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Description

PRIORITY CLAIM

[0001] This application claims priority to U.S. Provisional Patent Application No. 62/720,902, filed on August 21, 2018,
and titled, "Analog Neural Memory System for Deep Learning Neural Network Comprising Multiple Vector-By-Matrix
Multiplication Arrays and Shared Components," and U.S. Patent Application No. 16/182,492, filed on November 6, 2018,
and titled, "Analog Neural Memory System for Deep Learning Neural Network Comprising Multiple Vector-By-Matrix
Multiplication Arrays and Shared Components."

FIELD OF THE INVENTION

[0002] Numerous embodiments are disclosed for an analog neuromorphic memory system for use in a deep learning
neural network. The analog neuromorphic memory system comprises a plurality of vector-by-matrix multiplication arrays
and various components shared by those arrays, including high voltage generation blocks, verify blocks, and testing
blocks.

BACKGROUND OF THE INVENTION

[0003] Artificial neural networks mimic biological neural networks (the central nervous systems of animals, in particular
the brain) and are used to estimate or approximate functions that can depend on a large number of inputs and are
generally unknown. Artificial neural networks generally include layers of interconnected "neurons" which exchange
messages between each other.
[0004] Figure 1 illustrates an artificial neural network, where the circles represent the inputs or layers of neurons. The
connections (called synapses) are represented by arrows, and have numeric weights that can be tuned based on
experience. This makes neural networks adaptive to inputs and capable of learning. Typically, neural networks include
a layer of multiple inputs. There are typically one or more intermediate layers of neurons, and an output layer of neurons
that provide the output of the neural network. The neurons at each level individually or collectively make a decision
based on the received data from the synapses.
[0005] One of the major challenges in the development of artificial neural networks for high-performance information
processing is a lack of adequate hardware technology. Indeed, practical neural networks rely on a very large number
of synapses, enabling high connectivity between neurons, i.e. a very high computational parallelism. In principle, such
complexity can be achieved with digital supercomputers or specialized graphics processing unit clusters. However, in
addition to high cost, these approaches also suffer from mediocre energy efficiency as compared to biological networks,
which consume much less energy primarily because they perform low-precision analog computation. CMOS analog
circuits have been used for artificial neural networks, but most CMOS-implemented synapses have been too bulky given
the high number of neurons and synapses.
[0006] Applicant previously disclosed an artificial (analog) neural network that utilizes one or more non-volatile memory
arrays as the synapses in U.S. Patent Application No. 15/594,439. The non-volatile memory arrays operate as an analog
neuromorphic memory. The neural network device includes a first plurality of synapses configured to receive a first
plurality of inputs and to generate therefrom a first plurality of outputs, and a first plurality of neurons configured to receive
the first plurality of outputs. The first plurality of synapses includes a plurality of memory cells, wherein each of the
memory cells includes spaced apart source and drain regions formed in a semiconductor substrate with a channel region
extending there between, a floating gate disposed over and insulated from a first portion of the channel region and a
non-floating gate disposed over and insulated from a second portion of the channel region. Each of the plurality of
memory cells is configured to store a weight value corresponding to a number of electrons on the floating gate. The
plurality of memory cells is configured to multiply the first plurality of inputs by the stored weight values to generate the
first plurality of outputs.
[0007] Each non-volatile memory cells used in the analog neuromorphic memory system must be erased and pro-
grammed to hold a very specific and precise amount of charge, i.e., the number of electrons, in the floating gate. For
example, each floating gate must hold one of N different values, where N is the number of different weights that can be
indicated by each cell. Examples of N include 16, 32, 64, 128, and 256.
[0008] One unique characteristic of analog neuromorphic memory systems is that the system must support two different
types of read operations. In a normal read operation, an individual memory cell is read as in conventional memory
systems. However, in a neural read operation, the entire array of memory cells is read at one time, where each bit line
will output a current that is the sum of all currents from the memory cells connected to that bit line.
[0009] Supporting both types of read operations leads to several challenges. For example, the system must be able
to provide a wide range of voltage and current levels for the various operations that are applied to individual cells, entire
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arrays, or even all of the arrays at once. This requires extensive circuitry outside of the arrays themselves, which can
increase the amount of space needed on a semiconductor die for the system, as well as increase power consumption
and manufacturing cost.
[0010] What is needed is an improved architecture for an analog neuromorphic memory system that utilizes vector-
by-matrix multiplication arrays of flash memory cells that minimizes the amount of circuitry required outside of the arrays
themselves.
[0011] The document "Xinjie Guo: Mixed Signal Neurocomputing Based on Floating-gate Memories" refers to neuro-
morphic networks using highly optimized, nanoscale, non-volatile floating gate memory cells which are used in embedded
NOR flash memories.

SUMMARY OF THE INVENTION

[0012] The invention is defined in the appened independent claims. Preferred embodiments are defined in the appended
dependent claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013]

Figure 1 is a diagram that illustrates a prior art artificial neural network.
Figure 2 is a cross-sectional side view of a conventional 2-gate non-volatile memory cell.
Figure 3 is a cross-sectional side view of a conventional 4-gate non-volatile memory cell.
Figure 4 is a side cross-sectional side view of conventional 3-gate non-volatile memory cell.
Figure 5 is a cross-sectional side view of another conventional 2-gate non-volatile memory cell.
Figure 6 is a diagram illustrating the different levels of an exemplary artificial neural network utilizing a non-volatile
memory array.
Figure 7 is a block diagram illustrating a vector multiplier matrix.
Figure 8 is a block diagram illustrating various levels of a vector multiplier matrix.
Figure 9 depicts another embodiment of a vector multiplier matrix.
Figure 10 depicts another embodiment of a vector multiplier matrix.
Figure 11 depicts another embodiment of a vector multiplier matrix.
Figure 12 depicts another embodiment of a vector multiplier matrix.
Figure 13 depicts another embodiment of a vector multiplier matrix.
Figure 14 depicts a prior art long short term memory system.
Figure 15 depicts an exemplary cell in a prior art long short term memory system.
Figure 16 depicts an implementation of the exemplary cell in a long short term memory system of Figure 15.
Figure 17 depicts another implementation of the exemplary cell in a long short term memory system of Figure 15.
Figure 18 depicts a prior art gated recurrent unit system.
Figure 19 depicts an exemplary cell in a prior art gated recurrent unit system.
Figure 20 depicts an implementation of the exemplary cell in the gated recurrent unit system of Figure 19.
Figure 21 depicts another embodiment of the exemplary cell in the gated recurrent unit system of Figure 19.
Figure 22 depicts a flash analog neuromorphic memory shared architecture system.
Figure 23 depicts a VMM system within the flash analog neuromorphic memory shared architecture system of Figure
22.
Figure 24 depicts an output block for use in the flash analog neuromorphic memory shared architecture system of
Figure 22.
Figure 25 depicts an adaptable neuron for use in the flash analog neuromorphic memory shared architecture system
of Figure 22.
Figure 26 depicts an activation function circuit for use in the flash analog neuromorphic memory shared architecture
system of Figure 22.
Figure 27 depicts an operational amplifier for use in the adaptable neuron of Figure 25.
Figure 28 depicts various blocks used in conjunction with vector-by-matrix multiplication arrays for use in the flash
analog neuromorphic memory shared architecture system of Figure 22.
Figure 29 depicts a program and sensing block for use in the flash analog neuromorphic memory shared architecture
system of Figure 22.
Figure 30 depicts a reference array system for use in the flash analog neuromorphic memory shared architecture
system of Figure 22.
Figure 31 depicts decoding circuitry for use in the flash analog neuromorphic memory shared architecture system
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of Figure 22.
Figure 32 depicts decoding circuitry for use in the flash analog neuromorphic memory shared architecture system
of Figure 22.
Figure 33 depicts another adaptable neuron for use in the flash analog neuromorphic memory shared architecture
system of Figure 22.
Figure 34 depicts sample and hold circuits.
Figure 35 depicts an array architecture that is suitable for memory cells operating in the linear region.
Figure 36 depicts a high voltage generation block for use in the flash analog neuromorphic memory shared archi-
tecture system of Figure 22.
Figure 37 depicts a program bias block for use in the flash analog neuromorphic memory shared architecture system
of Figure 22.
Figure 38 depicts a sense amplifier circuit for use in the flash analog neuromorphic memory shared architecture
system of Figure 22.

DETAILED DESCRIPTION OF THE INVENTION

[0014] The artificial neural networks of the present invention utilize a combination of CMOS technology and non-volatile
memory arrays.

