
(19) United States
US 2016O246573A1

(12) Patent Application Publication (10) Pub. No.: US 2016/0246573 A1
BUCC et al. (43) Pub. Date: Aug. 25, 2016

(54) ARRANGEMENT AND METHOD FOR (52) U.S. Cl.
CHECKING THE ENTROPY OF A RANDOM CPC G06F 7/584 (2013.01)
NUMBER SEQUENCE

(57) ABSTRACT (71) Applicant: Infineon Technologies AG, Neubiberg
(DE)

(72) Inventors: Marco BUCCI, Graz (AT); Raimondo
LUZZI, Graz (AT)

(21) Appl. No.: 15/045,277

(22) Filed: Feb. 17, 2016

(30) Foreign Application Priority Data

Feb. 19, 2015 (DE) 10 2015 102363.6

Publication Classification

(51) Int. Cl.
G06F 7/58 (2006.01)

r

According to one embodiment, an arrangement for checking
the entropy of a random number sequence is described includ
ing a random source configured to provide a random input
sequence, a post-processing circuit configured to receive the
random input sequence and to generate a random number
sequence from the random input sequence by performing a
post-processing and a decimation of the random input
sequence, an inverse post-processing circuit configured to
receive the random number sequence from the post-process
ing circuit and to generate a processed random number
sequence by a processing of the random number sequence
that is inverse to the post-processing performed by the post
processing circuit, and an entropy checker configured to
check the entropy of the random number sequence based on
the processed random number sequence.

OO
Of

Processor

Crypto "Random
processor ; ::3%2f

O3.

o generator

US 2016/0246573 A1 Aug. 25, 2016 Sheet 1 of 12 Patent Application Publication

| |× ;

|------------------- ${}{}

r---------~--~~~~
|

| 408833043 |
C);

· · ;
, !

·

; ;

US 2016/0246573 A1 Patent Application Publication

| Hamoginoo

X-- wry, rrr rrr oxx

Patent Application Publication

Patent Application Publication Aug. 25, 2016 Sheet 4 of 12 US 2016/0246573 A1

3.
s -

S

Patent Application Publication Aug. 25, 2016 Sheet 5 of 12 US 2016/0246573 A1

Gs is 5.
:

SO

Generate a rardom number sequence from a randon input
sequence by performing a post-piocessing and a

decimation of the random input sequence

SO2
: ele--

Generate a processed randon number sequence by a
processing of the random number sequence that is inverse

to the post-processing

-ex.-w-

Check the entropy of the random number sequence based
on the processed random number sequence

US 2016/0246573 A1

§3.4.nos ?

Aug. 25, 2016 Sheet 6 of 12

N

?********~~~~ ~~~~ ~~~~*******-----------------…------------------…….…….!

, !)

Patent Application Publication

US 2016/0246573 A1 Aug. 25, 2016 Sheet 8 of 12 Patent Application Publication

&&
? 08

US 2016/0246573 A1 Aug. 25, 2016 Sheet 9 of 12 Patent Application Publication

(~~ <%~~~~-------------------------------E?? #333;| Side), ON !

US 2016/0246573 A1 Aug. 25, 2016 Sheet 10 of 12

S:

Patent Application Publication

US 2016/0246573 A1 Aug. 25, 2016 Sheet 11 of 12 Patent Application Publication

US 2016/0246573 A1 Aug. 25, 2016 Sheet 12 of 12 Patent Application Publication

US 2016/0246573 A1

ARRANGEMENT AND METHOD FOR
CHECKING THE ENTROPY OF A RANDOM

NUMBER SEQUENCE

CROSS-REFERENCE TO RELATED
APPLICATION

0001. This application claims priority to German Patent
Application Serial No. 10 2015 102363.6, which was filed
Feb. 19, 2015, and is incorporated herein by reference in its
entirety.

TECHNICAL FIELD

0002 The present disclosure relates to arrangements and
methods for checking the entropy of a random number
Sequence.

BACKGROUND

0003 Random numbers are often needed in electronic
devices, such as chip cards, for example for cryptographic
applications. When a sequence of random numbers is gener
ated, an important quality indication of the sequence is its
entropy since only high entropy ensures high security, e.g.
ensures that an attacker cannot guess random numbers of the
sequence. Accordingly, approaches to allow checking the
entropy of a generated random number sequence are desir
able.

