (GB) eeeeevivieivnieeeeeee 2208110.3 cation actions, and the upgrade is attempted again.
2. Collect system stale
information
First knowledge base:
“ii;fgi‘zi@ Mappings of stales 1o
! S sets of state modifications
3. Query knowledge é \ ¥
base - Modifications _
; + Mew mapping
! 3 Union of known
: § S "
> ¥ 3 1 SR
4. Modify system ¢ m@a;gé;%@rs
create upgrade plan . -
5. ﬁﬁgmfie system | Modifications
and collect logs i !
| Second knowledge base;
L 3 :f
8. Test for success Mappings oflog
tempiates 1o sets of state
§ modifications
¥ ¥
Successiul 7. Failure

upgrade

Patent Application Publication = Dec. 7,2023 Sheet 1 of 3 US 2023/0393838 A1

o

2. Collect system state
information

First knowledge base:

gig.;fﬁ:“;ip | Mappings of states to
T T sets of state modifications

¥
3. Query knowledge

base e Modfications ™. :
v] New mapping

¥ Union of known
el
3 3 ¥ 3 e ¢ ,S\?\.“
4, Modify system / and ne

create upgrade plan ‘ ﬂi{m jcations

‘P 3

i :
5. Upgrade sysien : S
5 Pg {3 ystem : Modiications
and collect logs i !

Second knowledge base:

¥

&. Test for suceess

Mappings of log
templates 1o sels of state

- o
maodifications
; Legs)
¥ ¥ d

Successful 7. Failure
upgrade

FIG. 1

Patent Application Publication = Dec. 7,2023 Sheet 2 of 3 US 2023/0393838 A1

5. Upgrade system |
and collect logs

Sa. Crifical post-
upgrade actions

§. Test for sucoess

Ba. Non-critical post-
upgrade actions

7. Fallie |/

Successiul
upgrade

Warnings
non-critical
failures

FIG. 2

Patent Application Publication = Dec. 7,2023 Sheet 3 of 3

US 2023/0393838 Al
“‘A'\\,
N
hY
\\
5. Upgrade system ‘g{
and collect logs 4

v
8. Test for success
¥ e
Successful 7. Faihwe | /

upgrade

Ba. Collect post-upgrade
status information

&h. Compare with pre-
upgrade status

.
Be. Carry out actions 1o retum system o

pre-upgrade status

FIG. 3

US 2023/0393838 Al

PROCESS FOR AUTOMATICALLY
UPGRADING AN OPERATING SYSTEM ON
A COMPUTER

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of priority to
Great Britain patent application No. GB 2208110.3, filed on
Jun. 1, 2022; the entirety of which is hereby incorporated by
reference herein.

BACKGROUND OF THE INVENTION

Field of the Invention

[0002] The present invention relates to a process and
system for automatically upgrading an operating system on
a computer, particularly to a learning system which learns
mappings between operating system states and upgrade
paths to reduce upgrade failures.

Background

[0003] Keeping operating systems up-to-date is a problem
for IT departments in all modern businesses. Operating
system upgrades are essential and often urgent—due to
security, compliance and vendor support pressures, operat-
ing systems must be kept up-to-date. Upgrades are time
consuming and systems may not be able to be used while a
machine is in the process of upgrading.

[0004] Most importantly, upgrades do not always succeed.
Operating system vendors provide upgrade installation pro-
grams which run on a system and upgrade it to a later
version. However, the wide range of changes, modifications,
configuration options and addons which may be in place in
a working system means that the OS vendor’s upgrade
program will realistically only ever work on a subset of
systems.

[0005] In particular, software running on the system may
include software which has made changes to the operating
system, or has required changes to be made to the operating
system. Some or all of these changes may be unknown to the
operating system’s package manager. The operating system
vendor’s upgrade installation program may well fail on such
a system.

[0006] It is therefore common for upgrades to fail. When
this happens, a system administrator will typically try to find
out why it has failed, and what needs to be changed to make
it succeed. They do this using their own diagnostic knowl-
edge, by searching documentation and the internet to see if
there are known issues which may have caused the failure,
and often by a certain amount of trial and error. Hopefully
this process will lead them to make changes to the system
which then allows the upgrade to succeed. However, it is a
time-consuming and interactive process and can represent
significant cost to a business.

