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COPYRIGHT

[0004] A portion of the disclosure of this patent document
contains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
files or records, but otherwise reserves all copyright rights
whatsoever.

1. TECHNICAL FIELD

[0005] The disclosure relates generally to the field of
electronics devices, as well as networks thereof. More
particularly, in one exemplary aspect, the disclosure is
directed to methods and apparatus for retrieving and loading
firmware for execution on a processor with limited access to
memory. Various aspects of the present disclosure are
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directed to, inter alia, dynamically fetching on-demand
firmware, storing archival firmware, and/or evicting unused
firmware from memory.

2. DESCRIPTION OF RELATED TECHNOLOGY

[0006] The consumer electronics industry continuously
strives to meet consumer demands for increased device
functionality. In order to keep costs low and maximize
supply chain diversity, most manufacturers design their
consumer electronics devices to be constructed from generic
and/or commodity components that are sourced from a
number of 3" party vendors. Thus, manufacturers have
historically struggled to implement an increasing set of
features on embedded platforms where components are
sub-optimal (e.g., low memory resources, etc.)

[0007] Within this context, most processor architectures
and accompanying firmware architectures are tightly opti-
mized for operation with a specific memory structure by
design to meet desired constraints and use cases (e.g., cost,
power consumption, etc.) For example, certain memory
technologies can inexpensively store large amounts of data
but may be unable too slow to support high performance
applications; other memory technologies can operate in high
performance applications, but are prohibitively expensive
and/or consume more power. As a brief aside, firmware is
embedded software that is tightly coupled to device hard-
ware and has been optimized to control, monitor, and
manipulate data, based on the specific constraints of device
hardware. Historically, the firmware of a device was rarely
(or never) changed during normal operation; in recent his-
tory, however, updating firmware has become a common-
place solution to handle the changing demands of consum-
ers.

[0008] From a device manufacturing standpoint, continu-
ously updating firmware (e.g., by re-writing, modifying, and
optimizing firmware) is an expensive, time-consuming and
labor-intensive process. To these ends, improved methods
and apparatus are needed for dealing with the shifting terrain
of consumer desires and vendor component offerings, while
minimally impacting firmware performance. Solutions are
needed that decouple firmware from memory designs and
limitations.

SUMMARY

[0009] The present disclosure satisfies the foregoing needs
by providing, inter alia, methods and apparatus for locking
a portion of shared memory for the purpose of, for example,
providing on-demand firmware modules for a peripheral
processor.

[0010] In a first aspect, a method for locking a shared
memory is disclosed. In one embodiment, the method
includes attempting to lock at least a portion of the shared
memory by a first processor; verifying that a second pro-
cessor has not locked the at least the portion of the shared
memory; when the at least the portion of the shared memory
is successfully locked via the verification that the second
processor has not locked the at least the portion of the shared
memory, executing a critical section; and otherwise attempt-
ing to lock the at least the portion of the shared memory at
a later time.

[0011] In a second aspect, a method for initializing firm-
ware for execution on a processor with limited access to
memory is disclosed. In one embodiment, the method
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includes executing a portion of a firmware image; generating
a page fault when a memory access for the firmware image
is outside of a resident memory range, the page fault
configured to cause a host processor to service the page
fault; and resuming execution of the firmware image.
[0012] In a third aspect, a method for initializing firmware
for execution on a processor with limited access to memory
is disclosed. In one embodiment, the method includes reset-
ting a peripheral processor; establishing a physical link
interface; initializing a secondary storage; loading the
peripheral processor with an initial image; and causing the
peripheral processor to execute the initial image.

[0013] In afourth aspect, an electronic device is disclosed.
In one embodiment, the electronic device is configured to
lock at least a portion of a shared memory. The electronic
device includes a host processor; a peripheral processor; a
physical bus interface configured to couple the host proces-
sor to the peripheral processor; and a software framework
configured to be executed by the host processor and the
peripheral processor. The software framework includes logic
configured to: attempt to lock the at least the portion of the
shared memory; verify that the peripheral processor has not
locked the at least the portion of the shared memory; when
the at least the portion of the shared memory is successfully
locked via the verification that the peripheral processor has
not locked the at least the portion of the shared memory,
execute a critical section of the shared memory; and other-
wise attempt to lock the at least the portion of the shared
memory at a later time.

[0014] In an alternative embodiment, the electronic device
is configured to initialize firmware for execution on a
processor with limited access to memory. The electronic
device includes a host processor; a peripheral processor; a
physical bus interface configured to couple the host proces-
sor to the peripheral processor; and a software framework
configured to be executed by the host processor and the
peripheral processor. The software framework includes logic
configured to: execute a portion of a firmware image located
within a primary memory of the peripheral processor; gen-
erate a page fault when a memory access for the firmware
image is outside of a resident memory range located within
the primary memory of the peripheral processor, the page
fault configured to cause the host processor to service the
page fault; service the page fault by the host processor; and
resume execution of the firmware image by the peripheral
processor.

[0015] In yet another alternative embodiment, the elec-
tronic device is configured to initialize firmware for execu-
tion on a processor with limited access to memory. In one
embodiment, the electronic device includes a host processor;
a peripheral processor; a physical bus interface configured to
couple the host processor to the peripheral processor; and a
software framework configured to be executed by the host
processor and the peripheral processor. The software frame-
work includes logic configured to: reset the peripheral
processor through use of the host processor; establish a
communication link between the peripheral processor and
the host processor using the physical bus interface; initialize
a secondary storage; load the peripheral processor with an
initial image; and cause the peripheral processor to execute
the initial image.

[0016] In a fifth aspect, a host processing device is dis-
closed. In one embodiment, the host processing device
includes a processing unit; an execution memory in signal
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communication with the processing unit; and a physical bus
interface in communication with the processing unit, the
physical bus interface configured to be coupled to a com-
munications link. The host processing device is further
configured to: globally lock a shared memory resource by
use of a global locking mechanism, the shared memory
resource configured to service the host processing device
and at least one other processing device; lock one or more
paging table entries within the shared memory resource by
use of a paging table entry locking mechanism; and update
tracking information associated with the one or more paging
table entries subsequent to the global lock and subsequent to
the one or more paging table entry locks.

[0017] In a sixth aspect, a peripheral processing device is
disclosed. In one embodiment, the peripheral processing
device includes a processing unit; an execution memory in
signal communication with the processing unit; and a physi-
cal bus interface in communication with the processing unit,
the physical bus interface coupled to a communications link.
The peripheral processing device is further configured to:
execute a portion of a firmware image located within the
execution memory; generate a page fault when a memory
access for the firmware image is outside of a memory range
associated with the execution memory, the page fault con-
figured to cause a host processor to service the page fault;
and resume execution of the firmware image.

[0018] In an alternative embodiment, the peripheral pro-
cessing device includes a processing unit; a physical bus
interface in communication with the processing unit, the
physical bus interface coupled to a communications link; an
array of registers that is coupled to the communications link;
and a memory structure that is coupled to the communica-
tions link. The peripheral processing device is further con-
figured to: receive a reset signal from a host processor via
the communications link; receive a portion of a firmware
image from the host processor while the peripheral process-
ing device is held in a reset condition; and execute the
portion of the firmware image.

[0019] Other features and advantages of the present dis-
closure will immediately be recognized by persons of ordi-
nary skill in the art with reference to the attached drawings
and detailed description of exemplary embodiments as given
below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] FIG. 1 is a logical representation of a software
framework useful for illustrating various principles
described herein.

[0021] FIG. 2 is a logical flow diagram illustrating one
generalized scheme for initializing firmware for execution
on a processor with limited access to memory, in accordance
with the present disclosure.

[0022] FIG. 2A is one exemplary logical sequence dia-
gram of an exemplary boot sequence, in accordance with the
present disclosure.

[0023] FIG. 3 is one example of a memory map useful in
conjunction with the various principles described herein.
[0024] FIG. 4 is a logical flow diagram illustrating one
generalized scheme for retrieving and loading firmware for
execution on a processor with limited access to memory, in
accordance with the present disclosure.

[0025] FIG. 4A is one exemplary firmware specific shared
memory, useful in conjunction with the various principles
described herein.
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[0026] FIG. 4B is a logical block diagram describing an
overlay LMA, useful in conjunction with the various prin-
ciples described herein.

[0027] FIG. 5 is a logical flow diagram illustrating one
generalized scheme for locking a paging table entry of a
shared memory, in accordance with the present disclosure.
[0028] FIGS. 5A-5E are logical flow diagrams illustrating
various contention scenarios illustrative of the generalized
method of FIG. 5.

[0029] FIG. 6 is a logical flow diagram illustrating one
generalized scheme for globally locking a shared memory, in
accordance with the present disclosure.

[0030] FIGS. 6A-6G are logical flow diagrams illustrating
various contention scenarios illustrative of the generalized
method of FIG. 6.

[0031] FIG. 7 is a logical flow diagram illustrating one
generalized scheme for modifying tracking information by
the host processor, in accordance with the present disclosure.
[0032] FIGS. 7A-7G are logical flow diagrams illustrating
various contention scenarios illustrative of the generalized
method of FIG. 7.

[0033] All Figures © Copyright 2015-2016 Apple Inc. All
rights reserved.

DETAILED DESCRIPTION

[0034] Reference is now made to the drawings, wherein
like numerals refer to like parts throughout.

Detailed Description of Exemplary Embodiments

[0035] Exemplary embodiments of the present disclosure
are now described in detail. While these embodiments are
primarily discussed in the context of an inter-processor
communication (IPC) link, it will be recognized by those of
ordinary skill that the present disclosure is not so limited. In
fact, the various aspects of the disclosure are useful in any
device or network of devices that may benefit from on-
demand loading of various firmware images, as is disclosed
herein. Further, while the following embodiments describe
specific implementations of e.g., dedicated address spaces,
legacy support capabilities, and specific protocols, those of
ordinary skill in the related arts will readily appreciate that
such descriptions are purely illustrative.

Exemplary Processor and Memory Architecture—

[0036] FIG. 1 illustrates one logical representation of a
software framework 100 useful for illustrating various prin-
ciples described herein. The software framework 100 is
executed in tandem via a host processor 102, a peripheral
device processor 104, and a physical bus interface 106. The
software framework 100 may be included in any number of
consumer electronic devices including, for example, smart
phone devices (such as, without limitation, the iPhone),
personal media devices (such as, without limitation, the
iPad/iPod), personal computing devices (such as, without
limitation, the MacBook Pro and MacBook Air) and literally
any other computing device having a host processor, one or
more peripheral processors, and a shared memory.

[0037] Within this context, exemplary methods and appa-
ratus are now described which support firmware provision-
ing between independently operable processors. The follow-
ing discussions will be described in reference to a “host”
processor, and an “peripheral” (or “peripheral device”)
processor. For reasons which will become apparent below, it
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is appreciated that the designation as to host or peripheral
processor is used to simplify and/or clarify the following
explanations, and does not imply existing host or peripheral
functionality, or that such roles cannot be reversed.

