US 20190228177A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2019/0228177 A1l

Beckman et al.

43) Pub. Date: Jul. 25, 2019

(54)

(71)
(72)

(73)

@

(22)

(63)

HOSTED APPLICATION GATEWAY
ARCHITECTURE WITH MULTI-LEVEL
SECURITY POLICY AND RULE
PROMULGATIONS

Applicant: Open Text SA ULC, Halifax (CA)

Inventors: Gregory Beckman, Baden (CA);
Robert Laird, Waterloo (CA);
Geoffrey Michael Obbard, Waterloo
(CA)

Assignee: Open Text SA ULC, Halifax (CA)

Appl. No.: 16/371,852

Filed: Apr. 1, 2019

Related U.S. Application Data

Continuation of application No. 15/653,017, filed on
Jul. 18, 2017, now Pat. No. 10,268,835, which is a
continuation of application No. 14/534,623, filed on
Nov. 6, 2014, now Pat. No. 9,747,466, which is a
continuation-in-part of application No. 14/491,386,
filed on Sep. 19, 2014, now Pat. No. 9,979,751.

(60) Provisional application No. 61/880,481, filed on Sep.

20, 2013.
Publication Classification
(51) Inmt. Cl
GO6F 21/62 (2006.01)
(52) US. CL
CPC oo GOG6F 21/6227 (2013.01)
57 ABSTRACT

A hosted application gateway server node may be commu-
nicatively coupled to backend systems, client devices, and
database shards associated with database servers. Through
the gateway server node, various services may be provided
to managed containers running on client devices such that
enterprise applications can be centrally managed. A sharding
manager may manage relationships of database items across
database shards. Each shard stores a copy of a table repre-
senting a split of a relationship. A shard ID mask is included
in each item’s ID. At query time, the shard ID can be
extracted and used to query the correct database. This query
routing mechanism allows navigation from one shard to
another when multiple items are in a relationship (e.g., share
the same resource such as a document). As such, embodi-
ments can eliminate the need for APIs to join in data that
span multiple shards.

NGINK
1000
A
1002~ | REVERSEPROXY | | s7ancoowTenT | ¥
| Lowsaancer || FRESTORELMK |
¥
NODE.JS
1004 -,
iy || 1
1006 1008 1610 1012 1014
P ! N4 i {
UTILITIES SEARCH SYSTEM QUEUE MANAGER | | DATABASE MANAGER FILE STORE
DoC ElasticSearch 160% IN FIXED W
CONVERSION ENGINE MERORY DB SELATIONAL L
DATA STORE PPT Bocx
- - KEY-VALUE
t i S TAS
THUMENAILS LOGSTASH o
DYNARAC 1
IDENTITY MESSAGE JSON O8JECT Al NS
ABAN ’ rORE Fa a3
MANAGEMENT KIBANA EROKER STORE ‘
FOF XL5X

I




Patent Application Publication  Jul. 25,2019 Sheet 1 of 13 US 2019/0228177 A1

100
Ve
CLIENT DEVICE 121 125
/ J/ .
172, VANAGED CONTANER 126
CLIENT
APPLICATIONGS) | | MANAGED |1y rasase s DEVICE
CACHE
924

11

Y
3 APPLICATION GATEWAY SERVER CONPUTER 117
N
e APPLICATION
. "1 [ APPLICATION
ANIST i ;
3?2??5%5@&2@ PROGRAMMING | | rovices REFOSTTDRY
oM ) INTEREACES
NG
1 1{}/ | ~COMMON AUTHENTICATION
/13e
BACKEND SYSTEM | * * * | BACKEND SYSTEM | * * * | BACKEND SYSTEM

FIG. 1



Patent Application Publication  Jul. 25,2019 Sheet 2 of 13 US 2019/0228177 A1

227 MANAGED CONTAINER 21
L
NATIVE BLUGINS 92

[ APPLICATION CACHE ] SESSION A

[ DOCUMENT CAGHE ] OCR APPLICATION

| USER INTERFACE | DOCUMENT FRAMEWORK

MANAGEMENT
] HARDWARE [

N o28

I /211

APPLICATION GATEWAY SERVICES 217

270\/{ APPLICATION NOTIFICATICN }w 271 x o x

272 SETTINGS DEVICE MANAGEMENT |- 273 ...
276 APIPROXY AUTHENTICATION - 277w+

I
.
274 PROFILE | | RECISTRATION  L-275 ...
.
.

278-| MEDIA CONVERSION REPORTING 279 s

BACKEND SYSTEMS

FiG. 2



Patent Application Publication  Jul. 25,2019 Sheet 3 of 13 US 2019/0228177 A1

3/00
¢ FI1G. 3
Choose File || No file chosen Install
Application Daployment Actions
@ Content Server Favarites Mandatory CONFIGURE
Favorites within Content Server GETINFO
Version 1 DELETE
== Note Selective 24 CONFIGURE
’ % Enterprise Note Application = GET INFO
= Version 2 DELETE
Content Server Pulse Mandatory CONFIGURE
V | Status and Commenia within Content Server GET INFO
Version 1 DELETE
\"> Sodal Optional w2 CONFIGURE
/’: Enterprise Sonial Application GET INFQ
Version 4 DELETE
fo—1 Content Server Tasks Mandatory v CONFIGURE
\g: Tasks within Content Server GET INFO
o
Version 1 DELETE
y | Vender Invoice Management Mandatory ; CONFIGURE
Vender Invoice Management GET INFO
Version § DELETE
S S S A
¢ 5 S
330 350 370




Patent Application Publication  Jul. 25,2019 Sheet 4 of 13 US 2019/0228177 A1

408
RECEIVE REQUEST OR INSTRUCTION

'

SEND APPLICATION TO MANAGED | /410
CONTAINER

!

PROVIDE SECURE SHELL FOR 415
APPLICATION ON CLIENT DEVICE

!

STORE APPLICATION AND ASSQCIATED | £ 420
DATA IN MANAGED CACHE

MANAGE MANAGED CACHE 428
ACCORDING TO RULE(S)
400" B
Fi(s. 4
/ 500
505 515
APPLICATION 4
ICON /520
Zip ZiP APPLICATION
510 DATA
MANIFEST FILE

FIG. 5



Patent Application Publication  Jul. 25,2019 Sheet 5 of 13 US 2019/0228177 A1

NETWORK LAYER
ENTERPRISE APP /68@ 691 65{}\ THIRD-PARTY
STORE J SOURCE
631 , ,
}
B -
611 673 : 17 APPLICATION LAYER |
J BACKEND \ \|  MEDIA J 593 ;
SYSTEM CONVERSION 3 L
SERVICE / , 628
674
I NOTIFICATION |
" SERVICE - -
BACKEND T e YT e ] ANAGED
i SYSTEM FIREWALL o MANAGE
[ ™
\E AP PROXY ////" CONTAINER
T SERVICE /
860 678 /.
s §21
. | REPORTING
830 SERVICE "
BACKEND \ v e Wik
SYSTEM SETTINGS REGISTRATION| | AUTHENTICATION
ADMINUL b ! : . ,
SERVICE |\ | SERVICE SERVICE
677
DATA
STORAGE
¥ ¥ LAYER
<8 895
APPLICATION J
REPOSITORY .| DATASTORE
618 628
COMMON AUTHENTICATION “
847

800
FIG. 6



Patent Application Publication  Jul. 25,2019 Sheet 6 of 13 US 2019/0228177 A1

751 14t 725
CLIENT DEVICE
4 BACKEND 722 7780
SYSTEM AW DEVICE
)| HARDWARE
Yars
BLICAT NATIVE
APPLICATION C> JUASCRIPT| 5 | GOMMON GODE
BACKEND L TO NATIVE o
o el 2"\NAY -
SYSTEM NS B AT SANAGED
t FREWALL|  |APPLICATION @ swpE |0 wz\é;;gégue
GATEWAY |, | §
T sERVER 725
T SE USER
760 INTERFACE ([ notricaTions
N7 e
J JE—— SECURITY
73 ] 1%
MANAGED et
72471 CACHE o
\__‘__‘_,/