[0007] Insome cases (possibly after unsuccessful attempts
to upgrade the OS in place) administrators will choose to
avoid the upgrade process altogether, and instead provision
a new system with a new operating system, and then make
necessary configuration changes and migrate applications
from the old system. Tools exist which assist with this
process in various ways, including configuration manage-
ment systems such as Chef, Puppet and Ansible which partly
automate the process of configuring a system to receive an

Dec. 7, 2023

application. VirtaMove from App Zero can assist with
migrating applications and settings from an old operating
system to a new operating system. However, these alterna-
tives to upgrading the operating system in place can lead to
similar problems. A configuration management system
requires upfront cost by requiring the configuration to be
defined in advance. Migrating the application involves chal-
lenges in terms of identifying the components and settings
which need to be moved.

[0008] “Rollback” technology is known. Various systems
are available which one way or another allow an adminis-
trator to restore a previous “known good” state of a system.
If an upgrade fails, the administrator may choose to roll back
the system before making changes and trying again. This
helps to provide a more controlled upgrade process since the
administrator knows that they are starting from exactly the
same state when they make a change to retry an upgrade.
However, on their own these systems do not avoid the
time-consuming work involved in upgrading an operating
system.

[0009] It is an object of the present invention to reduce or
substantially obviate the aforementioned problems. Particu-
larly, it is an object of the invention to provide a system
which can automate the process of upgrading an operating
system with an improved chance of success.

SUMMARY OF THE INVENTION

[0010] According to the present invention, there is pro-
vided a method for upgrading an operating system on a
computer system, the method comprising:

[0011] 1. providing a knowledge base, the knowledge
base including mappings from system states to sets of
state modifications;

[0012] 2. collecting data from the computer system to
define the system state;

[0013] 3. querying the knowledge base using the
defined system state, the query returning a set of state
modifications;

[0014] 4. modifying the computer system according to
the set of state modifications;

[0015] 5. running an operating system upgrade program
and collecting a log from the upgrade program;

[0016] 6. testing whether the operating system upgrade
completed successfully;

[0017] 7. if the operating system upgrade did not com-
plete successfully, examining the collected log, updat-
ing the knowledge base according to the log, and
returning to step 3.

[0018] The method of the invention can provide an auto-
mated, unattended, operating system upgrade with a high
success rate. By querying the knowledge base with system
state information, modifications can be made automatically
to increase the probability that the upgrade program will run
successfully. In the event that the upgrade is not successful,
information from collected log files may be used to update
the knowledge base. Hence an adaptive learning system is
provided which becomes more effective the more it is used.
[0019] The method sets out a sequence of the steps pro-
ceeded through in logical order. That is to say it may proceed
through the steps in numerical order, from step 1 through to
step 7, with conditional iterations through steps 3 to 7 until
a success condition is reached.

[0020] If the testing shows that the operating system
upgrade was completed successfully, the method may

US 2023/0393838 Al

include the step up of updating the knowledge base accord-
ing to the log. The updated to the knowledge based may
include information about the success or failure of the
upgrade and the set of modifications used according to the
log. The automated process of updating the knowledge base
advantageously ensure that it remains current since it miti-
gates against outdated recommendations.

[0021] Instep 7, prior to returning to step 3, the knowledge
base is updated. The updated knowledge base is then used
for the new step 3. That is to say should the process of
updating fail, i.e. reach step 7, the knowledge base is
updated before the process starts to loop through step 3 to 6
or 7. At each start of each loop the knowledge base is
updated based on the log produced from the previous loop,
a set of state modification are returned based on the updated
knowledge base. This iterative loop allows the method to
quickly fixed failed updates while also ensuring that the
knowledge base remains current and up to date.

[0022] The method for automatically upgrading an oper-
ating system on a computer system may be considered an
automatic modify-and-retry upgrade action. In other words,
when the upgrade fails, the upgrade process will automati-
cally restart or loop back until a successful upgrade has been
completed.