[0038] As used herein, the term “logical” and “virtual” are
interchangeably used to refer to, without limitation, an
abstraction (typically performed in software or machine
logic) to represent physical mechanisms, attributes or func-
tionalities as a data structure. For example, as used herein a
“logical bus interface”, “virtual bus interface”, etc. refers
generally to an abstraction or representation of a bus inter-
face as a series of data structures. In contrast, as used herein
a “physical bus interface” refers to the physical mechanisms,
attributes or functionalities of a physically tangible bus
interface.

[0039] In one implementation, the host processor 102
includes an applications processor (AP), and the peripheral
processor 104 includes a baseband processor and/or a wire-
less modem. The applications processor is primarily respon-
sible for executing consumer applications based software;
common examples of consumer applications include oper-
ating systems, graphical user interfaces (GUIs), third party
applications, etc. As used herein, the term “wireless”
includes, without limitation, Long Term Evolution/Ad-
vanced (LTE and LTE-A) technology, devices implementing
IEEE-Std. 802.11 (any variants thereof), PAN technology
such as e.g., Bluetooth or IEEE Std. 802.15.4, “ZigBee”,
near field communication/RFID, WiMAX (IEEE 802.16),
WMANSs, 3G cellular (e.g., WCDMA, 3GPP, 3GPP2, and
GSM and improvements thereon, and ISM band devices.
[0040] As shown in FIG. 1, the host 102 includes a bulk
storage memory (disk) 112, a processor 114 (which includes
onboard execution memory) and a cache memory 116 (dy-
namic random access memory (DRAM)) that includes a
firmware specific shared memory 145. The peripheral device
104 includes an array of registers 122, a processor 124 and
a cache memory 126.

[0041] As abriefaside, for the purposes of clarity, the term
“primary memory” refers to memory that is directly coupled
to the processor for firmware execution. For example, as
shown in FIG. 1, the peripheral device’s primary memory
includes both onboard execution memory (not shown) as
well as its directly coupled cache memory 126. As used
herein, the term “secondary memory” refers to memory that
stores a portion of the firmware that is cached for on-demand
access. For example, as shown in FIG. 1, the firmware
specific shared memory 145 operates as a secondary
memory for the peripheral device 104. As used herein, the
term “tertiary memory” refers to memory that stores the
entire firmware image (including archival portions of firm-
ware). For example, as shown in FIG. 1, the bulk memory
112 operates as a tertiary memory for the peripheral device
104.

[0042] As a brief aside, “bulk” memory is generally char-
acterized by relatively long access times, non-volatile stor-
age capabilities, and relatively inexpensive cost per bit of
memory stored. Bulk storage memory is primarily useful for
storing data over long periods of time cheaply and with low
power consumption. In contrast, “on-demand cache”
memory (which is distinct from the execution cache) is
generally characterized by high performance access times,
volatile storage, and more expensive cost as a function of
memory. Lastly, “execution” memory is memory that is
locally resident to, managed, and accessed, by its corre-
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sponding processor; execution memory has the highest
performance (and correspondingly most power consump-
tion) and relative cost per bit. As also shown, “registers” are
specialized logic structures (with memory-like properties)
that can be accessed via dedicated processor hardware;
registers are commonly used for special purpose accesses
e.g., Cross processor communication, interrupt services, non-
memory functions, etc.

[0043] In one exemplary embodiment, the host 102,
peripheral device 104, and physical bus interface 106 oper-
ate according to a communication protocol, via the inter-
processor communication (IPC) link, as described in com-
monly owned and co-pending U.S. patent application Ser.
No. 14/879,024 entitled “METHODS AND APPARATUS
FOR RUNNING AND BOOTING AN INTER-PROCES-
SOR COMMUNICATION LINK BETWEEN INDEPEN-
DENTLY OPERABLE PROCESSORS”, filed Oct. 8, 2015,
previously incorporated by reference in its entirety. In one
exemplary embodiment, the communication protocol may
be a memory-mapped interface which is configured to
enable one processor to access the other processor via native
memory accesses (inter-processor communications are
handled identically to memory accesses). In other embodi-
ments, the communication protocol may operate according
to a specialized channel and/or packet protocol (e.g., inter-
processor communications are transacted via an intermedi-
ary communication stack, etc.) While the following discus-
sions of the software framework 100 are described in the
context of a memory-mapped physical bus interface between
the host and peripheral device, artisans of ordinary skill in
the related arts will readily appreciate that the framework is
agnostic to the specific implementations e.g., of the host,
peripheral device, and physical bus interface, the foregoing
being purely illustrative.

[0044] Generally, the host processor controls access to
bulk memory; for example, the host processor may be
coupled to a bulk memory for non-volatile storage of
computer programs on non-transitory computer readable
medium. During normal operation, computer instructions
are retrieved from bulk memory, and stored in the much
faster (but volatile) execution memories of the host proces-
sor and peripheral processor for execution. For example, the
host processor’s operating system software image must be
fetched from bulk memory (either in part, or whole), and
executed from the execution memory. In one embodiment,
the host 102 also stores the peripheral device’s firmware in
bulk memory. Thus, the peripheral processor must first be
loaded with its firmware from the host’s non-volatile bulk
memory in order to operate.

[0045] While the illustrated embodiment depicts a periph-
eral processor that has no non-volatile memory of its own,
it is appreciated that other device configurations may include
a non-volatile memory for peripheral processor operation, or
a portion thereof (thereby decoupling the peripheral proces-
sor from host processor execution).

[0046] In one exemplary embodiment, the physical bus
interface operates according to one or more buffers that are
controlled by the host processor and/or peripheral processor.
As described in commonly owned and co-pending U.S.
patent application Ser. No. 14/879,024 entitled “METHODS
AND APPARATUS FOR RUNNING AND BOOTING AN
INTER-PROCESSOR COMMUNICATION LINK
BETWEEN INDEPENDENTLY OPERABLE PROCES-
SORS”, filed Oct. 8, 2015, previously incorporated by
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reference in its entirety, the physical bus interface driver 133
of FIG. 1 is configured to transfer data that is stored in the
data rings 134, based on the control ring 135. A mailbox 136
enables the host or peripheral device to initiate (and/or
terminate) data transactions across the physical bus interface
106 via a doorbell register 151 of the peripheral device. Still
other buffer based interfaces may be substituted with equiva-
lent success, given the contents of the present disclosure.

[0047] For example, in order to transfer data to the periph-
eral processor, the host processor executes a physical bus
interface driver 133 that is configured to transfer one or more
portions of the data via the physical bus interface 106. More
directly, the physical bus interface driver 133 retrieves data
from any of e.g., the host’s execution, secondary, or tertiary
memory, and writes into a number of data rings 134. The
data is then transferred to the peripheral device in accor-
dance with the control rings 135 which manage e.g., data
flow, etc.

[0048] With regard to the peripheral device counterpart
functions, the registers 122 include the doorbell registers
151 that directly correspond to the mailbox 136 of the host
(and vice versa). The counterpart physical bus interface
driver 152 of the peripheral device operates in conjunction
with the physical bus interface driver 133 of the host to
effectuate data transfers. Similarly, the local data structures
153, host ring pointers 154, and mailbox pointer 155 are
configured to operate in conjunction with the corresponding
memory mapped interface of the host.

[0049] Various aspects of the present disclosure are dis-
closed that enable on-demand firmware loading. More
directly, the peripheral processor’s firmware modules that
are not needed should be stored into a “virtual” cache that is
managed by the host processor (e.g., the secondary memory)
or archived (e.g., in the tertiary memory), rather than loading
them into the peripheral processor’s execution memory.
Within the context of FIG. 1, various logical software
entities that enable on-demand firmware retrieval and stor-
age are now described in greater detail. As shown, the
host-side software framework 100 has been modified to
further include: storage for a modified peripheral device
main firmware 131 (which supports on-demand firmware
retrieval), a modified firmware loader application 132, one
or more peripheral device on-demand loadable firmware
modules 141, a firmware specific user library 142, a firm-
ware specific host driver 143, a firmware specific mailbox
144, and a firmware specific shared memory 145 (i.e., the
secondary memory).

[0050] In one variant, the firmware specific host driver
143 is configured to work in concert with the counterpart
physical bus interface driver 152 to provide access to the
firmware specific shared memory 145. The firmware specific
user library 142 provides the firmware specific host driver
143 a path to the filesystem. More directly, the firmware
specific user library 142 includes data structures and execut-
able instructions (e.g., the application program interfaces
(APIs)) that enable the firmware and device drivers to
interface with user-space applications and daemons, and
vice versa. In one such variant, the firmware specific user
library 142 may augment an existing firmware loading
application to extend support for on-demand firmware load-
ing. In other variants, the firmware loading application is a
separate application with its own firmware specific user
library 142.
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[0051] Referring now to the peripheral device firmware
that is stored within the host’s bulk memory device, the
firmware is segmented into two or more pieces: the modified
peripheral device main firmware 131, and one or more
peripheral device demand loadable firmware modules 141.
The main firmware 131 is loaded onto the device at boot
time via the modified firmware loader application 132; the
main firmware 131 includes at least the firmware specific
peripheral driver 162 and its dependencies.

[0052] As described in greater detail hereinafter, the one
or more peripheral device on-demand loadable firmware
modules 141 are supplemental portions of the software
executable that can be brought in on-demand by the software
framework. The one or more peripheral device demand
loadable firmware modules 141 are ideally characterized by
temporal locality (i.e., a constrained execution time, etc.)
and modular (i.e., self-contained) operation. Modular opera-
tion allows the firmware to perform various functions while
keeping only a subset of its total firmware image resident in
the peripheral device’s execution memory. As used herein,
the term “modules” refers to a firmware image that has been
modularized in accordance with its temporal locality of
execution.

[0053] The firmware specific mailbox 144 is used by the
firmware specific peripheral driver 162 to notify the physical
bus interface driver 133 that a data transaction is pending for
the firmware specific host driver 143. As will be explained
in greater detail hereinafter, the high performance demands
of run-time firmware execution may warrant preferential
handling of requests for firmware modules and/or data.
[0054] The firmware specific shared memory 145 is the
peripheral device’s secondary memory (cache for on-de-
mand firmware execution). In one embodiment, the firm-
ware specific shared memory 145 is used as a backing
storage for a page-fault handler or overlay manager opera-
tion. Generally, when the peripheral device has a page-fault
or page-miss on the firmware executing from its primary
memory, the peripheral device attempts to retrieve the
appropriate data from its secondary memory. If the second-
ary memory also does not have the appropriate data, then the
host processor must satisfy the requests from the archived
firmware image (which includes both the main firmware 131
and/or the on-demand modules 141) stored within the ter-
tiary memory 112.