SUMMARY

0004. According to one embodiment, an arrangement for
checking the entropy of a random number sequence is pro
vided including a random source configured to provide a
random input sequence, a post-processing circuit configured
to receive the random input sequence and to generate a ran
dom number sequence from the random input sequence by
performing a post-processing and a decimation of the random
input sequence, an inverse post-processing circuit configured
to receive the random number sequence from the post-pro
cessing circuit and to generate a processed random number
sequence by a processing of the random number sequence
that is inverse to the post-processing performed by the post
processing circuit and an entropy checker configured to check
the entropy of the random number sequence based on the
processed random number sequence.
0005 According to a further embodiment, a method for
checking the entropy of a random number sequence accord
ing to the arrangement described above is provided.

BRIEF DESCRIPTION OF THE DRAWINGS

0006. In the drawings, like reference characters generally
refer to the same parts throughout the different views. The
drawings are not necessarily to Scale, emphasis instead gen
erally being placed upon illustrating the principles of the
invention. In the following description, various aspects are
described with reference to the following drawings, in which:
0007 FIG. 1 shows a chip card according to an embodi
ment,
0008 FIG. 2 shows an example of an architecture of a
random number generator;
0009 FIG. 3 shows an example for a post-processor;
0010 FIG. 4 shows an arrangement for checking the
entropy of a random number sequence;
0011 FIG. 5 shows a flow diagram:

Aug. 25, 2016

0012 FIG. 6 shows an example of an arrangement for
checking the entropy of a random number sequence accord
ing to an embodiment;
0013 FIG. 7 shows the results of a numerical simulation
over a 10" bit sequence where a noise source with entropy
0.25 is post-processed with an 12-bit LFSR with no compres
S1On,
0014 FIG.8 shows the results of the numerical simulation
with a compression of 2:
0015 FIG.9 shows the results of the numerical simulation
with a compression of 4.
0016 FIG. 10 shows an example of an arrangement for
checking the entropy of a random number sequence accord
ing to a further embodiment;
(0017 FIG. 11 shows a linear feedback shift register
according to an embodiment; and
0018 FIG. 12 shows an example of a descrambling LFSR.

DESCRIPTION

0019. The following detailed description refers to the
accompanying drawings that show, by way of illustration,
specific details and aspects of this disclosure in which the
invention may be practiced. Other aspects may be utilized and
structural, logical, and electrical changes may be made with
out departing from the Scope of the invention. The various
aspects of this disclosure are not necessarily mutually exclu
sive, as some aspects of this disclosure can be combined with
one or more other aspects of this disclosure to form new
aspects.
0020 FIG. 1 shows a chip card 100 according to an
embodiment.
(0021. The chip card 100 includes a carrier 101 on which a
chip card module 102 is arranged. The chip card module 102
includes various data processing components like for
example a memory 103, a processor 104 or for example a
dedicated crypto processor 105.
0022. The chip card module 103 includes a random num
ber generator 106. The random number generator may for
example Supply a random number sequence to the processor
104 or the crypto processor which may for example perform
a cryptographic operation based on the random number
Sequence.
0023 FIG. 2 shows an example of an architecture of a
random number generator 200.
0024. The random number generator 200 includes a noise
Source 201 which is configured to output a noise signal n(t).
The noise source 201 for example has a certain entropy and no
or short memory. A digitization unit of the random number
generator 200 converts the noise signal to a digitized noise
signal (DNS) sil, i.e. a sequence of digital noise values,
e.g. by Sampling the noise signal at a certain Sample interval
and digitizing the sample values. The random numbergen
erator 200 further includes a post-processor 203 which post
processes the digitized noise signal with a compressing digi
tal algorithm (e.g. according to a hashing function, e.g. by
means of a linear feedback shift register with decimated out
put) in order to obtain a full entropy random number sequence
{ri, also referred to as internal random sequence (IRS).
0025 To ensure a sufficient level of security, for example,
the entropy per bit of the random number sequence ri may
be checked or tested. However, since the compression algo
rithm may have a long memory (e.g. may be implemented by
a 32-bit LFSR), a direct entropy test of the internal random

US 2016/0246573 A1

sequence {ri may practically not be feasible since a too
large amount of data would be required for the testing.
0026. This can be seen by considering the definition of
entropy rate or source information rate of a strongly station
ary stochastic process:

H(X) - lim H(X, X-1, X2, ... , X2) (1)
- &

0027 where X is the k-th member of the process and
H(X|Y) is the conditional entropy. For a binary entropy
Source, the entropy rate is the entropy of the n-th bit knowing
the previous n-1 bits.
0028 HOX) can be calculated as:

(2)
H(X) = lim X. P(Vn-1, Vn-2, ... , 1)

in-sn-2:... *E*n-1 sn-2: . . . ;

logp(xn| X-1, X-2, ... , V1)

0029 where p(x,-1, x2, ..., x) is the probability of the
output bit sequence (X-1, X-2, ..., XI) and p(X, X-1, X2,..
.., x) is the conditional probability of the n-th symbol know
ing the previous n-1 symbols.
0030. Both probabilities can be estimated from the gener
ated data sequences but, if the test if performed on the post
processed data (ri in this example), n needs to be larger
than the memory of the post-processor 203 (e.g. 32 bits in
case of a 32-bit LFSR) in order to obtain the entropy rate of
the compressed source. For smaller n, the test would be
deceived by the pseudo-randomness introduced by the post
processor 203. For e.g. a 32 bit memory depth, the estimation
of the probabilities defined above is not practically feasible.
0031 FIG. 3 shows an example for a post-processor 300.
0032. The post-processor or post-processing unit (e.g. cir
cuit) 300 is based on a linear feedback shift register (LFSR)
305 with a length of n bits including a linear shift register 301,
a feedback network 302 and an exclusive OR gate 303. The
post-processer 300 receives as input a stream of random bits
{s(i)} (e.g. provided by the digitization unit 202) and outputs
an random number sequence {ri in the form of a sequence
of N-bit words. The stream of random bits si consists of a
stream of bits having one of the values 0 and 1. The stream of
random bits si is for example of a relatively low entropy
per bit and is for example provided at a high rate to the
post-processor 300. The random bits of the stream of random
bits can be seen to serve as seeds for the post-processor 300.
0033. The n-bit shift register 301 is connected to the feed
back network 302 and the exclusive-OR gate 303 which
receives the output of the feedback network 302 and the input
stream si as input and supplies its output to the n-bit shift
register 301. The sift register 301 is clocked by a clock signal
and includes n memory elements, e.g. is implemented as a
chain of flip-flops. With each clock pulse of the clock signal
the bit stored in each memory element is shifted to the neigh
boring memory element to the right (except the bit stored in
the right-most memory element), wherein a new incoming bit
output by the exclusive-OR gate 303 is shifted into the left
most memory element. The shift register 301 only performs

Aug. 25, 2016

this shift operation when an enable signal is applied to it by a
controller 304 of the post-processor.
0034. The controller 304 can reset the memory elements
of the n-bit shift register 301 to predetermined values by
applying a reset signal. The predetermined values may all
have the same value, for example a logical “0” or “1”. Alter
natively the memory elements may be reset to values corre
sponding to a secret key or a manufacturing identification
number. N bits of the n bits stored in the shift register 301 are
output as a random word of the random number sequence
{ri} for every KxN bits supplied to the n-bit shift register
301, wherein K is a compression factor fed to the controller
304. For example, the N bits which are output are the N
leftmost bits stored in the n-bit shift register after KxN bits
have been supplied to the n-bit shift register 301 (i.e. after
every KxN clock cycles).
0035. In every clock cycle of the clock signal, the feedback
network 302 uses the values stored in the memory elements of
the shift register 301 (at the start of the clock cycle) as inputs
to calculate a feedbackbit. The exclusive OR-gate 303 XOR
combines the feedback bit with the random bit incoming in
this clock cycle and the result of this combination is used as
input for the shift register 301.
0036 Not all values stored in the memory elements need
to be used in the calculation of the feedback bit which is for
example calculated in accordance with a primitive feedback
polynomial. The primitive feedback polynomial may for
example be chosen so that the sequence offeedback bits has
the maximum possible length before repeating itself if always
the same random bit is input to the LFSR 305. The feedback
network 302 can be seen to increase the randomness of the
bits stored in the memory elements so that their probabilities
are nearer to a uniform distribution.
0037. The controller 304 controls the shift register 301 by
the reset signal and the enable signal. The controller receives
the clock signal, a certification mode signal, a run signal and
the compression factor as inputs. The run signal is used for
starting the post processor 302.
0038. In normal mode of operation of the post processor
300 the memory elements of the shift register are not set to
predetermined values before the generation of every random
word. If the enable signal is applied to the shift register 301 a
number KxN of random bits are post-processed before a
random word is output. The number of KxN of random bits to
be processed is determined by the compression factor K. The
entropy of KxN random bits can thus be seen to be collected
and compressed into an N bit random word. The normal mode
of operation is selected by applying a low certification mode
signal to the control unit.
0039. In certification mode the memory elements of the
shift register 301 are set to predetermined values before start
ing the generation of each random word. Then KXN random
bits are post-processed and the resulting random word is
formed. The random words are output, collected and tested
according to a statistical test, e.g. based on equation (2)
above.
0040 Thus, assuming every KxN bits of a low entropy raw
random stream from a noise source being compressed to
random words in a n-bit LFSR to generate N-bit high-entropy
random words as illustrated in FIG. 3, the entropy of the
sequence {ri} can be directly measured if the LFSR is reset
before starting a new compression. Actually, the reset opera
tion ensures, under the assumption of a memory-less source,
that the post-processed words are independent. Therefore, if