Non-Volatile Memory Cells

[0015] Digital non-volatile memories are well known. For example, U.S. Patent 5,029,130 ("the ’130 patent"), discloses
an array of split gate non-volatile memory cells, which are a type of flash memory cells. Such a memory cell 210 is shown
in Figure 2. Each memory cell 210 includes source region 14 and drain region 16 formed in a semiconductor substrate
12, with a channel region 18 there between. A floating gate 20 is formed over and insulated from (and controls the
conductivity of) a first portion of the channel region 18, and over a portion of the source region 14. A word line terminal
22 (which is typically coupled to a word line) has a first portion that is disposed over and insulated from (and controls
the conductivity of) a second portion of the channel region 18, and a second portion that extends up and over the floating
gate 20. The floating gate 20 and word line terminal 22 are insulated from the substrate 12 by a gate oxide. Bitline 24
is coupled to drain region 16.
[0016] Memory cell 210 is erased (where electrons are removed from the floating gate) by placing a high positive
voltage on the word line terminal 22, which causes electrons on the floating gate 20 to tunnel through the intermediate
insulation from the floating gate 20 to the word line terminal 22 via Fowler-Nordheim tunneling.
[0017] Memory cell 210 is programmed (where electrons are placed on the floating gate) by placing a positive voltage
on the word line terminal 22, and a positive voltage on the source region 14. Electron current will flow from the source
region 14 towards the drain region 16. The electrons will accelerate and become heated when they reach the gap
between the word line terminal 22 and the floating gate 20. Some of the heated electrons will be injected through the
gate oxide onto the floating gate 20 due to the attractive electrostatic force from the floating gate 20.
[0018] Memory cell 210 is read by placing positive read voltages on the drain region 16 and word line terminal 22
(which turns on the portion of the channel region 18 under the word line terminal). If the floating gate 20 is positively
charged (i.e. erased of electrons), then the portion of the channel region 18 under the floating gate 20 is turned on as
well, and current will flow across the channel region 18, which is sensed as the erased or "1" state. If the floating gate
20 is negatively charged (i.e. programmed with electrons), then the portion of the channel region under the floating gate
20 is mostly or entirely turned off, and current will not flow (or there will be little flow) across the channel region 18, which
is sensed as the programmed or "0" state.
[0019] Table No. 1 depicts typical voltage ranges that can be applied to the terminals of memory cell 110 for performing
read, erase, and program operations:

[0020] Other split gate memory cell configurations, which are other types of flash memory cells, are known. For

Table No. 1: Operation of Flash Memory Cell 210 of Figure 3

WL BL SL

Read 2-3V 0.6-2V 0V

Erase ∼11-13V 0V 0V

Program 1-2V 1-3mA 9-10V
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example, Figure 3 depicts a four-gate memory cell 310 comprising source region 14, drain region 16, floating gate 20
over a first portion of channel region 18, a select gate 22 (typically coupled to a word line, WL) over a second portion of
the channel region 18, a control gate 28 over the floating gate 20, and an erase gate 30 over the source region 14. This
configuration is described in U.S. Patent 6,747,310). Here, all gates are non-floating gates except floating gate 20,
meaning that they are electrically connected or connectable to a voltage source. Programming is performed by heated
electrons from the channel region 18 injecting themselves onto the floating gate 20. Erasing is performed by electrons
tunneling from the floating gate 20 to the erase gate 30.
[0021] Table No. 2 depicts typical voltage ranges that can be applied to the terminals of memory cell 310 for performing
read, erase, and program operations:

[0022] Figure 4 depicts a three-gate memory cell 410, which is another type of flash memory cell. Memory cell 410 is
identical to the memory cell 310 of Figure 3 except that memory cell 410 does not have a separate control gate. The
erase operation (whereby erasing occurs through use of the erase gate) and read operation are similar to that of the
Figure 3 except there is no control gate bias applied. The programming operation also is done without the control gate
bias, and as a result, a higher voltage must be applied on the source line during a program operation to compensate for
a lack of control gate bias.
[0023] Table No. 3 depicts typical voltage ranges that can be applied to the terminals of memory cell 410 for performing
read, erase, and program operations:

[0024] Figure 5 depicts stacked gate memory cell 510, which is another type of flash memory cell. Memory cell 510
is similar to memory cell 210 of Figure 2, except that floating gate 20 extends over the entire channel region 18, and
control gate 22 (which here will be coupled to a word line) extends over floating gate 20, separated by an insulating layer
(not shown). The erase, programming, and read operations operate in a similar manner to that described previously for
memory cell 210.
[0025] Table No. 4 depicts typical voltage ranges that can be applied to the terminals of memory cell 510 and substrate
12 for performing read, erase, and program operations:

[0026] In order to utilize the memory arrays comprising one of the types of non-volatile memory cells described above
in an artificial neural network, two modifications are made. First, the lines are configured so that each memory cell can
be individually programmed, erased, and read without adversely affecting the memory state of other memory cells in
the array, as further explained below. Second, continuous (analog) programming of the memory cells is provided.
[0027] Specifically, the memory state (i.e. charge on the floating gate) of each memory cell in the array can be con-
tinuously changed from a fully erased state to a fully programmed state, independently and with minimal disturbance of

Table No. 2: Operation of Flash Memory Cell 310 of Figure 3

WL/SG BL CG EG SL

Read 1.0-2V 0.6-2V 0-2.6V 0-2.6V 0V

Erase -0.5V/0V 0V 0V/-8V 8-12V 0V

Program 1V 1mA 8-11V 4.5-9V 4.5-5V

Table No. 3: Operation of Flash Memory Cell 410 of Figure 4

WL/SG BL EG SL

Read 0.7-2.2V 0.6-2V 0-2.6V 0V

Erase -0.5V/0V 0V 11.5V 0V

Program 1V 2-3 mA 4.5V 7-9V

Table No. 4 Operation of Flash Memory Cell 510 of Figure 5

CG BL SL Substrate

Read 2-5V 0.6 - 2V 0V 0V

Erase -8 to -10V/0V FLT FLT 8-10V / 15-20V

Program 8-12V 3-5V 0V 0V
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other memory cells. In another embodiment, the memory state (i.e., charge on the floating gate) of each memory cell in
the array can be continuously changed from a fully programmed state to a fully erased state, and vice-versa, independently
and with minimal disturbance of other memory cells. This means the cell storage is analog or at the very least can store
one of many discrete values (such as 16 or 64 different values), which allows for very precise and individual tuning of
all the cells in the memory array, and which makes the memory array ideal for storing and making fine tuning adjustments
to the synapsis weights of the neural network.

