US 20240106754A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2024/0106754 A1l

Meng et al. 43) Pub. Date: Mar. 28, 2024
(54) LOAD BALANCING METHOD FOR Publication Classification
MULTI-THREAD FORWARDING AND (51) Int.Cl
RELATED APPARATUS HO4L 47/125 (2006.01)
, , , HO4L 47/625 (2006.01)
(71) Applicant: Huawei Technologies Co., Ltd., HO4L 49/00 (2006.01)
Shenzhen (CN) HO4L 49/90 (2006.01)
v . (52) US.CL
(72) Inventors: é‘a‘},gl““WMe“ghShenlzlhen (CCI\II‘UL CPC o HO4L 47/125 (2013.01); HO4L 47/626
L}mélan Zhang(sc Né;ngéhou 15 L); {jun (2013.01); HO4L 49/70 (2013.01); HO4L
1, Hangzhou » Lhunae L, 49/9068 (2013.01
Hangzhou (CN); Dingke Xu, Hangzhou ()
(CN) (57) ABSTRACT
A load balancing method for multi-thread forwarding
(21) Appl. No.: 18/533,886 includes determining a first thread and a second thread from

a plurality of threads, where the plurality of threads are all
used to process data packets in virtual network interface card

(22) Filed: Dec. 8, 2023 queues, wherein a load of the first thread is greater than a
first threshold, wherein a load of the second thread is less

L. than a second threshold, and wherein the first threshold is

Related U.S. Application Data greater than the second threshold; determining a first queue

(63) Continuation of application No. PCT/CN2022/ from a plurality of virtual network interface card queues

095899, filed on May 30, 2022.

corresponding to the first thread, where the first thread is
used to process data packets in the plurality of virtual

(30) Foreign Application Priority Data network interface card queues; and switching the first queue
to the second thread, so that the second thread processes a
Jun. 10, 2021 (CN) e 2021106512431 data packet in the first queue.

Determine a first thread and a second thread from a plurality of
threads, where the plurality of threads are all used to process data
packets in virtual network mterface card queues, load of the first
thread 1s greater than a first threshold, load of the second thread is
less than a second threshold, and the first threshold is greater than
the second threshold

301
L

l

Determine a first queue from a plurality of virtual network
interface card queues corresponding to the first thread, where the
first thread is used to process data packets in the plurality of
virtual network interface card queues

302

1

Switch the first queue to the second thread, so that the second
thread processes a data packet in the first queue

Patent Application Publication

Virtual machine 1

Virtual network
interface card 1

Mar. 28, 2024 Sheet 1 of 6

Virtual machine 2

Virtual network
interface card 2

Virtual switch

PMD driver

Port
management
module

Forwarding
rule
management
module

Virtual network
interface card 3

Physical network
mterface card

FIG. 1

US 2024/0106754 A1

US 2024/0106754 A1

Mar. 28, 2024 Sheet 2 of 6

Patent Application Publication

¢ DI
Sel
TOAIDS N
juowkojdep rouey | Ict L1l
a1eM1JOS £l N N
7~ fasd
ori IOAIDOSTRI], Asowsaw Oo1Ap Aepdsiq
:) [BUINXT] mduyy ~AT
R I _ 601 |
L]
ERIAREIEY wod gsn 2oL (/]
M HOMRN | R ~
6Cl A STt
1oidepe
I~ Aepdsig
LO1

GOT snq WSS

28puq sng

¢p1 voneorddy

TPl U

6¢1 11PYS
LET SO

20BJIOjUI 10S$3001]
/~| 2aup 3ysip preH =7 Se1 S0t
1€1 _
€01
®>w.~© VMmmﬁ @H@E
ec1 7
~/
101

Patent Application Publication Mar. 28, 2024 Sheet 3 of 6 US 2024/0106754 A1

Determine a first thread and a second thread from a plurality of
threads, where the plurality of threads are all used to process data 301
packets in virtual network interface card queues, load of the first /
thread is greater than a first threshold, load of the second thread is
less than a second threshold, and the first threshold is greater than

the second threshold

Y

Determine a first queue from a plurality of virtual network 302
interface card queues corresponding to the first thread, where the /
first thread is used to process data packets in the plurality of
virtual network interface card queues

Y

Switch the first queue to the second thread, so that the second / 303
thread processes a data packet in the first queue

FI1G. 3

Patent Application Publication Mar. 28, 2024 Sheet 4 of 6 US 2024/0106754 A1

Virtual machine 1 Virtual machine 2

Virtual switch

PMD management
module

PMD scheduling module

Packet receiving mode
management module

Interrupt mode - Polling mode

x
1
|
|
|
|
a
| Scheduling /
(
i
1

mode

PMD driver

i

Physical
network
interface card

F1G. 4

Patent Application Publication Mar. 28, 2024 Sheet 5 of 6 US 2024/0106754 A1

S1
S2
Polling packet ™ Interrupt packet
receiving mode receiving mode
S3 =7
7/
77/
v
/
d
54 S6 ///
/
S5 //// 7
7/
/7
7/
Scheduling {,/
Mode
F1G. 5

v e 601
Record a CPU resource utilization track of each /
PMD

A

. o . 602
Predict CPU resource utilization of each PMD /
according to an LSTM algorithm

T~

.) . 603 If it is predicted that the average 604
If it 1s predicted that average CPU / CPU 12 source utilization of th%s /
resource utilization of PMDs is !

o ;) PMDs is less than an underload
greater than an overload threshold, .
. . . threshold, reduce the quantity of
increase a quantity of the PMDs the PMDs

FIG. 6

Patent Application Publication Mar. 28, 2024 Sheet 6 of 6 US 2024/0106754 A1

700

701 702

Obtaining unit Processing unit

F1G. 7

Computer-readable storage medium 800

Signal-carrying medium 801

Program instruction 802

Cg‘;%’gg‘ Computer- Communication
o recordable medium
203 medium 804 8035

FIG. 8

US 2024/0106754 Al

LOAD BALANCING METHOD FOR
MULTI-THREAD FORWARDING AND
RELATED APPARATUS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of International
Patent Application No. PCT/CN2022/095899 filed on May
30, 2022, which claims priority to Chinese Patent Applica-
tion No. 202110651243.1, filed on Jun. 10, 2021. The
disclosures of the aforementioned applications are hereby
incorporated by reference in their entireties.

TECHNICAL FIELD

[0002] The present disclosure relates to the field of com-
puter technologies, and in particular, to a load balancing
method for multi-thread forwarding and a related apparatus.

BACKGROUND

[0003] An OpenFlow virtual switch (OVS) is a multi-layer
virtual switch for large-scale network automation through
programming extension. A powerful OpenFlow flow table
capability of the OVS can resolve service function problems
at all layers. Therefore, the OVS is widely used in virtual
network forwarding. However, in the cloud computing field,
a cluster scale of virtual network nodes is expanding,
resulting in an increasingly higher requirement for network
performance. In an OVS solution, a hardware network
interface card driver works in a kernel mode and relies on a
software interrupt to process a packet receiving event. This
severely limits forwarding performance.

[0004] To resolve a bottleneck problem of network inter-
face card packet receiving performance, a data plane devel-
opment kit (DPDK) technology emerges based on the OVS.
A DPDK is a data plane development tool set that can
directly forward user-mode data to a network interface card
bypassing a kernel. In an OVS+DPDK solution, a poll mode
driver (PMD) thread is responsible for processing data
packet sending and receiving on a DPDK data path. The
PMD thread periodically polls a virtual network interface
card queue. Once a data packet in the virtual network
interface card queue is obtained, the data packet is parsed
and forwarded.

[0005] Currently, the PMD thread is bound to the virtual
network interface card queue in advance. Each virtual net-
work interface card queue is bound to a unique correspond-
ing PMD thread, and one PMD thread may be bound to one
or more virtual network interface card queues. However, in
an actual forwarding scenario, load of the virtual network
interface card queue changes continuously, and a fixed
binding manner causes load imbalance between PMD
threads, and consequently, resources are not fully utilized.

SUMMARY

[0006] The present disclosure provides a load balancing
method for multi-thread forwarding. A thread with high load
and a thread with low load are selected from a plurality of
threads that process virtual network interface card queues,
and a virtual network interface card queue processed by the
thread with high load is switched to the thread with low load.
In the way, load balancing between the threads is imple-
mented, full utilization of computing resources is ensured,
and computing resource utilization is improved.

Mar. 28, 2024

[0007] A first aspect of the present disclosure provides a
load balancing method for multi-thread forwarding, and the
method may be applied to a server. The load balancing
method for multi-thread forwarding includes: The server
determines a first thread and a second thread from a plurality
of'threads. The plurality of threads is all used to process data
packets in virtual network interface card queues, and the
plurality of threads may be, for example, PMD threads. L.oad
of the first thread is greater than a first threshold, load of the
second thread is less than a second threshold, and the first
threshold is greater than the second threshold. When load of
a thread is greater than the first threshold, it may be
considered that the load of the thread is excessively high.
When load of a thread is less than the second threshold, it
may be considered that the load of the thread is excessively
low.

[0008] The server determines a first queue from a plurality
of virtual network interface card queues corresponding to
the first thread. The first thread is used to process data
packets in the plurality of virtual network interface card
queues. The first queue may include one or more virtual
network interface card queues.

[0009] The server switches the first queue to the second
thread, so that the second thread processes a data packet in
the first queue. After the first queue is switched to the second
thread, the first thread is no longer responsible for process-
ing the data packet in the first queue.

