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According to one embodiment, an arrangement for checking 
the entropy of a random number sequence is described includ 
ing a random source configured to provide a random input 
sequence, a post-processing circuit configured to receive the 
random input sequence and to generate a random number 
sequence from the random input sequence by performing a 
post-processing and a decimation of the random input 
sequence, an inverse post-processing circuit configured to 
receive the random number sequence from the post-process 
ing circuit and to generate a processed random number 
sequence by a processing of the random number sequence 
that is inverse to the post-processing performed by the post 
processing circuit, and an entropy checker configured to 
check the entropy of the random number sequence based on 
the processed random number sequence. 
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ARRANGEMENT AND METHOD FOR 
CHECKING THE ENTROPY OF A RANDOM 

NUMBER SEQUENCE 

CROSS-REFERENCE TO RELATED 
APPLICATION 

0001. This application claims priority to German Patent 
Application Serial No. 10 2015 102363.6, which was filed 
Feb. 19, 2015, and is incorporated herein by reference in its 
entirety. 

TECHNICAL FIELD 

0002 The present disclosure relates to arrangements and 
methods for checking the entropy of a random number 
Sequence. 

BACKGROUND 

0003 Random numbers are often needed in electronic 
devices, such as chip cards, for example for cryptographic 
applications. When a sequence of random numbers is gener 
ated, an important quality indication of the sequence is its 
entropy since only high entropy ensures high security, e.g. 
ensures that an attacker cannot guess random numbers of the 
sequence. Accordingly, approaches to allow checking the 
entropy of a generated random number sequence are desir 
able. 

SUMMARY 

0004. According to one embodiment, an arrangement for 
checking the entropy of a random number sequence is pro 
vided including a random source configured to provide a 
random input sequence, a post-processing circuit configured 
to receive the random input sequence and to generate a ran 
dom number sequence from the random input sequence by 
performing a post-processing and a decimation of the random 
input sequence, an inverse post-processing circuit configured 
to receive the random number sequence from the post-pro 
cessing circuit and to generate a processed random number 
sequence by a processing of the random number sequence 
that is inverse to the post-processing performed by the post 
processing circuit and an entropy checker configured to check 
the entropy of the random number sequence based on the 
processed random number sequence. 
0005 According to a further embodiment, a method for 
checking the entropy of a random number sequence accord 
ing to the arrangement described above is provided. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0006. In the drawings, like reference characters generally 
refer to the same parts throughout the different views. The 
drawings are not necessarily to Scale, emphasis instead gen 
erally being placed upon illustrating the principles of the 
invention. In the following description, various aspects are 
described with reference to the following drawings, in which: 
0007 FIG. 1 shows a chip card according to an embodi 
ment, 
0008 FIG. 2 shows an example of an architecture of a 
random number generator; 
0009 FIG. 3 shows an example for a post-processor; 
0010 FIG. 4 shows an arrangement for checking the 
entropy of a random number sequence; 
0011 FIG. 5 shows a flow diagram: 
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0012 FIG. 6 shows an example of an arrangement for 
checking the entropy of a random number sequence accord 
ing to an embodiment; 
0013 FIG. 7 shows the results of a numerical simulation 
over a 10" bit sequence where a noise source with entropy 
0.25 is post-processed with an 12-bit LFSR with no compres 
S1On, 
0014 FIG.8 shows the results of the numerical simulation 
with a compression of 2: 
0015 FIG.9 shows the results of the numerical simulation 
with a compression of 4. 
0016 FIG. 10 shows an example of an arrangement for 
checking the entropy of a random number sequence accord 
ing to a further embodiment; 
(0017 FIG. 11 shows a linear feedback shift register 
according to an embodiment; and 
0018 FIG. 12 shows an example of a descrambling LFSR. 