Neural Networks Employing Non-Volatile Memory Cell Arrays

[0028] Figure 6 conceptually illustrates a non-limiting example of a neural network utilizing a non-volatile memory
array of the present embodiments. This example uses the non-volatile memory array neural network for a facial recognition
application, but any other appropriate application could be implemented using a non-volatile memory array based neural
network.
[0029] S0 is the input layer, which for this example is a 32332 pixel RGB image with 5 bit precision (i.e. three 32332
pixel arrays, one for each color R, G and B, each pixel being 5 bit precision). The synapses CB1 going from input layer
S0 to layer C1 apply different sets of weights in some instances and shared weights in other instances, and scan the
input image with 333 pixel overlapping filters (kernel), shifting the filter by 1 pixel (or more than 1 pixel as dictated by
the model). Specifically, values for 9 pixels in a 333 portion of the image (i.e., referred to as a filter or kernel) are provided
to the synapses CB1, where these 9 input values are multiplied by the appropriate weights and, after summing the
outputs of that multiplication, a single output value is determined and provided by a first synapse of CB1 for generating
a pixel of one of the layers of feature map C1. The 333 filter is then shifted one pixel to the right within input layer S0
(i.e., adding the column of three pixels on the right, and dropping the column of three pixels on the left), whereby the 9
pixel values in this newly positioned filter are provided to the synapses CB1, where they are multiplied by the same
weights and a second single output value is determined by the associated synapse. This process is continued until the
3x3 filter scans across the entire 32332 pixel image of input layer S0, for all three colors and for all bits (precision values).
The process is then repeated using different sets of weights to generate a different feature map of C1, until all the features
maps of layer C1 have been calculated.
[0030] In layer C1, in the present example, there are 16 feature maps, with 30330 pixels each. Each pixel is a new
feature pixel extracted from multiplying the inputs and kernel, and therefore each feature map is a two dimensional array,
and thus in this example layer C1 constitutes 16 layers of two dimensional arrays (keeping in mind that the layers and
arrays referenced herein are logical relationships, not necessarily physical relationships - i.e., the arrays are not neces-
sarily oriented in physical two dimensional arrays). Each of the 16 feature maps in layer C1 is generated by one of
sixteen different sets of synapse weights applied to the filter scans. The C1 feature maps could all be directed to different
aspects of the same image feature, such as boundary identification. For example, the first map (generated using a first
weight set, shared for all scans used to generate this first map) could identify circular edges, the second map (generated
using a second weight set different from the first weight set) could identify rectangular edges, or the aspect ratio of
certain features, and so on.
[0031] An activation function P1 (pooling) is applied before going from layer C1 to layer S1, which pools values from
consecutive, non-overlapping 232 regions in each feature map. The purpose of the pooling function is to average out
the nearby location (or a max function can also be used), to reduce the dependence of the edge location for example
and to reduce the data size before going to the next stage. At layer S1, there are 16 15315 feature maps (i.e., sixteen
different arrays of 15315 pixels each). The synapses CB2 going from layer S1 to layer C2 scan maps in S1 with 434
filters, with a filter shift of 1 pixel. At layer C2, there are 22 12312 feature maps. An activation function P2 (pooling) is
applied before going from layer C2 to layer S2, which pools values from consecutive non-overlapping 232 regions in
each feature map. At layer S2, there are 22 636 feature maps. An activation function (pooling) is applied at the synapses
CB3 going from layer S2 to layer C3, where every neuron in layer C3 connects to every map in layer S2 via a respective
synapse of CB3. At layer C3, there are 64 neurons. The synapses CB4 going from layer C3 to the output layer S3 fully
connects C3 to S3, i.e. every neuron in layer C3 is connected to every neuron in layer S3. The output at S3 includes 10
neurons, where the highest output neuron determines the class. This output could, for example, be indicative of an
identification or classification of the contents of the original image.
[0032] Each layer of synapses is implemented using an array, or a portion of an array, of non-volatile memory cells.
[0033] Figure 7 is a block diagram of an array that can be used for that purpose. Vector-by-matrix multiplication (VMM)
array 32 includes non-volatile memory cells and is utilized as the synapses (such as CB1, CB2, CB3, and CB4 in Figure
6) between one layer and the next layer. Specifically, VMM array 32 includes an array of non-volatile memory cells 33,
erase gate and word line gate decoder 34, control gate decoder 35, bit line decoder 36 and source line decoder 37,
which decode the respective inputs for the non-volatile memory cell array 33. Input to VMM array 32 can be from the
erase gate and wordline gate decoder 34 or from the control gate decoder 35. Source line decoder 37 in this example
also decodes the output of the non-volatile memory cell array 33. Alternatively, bit line decoder 36 can decode the output
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of the non-volatile memory cell array 33.
[0034] Non-volatile memory cell array 33 serves two purposes. First, it stores the weights that will be used by the VMM
array 32. Second, the non-volatile memory cell array 33 effectively multiplies the inputs by the weights stored in the non-
volatile memory cell array 33 and adds them up per output line (source line or bit line) to produce the output, which will
be the input to the next layer or input to the final layer. By performing the multiplication and addition function, the non-
volatile memory cell array 33 negates the need for separate multiplication and addition logic circuits and is also power
efficient due to its in-situ memory computation.
[0035] The output of non-volatile memory cell array 33 is supplied to a differential summer (such as a summing op-
amp or a summing current mirror) 38, which sums up the outputs of the non-volatile memory cell array 33 to create a
single value for that convolution. The differential summer 38 is arranged to perform summation of positive weight and
negative weight.
[0036] The summed up output values of differential summer 38 are then supplied to an activation function circuit 39,
which rectifies the output. The activation function circuit 39 may provide sigmoid, tanh, or ReLU functions. The rectified
output values of activation function circuit 39 become an element of a feature map as the next layer (e.g. C1 in Figure
6), and are then applied to the next synapse to produce the next feature map layer or final layer. Therefore, in this
example, non-volatile memory cell array 33 constitutes a plurality of synapses (which receive their inputs from the prior
layer of neurons or from an input layer such as an image database), and summing op-amp 38 and activation function
circuit 39 constitute a plurality of neurons.
[0037] The input to VMM array 32 in Figure 7 (WLx, EGx, CGx, and optionally BLx and SLx) can be analog level,
binary level, or digital bits (in which case a DAC is provided to convert digital bits to appropriate input analog level) and
the output can be analog level, binary level, or digital bits (in which case an output ADC is provided to convert output
analog level into digital bits).
[0038] Figure 8 is a block diagram depicting the usage of numerous layers of VMM arrays 32, here labeled as VMM
arrays 32a, 32b, 32c, 32d, and 32e. As shown in Figure 8, the input, denoted Inputx, is converted from digital to analog
by a digital-to-analog converter 31, and provided to input VMM array 32a. The converted analog inputs could be voltage
or current. The input D/A conversion for the first layer could be done by using a function or a LUT (look up table) that
maps the inputs Inputx to appropriate analog levels for the matrix multiplier of input VMM array 32a. The input conversion
could also be done by an analog to analog (A/A) converter to convert an external analog input to a mapped analog input
to the input VMM array 32a.
[0039] The output generated by input VMM array 32a is provided as an input to the next VMM array (hidden level 1)
32b, which in turn generates an output that is provided as an input to the next VMM array (hidden level 2) 32c, and so
on. The various layers of VMM array 32 function as different layers of synapses and neurons of a convolutional neural
network (CNN). Each VMM array 32a, 32b, 32c, 32d, and 32e can be a stand-alone, physical non-volatile memory array,
or multiple VMM arrays could utilize different portions of the same physical non-volatile memory array, or multiple VMM
arrays could utilize overlapping portions of the same physical non-volatile memory array. The example shown in Figure
8 contains five layers (32a,32b,32c,32d,32e): one input layer (32a), two hidden layers (32b,32c), and two fully connected
layers (32d,32e). One of ordinary skill in the art will appreciate that this is merely exemplary and that a system instead
could comprise more than two hidden layers and more than two fully connected layers.

Vector-by-Matrix Multiplication (VMM) Arrays

[0040] Figure 9 depicts neuron VMM array 900, which is particularly suited for memory cells 310 as shown in Figure
3, and is utilized as the synapses and parts of neurons between an input layer and the next layer. VMM array 900
comprises memory array 901 of non-volatile memory cells and reference array 902 (at the top of the array) of non-volatile
reference memory cells. Alternatively, another reference array can be placed at the bottom.
[0041] In VMM array 900, control gate lines, such as control gate line 903, run in a vertical direction (hence reference
array 902 in the row direction is orthogonal to control gate line 903), and erase gate lines, such as erase gate line 904,
run in a horizontal direction. Here, the inputs to VMM array 900 are provided on the control gate lines (CG0, CG1, CG2,
CG3), and the output of VMM array 900 emerges on the source lines (SL0, SL1). In one embodiment, only even rows
are used, and in another embodiment, only odd rows are used. The current placed on each source line (SL0, SL1,
respectively) performs a summing function of all the currents from the memory cells connected to that particular source
line.
[0042] As described herein for neural networks, the non-volatile memory cells of VMM array 900, i.e. the flash memory
of VMM array 900, are preferably configured to operate in a sub-threshold region.
[0043] The non-volatile reference memory cells and the non-volatile memory cells described herein are biased in weak
inversion: 
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where w = e (-Vth)/kVt

[0044] For an I-to-V log converter using a memory cell (such as a reference memory cell or a peripheral memory cell)
or a transistor to convert input current into an input voltage: 

Here, wp is w of a reference or peripheral memory cell.
[0045] For a memory array used as a vector matrix multiplier VMM array, the output current is: 

Here, wa = w of each memory cell in the memory array.
[0046] A wordline or control gate can be used as the input for the memory cell for the input voltage.
[0047] Alternatively, the flash memory cells of VMM arrays described herein can be configured to operate in the linear
region: 

[0048] A wordline or control gate or bitline or sourceline can be used as the input for the memory cell operated in the
linear region for the input voltage.
[0049] For an I-to-V linear converter, a memory cell (such as a reference memory cell or a peripheral memory cell) or
a transistor operating in the linear region can be used to linearly convert an input/output current into an input/output voltage.
[0050] Other embodiments for VMM array 32 of Figure 7 are described in U.S. Patent Application No. Application No.
15/826,345. As described in that application, a sourceline or a bitline can be used as the neuron output (current summation
output).
[0051] Figure 10 depicts neuron VMM array 1000, which is particularly suited for memory cells 210 as shown in Figure
2, and is utilized as the synapses between an input layer and the next layer. VMM array 1000 comprises a memory array
1003 of non-volatile memory cells, reference array 1001 of first non-volatile reference memory cells, and reference array
1002 of second non-volatile reference memory cells. Reference arrays 1001 and 1002, arranged in the column direction
of the array, serve to convert current inputs flowing into terminals BLR0, BLR1, BLR2, and BLR3 into voltage inputs
WL0, WL1, WL2, and WL3. In effect, the first and second non-volatile reference memory cells are diode-connected
through multiplexors 1014 with current inputs flowing into them. The reference cells are tuned (e.g., programmed) to
target reference levels. The target reference levels are provided by a reference mini-array matrix (not shown).
[0052] Memory array 1003 serves two purposes. First, it stores the weights that will be used by the VMM array 1000
on respective memory cells thereof. Second, memory array 1003 effectively multiplies the inputs (i.e. current inputs
provided in terminals BLR0, BLR1, BLR2, and BLR3, which reference arrays 1001 and 1002 convert into the input
voltages to supply to wordlines WL0, WL1, WL2, and WL3) by the weights stored in the memory array 1003 and then
adds all the results (memory cell currents) to produce the output on the respective bit lines (BL0 - BLN), which will be
the input to the next layer or input to the final layer. By performing the multiplication and addition function, memory array
1003 negates the need for separate multiplication and addition logic circuits and is also power efficient. Here, the voltage
inputs are provided on the word lines WL0, WL1, WL2, and WL3, and the output emerges on the respective bit lines
BL0 - BLN during a read (inference) operation. The current placed on each of the bit lines BL0 - BLN performs a summing
function of the currents from all non-volatile memory cells connected to that particular bitline.
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[0053] Table No. 5 depicts operating voltages for VMM array 1000. The columns in the table indicate the voltages
placed on word lines for selected cells, word lines for unselected cells, bit lines for selected cells, bit lines for unselected
cells, source lines for selected cells, and source lines for unselected cells. The rows indicate the operations of read,
erase, and program.