[0055] Referring back to FIG. 1, the peripheral-side soft-
ware framework 100 has been modified to further include: a
firmware specific loading doorbell 161, a firmware specific
peripheral driver 162, and a firmware specific shared
memory pointer 163. In one variant, the firmware specific
peripheral driver 162 manages the on-demand loadable
firmware(s) 141. The firmware specific peripheral driver 162
determines whether a requested function is currently resi-
dent within the loaded firmware that is in the peripheral
processor’s execution memory, and loads the appropriate
on-demand loadable firmware(s) 141 module when it is not
present. As previously noted, the firmware specific periph-
eral driver 162 operates similar to a fault handler of a
memory system. For example, in memory managed unit
(MMU) variants, the firmware specific peripheral driver 162
operates as a page-fault handler; for overlay-based variants,
the firmware specific peripheral driver 162 operates as an
overlay manager.

[0056] The firmware specific loading doorbell 161 is a
register that can be written by the firmware specific host
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driver 143 to notify the firmware specific peripheral driver
162 of an event that requires service. The firmware specific
memory pointer 163 identifies the host memory address of
the firmware specific shared memory 145.

Methods—

[0057] Various aspects of the present disclosure are
directed to enabling a peripheral processor to retrieve and
load firmware for execution within the constraints of its
memory. In one exemplary embodiment of the present
disclosure, the peripheral processor is allocated a portion of
the host processor’s memory, as a logical secondary and
tertiary memory for memory cache operation. The described
embodiments enable the peripheral processor to support
much larger and more complex firmware, without requiring
a dedicated memory cache for the peripheral processor (e.g.,
thereby reducing bill of materials (BOM) cost and minimiz-
ing physical footprint). Moreover, artisans of ordinary skill
in the related arts will readily appreciate, given the contents
of'the present disclosure, that reducing memory size require-
ments of peripheral processors enables manufacturers to
purchase commodity components for use with existing host
processors, thereby reducing the requirements for costly
customization, and/or single-sourcing vendors, etc.

[0058] Within the context of FIG. 1, consider a peripheral
processor that has 500 KB of primary execution memory,
which executes from a complete firmware image of 2 MB
(stored in tertiary memory) of which 1 MB is stored in
secondary memory for fast access. In one such example, the
complete firmware image has been further subdivided into 4
KB “pages.” As the peripheral processor executes the firm-
ware that resides in its primary execution memory, the
firmware may occasionally reference a page that is not
within the 500K of primary execution memory; under such
situations the peripheral processor retrieves the missing page
for execution (either from the secondary memory or the
tertiary memory).

[0059] Unfortunately, implementing the peripheral pro-
cessor’s virtualized memory cache via a hosted memory
architecture introduces multiple complexities to firmware
execution which require specialized solutions. For example,
prior art host processors provide a complete firmware image
to peripheral processors at boot and are ill-suited for
dynamically loading firmware modules based on operation.
Additionally, contention issues can arise in multi-processor
systems that share common resources, thus firmware per-
formance can be drastically affected by poor contention
resolution schemes. To these ends, the following discussions
provide solutions that enable cached firmware operation for
a peripheral processor.

Initialization and Memory Configuration—

[0060] As previously alluded to, under most processor
architectures, the host processor manages device initializa-
tion (the so-called “boot” process). Traditionally, when the
host first powers up, the peripheral processor is held in reset
until the host has loaded the peripheral’s entire firmware
image into the peripheral’s execution memory. In contrast,
various embodiments of the present disclosure must support
firmware images that are larger than the peripheral proces-
sor’s execution memory; thus, the peripheral processor
cannot be loaded with the complete image on boot. To these
ends, the exemplary host processor loads the initial firmware
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host driver and the primary firmware image; thereafter, the
peripheral processor can boot and fetch appropriate firm-
ware modules on an as-needed basis.

[0061] FIG. 2 is a logical flow diagram illustrating one
generalized scheme for initializing firmware for execution
on a processor with limited access to memory. In one
exemplary embodiment, the firmware has been segmented
into at least a first firmware host driver and a primary
firmware image.

[0062] At step 202 of the method 200, the peripheral
processor is reset. In some cases, the peripheral processor is
held in reset when first powered on. In other cases, the
peripheral processor is put into a reset condition by the host
(so-called “soft reset”). In still other variations, the periph-
eral processor may be put into a hard reset based on a
physical switch, button, toggle, etc.

[0063] During reset, the processor is halted from execut-
ing instructions. However, the processor’s execution
memory may be accessible, thereby enabling the host pro-
cessor to load a firmware image into the peripheral proces-
sor’s execution memory. In one exemplary embodiment, the
firmware image includes a main firmware portion that
includes at least the on-demand firmware peripheral driver
and its dependencies. Other common components of the
main firmware may include functions and/or data which are:
necessary for initial peripheral device operation (e.g., ini-
tializing other components), basic to peripheral device
operation (e.g., a protocol stack, operating system, etc.),
commonly used during peripheral device operation, and/or
selected based on user and/or network configuration.
[0064] Insome cases, the peripheral processor’s reset state
may wipe out previously stored memory contents; in alter-
native cases, the peripheral processor’s reset state may
simply rewrite the peripheral processor’s execution pointer
(i.e., previous memory contents are retained but likely
inaccessible).

[0065] At step 204 of the method 200, the host processor
and the peripheral processor establish a physical link inter-
face. In one exemplary embodiment, the physical link inter-
face initialization is a component of the main firmware
image, and is performed as part of the peripheral processor’s
boot process. In other embodiments, the physical link inter-
face initialization is performed by the host processor as part
of the host processor’s boot sequence. In still other embodi-
ments, the physical link interface may be configured for both
the host and the peripheral by an external logic and/or
memory.

[0066] In some cases, the physical link interface includes
the configuration of a memory-mapped interface. In some
variants, the configuration of the memory-mapped interface
includes the allocation of a memory space and/or partition-
ing the memory space for specific use. For example, the
memory space may include one or more data structures (e.g.,
pointers, buffers, etc.) In some variants the memory-mapped
interface may additionally include configuration of one or
more registers and/or interrupts. Artisans of ordinary skill in
the related arts will readily appreciate that memory-mapped
interfaces may be beneficial to increase performance speeds
and/or to optimize operation between processors. However,
memory-mapped interfaces may also introduce unexpected
problems, for example when a first processor behaves unex-
pectedly, the first processor could directly write into the
memory space of the second processor, thereby corrupting
the second processor’s operation, etc.
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[0067] In other cases, the physical link interface includes
the configuration of one or more channel interface drivers.
Generally an interface driver is configured to encapsulate
data transactions within packets (or similar data structure).
Each processor of a channel interface is responsible for
unpacking the packets and manipulating the data indepen-
dent of the other processors. While packing/unpacking pack-
ets for a physical link suffers from additional networking
overhead, each processor’s operation is isolated from other
processors, etc.

[0068] Common examples of physical link establishment
operations for channel type interfaces include without limi-
tation e.g., bus management, device discovery, bus arbitra-
tion, power management, clock recovery, synchronization,
etc.

[0069] At step 206 of the method 200, the host processor
initializes an area of shared memory as secondary storage
for at least a portion of the peripheral processor’s firmware
image. In one exemplary embodiment, the entire firmware
image is fetched from tertiary storage and stored within a
secondary storage that is controlled by the host processor;
alternatively, a portion of the firmware image is fetched and
stored in secondary storage, and the entire firmware image
is stored in tertiary storage.

[0070] In one such variant, the memory space is subdi-
vided into discrete pages. As used herein, the term “page”
refers to a section of memory which can be retrieved from
memory as an aggregate whole. In one exemplary embodi-
ment, a page is a fixed-length contiguous block of virtual
memory; each page is described by a single entry in a page
table that stores various bookkeeping information. Other
implementations may support static and/or dynamically
sized, contiguous and/or non-contiguous pages. The page
table can be referenced by the peripheral processor to
retrieve a page which does not exist within the peripheral
processor’s execution memory.

[0071] As a brief aside, if firmware tries to access a
location in a page that is not held within the peripheral
processor’s execution memory, then the peripheral processor
generates an exception called a page fault. The firmware
peripheral driver is notified to load the missing page from
the auxiliary store (e.g., the secondary memory) automati-
cally. Generally, the request is serviced without notifying the
firmware process; i.e., the firmware is unaware of page faults
or the retrieval process. In this manner, the program can
address a much larger “virtual” execution memory than the
actual physical execution memory. Each transfer of a page
to support firmware execution is referred to as paging or
swapping.

[0072] In one exemplary embodiment of the present dis-
closure, the firmware image includes one or more loadable
on-demand firmware modules. In one such variant, the
on-demand firmware modules are fixed based on a default
configuration. Generally, default configurations include
important modules that are frequently used and/or time
critical. In other embodiments, the on-demand firmware
modules are selected based on one or more operational
considerations (e.g., power, performance, size, running
applications, etc). For example, a firmware image may be
configured to include the most recently used firmware
modules. In other examples, a different selection of firmware
modules may be implicated based on e.g., running applica-
tions, historically run applications, security considerations,
business considerations, etc.
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[0073] Each firmware module is assigned a granular num-
ber of pages; for example, a firmware module of 7 KB, will
require two 4 KB pages of space. The mapping of firmware
modules to pages may be one-to-many and/or many-to-one;
for example, each firmware module may require multiple
pages. In other cases, multiple small firmware modules may
reside on a single page. Moreover, artisans of ordinary skill
in the related arts, given the contents of the present disclo-
sure, will appreciate that virtually any NxM mapping of
firmware to pages may be used with equivalent success.
[0074] As previously noted, the paging table entries
include information useful for coordinating the management
of pages between processors. For example, the paging table
may include housekeeping bits for one or both of the host
and peripheral processors. Common examples of coordina-
tion information include e.g., dirty bits to indicate whether
a processor has modified a page (and thus requires synchro-
nization), wired bits to prevent a page from being reclaimed
or evicted to make space for a requested page, validity bits
to indicate whether the contents of the page are valid,
reference pointers (e.g., to the first page of a number of
pages), length of contents, etc.

[0075] In one exemplary embodiment of the present dis-
closure, the paging table is stored in secondary memory and
includes one or more locking mechanisms. As described in
greater detail hereinafter, the locking mechanisms e.g., pre-
clude access to one or more entries of the paging table
during paging access so as to prevent contention over shared
resources (see Locking infra).

[0076] At step 208 of the method 200, the peripheral
processor is loaded with an initial image. In one such
embodiment, the initial image includes a first firmware host
driver and a primary firmware image. In one exemplary
embodiment, the host processor loads the first firmware host
driver and the primary firmware image into the execution
memory of the peripheral processor and then releases the
peripheral processor from reset. In other embodiments, the
peripheral processor has a small bootloader (e.g., in a small
read only memory (ROM) or other non-volatile memory)
that enables the peripheral to fetch the first firmware host
driver and the primary firmware image from the secondary
memory.