FIG. 7



Patent Application Publication  Jul. 25,2019 Sheet 7 of 13 US 2019/0228177 A1

I 821 817
' \ J J

DESKTOP MANAGED GONTAINER

¥

l SYSTEM TRAY fj 1 DESKTOP SERVICES

-
[LocAL conFiGURATION | 8%

%
l SERVER NOTIFICATIONS [J 865

APPLICATION
GATEWAY

SERVER [ aummenmcaon P

l FILE SYSTEM MONITOR }J%g

l FILE SYSTEM OVERLAYS V 87 APPLICATIONS

- JAVASCRIPT

| FLETRANSFER  [/™°  le—»f TONATVE lawl [ BROWSER
2WAY

conTenT cacke % BRIDGE SEAREH

| SEARCH |
SETTINGS CACHE |/ 843
Y

y

|
!
[ statecace | P
[

825
DATABASE 8 e

800
F1G. 8



Patent Application Publication

Jul. 25,2019 Sheet 8 of 13

900
S
¥

925
i
CLIENT DEVICE
821~ MANAGED ceo CLIENT DEVICE
CONTAINER

910~

/w\z/\»\

/

/

CLOUD GATEWAY

SERVICE

931"

BACKEND SYSTEM

US 2019/0228177 Al

BACKEND SYSTEM

FI1G. 9



US 2019/0228177 Al

Jul. 25,2019 Sheet 9 of 13

Patent Application Publication

01 Old
4
XK 24d MIHONE INTWID YNV
. p OIS 4
P4 3 193790 NOST IOVSSIN VNVED ALLENEQH
DINYNAT
UOLS ,
AN
I HSY.LSD0 SHYNEANHL
300 IHOLS YAVA
TWNOLLY I3 80 AMOWIN INIONT NOISHIANOD
M 43X NI %004 40189501Se(3 200
OIS T4 HIDYNYI 3SYEY LY HIOYNYI IN3ND WILSAS HOHYIS SILLILD
\ Y Y 4 & LI & & w/
/ 7 3 N y
vi0i L0l gLot 8001 9001
P
D0
SIUIGON
)
MNITIHOLS T4 HIDNY S QYO
y INTLNGD OILYLS AOUSISHIATY | [™-2001L
0001
XNION




US 2019/0228177 Al

VIl 'Did
saudxz & sandxy §
wPeRpdn O | gz rypetepd) O
wpaeas § ) wpsiges §
o (i) prigpayoot & | -90C1 (5i4) Oid) piAgpoonT & e
Did) (i) peomosey § {51d) pisosnosay §§

Jul. 25,2019 Sheet 10 of 13

e

Patent Application Publication

I D BOUNDSEY HO0TEUN0SEY . @ AGDes0T 00 ROHISEY - 2071
¥ yoojeonosey &
di1 'DIid VIii D4

unjssiiing ¢ sandxg §
wpajepdn ¢ Iypejepdn § -
Wpslesl] § e ypaelg &

{d) ploLpeeys B e {4} Oict) PiAgpayo0 B

() pibgpeteys § {4} {31} pisoinosey B

{14} ppounosey §  fe-——— e H0TBAUNCSEY

(i) o1 & %

QIEyg



US 2019/0228177 Al

Jul. 25,2019 Sheet 11 of 13

Patent Application Publication

d71 "Hld
uoissiuLad O
wpatepdn ¢
YPOIEAIT ) ot e
902t~ pioLpsIByS §
(1) pidgpaseys §
piAgpaieys ¢
Oicd) b1 &8
ol @ 0] pRleysTeIRyg
uossiwsg § i uoisSILled O
wpaiepdn O 1ypatepdn ¢
yypereasn O wpsjeais O
{Md) pleamosey & 0071 w0711 ppamnosay §

pojpaieys O
piAgpereys O
Bid) b1 &8

804n058Y " BIRYQ

FYHS

ploipaieys O
{4} piigpaseyg mw,
M) P1 &8

ol

Agpaieys aiByg

4
I
AV A



US 2019/0228177 Al

Jul. 25,2019 Sheet 12 of 13

Patent Application Publication

Vel DId

13 LdS 3 1dS
mwmmw mmxomv
/ ~
soqdxy § sandxgy O
.................. wpsiepdn O
QUVYHS Al I - (1) piégpnot § (44) Oicl) PIAGPONOOT B e
1) (d) plemnosey @ {1d) praoinosay
B0IN0TAY YI0TRUN0SEY ] ﬂu AGQpaNonT HI0TaMN0SEY
W
OHYHS QUYHS
HIAHIS 63 QJ0€L  H3AM3S 94 ﬁ H3AYIS 80 R
, qo0gt , g
4 k
7 SCYa ™
U061 ASYavLva /061
T I
V/
S0eL
Idy S p0c)
HIOVNYIN ONIGHYHS [\ 500




US 2019/0228177 Al

Jul. 25,2019 Sheet 13 of 13

Patent Application Publication

del Did
13N 111dS M 1S EM 1S
S0Let agicl BOLoL
N\ / /
unissieg O LoIssiiieg § uoissitag &
wypaepdny ¢ yypawepdn & pepdn ¢
ugoe ) typaeas]) ¢ paRaIY vpaieal]) {)
QUVHS pleainasay ¢ PlEniADSSRY {) {y4) paamosay §
{i) pjoppaieus B PlofpaiRyg ¢ ploLpeeys §
R § B S pigpaieyg ¢ o (%4} pifgpaeus B pigpaieyg § e~
i)t i) ot &8 Bt
) ﬁlum 01pRIeys wBYS e AapeieygoIsyg - B sonosay sleyy
¥ (HYHS 1 OYYHS 1 TUYHS
%
HIANTS X, X Y
H3ANIS 80 ) HIANIS 80 H3AE3S 90 )
a0 WIR agpe) S8 gg0e1 U0 poney
i
\ ¢ A9VEYLYG / v/
uzoet 3L0EL 9/0¢1 B/0C1
,f
Iy N, 5081

HHOYNYIA ONIQIYHS - Zo%L

SPACGON

- 0081




US 2019/0228177 Al

HOSTED APPLICATION GATEWAY
ARCHITECTURE WITH MULTI-LEVEL
SECURITY POLICY AND RULE
PROMULGATIONS

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This is a continuation of U.S. patent application
Ser. No. 15/653,017, filed Jul. 18, 2017, entitled “HOSTED
APPLICATION GATEWAY ARCHITECTURE WITH
MULTI-LEVEL SECURITY POLICY AND RULE PROM-
ULGATIONS,” which is a continuation of U.S. patent
application Ser. No. 14/534,623, filed Nov. 6, 2014, entitled
“HOSTED APPLICATION GATEWAY ARCHITECTURE
WITH MULTI-LEVEL SECURITY POLICY AND RULE
PROMULGATIONS,” issued as U.S. Pat. No. 9,747,466,
which is a continuation-in-part of U.S. patent application
Ser. No. 14/491,386, filed Sep. 19, 2014, entitled “APPLI-
CATION GATEWAY ARCHITECTURE WITH MULTI-
LEVEL SECURITY POLICY AND RULE PROMULGA-
TIONS,” issued as U.S. Pat. No. 9,979,751, which is claims
a benefit of priority under 35 U.S.C. § 119(e) from U.S.
Provisional Application No. 61/880,481, filed Sep. 20, 2013.
This application relates to U.S. patent application Ser. No.
14/491,451, filed Sep. 19, 2014, which claims a benefit of
priority from U.S. Provisional Application No. 61/880,502,
filed Sep. 20, 2013; Ser. No. 14/491,492, filed Sep. 19, 2014,
which claims a benefit of priority from U.S. Provisional
Application No. 61/880,526, filed Sep. 20, 2013; and Ser.
No. 14/491,483, filed Sep. 19, 2014, which claims a benefit
of priority from U.S. Provisional Application No. 61/880,
557, filed Sep. 20, 2013. All applications listed in this
paragraph are hereby incorporated by reference as if set forth
herein in their entireties, including all appendices attached
thereto.

TECHNICAL FIELD

[0002] This disclosure relates generally to content man-
agement. More particularly, embodiments disclosed herein
relate to a cloud based solution for controlling how backend
content can be deployed and managed at client devices
through managed containers operating on client devices and
an application gateway connected to backend systems.