DESCRIPTION 

0019. The following detailed description refers to the 
accompanying drawings that show, by way of illustration, 
specific details and aspects of this disclosure in which the 
invention may be practiced. Other aspects may be utilized and 
structural, logical, and electrical changes may be made with 
out departing from the Scope of the invention. The various 
aspects of this disclosure are not necessarily mutually exclu 
sive, as some aspects of this disclosure can be combined with 
one or more other aspects of this disclosure to form new 
aspects. 
0020 FIG. 1 shows a chip card 100 according to an 
embodiment. 
(0021. The chip card 100 includes a carrier 101 on which a 
chip card module 102 is arranged. The chip card module 102 
includes various data processing components like for 
example a memory 103, a processor 104 or for example a 
dedicated crypto processor 105. 
0022. The chip card module 103 includes a random num 
ber generator 106. The random number generator may for 
example Supply a random number sequence to the processor 
104 or the crypto processor which may for example perform 
a cryptographic operation based on the random number 
Sequence. 
0023 FIG. 2 shows an example of an architecture of a 
random number generator 200. 
0024. The random number generator 200 includes a noise 
Source 201 which is configured to output a noise signal n(t). 
The noise source 201 for example has a certain entropy and no 
or short memory. A digitization unit of the random number 
generator 200 converts the noise signal to a digitized noise 
signal (DNS) sil, i.e. a sequence of digital noise values, 
e.g. by Sampling the noise signal at a certain Sample interval 
and digitizing the sample values. The random numbergen 
erator 200 further includes a post-processor 203 which post 
processes the digitized noise signal with a compressing digi 
tal algorithm (e.g. according to a hashing function, e.g. by 
means of a linear feedback shift register with decimated out 
put) in order to obtain a full entropy random number sequence 
{ri, also referred to as internal random sequence (IRS). 
0025 To ensure a sufficient level of security, for example, 
the entropy per bit of the random number sequence ri may 
be checked or tested. However, since the compression algo 
rithm may have a long memory (e.g. may be implemented by 
a 32-bit LFSR), a direct entropy test of the internal random 
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sequence {ri may practically not be feasible since a too 
large amount of data would be required for the testing. 
0026. This can be seen by considering the definition of 
entropy rate or source information rate of a strongly station 
ary stochastic process: 

H(X) - lim H(X, X-1, X2, ... , X2) (1) 
- & 

0027 where X is the k-th member of the process and 
H(X|Y) is the conditional entropy. For a binary entropy 
Source, the entropy rate is the entropy of the n-th bit knowing 
the previous n-1 bits. 
0028 HOX) can be calculated as: 

(2) 
H(X) = lim X. P(Vn-1, Vn-2, ... , 1) 

in-sn-2:... *E*n-1 sn-2: . . . ; 

logp(xn| X-1, X-2, ... , V1) 