[0054] Figure 11 depicts neuron VMM array 1100, which is particularly suited for memory cells 210 as shown in Figure
2, and is utilized as the synapses and parts of neurons between an input layer and the next layer. VMM array 1100
comprises a memory array 1103 of non-volatile memory cells, reference array 1101 of first non-volatile reference memory
cells, and reference array 1102 of second non-volatile reference memory cells. Reference arrays 1101 and 1102 run in
row direction of the VMM array 1100. VMM array is similar to VMM 1000 except that in VMM array 1100, the word lines
run in the vertical direction. Here, the inputs are provided on the word lines (WLA0, WLB0, WLA1, WLB2, WLA2, WLB2,
WLA3, WLB3), and the output emerges on the source line (SL0, SL1) during a read operation. The current placed on
each source line performs a summing function of all the currents from the memory cells connected to that particular
source line.
[0055] Table No. 6 depicts operating voltages for VMM array 1100. The columns in the table indicate the voltages
placed on word lines for selected cells, word lines for unselected cells, bit lines for selected cells, bit lines for unselected
cells, source lines for selected cells, and source lines for unselected cells. The rows indicate the operations of read,
erase, and program.

[0056] Figure 12 depicts neuron VMM array 1200, which is particularly suited for memory cells 310 as shown in Figure
3, and is utilized as the synapses and parts of neurons between an input layer and the next layer. VMM array 1200
comprises a memory array 1203 of non-volatile memory cells, reference array 1201 of first non-volatile reference memory
cells, and reference array 1202 of second non-volatile reference memory cells. Reference arrays 1201 and 1202 serve
to convert current inputs flowing into terminals BLR0, BLR1, BLR2, and BLR3 into voltage inputs CG0, CG1, CG2, and
CG3. In effect, the first and second non-volatile reference memory cells are diode-connected through multiplexors 1212
with current inputs flowing into them through BLR0, BLR1, BLR2, and BLR3. Multiplexors 1212 each include a respective
multiplexor 1205 and a cascoding transistor 1204 to ensure a constant voltage on the bitline (such as BLR0) of each of
the first and second non-volatile reference memory cells during a read operation. The reference cells are tuned to target
reference levels.
[0057] Memory array 1203 serves two purposes. First, it stores the weights that will be used by the VMM array 1200.
Second, memory array 1203 effectively multiplies the inputs (current inputs provided to terminals BLR0, BLR1, BLR2,
and BLR3, for which reference arrays 1201 and 1202 convert these current inputs into the input voltages to supply to
the control gates (CG0, CG1, CG2, and CG3) by the weights stored in the memory array and then add all the results
(cell currents) to produce the output, which appears on BL0 - BLN, and will be the input to the next layer or input to the
final layer. By performing the multiplication and addition function, the memory array negates the need for separate
multiplication and addition logic circuits and is also power efficient. Here, the inputs are provided on the control gate
lines (CG0, CG1, CG2, and CG3), and the output emerges on the bitlines (BL0 - BLN) during a read operation. The
current placed on each bitline performs a summing function of all the currents from the memory cells connected to that
particular bitline.
[0058] VMM array 1200 implements uni-directional tuning for non-volatile memory cells in memory array 1203. That
is, each non-volatile memory cell is erased and then partially programmed until the desired charge on the floating gate

Table No. 5 Operation of VMM Array 1000 of Figure 10:

WL WL -unsel BL BL -unsel SL SL -unsel

Read 1-3.5V -0.5V/0V 0.6-2V (Ineuron) 0.6V-2V/0V 0V 0V

Erase ~5-13V 0V 0V 0V 0V 0V

Program 1-2V -0.5V/0V 0.1-3 uA Vinh -2.5V 4-10V 0-1V/FLT

Table No. 6: Operation of VMM Array 1100 of Figure 11

WL WL -unsel BL BL -unsel SL SL -unsel

Read 1-3.5V -0.5V/0V 0.6-2V 0.6V-2V/0V ~0.3-1V (Ineuron) 0V

Erase ~5-13V 0V 0V 0V 0V SL-inhibit (~4-8V)

Program 1-2V -0.5V/0V 0.1-3 uA Vinh -2.5V 4-10V 0-1V/FLT
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is reached. This can be performed, for example, using the novel precision programming techniques described below. If
too much charge is placed on the floating gate (such that the wrong value is stored in the cell), the cell must be erased
and the sequence of partial programming operations must start over. As shown, two rows sharing the same erase gate
(such as EG0 or EG1) need to be erased together (which is known as a page erase), and thereafter, each cell is partially
programmed until the desired charge on the floating gate is reached.
[0059] Table No. 7 depicts operating voltages for VMM array 1200. The columns in the table indicate the voltages
placed on word lines for selected cells, word lines for unselected cells, bit lines for selected cells, bit lines for unselected
cells, control gates for selected cells, control gates for unselected cells in the same sector as the selected cells, control
gates for unselected cells in a different sector than the selected cells, erase gates for selected cells, erase gates for
unselected cells, source lines for selected cells, and source lines for unselected cells. The rows indicate the operations
of read, erase, and program.
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[0060] Figure 13 depicts neuron VMM array 1300, which is particularly suited for memory cells 310 as shown in Figure
3, and is utilized as the synapses and parts of neurons between an input layer and the next layer. VMM array 1300
comprises a memory array 1303 of non-volatile memory cells, reference array 1301 or first non-volatile reference memory
cells, and reference array 1302 of second non-volatile reference memory cells. EG lines EGR0, EG0, EG1 and EGR1
are run vertically while CG lines CG0, CG1, CG2 and CG3 and SL lines WL0, WL1, WL2 and WL3 are run horizontally.
VMM array 1300 is similar to VMM array 1400, except that VMM array 1300 implements bi-directional tuning, where
each individual cell can be completely erased, partially programmed, and partially erased as needed to reach the desired
amount of charge on the floating gate due to the use of separate EG lines. As shown, reference arrays 1301 and 1302
convert input current in the terminal BLR0, BLR1, BLR2, and BLR3 into control gate voltages CG0, CG1, CG2, and CG3
(through the action of diode-connected reference cells through multiplexors 1314) to be applied to the memory cells in
the row direction. The current output (neuron) is in the bitlines BL0 - BLN, where each bit line sums all currents from the
non-volatile memory cells connected to that particular bitline.
[0061] Table No. 8 depicts operating voltages for VMM array 1300. The columns in the table indicate the voltages
placed on word lines for selected cells, word lines for unselected cells, bit lines for selected cells, bit lines for unselected
cells, control gates for selected cells, control gates for unselected cells in the same sector as the selected cells, control
gates for unselected cells in a different sector than the selected cells, erase gates for selected cells, erase gates for
unselected cells, source lines for selected cells, and source lines for unselected cells. The rows indicate the operations
of read, erase, and program.
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Long Short-Term Memory

[0062] The prior art includes a concept known as long short-term memory (LSTM). LSTM units often are used in neural
networks. LSTM allows a neural network to remember information over predetermined arbitrary time intervals and to
use that information in subsequent operations. A conventional LSTM unit comprises a cell, an input gate, an output gate,
and a forget gate. The three gates regulate the flow of information into and out of the cell and the time interval that the
information is remembered in the LSTM. VMMs are particularly useful in LSTM units.
[0063] Figure 14 depicts an exemplary LSTM 1400. LSTM 1400 in this example comprises cells 1401, 1402, 1403,
and 1404. Cell 1401 receives input vector x0 and generates output vector h0 and cell state vector c0. Cell 1402 receives
input vector x1, the output vector (hidden state) h0 from cell 1401, and cell state c0 from cell 1401 and generates output
vector h1 and cell state vector c1. Cell 1403 receives input vector x2, the output vector (hidden state) h1 from cell 1402,
and cell state c1 from cell 1402 and generates output vector h2 and cell state vector c2. Cell 1404 receives input vector
x3, the output vector (hidden state) h2 from cell 1403, and cell state c2 from cell 1403 and generates output vector h3.
Additional cells can be used, and an LSTM with four cells is merely an example.
[0064] Figure 15 depicts an exemplary implementation of an LSTM cell 1500, which can be used for cells 1401, 1402,
1403, and 1404 in Figure 14. LSTM cell 1500 receives input vector x(t), cell state vector c(t-1) from a preceding cell,
and output vector h(t-1) from a preceding cell, and generates cell state vector c(t) and output vector h(t).
[0065] LSTM cell 1500 comprises sigmoid function devices 1501, 1502, and 1503, each of which applies a number
between 0 and 1 to control how much of each component in the input vector is allowed through to the output vector.
LSTM cell 1500 also comprises tanh devices 1504 and 1505 to apply a hyperbolic tangent function to an input vector,
multiplier devices 1506, 1507, and 1508 to multiply two vectors together, and addition device 1509 to add two vectors
together. Output vector h(t) can be provided to the next LSTM cell in the system, or it can be accessed for other purposes.
[0066] Figure 16 depicts an LSTM cell 1600, which is an example of an implementation of LSTM cell 1500. For the
reader’s convenience, the same numbering from LSTM cell 1500 is used in LSTM cell 1600. Sigmoid function devices
1501, 1502, and 1503 and tanh device 1504 each comprise multiple VMM arrays 1601 and activation circuit blocks
1602. Thus, it can be seen that VMM arrays are particular useful in LSTM cells used in certain neural network systems.
[0067] An alternative to LSTM cell 1600 (and another example of an implementation of LSTM cell 1500) is shown in
Figure 17. In Figure 17, sigmoid function devices 1501, 1502, and 1503 and tanh device 1504 share the same physical
hardware (VMM arrays 1701 and activation function block 1702) in a time-multiplexed fashion. LSTM cell 1700 also
comprises multiplier device 1703 to multiply two vectors together, addition device 1708 to add two vectors together, tanh
device 1505 (which comprises activation circuit block 1702), register 1707 to store the value i(t) when i(t) is output from
sigmoid function block 1702, register 1704 to store the value f(t) ∗ c(t-1) when that value is output from multiplier device
1703 through multiplexor 1710, register 1705 to store the value i(t) ∗ u(t) when that value is output from multiplier device
1703 through multiplexor 1710, and register 1706 to store the value o(t) ∗ c~(t) when that value is output from multiplier
device 1703 through multiplexor 1710, and multiplexor 1709.
[0068] Whereas LSTM cell 1600 contains multiple sets of VMM arrays 1601 and respective activation function blocks
1602, LSTM cell 1700 contains only one set of VMM arrays 1701 and activation function block 1702, which are used to
represent multiple layers in the embodiment of LSTM cell 1700. LSTM cell 1700 will require less space than LSTM 1600,
as LSTM cell 1700 will require 1/4 as much space for VMMs and activation function blocks compared to LSTM cell 1600.
[0069] It can be further appreciated that LSTM units will typically comprise multiple VMM arrays, each of which requires
functionality provided by certain circuit blocks outside of the VMM arrays, such as a summer and activation circuit block
and high voltage generation blocks. Providing separate circuit blocks for each VMM array would require a significant
amount of space within the semiconductor device and would be somewhat inefficient. The embodiments described below
therefore attempt to minimize the circuitry required outside of the VMM arrays themselves.