US 2016/0246573 A1

N is Small (e.g.8 bits), the entropy can be measured simply by
testing the flatness of the output distribution.
0041. However, in this approach, the obtained estimated
entropy is typically much too pessimistic: for instance, if
n=32 and N=8, the reset operation destroys the entropy of the
remaining 24-bits which are still in the LFSR after the extrac
tion of an output byte. This means that in certification mode,
the measured entropy is lower than the actual entropy
achieved when in normal mode where there is no reset.
0042. In the following, an embodiment is described which
may for example allow measuring the entropy of a generated
random number sequence in practical application while
avoiding to be too pessimistic Such as in the example
described above with reference to FIG. 3.
0043 FIG. 4 shows an arrangement 400 for checking the
entropy of a random number sequence.
0044) The arrangement 400 includes a random source 401
configured to provide a random input sequence and a post
processing circuit 402 configured to receive the randominput
sequence and to generate a random number sequence from
the random input sequence by performing a post-processing
and a decimation of the random input sequence.
0045. The arrangement 400 further includes an inverse
post-processing circuit 403 configured to receive the random
number sequence from the post-processing circuit 402 and to
generate a processed random number sequence by a process
ing of the random number sequence that is inverse to the
post-processing performed by the post-processing circuit.
0046. Further, the arrangement 400 includes an entropy
checker 404 configured to check the entropy of the random
number sequence based on the processed random number
Sequence.
0047 According to one embodiment, in other words, an
inverse (or descrambling) post-processor performing an
inverse operation of the post-processor processes the random
number sequence before its entropy is tested. This for
example allows removing the pseudo-randomness introduced
by the post-processor and therefore allows measuring the
entropy with a smaller depth compared to measuring the
entropy of the random number sequence without the inverse
post-processing.
0048. This for example allows a direct test of the entropy
rate of a post-processed (compressed) noise source. In addi
tion, an online noise source total failure and an integrity test of
the postprocessor can be easily implemented according to one
embodiment.
0049. The components of the arrangement (e.g. the post
processing circuit, the inverse post-processing circuit and the
entropy checker) may for example be implemented by one or
more circuits. A “circuit” may be understood as any kind of a
logic implementing entity, which may be special purpose
circuitry or a processor executing Software stored in a
memory, firmware, or any combination thereof. Thus a “cir
cuit may be a hard-wired logic circuit or a programmable
logic circuit such as a programmable processor, e.g. a micro
processor. A “circuit” may also be a processor executing
Software, e.g. any kind of computer program. Any other kind
of implementation of the respective functions which will be
described in more detail below may also be understood as a
“circuit.
0050 A register is for example implemented by means of
a serial connection of memory elements such as flip-flops.
0051. According to one embodiment, the decimation
includes outputting a first number of post-processed bits for

Aug. 25, 2016

every second number of bits of the random input sequence
input into the post-processing circuit.
0.052 The decimation is for example a compression of the
random input sequence by a compression factor equal to a
power of 2.
0053 According to one embodiment, the post-processing
circuit includes a linear feedback shift register and the post
processing is a processing of the random input sequence by
the linear feedback shift register.
0054 The decimation for example includes outputting a

first number of bits stored in the linear feedback shift register
each time after a second number of bits of the random input
sequence have been input into the linear feedback shift reg
ister.
0055. The ratio between the second number of bits and the

first number of bits is for example given by a compression
factor, i.e. corresponds to a, e.g. predetermined, compression
factor.
0056. The inverse post-processing circuit may for
example include a further linear feedback shift register and
the processing of the random number sequence that is inverse
to the post-processing performed by the post-processing cir
cuit is for example a processing of the random number
sequence by the further linear feedback shift register.
0057 For example, the linear feedback shift register and
the further linear feedback shift register are configured
according to the same primitive polynomial.
0.058 According to one embodiment, the random source
includes a noise source and a digitization unit configured to
generate the random input sequence by digitizing noise out
put by the noise source.
0059. According to one embodiment, the entropy checker