0029 where p(x,-1, x2, ..., x) is the probability of the 
output bit sequence (X-1, X-2, ..., XI) and p(X, X-1, X2,.. 
.., x) is the conditional probability of the n-th symbol know 
ing the previous n-1 symbols. 
0030. Both probabilities can be estimated from the gener 
ated data sequences but, if the test if performed on the post 
processed data (ri in this example), n needs to be larger 
than the memory of the post-processor 203 (e.g. 32 bits in 
case of a 32-bit LFSR) in order to obtain the entropy rate of 
the compressed source. For smaller n, the test would be 
deceived by the pseudo-randomness introduced by the post 
processor 203. For e.g. a 32 bit memory depth, the estimation 
of the probabilities defined above is not practically feasible. 
0031 FIG. 3 shows an example for a post-processor 300. 
0032. The post-processor or post-processing unit (e.g. cir 
cuit) 300 is based on a linear feedback shift register (LFSR) 
305 with a length of n bits including a linear shift register 301, 
a feedback network 302 and an exclusive OR gate 303. The 
post-processer 300 receives as input a stream of random bits 
{s(i)} (e.g. provided by the digitization unit 202) and outputs 
an random number sequence {ri in the form of a sequence 
of N-bit words. The stream of random bits si consists of a 
stream of bits having one of the values 0 and 1. The stream of 
random bits si is for example of a relatively low entropy 
per bit and is for example provided at a high rate to the 
post-processor 300. The random bits of the stream of random 
bits can be seen to serve as seeds for the post-processor 300. 
0033. The n-bit shift register 301 is connected to the feed 
back network 302 and the exclusive-OR gate 303 which 
receives the output of the feedback network 302 and the input 
stream si as input and supplies its output to the n-bit shift 
register 301. The sift register 301 is clocked by a clock signal 
and includes n memory elements, e.g. is implemented as a 
chain of flip-flops. With each clock pulse of the clock signal 
the bit stored in each memory element is shifted to the neigh 
boring memory element to the right (except the bit stored in 
the right-most memory element), wherein a new incoming bit 
output by the exclusive-OR gate 303 is shifted into the left 
most memory element. The shift register 301 only performs 
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this shift operation when an enable signal is applied to it by a 
controller 304 of the post-processor. 
0034. The controller 304 can reset the memory elements 
of the n-bit shift register 301 to predetermined values by 
applying a reset signal. The predetermined values may all 
have the same value, for example a logical “0” or “1”. Alter 
natively the memory elements may be reset to values corre 
sponding to a secret key or a manufacturing identification 
number. N bits of the n bits stored in the shift register 301 are 
output as a random word of the random number sequence 
{ri} for every KxN bits supplied to the n-bit shift register 
301, wherein K is a compression factor fed to the controller 
304. For example, the N bits which are output are the N 
leftmost bits stored in the n-bit shift register after KxN bits 
have been supplied to the n-bit shift register 301 (i.e. after 
every KxN clock cycles). 
0035. In every clock cycle of the clock signal, the feedback 
network 302 uses the values stored in the memory elements of 
the shift register 301 (at the start of the clock cycle) as inputs 
to calculate a feedbackbit. The exclusive OR-gate 303 XOR 
combines the feedback bit with the random bit incoming in 
this clock cycle and the result of this combination is used as 
input for the shift register 301. 
0036 Not all values stored in the memory elements need 
to be used in the calculation of the feedback bit which is for 
example calculated in accordance with a primitive feedback 
polynomial. The primitive feedback polynomial may for 
example be chosen so that the sequence offeedback bits has 
the maximum possible length before repeating itself if always 
the same random bit is input to the LFSR 305. The feedback 
network 302 can be seen to increase the randomness of the 
bits stored in the memory elements so that their probabilities 
are nearer to a uniform distribution. 
0037. The controller 304 controls the shift register 301 by 
the reset signal and the enable signal. The controller receives 
the clock signal, a certification mode signal, a run signal and 
the compression factor as inputs. The run signal is used for 
starting the post processor 302. 
0038. In normal mode of operation of the post processor 
300 the memory elements of the shift register are not set to 
predetermined values before the generation of every random 
word. If the enable signal is applied to the shift register 301 a 
number KxN of random bits are post-processed before a 
random word is output. The number of KxN of random bits to 
be processed is determined by the compression factor K. The 
entropy of KxN random bits can thus be seen to be collected 
and compressed into an N bit random word. The normal mode 
of operation is selected by applying a low certification mode 
signal to the control unit. 
0039. In certification mode the memory elements of the 
shift register 301 are set to predetermined values before start 
ing the generation of each random word. Then KXN random 
bits are post-processed and the resulting random word is 
formed. The random words are output, collected and tested 
according to a statistical test, e.g. based on equation (2) 
above. 
0040 Thus, assuming every KxN bits of a low entropy raw 
random stream from a noise source being compressed to 
random words in a n-bit LFSR to generate N-bit high-entropy 
random words as illustrated in FIG. 3, the entropy of the 
sequence {ri} can be directly measured if the LFSR is reset 
before starting a new compression. Actually, the reset opera 
tion ensures, under the assumption of a memory-less source, 
that the post-processed words are independent. Therefore, if 
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N is Small (e.g.8 bits), the entropy can be measured simply by 
testing the flatness of the output distribution. 
0041. However, in this approach, the obtained estimated 
entropy is typically much too pessimistic: for instance, if 
n=32 and N=8, the reset operation destroys the entropy of the 
remaining 24-bits which are still in the LFSR after the extrac 
tion of an output byte. This means that in certification mode, 
the measured entropy is lower than the actual entropy 
achieved when in normal mode where there is no reset. 
0042. In the following, an embodiment is described which 
may for example allow measuring the entropy of a generated 
random number sequence in practical application while 
avoiding to be too pessimistic Such as in the example 
described above with reference to FIG. 3. 
0043 FIG. 4 shows an arrangement 400 for checking the 
entropy of a random number sequence. 
0044) The arrangement 400 includes a random source 401 
configured to provide a random input sequence and a post 
processing circuit 402 configured to receive the randominput 
sequence and to generate a random number sequence from 
the random input sequence by performing a post-processing 
and a decimation of the random input sequence. 
0045. The arrangement 400 further includes an inverse 
post-processing circuit 403 configured to receive the random 
number sequence from the post-processing circuit 402 and to 
generate a processed random number sequence by a process 
ing of the random number sequence that is inverse to the 
post-processing performed by the post-processing circuit. 
0046. Further, the arrangement 400 includes an entropy 
checker 404 configured to check the entropy of the random 
number sequence based on the processed random number 
Sequence. 
0047 According to one embodiment, in other words, an 
inverse (or descrambling) post-processor performing an 
inverse operation of the post-processor processes the random 
number sequence before its entropy is tested. This for 
example allows removing the pseudo-randomness introduced 
by the post-processor and therefore allows measuring the 
entropy with a smaller depth compared to measuring the 
entropy of the random number sequence without the inverse 
post-processing. 
0048. This for example allows a direct test of the entropy 
rate of a post-processed (compressed) noise source. In addi 
tion, an online noise source total failure and an integrity test of 
the postprocessor can be easily implemented according to one 
embodiment. 
0049. The components of the arrangement (e.g. the post 
processing circuit, the inverse post-processing circuit and the 
entropy checker) may for example be implemented by one or 
more circuits. A “circuit” may be understood as any kind of a 
logic implementing entity, which may be special purpose 
circuitry or a processor executing Software stored in a 
memory, firmware, or any combination thereof. Thus a “cir 
cuit may be a hard-wired logic circuit or a programmable 
logic circuit such as a programmable processor, e.g. a micro 
processor. A “circuit” may also be a processor executing 
Software, e.g. any kind of computer program. Any other kind 
of implementation of the respective functions which will be 
described in more detail below may also be understood as a 
“circuit. 
0050 A register is for example implemented by means of 
a serial connection of memory elements such as flip-flops. 
0051. According to one embodiment, the decimation 
includes outputting a first number of post-processed bits for 
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every second number of bits of the random input sequence 
input into the post-processing circuit. 
0.052 The decimation is for example a compression of the 
random input sequence by a compression factor equal to a 
power of 2. 
0053 According to one embodiment, the post-processing 
circuit includes a linear feedback shift register and the post 
processing is a processing of the random input sequence by 
the linear feedback shift register. 
0054 The decimation for example includes outputting a 