[0023] This allows the operating system upgrade to be run
without any user interaction or user participation. User
interaction is only required for electing to perform the
upgrade and specifying a desired version of the operating
system before the upgrade process is started. This allows for
the automatic upgrade of the operating system without the
need for external resources.

[0024] The modification of the computer system accord-
ing to the set of state modifications enables the computer
system to be compatible for the operating system upgrade
thus increasing the probability that the upgrade program will
run successfully.

[0025] The set of state of state modifications may include
a set of actions that modify the computer system to a state
in which it may be upgraded.

[0026] In addition, the set of state modifications may
include a set of actions to apply the aforementioned modi-
fications. Instructions may be provided in the form of code
which many perform the actions.

[0027] The step of querying of the knowledge base pref-
erably takes the form of using a classification algorithm, for
example an unsupervised classification algorithm such as the
k-nearest neighbours algorithm. This means that the exact
system state detected does not have to be present in the
knowledge base (which, given the very large number of
possible system states, is actually very unlikely). The k-near-
est neighbours algorithm has been found to be an effective
way to classify the detected state according to close known
states that are in the knowledge base, and output a set of state
modifications according to the close known states. The set of
state modifications thus identified will increase the prob-
ability of a successful operating system upgrade.

[0028] In such an embodiment, the knowledge base will
typically contain state information which has been trans-
formed into a format suitable for use with such unsupervised
classification algorithms. For example, one type of state data
may be service definitions, which can be stored as a table of
service names, status (enabled, disabled, etc.), binary paths
and settings.

Dec. 7, 2023

[0029] The system state may include: applications
installed, operating system and other settings, resources and
resource allocations, running services, security permissions
and any other parameters which define and affect the opera-
tion of a computer system.

[0030] In most embodiments, the system state information
is collected using operating system APIs for querying this
data.

[0031] In one embodiment this data is transformed into
sparse matrices of numbers (either integer or floating point)
which allow the k-nearest neighbours, and indeed a wide
variety of other classification and/or machine learning algo-
rithms, to be applied. One method of transforming state data
into a suitable format is to use a hashing function to convert
strings to integers and then to build a sparse matrix of the
results using the primary key as the row offset.

[0032] A second knowledge base may be provided, the
second knowledge base providing a mapping of log tem-
plates to sets of state modifications. The Applicant’s co-
pending application published as GB2589628 describes
methods of analysing collected log files to identify particular
features of interest. A “log template” can simply be consid-
ered to be a feature in a log—usually a feature which
indicates an error or an anomaly.

[0033] Inthe event that the operating system upgrade fails,
in step 7 above, the second knowledge base may be queried
with one or more log templates identified in the collected log
file(s). Again, the second knowledge base may not contain
(indeed, may be unlikely to contain) an exact match for the
particular set of log templates. An unsupervised classifica-
tion algorithm such as k-nearest neighbours can again be
used to classity the set of log templates identified according
to close matches in the knowledge base, and return a set of
state modifications.

[0034] The second set of state modifications returned from
the query of the second knowledge base may be compared
with the first set of state modifications identified and applied
in steps 3 and 4. If the second set of state modifications
contains modifications not present in the first set of state
modifications, then an expanded set of state modifications
(i.e. the union of the first and second sets) is added to the first
knowledge base, mapped to the actual detected starting state
of the system identified in step 2. The upgrade may then be
performed again, after carrying out the expanded set of state
modifications.

[0035] In this way, the first knowledge base is updated
using information from log files, whenever an operating
system upgrade fails. Not only is the information used to
automatically try the upgrade process again on the system in
question, but the first knowledge base will improve over
time, and the classifier-based query system means that the
system will improve with more knowledge.

[0036] The iterative nature of the upgrade process allows
for the constant evolution of the query system. This thereby
mitigates outdated upgrade recommendations.

[0037] Preferably, at least some of the state modifications
are pairs of “do” and “undo” actions. The “do” action is
carried out at step 4 in order to move the system to a state
in which an upgrade is more likely to succeed. The corre-
sponding “undo” action is then carried out once the system
has been successfully upgraded, in order to more closely
align the system with its original state and the state which
the user, and application software, expects.