BACKGROUND OF THE RELATED ART

[0003] Conventional content control software and services
are designed to control what content delivered over the
Internet may be viewed or blocked from viewing. Generally,
access to such controlled content can be restricted at various
levels. For instance, a firewall may be used to block access
to certain websites or a timer may be set up at a user’s
computer to limit the amount of time that an application may
be used. Additionally, filters such as e-mail filters and
browser-based filters may be used.

[0004] However, such content control software and ser-
vices are often inadequate to control content downloaded by
users to their computers. This can be problematic for enter-
prises wanting to retain control over enterprise content
downloaded to devices that may or may not be owned by the
enterprises.

[0005] Additionally, provisioning content may require sig-
nificant database resources. A procedure known as “shard-
ing” has been used to scale databases beyond what a single

Jul. 25,2019

server or cluster or servers can handle. In sharding, a single
large database is fragmented or sharded into multiple
smaller databases that operate virtually independently. Col-
lectively, the shards appear to form a single, very large
database. However, handling relationships between objects
that may be in separate shards can be problematic.

SUMMARY OF THE DISCLOSURE

[0006] An object of this disclosure is to provide an effec-
tive mechanism by which an entity can retain control over
their applications and data associated therewith, even if the
applications and/or data have been downloaded onto a
device not owned or controlled by the entity. Another object
of the disclosure is to provide a secure storage on a user
device such that downloaded applications and/or data can be
protected from unauthorized access. Yet another object of
the disclosure is to bridge the gap between user devices and
backend systems such that downloaded applications and/or
data can be updated to reflect a change at the backend, for
instance, a change in a data policy rule applicable to the
downloaded applications and/or data.

[0007] These and other objects can be achieved through
embodiments of systems, methods and computer program
products disclosed herein. For example, in some embodi-
ments, a method may comprise sending an application from
an application gateway server computer to a managed con-
tainer executing on a client device. Within this disclosure, a
managed container refers to a special computer program that
can be downloaded from a source.

[0008] The application may be hosted and/or required by
a backend system such as a content server. The managed
container may provide a secure shell for the application
received from the application gateway server computer,
store the application and data associated with the application
in a managed cache, and control the managed cache in
accordance with a set of rules propagated from the backend
system to the managed container via the application gateway
server computer. All or some of the set of rules may reside
on the client device, the backend system, the application
gateway server computer, or a combination thereof.

[0009] In some embodiments, the set of rules may include
at least one of: a rule controlling storage of data associated
with an application received from the application gateway
server computer, a rule controlling access to data associated
with an application received from the application gateway
server computer, or a rule controlling update of data asso-
ciated with an application received from the application
gateway server computer.

[0010] The downloaded application—and any data asso-
ciated therewith—remains under the control of the managed
container regardless of whether the client device has net-
work connectivity (i.e., regardless of whether the client
device is or is not connected to application gateway server
computer).

[0011] In some embodiments, the secure shell provided by
the managed container includes a secure data encryption
shell that encrypts the data associated with the application to
limit or prevent access to the data by the client device’s own
operating system and other applications residing on the
client device but not received from the application gateway
server computer.

[0012] In some embodiments, at least one of the set of
rules propagated from the backend system may determine
encryption parameters for encrypting the data stored in the



US 2019/0228177 Al

managed cache. In turn, the secure data encryption shell may
encrypt the data based on the encryption parameters.
[0013] In some embodiments, the encryption parameters
may be shared between the managed container and the
backend system, via the application gateway server com-
puter, to enable shared secure access to the data between and
among the applications received from the application gate-
way server computer and the one or more backend systems.
[0014] One embodiment comprises a system comprising a
processor and a non-transitory computer-readable storage
medium that stores computer instructions translatable by the
processor to perform a method substantially as described
herein. Another embodiment comprises a computer program
product having a non-transitory computer-readable storage
medium that stores computer instructions translatable by a
processor to perform a method substantially as described
herein.

[0015] As an example, one embodiment of a system may
include an application gateway server computer communi-
catively connected to backend systems and client devices.
The backend systems as well as the client devices may
operate on different platforms. The application gateway
server computer may have application programming inter-
faces and services configured for communicating with the
backend systems and managed containers operating on the
client devices.

[0016] The services provided by embodiments of an appli-
cation gateway server computer disclosed herein may
include various types of services that may be generally
categorized as core services and product services. In one
embodiment, core services may refer to services necessary
for building new applications. In one embodiment, product
services may refer to services configured for integration of
existing products. In this disclosure, these and other services
are collectively referred to as “services.”

[0017] In some embodiments, a managed container may
be implemented as an application (program) that is native to
a client device and that can be downloaded from a source on
the Internet such as a website or an app store. As disclosed
herein, the managed container includes a managed cache for
storing content received from the application gateway server
computer, including applications. Applications received
from the application gateway server computer are not down-
loaded from a website or third-party app store. In some
embodiments, applications received from the application
gateway server computer are written in a markup language
for structuring and presenting content on the Internet.
[0018] A further object of this disclosure is to provide an
effective mechanism by which relationships between objects
in different shards may be handled. This object may be
accomplished in accordance with embodiments by main-
taining a function table visible to an application program-
ming interface used to access the sharded database. In some
embodiments, the function table is a split function table,
with one copy stored in each shard involved in the relation-
ship. One copy is keyed to the object in the first shard
associated with the relationship and another copy is keyed to
the object in the second shard associated with the relation-
ship. Such a sharded database, and the handling of relation-
ships therein, may be particularly advantageous in a system
that includes a cloud provisioning “gateway.”

[0019] Numerous other embodiments are also possible.
[0020] These, and other, aspects of the disclosure will be
better appreciated and understood when considered in con-

Jul. 25,2019

junction with the following description and the accompa-
nying drawings. It should be understood, however, that the
following description, while indicating various embodi-
ments of the disclosure and numerous specific details
thereof, is given by way of illustration and not of limitation.
Many substitutions, modifications, additions and/or rear-
rangements may be made within the scope of the disclosure
without departing from the spirit thereof, and the disclosure
includes all such substitutions, modifications, additions and/
or rearrangements.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] The drawings accompanying and forming part of
this specification are included to depict certain aspects of the
disclosure. It should be noted that the features illustrated in
the drawings are not necessarily drawn to scale. A more
complete understanding of the disclosure and the advantages
thereof may be acquired by referring to the following
description, taken in conjunction with the accompanying
drawings in which like reference numbers indicate like
features and wherein:

[0022] FIG. 1 depicts a diagrammatic representation of an
example embodiment of an application gateway architecture
implementing a multi-level content control mechanism;
[0023] FIG. 2 depicts a diagrammatic representation of an
example embodiment of a system implementing one
embodiment of application gateway architecture;

[0024] FIG. 3 depicts a diagrammatic representation of an
example embodiment of an application administration inter-
face of an application gateway server computer;

[0025] FIG. 4 is a flow chart illustrating an example of a
method of operation according to some embodiments;
[0026] FIG. 5 depicts a diagrammatic representation of an
example embodiment of an application according to some
embodiments;

[0027] FIG. 6 depicts a diagrammatic representation of an
example of an application gateway architecture in operation
according to some embodiments;

[0028] FIG. 7 depicts a diagrammatic representation of an
example of a managed container operating on a type of client
device according to some embodiments;

[0029] FIG. 8 depicts a diagrammatic representation of an
example of a managed container operating on another type
of client device according to some embodiments;

[0030] FIG. 9 depicts diagrammatic representation of an
example architecture that may use managed containers
according to embodiments;

[0031] FIG. 10 depicts a diagrammatic representation of
an example embodiment of a cloud-based environment for
handling managed containers according to embodiments;
[0032] FIG. 11A and FIG. 11B depict examples of han-
dling relationships between objects in a single database;
[0033] FIG. 12A and FIG. 12B depict examples of han-
dling relationships across shards; and

[0034] FIG. 13A and FIG. 13B depict diagrammatic rep-
resentations of example embodiments of sharding manage-
ment according to embodiments;

DETAILED DESCRIPTION

[0035] The invention and the various features and advan-
tageous details thereof are explained more fully with refer-
ence to the non-limiting embodiments that are illustrated in
the accompanying drawings and detailed in the following



US 2019/0228177 Al

description. Descriptions of well-known processing tech-
niques, components and equipment are omitted so as not to
unnecessarily obscure the invention in detail. It should be
understood, however, that the detailed description and the
specific examples, while indicating preferred embodiments
of the invention, are given by way of illustration only and
not by way of limitation. Various substitutions, modifica-
tions, additions and/or rearrangements within the spirit
and/or scope of the underlying inventive concept will
become apparent to those skilled in the art from this disclo-
sure. Embodiments discussed herein can be implemented in
suitable computer-executable instructions that may reside on
a computer readable medium (e.g., a hard disk (HD)),
hardware circuitry or the like, or any combination.