[0077] At step 210 of the method 200, the peripheral
processor executes the initial image. The primary firmware
image may initialize various subsystems of the peripheral
processor (e.g., memory configuration, subsystem initializa-
tion, etc.). As part of the primary firmware image, one or
more additional modules of firmware may be requested; in
order to satisty these requests, the peripheral processor uses
the firmware host driver to fetch the requested loadable
modules from the secondary memory (see On-demand Firm-
ware Execution, infra).

[0078] FIG. 2A illustrates one exemplary logical sequence
diagram of an exemplary boot sequence. As shown, the
physical bus interface driver 133 is triggered for peripheral
device operation.

[0079] Responsively, the physical bus interface driver 133
allocates memory for, and/or configures a secondary storage
of the firmware specific host driver 143. Specifically, as
shown, the firmware specific host driver 143 configures its
internal memory structures; this may include the firmware
specific mailbox 144, and firmware specific shared memory
145. Additionally, during the configuration of the secondary
storage, the firmware specific host driver 143 fetches the
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device main firmware 131 and one or more loadable mod-
ules 141 from tertiary memory 112; and writes them into the
configured secondary storage. Finally, the execution
memory of the peripheral processor is loaded with at least an
initial image of the first firmware host driver and a primary
firmware image.

[0080] Once the firmware specific host driver 143 has
completed its configuration, the physical bus interface driver
133 can release the peripheral device 104 from reset, and the
link between the peripheral device 104 and the host 102 (via
the physical bus interface 106) is established or re-estab-
lished.

[0081] Upon link establishment, the peripheral processor
124 executes the contents of its execution memory. There-
after, the peripheral processor initializes its operation from
the configured secondary storage. In some cases, the periph-
eral processor may also be initialized with generic firmware
element(s) which are commonly used and/or seldom
changed. In one exemplary embodiment, a memory region is
allocated for the firmware specific shared memory 145. The
firmware specific shared memory 145 is used during opera-
tion by the firmware specific peripheral driver 162 (e.g., the
page-fault handler or overlay manager) as an addressing
reference for the on-demand loadable firmware(s) 141.
[0082] FIG. 3 illustrates one example of a memory map
300 useful in conjunction with the various principles
described herein. Artisans of ordinary skill in the related
arts, given the contents of the present disclosure, will readily
appreciate that other memory map structures may be used
with equal success, the example provided being purely
illustrative.

[0083] As shown, the firmware specific shared memory
145 is divided into 4K pages. The illustrated example
includes at least four (4) types of pages, which are hierar-
chically organized: a shared memory header, a 1st level page
table, a 2nd level page table and a data page.

[0084] In the illustrated embodiment, the shared memory
header is the first page of the shared memory, and includes
information that defines the structure of the memory map
300. In some cases, the shared memory header includes a
configuration register in a memory mapped input/output
(MMIO), located in the peripheral device registers 122, that
identifies the location of the firmware specific shared
memory 145 for the peripheral device (APPENDIX A
provides exemplary field definitions for the shared memory
and MMIO data structures). As previously noted, an MMIO
is a mapping of a memory region into the memory map of
the host. In this manner the peripheral device’s native
execution instructions can address the mapped region in the
same manner as its own local memories. More generally, the
shared memory header identifies the addressable location for
the firmware specific shared memory 145, so that the pro-
cessor can natively read and write values to the shared
memory 145.

[0085] As shown, the 1* level page table provides address
locations for each of the 2"“ level pages. The number of
entries of the 1° level page table defines the number of
possible 2”7 level pages; for example a 4K page that supports
1024 entries can reference up to 1024 2"¢ level pages
(APPENDIX B provides one exemplary field definition of a
1% level page table).

[0086] Each 2"“level page table defines one or more pages
that store references to the data pages of an on-demand
loadable firmware module 141. Each data page stores an
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on-demand loadable firmware module 141 or a portion
thereof. For example, a 4K 2"? level page can store up to
1024 reference pointers to up to 1024 data pages (larger
allocations will span multiple pages). Each data page can
store up to 4K of computer executable code. Artisans of
ordinary skill in the related arts will readily appreciate, given
the contents of the present disclosure, that page size can be
selected based on design constraints e.g., to minimize on-
demand page switching (larger page sizes), or minimize
unused memory, etc. Moreover, while the disclosed embodi-
ment envisions pages of equal size; artisans of ordinary skill
in the related arts given the contents of the present disclo-
sure, will readily appreciate that different page types may be
differently sized.

[0087] In the foregoing example of FIG. 3, the firmware
specific shared memory 145 is divided into pages which are
accessed via a page table in the shared memory. The
foregoing memory structure enables non-contiguous opera-
tion; e.g., pages that are contiguous in address space are not
necessarily contiguous in the shared memory. In this man-
ner, the secondary storage can support a much larger tertiary
storage in system configurations where the secondary
memory is not big enough to hold the full firmware image.

On-Demand Firmware Execution—

[0088] As previously noted, design assumptions for the
consumer electronics space are rapidly changing. For
example, modern firmware images are now significantly
larger and support a wider variety of functionalities. Addi-
tionally, device manufacturers have increasingly designed
devices around commodity components (e.g., wireless
modems, etc.), that are flexibly customized for use within
software. Based on current design trajectories, existing
peripheral device processors are predicted to lack sufficient
memory to support firmware images within the next few
design iterations. Moreover, customizing peripheral proces-
sors is an expensive and undesirable proposition. To these
ends, another aspect of the present disclosure is directed to
on-demand firmware execution. During “on-demand”
operation, the peripheral processor can retrieve and load
firmware modules for execution on an as-needed basis,
thereby minimizing the computer instructions that must be
loaded into execution memory.

[0089] FIG. 4 is a logical flow diagram illustrating one
generalized scheme for retrieving and loading firmware for
execution on a processor with limited access to memory.
[0090] At step 402, the peripheral processor executes a
portion of the firmware image from its primary memory. In
some embodiments, the firmware may be a single process;
in alternative embodiments, the firmware may have multiple
processes. As used herein, the term “process™ refers to a
discrete and self-contained software process that includes a
relevant set of instructions and data. In some embodiments,
each process may be a single threaded application and/or
multi-threaded applications. As used herein, a “thread” is a
sequential set of instructions that must be executed sequen-
tially to perform a software function; i.e., threads cannot be
executed out of sequence. Multi-threaded processes can
share process resources between each thread, but execute
independently.

[0091] As used herein, the term “on-demand” refers to a
portion of computer instructions that are currently executed
and/or computer instructions that are queued for foreseeable
execution. As used herein, the term “archive” and/or “archi-
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val” refers to a portion of computer instructions that are not
currently executed and which are not implicated in foresee-
able execution. Artisans of ordinary skill in the related arts,
given the contents of the present disclosure, will readily
appreciate the wide variety of execution prediction tech-
nologies used within the processing arts. Common examples
include without limitation e.g., speculative execution,
branch prediction, etc.

[0092] In some embodiments, the host can trigger
advanced firmware fetching, which enables proactive load-
ing of firmware by the peripheral processor. Ideally, the host
can trigger firmware fetching without considering specific
firmware architecture or layout requirements (where the
mechanism is managed by the peripheral). In some variants,
advanced firmware fetching is driven by host control com-
mands, via the physical bus and/or higher order software
layers (e.g., networking layers, transport layers, application
layers, etc.) For example, in one such implementation, the
peripheral processor may be instructed to perform a “touch-
only” code sequence; during a touch-only code sequence,
the peripheral traverses the code sequence for the actual
code sequence, but does not execute or modify data. By
performing the touch-only code sequence, the firmware will
load the necessary firmware for the actual code sequence
execution. In another such example, a firmware feature fetch
command instructs the peripheral processor to load specific
firmware modules for a particular feature. For instance,
before the host prepares to sleep, the host can notify the
peripheral to load any firmware it will need while the host
is asleep.

[0093] In one exemplary embodiment, the on-demand
portion of the firmware image includes one or more firm-
ware modules which are stored within pages of memory. The
peripheral processor is configured to execute one or more
sets of instructions encompassed within the one or more
firmware modules. Each page of on-demand firmware is
represented by a corresponding entry of a paging table. In
one illustrative example, the paging table includes e.g.,
address locations for a number of pages that contain firm-
ware modules (see also, APPENDIX B).

[0094] In another embodiment, the on-demand portion of
the firmware image includes one or more sections of com-
puter instructions which are always available (i.e., which
cannot be removed during execution). In some variants, the
one or more sections of computer instructions which are
always available are not separately stored within pages. In
other variants, the one or more computer instructions which
are always available are stored within pages that have been
write protected (or otherwise have limited access).

[0095] In still another embodiment, various pages of
memory can be dynamically configured for write protected
or other limited access operation. For example, a firmware
process may have specific performance requirements, and
proactively protect its associated pages (thereby ensuring
that the pages are always available for on-demand opera-
tion). Artisans of ordinary skill in the related arts will readily
appreciate that protecting specific pages from eviction may,
in some circumstances, affect overall cache operation; for
example, evicting more frequently used pages (instead of
protected pages) results in worse cache performance.
[0096] In still other embodiments, the paging table iden-
tifies and/or tracks whether each page of the firmware which
is currently stored within the primary memory should be
kept on-demand, or considered for archival. Tracking infor-
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mation may be useful for e.g., eviction (described in greater
detail hereinafter). Generally, tracking information may be
determined based on the relative usage of the firmware. For
example, in some variants, the paging table records each
usage of its pages (a running count of previous hits), where
frequently used pages are prioritized for on-demand opera-
tion. In other variants, the paging table records when the last
usage occurs (e.g., via a timestamp, etc.), where the least
recently used (LRU) pages are more likely to be evicted
(based on the assumption that instructions tend to refer back
to previously called instructions, thus the least recently used
pages are the least likely to impact performance if evicted).
Various other schemes for determining on-demand/archival
status are readily appreciated by those of ordinary skill,
given the contents of the present disclosure. For example,
some schemes may use a most recently used (MRU) metric
for eviction (based on the assumption that instructions will
not refer back to previously called instructions), etc.
[0097] In other variants, on-demand/archival status may
be determined based on predictive considerations of the
firmware rather than, or in combination with, tracking
information. For example, in some variants, the current
page’s firmware execution may expressly announce its links
to one or more other pages (via compiler inserted flags, etc.)
In another example, the current firmware task or application
may historically require one or more other pages for opera-
tion. In still other examples, the current applications process
(running on the host processor) may notify the peripheral
(e.g., via out-of-band messaging) that certain firmware mod-
ules are likely to be used and/or stored within one or more
pages. Still other examples of predictive considerations are
readily appreciated by those of ordinary skill in the related
arts, the foregoing being purely illustrative.

[0098] At step 404, when an instruction executed from the
primary memory references (or is implicated in future
execution) a memory location that is outside the currently
resident memory range, then the peripheral processor gen-
erates a page fault that is serviced at step 406.