is configured to detect whether the entropy of the random
number sequence is Zero and, if it has detected that the
entropy of the processed random number sequence is Zero, to
output a signal indicating that the random source has failed.
0060 For example, the entropy checker is configured to
detect whether the entropy of the processed random number
sequence is Zero by detecting whether the processed random
number sequence is constant.
0061 According to one embodiment, the arrangement fur
ther includes a controller configured to check the integrity of
the post-processing circuit by checking whether the pro
cessed random number sequence is constant in response to a
constant random input sequence.
0062 According to one embodiment, the entropy checker

is configured to measure the entropy of the random number
sequence by measuring the entropy of the processed random
number sequence.
0063. The entropy checker may for example be configured
to measure the entropy of the processed random number
sequence by applying a statistical test to the processed ran
dom number sequence.
0064. According to one embodiment, a processing device
including the arrangement for checking the entropy of a ran
dom number sequence as described above is provided.
0065. The processing device is for example a chip card.
0066. According to one embodiment, a method for check
ing the entropy of a random number as illustrated in FIG. 5 is
provided.
0067 FIG. 5 shows a flow diagram 500.
0068. In 501, a random number sequence is generated
from a random input sequence by performing a post-process
ing and a decimation of the random input sequence.

US 2016/0246573 A1

0069. In 502, a processed random number sequence is
generated by a processing of the random number sequence
that is inverse to the post-processing.
0070. In 503, the entropy of the random number sequence

is checked based on the processed random number sequence.
0071. It should be noted that embodiments described in
context with the arrangement 400 of FIG. 4 are analogously
valid for the method as illustrated in FIG. 5 and vice versa.
0072. In the following, embodiments are shown in more

detail.
0073 FIG. 6 shows an example of an arrangement for
checking the entropy of a random number sequence 600
according to an embodiment.
0074 The arrangement 600 includes a memory-less or
short-memory noise source 601 which provides a digitized
noise signal sil, i.e. a sequence of random digital values.
For example, the noise source 601 corresponds to the noise
source 201 together with the digitization unit 202.
0075. The digitized noise signal si is fed to a post
processor 602 which includes an n-bit linear feedback shift
register (LFSR) 603, with for example the structure of the
linear feedback shift register 305 described with reference to
FIG. 3. The decimation, i.e. the compression according to
compression factor K is represented by a decimation block
604. The compression factor K is for example a power of 2.
e.g. 4, such that for every 4 bits input to the shift register 603,
1 output bit is extracted. For example, the word-length N may
be 1 such that the post-processor 602 bit-wise outputs random
bits and the output line of the post-processor 602 is a single
bit line.
0076. The noise source 601 and the post-processor are for
example part of a random number generator 605, e.g.
arranged on an electronic device Such as a chip card.
0077. The output of the post-processor 602 (which is also
the output of the random number generator 605) is the random
number sequence (or random number stream) {ri} which
may be used by other components, e.g. a processor or co
processor as explained with reference to FIG. 1, and whose
entropy is in this example to be checked.
0078. The checking of the entropy may for example be
carried out for a device including the random number genera
tor 605 after it has been manufactured and for example before
it is in operation (e.g. before the random number sequence
{ri is used for, e.g., cryptographic purposes. For example,
after a certain number of devices (e.g. chip cards), each con
taining a random number generator 605 have been manufac
tured, some of them may be tested with respect to the entropy
of the generated random number sequence.
007.9 For the checking of the entropy of the generated
random number sequence, the output stream {ri is pro
cessed by a descrambling linear feedback shift register 606
which has (assuming that K is a power of 2) the same poly
nomial as the post-processing LFSR 603. The in descram
bling LSRF may be in a self-synchronizing configuration and
has the property to remove the pseudo-randomness intro
duced during compression by the post-processor 602. The
output of the descrambling LFSR 606, a high-entropy
descrambled random streamti, is fed to an entropy check
ing unit 607 which determines its entropy by a conditional
entropy test, e.g. according to equation (2) above.
0080 A statistical test according to equation (2) for
example includes building up a table of conditional probabili
ties as indicated in the right-hand Sum of equation (2) for X,
..., X, wherein n goes to a certain maximum value (and is not