[0010] In this solution, a thread with high load and a
thread with low load are selected from the plurality of
threads that process the virtual network interface card
queues, and a virtual network interface card queue processed
by the thread with high load is switched to the thread with
low load. In the way, load balancing between the threads is
implemented, full utilization of computing resources is
ensured, and computing resource utilization is improved.
[0011] In a possible implementation, that the server
switches the first queue to the second thread includes: The
server marks the first queue as a scheduling mode. The
scheduling mode indicates that the first queue is a queue of
a to-be-switched thread. When the first queue is marked as
the scheduling mode, the server no longer marks the first
queue as an interrupt packet receiving mode, so as to ensure
that the first queue can be smoothly switched to the second
thread subsequently. The server switches the first queue in
the scheduling mode from the first thread to the second
thread, and the second thread is responsible for processing
the data packet in the first queue. The server marks the first
queue that is switched to the second thread as a polling
packet receiving mode. The polling packet receiving mode
indicates the second thread to process the data packet in the
first queue in a polling manner.

[0012] In this solution, after a virtual network interface
card queue of a to-be-switched thread is marked as the
scheduling mode, thread switching is performed on the
virtual network interface card queue marked as the sched-
uling mode, so that the virtual network interface card queue
can be prevented from being simultaneously processed by
the plurality of threads in a thread switching process, and a
smooth thread switching process is ensured.

[0013] In a possible implementation, that the server deter-
mines a first queue from a plurality of virtual network
interface card queues corresponding to the first thread
includes: The server determines, from the plurality of virtual
network interface card queues corresponding to the first

US 2024/0106754 Al

thread, one or more virtual network interface card queues
marked as the polling packet receiving mode; and the server
determines, from the one or more virtual network interface
card queues, the first queue that needs to be switched to the
second thread.

[0014] In a possible implementation, that the server deter-
mines a first queue from a plurality of virtual network
interface card queues corresponding to the first thread
includes: determining a first load amount based on the load
of the first thread and the second threshold, where the first
load amount is a maximum load amount that can be trans-
ferred by the first thread; determining, by the server, a
second load amount based on the load of the second thread
and the first threshold, where the second load amount is a
maximum load amount that can be received by the second
thread; and determining, by the server, the first queue based
on the first load amount and the second load amount, where
both the first load amount and the second load amount are
greater than or equal to a load amount corresponding to the
first queue. In other words, the load amount corresponding
to the first queue is both less than the first load amount and
less than the second load amount.

[0015] For example, the server may obtain the first load
amount by subtracting the second threshold from the load of
the first thread. The server may obtain the second load
amount by subtracting the load of the second thread from the
first threshold.

[0016] Comprehensively determining, based on the load
of the first thread and the load of the second thread, the
queue to be switched to the second thread can ensure that
after thread switching of the queue, the load of the first
thread does not decrease to less than the second threshold or
the load of the second thread does not increase to greater
than the first threshold. This ensures that the queue is not
switched back and forth between the threads.

[0017] In a possible implementation, the method further
includes: if a quantity of times that the first thread continu-
ously polls the second queue marked as the polling packet
receiving mode is greater than a third threshold, and no data
packet is received during a period in which the first thread
continuously polls the second queue, marking the second
queue as the interrupt packet receiving mode.

[0018] The plurality of virtual network interface card
queues includes the second queue, and the interrupt packet
receiving mode indicates the first thread to trigger process-
ing of a data packet in the second queue after obtaining an
interrupt signal from the second queue.

[0019] Simply speaking, for the second queue marked as
the polling packet receiving mode, if no data packet is
received during the period in which the first thread continu-
ously polls the second queue, and the first thread has polled
the second queue for a specific quantity of times, it may be
considered that there is a high probability that the second
queue does not generate a data packet in future. Therefore,
the server may change a mode of the second queue that is
currently in the polling packet receiving mode to the inter-
rupt packet receiving mode, so that the first thread does not
periodically poll the second queue, thereby reducing
resource consumption of polling an empty queue, and saving
processor resources.

[0020] In a possible implementation, the method further
includes: if the first thread obtains an interrupt signal from

Mar. 28, 2024

a third queue marked as the interrupt packet receiving mode,
marking the third queue as the polling packet receiving
mode.

[0021] The interrupt packet receiving mode indicates the
first thread to trigger processing of a data packet in the third
queue after obtaining the interrupt signal from the third
queue, and the polling packet receiving mode indicates the
first thread to process the data packet in the third queue in
the polling manner.

[0022] Simply speaking, for the third queue marked as the
interrupt packet receiving mode, if the third thread obtains
the interrupt signal from the third queue, it may be consid-
ered that there is a high probability that the third queue
continuously generates a data packet in future. Therefore,
the server may change a mode of the third queue that is
currently in the interrupt packet receiving mode to the
polling packet receiving mode, so that the first thread can
periodically poll the third queue, thereby improving pro-
cessing efficiency of the first thread.

[0023] In a possible implementation, the method further
includes: obtaining, by the server, load of the plurality of
threads in a first time period; predicting, by the server, load
of the plurality of threads in a second time period based on
the load of the plurality of threads in the first time period,
where the second time period is after the first time period;
and if the load of the plurality of threads in the second time
period is greater than a fourth threshold, creating a new
thread, where the new thread is used to process the data
packets in the virtual network interface card queues, or if the
load of the plurality of threads in the second time period is
less than a fifth threshold, deleting a part of threads from the
plurality of threads.

[0024] In this solution, when it is predicted that load of the
plurality of threads is high in a future period of time, the
server may create a new thread, so as to timely cope with
high service traffic in the future period of time, ensure that
the burst service traffic can be processed in a timely and
effective manner, and ensure service reliability. When it is
predicted that the load of the plurality of threads is low in the
future period of time, the server may share a virtual network
interface card queue on a thread with lowest load to another
thread, and delete the thread, to release processor resources
corresponding to the thread and save computing resources.
[0025] In apossible implementation, the deleting a part of
threads from the plurality of threads includes: determining a
to-be-deleted thread and a to-be-reserved thread from the
plurality of threads; switching a virtual network interface
card queue corresponding to the to-be-deleted thread to the
to-be-reserved thread; and deleting the to-be-deleted thread.
[0026] In a possible implementation, the load of the first
thread includes processor resource utilization corresponding
to the first thread.

[0027] A second aspect of the present disclosure provides
a scheduling apparatus, including an obtaining unit and a
processing unit. The processing unit is configured to: deter-
mine a first thread and a second thread from a plurality of
threads, where the plurality of threads are all used to process
data packets in virtual network interface card queues, load of
the first thread is greater than a first threshold, load of the
second thread is less than a second threshold, and the first
threshold is greater than the second threshold; determine a
first queue from a plurality of virtual network interface card
queues corresponding to the first thread, where the first
thread is used to process data packets in the plurality of

US 2024/0106754 Al

virtual network interface card queues; and switch the first
queue to the second thread, so that the second thread
processes a data packet in the first queue.

[0028] Inapossible implementation, the processing unit is
further configured to: mark the first queue as a scheduling
mode, where the scheduling mode indicates that the first
queue is a queue of a to-be-switched thread; switch the first
queue in the scheduling mode from the first thread to the
second thread; and mark the first queue that is switched to
the second thread as a polling packet receiving mode, where
the polling packet receiving mode indicates the second
thread to process the data packet in the first queue in a
polling manner.

[0029] Inapossible implementation, the processing unit is
further configured to: determine, from the plurality of virtual
network interface card queues corresponding to the first
thread, one or more virtual network interface card queues
marked as the polling packet receiving mode; and determine
the first queue from the one or more virtual network inter-
face card queues.

[0030] Inapossible implementation, the processing unit is
further configured to: determine a first load amount based on
the load of the first thread and the second threshold, where
the first load amount is a maximum load amount that can be
transferred by the first thread; determine a second load
amount based on the load of the second thread and the first
threshold, where the second load amount is a maximum load
amount that can be received by the second thread; and
determine the first queue based on the first load amount and
the second load amount, where both the first load amount
and the second load amount are greater than or equal to a
load amount corresponding to the first queue.

[0031] Inapossible implementation, the processing unit is
further configured to: if a quantity of times that the first
thread continuously polls the second queue marked as the
polling packet receiving mode is greater than a third thresh-
old, and no data packet is received during a period in which
the first thread continuously polls the second queue, mark
the second queue as an interrupt packet receiving mode. The
plurality of virtual network interface card queues includes
the second queue, and the interrupt packet receiving mode
indicates the first thread to trigger processing of a data
packet in the second queue after obtaining an interrupt signal
from the second queue.

[0032] Inapossible implementation, the processing unit is
further configured to: if the first thread obtains an interrupt
signal from a third queue marked as the interrupt packet
receiving mode, mark the third queue as the polling packet
receiving mode. The interrupt packet receiving mode indi-
cates the first thread to trigger processing of a data packet in
the third queue after obtaining the interrupt signal from the
third queue, and the polling packet receiving mode indicates
the first thread to process the data packet in the third queue
in the polling manner.

[0033] In a possible implementation, the obtaining unit is
configured to obtain load of the plurality of threads in a first
time period. The processing unit is further configured to:
predict load of the plurality of threads in a second time
period based on the load of the plurality of threads in the first
time period, where the second time period is after the first
time period; and if the load of the plurality of threads in the
second time period is greater than a fourth threshold, create
a new thread, where the new thread is used to process the
data packets in the virtual network interface card queues; or

Mar. 28, 2024

if the load of the plurality of threads in the second time
period is less than a fifth threshold, delete a part of threads
from the plurality of threads.

[0034] Ina possible implementation, the processing unit is
further configured to: determine a to-be-deleted thread and
a to-be-reserved thread from the plurality of threads; switch
a virtual network interface card queue corresponding to the
to-be-deleted thread to the to-be-reserved thread; and delete
the to-be-deleted thread.

[0035] In a possible implementation, the load of the first
thread includes processor resource utilization corresponding
to the first thread.

[0036] A third aspect of the present disclosure provides a
terminal. The terminal includes a memory and a processor.
The memory stores code, and the processor is configured to
execute the code. When the code is executed, the terminal
performs the method according to any implementation of the
first aspect.