[0099] In one embodiment, the host processor services the
page fault. In one variant, the peripheral processor is idled
while the page fault is serviced. In other multi-threaded
and/or multi-processor variants, the peripheral processor
may be allowed to execute other unrelated processes while
the required instruction for the starved process is being
loaded; artisans of ordinary skill in the related arts will
readily appreciate that such execution cannot be dependent
on the results of the missing instructions (e.g., the concurrent
instruction execution must be associated with a different
thread or process, etc.) In alternative embodiments, the
peripheral processor services the page fault by directly
accessing the secondary memory. In some cases, the periph-
eral processor may directly interface with the secondary
memory via e.g., a direct memory access (DMA) mecha-
nism. In other cases, the peripheral processor may be
required to actively arbitrate for access to the secondary
memory with the host processor. In still other embodiments,
the shared memory and/or other dedicated management
system may internally manage access to the secondary
memory.

[0100] In some embodiments, the processor services the
page fault by retrieving the requested page from the sec-
ondary memory. However, in more complicated embodi-
ments, servicing the page fault may require determining
where the page is stored; e.g., within secondary, tertiary, or
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higher order memory. In some cases, the peripheral proces-
sor may not be aware of where the referenced memory
location is stored; thus the host processor determines where
the requested page is stored. For example, the host processor
may search for the referenced memory location within a
secondary memory and a shared tertiary memory. In other
embodiments, the peripheral processor is aware of where the
referenced memory location is stored and in some cases; the
peripheral processor may have a data structure which tracks
the controlling location of pages via e.g., the aforementioned
page table, etc. For example, the peripheral processor may
cross reference the page table to determine whether the
requested page is stored in secondary memory or tertiary
memory.

[0101] In some embodiments, the processor merely idles
until the referenced page fault has been appropriately
handled (where the host processor or other memory man-
agement entity services the page fault). Since memory
access latency is directly related to the memory technology
used for storage, the processor may also be able to predict
its idle times in accordance with the type of page fault (e.g.,
a page stored in secondary memory has a shorter access
time, than a page stored in tertiary memory, etc.) In some
variants, predicted idle times may be useful for multi-
process and/or multi-threaded applications. In other vari-
ants, predicted idle times may be useful for reduced power
operation, etc. For example, the processor may be able to
perform other functions or go to sleep while it is waiting for
the requested page.

[0102] In some scenarios, the page fault mechanism
checks whether the page is locked from access. As a brief
aside, multiple processor systems that share common
resources (such as memory), can encounter contention
issues when two or more processors attempt to use the same
common resource. In the case of the exemplary secondary
memory, either the host or peripheral processor that is
accessing a memory (for reading or writing) can only be
assured of memory fidelity if the other processor is pre-
vented from writing to it.

[0103] Various embodiments may use various types of
locking procedures. For example, in some variants, the
memory may be globally locked. In other variants, the
memory may allow granular locking of pages, etc. In some
variants, locking may prevent all access types; in other
variants, the locking may only prevent certain types of
accesses e.g., writes, reads, etc. Still other implementations
may prioritize one processor over the other (e.g., preferen-
tially allowing one processor to lock, etc.) Artisans of
ordinary skill in the related arts, given the contents of the
present disclosure, will readily appreciate the variety of
locking mechanisms which may be used with equivalent
success, the foregoing being purely illustrative.

[0104] In some scenarios, the page fault mechanism must
make room for the new page by evicting an existing page.
For example, where the execution memory or secondary
memory is full (i.e., there are no empty pages) then one of
the entries must be deleted to make room for the updated
page. In other examples, the execution memory or secondary
memory may be primed for incipient operation, so as to
prevent delays due to cache accesses. Still other implemen-
tations may force evictions so as to optimize operation
and/or remove stale data, etc.

[0105] As previously noted, the paging table may include
tracking information useful for identifying which pages may
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be evicted. For example, entries with the lowest frequency
of' use may be removed during eviction. Theoretically, cache
eviction strategies should attempt to remove cache entries
that are not needed for the longest foreseeable time. In
practical implementation, cache eviction typically assumes
some type of behavior; for example, that the firmware
repetitively executes similar operations, or conversely, that
the firmware seldom executes the same operation, etc. Thus,
common examples of eviction schemes that may be used
include without limitation: (i) the least recently used (LRU),
(i) the most recently used (MRU), (iii) random entries, (iv)
least frequently used, etc. Moreover, some eviction policies
may protect certain entries from eviction. For example,
some entries may not be removed due to e.g., power
consumption and/or performance, etc.

[0106] In some embodiments, pages are only modified in
execution memory during use (secondary and/or tertiary
memories may not reflect the modifications). Accordingly,
execution memory must be “written back™ into the backing
storages, so as to ensure that modifications are retained after
the eviction.

[0107] At step 408, once the page has updated, the device
can resume firmware operation. In some variants, the periph-
eral processor is woken from sleep or otherwise notified.

Overlay Manager—

[0108] In one exemplary embodiment, the fault is handled
with an overlay manager. As a brief aside, an overlay is a
linker term that refers to a piece of code or data that can be
executed out of a given overlay region. Overlays are a tool
that can be used, for example, to dynamically load and
execute portions of a firmware image as needed. In some
implementations, overlays can be utilized without the help
of'a memory management unit (MMU). In an overlay-based
solution, a subset of device firmware can be made up of
modules that are linked as overlays into the firmware image.
The content of each module is designed with temporal
locality and firmware feature sets in mind so that each
module is as self-contained as possible. There are two types
of broad overlay manager types discussed in the present
disclosure that enable the use of overlays to dynamically
load the modules at, for example, run time. The first type of
overlay managers is a so-called static overlay implementa-
tion.

[0109] In so-called static overlay implementations, over-
lay operation is characterized in that selection of an overlay
region for each module is static and can be hardcoded by the
programmer or determined heuristically at build time. A
typical use is to have multiple such overlays that are linked
to execute out of the same overlay region (the static nature
of overlay operation greatly reduces compiler burden and
execution complexity). This enables the firmware, with the
aid of an overlay-manager entity, to dynamically load the
necessary overlay before executing or accessing its contents.
[0110] In slightly more detail, each overlay has a unique
load address, but multiple overlays can be interchangeably
used within the same execution address. The computer
instructions of an overlay are statically linked with code that
is not in the overlay region; consequently, when compiling
an overlay, the linker of the compiler ignores errors due to
e.g., overlapping symbols in the overlays (which is a desired
behavior). At run time, the firmware loader cannot determine
which overlay (of the multiple options) to load, thus the
firmware loader does not load overlays into the overlay
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region until they are needed. Instead, the overlays are held
in a secondary storage of the host memory. The job of
loading overlays is left to a run-time piece of code called the
overlay manager. All the overlays of a peripheral start out as
unmapped. After boot, if the peripheral executes code that
needs to access a variable of an overlay, or call a function in
an overlay, it must first ask the overlay manager to map in
the relevant overlay. The overlay manager will un-map the
overlay that was previously mapped in the corresponding
overlay region, if any. If the overlay to be unmapped holds
read-write data, its contents are written back to secondary
storage (and/or tertiary storage) before un-mapping.

[0111] In one exemplary variant, some subset of the firm-
ware image includes multiple modules, which are linked
into overlays. If there is a single overlay region, only one of
the firmware’s modules can be resident in execution
memory at a time. In some cases, this can be restrictive if a
number of modules need to work together to accomplish a
high-level work item with a single overlay region (i.e., the
active module would have to be swapped with a different
one several times over the course of getting a single high-
level piece of work done). Consequently another exemplary
variant uses more than one overlay region, thereby enabling
multiple modules to be resident in execution memory simul-
taneously.

[0112] In one exemplary embodiment, the overlay man-
ager uses a pair of data structures populated by the linker
called the overlay table and the overlay region table. The
overlay table has one entry per overlay and contains the load
address and size of that overlay as well as the address to
which it must be loaded when mapped in. The overlay region
table has one entry per overlay region and cross-references
into the overlay table (see e.g., APPENDIX C)

[0113] During a page fault, the individual pages of the
firmware specific shared memory can be accessed via a page
table in the shared memory. Pages that are contiguous in
address space are not necessarily contiguous in the shared
memory. Each overlay is associated with two (2) addresses:
the virtual memory address (VMA) which multiple overlays
may have in common, and the load memory address (LMA),
which is unique to each overlay. Overlays can be retrieved
from (or written back to) the firmware specific shared
memory using their LMA addresses.

[0114] Referring now to FIG. 4A, one illustrative firmware
specific shared memory is presented. As shown, the overlay
starting at LMA 0x8000000h spans two 4 KB pages; the
peripheral must retrieve both pages (starting at 0x8000000h
and 0x8001000h) to get the contents of the overlay. FIG. 4B
illustrates how a page is described based on its overlay
LMA. As shown, the two step process requires identifying
the 1st level (which is indexed by bits [31:22] of the LMA
address), which references the appropriate 2"/ level page
table. The index of the 2" level page is identified by the next
10 bits of the LMA [21:12]. The 2"“ level page table entry
provides the reference to the destination page. As part of
accessing the page, the device must acquire the page table
entry lock (see Locking Operation).

[0115] The contents of the overlay table and the overlay
region table can vary from one version of firmware to the
next and depend on the number of overlay, overlay size,
overlay regions, etc. The linker determines the VMA and
LMA addresses of the overlays and generates the overlay
table and overlay region table during software compilation.
APPENDIX D illustrates one such linker script that sets up
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eight (8) overlays that are divided equally among two (2)
overlay regions. As shown in APPENDIX D, the script sets
up the overlays LMA addresses to start at 0x8000000h and
aligns each overlay at 4 KB page boundaries.

[0116] In order to handle a page fault operation and
on-demand firmware loading (e.g., when a function inside
an overlay is called), the overlay must be loaded into the
appropriate overlay region by the overlay manager. In one
variant, the firmware is written such that every public
function of the overlay is wrapped with a stub function that
calls the overlay manager. The stub function: (i) gets the
overlay that corresponds to the function (function loadOver-
lay), (ii) marks the overlay region as busy before entering
the stubbed function and frees the overlay region after the
stubbed function returns (function markOverlayBusy), and
(iii) calls the stubbed function.

[0117] When loadOverlay is invoked, it checks if the
overlay corresponding to the called function is already
resident within the execution memory. If the overlay is not
already loaded, then loadOverlay verifies that the overlay
can be loaded in an on-demand manner. Additionally, if the
overlay region is “dirty” (the current contents of the overlay
region have not been updated in secondary storage), then
dirty contents must be written back to secondary storage.
Thereafter, the required overlay can be read from secondary
storage and mapped into the overlay region.

[0118] The function markOverlayBusy is invoked before
(and after) the overlay is in use to ensure exclusive access.
For example, the overlay can be marked as busy to ensure
that only the peripheral processor (and not the host proces-
sor) modifies the busy field of a mapped overlay when a
function has been called, but has not yet returned. In order
to ensure cache coherency, modifications to an overlay must
be written back to the backing cache (e.g., the secondary
and/or tertiary storages). In one such case, the modified
overlay is marked as “dirty” (function markOverlayDirty) to
ensure that the next time the overlay is unmapped, it is
written out to secondary storage.