Aug. 25, 2016

to be confused with the n indicating the length of the LSFRs
301, 603). In other words, the term in the limes of equation (2)
is determined for a certain value of n which is for example
selected according to the compression factor and the desired
accuracy of the entropy measure. For example, for a compres
sion of 16, the value for n (also referred to as depth or condi
tion depth) is chosen in the range of 20 to 22 which is typically
still practically feasible.
I0081. In the example described above, where the random
number generator 605 is tested after manufacturing, e.g. in a
laboratory, the descrambling LFSR 606 and the entropy
checking unit 607 may for example be implemented by a
computer which receives the random number sequence {ri.
I0082. The operation of the descrambling LFSR 606 can be
seen to be based on a property of the maximum length
sequences (i.e. sequences produced by LFSRS using a primi
tive polynomial). Namely, a power of 2 decimation of a maxi
mum length sequence is just a shift version of the same
sequence. Therefore, the descrambling LFSR 606 can reverse
the free evolution (i.e. free-running) of the post-processing
LFSR despite the decimation by block 604 and it produces a
constant output if the input of the post-processing LFSR 602
consists of a constant bit stream (e.g. when the noise source
601 is switched off or fails).
I0083. It should be noted that if the compression K is not a
power of 2, the descrambling LFSR does not have the same
polynomial as the post-processor 602 but, using the proper
polynomial, the above property still holds.
10084. Further, it should be noted that for the above, the
input stream does not need to be constant to have the descram
bling LFSR 606 produce a constant output; it is sufficient that
it consists of repetition of a constant K-bit Sub-sequence.
I0085 Thus, the descrambled sequence {ti} can be used
to test the entropy of the compressed sequence {ri} by
applying a conditional entropy test with a depth in steps lower
than what is needed if test is performed directly on {ri.
0.086 FIG. 7 shows the results of a numerical simulation
over a 10' bit sequence where a noise source with entropy
H=0.25 is post-processed with an n=12 bit LFSR with no
compression (K-1).
I0087. The result of a conditional entropy test being
applied to ri is indicated by a first curve 701 and the result
of a conditional entropy test being applied to the descrambled
sequence {ti is indicated by a second curve 702, wherein
the depth increases from left to right along a depth axis 703
and the entropy as given out by the entropy testincreases from
bottom to top along an entropy axis 704.
I0088 As can be seen, after descrambling, the entropy test
can detect immediately the correct source entropy (0.25)
while a depth of 12 (the LFSR length) is needed if the output
sequence {ri} is tested directly.
0089 FIG.8 shows the results of the numerical simulation
with a compression of K=2.
(0090. As in FIG. 7, the result of a conditional entropy test
being applied to ri is indicated by a first curve 801 and the
result of a conditional entropy test being applied to the
descrambled sequence {ti is indicated by a second curve
802, wherein the depth increases from left to right along a
depth axis 803 and the entropy as given out by the entropy test
increases from bottom to top along an entropy axis 804.
0091. As can be seen, in case a compression is applied
(K=2 in this example), a similar result is obtained in simula
tion as in the case of FIG. 7: the estimated conditional entropy
starts to converge immediately to the final value (approxi

US 2016/0246573 A1

mately 2x0.25) in case of the descrambled sequence (second
curve 802) while, for the output sequence, a depth of 12 must
be reached to see a decrease of the estimation (first curve
801). The same holds for higher compression factors as can be
seen in FIG. 9.

0092 FIG.9 shows the results of the numerical simulation
with a compression of K-4.
0093. As in FIG. 7 and FIG. 8, the result of a conditional
entropy test being applied to {ri is indicated by a first curve
901 and the result of a conditional entropy test being applied
to the descrambled sequence {ti} is indicated by a second
curve 902, wherein the depth increases from left to right along
a depth axis 903 and the entropy as given out by the entropy
test increases from bottom to top along an entropy axis 904.
0094 Similarly as in the case of FIG. 8, the estimated
conditional entropy starts to converge immediately to the final
value in case of the descrambled sequence while, for the
output sequence, a depth of 12 must be reached to see a
decrease of the estimation.

0095. It should be noted that, as can be seen in FIGS. 7 to
9, the conditional entropy estimate of the descrambled
sequence {ti} is the n-step shifted version of the estimate
done directly on the sequence {ri} (wherein n=12 in the
above examples).
0096. According to one embodiment, the descrambled
sequence produced by the descrambling LFSR is used to
implement a total failure test for the noise source 601 (TOT
test). In fact, if the noise Source output becomes constant
(constant K-bit sub-sequences), this results in a constant
sequence at the output of the descrambling LFSR 606. The
TOT test may be performed by a non-transition detector as
illustrated in FIG. 10.