US 2023/0393838 Al

[0038] An example of a state modification may be a “do”
action to disable virus protection software, and an “undo”
action to enable virus protection software.

[0039] Configuration settings which affect the operation of
the OS upgrade program may also be considered as state
modifications, although this is an example of a state modi-
fication which does not need to have a corresponding “undo”
action.

[0040] In some cases it may not be possible to automate
either or both of the “do” or “undo” actions. In these cases
the action can be considered as an instruction to an admin-
istrator to carry out a particular step. However, it is obvi-
ously preferable for as many actions as possible to be
automated, for completely unattended operation.

[0041] The method of the invention may further comprise
the step of carrying out a set of actions after the OS upgrade
program has run. In some embodiments, this step may be
carried out before the test for success or failure is made. In
particular, success or failure may depend on whether the
actions after the OS upgrade program has run can be
successfully carried out, and therefore the success test
cannot be run until the post-upgrade actions have been
attempted. As an example, a post-upgrade action could
include re-enabling a service which was disabled as part of
the state modifications in step 4. If the service will not start
on the upgraded system, then the upgrade may be considered
as failed, despite the fact that the OS upgrade program in
itself has completed successfully.

[0042] In some embodiments, the step of carrying out
actions after the OS upgrade program has run may include
the sub-steps of collecting data from the computer system to
define the system state after the OS upgrade program has
been run, comparing the collected post-upgrade state with
the original state information collected in step 2, and then
preparing and executing a state reversion plan to revert the
system to its original state.

[0043] In typical embodiments however, failures to
rebuild state exactly are not considered fatal to the process
but will be reported to the user.

[0044] The first and/or second knowledge bases may be
initially created by the manual input of a skilled adminis-
trator. Initially at least some non-working system states will
have to be identified and mapped to sets of modifications
which move the system into a working (i.e. upgradable)
state. It is envisaged that the initial knowledge bases may be
packaged and distributed as part of a product to a wide
number of administrators who can then use the initial
knowledge to automate upgrades within their own organi-
sations. Preferably, feedback information from many users/
purchasers of this product can be fed back to update a central
knowledge base which all users can access. However in
some use cases users may prefer, for security, compliance
and/or connectivity reasons, not to feed back their informa-
tion to a central knowledge base, in which case their copy of
the knowledge base will update and develop separately,
based on the failed upgrades and knowledge updates within
their own installation.

[0045] Note that the knowledge base will also contain
mappings of working system states to empty sets of modi-
fications. This knowledge about what works, as well as what
does not work, will result in a better output from the
classifier to move a system more reliably to a state in which
it can be upgraded.

Dec. 7, 2023

[0046] Preferably, a snapshot and rollback system is pro-
vided. A snapshot of the system may be taken, preferably
before the modifications are applied in step 4, although
alternatively or additionally it may be preferable in some
embodiments to take a snapshot after the modifications are
applied but before the upgrade program is run in step 5. In
the event of a failed upgrade, the system may be rolled back
to the point when the snapshot was taken. This avoids any
unknown effects of the failed upgrade process persisting on
the system.

[0047] The system being upgraded may be a virtualised
computer system or a physical computer system. Virtualised
systems usually include VM-level snapshot capabilities.
Physical machines can have snapshot capability added by
rebooting them to a hypervisor layer and saving changed
data to secondary storage. An example of this kind of system
is sold by the Applicant as the Cristie Enhanced Testing
System.

[0048] In a simple embodiment, the test as to whether the
operating system upgrade completed successfully will sim-
ply be a test as to whether the operating system upgrade
program reports a successful upgrade result. More complex
embodiments may consider the upgrade problem more holis-
tically, i.e. to measure success by the operating system
having been upgraded and also all application software on
the system continuing to function correctly. In such an
embodiment state modifications may be considered to be
modifications to both the starting state of the system and to
the upgrade plan in terms of actions (not necessarily exactly
paired “do” and “undo” actions) to be taken both before and
after the upgrade program runs.