[0119] APPENDIX E includes exemplary pseudocode
implementations of the aforementioned static overlay man-
ager functions.

[0120] However, despite this reduction in compiler burden
and execution complexity with static overlay managers,
maintaining a per-module overlay region selection table may
become cumbersome and may not necessarily scale easily as
the number of modules or overlay regions increases. For
example, the usage cases for each of the modules must be
considered in order to determine which modules it is more
(or less) likely to need to coexist with in device memory so
that, for example, two modules that are often used in
combination with one another do not end up being assigned
to the same common overlay region in memory. Accord-
ingly, the second type of overlay managers described herein
are so-called dynamic overlay types. As previously alluded
to, one such drawback of static overlay types is that any
given overlay has only one address to which it must be
copied and from which it must execute. As a result, having
X regions may not be sufficient to ensure that all X overlays
can be in use at the same time as, for example, the code-path
may be such that all the overlays it needs may be such that
a portion of the overlays it needs happen to be linked to
execute out of the same overlay region out of those X
regions, thereby rendering the other X-1 regions effectively
useless. Dynamic overlays enable the location to which an
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overlay is copied to and executed from to be determined at
runtime. In other words, when using dynamic overlay man-
agers, the code needs to be made overlay position indepen-
dent, thereby enabling these modules to be executed at any
designated memory address without modification. However,
as a result of the ability of modules to be dynamically
associated with a given region of memory, a mechanism is
needed in order to manage these dynamic allocations within
memory.

[0121] The use of a so-called module call table (MCT)
provides a layer of indirection between fixed position pri-
mary firmware and the variable position modules contained
in the dynamic overlays. Each module has a small number
of entry functions that are called from outside the module
and a comparably larger number of internal functions that
can only be called from other functions in the module. Every
entry function in a module has a corresponding entry in the
MCT. The entries of the MCT are functions that: (1) use the
overlay manager to ensure the module whose entry function
this entry corresponds to is loaded; (2) compute the address
of the entry function into the module based on the address
at which the module was loaded; and (3) call the entry
function into the module.

[0122] In one or more implementations, the MCT may
comprise one or more higher level computing codes (e.g., C,
C++ and the like), or lower level computing codes, such as
assembly files, whose entries are comprised of fixed position
code that is linked with and becomes part of the main
firmware and therefore must remain resident in device
memory. The MCT can be manually generated, or it can be
auto-generated by the device firmware build tools. To aid in
the splicing of the MCT into the firmware to module code
paths, a layer of indirection is inserted between specifically
called out functions. For example, using a GNU toolchain,
this mechanism involves using the -wrap option to the linker
to specify which function(s) should be “wrapped”. As yet
another example, using an ARM toolchain, a similar result
may be obtained by decorating the function to be wrapped
with $$Super$$ and the function to wrap it with $$Sub$$.
Aside from its involvement in calls from firmware to mod-
ules, the MCT is also used when one module needs to call
into another. For example, when a module must provide one
of its entry functions as a callback to main firmware or
another module, it must use the function pointer of the entry
functions corresponding MCT entry.

[0123] Table 1 reproduced below illustrates exemplary
supported use cases of modules using dynamic overlays with
partially position independent code. As a brief aside, par-
tially position independent code indicates that all the func-
tions within such code can call each other in a program-
relative manner. For example, on certain architectures (such
as ARM-based integrated circuits), this is the compiler’s
default preference. Contrast partially position independent
code with fully position independent code in which the
offsets between the sections at runtime must remain the same
as they were at compile time. In other words, when com-
piling fully position independent code, the compiler will do
everything necessary to ensure, for example, that all
branches and data accesses are done relative to the program
counter (PC) or instruction pointer (IP).
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TABLE 1
From module From firmware From module From module to a
Functionality to firmware to module to itself different module
function call module calling firmware calling module calling module calling
firmware function module function internal function function of a
different module
static local ~ Not applicable Not applicable static local Not applicable
variable variable in a module
global module accessing firmware accessing module module accessing
variable firmware global  module global accessing own global variable
variable variable global variable of different
module
callback module calling firmware module calling module calling
function firmware calling module own callback callback in a
callback callback different module

[0124] As a brief aside, when using partially position
independent code and eliminating global offset tables, it
becomes necessary to control the compiler’s use of so-called
short calls and long calls. Short calls are program-relative
and therefore well suited to intra-module function calls.
Long calls are absolute and therefore well suited to function
calls from position independent modules to fixed position
code (e.g., firmware). For example, one or more implemen-
tations may have the compiler default all function calls to
long calls, and marking module internal functions with a
short calls attribute. However, it is recognized that other
compiler usage scenarios may dictate otherwise. For
example, the compiler may default all function calls to short
calls and mark module internal functions with a long calls
attribute in certain implementations.

[0125] APPENDIX F includes exemplary pseudocode
implementations of the aforementioned dynamic overlay
manager functions.

Memory Management Unit—

[0126] In an alternative variant, the page fault is handled
with a memory management unit (MMU). In an MMU-
based solution, the peripheral keeps a subset of the firmware
image resident in execution memory, irrespective of the code
layout. However, the performance can suffer if the firmware
has not been optimized for temporal locality.

[0127] More directly, since an MMU does not impose the
strict fixation requirement of an overlay manager, the soft-
ware must be expressly optimized for paging operation
(functions should minimize references to off page memory
locations). Otherwise, excessive cache hits from off-page
hits will result in sub-optimal operation.

Locking Operation—

[0128] Within the context of the present disclosure, the
host processor and the peripheral processor have distinct and
unrelated reasons for accessing the secondary storage. For
example, in one exemplary embodiment, the peripheral
processor accesses the contents of the secondary storage to
retrieve firmware pages on-demand and also to update the
tracking information (e.g., usage) of the firmware pages. In
contrast, the host processor accesses the contents of the
secondary storage to read the tracking information and,
based on the tracking information, replace evict pages so
that other more desirable pages may be stored.

[0129] As previously noted, safeguard procedures are nec-
essary to ensure that the cache data is accurate. Artisans of

ordinary skill in the related arts will readily appreciate that
undesirable data hazards can occur in at least two (2) ways:
(1) where one of the processors may attempt to read a
memory, while the other processor writes to the same
memory; and (ii) where one of the processors reads a “dirty”
memory. So-called cache coherence refers to the consistency
of data that is stored in various tiers of memory; when stale
cached copies have not been updated, they are colloquially
referred to as “dirty”.

[0130] Within the context of the present disclosure, the
foregoing data hazards may occur during certain operations
of the on-demand firmware system. First, a data hazard
could occur where the peripheral processor writes tracking
data (stored in the page table) while the host processor reads
it. Secondly, a data hazard could occur where the peripheral
processor reads a page from the secondary memory, during
an eviction process (i.e., where the host has control).
Thirdly, a data hazard could occur where the host evicts a
page that is dirty (i.e., before the peripheral has an oppor-
tunity to update the page). Each of these scenarios could be
resolved by locking the shared memory.

[0131] However, traditional schemes for locking a shared
memory ensure that only one processor can read or write to
a memory at a time. Unfortunately, such generic locking
schemes are ill-suited for on-demand firmware operation. In
particular, the firmware of the peripheral processor has very
stringent time requirements during operation, and the host
processor and peripheral processor are not coordinated.
Thus, locking out the peripheral processor whenever the
host processor seeks to update the memory (and vice versa)
is impractical. Ideally, locking schemes should minimize the
occasions when one processor has locked the other proces-
sor out. Since the host and peripheral processor use different
portions of the secondary memory for different functions,
various embodiments of the present disclosure are directed
to limiting the locking of the memory to only those portions
which are required for the processor to perform its required
tasks. Since the other portions of the memory are not locked,
the other processor’s accesses are minimally affected. By
providing a multitude of specialized locking mechanisms,
the described embodiments minimize lockouts.

[0132] Inone exemplary embodiment, the locking process
is divided into a global locking mechanism, and a page table
entry (PTE) locking mechanism. In particular, the global
locking mechanism is primarily used to read and/or update
all the contents of the secondary memory together. For
example, the global locking mechanism is used whenever
the tracking information is being read or updated. As a brief
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aside, since the tracking information is used to determine
which pages have been most frequently/least frequently
used, a meaningful determination of usage requires that the
tracking information is up-to-date for all of the pages. In
contrast, for operations which only affect a single page table
entry, the PTE locking mechanism ensures that only one
processor can read and/or write to the single page table entry,
however the other secondary memory elements remain
unlocked.

[0133] Moreover, the locking process is also divided into
time sensitive and time insensitive operations. As a brief
aside, the host and the peripheral processor only perform a
global lock when performing reads or updates on the track-
ing information for all of the page table entries. Since the
tracking information is used by the host processor to evict
and/or pre-fetch pages for on-demand operation, and is thus
not time sensitive (i.e., time insensitive). For example, the
peripheral updates the LRU tracking information periodi-
cally; if the peripheral processor skips an update there may
be a slight (but still acceptable) reduction in cache perfor-
mance. In another example, the host modifies LRU tracking
information during eviction; however the peripheral proces-
sor’s performance is not adversely affected if the host has to
retry the LRU modification on the next cycle of its eviction
operation. More generally, the global lock procedure can be
performed on a so-called “best effort” basis (i.e., the lock is
attempted, but not guaranteed).

[0134] In contrast, locking a paging table entry is limited
to uses where either the host or the peripheral is moditying
a specific page of the shared memory. However, if the host
locks a paging table entry, the peripheral would be tempo-
rarily unable to read from the page (resulting in an unde-
sirable firmware stall). Consequently, locking the paging
table is a time sensitive operation.

[0135] In one exemplary embodiment, the global locking
scheme protects any resources in shared memory that are not
restricted by a device to acquire the PTE lock, including for
example the page use indicator of page table entries (e.g.,
least recently used (LRU) entries, etc.) In one variant, the
PTE lock specifically protects the corresponding page table
entry’s dirty bit, wired bit, and page use indicator (these data
structures preclude access to the page table entry).

[0136] By separating the locking mechanism into two
separate portions, various embodiments of the present dis-
closure can perform global time insensitive locking, and
granular time sensitive locking of page table entries. More
generally, various aspects of the present disclosure are
directed to providing granular locking of a shared memory,
so as to minimize the potential for lockouts during on-
demand firmware performance. Additionally, by providing
multiple mechanisms for locking the shared memory, those
of ordinary skill in the related arts (given the contents of the
present disclosure) will readily appreciate that the various
locking mechanisms may have other functional differences.