first number of bits stored in the linear feedback shift register 
each time after a second number of bits of the random input 
sequence have been input into the linear feedback shift reg 
ister. 
0055. The ratio between the second number of bits and the 

first number of bits is for example given by a compression 
factor, i.e. corresponds to a, e.g. predetermined, compression 
factor. 
0056. The inverse post-processing circuit may for 
example include a further linear feedback shift register and 
the processing of the random number sequence that is inverse 
to the post-processing performed by the post-processing cir 
cuit is for example a processing of the random number 
sequence by the further linear feedback shift register. 
0057 For example, the linear feedback shift register and 
the further linear feedback shift register are configured 
according to the same primitive polynomial. 
0.058 According to one embodiment, the random source 
includes a noise source and a digitization unit configured to 
generate the random input sequence by digitizing noise out 
put by the noise source. 
0059. According to one embodiment, the entropy checker 

is configured to detect whether the entropy of the random 
number sequence is Zero and, if it has detected that the 
entropy of the processed random number sequence is Zero, to 
output a signal indicating that the random source has failed. 
0060 For example, the entropy checker is configured to 
detect whether the entropy of the processed random number 
sequence is Zero by detecting whether the processed random 
number sequence is constant. 
0061 According to one embodiment, the arrangement fur 
ther includes a controller configured to check the integrity of 
the post-processing circuit by checking whether the pro 
cessed random number sequence is constant in response to a 
constant random input sequence. 
0062 According to one embodiment, the entropy checker 

is configured to measure the entropy of the random number 
sequence by measuring the entropy of the processed random 
number sequence. 
0063. The entropy checker may for example be configured 
to measure the entropy of the processed random number 
sequence by applying a statistical test to the processed ran 
dom number sequence. 
0064. According to one embodiment, a processing device 
including the arrangement for checking the entropy of a ran 
dom number sequence as described above is provided. 
0065. The processing device is for example a chip card. 
0066. According to one embodiment, a method for check 
ing the entropy of a random number as illustrated in FIG. 5 is 
provided. 
0067 FIG. 5 shows a flow diagram 500. 
0068. In 501, a random number sequence is generated 
from a random input sequence by performing a post-process 
ing and a decimation of the random input sequence. 
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0069. In 502, a processed random number sequence is 
generated by a processing of the random number sequence 
that is inverse to the post-processing. 
0070. In 503, the entropy of the random number sequence 