[0036] Managed Container and Gateway Architecture
[0037] Embodiments disclosed herein provide a “gate-
way” that controls how backend content (e.g., enterprise
content owned by an enterprise) is sent out of a backend
system (e.g., a content server owned by the enterprise) to or
downloaded by a client device. In this disclosure, this is
referred to as a first layer or level of content management or
server side content management layer. Embodiments also
provide a second layer or level of content management at the
client side. Thus, there are controls at both the server side
and the client side, providing the enterprise with the ability
to enforce company policy and rules on how enterprise
content is managed both in and out of backend systems and
at client devices.

[0038] Embodiments of an application gateway server
computer disclosed herein can, on behalf of one or more
backend systems connected thereto, control content distri-
bution to managed containers operating on client devices.
Within this disclosure, a managed container refers to a
special computer program for reviewing, accessing, and
downloading applications via an application gateway server
computer. According to embodiments, a managed container
can be downloaded from a source or a network site on a
private or public network such as a company’s intranet or the
Internet. Examples of an appropriate source may include a
service or an online store (which may, in some embodi-
ments, be referred to as an “app store”™).

[0039] As described herein, a managed container can
control content at a client device (e.g., how a document is
stored, accessed, updated, removed, etc. . . . ). For example,
if a backend system (e.g., a content server, an information
management system, a document repository, a business
process management system, a social server, a records
management (RM) system, etc.) has a policy or rule update,
or a new rule on content retrieved from the backend system,
the application gateway server can broadcast the update or
new rule to appropriate managed containers operating on
various client devices or otherwise notify the appropriate
managed containers about the update or new rule (appro-
priate in the sense that the content, to which the update or
new rule is applicable, is stored in the managed caches of
such managed containers). In this way, rules can be promul-
gated out to appropriate client devices by the application
gateway server and applied by the managed containers on
those client devices to content living on the client devices
without needing any help from applications associated with
the content.

[0040] For example, suppose due to a policy update,
access to a set of records stored in an RM system is changed
to a different security level or user group. The application

Jul. 25,2019

gateway server can determine which managed containers
store a copy of the set of records (or a portion thereof) and
broadcast this change to those managed containers or notify
them about the change. When a managed container receives
a notice (which may be sent by the application gateway
server computer using a communications channel that is
different from the broadcast channel, as those skilled in the
art can appreciate), the managed container may initiate a
connection with the application gateway server computer to
retrieve the policy update. The managed containers may then
apply the policy update and change the security access to the
copy of the set of records (or a portion thereof) stored in their
managed caches accordingly. As this example illustrates, no
user is required to open up an RM application on their device
in order for the policy update from the RM system at the
backend to take effect on the copy of the set of records (or
a portion thereof) locally stored in the managed cache on
their device.

[0041] The content control mechanism described above
can be implemented in various ways. FIG. 1 depicts a
diagrammatic representation of an example embodiment of
an application gateway architecture implementing a multi-
layer (or multi-level) content control mechanism. In the
example of FIG. 1, system 100 may include application
gateway server computer 110 communicatively connected to
backend systems 131 and one or more client devices 125.
Client device 125 shown in FIG. 1 is representative of
various client devices. Those skilled in the art will appre-
ciate that FIG. 1 shows a non-limiting example of client
device 125. Backend systems 131 may comprise computer
program products and/or applications developed within a
company and/or by third party developers/companies. Non-
limiting examples of backend systems 131 may include a
content server, an information management system, a docu-
ment repository, a process management system, a social
server, an RM system, a database management system, an
enterprise resources planning system, a collaboration and
management system, a customer relationship management
system, a search system, an asset management system, a
case management system, etc.

[0042] In some embodiments, a first layer of content
management 110 (“level 110”) can be realized in application
gateway server computer 111 configured for controlling how
backend content (e.g., applications that communicate with
backend systems, documents created/used by such applica-
tions, etc.) can be sent out of the backend systems to client
devices. A second layer of content management 120 (“level
120) can be realized in managed containers 121 operating
on client devices 125. A third layer of content management
130 (“level 130”") may include proprietary and/or third-party
content management tools used by various backend systems
131.

[0043] At level 110, as shown in FIG. 1, application
gateway server computer 111 may include application pro-
gramming interfaces (APIs) 115 and services 117 configured
for communicating with backend systems 131 and managed
containers 121 operating on client devices 125. In some
embodiments, applications 150 may be developed within a
company and/or externally sourced and stored in application
repository 119 accessible by application gateway server
computer 111. Applications 150 may be associated with
backend systems 131. These server-side components are
explained further below.



US 2019/0228177 Al

[0044] At level 120, managed container 121 operating on
client device 125 may include managed cache 124 for
storing various applications 122 downloaded/pulled or
received/pushed from application gateway server computer
111. All the data, documents, and files associated with
applications 122 may be encrypted and stored in managed
cache 124. To this end, managed cache 124 can be consid-
ered a local application repository that can provide client
device 125 with offline access to cached applications 122. In
some embodiments, database 126 may be used by managed
container 121 to keep track of content stored in managed
cache 124. Managed container 121 can be installed and run
on client device 125 separate and independent of any
applications that it manages. These client-side components
are explained further below.

[0045] In some embodiments, managed cache 124 may
store the user interface components of applications 122.
However, as described below with reference to FIG. 5, not
all components of applications 122 are stored in managed
cache 124. In some embodiments, when an application is
called (i.e., invoked by a user using client device 125 on
which the application is installed), managed container 124
may obtain any data, document(s), and/or file(s) that the
application needs from a backend system through applica-
tion gateway server computer 111. This has the benefits of
reducing the storage requirement of having applications 122
on client device 125, expediting the network transmission of
applications 122, and keeping applications 122 always up-
to-date.

[0046] In some embodiments, the content of managed
cache 124 is managed in accordance with a set of rules. The
set of rules may include rules residing at one of more
backend systems 131, rules residing at application gateway
server computer 111, rules residing at client device 125, or
a combination thereof. In some embodiments, the set of
rules may include at least one of: a data storage rule for
controlling storage of the data associated with applications
122 received from application gateway server computer 111,
a data policy rule for controlling access to the data associ-
ated with applications 122 received from application gate-
way server computer 111, an application rule for controlling
at least one of applications 122 received from application
gateway server computer 111, or an update rule for control-
ling update of the data associated with applications 122
received from application gateway server computer 111.

[0047] In some embodiments, the set of rules may be
stored on client device 125. Managed container 121 may use
the stored set of rules to control and/or protect the data
associated with applications 122 received from application
gateway server computer 111. For example, in some
embodiments, when an update to one of the rules is propa-
gated from backend system 131 to managed container 121
via application gateway server computer 111, managed
container 121 may execute, based on the updated rule, an
update to the data associated with applications 122 received
from application gateway server computer 111. As another
example, in some embodiments, managed container 121
may use the stored application rule to control application(s)
122 received from application gateway server computer 111.
[0048] In some embodiments, at least one of the set of
rules may determine encryption parameters for encrypting
the content of managed cache 124. Managed container 121
may encrypt the content of managed cache 124 based on the
encryption parameters. In some embodiments, the encryp-

Jul. 25,2019

tion parameters may be shared between managed container
121 and one or more backend systems 131, via application
gateway server computer 111, to enable shared secure access
to the data between and among applications 122 received
from application gateway server computer 111 and one or
more backend systems 131. Regardless of network connec-
tivity of client device 125, applications 122 and the associ-
ated data stored in managed cache 124 are under control of
managed container 121. In this way, unauthorized access to
the data stored in managed cache 124 can be limited or
prevented. Unauthorized access may include access by an
operating system running on client device 125 and/or access
by non-managed applications executing on client device 125
such as those downloaded onto client device 125 without
going through application gateway server computer 111.