[0137] For example, due to the differences in timing
requirements, the locking schemes may have the same or
different locking capabilities. In one such variant, the global
lock and page table entry lock may both be implemented as
a retry-later-lock (i.e., the processor can try at a later point
to acquire the lock) using shared memory variables. In
alternate variants, the global or page table entry lock may
use so-called “spin locks™ where the processor “spins” in an
idle loop waiting for the lock to be released.
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[0138] The following discussion of contention scenarios is
provided to illustrate the various issues introduced by the
aforementioned multi-facetted locking scheme, and various
solutions thereto. While locking procedures are not uncom-
mon for use in processor systems, the following novel
contention scenarios cannot be handled with existing lock-
ing contention resolution and are uniquely resolved by the
exemplary global and page table entry lock implementation.

[0139] FIG. 5 is a logical flow diagram illustrating one
generalized scheme for locking a paging table entry of a
shared memory.

[0140] At step 502 of the method 500, the processor sets
a semaphore flag indicating that it is attempting to lock the
paging table entry. In one exemplary embodiment, the host
and peripheral device contend for access to the firmware
specific shared memory using a corresponding set of flag
registers. Artisans of ordinary skill in the related arts will
readily appreciate that other “semaphore” type schemes may
be used with equivalent success to control access to the
shared memory, the following description being purely
illustrative. The peripheral device has a semaphore register
PTE_D_flag which when asserted indicates that the periph-
eral device has successfully gained control of the shared
memory; the host will refrain from accessing the paging
table entry until the PTE_D_flag has been de-asserted.
Similarly the host device has a counterpart semaphore
register PTE_H_flag that indicates when the host has con-
trol. During operation, the peripheral and host will check
both semaphores before writing to the shared memory (see
also APPENDIX E for exemplary “pseudocode” implemen-
tations of the exemplary software process). Specifically, the
peripheral must verify that the host does not currently have
access and also that the peripheral has successfully reserved
access (and vice versa).

[0141] In some embodiments, the semaphore register is
also a read and writeable register that both processors can
access. In other embodiments, the semaphore mechanism
may be a writeable address for one processor, and readable
by the other processor (but not vice versa). For example, the
semaphore mechanism may be directly coupled to dedicated
interrupts within the other processor, etc.

[0142] Insome embodiments, the semaphore flag is stored
within a dedicated register, or other memory mapped data
structure. Other common mechanisms for signaling may be
used with equal success; for example, in some cases, the
semaphore may embodied as a message, packet, dedicated
signaling lines, etc.

[0143] At step 504 of the method 500, the processor
checks to verify that the other processor has not also
attempted to lock the paging table entry. In some embodi-
ments, the checking is performed by reading another other
processor’s semaphore flag. In other embodiments, verifi-
cation may be provided via separate messaging e.g., an
acknowledgement packet or signal. In some embodiments,
the processor can infer that the other processor has not also
attempted to lock the paging table entry, if its attempted lock
was successful.

[0144] At step 506 of the method 500, if the processor has
successfully locked the paging table entry, then it can enter
its critical section. As used herein, the term “critical section”
refers to software execution which requires exclusive
access. Traditionally, exclusive access only prevents other
processors from writing to the paging table entry. However,
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in some variants, exclusive access may additionally prevent
other processors from reading from the paging table entry.
[0145] In one exemplary embodiment, the paging table
entry lock is limited to time sensitive operations. The paging
table entry lock allows the processor to read or modify the
contents of the paging table entry. For example, the periph-
eral processor may read the contents of a firmware page
and/or write back changes to the contents of the firmware
page (to ensure cache coherency). In another example, the
host processor may read back the contents of the firmware
page, evict the contents of a firmware page, and/or load a
different firmware page.

[0146] Insome cases, the paging table entry lock may only
exclude access from certain areas of the paging table entry.
For example, as previously noted, certain pages of the
shared memory area may have different functionalities (e.g.,
memory header, 1°* level page, 2*“ level page, data page,
etc.) Complicated embodiments of the present disclosure
may prevent certain accesses depending on e.g., page type,
operational mode, access permissions, etc.

[0147] At step 508 of the method 500, if the other pro-
cessor’s flag is present, then the processor has unsuccess-
fully locked the paging table entry. In some embodiments,
the processor will idle (or sleep) before re-attempting to lock
the paging table entry. In other embodiments, the processor
will divert its energies to other tasks before re-attempting to
lock. For certain non-critical functions, the processor may
simply abandon the access attempt.

[0148] In one such variant, the page table entry lock is
implemented as a retry-later-lock. In some variants, the
subsequent retry may be based on a timer. In some cases, the
timer may be based on e.g., historic performance, power
considerations, urgency, etc.

[0149] In other variants, the subsequent retry may be
based on a notification e.g., received out-of-band, etc. For
example, in some variants, a processor may receive an
interrupt or other signaling, indicating that the lock may be
retried. Such out-of-band signaling may be particularly
useful where the processor performs other tasks, or sleeps
while waiting for the lock.

[0150] In still other variants, the page table entry lock is
implemented as a spin lock. During spin lock operation, the
processor performs a null instruction while waiting for lock
to be released. While spin locks are inefficient from a power
consumption standpoint, spin locks allow a processor to
immediately access the paging table once the lock is
released.

[0151] The following detailed examples are illustrative
examples of the principles described in the foregoing gen-
eralized discussion of the generalized scheme for locking a
paging table entry of a shared memory.

[0152] FIG. 5A illustrates one exemplary logical sequence
diagram useful for describing the scenario where the periph-
eral device attempts to acquire the page table entry (PTE)
lock without contention. As shown, the peripheral device
acquires the PTE lock by setting a PTE_D_flag to one (1)
(i.e., indicating to the host that the peripheral device is
accessing the PTE). Before changing any of the paging table
entries, the peripheral device verifies that the host is not also
locking the paging table by reading the PTE_H_flag (a value
of zero (0) indicates that the host is not accessing the paging
table). Additionally, the peripheral device verifies that it has
been granted control of the shared memory by reading the
PTE_D_flag (a value of one (1) indicates that the peripheral
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has locked the paging table). Upon successful verification,
the peripheral enters its critical section and after completion,
releases the lock. A subsequent access by the host is also
shown.

[0153] FIG. 5B illustrates one exemplary logical sequence
diagram useful for describing the scenario where the host
device attempts to acquire the page table entry (PTE) lock
without contention. As shown, the host device acquires the
PTE lock by setting a PTE_H_flag to one (1) (i.e., indicating
to the peripheral that the host is accessing the PTE). Before
changing any of the paging table entries, the host device
verifies that the peripheral is not also locking the paging
table by reading the PTE_D_flag (a value of zero (0)
indicates that the host is not accessing the paging table).
Upon successful verification, the host enters its critical
section (e.g., writing to the firmware specific shared
memory, updating contents, etc.) and after completion,
releases the lock. A subsequent access by the peripheral is
also shown.

[0154] In both FIGS. 5A and 5B, the host and the periph-
eral attempt to access the shared memory without conten-
tion. However, artisans of ordinary skill in the related arts
will readily appreciate that contention may occur whenever
transactions of the host and peripheral overlap. Since the
neither the host nor the peripheral device timing is deter-
ministic, multiple different contention scenarios must be
considered depending on when and how the transactions are
interleaved.

[0155] For example, FIG. 5C illustrates a first exemplary
logical sequence diagram useful for describing the scenario
where the host device and peripheral device attempt to
acquire the page table entry (PTE) lock nearly simultane-
ously. As shown, the peripheral device attempts to set the
PTE_D_flag slightly before the host device attempts to set
the PTE_H_flag. Since the host sees that the PTE_D_flag is
set, the host concludes that it failed to acquire the lock, and
responsively it clears the PTE_H_flag. Thereafter, when the
device verifies that the PTE_H_flag isn’t set, the device has
successfully acquired the lock and can enter the critical
section. When the peripheral processor is done, it clears the
PTE_D_flag to release the lock.

[0156] FIG. 5D illustrates a second exemplary logical
sequence diagram useful for describing the scenario where
the host device and peripheral device attempt to acquire the
page table entry (PTE) lock nearly simultaneously. As with
FIG. 5C, the peripheral device attempts to set the PTE_D_
flag slightly before the host device attempts to set the
PTE_H_flag. However, in this scenario the peripheral device
checks PTE_H_flag which indicates that the paging table is
locked by the host. Thereafter, the peripheral device con-
cludes that it failed to acquire the lock, and responsively it
clears the PTE_D_flag. Thereafter, when the host verifies
that the PTE_D_flag isn’t set, the host has successfully
acquired the lock and can enter the critical section. When the
host processor is done, it clears the PTE_H_flag to release
the lock.

[0157] FIG. 5E illustrates the worst case logical sequence
diagram where the host device and peripheral device attempt
to acquire the page table entry (PTE) lock nearly simulta-
neously and where both processors check the other proces-
sor’s semaphore flag before the other processor has had the
chance to clear the flag. As shown, the peripheral device
attempts to set the PTE_D_flag slightly before the host
device attempts to set the PTE_H_flag. In this scenario the
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peripheral device checks PTE_H_flag before the host has
cleared its flag. Responsively, the peripheral device con-
cludes that it failed to acquire the lock. Similarly, the host
checks the PTE_D_flag before the peripheral has cleared its
flag, thereby concluded that it has also failed to lock.
Thereafter, both processors clear their flags. In this case,
both host and peripheral fail to acquire lock.

[0158] FIG. 6 is a logical flow diagram illustrating one
generalized scheme for globally locking a shared memory.

[0159] At step 602 of the method 600, the processor sets
a semaphore flag indicating that it is attempting to globally
lock the shared memory. In one exemplary embodiment, the
host and peripheral device contend for access to the firm-
ware specific shared memory using a corresponding set of
flag registers. The peripheral device has a semaphore reg-
ister GLK_D_flag which when asserted indicates that the
peripheral device has successfully gained control of the
shared memory; the host will refrain from accessing the
shared memory until the GLK_D_flag has been de-asserted.
Similarly the host device has a counterpart semaphore
register GLK_H_flag that indicates when the host has con-
trol.

[0160] In some embodiments, the semaphore register is
also a read and writeable register that both processors can
access. In other embodiments, the semaphore mechanism
may be a writeable address for one processor, and readable
by the other processor (but not vice versa). For example, the
semaphore mechanism may be directly coupled to dedicated
interrupts within the other processor, etc.

[0161] Insome embodiments, the semaphore flag is stored
within a dedicated register, or other memory mapped data
structure. Other common mechanisms for signaling may be
used with equal success; for example, in some cases, the
semaphore may embodied as a message, packet, dedicated
signaling lines, etc.

[0162] At step 604 of the method 600, the processor
checks to verify that the other processor has not also
attempted to globally lock the shared memory. In some
embodiments, the checking is performed by reading another
other processor’s semaphore flag. In other embodiments,
verification may be provided via separate messaging e.g., an
acknowledgement packet or signal. In some embodiments,
the processor can infer that the other processor has not also
attempted to lock the paging table entry, if its attempted lock
was successful.