is checked based on the processed random number sequence. 
0071. It should be noted that embodiments described in 
context with the arrangement 400 of FIG. 4 are analogously 
valid for the method as illustrated in FIG. 5 and vice versa. 
0072. In the following, embodiments are shown in more 

detail. 
0073 FIG. 6 shows an example of an arrangement for 
checking the entropy of a random number sequence 600 
according to an embodiment. 
0074 The arrangement 600 includes a memory-less or 
short-memory noise source 601 which provides a digitized 
noise signal sil, i.e. a sequence of random digital values. 
For example, the noise source 601 corresponds to the noise 
source 201 together with the digitization unit 202. 
0075. The digitized noise signal si is fed to a post 
processor 602 which includes an n-bit linear feedback shift 
register (LFSR) 603, with for example the structure of the 
linear feedback shift register 305 described with reference to 
FIG. 3. The decimation, i.e. the compression according to 
compression factor K is represented by a decimation block 
604. The compression factor K is for example a power of 2. 
e.g. 4, such that for every 4 bits input to the shift register 603, 
1 output bit is extracted. For example, the word-length N may 
be 1 such that the post-processor 602 bit-wise outputs random 
bits and the output line of the post-processor 602 is a single 
bit line. 
0076. The noise source 601 and the post-processor are for 
example part of a random number generator 605, e.g. 
arranged on an electronic device Such as a chip card. 
0077. The output of the post-processor 602 (which is also 
the output of the random number generator 605) is the random 
number sequence (or random number stream) {ri} which 
may be used by other components, e.g. a processor or co 
processor as explained with reference to FIG. 1, and whose 
entropy is in this example to be checked. 
0078. The checking of the entropy may for example be 
carried out for a device including the random number genera 
tor 605 after it has been manufactured and for example before 
it is in operation (e.g. before the random number sequence 
{ri is used for, e.g., cryptographic purposes. For example, 
after a certain number of devices (e.g. chip cards), each con 
taining a random number generator 605 have been manufac 
tured, some of them may be tested with respect to the entropy 
of the generated random number sequence. 
007.9 For the checking of the entropy of the generated 
random number sequence, the output stream {ri is pro 
cessed by a descrambling linear feedback shift register 606 
which has (assuming that K is a power of 2) the same poly 
nomial as the post-processing LFSR 603. The in descram 
bling LSRF may be in a self-synchronizing configuration and 
has the property to remove the pseudo-randomness intro 
duced during compression by the post-processor 602. The 
output of the descrambling LFSR 606, a high-entropy 
descrambled random streamti, is fed to an entropy check 
ing unit 607 which determines its entropy by a conditional 
entropy test, e.g. according to equation (2) above. 
0080 A statistical test according to equation (2) for 
example includes building up a table of conditional probabili 
ties as indicated in the right-hand Sum of equation (2) for X, 
..., X, wherein n goes to a certain maximum value (and is not 
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to be confused with the n indicating the length of the LSFRs 
301, 603). In other words, the term in the limes of equation (2) 
is determined for a certain value of n which is for example 
selected according to the compression factor and the desired 
accuracy of the entropy measure. For example, for a compres 
sion of 16, the value for n (also referred to as depth or condi 
tion depth) is chosen in the range of 20 to 22 which is typically 
still practically feasible. 
I0081. In the example described above, where the random 
number generator 605 is tested after manufacturing, e.g. in a 
laboratory, the descrambling LFSR 606 and the entropy 
checking unit 607 may for example be implemented by a 
computer which receives the random number sequence {ri. 
I0082. The operation of the descrambling LFSR 606 can be 
seen to be based on a property of the maximum length 
sequences (i.e. sequences produced by LFSRS using a primi 
tive polynomial). Namely, a power of 2 decimation of a maxi 
mum length sequence is just a shift version of the same 
sequence. Therefore, the descrambling LFSR 606 can reverse 
the free evolution (i.e. free-running) of the post-processing 
LFSR despite the decimation by block 604 and it produces a 
constant output if the input of the post-processing LFSR 602 
consists of a constant bit stream (e.g. when the noise source 
601 is switched off or fails). 
I0083. It should be noted that if the compression K is not a 
power of 2, the descrambling LFSR does not have the same 
polynomial as the post-processor 602 but, using the proper 
polynomial, the above property still holds. 
10084. Further, it should be noted that for the above, the 
input stream does not need to be constant to have the descram 
bling LFSR 606 produce a constant output; it is sufficient that 
it consists of repetition of a constant K-bit Sub-sequence. 
I0085 Thus, the descrambled sequence {ti} can be used 
to test the entropy of the compressed sequence {ri} by 
applying a conditional entropy test with a depth in steps lower 
than what is needed if test is performed directly on {ri. 
0.086 FIG. 7 shows the results of a numerical simulation 
over a 10' bit sequence where a noise source with entropy 
H=0.25 is post-processed with an n=12 bit LFSR with no 
compression (K-1). 
I0087. The result of a conditional entropy test being 
applied to ri is indicated by a first curve 701 and the result 
of a conditional entropy test being applied to the descrambled 
sequence {ti is indicated by a second curve 702, wherein 
the depth increases from left to right along a depth axis 703 
and the entropy as given out by the entropy testincreases from 
bottom to top along an entropy axis 704. 
I0088 As can be seen, after descrambling, the entropy test 
can detect immediately the correct source entropy (0.25) 
while a depth of 12 (the LFSR length) is needed if the output 
sequence {ri} is tested directly. 
0089 FIG.8 shows the results of the numerical simulation 
with a compression of K=2. 
(0090. As in FIG. 7, the result of a conditional entropy test 
being applied to ri is indicated by a first curve 801 and the 
result of a conditional entropy test being applied to the 
descrambled sequence {ti is indicated by a second curve 
802, wherein the depth increases from left to right along a 
depth axis 803 and the entropy as given out by the entropy test 
increases from bottom to top along an entropy axis 804. 
0091. As can be seen, in case a compression is applied 
(K=2 in this example), a similar result is obtained in simula 
tion as in the case of FIG. 7: the estimated conditional entropy 
starts to converge immediately to the final value (approxi 
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mately 2x0.25) in case of the descrambled sequence (second 
curve 802) while, for the output sequence, a depth of 12 must 
be reached to see a decrease of the estimation (first curve 
801). The same holds for higher compression factors as can be 
seen in FIG. 9. 