[0049] In some embodiments, users (e.g., employees of a
company operating or using an application gateway server
computer) do not need to or are not allowed to download
(e.g., from an online app store or a website on the Internet)
any application into a managed container (although they
may still download and install applications on their devices
as usual and such applications are outside the scope of this
disclosure). Rather, an administrator may, via administrative
user interface 113 (“admin UI”) load into managed contain-
ers on client devices associated with these users with select
applications and/or services available on application gate-
way server computer 111. For example, an RM application
may be needed to access an RM system, a search application
may be needed to search a content repository, etc. Depend-
ing upon the role or job function of a user, one or more of
these applications may be loaded into the managed container
(s) on the device(s) associated with the user.

[0050] In this way, an application gateway server com-
puter can inject new applications directly into a managed
container running on a client device and remotely manage
(e.g., replace, update, change, repair, remove, etc.) any of the
injected applications without going through any intermedi-
ary entity such as an online app store, website, or application
developer. To this end, system 100 can advantageously
provide a development and integration platform for the rapid
creation, administration, and distribution of applications that
can be deployed and centrally managed on a variety of
mobile, desktop, and web platforms. From the perspective of
entities, system 100 can provide a common point of authen-
tication where one set of credentials can provide access to
various backend systems. Furthermore, system 100 can
provide a secure and managed enterprise information deliv-
ery channel for client mobile and desktop platforms. From
the perspective of developers, system 100 can provide a
standards-based integration platform with a “write-once,
run-anywhere” application development environment. Fur-
ther, as explained below, system 100 can be deployed
on-premises or in a cloud.

[0051] Referring to FIG. 2, which depicts an example
embodiment of a system implementing one embodiment of
application gateway architecture described above. In the
example of FIG. 2, services 217 provided by application
gateway server computer 211 may include services that are
necessary for building new applications (also referred to as
“core services”) and computer program product services for
application developers to integrate existing products (also
referred to as “product services”). In this disclosure, these
and other services provided by application gateway server
computer 211 are collectively referred to as “services.”



US 2019/0228177 Al

Examples of services 217 are provided below. Each of
services 217 may have a corresponding API such that they
can appropriately communicate with backend systems 231
and client devices 225 connected to application gateway
server computer 211. As a specific example, JavaScript
Object Notation (JSON) RESTful APIs may be used to
communicate with backend systems 231. In some embodi-
ments, HyperText Transfer Protocol (HTTP) APIs may be
used.

[0052] Additionally, application gateway server computer
211 may receive notifications from backend systems 231 and
provide web services to backend systems 231. As described
below, application gateway server computer 211 may send
notifications to managed containers (e.g., managed container
221) running on client devices 225.

[0053] Insomeembodiments, managed container 221 may
be implemented as a special computer program with native
managed container components 227 and managed container
plugins 228 written in a programming language native to
client device 225. Additionally, managed container 221 may
include application framework 229 for running native com-
ponents 227 and managed container plugins 228. As those
skilled in the art will appreciate, application framework 229
may include an execution engine that provides a runtime
environment and a set of class libraries that can be accessed
at runtime. Application framework 229 may be implemented
to suppose various types of client devices 225, including
mobile devices, desktop computers, etc.

[0054] Managed container plugins 228 may be configured
to extend the capabilities of managed container 221 to
provide additional features to installed client applications.
Specifically, managed container plugins 228 may include a
variety of features and/or functions that leverage services
217 provided by application gateway server computer 211.
Non-limiting examples of managed container plugins 228
may include a session management plugin, an optical char-
acter recognition plugin, a document management plugin,
etc. To support these capabilities, native managed container
components 227 may include an application cache for
storing applications retrieved or received from application
gateway server computer 211, a document cache for storing
data associated with the applications, a user interface for
providing particular user experience with managed con-
tainer 221, and a hardware interface for interfacing with the
hardware components of client device 225.

[0055] In some embodiments, services (e.g., services 217)
provided by an application gateway server computer (e.g.,
application gateway server computer 211) may include one
or more of the following:

[0056] an application service (e.g., application service
270) for communicating with managed containers oper-
ating on client devices and installing and managing
applications on the client devices, the managing includ-
ing updating, disabling, or deleting one or more of the
applications;

[0057] a notification service (e.g., notification service
271) for selectively sending messages to one or more
managed containers on one or more client devices, to a
specific application or applications contained in the one
or more of the managed containers, to one or more of
the backend systems, or a combination thereof;

[0058] a settings service (e.g., settings service 272) for
providing a storage mechanism for settings comprising
application defaults, user preferences, and application

Jul. 25,2019

state information such that the settings are persisted at
the application gateway server computer and consistent
across the client devices;

[0059] a device management service (e.g., device man-
agement service 273) for communicating with the
managed containers to enforce the set of rules inde-
pendently of the application received from the appli-
cation gateway server computer;

[0060] a user identity or profile service (e.g., profile
service 274) for providing a common user identity
(common authentication) across the backend systems
connected to the application gateway server computer;

[0061] an enrollment service (e.g., registration service
275) for identifying a client device and registering the
client device (for the purposes of tracking) with the
application gateway server computer;

[0062] a proxy service (e.g., API proxy service 276) for
communicating with one or more of the backend sys-
tems not explicitly supporting the application gateway
architecture disclosed herein, or with external systems
operating in another domain;

[0063] an authentication service (e.g., authentication
service 277) for providing the managed container with
a common authentication mechanism to the backend
systems such that, once authenticated by the authenti-
cation service at the application gateway server com-
puter, the managed container has access to the backend
systems through the common authentication mecha-
nism;

[0064] a media conversion service (e.g., media conver-
sion service 278) for controlling content quality, size,
format, watermarking, or a combination thereof such
that the content is consumable by the client devices;
and

[0065] a reporting service (e.g., reporting service 279)
for aggregating data across backend systems and gen-
erating reports regarding same that can be viewed by an
administrator or an end user.

[0066] Additional details of these services are provided
below with reference to FIG. 6.

[0067] In some embodiments, an application gateway
server computer may further include an application admin-
istration interface (also referred to as “admin UI”) config-
ured for administration, deployment, and configuration of
applications. A diagrammatic representation of an example
embodiment of an application administration interface is
depicted in FIG. 3. As illustrated in FIG. 3, through appli-
cation administration interface 300, an administrator may,
for instance, select an application from various applications
330, select an appropriate deployment option from a plural-
ity of deployment options 350, and/or perform one or more
associated actions 370. For example, an administrator may
designate an application to be deployed to a selected group
of'users such as employees in a human resources department
or may designate the application as mandatory for everyone
in an organization. Additionally, the administrator may
configure an application, obtain information on an applica-
tion, delete an application, edit an application, or take other
appropriate action via actions 370 (e.g., change or set
permissions for one or more applications 330). In this way,
application administration interface 300 may provide a
centralized administration and configuration for applications
330.



US 2019/0228177 Al

[0068] In some embodiments, users may be allowed to
download certain applications into managed containers.
Through the application administration interface, an admin-
istrator can control which user-downloaded applications can
remain in the managed container, which should be updated,
and/or which should be removed. Thus, an administrator can
let a particular user go directly to an app store and attempt
to download certain applications. However, through the
application gateway server computer operating in concert
with the appropriate managed container(s) running on
device(s) associated with the particular user, the adminis-
trator can still control which applications can actually be
downloaded by the particular user.