0097 FIG. 10 shows an example of an arrangement for
checking the entropy of a random number sequence 1000
according to a further embodiment.
0098. Similarly to the arrangement 600 of FIG. 6, the
arrangement 1000 includes a noise source 1001, a post-pro
cessor 1002 and a descrambling LFSR 1006 operating as
described above with reference to FIG. 6. The arrangement
1000 further includes a non-transition detector 1007 which
receives the descrambled random stream as input and for
example which counts if no transition occurs over a predeter
mined number of bits, e.g. over 64 consecutive bits of the test
sequence, i.e. the descrambled random stream in this
example. If no transition occurs over the predetermined num
ber of bits, it triggers an alarm is triggered.
0099. The arrangement 1000 may, for example without
entropy checking unit, be implemented in a device Such as a
chip card Such that it may be checked during operation of the
device whether the noise source is operating correctly or has
failed.

0100 Further, according to one embodiment, the
descrambled sequence {ti} can also be used to implement
an integrity test of the post-processing LFSR: if the noise
Source output is forced to a constant value (constant K-bit
Sub-sequences) during the entropy test, this must result in a
constant sequence after the descrambling. This can be used
after manufacturing before the device is delivered with an
external entropy checking unit or no transition detector but
may also be implemented, e.g. with the architecture of FIG.
10, in the device itself such that the integrity of the post
processing LFSR can be checked by the device, e.g. to detect
attacks on the device.

Aug. 25, 2016

0101. The LFSR 305, 603 is for example a linear feedback
shift register as shown in FIG. 11.
0102 FIG. 11 shows a linear feedback shift register
(LFSR) 1100 according to an embodiment.
(0103) The LFSR is a Fibonacci LFSR 1100 in self-syn
chronizing configuration. It includes a plurality of n 32 flip
flops 1101 in this example. the output of each flip-flop is
connected via respective AND gate 1102 (except the right
most flip-flop 1102, which is directly connected) to an n-input
exclusive OR 1103 whose output is connected, together with
the input of the descrambling LFSR 1100, to an exclusive OR
1104. The output of the exclusive OR 1104 is the input to the
leftmost flip-flop 1101 as well as the output of the descram
bling LFSR 1100.
0104. Each AND gate 1102 receives, at its second input, a
coefficient of the primitive polynomial according to which
the LFSR should operate. Specifically, the AND gate 1102
connected to the output of the ith flip-flop (i =1,..., 32 in this
example) receives the ith coefficient (i.e. the coefficient of x)
of the polynomial).
0105. As described above, a bit is for example output after
a certain number of bits has been shifted into the LFSR 1100
to implement a certain compression.
0106 FIG. 12 shows an example of a descrambling LFSR
12OO.

0107 The descrambling LFSR is a Fibonacci LFSR in
self-synchronizing configuration. It includes a plurality of
n=32 flip-flops 1201 in this example. the output of each
flip-flop is connected via respective AND gate 1202 (except
the rightmost flip-flop 1202, which is directly connected) to
an n-input exclusive OR 1203 whose output is connected,
together with the input of the descrambling LFSR 1200, to an
exclusive OR 1204. The output of the exclusive OR 1204 is
the output of the descrambling LFSR 1200. The input of the
descrambling LFSR is connected to the first (leftmost) flip
flop 1201. Each AND gate 1202 receives, at its second input,
a coefficient of the primitive polynomial according to which
the LFSR should operate. Specifically, the AND gate 1202
connected to the output of the ith flip-flop (i =1,..., 32 in this
example) receives the ith coefficient (i.e. the coefficient of x)
of the polynomial).
0108. When used as the descrambling LFSR 606, the coef
ficients c1 c2, ... c.31 are set to the polynomial coefficients of
the post-processing LFSR 603.
0109. It should be noted that the descrambling LFSR 1200
can be used as descrambling LFSR 606 for the arrangement
600 of FIG. 6 for any power of 2 as compression of the
post-processor 602.
0110. While specific aspects have been described, it
should be understood by those skilled in the art that various
changes in form and detail may be made therein without
departing from the spirit and scope of the aspects of this
disclosure as defined by the appended claims. The scope is
thus indicated by the appended claims and all changes which
come within the meaning and range of equivalency of the
claims are therefore intended to be embraced.