Gated Recurrent Units

[0070] An analog VMM implementation can be utilized for a GRU (gated recurrent unit) system. GRUs are a gating
mechanism in recurrent neural networks. GRUs are similar to LSTMs, except that GRU cells generally contain fewer
components than an LSTM cell.
[0071] Figure 18 depicts an exemplary GRU 1800. GRU 1800 in this example comprises cells 1801, 1802, 1803, and
1804. Cell 1801 receives input vector x0 and generates output vector h0. Cell 1802 receives input vector x1, the output
vector (hidden state) h0 from cell 1801 and generates output vector h1. Cell 1803 receives input vector x2 and the output
vector (hidden state) h1 from cell 1802 and generates output vector h2. Cell 1804 receives input vector x3 and the output
vector (hidden state) h2 from cell 1803 and generates output vector h3. Additional cells can be used, and an GRU with
four cells is merely an example.
[0072] Figure 19 depicts an exemplary implementation of a GRU cell 1900, which can be used for cells 1801, 1802,
1803, and 1804 of Figure 18. GRU cell 1900 receives input vector x(t) and output vector h(t-1) from a preceding GRU
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cell and generates output vector h(t). GRU cell 1900 comprises sigmoid function devices 1901 and 1902, each of which
applies a number between 0 and 1 to components from output vector h(t-1) and input vector x(t). GRU cell 1900 also
comprises a tanh device 1903 to apply a hyperbolic tangent function to an input vector, a plurality of multiplier devices
1904, 1905, and 1906 to multiply two vectors together, an addition device 1907 to add two vectors together, and a
complementary device 1908 to subtract an input from 1 to generate an output.
[0073] Figure 20 depicts a GRU cell 2000, which is an example of an implementation of GRU cell 1900. For the reader’s
convenience, the same numbering from GRU cell 1900 is used in GRU cell 2000. As can be seen in Figure 20, sigmoid
function devices 1901 and 1902, and tanh device 1903 each comprise multiple VMM arrays 2001 and activation function
blocks 2002. Thus, it can be seen that VMM arrays are of particular use in GRU cells used in certain neural network
systems.
[0074] An alternative to GRU cell 2000 (and another example of an implementation of GRU cell 1900) is shown in
Figure 21. In Figure 21, GRU cell 2100 utilizes VMM arrays 2101 and activation function block 2102, which when
configured as a sigmoid function applies a number between 0 and 1 to control how much of each component in the input
vector is allowed through to the output vector. In Figure 21, sigmoid function devices 1901 and 1902 and tanh device
1903 share the same physical hardware (VMM arrays 2101 and activation function block 2102) in a time-multiplexed
fashion. GRU cell 2100 also comprises multiplier device 2103 to multiply two vectors together, addition device 2105 to
add two vectors together, complementary device 2109 to subtract an input from 1 to generate an output, multiplexor
2104, register 2106 to hold the value h(t-1) ∗ r(t) when that value is output from multiplier device 2103 through multiplexor
2104, register 2107 to hold the value h(t-1) ∗z(t) when that value is output from multiplier device 2103 through multiplexor
2104, and register 2108 to hold the value h^(t) ∗ (1-z(t)) when that value is output from multiplier device 2103 through
multiplexor 2104.
[0075] Whereas GRU cell 2000 contains multiple sets of VMM arrays 2001 and activation function blocks 2002, GRU
cell 2100 contains only one set of VMM arrays 2101 and activation function block 2102, which are used to represent
multiple layers in the embodiment of GRU cell 2100. GRU cell 2100 will require less space than GRU cell 2000, as GRU
cell 2100 will require 1/3 as much space for VMMs and activation function blocks compared to GRU cell 2000.
[0076] It can be further appreciated that GRU systems will typically comprise multiple VMM arrays, each of which
requires functionality provided by certain circuit blocks outside of the VMM arrays, such as a summer and activation
circuit block and high voltage generation blocks. Providing separate circuit blocks for each VMM array would require a
significant amount of space within the semiconductor device and would be somewhat inefficient. The embodiments
described below therefore attempt to minimize the circuitry required outside of the VMM arrays themselves.
[0077] The input to the VMM arrays can be an analog level, a binary level, or digital bits (in this case a DAC is needed
to convert digital bits to appropriate input analog level) and the output can be an analog level, a binary level, or digital
bits (in this case an output ADC is needed to convert output analog level into digital bits).
[0078] For each memory cell in a VMM array, each weight w can be implemented by a single memory cell or by a
differential cell or by two blend memory cells (average of 2 cells). In the differential cell case, two memory cells are
needed to implement a weight w as a differential weight (w = w+ - w-). In the two blend memory cells, two memory cells
are needed to implement a weight w as an average of two cells.

Flash Analog Neuromorphic Memory Shared Architecture System

[0079] Figure 22 depicts flash analog neuromorphic memory shared architecture system 2200, which comprises VMM
systems 2221, 2222, and 2223 and shared circuit blocks 2217. VMM system 2221 comprises macro blocks 2201 and
2202 and output block 2207, the latter of which can comprise a summer, an analog-to-digital converter, or another type
of functional block, and provides an output for macro blocks 2201 and 2202. VMM system 2222 comprises macro blocks
2203 and 2204 and output block 2208, the latter of which can comprise a summer, an analog-to-digital converter, or
another type of functional block, and provides an output for macro blocks macro blocks 2203 and 2204. VMM system
2223 comprises macro blocks 2205 and 2206 and output block 2209, the latter of which can comprise a summer, an
analog-to-digital converter, or another type of functional block, and provides an output for macro blocks macro blocks
2205 and 2206. As discussed in greater detail with respect to Figure 23, each macro block, such as macro blocks 2201,
2202, 2203, 2204, 2205, and 2206, contain one VMM array.
[0080] Shared circuit blocks 2217 are used by VMM systems 2221, 2222, and 2223. In this example, shared circuit
blocks 2217 include:

• analog circuit block 2210;
• high voltage generation block 2211;
• verify block 2212;
• system control block 2213;
• array reference block 2214; and
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• sensing block 2215.

[0081] Analog circuit block 2210 contains analog circuitry for performing certain analog functions required by macro
blocks 2201, 2202, 2203, 2204, 2205, and 2206 during operation such as to provide reference voltage, timing, and
current for program, erase, read, and verify operation. Verify operation is used to confirm a target weight (meaning
certain floating gate charge) is reached during erase or program.
[0082] High voltage generation block 2211 provides various high voltages required by macro blocks 2201, 2202, 2203,
2204, 2205, and 2206 during various operations, such as program operations and erase operations. Optionally, high
voltage generation block 2211 provides those high voltages concurrently (with sufficient voltage and current) to two or
more of macro blocks 2201, 2202, 2203, 2204, 2205, and 2206, and optionally, program operations can occur concurrently
within two or more of macro blocks 2201, 2202, 2203, 2204, 2205, and 2206 in response to a single command or multiple
commands, and optionally, erase operations can occur concurrently within two or more of macro blocks 2201, 2202,
2203, 2204, 2205, and 2206 in response to a single command or multiple commands.
[0083] Verify block 2212 performs a verify operation as part of a write-and-verify operation on macro blocks 2201,
2202, 2203, 2204, 2205, and 2206 or a portion thereof during write operations. Optionally, the verify block 2212 can
perform verify operations concurrently on two or more of macro blocks 2201, 2202, 2203, 2204, 2205, and 2206. Verify
block 2212 comprises a sensing block (such as the sensing portion of program and sensing block 2900 depicted in
Figure 29).
[0084] System control block 2213 provides various system control functions, such as trimming of various components
(such as the adjustable resistors, transistors, and current sources discussed below) using trimming block 2216, as well
as testing. It also provides macro/core interface command control logic and write algorithm. It also provides control logic
for component sharing across multiple macros or cores,
[0085] Array reference block 2214 provides reference memory cells for use during sense or verify operations within
macro blocks 2201, 2202, 2203, 2204, 2205, and 2206. Alternatively, the sense or verify may use reference levels
provided by a resistor, a MOSFET, or a bandgap-based bias.
[0086] Sensing block 2215 performs a sense operation on macro blocks 2201, 2202, 2203, 2204, 2205, and 2206 or
a portion thereof during write operations. Optionally, sensing block 2215 can perform sense operations concurrently on
two or more of macro blocks 2201, 2202, 2203, 2204, 2205, and 2206. Sensing block 2215 can comprise the sensing
portion of program and sensing block 2900 depicted in Figure 29.
[0087] Table 9 depicts operation modes for flash analog neuromorphic memory shared architecture system 2200 of
Figure 22. The columns in the table shown indicate (in order from left to right) the state of high voltage generation block
2211, verify block 2212, summer and activation circuit blocks 2207, 2208, and 2209, analog circuit block 2210, array
reference block 2214, and each of the VMM systems contained in system 2200. Macro mode selection is for MACRO1
(which is a selected macro block, such as macro block 2201, 2202, 2203, 2204, 2205, or 2206). In system mode, MACRO
is on if selected.
[0088] The rows in the table shown indicate (in order from top to bottom):