0092 FIG.9 shows the results of the numerical simulation 
with a compression of K-4. 
0093. As in FIG. 7 and FIG. 8, the result of a conditional 
entropy test being applied to {ri is indicated by a first curve 
901 and the result of a conditional entropy test being applied 
to the descrambled sequence {ti} is indicated by a second 
curve 902, wherein the depth increases from left to right along 
a depth axis 903 and the entropy as given out by the entropy 
test increases from bottom to top along an entropy axis 904. 
0094 Similarly as in the case of FIG. 8, the estimated 
conditional entropy starts to converge immediately to the final 
value in case of the descrambled sequence while, for the 
output sequence, a depth of 12 must be reached to see a 
decrease of the estimation. 

0095. It should be noted that, as can be seen in FIGS. 7 to 
9, the conditional entropy estimate of the descrambled 
sequence {ti} is the n-step shifted version of the estimate 
done directly on the sequence {ri} (wherein n=12 in the 
above examples). 
0096. According to one embodiment, the descrambled 
sequence produced by the descrambling LFSR is used to 
implement a total failure test for the noise source 601 (TOT 
test). In fact, if the noise Source output becomes constant 
(constant K-bit sub-sequences), this results in a constant 
sequence at the output of the descrambling LFSR 606. The 
TOT test may be performed by a non-transition detector as 
illustrated in FIG. 10. 

0097 FIG. 10 shows an example of an arrangement for 
checking the entropy of a random number sequence 1000 
according to a further embodiment. 
0098. Similarly to the arrangement 600 of FIG. 6, the 
arrangement 1000 includes a noise source 1001, a post-pro 
cessor 1002 and a descrambling LFSR 1006 operating as 
described above with reference to FIG. 6. The arrangement 
1000 further includes a non-transition detector 1007 which 
receives the descrambled random stream as input and for 
example which counts if no transition occurs over a predeter 
mined number of bits, e.g. over 64 consecutive bits of the test 
sequence, i.e. the descrambled random stream in this 
example. If no transition occurs over the predetermined num 
ber of bits, it triggers an alarm is triggered. 
0099. The arrangement 1000 may, for example without 
entropy checking unit, be implemented in a device Such as a 
chip card Such that it may be checked during operation of the 
device whether the noise source is operating correctly or has 
failed. 