[0037] A fourth aspect of the present disclosure provides
a computer-readable storage medium. The computer-read-
able storage medium stores a computer program, and when
the computer program is run on a computer, the computer is
enabled to perform the method according to any one of the
implementations of the first aspect.

[0038] A fifth aspect of the present disclosure provides a
computer program product. When the computer program
product runs on a computer, the computer is enabled to
perform the method according to any one of the implemen-
tations of the first aspect.

[0039] A sixth aspect of the present disclosure provides a
chip, including one or more processors. Some or all of the
processors are configured to read and execute a computer
program stored in a memory, to perform the method accord-
ing to any possible implementation of any one of the
foregoing aspects.

[0040] Optionally, the chip includes the memory, and the
processor is connected to the memory through a circuit or a
wire. Optionally, the chip further includes a communication
interface, and the processor is connected to the communi-
cation interface. The communication interface is configured
to receive data and/or information that needs to be pro-
cessed. The processor obtains the data and/or information
from the communication interface, processes the data and/or
information, and outputs a processing result through the
communication interface. The communication interface may
be an input/output interface. The method according to—this
application the present disclosure may be implemented by
one chip, or may be cooperatively implemented by a plu-
rality of chips.

BRIEF DESCRIPTION OF DRAWINGS

[0041] FIG. 1 is a schematic diagram of an architecture of
an application scenario according to an embodiment of the
present disclosure;

[0042] FIG. 2 is a schematic diagram of a structure of a
terminal 101 according to an embodiment of the present
disclosure;

[0043] FIG. 3 is a schematic flowchart of a load balancing
method for multi-thread forwarding according to an embodi-
ment of the present disclosure;

[0044] FIG. 4 is a schematic diagram of an architecture of
a server according to an embodiment of the present disclo-
sure;

US 2024/0106754 Al

[0045] FIG. 5 is a schematic diagram of switching among
packet receiving modes of a virtual network interface card
queue according to an embodiment of the present disclosure;
[0046] FIG. 6 is a schematic flowchart of adjusting a
quantity of PMD threads according to an embodiment of the
present disclosure;

[0047] FIG. 7 is a schematic diagram of a structure of a
scheduling apparatus according to an embodiment of the
present disclosure; and

[0048] FIG. 8 is a schematic diagram of a structure of a
computer-readable storage medium according to an embodi-
ment of the present disclosure.

DESCRIPTION OF EMBODIMENTS

[0049] The following describes embodiments of the pres-
ent disclosure with reference to accompanying drawings. It
is clear that the described embodiments are merely some but
not all of embodiments of the present disclosure. A person
of ordinary skill in the art may learn that technical solutions
provided in embodiments of the present disclosure are also
applicable to a similar technical problem as a technology
develops and a new scenario emerges.

[0050] In the specification, claims, and accompanying
drawings of the present disclosure, terms “first”, “second”,
and so on are intended to distinguish between similar objects
but do not necessarily indicate a specific order or sequence.
It should be understood that data termed in such a way is
interchangeable in proper circumstances so that embodi-
ments of the present disclosure described herein can be
implemented in an order different from the order illustrated
or described herein. In addition, terms “include”, “have” and
any other variants mean to cover non-exclusive inclusion,
for example, a process, method, system, product, or device
that includes a list of steps or modules is not necessarily
limited to those steps or modules, but may include other
steps or modules not expressly listed or inherent to such a
process, method, product, or device. Names or numbers of
steps in the present disclosure does not mean that the steps
in the method procedure need to be performed in a time/
logical sequence indicated by the names or numbers. An
execution sequence of the steps in the procedure that have
been named or numbered can be changed based on a
technical objective to be achieved, provided that same or
similar technical effects can be achieved.

[0051] On a data plane of a cloud network, an OVS is
usually used to forward a data packet in a virtual network.
The OVS supports a standard management interface and
protocol, as well as data packet distribution across a plurality
of physical servers. A powerful OpenFlow flow table capa-
bility of the OVS can resolve service function problems at
all layers. However, in the cloud computing field, a cluster
scale of virtual network nodes is expanding, resulting in an
increasingly higher requirement for network performance.
In an OVS solution, a hardware network interface card
driver works in a kernel mode and relies on a software
interrupt to process a packet receiving event. This severely
limits forwarding performance.

[0052] To resolve a bottleneck problem of network inter-
face card packet receiving performance, a DPDK technol-
ogy emerges. A DPDK is an open-source development tool
set for rapid packet processing, and implements a complete
set of user-space real-time running environment based on a
Linux operating system but different from the Linux oper-
ating system. Unlike the Linux operating system that is

Mar. 28, 2024

designed for generality, the DPDK focuses on high-perfor-
mance processing of a data packet in a network application.
Specifically, an application in the DPDK runs in user space,
and sends/receives a data packet by using a data plane
library provided by the DPDK, thereby bypassing a pro-
cessing process of the data packet by using a Linux kernel
protocol stack, and implementing high-speed forwarding of
the data packet. High performance in a software-based
virtualization environment can be achieved based on the
OVS and DPDK-based high-speed data packet throughput
advantages. High-performance network interface card
driver, huge page memory, and lock-free structure design in
the DPDK can greatly improve the forwarding performance
of the OVS.

[0053] In the virtual network, a virtual network interface
card (vNIC) is a core for forwarding a data packet. Specifi-
cally, the virtual network interface card is a piece of driver
software implemented by using a network underlying pro-
gramming technology. After the virtual network interface
card is installed, a non-real network interface card is added
to a host and can be configured like another network
interface card. A service program may open the virtual
network interface card at an application layer. If application
software (for example, a web browser) sends data to the
virtual network interface card, the service program may read
the data. If the service program writes appropriate data to the
virtual network interface card, the application software may
also receive the data written by the service program. Gen-
erally, the virtual network interface card has a corresponding
virtual network interface card queue, and the virtual network
interface card queue includes a to-be-forwarded data packet.
[0054] In an OVS+DPDK solution, a PMD thread is
responsible for processing data packet sending and receiving
on a DPDK data path. In a working process of the PMD
thread, the PMD thread periodically polls a virtual network
interface card queue. Once a data packet in the virtual
network interface card queue is obtained, the data packet is
parsed and forwarded.

[0055] Currently, the PMD thread is bound to the virtual
network interface card queue in advance. Each virtual net-
work interface card queue is bound to a unique correspond-
ing PMD thread, and one PMD thread may be bound to one
or more virtual network interface card queues. However, in
an actual forwarding scenario, load of the virtual network
interface card queue changes continuously. Each PMD or
PMD threads bound to a different virtual network interface
card queue. As the load of the virtual network interface card
queue changes continuously, a fixed binding manner causes
load imbalance between PMD threads, and consequently,
computing resources are not fully utilized.

[0056] In view of this, embodiments of the present dis-
closure provide a load balancing method for multi-thread
forwarding. A thread with high load and a thread with low
load are selected from a plurality of threads that process
virtual network interface card queues, and a virtual network
interface card queue processed by the thread with high load
is switched to the thread with low load. In the way, load
balancing between the threads is implemented, full utiliza-
tion of computing resources is ensured, and computing
resource utilization is improved.

[0057] FIG. 1 is a schematic diagram of an architecture of
an application scenario according to an embodiment of the
present disclosure. The architecture of the application sce-
nario includes software modules and a hardware module.

US 2024/0106754 Al

The software module includes a virtual machine (VM) 1, a
virtual machine 2, and a virtual switch (vSwitch). The
hardware module includes a physical network interface card.
The virtual machine 1 includes a virtual network interface
card 1, the virtual machine 2 includes a virtual network
interface card 2, and the virtual switch includes a PMD
driver, a port management module, a forwarding rule man-
agement module, and a virtual network interface card 3.
[0058] A virtual machine is a computer that can be simu-
lated on a physical computer by using virtual machine
software. The virtual machine can work like a real computer.
An operating system and an application may be installed on
the virtual machine, and the virtual machine may further
access network resources. For an application running in a
virtual machine, the virtual machine works like a real
computer. For example, the virtual machine 1 and the virtual
machine 2 in FIG. 1 respectively bear different services.
[0059] A virtual switch is used to forward and control data
between virtual machines. For example, the virtual switch in
FIG. 1 is responsible for data exchange between the virtual
machine 1 and the virtual machine 2. The virtual switch can
receive a data packet from the virtual machine 1, and
forward the data packet to the virtual machine 2, so as to
implement data exchange between the virtual machine 1 and
the virtual machine 2.

[0060] In addition, the PMD driver in the virtual switch is
used to control a behavior of sending/receiving a data packet
of a network interface card in a user mode, so as to reduce
consumption of trap-in or trap-out of a kernel and improve
performance. The port management module adds and
deletes a port. The forwarding rule management module
adds and deletes a routing rule, and determines a direction
of a data packet according to the routing rule. A function of
the physical network interface card is to receive and send
data in a form of a bit stream.

[0061] A product implementation form of the load balanc-
ing method for multi-thread forwarding provided in embodi-
ments of the present disclosure may be program code
deployed on a terminal, in particular, deployed on a server
in a cloud network. The program code provided in embodi-
ments of the present disclosure is run on a data plane of the
cloud network, that is, a data packet forwarding process
between virtual machines. For example, the program code
provided in embodiments of the present disclosure is run in
the virtual switch in FIG. 1, and can be used to schedule a
PMD thread on the PMD driver.