• system mass erase operation, where selected cells in all selected macros in system 2200 are erased);
• system mass program operation, where selected cells in all selected macros in system 2200 are programmed;

program high voltage compensation is done per macro (using a macro high voltage compensation block), meaning
compensation is done locally at the macro level, for example at each macro, Icomp=number of unprogrammed
bits∗Iprog; alternatively high voltage compensation is done per system level (using a system level high voltage
compensation block), for example in this case the macro with the most un-programmed bit is used to compensate
at the high voltage generation circuit (hvgen), for example at the hvgen, 

• system read/verify operation, where selected cells in all selected macros in system 2200 are read and verified; for
reading ’0’ (programmed state) for multiple cells in multiple cores, a reference ’0’ margin I-M0 current is used in
current sensing to detect if summed selected cell current > I-M0, then it fails reading ‘0’; for reading ’1’ (programmed
state) for multiple cells in multiple cores, a reference ‘1’ margin k∗I-M1 current is used in current sensing to detect
if summed selected cell current < k∗I-M1, then it fails reading ’1’, for example for reading 2 cells in parallel, k=2.

• macro erase operation, where only one macro block, here the one labeled MACRO1, is erased; a sector (consisting
of multiple rows) can be erased with a macro sector erase or whole array can be erased by a macro mass erase.