[0049] The numbered steps described may be referenced
with either Roman numerals (e.g. iii, etc.) or western Arabic
numerals (e.g. 1, 2, 3 etc.). These should be considered
synonymous with each other and interchangeable.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF
THE DRAWINGS

[0050] For a better understanding of the present invention,
and to show more clearly how it may be carried into effect,
reference will now be made by way of example only to the
accompanying drawings, in which:

[0051] FIG. 1 is a diagram showing the operation of a
method and system according to the invention;

[0052] FIG. 2 is a diagram showing in more detail post-
upgrade actions which may be taken in some embodiments;
and

[0053] FIG. 3 is a diagram showing a further post-upgrade
state comparison process which may be carried out in some
embodiments.

DETAILED DESCRIPTION OF THE
ILLUSTRATED EMBODIMENTS

[0054] In an example embodiment, a knowledge base is
initially created by the manual action of a skilled adminis-
trator. It is envisaged that this initial “priming” action would
be done centrally, and the result then distributed as part of
a product.

[0055] The skilled administrator performs operating sys-
tem upgrades on different machines. These upgrades will
often succeed and, if so, the system state associated with the
machine is mapped to an empty set of modifications, and the
mapping is added to the knowledge base.

US 2023/0393838 Al

[0056] Sometimes, the upgrade will fail. In this case, the
skilled administrator will examine log files to look for
anomalies. Note that tools may be helpful in this process, for
example the anomaly detection system described in
GB2589628. The skilled administrator will try to identify a
log template corresponding to the failure, and come up with
a state modification which will correct the failure. The
mapping of the log template to the modification is added to
the second knowledge base.

[0057] For example, the log file may reveal a service
which is preventing the upgrade from succeeding. The
administrator may create a mapping from the relevant log
template to a modification which takes the form of disabling
the service.

[0058] “Failed to upgrade service < > due to conflicting
resource constraints”, “ServiceName”->DisableService Ser-
viceName

[0059] The above mapping, from a log template to an
action, is added to the second knowledge base. The first
knowledge base is also updated, to map the overall state of
the system to the action “DisableService ServiceName”.
[0060] The first and second knowledge bases are built up
in this way, with knowledge of both successful and unsuc-
cessful operating system upgrades. The first and second
knowledge bases can then be distributed as part of a system
for automating upgrades. Preferably, the knowledge bases
are provided online and are constantly updated by feedback
from multiple customer organisations.

[0061] Once the knowledge bases have been provided, the
system may be used as will be described with reference to
FIG. 1.

[0062] In step 2 system state information is collected. This
may include for example running processes, security per-
missions, resource allocations, configuration settings, and so
on. In principle as much information as possible about how
the system is set up is collected. This is done using operating
system APIs.

[0063] The state information may need to be transformed
into a format suitable for use in querying the knowledge
base. For example, the state information may be transformed
using hashing to a sparse numerical matrix. In step 3 the
state information is used to query the first knowledge base.
The first knowledge base contains mappings of states to sets
of state modifications. The result of the query will therefore
be a set of state modifications. The query step involves use
of a classification algorithm, for example k-nearest neigh-
bours. The query should therefore return a result even in the
(fairly likely) scenario that the first knowledge base does not
contain an entry matching the system state exactly.

[0064] In step 4 the system is modified ready for the
upgrade to take place. Note that in some embodiments,
modifications can be taken to extend to configurations or
options in the upgrade program itself, and may also include
actions to take post-upgrade. Modifying the system can
therefore be considered more generally as creation of an
upgrade plan.

[0065] In step 5, the operating system upgrade program is
run. A log file is collected.