[0062] For example, the terminal in embodiments of the
present disclosure may be, for example, a server, a personal
computer (PC), a notebook computer, a mobile phone, a
tablet computer, a mobile internet device (MID), a wearable
device, a virtual reality (VR) device, an augmented reality
(AR) device, a wireless terminal in industrial control, a
wireless terminal in self-driving, a wireless terminal in
remote medical surgery, a wireless terminal in smart grid, a
wireless terminal in transportation safety, a wireless terminal
in a smart city, or a wireless terminal in a smart home. The
terminal may be a device that runs an Android® system, an
i0OS® system, a Windows® system, or another system.
[0063] FIG. 2 is a schematic diagram of a structure of a
terminal 101 according to an embodiment of the present
disclosure. As shown in FIG. 2, the terminal 101 includes a
processor 103, and the processor 103 is coupled to a system
bus 105. The processor 103 may be one or more processors,
and each processor may include one or more processor

Mar. 28, 2024

cores. A display adapter (video adapter) 107 is further
included, the display adapter may drive a display 109, and
the display 109 is coupled to the system bus 105. The system
bus 105 is coupled to an input/output (I/O) bus through a bus
bridge 111. An 1/O interface 115 is coupled to the /O bus.
The I/O interface 115 communicates with a plurality of I/O
devices, such as an input device 117 (for example, a touch-
screen), an external memory 121 (for example, a hard disk,
a floppy disk, a compact disc, a Universal Serial Bus (USB)
flash drive, or a multimedia interface), a transceiver 123
(which may send and/or receive a radio communication
signal), a camera 155 (which may capture static and
dynamic digital video images), and an external USB port
125. Optionally, an interface connected to the I/O interface
115 may be a USB port.

[0064] The processor 103 may be any conventional pro-
cessor, including a reduced instruction set computing
(RISC) processor, a complex instruction set computing
(CISC) processor, or a combination thereof. Optionally, the
processor may be a dedicated apparatus such as an applica-
tion-specific integrated circuit (ASIC).

[0065] The terminal 101 may communicate with a soft-
ware deployment server 149 through a network interface
129. For example, the network interface 129 is a hardware
network interface, for example, a network interface card. A
network 127 may be an external network, for example, the
internet, or may be an internal network, for example, the
Ethernet or a virtual private network (VPN). Optionally, the
network 127 may alternatively be a wireless network, for
example, a Wi-Fi® network or a cellular network.

[0066] A hard disk drive interface 131 is coupled to the
system bus 105. A hardware disk driver interface is con-
nected to a hard disk drive 133. A memory 135 is coupled
to the system bus 105. Data running in the memory 135 may
include an operating system 137, an application 143, and a
scheduling table of the terminal 101.

[0067] The operating system includes a shell 139 and a
kernel 141. The shell 139 is an interface between a user and
the kernel of the operating system. The shell is an outermost
layer of the operating system. The shell manages interaction
between the user and the operating system: After an input
from the user, the shell interprets the input from the user to
the operating system, and processes various output results of
the operating system.

[0068] The kernel 141 includes parts of the operating
system that are used for managing a memory, a file, a
peripheral device, and a system resource. The kernel 141
directly interacts with hardware. The kernel of the operating
system usually runs processes, provides inter-process com-
munication, and provides central processing unit (CPU) time
slice management, interruption, memory management, 1/O
management, and the like.

[0069] For example, when the terminal 101 is a smart-
phone, the application 143 includes an instant messaging
related program. In an embodiment, when the application
143 needs to be executed, the terminal 101 may download
the application 143 from the software deployment server
149.

[0070] For ease of description, the following describes the
load balancing method for multi-thread forwarding provided
in embodiments of the present disclosure by using an
example in which the terminal is the server on the cloud
network. FIG. 3 is a schematic flowchart of the load bal-
ancing method for multi-thread forwarding according to an

US 2024/0106754 Al

embodiment of the present disclosure. As shown in FIG. 3,
the load balancing method for multi-thread forwarding
includes the following steps 301 to 303.

[0071] Step 301: The server determines a first thread and
a second thread from a plurality of threads, where the
plurality of threads is all used to process data packets in
virtual network interface card queues, load of the first thread
is greater than a first threshold, load of the second thread is
less than a second threshold, and the first threshold is greater
than the second threshold.

[0072] In this embodiment, in a public cloud scenario, one
or more virtual machines may be created in the server used
as a computing node. Each virtual machine includes one or
more virtual network interface cards. Each virtual network
interface card may have one or more virtual network inter-
face card queues. The virtual network interface card queue
includes a to-be-forwarded data packet. Generally, hundreds
or even thousands of virtual network interface card queues
may exist on the server used as the computing node.
[0073] To process the data packets in the virtual network
interface card queues, the plurality of threads may be created
in the server. The plurality of threads is all used to process
the data packets in the virtual network interface card queues,
to be specific, parse and forward the data packets in the
virtual network interface card queues. Each thread created in
the server may correspond to one or more virtual network
interface card queues, and virtual network interface card
queues corresponding to the threads do not overlap each
other. In other words, each virtual network interface card
queue can correspond to only one thread at a time.

[0074] For example, the thread created by the server may
be a PMD thread, and the PMD thread may be responsible
for data packet sending and receiving on a DPDK data path.
[0075] Generally, different virtual network interface card
queues correspond to different services in the virtual
machine, and data packets in different virtual network inter-
face card queues are usually generated by different services.
However, data packets generated by different services in
different time periods are different, and data packets gener-
ated by the services change with time. Therefore, in an
actual service scenario, quantities of data packets in different
virtual network interface card queues are different. In addi-
tion, in most cases, the services in the virtual machine do not
always need to exchange data. Therefore, most virtual
network interface card queues have no data packet, and only
a few virtual network interface card queues have to-be-
processed data packets.

[0076] In this way, as time goes by, the quantities of data
packets in the virtual network interface card queues change,
so that load of threads responsible for processing the virtual
network interface card queues also continuously change. In
some cases, because the quantities of data packets in the
virtual network interface card queues change, a phenomenon
of'load imbalance between threads may occur, to be specific,
load of a part of threads is excessively high, and load of a
part of threads is excessively low.

[0077] Therefore, two thresholds are set in this embodi-
ment, that is, the first threshold and the second threshold.
When load of a thread is greater than the first threshold, it
may be considered that the load of the thread is excessively
high. When load of a thread is less than the second threshold,
it may be considered that the load of the thread is exces-
sively low. Based on the preset first threshold and second
threshold, the server may determine, from the plurality of

Mar. 28, 2024

threads responsible for processing the virtual network inter-
face card queues, the first thread whose load is greater than
the first threshold and the second thread whose load is less
than the second threshold.

[0078] Optionally, the load of the thread may include
processor resource utilization corresponding to the thread.

[0079] In some scenarios, each thread is run by a single
CPU, and resources of all CPUs are the same. Therefore, in
this scenario, the server may determine load of each thread
based on resource utilization of each CPU. The CPU
resource utilization refers to a ratio of a quantity of valid
CPU cycles in a specific time period to a total quantity of
CPU cycles in the time period. The quantity of valid CPU
cycles refers to a quantity of CPU cycles consumed by a
thread to process a data packet in a virtual network interface
card queue. When the load of each thread is determined
based on the resource utilization of each CPU, a value range
of the first threshold may be, for example, 80% to 90%, and
a value range of the second threshold may be, for example,
50% to 60%. For example, a value of the first threshold may
be 90%, and a value of the second threshold may be 60%.
Alternatively, the first threshold and the second threshold
may be other values. This is not specifically limited in this
embodiment.

[0080] The CPU cycle is also referred to as a machine
cycle. In a computer, to facilitate management, an execution
process of an instruction is usually divided into several
phases (such as instruction fetching, decoding, and execu-
tion). Each phase completes a basic operation. A time period
required to complete a basic operation is called the machine
cycle. Generally, one machine cycle includes several clock
cycles.

[0081] Step 302: The server determines a first queue from
a plurality of virtual network interface card queues corre-
sponding to the first thread, where the first thread is used to
process data packets in the plurality of virtual network
interface card queues.

[0082] After determining the first thread whose load is
greater than the first threshold, the server may determine,
from the plurality of virtual network interface card queues
corresponding to the first thread, the first queue that needs to
be switched to the second thread. The first queue may
include one or more virtual network interface card queues.
[0083] Optionally, to avoid a case in which the load of the
first thread decreases to less than the second threshold or the
load of the second thread increases to greater than the first
threshold after the first queue is switched to the second
thread, the server may determine the first queue based on
current load of the first thread and current load of the second
thread.

[0084] For example, the server may first determine a first
load amount based on the load of the first thread and the
second threshold. The first load amount is a maximum load
amount that can be transferred by the first thread to the
second thread. After the first thread transfers the first queue
to the second thread, the load of the first thread cannot
decrease to less than the second threshold. Therefore, the
server may obtain the first load amount by subtracting the
second threshold from the load of the first thread. For
example, assuming that the load of the first thread before
queue transfer is 95%, and the second threshold is 60%, the
first load amount is 95%-60%=35%.

[0085] Then, the server determines a second load amount
based on the load of the second thread and the first threshold.

US 2024/0106754 Al

The second load amount is a maximum load amount that can
be received by the second thread and transferred by the first
thread. After the second thread is responsible for the first
queue transferred by the first thread, the load of the second
thread cannot increase to greater than the first threshold.
Therefore, the server may obtain the second load amount by
subtracting the load of the second thread from the first
threshold. For example, assuming that the load of the second
thread before queue transfer is 65%, and the first threshold
is 90%, the second load amount is 90%-65%=25%.
[0086] Finally, the first queue is determined based on the
first load amount and the second load amount. Both the first
load amount and the second load amount are greater than or
equal to a load amount corresponding to the first queue.
Specifically, the server may determine a load amount cor-
responding to each of the plurality of virtual network
interface card queues corresponding to the first thread, and
then determine the final first queue based on the load amount
corresponding to each virtual network interface card queue,
to ensure that the load amount corresponding to the first
queue is less than the first load amount and the second load
amount. The load amount corresponding to the virtual
network interface card queue may be processor resources
occupied by the first thread when processing the virtual
network interface card queue, for example, the foregoing
CPU resource utilization.