What is claimed is:
1. An arrangement for checking the entropy of a random

number sequence comprising:
a random source configured to provide a random input

Sequence;
a post-processing circuit configured to receive the random

input sequence and to generate a random number

US 2016/0246573 A1

sequence from the random input sequence by perform
ing a post-processing and a decimation of the random
input sequence;

an inverse post-processing circuit configured to receive the
random number sequence from the post-processing cir
cuit and to generate a processed random number
sequence by a processing of the random number
sequence that is inverse to the post-processing per
formed by the post-processing circuit; and

an entropy checker configured to check the entropy of the
random number sequence based on the processed ran
dom number sequence.

2. The arrangement of claim 1,
wherein the decimation includes outputting a first number

of post-processed bits for every second number of bits of
the random input sequence input into the post-process
ing circuit.

3. The arrangement of claim 1,
wherein the decimation is a compression of the random

input sequence by a compression factor equal to a power
of 2.

4. The arrangement of claim 1,
wherein the post-processing circuit comprises a linear

feedback shift register and the post-processing is a pro
cessing of the random input sequence by the linear feed
back shift register.

5. The arrangement of claim 4,
wherein the decimation includes outputting a first number

of bits stored in the linear feedback shift register each
time after a second number of bits of the random input
sequence have been input into the linear feedback shift
register.

6. The arrangement of claim 4,
wherein the inverse post-processing circuit comprises a

further linear feedback shift register and the processing
of the random number sequence that is inverse to the
post-processing performed by the post-processing cir
cuit is a processing of the random number sequence by
the further linear feedback shift register.

7. The arrangement of claim 6,
wherein the linear feedback shift register and the further

linear feedback shift register are configured according to
the same primitive polynomial.

8. The arrangement of claim 1,
wherein the random source comprises a noise source and a

digitization unit configured to generate the randominput
sequence by digitizing noise output by the noise source.

9. The arrangement of claim 1,
wherein the entropy checker is configured to detect

whether the entropy of the random number sequence is
Zero and, if it has detected that the entropy of the pro
cessed random number sequence is Zero, to output a
signal indicating that the random source has failed.

10. The arrangement of claim 1,
wherein the entropy checker is configured to detect

whether the entropy of the processed random number
sequence is Zero by detecting whether the processed
random number sequence is constant.

11. The arrangement of claim 1, further comprising:
a controller configured to check the integrity of the post

processing circuit by checking whether the processed

Aug. 25, 2016

random number sequence is constant in response to a
constant random input sequence.

12. The arrangement of claim 1,
wherein the entropy checker is configured to measure the

entropy of the random number sequence by measuring
the entropy of the processed random number sequence.

13. The arrangement of claim 12,
wherein the entropy checker is configured to measure the

entropy of the processed random number sequence by
applying a statistical test to the processed random num
ber sequence.

14. A processing device, comprising:
an arrangement for checking the entropy of a random num

ber sequence, comprising:
a random source configured to provide a random input

Sequence;
a post-processing circuit configured to receive the ran
dominput sequence and to generate a random number
sequence from the random input sequence by per
forming a post-processing and a decimation of the
random input sequence;

an inverse post-processing circuit configured to receive
the random number sequence from the post-process
ing circuit and to generate a processed random num
ber sequence by a processing of the random number
sequence that is inverse to the post-processing per
formed by the post-processing circuit; and

an entropy checker configured to check the entropy of
the random number sequence based on the processed
random number sequence.

15. The processing device of claim 14,
wherein the processing device is a chip card.
16. A method for checking the entropy of a random number

sequence comprising:
generating a random number sequence from a random

input sequence by performing a post-processing and a
decimation of the random input sequence;

generating a processed random number sequence by a pro
cessing of the random number sequence that is inverse to
the post-processing; and

checking the entropy of the random number sequence
based on the processed random number sequence.

17. The method of claim 16,
wherein the decimation includes outputting a first number

of post-processed bits for every second number of bits of
the random input sequence input into the post-process
ing circuit.

18. The method of claim 16,
wherein the decimation is a compression of the random

input sequence by a compression factor equal to a power
of 2.

19. The method of claim 16, further comprising:
checking the integrity of the post-processing circuit by

checking whether the processed random number
sequence is constant in response to a constant random
input sequence.

20. The method of claim 16,
wherein the method is performed by a chip card.

k k k k k