[0066] In step 6 a check is made as to whether the upgrade
was successful or not. Note that in some embodiments
multiple checks may take place along a multi-step upgrade
plan. Typically, whenever any step fails the upgrade will
abort and the failure steps will take place. In some embodi-
ments parts of the upgrade plan may be considered critical,

Dec. 7, 2023

and if those parts cannot complete then the upgrade will be
considered a failure. If the operating system upgrade pro-
gram fails then this will almost always be considered a
critical failure. However other parts of the upgrade plan may
be considered less critical. For example, a failure to re-
enable a service after the upgrade program is completed may
be reported to the user, and information about the failure
may be used to update the knowledge base. However, as a
non-critical failure it would not necessarily be used to
automatically trigger a rollback and another upgrade
attempt, since relatively straightforward manual action
could potentially get the upgraded system working properly.
[0067] In the event of a failure, however it is defined, log
files will be automatically examined. Log templates repre-
senting failures can be identified, for example according to
the disclosure in GB2589628. The second knowledge base
may be queried to identify a set of state modifications. These
state modifications may then be combined with the original
set of state modifications, and then added to the first knowl-
edge base as a mapping associated with the pre-upgrade
system state.

[0068] The upgrade may then be attempted again, now
that the knowledge base has been improved. Potentially this
may be iterated multiple times, terminating either on a
successful upgrade, or if the query of the second knowledge
base does not yield any state modification which was not
already tried.

[0069] In FIG. 2, a more detailed process is shown in
which post-upgrade actions are taken. Post-upgrade actions
typically include “undo” actions to return the system to the
state it was in before it was modified to allow the upgrade
to take place. In this embodiment, actions are divided into
“critical” and “non-critical”. The difference is that critical
actions are treated as part of the upgrade (although not part
of the OS upgrade program), and so a failure of a critical
action will count as a failure of the upgrade and trigger an
automatic update of the knowledge base and a re-attempt to
plan and execute the upgrade. Non-critical actions, on the
other hand, will be attempted automatically but, if they fail,
the user is warned but the system is not automatically
reverted for another upgrade attempt. In many embodiments,
all post-upgrade actions outside of the OS vendor’s upgrade
program may be considered non-critical.

[0070] Typically, the post-upgrade actions are “undo”
actions derived from the “do and “undo” action pairs in the
set of state modifications returned from the knowledge base
query. In addition, or instead, a successfully upgraded sys-
tem may be examined to determine if there are any differ-
ences from the starting system state. This process is illus-
trated in FIG. 3. In step 8a, after the system has been
successfully upgraded, status information is collected again
(i.e. the same process is carried out on the post-upgrade
system as was carried out on the pre-upgrade system in step
2). The post-upgrade status information is then compared
with the pre-upgrade status information in step 8b. If there
are any differences, then a plan is made and executed to
carry out actions to move the system back to its pre-upgrade
state.

[0071] These steps, 8a, 8b and 8c may be carried out in
addition to post-upgrade actions which have been scheduled
as part of the upgrade plan. For example, in most embodi-
ments many state modifications will have “do” and “undo”
pairs to, for example, re-enable a disabled service or restore
a changed security permission. However, the added steps 8a,

US 2023/0393838 Al

8b, 8¢ serve as a check that the system is in the right state,
and take account of any unexpected effects of the operating
system upgrade program, which may for example restore
some system defaults.

[0072] Embodiments of the method and system of the
invention assist with upgrading computer systems to new
operating system versions, in a highly automated way
requiring minimal manual intervention. The invention
increases the probability that an upgrade will be successful,
and avoids the need for time-consuming re-provisioning and
re-building of systems. Embodiments may work success-
fully even with old, poorly documented and undocumented
systems.

[0073] The embodiments described above are provided by
way of example only, and various changes and modifications
will be apparent to persons skilled in the art without depart-
ing from the scope of the present invention as defined by the
appended claims.

What is claimed is:

1. A method of automatically upgrading an operating
system on a computer system, the method comprising:

i) providing a first knowledge base, the knowledge base
including mappings from system states to sets of state
modifications;

i1) collecting data from the computer system to define the
pre-upgrade system state;

iii) querying the knowledge base using the defined pre-
upgrade system state, the query returning a first set of
state modifications;

iv) automatically modifying the computer system accord-
ing to the returned set of state modifications;

V) running an operating system upgrade program and
collecting a log from the upgrade program once the
computer system has been modified according to the
returned set of state modifications;

vi) testing whether the operating system upgrade com-
pleted successfully; and

vii) if the operating system upgrade did not complete
successfully, examining the collected log, updating the
knowledge base according to the log, and then return-
ing to step 3 wherein the knowledge base queried is the
updated knowledge base.