[0069] An example of a method of operation according to
some embodiments will now be described with reference to
FIG. 4. In the example of FIG. 4, method 400 may comprise
receiving, by an application gateway server computer, a
request for an application from a managed container running
on a client device or an instruction from an administrator
using an application administration interface of the applica-
tion gateway server computer to send (or “load”) an appli-
cation to a managed container running on a client device
(405). In response, the application gateway server computer
may, for instance, obtain the application from a storage
repository (e.g., application repository 119 shown in FIG. 1)
and send the application to the managed container running
on the client device (410). FIG. 5 shows an example of an
application suitable for embodiments disclosed herein.

[0070] As shown in FIG. 5, an application sent from an
application gateway server computer to a managed container
may be realized via application package or file 500. In some
embodiments, file 500 may be a compressed file (e.g., a zip
file) and may contain application icon 505, manifest file 510,
and application data 520. Application data 520 may also be
compressed into file 515 to reduce file size for fast network
transmission. Application icon 505 may comprise an image
file containing an icon representing the particular applica-
tion. Application data 520 may contain a configuration file
and/or one or more code files associated with the particular
application. The configuration file may include a short
description of the particular application and one or more
universal resource locator (URL) links to server side
resources. At least one of the one or more code files may be
configured for communicating with an operating system
running on the client device. Specifically, in some embodi-
ments, application data 520 may comprise user interface
components of the particular application. However, other
components of the particular application may not be
included. In some embodiments, when the particular appli-
cation is called (i.e., invoked by a user selecting application
icon 505 from within a managed container running on a
client device), the managed container may obtain, via its
secure shell, any data, document(s), and/or file(s) that the
particular application may need from a backend system
through an application gateway server computer.

[0071] In some embodiments, an application may be
coded or written in a markup language used for structuring
and presenting content for the World Wide Web on the
Internet. As a non-limiting example, the markup language
may conform to the fifth revision of the HyperText Markup
Language (HTML 5) standard. Those skilled in the art will
appreciate that embodiments are not limited to HTML 5
content and can include any HTML, XML, text, etc. content
as well. In embodiments where an application is written in

Jul. 25,2019

HTML/HTML 5, application data 520 may comprise asso-
ciated HTML/HTML 5 application files.

[0072] Manifest file 510 may be a metadata file containing
metadata about the particular application. One example of a
manifest file is provided below:

“name”: “pulse”,

“displayName”: “Content Server Pulse”,
“description”: “Status and Comments *,
“status™: 1, “version”: “8”,
“proxy_ url”: “https://intranet.company.com/cs/cs.dll”
“local”: true

»

[0073] Embodiments of client devices disclosed herein
may operate on various platforms, including desktop,
mobile, and web. In some embodiments, applications and
components for desktop platforms are written in native
binaries or HTIMIL/HTML 5. In some embodiments, appli-
cations and components for mobile and web platforms are
written in HTML/HTML 5. Accordingly, an application
package such as file 500 may be implemented in various
ways. For example, in some embodiments, an application
package may include an icon, a metadata file, a configura-
tion file, and at least one of a compressed file for a web
platform, a compressed file for a mobile platform, or a
compressed file for a desktop platform.

[0074] Referring to FIG. 4, the managed container running
on the client device may provide a secure shell (SSH) for the
application retrieve/received from the application gateway
server computer (415). As those skilled in the art will
appreciate, SSH refers to a cryptographic network protocol
for secure data communication. SSH supports remote com-
mand execution, command-line login, and other secure
network services. SSH enables the managed container to
connect to the application gateway server computer via a
secure channel over an insecure network. Once received, the
managed container may extract the application (e.g., from
file 500 shown in FIG. 5) and store the application and
associated application data in its managed cache (420). As
described above with reference to FIG. 5, at this point, the
application stored in the managed cache of the managed
container may comprise an icon, a manifest file, and some
application data, sufficient for displaying the application
within a user interface of the managed container, indicating
to a user of the client device that the application is ready for
use. In embodiments disclosed herein, the managed con-
tainer controls the managed cache in accordance with a set
of rules propagated from at least one of the backend systems
to the managed container via the application gateway server
computer (425). As discussed above, the set of rules or a
portion thereof may reside on the client device, at the
application gateway server computer, at the backend, or a
combination thereof. In this way, when in use, access to the
application can be controlled according to applicable rule(s)
and, even when the application is not in use, the application
and data stored in the managed cache can be protected by the
managed container according to applicable rule(s).

[0075] Thus, embodiments of a managed container can be
downloaded and installed on a client device and provides a
secure runtime shell within which managed applications can
be run on the client device. Specifically, the managed
container can proactively retrieve or passively receive an



US 2019/0228177 Al

application (in the form of an application package, as
explained below) from an application gateway server com-
puter, extract the application locally and store the applica-
tion and any data associated therewith (e.g., documents, etc.)
locally in a managed cache that can be remotely managed/
controlled by the application gateway server computer.
Since content (which, in this example, includes the appli-
cation and associated data) stored in the managed cache is
encrypted/protected, the operating system running on the
client device cannot open or view the managed content. In
some embodiments, certain rules may be stored by the
managed container on the client device, allowing the man-
aged container to enforce the rules as needed whether the
client device is online (connected to the application gateway
server computer) or offline (disconnected from the applica-
tion gateway server computer). One example rule may be to
restrict access to certain content stored in the managed cache
if the managed container is unable to communicate with the
application gateway server computer.

[0076] As noted above, a user may still download and
install applications on their devices as usual, allowing an
application to connect with a backend system directly and
bypassing embodiments of an application gateway server
computer disclosed herein. However, such a client-server
relationship (between an application installed on a user
device and a backend system running on a server machine)
has many drawbacks. For example, since such an application
is not under the control of a managed container, the backend
system may not retain control over the application, particu-
larly when the user device may be offline. Furthermore,
since data associated with the application is not stored in a
managed cache, it is not protected by the managed container
and thus may be vulnerable to unauthorized access by other
applications and/or the operating system running on the user
device. What is more, because the application communicates
with the backend system directly and not through an appli-
cation gateway server computer, it may not enjoy the many
services provided by the application gateway server com-
puter, including the authentication service. Accordingly, for
each application that is not handled through the application
gateway server computer, the user would need to authenti-
cate with various backend systems separately.

[0077] An example of an application gateway architecture
in operation will now be described with reference to FIG. 6.
In this example, application gateway architecture 600 may
include application gateway server computer 611 commu-
nicatively connected to a plurality of backend systems 631
through firewall 660 and a plurality of client devices 625.
Additionally, application gateway server computer 611 may
be communicatively connected to various storage devices at
data storage layer 695, including application repository 619
and data store 629.

[0078] As described above, in some embodiments, a man-
aged container may be implemented as an application (pro-
gram) that is native to a client device, that can be down-
loaded from a source such as a website or an app store, and
that can run on a client device separate and independent of
any applications that it manages. In the example of FIG. 6,
a user can download managed container 621 from various
sources such as third-party source 650 (e.g., an online store
on a public network such as the Internet) or enterprise app
store 680 (e.g., a proprietary store on a private network such
as a company’s intranet) at network layer 691. Once
installed, an icon associated with managed container 621 is

Jul. 25,2019

displayed on client device 625, as shown in FIG. 6. Addi-
tional details of an example of a managed container are
provided below with reference to FIG. 7.

[0079] As described above, managed container 621 can
extend the capabilities of client device 625 by leveraging
services 617 provided by application gateway server com-
puter 611 at application layer 693. In some embodiments,
web application archive (WAR) files may be used to pack-
age/install services 617 on application gateway server com-
puter 611. Services 617 may vary from implementation to
implementation, depending upon availability of backend
systems 631. Non-limiting examples of services 617 pro-
vided by application gateway server computer 611 may
include authentication service 671 for providing managed
container 621 with common authentication mechanism 697
across backend systems 631 and requests for services 617
provided by application gateway server computer 611. Note
that services 617 provided by application gateway server
computer 611 are “reusable” and “common” to applications
managed by managed container 621 in that services 617 can
be leveraged by any of such applications. Once a user of
client device 625 is authenticated by authentication service
671 (e.g., for an application running in managed container
621), managed container 621 has access to backend systems
631 and there is no need for the user to authenticate for other
applications on client device 625 to access backend systems
631.