• macro program operation, where only one macro block, here the one labeled MACRO1, is programmed; a word
(consisting of multiple cells in multiple columns) can be programmed with a macro word programmed or selected
mass array with multiple rows and/or multiple columns can be programmed by a macro mass program.
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• macro read/verify operation, where only one macro block, here the one labeled MACRO1, is read and verified; and
• read neural operation, where all cells in a single macro block are read at one time.
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[0089] Figure 23 depicts VMM system 2300 (which can be used to implement VMM systems 2221, 2222, and 2223
in Figure 22). VMM system 2300 comprises macro block 2320 (which can be used to implement macro blocks 2201,
2202, 2203, 2204, 2205, and 2206 in Figure 22) and activation function block 2314 and output block 2313, the latter of
which can comprise a summer, an analog-to-digital converter, or another type of functional block, and provides an output
for VMM system 2300.
[0090] Macro block 2320 comprises VMM array 2301, low voltage row decoder 2302, high voltage row decoder 2303,
and low voltage reference column decoder 2304. Low voltage row decoder 2302 provides a bias voltage for read and
program operations and provides a decoding signal for high voltage row decoder 2303. High voltage row decoder 2303
provides a high voltage bias signal for program and erase operations.
[0091] Macro block 2320 further comprises redundancy arrays 2305 and 2306. Redundancy arrays 2305 and 2306
provides array redundancy for replacing a defective portion in array 2301. VMM system 2300 further comprises NVR
(non-volatile register, aka info sector) sector 2307, which are array sectors used to store, inter alia, user info, device ID,
password, security key, trimbits, configuration bits, manufacturing info. Macro block 2320 further comprises reference
sector 2308 for providing reference cells to be used in a sense operation; predecoder 2309 for decoding addresses for
decoders 2302, 2303, and/or 2304; bit line multiplexor 2310; macro control logic 2311; and macro analog circuit block
2312, each of which performs functions at the macro block or VMM array level (as opposed to the system level comprising
all VMM arrays).
[0092] Examples of embodiments of the circuit blocks shown in Figures 22 and 23 will now be described.
[0093] Figure 24 depicts output block 2400 (which can be used as output blocks 2207, 2208, 2209 in Figure 22 and
output block 2313 in Figure 23). In this example, output block 2400 comprises a plurality of individual summer and
activation circuit blocks such as summer and activation block 2401.
[0094] Figure 25 depicts adaptable neuron circuit 2500 that comprises on an op amp that provides low impedance
output, for summing multiple current signals and converting the summed current signal into a voltage signal, and which
is an embodiment of each summer block within summer block 2601a, ..., 2601i in Figure 26. Adaptable neuron circuit
2500 receives current from a VMM, such as VMM array 2401 (labeled I_NEU), which here is represented as current
source 2502, which is provided to the inverting input of operational amplifier 2501. The non-inverting input of operational
amplifier 2501 is coupled to a voltage source (labeled VREF). The output (labeled VO) of operational amplifier 2501 is
coupled to NMOS R_NEU transistor 2503, which acts as a variable resistor of effective resistance R_NEU in response
to the signal VCONTROL, which is applied to the gate of NMOS transistor 2503. The output voltage, Vo, is equal to
I_NEU ∗ R_NEU - VREF. The maximum value of I_NFU depends on the number of synapses and weight value contained
in the VMM. R_NEU is a variable resistance and can be adapted to the VMM size it is coupled to. Further, the power of
the summing operational amplifier 2501 is adjusted in relation the value of the R_NEU transistor 2503 to minimize power
consumption. As the value of R_NEU transistor 2503 increases, the bias (i.e., power) of the operational amplifier 2501
is reduced via current bias IBIAS_OPA 2504 and vice versa. Since the op amp based summer circuit can provide low
impedance output, it is suitable to be configured to drive a long interconnect and heavier loading.
[0095] Figure 26 depicts activation function circuit 2600. Activation function circuit 2600 can be used for activation
circuit blocks 2203a, 2203b, 2203c, 2203d, 2203e, and 2203f in Figure 22 and activation circuit blocks 2303a, 2303b,
2303c, 2303d, 2303e, and 2303f in Figure 23, and activation block 2414 in Figure 24.
[0096] Activation function circuit 2600 converts an input voltage pair (Vin+ and Vin-) into a current (Iout_neu) using a
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tanh function, and which can be used with the VMM arrays described above. Activation function circuit 2600 comprises
PMOS transistors 2601, 2602, 2603, 2604, 2605, and 2606 and NMOS transistors 2607, 2608, 2609, and 2610, configured
as shown. The transistors 2603, 2604, and 2606 serve as cascoding transistors. The input NMOS pair 2607 and 2608
operates in sub-threshold region to realize the tanh function. The current I_neu_max is the maximum neuron current
that can be received from the attached VMM (not shown).
[0097] Figure 27 depicts operational amplifier 2700 that can be used as operational amplifier 2501 in Figure 25.
Operational amplifier 2700 comprises PMOS transistors 2701, 2702, and 2705, NMOS transistors 2703, 2704, 2706,
and 2707, and NMOS transistor 2708 that acts as a variable bias, in the configuration shown. The input terminals to
operational amplifier 2700 are labeled Vin+ (applied to the gate of NMOS transistor 2704) and Vin- (applied to the gate
of NMOS transistor 2703), and the output is Vout. The bias current Ibias_opa is provided to the drain of NMOS transistor
2708.
[0098] Figure 28 depicts high voltage generation block 2800, control logic block 2804, analog circuit block 2805, and
test block 2808.
[0099] High voltage generation block 2800 comprises charge pump 2801, charge pump regulator 2802, and high
voltage operational amplifier 2803. The voltage of the output of charge pump regulator 2802 can be controlled using the
control bits TRBIT_SL<N:0> that are applied to gates of NMOS transistors in charge pump regulator 2802. Control logic
block 2804 receives control logic inputs and generates control logic outputs. Analog circuit block 2805 comprises current
bias generator 2806 for receiving a reference voltage, VREF, and generating a current that can be used to generate a
bias signal, IBIAS, which can be used, for example, as IBIAS_OPA 2504 in Figure 25.. Analog circuit block 2805 also
comprises voltage generator 2807 for receiving reference voltage VREF and a set of trim bits, TRBIT _WL, and generating
a voltage to apply to word lines during various operations. Test block 2808 receives signals on a test pad, MONHV_PAD,
and outputs various signals for a designer to monitor during testing.
[0100] Figure 29 depicts program and sensing block 2900, which can be used during program and verify operations
and can be coupled to one or more VMM systems. Program and sensing block 2900 comprises a plurality of individual
program and sense circuit blocks 2901a, 2901b, ... 2901j, each of which can read a "0" or "1" in a selected memory cell.
Controller or control logic 2910 can activate the appropriate program and sense circuit blocks 2901a, 2901b, ... 2901j
during each cycle as needed.
[0101] Figure 30 depicts reference system 3000, which can be used in place of reference sector 2308 in Figure 23.
Reference system 3000 comprises reference array 3002, low voltage row decoder 3001, high voltage row decoder 3003,
and low voltage reference column decoder 3004. Low voltage row decoder 3001 provides a bias voltage for read and
program operations and provides a decoding signal for high voltage row decoder 3003. High voltage row decoder 3003
provides a high voltage bias signal for program and erase operations.
[0102] Figure 31 depicts VMM high voltage decode circuits, comprising word line decoder circuit 3101, source line
decoder circuit 3104, and high voltage level shifter 3108, which are appropriate for use with memory cells of the type
shown in Figure 2.
[0103] Word line decoder circuit 3101 comprises PMOS select transistor 3102 (controlled by signal HVO_B) and
NMOS de-select transistor 3103 (controlled by signal HVO_B) configured as shown.
[0104] Source line decoder circuit 3104 comprises NMOS monitor transistors 3105 (controlled by signal HVO), driving
transistor 3106 (controlled by signal HVO), and de-select transistor 3107 (controlled by signal HVO_B), configured as
shown.
[0105] High voltage level shifter 3108 received enable signal EN and outputs high voltage signal HV and its complement
HVO_B.
[0106] Figure 32 depicts VMM high voltage decode circuits, comprising erase gate decoder circuit 3201, control gate
decoder circuit 3204, source line decoder circuit 3207, and high voltage level shifter 3211, which are appropriate for use
with memory cells of the type shown in Figure 3.
[0107] Erase gate decoder circuit 3201 and control gate decoder circuit 3204 use the same design as word line decoder
circuit 3101 in Figure 31.
[0108] Source line decoder circuit 3207 uses the same design as source line decoder circuit 3104 in Figure 31.
[0109] High voltage level shifter 3211 uses the same design as high voltage level shifter 3108 in Figure 31.
[0110] Figure 33 depicts adaptable neuron circuit 3300 that converts an output neuron current into a voltage. Adaptable
neuron circuit 3300 uses only one PMOS transistor 3301 and essentially is configured to mirror itself (i.e., a sample and
hold mirror) using switches 3302, 3303, and 3304. Initially, switch 3302 and switch 3303 are closed and switch 3304 is
open, at which time PMOS transistor 3301 is coupled to I NEURON, which is a current source 3305 that represents the
current from a VMM. Then, switch 3302 and 3303 are opened and switch 3304 is closed, which causes PMOS transistor
3301 to send current I_NEURON from its drain to variable resistor 3306. Thus, adaptable neuron 3300 converts a current
signal (I_NEURON) into a voltage signal (VO). Basically, transistor 3301 samples the current I_NEURON and holds it
by storing a sampled gate-source voltage on its gate. An op amp circuit can be used to buffer the output voltage VO to
drive the configurable interconnect.
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[0111] Figure 34 depicts current sample and hold S/H circuit 3400 and voltage sample and hold S/H circuit 3450.
Current S/H circuit 3400 includes sampling switches 3402 and 3403, S/H capacitor 3405, input transistor 3404 and
output transistor 3406. Input transistor 3404 is used to convert input current 3401 into an S/H voltage on the S/H capacitor
3405 and is coupled to the gate of the output transistor 3406. Voltage S/H circuit 3450 includes sampling switch 3452,
S/H capacitor 3453, and op amp 3454. Op amp 3454 is used to buffer the S/H voltage on the capacitor 3453. S/H circuits
3400 and 3450 can be used with the output summer circuits and/or activation circuits described herein. In an alternative
embodiment, digital sample and hold circuits can be used instead of analog sample and hold circuits 3400 and 3450.
[0112] Figure 35 shows an array architecture that is suitable for memory cells operating in linear region. System 3500
comprises input block 3501, output block 3502, and array 3503 of memory cells. Input block 3501 is coupled to the
drains (source lines) of the memory cells in array 3503, and output block 3502 is coupled to the bit lines of the memory
cells in array 3503. Alternatively, input block 3501 is coupled to the wordlines of the memory cells in array 3503, and
output block 3502 is coupled to the bit lines of the memory cells in array 3503.
[0113] In instances where system 3500 is used to implement an LSTM or GRU, output block 3502 and/or input block
3501 may include multiplier block, addition block, subtraction (output = 1 - input) block as needed for LSTM/GRU
architecture, and optionally may include analog sample-and-hold circuits (such as circuits 3400 or 3450 in Figure 34)
or digital sample-and-hold circuits (e.g., a register or SRAM) as needed.
[0114] Figure 36 depicts high voltage generation block 3600, which is an example of high voltage generation block
2211 in Figure 22. High voltage generation block 3600 comprises charge pump 3601, charge pump regulator 3603, and
high voltage operational amplifier 3602. The voltage of the output of charge pump regulator 3603 can be controlled
based on the signals sent to the gates of the mux MOS transistors in charge pump regulator 3603.
[0115] Figure 37 depicts a program bias circuit 3700 that provides a bias to the gates of individual programming circuits
3702-0, ... 3702-N that each provides a programming current to memory cells coupled to the selected bit lines during a
programming operations.
[0116] Figure 38 depicts sense amplifier 3800, which can be used for the verify aspect of program and verify operations.
Sense amplifier 3800 comprises adjustable current reference source 3801, switch 3802, NMOS transistor 3803, capacitor
3804, switch 3805, current source 3806, and inverter 3807, in the configuration shown. Sense amplifier 3800 is coupled
to memory cell 3808 during a verify operation of memory cell 3808.
[0117] It should be noted that, as used herein, the terms "over" and "on" both inclusively include "directly on" (no
intermediate materials, elements or space disposed therebetween) and "indirectly on" (intermediate materials, elements
or space disposed therebetween). Likewise, the term "adjacent" includes "directly adjacent" (no intermediate materials,
elements or space disposed therebetween) and "indirectly adjacent" (intermediate materials, elements or space disposed
there between), "mounted to" includes "directly mounted to" (no intermediate materials, elements or space disposed
there between) and "indirectly mounted to" (intermediate materials, elements or spaced disposed there between), and
"electrically coupled" includes "directly electrically coupled to" (no intermediate materials or elements there between that
electrically connect the elements together) and "indirectly electrically coupled to" (intermediate materials or elements
there between that electrically connect the elements together). For example, forming an element "over a substrate" can
include forming the element directly on the substrate with no intermediate materials/elements therebetween, as well as
forming the element indirectly on the substrate with one or more intermediate materials/elements there between.

Claims

1. An analog neuromorphic memory system (2200), comprising:

a plurality of vector-by-matrix multiplication systems (2221, 2222, 2223, 2320), each vector-by-matrix multipli-
cation system comprising:

an array of memory cells (2301),
a low voltage row decoder (2302) for providing a bias voltage to one or more rows of memory cells in the
array of memory cells during read and program operations and for providing a decoding signal;
a high voltage row decoder (2303) for receiving the decoding signal and providing a high voltage bias signal
to one or more rows of memory cells in the array of memory cells during program and erase operations; and
a low voltage column decoder (2304);

a plurality of output blocks (2207, 2208, 2209), each output block providing an output in response to current
received from at least one of the plurality of vector-by-matrix multiplication systems; and
a shared high voltage generator block (2211, 3600) comprising a charge pump (3601) for outputting a high
voltage and a charge pump regulator (3603) for receiving the high voltage from the charge pump and generating
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a trimmed high voltage in response to input trim bits, the shared high voltage generator block configured to
concurrently provide voltages comprising one or more of the high voltage and the trimmed high voltage to the
high voltage row decoder in each of the plurality of vector-by-matrix multiplication systems for one or more of
erase operations and programming operations.

2. The analog neuromorphic memory system of claim 1, further comprising a high voltage compensation block for each
of the plurality of vector-by-matrix multiplication systems.

3. The analog neuromorphic memory system of claim 1, further comprising a high voltage compensation block for all
of the plurality of vector-by-matrix multiplication systems.

4. The analog neuromorphic memory system of claim 1, where the analog neuromorphic memory system is configured
to concurrently perform programming operations to two or more vector-by-matrix multiplication systems.

5. The analog neuromorphic memory system of claim 4, wherein the concurrent programming operations are performed
in response to a single command.

6. The analog neuromorphic memory system of claim 4, where the analog neuromorphic memory system is configured
to concurrently perform verify operations to the two or more vector-by-matrix multiplication systems after the con-
current programming operations.

7. The analog neuromorphic memory system of claim 1, wherein the high voltage generator block is able to provide
sufficient voltage and current to perform program and erase operations concurrently on all arrays of memory cells
in all of the vector-by-matrix multiplication systems.

8. The analog neuromorphic memory system of claim 1, wherein the memory cells are split-gate flash memory cells.

9. The analog neuromorphic memory system of claim 1, wherein each vector-by-matrix multiplication system is a cell
in a long short term memory system.