[0163] At step 606 of the method 600, if the other pro-
cessor’s flag is not present, then the processor has success-
fully globally locked the shared memory and can enter its
critical section. Unlike the aforementioned paging table
lock, the global lock is directed to lower priority activities
(e.g., updating tracking information). For example, the
global lock allows the peripheral processor to write all of the
changes to tracking information. At step 608 of the method
500, if the other processor’s flag is present, then the pro-
cessor has unsuccessfully performed a global lock. In some
embodiments, the processor will idle (or sleep) before
re-attempting to lock the paging table entry. In other
embodiments, the processor will divert its energies to other
tasks before re-attempting to lock. For certain non-critical
functions, the processor may simply abandon the access
attempt. In one such exemplary variant, the global lock is
implemented as a retry-later-lock.
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[0164] The following detailed examples are illustrative
examples of the principles described in the foregoing gen-
eralized discussion of the generalized scheme for globally
locking a shared memory.

[0165] FIG. 6A illustrates one exemplary logical sequence
diagram useful for describing the scenario where the periph-
eral device attempts to acquire the global lock. As shown,
the peripheral device acquires the global lock by setting a
GLCK_D_flag. Thereafter, the peripheral device verifies
that the host is not also globally locking the shared memory
by reading the GLCK_H_flag. Upon successful verification,
the peripheral enters its critical section and after completion,
releases the lock.

[0166] FIG. 6B illustrates one exemplary logical sequence
diagram useful for describing the scenario where the host
device attempts to acquire the global lock. As shown, the
host device acquires the global lock by setting a GLCK_H_
flag. Thereafter, the host device verifies that the peripheral is
not also globally locking the shared memory by reading the
GLCK_D_flag. Upon successful verification, the peripheral
enters its critical section and after completion, releases the
lock.

[0167] FIGS. 6C and 6D illustrate exemplary logical
sequence diagram useful for describing the scenario where
the host and peripheral devices attempt to acquire the global
lock, and where contention is not an issue (i.e., where the
global lock operations do not overlap).

[0168] FIG. 6E illustrates a first exemplary logical
sequence diagram useful for describing the scenario where
the host device and peripheral device attempt to acquire the
global lock nearly simultaneously. As shown, the peripheral
device attempts to set the GLCK_D_flag slightly before the
host device attempts to set the GLCK_H_flag. Since the host
sees that the GLCK_D_flag is set, the host concludes that it
failed to acquire the lock, and responsively it clears the
GLCK_H_flag. Thereafter, when the device verifies that the
GLCK_H_flag isn’t set, the device has successtully acquired
the lock and can enter the critical section. When the periph-
eral processor is done, it clears the GLCK_D_flag to release
the lock.

[0169] FIG. 6F illustrates a second exemplary logical
sequence diagram useful for describing the scenario where
the host device and peripheral device attempt to acquire the
global lock nearly simultaneously. As shown, the peripheral
device attempts to set the GLCK_D_flag slightly before the
host device attempts to set the GLCK_H_flag, however
under this scenario the peripheral checks GLCK_H_flag
first, and concludes that it failed to acquire the lock. The
peripheral device clears the GLCK_D_flag. Thereafter,
when the host verifies that the GLCK_D_flag isn’t set, the
host concludes that it has successfully acquired the lock and
can enter the critical section. When the host processor is
done, it clears the GLCK_H_flag to release the lock.
[0170] FIG. 6G illustrates the worst case logical sequence
diagram where the host device and peripheral device attempt
to acquire the global lock nearly simultaneously and where
both processors check the other processor’s semaphore flag
before the other processor has had the chance to clear the
flag. As shown, the peripheral device attempts to set the
GLCK_D_flag slightly before the host device attempts to set
the GLCK_H_flag. In this scenario the peripheral device
checks GLCK_H_flag before the host has cleared its flag.
Responsively, the peripheral device concludes that it failed
to acquire the lock. Similarly, the host checks the GLCK_
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D_flag before the peripheral has cleared its flag, thereby
concluded that it has also failed to lock. Thereafter, both
processors clear their flags. In this case, both host and
peripheral fail to acquire lock and must retry at a later time.
[0171] FIG. 7 is a logical flow diagram illustrating one
generalized scheme for modifying tracking information by
the host processor. In one exemplary embodiment, the
tracking information (e.g., LRU field) is part of the same
byte in the page table entry as the semaphore (e.g., PTE_
D_flag). Consequently, the host cannot change the tracking
information without also overwriting the peripheral’s lock.
This highly undesirable access hazard can be avoided by
ensuring that the host only modifies the tracking information
when the peripheral is not asserting the semaphore. More
directly, in order to ensure that the host does not overwrite
the PTE_D_flag, the host should only update the LRU field
when the device does not have access (i.e., when the
PTE_D_flag is zero (0)). Additionally, since the aforemen-
tioned global lock affects all paging tables other than the
paging table entry held under PTE lock, the host must hold
both the global lock and the PTE lock of the corresponding
page table entry to modify the LRU field. The host device is
not susceptible to the same hazard, thus the peripheral
processor can update the LRU field of any page table entry
as long as it holds the global lock.

[0172] At step 702 of the method 700, the host processor
attempts to globally lock the shared memory, in accordance
with the generalized method described in FIG. 6 supra. At
step 704 of the method 700, for each paging table entry of
the shared memory that must be modified, the host processor
must additionally attempt to obtain the paging table entry
lock, in accordance with the generalized method described
in FIG. 5 supra.

[0173] At step 706 of the method 700, if the host processor
has successfully obtained both the global and paging table
entry locks, then the host processor can update the tracking
information for the paging table entry.

[0174] The following detailed examples are illustrative
examples of the principles described in the foregoing gen-
eralized discussion of the generalized scheme for modifying
tracking information by the host processor.

[0175] FIG. 7A illustrates one exemplary logical sequence
diagram useful for describing the scenario where the periph-
eral device attempts to update the LRU field of a page table
entry. As shown, the peripheral device first tries to acquire
the global lock. If it fails, it must try again later; however,
if it succeeds in acquiring the global lock, then it can update
the appropriate LRU entries for all the pages that the
peripheral device has updates for. After it is done, it releases
the global lock.

[0176] FIG. 7B illustrates one exemplary logical sequence
diagram useful for describing the scenario where the host
attempts to update the LRU field of one or more paging table
entries (e.g., for reset, etc). As shown, the host first tries to
acquire the global lock. If it fails, it must try again later;
however, if it succeeds in acquiring the global lock, then it
must also attempt to acquire the PTE lock for each page to
be updated. Once the host has acquired the PTE lock, then
it can update the appropriate LRU of that page. This process
is iterated for each page that the host updates. Once the host
has completed its updates, it releases the global lock.
[0177] FIG. 7C illustrates a first logical sequence diagram
useful for describing the scenario where the peripheral
device encounters a fault while the host is updating the
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various LRU bits of page table entries. Under these circum-
stances, the peripheral device attempts to lock the PTE by
setting the PTE_D_flag; however, upon reading the PTE_
H_flag, the peripheral determines that it has failed the PTE
lock, and must retry later. The peripheral clears PTE_D_flag,
and must wait until the host has released both PTE_H_flag
and GLCK_H_flag.

[0178] FIG. 7D illustrates a second logical sequence dia-
gram useful for describing the scenario where the peripheral
device encounters a fault while the host is updating the
various LRU bits of page table entries. Unlike FIG. 7C, in
this case the host completes the update of the paging table
entry of interest; thus, the PTE_H_flag is de-asserted and the
peripheral can establish control by asserting PTE_D_flag.
Thereafter, the peripheral can enter its critical section. Once
the peripheral has completed its critical section, the periph-
eral de-asserts the PTE_D_flag.

[0179] FIG. 7E illustrates a third logical sequence diagram
useful for describing the scenario where the peripheral
device encounters a fault while the host is updating the
various LRU bits of page table entries. In this case the host
completes the update of the paging table entry of interest but
has not cleared PTE_H_flag. At that time, the peripheral
device faults and attempts to access the paging table entry
held by PTE_H_flag. Since PTE_H_flag is set, the periph-
eral fails to lock and must wait until the host releases
PTE_H_flag before retrying.

[0180] FIGS. 7F and 7G illustrates a fourth and fifth
logical sequence diagram useful for describing the scenario
where the peripheral device encounters a fault while the host
is updating the various LRU bits of page table entries. In this
case the host updates the exact paging table entry (PTE_D_
byte) at the very same time that the peripheral writes it to set
the PTE_D_flag. FIG. 7F illustrates the consequences when
the peripheral device fails the race condition (i.e., PTE_D_
flag is de-asserted) and must retry later. FIG. 7G illustrates
the consequences when the peripheral device wins the race
condition (i.e., PTE_D_flag is asserted) and is allowed to
enter its critical section.

[0181] It will be recognized that while certain embodi-
ments of the present disclosure are described in terms of a
specific sequence of steps of a method, these descriptions are
only illustrative of the broader methods described herein,
and may be modified as required by the particular applica-
tion. Certain steps may be rendered unnecessary or optional
under certain circumstances. Additionally, certain steps or
functionality may be added to the disclosed embodiments, or
the order of performance of two or more steps permuted. All
such variations are considered to be encompassed within the
disclosure and claimed herein.

[0182] While the above detailed description has shown,
described, and pointed out novel features as applied to
various embodiments, it will be understood that various
omissions, substitutions, and changes in the form and details
of the device or process illustrated may be made by those
skilled in the art without departing from principles described
herein. The foregoing description is of the best mode pres-
ently contemplated. This description is in no way meant to
be limiting, but rather should be taken as illustrative of the
general principles described herein. The scope of the dis-
closure should be determined with reference to the claims.
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What is claimed is:
1.-13. (canceled)
14. A host processing device, comprising:
a processing unit;
an execution memory in signal communication with the
processing unit; and
a physical bus interface in communication with the pro-
cessing unit, the physical bus interface configured to be
coupled to a communications link;
wherein the host processing device is further configured
to:
globally lock a shared memory resource by use of a
global locking mechanism, the shared memory
resource configured to service the host processing
device and a peripheral processing device;
lock one or more paging table entries within the shared
memory resource by use of a paging table entry
locking mechanism; and
update tracking information associated with the one or
more paging table entries subsequent to the global
lock and subsequent to the one or more paging table
entry locks.
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15. The host processing device of claim 14, wherein the
host processing device is further configured to veritfy that the
peripheral processing device has not locked a portion of the
shared memory resource.

16. The host processing device of claim 15, wherein the
host processing device is further configured to de-assert the
global lock and the lock on the one or more paging table
entries subsequent to the tracking information update.

17. The host processing device of claim 16, wherein the
host processing device is further configured to update the
tracking information during an eviction of one or more
paging table entries.

18. The host processing device of claim 14, wherein the
global locking mechanism is exclusively utilized for time
insensitive operations.

19. The host processing device of claim 18, wherein the
paging table entry locking mechanism is exclusively utilized
for time sensitive operations.

20. The host processing device of claim 14, wherein the
use of the paging table entry locking mechanism is utilized
to minimize a potential for one or more lockouts during an
on-demand firmware operation for the at least one other
processing device.