0100 Further, according to one embodiment, the 
descrambled sequence {ti} can also be used to implement 
an integrity test of the post-processing LFSR: if the noise 
Source output is forced to a constant value (constant K-bit 
Sub-sequences) during the entropy test, this must result in a 
constant sequence after the descrambling. This can be used 
after manufacturing before the device is delivered with an 
external entropy checking unit or no transition detector but 
may also be implemented, e.g. with the architecture of FIG. 
10, in the device itself such that the integrity of the post 
processing LFSR can be checked by the device, e.g. to detect 
attacks on the device. 
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0101. The LFSR 305, 603 is for example a linear feedback 
shift register as shown in FIG. 11. 
0102 FIG. 11 shows a linear feedback shift register 
(LFSR) 1100 according to an embodiment. 
(0103) The LFSR is a Fibonacci LFSR 1100 in self-syn 
chronizing configuration. It includes a plurality of n 32 flip 
flops 1101 in this example. the output of each flip-flop is 
connected via respective AND gate 1102 (except the right 
most flip-flop 1102, which is directly connected) to an n-input 
exclusive OR 1103 whose output is connected, together with 
the input of the descrambling LFSR 1100, to an exclusive OR 
1104. The output of the exclusive OR 1104 is the input to the 
leftmost flip-flop 1101 as well as the output of the descram 
bling LFSR 1100. 
0104. Each AND gate 1102 receives, at its second input, a 
coefficient of the primitive polynomial according to which 
the LFSR should operate. Specifically, the AND gate 1102 
connected to the output of the ith flip-flop (i =1,..., 32 in this 
example) receives the ith coefficient (i.e. the coefficient of x) 
of the polynomial). 
0105. As described above, a bit is for example output after 
a certain number of bits has been shifted into the LFSR 1100 
to implement a certain compression. 
0106 FIG. 12 shows an example of a descrambling LFSR 
12OO. 

0107 The descrambling LFSR is a Fibonacci LFSR in 
self-synchronizing configuration. It includes a plurality of 
n=32 flip-flops 1201 in this example. the output of each 
flip-flop is connected via respective AND gate 1202 (except 
the rightmost flip-flop 1202, which is directly connected) to 
an n-input exclusive OR 1203 whose output is connected, 
together with the input of the descrambling LFSR 1200, to an 
exclusive OR 1204. The output of the exclusive OR 1204 is 
the output of the descrambling LFSR 1200. The input of the 
descrambling LFSR is connected to the first (leftmost) flip 
flop 1201. Each AND gate 1202 receives, at its second input, 
a coefficient of the primitive polynomial according to which 
the LFSR should operate. Specifically, the AND gate 1202 
connected to the output of the ith flip-flop (i =1,..., 32 in this 
example) receives the ith coefficient (i.e. the coefficient of x) 
of the polynomial). 
0108. When used as the descrambling LFSR 606, the coef 
ficients c1 c2, ... c.31 are set to the polynomial coefficients of 
the post-processing LFSR 603. 
0109. It should be noted that the descrambling LFSR 1200 
can be used as descrambling LFSR 606 for the arrangement 
600 of FIG. 6 for any power of 2 as compression of the 
post-processor 602. 
0110. While specific aspects have been described, it 
should be understood by those skilled in the art that various 
changes in form and detail may be made therein without 
departing from the spirit and scope of the aspects of this 
disclosure as defined by the appended claims. The scope is 
thus indicated by the appended claims and all changes which 
come within the meaning and range of equivalency of the 
claims are therefore intended to be embraced. 