[0087] For example, assuming that the first load amount is
35% and the second load amount is 25%, the load amount
corresponding to the first queue determined by the server is
less than 25%. Specifically, the server may determine that
one or more virtual network interface card queues corre-
sponding to the first thread are the first queue, but it should
be ensured that a sum of load amounts corresponding to the
one or more virtual network interface card queues corre-
sponding to the first queue determined by the server is less
than both the first load amount and the second load amount.
[0088] Step 303: The server switches the first queue to the
second thread, so that the second thread processes a data
packet in the first queue.

[0089] After the server determines the first queue that is in
the first thread and that needs to be switched to the second
thread, the server may switch the first queue to the second
thread, and the second thread is responsible for processing
the data packet in the first queue. After the first queue is
switched to the second thread, the first thread is no longer
responsible for processing the data packet in the first queue.
[0090] In this embodiment, a thread with high load and a
thread with low load are selected from the plurality of
threads that process the virtual network interface card
queues, and a virtual network interface card queue processed
by the thread with high load is switched to the thread with
low load. In the way, load balancing between the threads is
implemented, full utilization of computing resources is
ensured, and computing resource utilization is improved.
[0091] It may be understood that, in an actual service
scenario, most virtual network interface card queues do not
have data packets. In this scenario, if the thread periodically
polls the virtual network interface card queues, empty
queues are frequently polled, and CPU resources are wasted.
[0092] Based on this, in this embodiment, two packet
receiving modes are provided for the virtual network inter-
face card queues: a polling packet receiving mode and an
interrupt packet receiving mode. When a virtual network
interface card queue is in the polling packet receiving mode,

Mar. 28, 2024

a thread responsible for the virtual network interface card
queue periodically polls the virtual network interface card
queue, so as to receive and forward a data packet in the
virtual network interface card queue. When a virtual net-
work interface card queue is in the interrupt packet receiving
mode, a thread responsible for the virtual network interface
card queue no longer polls the virtual network interface card
queue, but interrupts a normal behavior when obtaining an
interrupt signal from the virtual network interface card
queue, and triggers processing of a data packet in the virtual
network interface card queue.

[0093] Generally, an advantage of processing the virtual
network interface card queue based on the interrupt packet
receiving mode is timely response. If a data volume in the
virtual network interface card queue is small, few CPU
cycles are occupied. However, when the data volume in the
virtual network interface card queue is large, excessive
interrupts are generated, and each interrupt consumes a large
quantity of CPU cycles. As a result, efficiency is not as high
as that of the polling packet receiving mode.

[0094] On the contrary, the polling packet receiving mode
is more applicable to a scenario where a large amount of data
needs to be processed. This is because few CPU cycles are
consumed each time the thread polls the virtual network
interface card queue. A disadvantage of the polling packet
receiving mode is that when there is little or no data in the
virtual network interface card queue, the thread need to
continuously poll the virtual network interface card queue,
and therefore CPU cycles need to be continuously occupied.
[0095] In other words, when a data packet is continuously
generated in the virtual network interface card queue, com-
pared with processing the data packet in the virtual network
interface card queue after obtaining the interrupt signal from
the virtual network interface card queue, the thread periodi-
cally polls the virtual network interface card queue to
process the data packet in the virtual network interface card
queue with higher efficiency.

[0096] Therefore, in this embodiment, the server may
control, based on an actual data change situation in the
virtual network interface card queue, the virtual network
interface card queue to switch between the interrupt packet
receiving mode and the polling packet receiving mode.
[0097] In a possible embodiment, if a quantity of times
that the first thread in the server continuously polls a second
queue marked as the polling packet receiving mode is
greater than a third threshold, and no data packet is received
during a period in which the first thread continuously polls
the second queue, the second queue is marked as the
interrupt packet receiving mode. The second queue is a
queue in the plurality of virtual network interface card
queues corresponding to the first thread. A value of the third
threshold may be adjusted based on an actual requirement.
When the computing resources are insufficient, the value of
the third threshold may be adjusted to a small value. When
a response requirement is high, the value of the third
threshold may be adjusted to a large value. For example, the
value of the third threshold may be 1000.

[0098] Simply speaking, for the second queue marked as
the polling packet receiving mode, if no data packet is
received during the period in which the first thread continu-
ously polls the second queue, and the first thread has polled
the second queue for a specific quantity of times, it may be
considered that there is a high probability that the second
queue does not generate a data packet in future. Therefore,

US 2024/0106754 Al

the server may change a mode of the second queue that is
currently in the polling packet receiving mode to the inter-
rupt packet receiving mode, so that the first thread does not
periodically poll the second queue, thereby reducing
resource consumption of polling an empty queue, and saving
processor resources.

[0099] In another possible embodiment, if the first thread
in the server obtains an interrupt signal from a third queue
marked as the interrupt packet receiving mode, the third
queue is marked as the polling packet receiving mode. In
addition, after the first thread obtains the interrupt signal
from the third queue, the first thread triggers processing of
a data packet in the third queue. The third queue is a queue
in the plurality of virtual network interface card queues
corresponding to the first thread. The interrupt packet receiv-
ing mode marked by the third queue indicates the first thread
to trigger processing of the data packet in the third queue
after obtaining the interrupt signal from the third queue. The
polling packet receiving mode subsequently marked by the
third queue indicates the first thread to process the data
packet in the third queue in the polling manner.

[0100] Simply speaking, for the third queue marked as the
interrupt packet receiving mode, if the third thread obtains
the interrupt signal from the third queue, it may be consid-
ered that there is a high probability that the third queue
continuously generates a data packet in future. Therefore,
the server may change a mode of the third queue that is
currently in the interrupt packet receiving mode to the
polling packet receiving mode, so that the first thread can
periodically poll the third queue, thereby improving pro-
cessing efficiency of the first thread.

[0101] Optionally, when a virtual network interface card
queue corresponding to a thread may be marked as the
polling packet receiving mode or the interrupt packet receiv-
ing mode, when the server determines a virtual network
interface card queue that is in a thread and that needs to be
switched to another thread, the virtual network interface card
queue may be determined from virtual network interface
card queues marked as the polling packet receiving mode.

[0102] For example, when the server needs to determine a
virtual network interface card queue that is in the first thread
and that is to be switched to the second thread, the server
may determine, from the plurality of virtual network inter-
face card queues corresponding to the first thread, one or
more virtual network interface card queues marked as the
polling packet receiving mode. Then, the server determines,
from the one or more virtual network interface card queues
marked as the polling packet receiving mode, the first queue
that needs to be switched to the second thread.

[0103] Because the virtual network interface card queue
marked as the interrupt packet receiving mode is a queue
without a data packet, the thread does not need to consume
additional computing resources to process the virtual net-
work interface card queue marked as the interrupt packet
receiving mode. That is, the virtual network interface card
queue marked as the interrupt packet receiving mode cor-
responds to low or even no load. In this case, the server may
select, from the virtual network interface card queues
marked as the polling packet receiving mode, a queue that
needs to be switched to the second thread, to ensure that load
of the first thread can be smoothly transferred to the second
thread.

Mar. 28, 2024

[0104] Specifically, the server may switch the first queue
from the first thread to the second thread based on the
following steps.

[0105] First, the server may mark the first queue as a
scheduling mode. The scheduling mode indicates that the
first queue is a queue of a to-be-switched thread. When the
first queue is marked as the scheduling mode, the server no
longer marks the first queue as the interrupt packet receiving
mode, so as to ensure that the first queue can be smoothly
switched to the second thread subsequently. In addition,
when the first queue is marked as the scheduling mode, the
first thread does not continue to process the data packet in
the first queue, so as to avoid that the second thread and the
first thread may process the data packet in the first queue in
a switching process.

[0106] Then, the server switches the first queue in the
scheduling mode from the first thread to the second thread,
and the second thread is responsible for processing the data
packet in the first queue. After the first queue is switched to
the second thread, the first thread is no longer responsible for
processing the data packet in the first queue.

[0107] Finally, the server marks the first queue that is
switched to the second thread as the polling packet receiving
mode, so as to indicate the second thread to process the data
packet in the first queue in the polling manner.

[0108] In this embodiment, after the virtual network inter-
face card queue of a to-be-switched thread is marked as the
scheduling mode, thread switching is performed on the
virtual network interface card queue marked as the sched-
uling mode, so that the virtual network interface card queue
can be prevented from being simultaneously processed by a
plurality of threads in a thread switching process, and a
smooth thread switching process is ensured.

[0109] It may be understood that, in the public cloud
scenario, service strength of a user is unstable. A news
service model is used as an example. A service traffic volume
is affected by a hot event. When explosive news occurs,
access traffic of the news service model increases sharply. As
a result, forwarding pressure on a data plane increases
sharply and exceeds a load limit of the PMD thread. In this
case, service functions cannot be ensured by scheduling the
PMD thread. In addition, when popularity of the hot event
fades, the access traffic of the news business model returns
to normal. In addition, service traffic of the news service
model in some special time periods is usually different from
service traffic in normal time periods. For example, for the
news service model, usually access traffic on a weekend is
greater than access traffic on a weekday.

[0110] To cope with the foregoing scenario in which
service traffic continuously changes, in this embodiment of
the present disclosure, a quantity of threads used to process
virtual network interface card queues is adjusted to adapt to
a change in service traffic.

[0111] For example, the server may obtain load of a
plurality of threads in a first time period, and the plurality of
threads are all used to process data packets in virtual
network interface card queues. The server may separately
obtain a load track of each thread in the plurality of threads
in the first time period, so as to determine a load change of
each thread in the first time period.

[0112] Then, the server predicts load of the plurality of
threads in a second time period based on the load of the
plurality of threads in the first time period. The second time
period is after the first time period. Simply speaking, the first

US 2024/0106754 Al

time period may be a past time period, and the second time
period may be a future time period. The server predicts load
of the plurality of threads in a future period of time based on
load of the plurality of threads in a past period of time. A
time length of the first time period and a time length of the
second time period may be the same or different. Time
lengths of the first time period and the second time period
may be determined based on an actual requirement, and the
time lengths of the first time period and the second time
period are not limited in this embodiment. For example, the
server predicts load of the plurality of threads in a future
week based on load of the plurality of threads in a past week.
Alternatively, the server predicts load of the plurality of
threads in a future hour based on load of the plurality of
threads in past several hours.