2. The method of upgrading an operating system as
claimed in claim 1, in which the step of querying the
knowledge base uses a classification algorithm.

3. The method of upgrading an operating system as
claimed in claim 2, in which the classification algorithm is
an unsupervised classification algorithm.

4. The method of upgrading an operating system as
claimed in claim 3, in which the classification algorithm is
the k-nearest neighbours algorithm.

5. The method of upgrading an operating system as
claimed in claim 1, in which a second knowledge base is
provided, the second knowledge base including mappings of
log templates to sets of state modifications.

6. The method of upgrading an operating system as
claimed in claim 5, in which step 7 includes:

a) querying the second knowledge base with one or more
log templates identified in collected log(s), the query
returning a second set of state modifications;

b) comparing the second state of state modifications with
the first set of state modifications; and

c) if the second set of state modifications contains at least
one state modification which is not in the first set of

Dec. 7, 2023

state modifications, adding to the first knowledge base
a mapping from the defined system state to the union of
the first and second sets of state modifications.

7. The method of upgrading an operating system as
claimed in claim 6, in which the step of querying the second
knowledge base uses a classification algorithm.

8. The method of upgrading an operating system as
claimed in claim 7, in which the step of querying the second
knowledge base uses an unsupervised classification algo-
rithm.

9. The method of upgrading an operating system as
claimed in claim 8, in which the step of querying the second
knowledge base uses the k-nearest-neighbours algorithm.

10. The method of upgrading an operating system as
claimed in claim 1, in which state modifications include
configuration settings associated with the operating system
upgrade program.

11. The method of upgrading an operating system as
claimed in claim 1, further comprising the step of carrying
out post-upgrade actions.

12. The method of upgrading an operating system as
claimed in claim 11, in which the post-upgrade actions are
defined according to the first set of state modifications, to
undo the modifications carried out in step 4.

13. The method of upgrading an operating system as
claimed in claim 11, in which the step of carrying out
post-upgrade actions includes the steps of collecting data
from the computer system after the OS upgrade program has
been run to define a post-upgrade system state, comparing
the post-upgrade system state with the pre-upgrade system
state, and carrying out actions to return the system to the
pre-upgrade system state.

14. The method of upgrading an operating system as
claimed claim 1, in which a snapshot and rollback system is
provided, and in which a snapshot of the system is taken
before the upgrade program is run in step 5, and in which in
the event of a failed upgrade, the system is rolled back to the
snapshot state before the upgrade is attempted again.

15. The method of upgrading an operating system as
claimed in claim 14, in which the snapshot is taken before
the system is modified in step 4.

16. A non-transient computer readable medium containing
instructions which, when executed on a computer system,
carries out the method of claim 1, the computer system
having access to a first knowledge base, the knowledge base
including mappings from system states to sets of state
modifications.

17. The non-transient computer readable medium as
claimed in claim 16, further containing data comprising the
first knowledge base.

18. A system of upgrading an operating system on a
computer system, the system comprising one or more pro-
cessing devices and one or more storage devices storing
processor-executable instructions that, when executed by the
one or more processing devices, causes the one or more
processing to device to:

i) collect data from the computer system to define the

pre-upgrade system state;

ii) query a knowledge base using the defined pre-upgrade
system state, the query returning a set of state modifi-
cations, wherein the knowledge base includes map-
pings from system states to sets of state modifications;

iii) modify the computer system according to the returned
set of state modifications;

US 2023/0393838 Al

iv) run an operating system upgrade program and collect
a log from the upgrade program once the computer
system has been modified;

v) test whether the operating system upgrade completed
successfully; and

vi) if the operating system upgrade did not complete
successfully, examining the collected log, updating the
knowledge base according to the log, and then return-
ing to step 2 wherein the knowledge base queried is the
updated knowledge base.

#* #* #* #* #*

Dec. 7, 2023