What is claimed is: 
1. An arrangement for checking the entropy of a random 

number sequence comprising: 
a random source configured to provide a random input 

Sequence; 
a post-processing circuit configured to receive the random 

input sequence and to generate a random number 
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sequence from the random input sequence by perform 
ing a post-processing and a decimation of the random 
input sequence; 

an inverse post-processing circuit configured to receive the 
random number sequence from the post-processing cir 
cuit and to generate a processed random number 
sequence by a processing of the random number 
sequence that is inverse to the post-processing per 
formed by the post-processing circuit; and 

an entropy checker configured to check the entropy of the 
random number sequence based on the processed ran 
dom number sequence. 

2. The arrangement of claim 1, 
wherein the decimation includes outputting a first number 

of post-processed bits for every second number of bits of 
the random input sequence input into the post-process 
ing circuit. 

3. The arrangement of claim 1, 
wherein the decimation is a compression of the random 

input sequence by a compression factor equal to a power 
of 2. 

4. The arrangement of claim 1, 
wherein the post-processing circuit comprises a linear 

feedback shift register and the post-processing is a pro 
cessing of the random input sequence by the linear feed 
back shift register. 

5. The arrangement of claim 4, 
wherein the decimation includes outputting a first number 

of bits stored in the linear feedback shift register each 
time after a second number of bits of the random input 
sequence have been input into the linear feedback shift 
register. 

6. The arrangement of claim 4, 
wherein the inverse post-processing circuit comprises a 

further linear feedback shift register and the processing 
of the random number sequence that is inverse to the 
post-processing performed by the post-processing cir 
cuit is a processing of the random number sequence by 
the further linear feedback shift register. 

7. The arrangement of claim 6, 
wherein the linear feedback shift register and the further 

linear feedback shift register are configured according to 
the same primitive polynomial. 

8. The arrangement of claim 1, 
wherein the random source comprises a noise source and a 

digitization unit configured to generate the randominput 
sequence by digitizing noise output by the noise source. 

9. The arrangement of claim 1, 
wherein the entropy checker is configured to detect 

whether the entropy of the random number sequence is 
Zero and, if it has detected that the entropy of the pro 
cessed random number sequence is Zero, to output a 
signal indicating that the random source has failed. 

10. The arrangement of claim 1, 
wherein the entropy checker is configured to detect 

whether the entropy of the processed random number 
sequence is Zero by detecting whether the processed 
random number sequence is constant. 

11. The arrangement of claim 1, further comprising: 
a controller configured to check the integrity of the post 

processing circuit by checking whether the processed 
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random number sequence is constant in response to a 
constant random input sequence. 

12. The arrangement of claim 1, 
wherein the entropy checker is configured to measure the 

entropy of the random number sequence by measuring 
the entropy of the processed random number sequence. 

13. The arrangement of claim 12, 
wherein the entropy checker is configured to measure the 

entropy of the processed random number sequence by 
applying a statistical test to the processed random num 
ber sequence. 

14. A processing device, comprising: 
an arrangement for checking the entropy of a random num 

ber sequence, comprising: 
a random source configured to provide a random input 

Sequence; 
a post-processing circuit configured to receive the ran 
dominput sequence and to generate a random number 
sequence from the random input sequence by per 
forming a post-processing and a decimation of the 
random input sequence; 

an inverse post-processing circuit configured to receive 
the random number sequence from the post-process 
ing circuit and to generate a processed random num 
ber sequence by a processing of the random number 
sequence that is inverse to the post-processing per 
formed by the post-processing circuit; and 

an entropy checker configured to check the entropy of 
the random number sequence based on the processed 
random number sequence. 

15. The processing device of claim 14, 
wherein the processing device is a chip card. 
16. A method for checking the entropy of a random number 

sequence comprising: 
generating a random number sequence from a random 

input sequence by performing a post-processing and a 
decimation of the random input sequence; 

generating a processed random number sequence by a pro 
cessing of the random number sequence that is inverse to 
the post-processing; and 

checking the entropy of the random number sequence 
based on the processed random number sequence. 

17. The method of claim 16, 
wherein the decimation includes outputting a first number 

of post-processed bits for every second number of bits of 
the random input sequence input into the post-process 
ing circuit. 

18. The method of claim 16, 
wherein the decimation is a compression of the random 

input sequence by a compression factor equal to a power 
of 2. 

19. The method of claim 16, further comprising: 
checking the integrity of the post-processing circuit by 

checking whether the processed random number 
sequence is constant in response to a constant random 
input sequence. 

20. The method of claim 16, 
wherein the method is performed by a chip card. 

k k k k k 