[0113] Specifically, the server may predict the load of the
plurality of threads in the second time period according to an
existing load prediction algorithm or a traffic prediction
algorithm. For example, the server may predict the load of
the plurality of threads in the second time period according
to a long short-term memory (LSTM) network algorithm.
[0114] If the load of the plurality of threads in the second
time period is greater than a fourth threshold, a new thread
is created. The new thread is used to process the data packets
in the virtual network interface card queues. The load of the
plurality of threads in the second time period may be average
load of the plurality of threads in the second time period, or
may be total load of the plurality of threads in the second
time period.

[0115] Specifically, when the load of the plurality of
threads in the second time period is the average load of the
plurality of threads in the second time period, the fourth
threshold may be preset. When the load of the plurality of
threads in the second time period is the total load of the
plurality of threads in the second time period, the fourth
threshold may be determined based on the quantity of the
plurality of threads. For example, when the load of the
thread is represented by CPU utilization, when the load of
the plurality of threads in the second time period is the
average load of the plurality of threads in the second time
period, a value range of the fourth threshold may be 80% to
95%, for example, a value of the fourth threshold is 90%.
Similarly, when the load of the plurality of threads in the
second time period is the total load of the plurality of threads
in the second time period, if the quantity of the plurality of
threads is 10, the value range of the fourth threshold may be
800% to 950%, for example, the value of the fourth thresh-
old is 900%.

[0116] When it is predicted that load of the plurality of
threads is high in a future period of time, the server may
create a new thread, so as to timely cope with high service
traffic in the future period of time, ensure that the burst
service traffic can be processed in a timely and effective
manner, and ensure service reliability.

[0117] If the load of the plurality of threads in the second
time period is less than a fifth threshold, a part of threads are
deleted from the plurality of threads. For example, when the
load of the thread is represented by the CPU utilization,
when the load of the plurality of threads in the second time
period is the average load of the plurality of threads in the
second time period, the value range of the fourth threshold
may be 50% to 60%, for example, the value of the fourth
threshold is 60%. Similarly, when the load of the plurality of
threads in the second time period is the total load of the

Mar. 28, 2024

plurality of threads in the second time period, if the quantity
of the plurality of threads is 10, the value range of the fourth
threshold may be 500% to 600%, for example, the value of
the fourth threshold is 600%.

[0118] Specifically, that the server deletes a part of threads
from the plurality of threads includes: The server determines
a to-be-deleted thread and a to-be-reserved thread from the
plurality of threads. For example, the server may determine
one or more threads with lowest load in the plurality of
threads as the to-be-deleted thread, and a thread other than
the to-be-deleted thread in the plurality of threads is the
to-be-reserved thread. Then, the server switches a virtual
network interface card queue corresponding to the to-be-
deleted thread to the to-be-reserved thread, so that the
to-be-deleted thread is no longer responsible for processing
a data packet in the virtual network interface card queue.
Finally, the server deletes the to-be-deleted thread.

[0119] In this way, when it is predicted that load of the
plurality of threads is low in the future period of time, the
server may share the virtual network interface card queue on
the thread with lowest load to another thread, and delete the
thread, to release processor resources corresponding to the
thread and save the processor resources.

[0120] For ease of understanding, the following describes
a load balancing method for multi-thread forwarding pro-
vided in embodiments of the present disclosure with refer-
ence to specific examples.

[0121] Specifically, refer to FIG. 4. FIG. 4 is a schematic
diagram of an architecture of a server according to an
embodiment of the present disclosure. As shown in FIG. 4,
the server includes a virtual machine 1, a virtual machine 2,
a virtual switch, and a physical network interface card. The
virtual switch includes a PMD management module, a PMD
scheduling module, a packet receiving mode management
module, and a PMD driver. In addition, in the server, a PMD
thread is used to process a data packet in a virtual network
interface card queue, so as to implement data packet sending
and receiving.

[0122] The PMD scheduling module implements load
balancing between PMD threads by collecting statistics on
CPU resource utilization of each PMD thread and by using
an overload (overload) threshold (that is, the foregoing first
threshold) and an underload (underload) threshold (that is,
the foregoing second threshold). After the overload thresh-
old and underload threshold are set, when CPU resource
utilization of a PMD thread is greater than the overload
threshold, some virtual network interface card queues of the
PMD thread are scheduled to a PMD whose CPU resource
utilization is less than the underload threshold. In addition,
in a scheduling process, the PMD scheduling module needs
to ensure that after scheduling is completed, a PMD whose
original CPU resource utilization is greater than the overload
threshold cannot be changed to a PMD whose CPU resource
utilization is less than the underload threshold. Similarly, a
PMD whose original CPU resource utilization is less than
the underload threshold cannot be changed to a PMD whose
CPU resource utilization is greater than the overload thresh-
old.

[0123] A packet receiving and sending management mod-
ule manages intelligent switching of the virtual network
interface card queue among three modes: a scheduling
mode, an interrupt packet receiving mode, and a polling
packet receiving mode. Specifically, the packet receiving
and sending management module marks a virtual network

US 2024/0106754 Al

interface card queue that continuously has no data packet as
the interrupt packet receiving mode, so that polling of the
PMD thread is interrupted, and CPU resources consumed by
polling an empty queue are reduced. When load of a
plurality of PMD threads is unbalanced, the packet receiving
and sending management module switches some virtual
network interface card queues on a PMD with high load
from the polling packet receiving mode to the scheduling
mode, switches a virtual network interface card queue in the
scheduling mode to a PMD with low load, and switches a
packet receiving mode of the virtual network interface card
queue from the scheduling mode to the polling packet
receiving mode, so as to implement load balancing between
threads.

[0124] The PMD management module predicts CPU
resource utilization of each PMD thread by using a machine
learning algorithm, for example, an LSTM algorithm, and
periodically pre-adjusts a quantity of PMD threads based on
a prediction result.

[0125] For example, refer to FIG. 5. FIG. 5 is a schematic
diagram of switching among packet receiving modes of a
virtual network interface card queue according to an
embodiment of the present disclosure. As shown in FIG. 5,
a switching rule among the packet receiving modes of the
virtual network interface card queue is shown in S1 to S7.

[0126] S1: A default packet receiving mode of each
virtual network interface card queue is a polling packet
receiving mode.

[0127] S2: The polling packet receiving mode—an
interrupt packet receiving mode: When a PMD thread
continuously polls a virtual network interface card
queue for k times and no data packet is received, the
virtual network interface card queue is switched from
the polling packet receiving mode to the interrupt
packet receiving mode. After that, the PMD thread no
longer polls the virtual network interface card queue,
but senses a packet receiving event based on an inter-
rupt signal.

[0128] S3: The interrupt packet receiving mode—sthe
polling packet receiving mode: When there is a data
packet in the virtual network interface card queue
switched to the interrupt packet receiving mode, the
virtual network interface card queue is woken up from
interrupt, and switched from the interrupt packet
receiving mode to the polling packet receiving mode.

[0129] S4: The polling packet receiving mode—a
scheduling mode: When load is unbalanced between a
plurality of PMD threads, some virtual network inter-
face card queues on a PMD with high load are switched
from the polling packet receiving mode to the sched-
uling mode by using a scheduling rule of a PMD
scheduling module. In this way, the virtual network
interface card queue in the scheduling mode is switched
to a PMD with low load, so as to implement load
balancing between threads.

[0130] S5: The scheduling mode—sthe polling packet
receiving mode: After the virtual network interface card
queue in the scheduling mode is switched to a new
PMD thread, the virtual network interface card queue is
switched from the scheduling mode to the polling
packet receiving mode, and the new PMD thread per-
forms normal polling packet receiving on the virtual
network interface card queue.

Mar. 28, 2024

[0131] S6: The interrupt packet receiving mode—the
scheduling mode: not allowed. A virtual network inter-
face card queue that is added to the interrupt packet
receiving mode do not affect packet sending and receiv-
ing performance and do not participate in scheduling.

[0132] S7: The scheduling mode—=the interrupt packet
receiving mode: not allowed. A virtual network inter-
face card queue newly added to the PMD thread
sends/receives data packets in the polling packet
receiving mode.

[0133] By controlling proper switching of queues in the
polling packet receiving mode, the interrupt packet receiv-
ing mode, and the scheduling mode, a load imbalance
problem in a scenario of a plurality of PMD threads and a
plurality of queues can be solved at the same time, and a
problem of CPU resource waste caused by polling an empty
queue can be solved.

[0134] FIG. 6 is a schematic flowchart of adjusting a
quantity of PMD threads according to an embodiment of the
present disclosure. As shown in FIG. 6, a process of adjust-
ing the quantity of the PMD threads includes the following
steps 601 to 603.

[0135] Step 601: A PMD management module records a
CPU resource utilization track of each PMD thread.
[0136] Specifically, CPU resource utilization refers to a
ratio of a quantity of valid CPU cycles in a specific time
period to a total quantity of CPU cycles in the time period.
The quantity of valid CPU cycles refers to a quantity of CPU
cycles consumed by a PMD thread to process a data packet
in a virtual network interface card queue. The PMD man-
agement module observes CPU resource utilization of each
PMD thread in real time, and may record the CPU resource
utilization track of each PMD thread in a period of time.
[0137] Step 602: Predict the CPU resource utilization of
each PMD thread according to an LSTM algorithm.
[0138] Simply speaking, after recording load tracks of the
PMD threads, the PMD management module may predict,
according to the LSTM algorithm and based on historical
load tracks, load of the PMD threads in a future period of
time.

[0139] Step 603: If it is predicted that average CPU
resource utilization of the PMD threads is greater than an
overload threshold, increase the quantity of the PMD
threads.