10. The analog neuromorphic memory system of claim 1, wherein each vector-by-matrix multiplication system is a cell
in a gated recurrent unit memory system.

11. The analog neuromorphic memory system of claim 1, wherein each of the plurality of output blocks comprises a
summer and activation block.

12. The analog neuromorphic memory system of claim 11, wherein each summer and activation block is configured to
perform a summing and activation function for at least one of the plurality of vector-by-matrix multiplication systems.

Patentansprüche

1. Analoges neuromorphes Speichersystem (2200), umfassend:
eine Vielzahl von Vektor-Matrix-Multiplikationssystemen (2221, 2222, 2223, 2320), wobei jedes Vektor-Matrix-Mul-
tiplikationssystem umfasst:

ein Array von Speicherzellen (2301),
einen Niederspannungszeilendecodierer (2302) zum Bereitstellen einer Vorspannung an eine oder mehrere
Zeilen von Speicherzellen in dem Array von Speicherzellen während Lese- und Programmieroperationen und
zum Bereitstellen eines Decodiersignals;
einen Hochspannungszeilendecodierer (2303) zum Empfangen des Decodiersignals und Bereitstellen eines
Hochspannungsvorspannungssignals an eine oder mehrere Zeilen von Speicherzellen in dem Array von Spei-
cherzellen während Programmier- und Löschoperationen; und
einen Niederspannungsspaltendecodierer (2304);
eine Vielzahl von Ausgangsblöcken (2207, 2208, 2209), wobei jeder Ausgangsblock einen Ausgang als Reaktion
auf Strom bereitstellt, der von mindestens einem der Vielzahl von Vektor-Matrix-Multiplikationssystemen emp-
fangen wird; und
einen gemeinsam genutzten Hochspannungsgeneratorblock (2211, 3600), umfassend eine Ladepumpe (3601)
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zum Ausgeben einer Hochspannung und einen Ladepumpenregler (3603) zum Empfangen der Hochspannung
von der Ladepumpe und Erzeugen einer getrimmten Hochspannung als Reaktion auf Eingangs-Trimmbits,
wobei der gemeinsam genutzte Hochspannungsgeneratorblock dazu konfiguriert ist, gleichzeitig Spannungen
bereitzustellen, die eine oder mehrere der Hochspannung und der getrimmten Hochspannung an den Hoch-
spannungszeilendecodierer in jedem der Vielzahl von Vektor-Matrix-Multiplikationssystemen für einen oder
mehrere von Löschoperationen und Programmieroperationen umfassen.

2. Analog neuromorphes Speichersystem nach Anspruch 1, ferner umfassend einen Hochspannungskompensations-
block für jeden der Vielzahl von Vektor-Matrix-Multiplikationssystemen.

3. Analog neuromorphes Speichersystem nach Anspruch 1, ferner umfassend einen Hochspannungskompensations-
block für alle der Vielzahl von Vektor-Matrix-Multiplikationssystemen.

4. Analog neuromorphes Speichersystem nach Anspruch 1, wobei das analoge neuromorphe Speichersystem so
konfiguriert ist, dass es gleichzeitig Programmieroperationen an zwei oder mehr Vektor-Matrix-Multiplikationssys-
temen durchführt.

5. Analog neuromorphes Speichersystem nach Anspruch 4, wobei die gleichzeitigen Programmieroperationen als
Reaktion auf einen einzigen Befehl durchgeführt werden.

6. Analog neuromorphes Speichersystem nach Anspruch 4, wobei das analoge neuromorphe Speichersystem dazu
konfiguriert ist, gleichzeitig Verifizierungsoperationen an den zwei oder mehr Vektor-Matrix-Multiplikationssystemen
nach den gleichzeitigen Programmieroperationen durchzuführen.

7. Analog neuromorphes Speichersystem nach Anspruch 1, wobei der Hochspannungsgeneratorblock in der Lage ist,
eine ausreichende Spannung und einen ausreichenden Strom bereitzustellen, um Programmier- und Löschopera-
tionen gleichzeitig an allen Arrays von Speicherzellen in allen Vektor-Matrix-Multiplikationssystemen durchzuführen.

8. Analog neuromorphes Speichersystem nach Anspruch 1, wobei die Speicherzellen Split-Gate-Flash-Speicherzellen
sind.

9. Analog neuromorphes Speichersystem nach Anspruch 1, wobei jedes Vektor-Matrix-Multiplikationssystem eine
Zelle in einem langen Kurzzeitspeichersystem ist.

10. Analog neuromorphes Speichersystem nach Anspruch 1, wobei jedes Vektor-Matrix-Multiplikationssystem eine
Zelle in einem gategesteuerten rekurrenten Einheitsspeichersystem ist.

11. Analog neuromorphes Speichersystem nach Anspruch 1, wobei jeder der Vielzahl von Ausgangsblöcken einen
Summier- und Aktivierungsblock umfasst.

12. Analog neuromorphes Speichersystem nach Anspruch 11, wobei jeder Summier- und Aktivierungsblock dazu kon-
figuriert ist, eine Summier- und Aktivierungsfunktion für mindestens eines der Vielzahl von Vektor-Matrix-Multipli-
kationssystemen durchzuführen.

Revendications

1. Système de mémoire neuromorphique analogique (2200), comprenant :
une pluralité de systèmes de multiplication de vecteur par matrice (2221, 2222, 2223, 2320), chaque système de
multiplication de vecteur par matrice comprenant :

un réseau de cellules de mémoire (2301),
un décodeur de rangée basse tension (2302) pour fournir une tension de polarisation à une ou plusieurs rangées
de cellules de mémoire dans le réseau de cellules de mémoire pendant des opérations de lecture et program-
mation et pour fournir un signal de décodage ;
un décodeur de rangée haute tension (2303) pour recevoir le signal de décodage et fournir un signal de pola-
risation haute tension à une ou plusieurs rangées de cellules de mémoire dans le réseau de cellules de mémoire
pendant des opérations de programmation et d’effacement ; et
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un décodeur de colonne basse tension (2304) ;
une pluralité de blocs de sortie (2207, 2208, 2209), chaque bloc de sortie fournissant une sortie en réponse à
un courant reçu d’au moins un parmi la pluralité de systèmes de multiplication de vecteur par matrice ; et
un bloc générateur haute tension partagé (2211, 3600) comprenant une pompe de charge (3601) pour délivrer
en sortie une haute tension et un régulateur de pompe de charge (3603) pour recevoir la haute tension provenant
de la pompe de charge et générer une haute tension ajustée en réponse à des bits d’ajustement d’entrée, le
bloc générateur haute tension partagé configuré pour fournir concomitamment des tensions comprenant une
ou plusieurs parmi la haute tension et la haute tension ajustée au décodeur de rangée haute tension dans
chacun parmi la pluralité de systèmes de multiplication de vecteur par matrice pour une ou plusieurs parmi des
opérations d’effacement et des opérations de programmation.

2. Système de mémoire neuromorphique analogique selon la revendication 1, comprenant en outre un bloc de com-
pensation haute tension pour chacun parmi la pluralité de systèmes de multiplication de vecteur par matrice.

3. Système de mémoire neuromorphique analogique selon la revendication 1, comprenant en outre un bloc de com-
pensation haute tension pour tous parmi la pluralité de systèmes de multiplication de vecteur par matrice.

4. Système de mémoire neuromorphique analogique selon la revendication 1, où le système de mémoire neuromor-
phique analogique est configuré pour mettre en oeuvre concomitamment des opérations de programmation sur
deux systèmes de multiplication de vecteur par matrice ou plus.

5. Système de mémoire neuromorphique analogique selon la revendication 4, dans lequel les opérations de program-
mation concomitantes sont mises en oeuvre en réponse à une unique instruction.

6. Système de mémoire neuromorphique analogique selon la revendication 4, où le système de mémoire neuromor-
phique analogique est configuré pour mettre en oeuvre concomitamment des opérations de vérification sur les deux
systèmes de multiplication de vecteur par matrice ou plus après les opérations de programmation concomitantes.

7. Système de mémoire neuromorphique analogique selon la revendication 1, dans lequel le bloc générateur haute
tension est capable de fournir une tension et un courant suffisants pour mettre en oeuvre des opérations de pro-
grammation et d’effacement concomitamment sur tous les réseaux de cellules de mémoire dans la totalité des
systèmes de multiplication de vecteur par matrice.

8. Système de mémoire neuromorphique analogique selon la revendication 1, dans lequel les cellules de mémoire
sont des cellules de mémoire flash à grille divisée.

9. Système de mémoire neuromorphique analogique selon la revendication 1, dans lequel chaque système de multi-
plication de vecteur par matrice est une cellule dans un système de mémoire longue à court terme.

10. Système de mémoire neuromorphique analogique selon la revendication 1, dans lequel chaque système de multi-
plication de vecteur par matrice est une cellule dans un système de mémoire à unité récurrente à grille.

11. Système de mémoire neuromorphique analogique selon la revendication 1, dans lequel chacun parmi la pluralité
de blocs de sortie comprend un bloc de sommation et d’activation.

12. Système de mémoire neuromorphique analogique selon la revendication 11, dans lequel chaque bloc de sommation
et d’activation est configuré pour mettre en oeuvre une fonction de sommation et d’activation pour au moins un
parmi la pluralité de systèmes de multiplication de vecteur par matrice.
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