[0080] To authenticate, managed container 621 operating
on client device 625 may first identify and authenticate itself
in a connection request sent to application gateway server
computer 611. In response, application gateway server com-
puter 11 (via notification service 674) may send out a
notification to managed container 621 using a notification
listener or a push notification channel already established on
client device 625. Push notifications and acknowledgement
mechanisms are known to those skilled in the art and thus
are not further described herein. Managed container 621
must be able to receive the notification from notification
service 674 and respond accordingly. To be able to do so,
managed container 621 must be registered with application
gateway server computer 611.

[0081] In some embodiments, registration or enrollment
service 672 may be provided for registering and identifying
(for the purposes of tracking) a client device. Specifically,
service 672 may provide common registration services to
track connected client devices, track and manage client
devices to enable remote wipe, block authentication for lost
devices, notity a backend system on connection of a new
client or device, provide a broadcast point for notification
services 674, etc.

[0082] Accordingly, application gateway server computer
611 may enroll various managed containers using registra-
tion service 672 and place a certificate on an enrolled
managed container. A registered/enrolled client device must
report all fields required by an administrator (e.g., location,
jailbreak status, device ID, etc.), implement a notification
listener to receive messages from notification service 674,
respond to notification messages with an acknowledgement
when required (e.g., delete, remote wipe, hold, permission
changes, etc.), and display and run all applications deployed
from application gateway server computer 611. Jailbreak
refers to removing limitations on certain highly controlled
devices, such as the iPhone, manufactured by Apple Com-
puter, Inc. of Cupertino, Calif., so that root access can be



US 2019/0228177 Al

gained to allow download of additional applications, exten-
sions, and themes not officially available on the devices.
Registration or enrollment service 672 may be integrated
with reporting service 676 or it may be implemented sepa-
rately. This certificate or token, which is issued by applica-
tion gateway server computer 611, is in addition to the
certificate(s) or token(s) issued by backend system(s) 631
such as a content server that a managed container is attempt-
ing to connect. To authenticate, therefore, managed con-
tainer 621 would need to provide two certificates, tokens, or
the like in order to connect through application gateway
server computer 611 to backend system 631.

[0083] In some embodiments, a device management ser-
vice may be implemented in conjunction with registration
service 672. The device management service may commu-
nicate with managed container 621 to enforce a set of rules
independently of any application received from application
gateway server computer 611. Specifically, the device man-
agement service may communicate with client device 621 to
ensure that it is registered with application gateway server
computer 611 and that it obeys the rules. The device
management service allows specific instructions such as a
remote wipe command to be sent to a specific client device
(e.g., using the media access control address or MAC
address of the client device). The device management ser-
vice may perform acknowledgement verification (e.g., via
an acknowledgement channel) to determine if instructions
were indeed received and/or performed by a client device.
[0084] Registration data (including the identification and
credentials) associated with each registered managed con-
tainer may be stored in data store 629. Data store 629 may
comprise a central database storing configuration data used
by application gateway server computer 611. Data store 629
may be managed using admin Ul 630. Admin Ul 630 may
implement an embodiment of application administration
interface 300 described above with reference to FIG. 3. Data
store 629 may further provide storage for services 617,
including a server side persistent storage (e.g., a settings
repository) for settings received via settings service 677. The
settings repository may store and maintain client configu-
ration and state data, provide an extensible state framework
for application developers, and enable application state to be
persisted across devices and clients.

[0085] To respond to the notification and to authenticate
with application gateway server computer 611, managed
container 621 must send an acknowledgement or an
acknowledgement with additional information (e.g., meta-
data that match the registration data associated with man-
aged container 621 stored in data store 629). If managed
container 621 does not acknowledge the notification, then
application gateway server computer 611 will not allow
managed container 621 to connect to backend system 631
using their API.

[0086] As those skilled in the art will appreciate, the above
example is one of many types of notifications that may be
provided by notification service 674. Indeed, using notifi-
cation service 674, messages may be selectively sent from
application gateway server computer 11 to appropriate man-
aged containers operating on various client devices, to a
specific application or applications contained in the man-
aged container(s), to a particular backend system or systems,
or a combination thereof. For example, notification service
674 can be used to let a managed container know that a
certain application is not allowed on a particular client

Jul. 25,2019

device and needs to be deleted from the managed container.
As another example, notification service 674 can be used to
send a message to a managed container indicating that files
older than ten days are to be deleted but does not specify
which files are older than ten days. The managed container,
in response to the message, can determine which files under
its management are older than ten days and delete them from
its managed cache.

[0087] Once managed container 621 is authenticated, on
the one hand, application gateway server computer 611 can
notify the now authenticated managed container 621 about
what applications should reside on the client device, what
new applications are available for download, etc., in addi-
tion to managing connections to backend systems 631. On
the other hand, managed container 621 can download an
application (e.g., in the form of an application package or
file as described above with reference to FIG. 5) from
application repository 619, extract the content (the applica-
tion and associated data) into a local file system on its
managed cache, encrypt the extracted content, store the
encrypted content in the secure managed cache, and drop an
icon so that a reference to the application shows up in a user
interface of managed container 625. As explained above
with reference to FIG. 3, the deployment of an application
may be made mandatory, selective, or optional by an admin-
istrator. Since the application is downloaded from applica-
tion repository 619 into the managed cache, an update to the
application published from application repository 619 can be
downloaded to managed container 621 when the update is
installed (e.g., by an administrator). Furthermore, the appli-
cation can be removed from the managed cache when it is
deleted or otherwise removed from application repository
619.

[0088] When the icon for the application is selected or
otherwise invoked from within managed container 621, the
application opens up an user interface on client device 625
and makes an API call (e.g., a JSON API call) to application
gateway server computer 611 (using an appropriate certifi-
cate or token issued by application gateway server computer
611) to access backend system 631 (with an appropriate
certificate or token issued by backend system 631). In some
cases, API calls may be handled by API proxy service 675.
In some embodiments, API proxy service 675 can be con-
figured for communicating with (e.g., making JSON and/or
HTTP API calls to) any backend system that does not
explicitly support application gateway 611. In some embodi-
ments, API proxy service 675 can be configured for com-
municating with external systems on another domain. API
proxy service 675 may maintain a list of allowed and/or
disallowed third party services (e.g., in data store 629).
[0089] Insome embodiments, settings service 677 may be
configured for providing a storage mechanism for settings
comprising application defaults, user preferences (e.g.,
favorite documents, color scheme, etc.), and application
state information such that these settings can be persisted
(e.g., in data store 629) at the server side and consistent
across the client devices and/or managed applications.
[0090] In some embodiments, content (e.g., documents,
video files, etc.) from backend systems 631 may be pro-
cessed at application gateway server computer 611, for
instance, using media conversion service 673. In some
embodiments, media conversion service 673 may be con-
figured for controlling content quality, size, format, water-
marking, or a combination thereof such that the content is



US 2019/0228177 Al

consumable by particular client devices and/or per specific
user preferences stored in data store 629. In some embodi-
ments, media conversion service 673 may convert various
types of content. For example, media conversion service 673
may convert a word processing document to a portable
document format (PDF) to prevent changes and also water-
mark the PDF document. As another example, media con-
version service 673 may be configured to produce only low
resolution images, etc.

[0091] Note that, even if a user can open an application
from within a managed container, they cannot do anything
unless they have the appropriate certificate or token issued
by the application gateway server computer. All the API
calls that come in from client devices for connections
through the application gateway server computer to the
backend systems are handled by the application gateway
server computer.

[0092] In an offline/disconnected scenario, the application
may be opened and used (assuming such use(s) is/are
allowed according to admin rules propagated from the
application gateway server computer). There would still be
an authentication check, but it would be based on the last set
of cached credentials from the last valid authentication/
connection with the application gateway server computer,
due to the disconnected nature.

[0093] As described above, client devices may operate on
various platforms, including desktop, mobile, and web.
FIGS. 7 and 8 depict diagrammatic representations of man-
aged containers operating on different types of client device
according to some embodiments.

[0094] Specifically, FIG. 7 depicts application gateway
architecture 700 including application gateway server com-
puter 711 communicatively connected to a plurality of
backend systems 731 through firewall 760 and a plurality of
client devices 725. Application gateway server computer
711 may implement an embodiment of an application gate-
way server computer described above. Client device 725
may implement an embodiment of a managed container
described above.