[0140] For example, when predicting that access traffic
increases due to a hot event, or periodically predicting that
access traffic on a weekend is greater than access traffic on
a workday, the PMD management module increases the
quantity of the PMD threads in advance to ensure service
reliability.

[0141] Step 604: If it is predicted that the average CPU
resource utilization of the PMD threads is less than an
underload threshold, reduce the quantity of the PMD
threads.

[0142] For example, when identifying that popularity of
the hot event is about to fade and the access traffic is
reduced, or identifying that the access traffic on a workday
is less than the access traffic on a weekend, the PMD
management module reduces the quantity of the PMD
threads in advance, so as to ensure service reliability and
reduce CPU consumption.

[0143] CPU resource utilization of the PMD threads in a
historical time period is used to predict load of the PMD
threads in a future period of time. In addition, before traffic

US 2024/0106754 Al

is predicted to increase, the quantity of the PMD threads is
increased in advance, to improve a service processing capa-
bility and ensure service stability. In addition, when traffic is
predicted to decrease, the quantity of the PMD threads is
reduced to avoid computing resources waste.

[0144] Based on embodiments corresponding to FIG. 1 to
FIG. 6, the following further provides related devices con-
figured to implement the foregoing solutions, to better
implement the solutions in embodiments of the present
disclosure.

[0145] For details, refer to FIG. 7. FIG. 7 is a schematic
diagram of a structure of a scheduling apparatus 700 accord-
ing to an embodiment of the present disclosure. The sched-
uling apparatus 700 includes an obtaining unit 701 and a
processing unit 702. The processing unit 702 is configured
to: determine a first thread and a second thread from a
plurality of threads, where the plurality of threads are all
used to process a data packet in a virtual network interface
card queue, load of the first thread is greater than a first
threshold, load of the second thread is less than a second
threshold, and the first threshold is greater than the second
threshold; determine a first queue from a plurality of virtual
network interface card queues corresponding to the first
thread, where the first thread is used to process data packets
in the plurality of virtual network interface card queues; and
switch the first queue to the second thread, so that the second
thread processes a data packet in the first queue.

[0146] In a possible implementation, the processing unit
702 is further configured to: mark the first queue as a
scheduling mode, where the scheduling mode indicates that
the first queue is a queue of a to-be-switched thread; switch
the first queue in the scheduling mode from the first thread
to the second thread; and mark the first queue that is
switched to the second thread as a polling packet receiving
mode, where the polling packet receiving mode indicates the
second thread to process the data packet in the first queue in
a polling manner.

[0147] In a possible implementation, the processing unit
702 is further configured to: determine, from the plurality of
virtual network interface card queues corresponding to the
first thread, one or more virtual network interface card
queues marked as the polling packet receiving mode; and
determine the first queue from the one or more virtual
network interface card queues.

[0148] In a possible implementation, the processing unit
702 is further configured to: determine a first load amount
based on the load of the first thread and the second threshold,
where the first load amount is a maximum load amount that
can be transferred by the first thread; determine a second
load amount based on the load of the second thread and the
first threshold, where the second load amount is a maximum
load amount that can be received by the second thread; and
determine the first queue based on the first load amount and
the second load amount, where both the first load amount
and the second load amount are greater than or equal to a
load amount corresponding to the first queue.

[0149] In a possible implementation, the processing unit
702 is further configured to: if a quantity of times that the
first thread continuously polls the second queue marked as
the polling packet receiving mode is greater than a third
threshold, and no data packet is received during a period in
which the first thread continuously polls the second queue,
mark the second queue as an interrupt packet receiving
mode. The plurality of virtual network interface card queues

Mar. 28, 2024

includes the second queue, and the interrupt packet receiv-
ing mode indicates the first thread to trigger processing of a
data packet in the second queue after obtaining an interrupt
signal from the second queue.

[0150] In a possible implementation, the processing unit
702 is further configured to: if the first thread obtains an
interrupt signal from a third queue marked as the interrupt
packet receiving mode, mark the third queue as the polling
packet receiving mode. The interrupt packet receiving mode
indicates the first thread to trigger processing of a data
packet in the third queue after obtaining an interrupt signal
from the third queue, and the polling packet receiving mode
indicates the first thread to process the data packet in the
third queue in the polling manner.

[0151] In a possible implementation, the obtaining unit
701 is configured to obtain load of the plurality of threads in
a first time period. The processing unit 702 is further
configured to: predict load of the plurality of threads in a
second time period based on the load of the plurality of
threads in the first time period, where the second time period
is after the first time period; and if the load of the plurality
of threads in the second time period is greater than a fourth
threshold, create a new thread, where the new thread is used
to process the data packet in the virtual network interface
card queue; or if the load of the plurality of threads in the
second time period is less than a fifth threshold, delete a part
of threads from the plurality of threads.

[0152] In a possible implementation, the processing unit
702 is further configured to: determine a to-be-deleted
thread and a to-be-reserved thread from the plurality of
threads; switch a virtual network interface card queue cor-
responding to the to-be-deleted thread to the to-be-reserved
thread; and delete the to-be-deleted thread.

[0153] In a possible implementation, the load of the first
thread includes processor resource utilization corresponding
to the first thread.

[0154] The load balancing method for multi-thread for-
warding provided in embodiments of the present disclosure
may be performed by a chip in a terminal. The chip includes
a processing unit and a communication unit. The processing
unit may be, for example, a processor, and the communica-
tion unit may be, for example, an input/output interface, a
pin, a circuit, or the like. The processing unit may execute
computer-executable instructions stored in a storage unit, so
that the chip in the terminal performs the load balancing
method for multi-thread forwarding described in embodi-
ments shown in FIG. 1 to FIG. 6. Optionally, the storage unit
is a storage unit in the chip, for example, a register or a
cache. Alternatively, the storage unit may be a storage unit
located outside the chip and in a wireless access device end,
for example, a read-only memory (ROM), another type of
static storage device that can store static information and
instructions, or a random-access memory (RAM).

[0155] Refer to FIG. 8. The present disclosure further
provides a computer-readable storage medium. In some
embodiments, the method disclosed in FIG. 3 may be
implemented as computer program instructions encoded in a
machine-readable format on a computer-readable storage
medium or encoded on another non-transitory medium or
product.

[0156] FIG. 8 schematically illustrates a conceptual partial
view of an example computer-readable storage medium
arranged in accordance with at least some embodiments
shown herein, and the example computer-readable storage

US 2024/0106754 Al

medium includes a computer program for executing a com-
puter process on a computing device.

[0157] In one embodiment, the computer-readable storage
medium 800 is provided by using a signal-carrying medium
801. The signal-carrying medium 801 may include one or
more program instructions 802. When the one or more
program instructions 802 are run by one or more processors,
the functions or some of the functions described in FIG. 2
may be provided. Therefore, for example, refer to the
embodiment shown in FIG. 3, one or more features of steps
301 to 303 may be borne by one or more instructions
associated with the signal-carrying medium 801. In addition,
the program instructions 802 in FIG. 8 also describe
example instructions.

[0158] In some examples, the signal-carrying medium 801
may include a computer-readable medium 803, such as but
not limited to a hard disk drive, a compact disc (CD), a
digital video disc (DVD), a digital magnetic tape, a memory,
a ROM, a RAM, and the like.

[0159] In some implementations, the signal-carrying
medium 801 may include a computer-recordable medium
804, such as but not limited to a memory, a read/write (R/W)
CD, an R/'W DVD, and the like. In some implementations,
the signal-carrying medium 801 may include a communi-
cation medium 805, such as but not limited to a digital
and/or analog communication medium (for example, an
optical fiber cable, a waveguide, a wired communication
link, or a wireless communication link). Therefore, for
example, the signal-carrying medium 801 may be conveyed
by the communication medium 805 in a wireless form (for
example, a wireless communication medium that complies
with the Institute of Electrical and Electronics Engineers
(IEEE) 802.9 standard or another transmission protocol).
[0160] The one or more program instructions 802 may be,
for example, computer-executable instructions or logic
implementation instructions. In some examples, a comput-
ing device may be configured to provide various operations,
functions, or actions in response to the program instructions
802 transmitted to the computing device by using one or
more of the computer-readable medium 803, the computer-
recordable medium 804, and/or the communication medium
805.

[0161] It should be understood that the arrangement
described herein is merely used as an example. Therefore, it
may be understood by a person skilled in the art that other
arrangements and other elements (for example, machines,
interfaces, functions, sequences, and groups of functions)
can be used instead, and that some elements may be avoided
together based on an expected result. In addition, many of
the described elements are functional entities that can be
implemented as discrete or distributed components, or
implemented in any suitable combination at any suitable
position in combination with another component.

[0162] It may be clearly understood by a person skilled in
the art that, for the purpose of convenient and brief descrip-
tion, for a detailed working process of the foregoing system,
apparatus, and unit, refer to a corresponding process in the
foregoing method embodiments, and details are not
described herein again.

[0163] In several embodiments provided in the present
disclosure, it should be understood that the disclosed system,
apparatus, and method may be implemented in other man-
ners. For example, the described apparatus embodiment is
merely an example. For example, division into the units is

Mar. 28, 2024

merely logical function division and may be other division
in actual implementation. For example, a plurality of units or
components may be combined or integrated into another
system, or some features may be ignored or not performed.
In addition, the displayed or discussed mutual couplings or
direct couplings or communication connections may be
implemented through some interfaces. The indirect cou-
plings or communication connections between the appara-
tuses or units may be implemented in electronic, mechani-
cal, or other forms.

[0164] The units described as separate parts may or may
not be physically separate, and parts displayed as units may
or may not be physical units, may be located in one position,
or may be distributed on a plurality of network units. Some
or all of the units may be selected based on an actual
requirement to achieve the objectives of the solutions of
embodiments.

[0165] In addition, functional units in embodiments of the
present disclosure may be integrated into one processing
unit, each of the units may exist alone physically, or two or
more units are integrated into one unit. The integrated unit
may be implemented in a form of hardware, or may be
implemented in a form of a software functional unit.

[0166] When the integrated unit is implemented in the
form of the software functional unit and sold or used as an
independent product, the integrated unit may be stored in a
computer-readable storage medium. Based on such an
understanding, the technical solutions of this application the
present disclosure essentially, or the part contributing to the
conventional technology, or all or some of the technical
solutions may be implemented in the form of a software
product. The computer software product is stored in a
storage medium and includes several instructions for
instructing a computer device (which may be a personal
computer, a server, or a network device) to perform all or
some of the steps of the methods described in embodiments
of the present disclosure. The foregoing storage medium
includes any medium that can store program code, such as
a USB flash drive, a removable hard disk, a ROM, a RAM,
a magnetic disk, or an optical disc.

What is claimed is:
1. A method comprising:

determining a first thread and a second thread from a
plurality of threads, wherein the plurality of threads is
for processing data packets in virtual network interface
card queues, wherein a first load of the first thread is
greater than a first threshold, wherein a second load of
the second thread is less than a second threshold, and
wherein the first threshold is greater than the second
threshold;

determining a first queue from a plurality of virtual
network interface card queues corresponding to the first
thread,

switching the first queue from the first thread to the
second thread; and

processing, by the second thread, a first data packet in the
first queue.

2. The method of claim 1, wherein switching the first
queue from the first thread to the second thread comprises:
marking the first queue as a scheduling mode, wherein the

scheduling mode indicates that the first queue is of a
to-be-switched thread;

US 2024/0106754 Al

and

marking the first queue as a polling packet receiving
mode, wherein the polling packet receiving mode indi-
cates to the second thread to process the first data
packet in a polling manner.

3. The method of claim 1, wherein the determining the
first queue from the plurality of virtual network interface
card queues corresponding to the first thread comprises:

determining, from the plurality of virtual network inter-

face card queues corresponding to the first thread, one
or more virtual network interface card queues marked
as a polling packet receiving mode; and

determining the first queue from the one or more virtual

network interface card queues.

4. The method of claim 1, wherein determining the first
queue from the plurality of virtual network interface card
queues corresponding to the first thread comprises:

determining, based on the first load and the second

threshold, a first maximum load amount that can be
transferred by the first thread;

determining, based on the second load and the first

threshold, a second maximum load amount that can be
received by the second thread; and

determining the first queue based on the first maximum

load amount and the second maximum load amount,
wherein both the first maximum load amount and the
second maximum load amount are greater than or equal
to a load amount corresponding to the first queue.

5. The method of claim 1, further comprising

polling, by the first thread, a second queue marked as a

polling packet receiving mode;

marking, when a quantity of times that the first thread

continuously polls the second queue marked as the
polling packet receiving mode is greater than a third
threshold and when no data packet is received during a
period that the first thread continuously polls the sec-
ond queue, the second queue as an interrupt packet
receiving mode, wherein the plurality of virtual net-
work interface card queues comprises the second
queue; and

obtaining, by the first thread, an interrupt signal from the

second queue, wherein the interrupt packet receiving
mode indicates to the first thread to trigger processing
of a second data packet in the second queue after
obtaining the interrupt signal from the second queue.

6. The method according to of claim 1, further compris-
ing:

obtaining, by the first thread, an interrupt signal from a

third queue marked as an interrupt packet receiving
mode, wherein the interrupt packet receiving mode
indicates to the first thread to trigger processing of a
data packet in the third queue after obtaining the
interrupt signal; and

marking the third queue as a polling packet receiving

mode in response to obtaining the interrupt signal,
wherein the polling packet receiving mode indicates to
the first thread to process the data packet in the third
queue in a polling manner.

7. The method of claim 1, further comprising:

obtaining a third load of the plurality of threads in a first

time period;

predicting a fourth load of the plurality of threads in a

second time period based on the third load, wherein the
second time period is after the first time period; and

13

Mar. 28, 2024

creating, when the fourth load is greater than a fourth
threshold, a new thread for processing the data packets
in the virtual network interface card queues, or delet-
ing, when the fourth load is less than a fifth threshold,
a part of threads from the plurality of threads.

8. The method of claim 7, wherein deleting the part of
threads from the plurality of threads comprises:

determining a to-be-deleted thread and a to-be-reserved

thread from the plurality of threads;

switching a virtual network interface card queue corre-

sponding to the to-be-deleted thread to the to-be-
reserved thread; and

deleting the to-be-deleted thread.

9. The method of claim 1, wherein the first load comprises
processor resource utilization corresponding to the first
thread.

10. A device comprising:

a memory configured to store instructions; and

one or more processors coupled to the memory and

configured to execute the instructions to cause the

device to:

determine a first thread and a second thread from a
plurality of threads, wherein the plurality of threads
is for processing data packets in virtual network
interface card queues, wherein a first load of the first
thread is greater than a first threshold, wherein a
second load of the second thread is less than a second
threshold, and wherein the first threshold is greater
than the second threshold;

determine a first queue from a plurality of virtual
network interface card queues corresponding to the
first thread;

switch the first queue to the second thread; and

process, by the second thread, a first data packet in the
first queue.

11. The device of claim 10, wherein the switching the first
queue to the second thread comprises:

marking the first queue as a scheduling mode, wherein the

scheduling mode indicates that the first queue is a
queue of a to-be-switched thread;

switching the first queue from the first thread to the

second thread; and

marking the first queue as a polling packet receiving

mode, wherein the polling packet receiving mode indi-
cates to the second thread to process the first data
packet in the first queue in a polling manner.

12. The device of claim 10, wherein determining the first
queue from the plurality of virtual network interface card
queues corresponding to the first thread comprises:

determining, from the plurality of virtual network inter-

face card queues corresponding to the first thread, one
or more virtual network interface card queues marked
as a polling packet receiving mode; and

determining the first queue from the one or more virtual

network interface card queues.

13. The device of claim 10, wherein determining the first
queue from the plurality of virtual network interface card
queues corresponding to the first thread comprises:

determining, based on the first load and the second

threshold, a first maximum load amount that can be
transferred by the first thread;

determining, based on the second load and the first

threshold, a second maximum load amount that can be
received by the second thread; and

US 2024/0106754 Al

determining the first queue based on the first maximum
load amount and the second maximum load amount,
wherein both the first maximum load amount and the
second maximum load amount are greater than or equal
to a load amount corresponding to the first queue.

14. The device of claim 10, wherein the one or more
processors are further configured to execute the instructions
to cause the device to:

poll, by the first thread, a second queue marked as a

polling packet receiving mode;

mark, when a quantity of times that the first thread

continuously polls the second queue marked as the
polling packet receiving mode is greater than a third
threshold, and when no data packet is received during
a period that the first thread continuously polls the
second queue, the second queue as an interrupt packet
receiving mode, wherein the plurality of virtual net-
work interface card queues comprises the second
queue; and

obtain, by the first thread, an interrupt signal from the

second queue, wherein the interrupt packet receiving
mode indicates to the first thread to trigger processing
of a second data packet in the second queue after
obtaining the interrupt signal from the second queue.

15. A computer program product comprising computer-
executable instructions stored on a non-transitory computer-
readable storage medium, the computer-executable instruc-
tions when executed by one or more processors of an
apparatus, cause the apparatus to:

determine a first thread and a second thread from a

plurality of threads, wherein the plurality of threads is
for processing data packets in virtual network interface
card queues, wherein a first load of the first thread is
greater than a first threshold, wherein a second load of
the second thread is less than a second threshold, and
wherein the first threshold is greater than the second
threshold;

determine a first queue from a plurality of virtual network

interface card queues corresponding to the first thread;
switch the first queue to the second thread; and

process, by the second thread, a first data packet in the

first queue.

16. The computer program product of claim 15, wherein
switching the first queue to the second thread comprises:

marking the first queue as a scheduling mode, wherein the

scheduling mode indicates that the first queue is a
queue of a to-be-switched thread;

switching the first queue from the first thread to the

second thread; and

marking the first queue as a polling packet receiving

mode, wherein the polling packet receiving mode indi-

Mar. 28, 2024

cates to the second thread to process the first data
packet in the first queue in a polling manner.

17. The computer program product of claim 15, wherein
determining the first queue from the plurality of virtual
network interface card queues corresponding to the first
thread comprises:

determining, from the plurality of virtual network inter-

face card queues corresponding to the first thread, one
or more virtual network interface card queues marked
as a polling packet receiving mode; and

determining the first queue from the one or more virtual

network interface card queues.

18. The computer program product of claim 15, wherein
determining the first queue from the plurality of virtual
network interface card queues corresponding to the first
thread comprises:

determining, based on the first load and the second

threshold, a first maximum load amount that can be
transferred by the first thread;

determining, based on the second load and the first

threshold, a second maximum load amount that can be
received by the second thread; and

determining the first queue based on the first maximum

load amount and the second maximum load amount,
wherein both the first maximum load amount and the
second maximum load amount are greater than or equal
to a load amount corresponding to the first queue.

19. The computer program product of claim 15, wherein
the computer-executable instructions when executed by the
one or more processors further cause the apparatus to:

poll, by the first thread, a second queue marked as a

polling packet receiving mode;

mark, when a quantity of times that the first thread

continuously polls the second queue marked as the
polling packet receiving mode is greater than a third
threshold, and when no data packet is received during
a period that the first thread continuously polls the
second queue, marking the second queue as an interrupt
packet receiving mode, wherein the plurality of virtual
network interface card queues comprises the second
queue; and

obtain, by the first thread, an interrupt signal from the

second queue, wherein the interrupt packet receiving
mode indicates to the first thread to trigger processing
of a second data packet in the second queue after
obtaining the interrupt signal from the second queue.

20. The computer program product of claim 15, wherein
the first load comprises processor resource utilization cor-
responding to the first thread.

#* #* #* #* #*