[0095] As shown in FIG. 7, client device may include
JavaScript to Native 2-Way Bridge 750 (“bridge 750) and
device hardware 780. Device hardware 780 may include
various hardware components commonly found on a mobile
device such as a smart phone or a handheld or portable
computing device. Bridge 750 may provide a common
JavaScript API for interfacing the JavaScript side (e.g.,
applications 722, services provided by application gateway
server computer 711, etc.) with the native (common) code in
which a managed container is implemented (“managed
container 721”). Bridge 750 may also interface with native
device capabilities, including camera, native viewer, e-mail,
contacts, GPS, etc. As explained above, applications 722
may be retrieved and/or received from application gateway
server computer 711 and may not be available from com-
mercial app stores on the Internet.

[0096] Acting as a native shell for applications 722 down-
loaded to client device 725, managed container 721 has
knowledge (e.g., via managed file system 723) of where
contents (applications 722 and data associated therewith) are
stored in managed cache 724 and their corresponding set-
tings in settings repository 729, can display a download
progress bar on client device 725 via managed container
user interface 730 (which includes common Ul components
in the native code), and can receive notifications 725 in the

Jul. 25,2019

background and take appropriate action accordingly. For
example, if an administrator wishes to restrict access to
application 722 downloaded onto client device 725, notifi-
cation 725 to remove application 722 can be sent to managed
container 725, as described above, and managed container
721 will respond to notification 725 and delete application
722 from managed cache 724. All related metadata and
applicable cached content will be deleted as well. Corre-
spondingly, the icon for application 722 will disappear from
user interface 730 of the managed container.

[0097] In some embodiments, user interface 730 may
include reusable Ul components that can be leveraged by
any installed applications 722. Presentation of these reusable
UI components determined by managed container 721 may
provide native or intuitive user experiences. Non-limiting
examples of reusable Ul components for user interface 730
may include a browse list with a paging capability, form
input controls, a server browse function, a user profiles and
lookup function, a document viewer, etc.

[0098] As described above, managed cache 724 may
include an application cache and a document cache. The
document cache is not limited to storing documents and may
also contain other file types such as videos, photos, and so
on. The application cache can be used by managed container
721 to manage applications on the client device and com-
municate with the application gateway server computer to
access and/or update applications 722. The application
cache may be configured with security 727 such that if
managed container 721 is unable to communicate with the
application gateway server computer, certain applications
722 stored in the application cache cannot be accessed.
Another way to control access to applications 722 stored in
the application cache may be done via device hardware 780.
For example, managed container 721 may be configured to
communicate with device hardware 780 to determine
whether client device 725 has been “jail-broken™ and, if so,
operate to restrict access to certain applications and/or
documents stored in managed cache 724.

[0099] The document cache can be used by managed
container 721 to manage documents in a hierarchical manner
(via managed file system 723) and control access to selected
documents stored in the document cache. For example,
when a user desires to open a document, an application
associated with the document may call managed container
721. Managed container 721 may operate to determine, via
security 727, whether the user has the proper permission to
open the document and check to see if there is a version of
the document already in managed cache 724. If so, managed
container 721 may give that document to the application and
make no calls to application gateway server computer 711.
In some embodiments, managed container 721 may call
application gateway server computer 711 with the appropri-
ate certificates or tokens to connect through application
gateway server computer 711 to backend system 731 to get
an updated version of the document.

[0100] FIG. 8 depicts a diagrammatic representation of an
example of a managed container operating on another type
of client device according to some embodiments. Specifi-
cally, FIG. 8 depicts application gateway architecture 800
including application gateway server computer 811 commu-
nicatively connected to a plurality of backend systems (e.g.,
via a firewall such as firewall 760 shown in FIG. 7) and a
plurality of desktop client devices. Examples of desktop
client devices may include work stations, desktop comput-



US 2019/0228177 Al

ers, etc. Application gateway server computer 811 may
implement an embodiment of an application gateway server
computer described above and provide desktop services 817
to desktop clients connected thereto. Desktop services 817
may include core services and/or computer program product
services similar to those described above with reference to
services 117, services 217, and services 617. Desktop man-
aged container 721 may implement an embodiment of a
managed container described above.

[0101] In some embodiments, each desktop client device
may include library 850 that may act as an interface or
bridge from the JavaScript side (applications 822) into the
native (common) code in which a desktop managed con-
tainer is implemented (“desktop managed container 8217).
As explained above, applications 822 may be retrieved
and/or received from application gateway server computer
811 and may not be available from commercial app stores on
the Internet.

[0102] In some embodiments, desktop managed container
821 may be required for a desktop client application of a
backend system running in an enterprise computing envi-
ronment. Accordingly, when the desktop client application
installs, it may detect whether desktop managed container
821 exists. If it does, desktop managed container 821 may be
used to update and install services and components that can
be used by the new desktop client application. If it does not,
desktop managed container 821 may be installed first and
then used to install services and components that can be used
by the new desktop client application. In some embodi-
ments, desktop client applications running in an enterprise
computing environment may re-use services and compo-
nents from desktop managed container 821 (e.g., via
JavaScript to Native bridge 850) and wrap/create their own
experiences.

[0103] In some embodiments, desktop managed container
821 may be configured to provide a plurality of features
and/or functions, including configuration push, component
and service updates, application distribution and configura-
tion, cache management and policy enforcement, state syn-
chronization with other platforms, etc. In this way, desktop
managed container 821 can provide a common integration
point and a common user experience focal point in the
desktop computing environment. Non-limiting example fea-
tures and/or functions of desktop managed container 821
may include system tray 861, local configuration 863, server
notifications 865, file system overlays 867, authentication
881, file system monitor 883, file transfer 885, content cache
841, settings cache 843, state cache 845, and database 826.

[0104] System tray 861 may include a common tray icon
for desktop managed container 821 that is used across all
desktop client devices. System tray 861 may further include
a common menu where authorized users and/or applications
(including desktop client applications associated with back-
end systems) can place specific menu entries. Furthermore,
system tray 861 may include a launch point for all the
installed applications.

[0105] Local configuration 863 may include local configu-
ration settings for desktop managed container 821 and
associated users. Authorized users can extend and add
additional configuration settings as needed.

[0106] Server notifications 865 may be configured to route

notifications from a push notification service to appropriate
application(s) (whether managed by desktop managed con-

Jul. 25,2019

tainer 821 or not). Additionally, server notifications 865 may
be configured to display the notifications.

[0107] File system overlays 867 may be configured to
provide common file system services for adding icon badges
to file system objects managed by desktop managed con-
tainer 821.

[0108] Authentication 881 may include a single set of
credentials and an URL for each desktop client device
operating in the enterprise computing environment. Desktop
managed container 821 may look up the URL based on a site
name registered with application gateway server computer
811. Application gateway server computer 811 may register
a desktop client device via a registration service similar to
registration service 672 described above with reference to
FIG. 6.

[0109] File system monitor 883 may include a registered
driver for applications managed via desktop managed con-
tainer 821. Specifically, an API may register as a watcher
and may register file system locations to watch.

[0110] File transfer 885 may be configured to perform file
upload/download that supports HTTP range headers. Addi-
tionally, file transfer 885 may be configured to allow for
resuming transfers via application gateway server computer
811.

[0111] Content cache 841, settings cache 843, and state
cache 845 may collectively be referred to as a managed
cache. Similar to database 126 described above with refer-
ence to FIG. 1, database 826 may be used by desktop
managed container 821 to keep track of content stored in the
managed cache. Additionally, similar to embodiments of a
managed cached described above, content cache 841 may be
configured for storing content (including desktop client
applications associated with backend systems), allowing the
backend systems to retain control of downloaded content
and enforce applicable rules in an effective and efficient
manner. To this end, settings cache 843 may store applica-
tion settings and configuration and state cache 845 may
provide a client side API to allow the applications to save
their state and sync with application gateway server com-
puter 811. This allows application gateway server computer
811 to replicate the state across platforms and devices. For
example, a user works on a document using a first version
of an application managed by a first managed container on
a first device. The state of the first version of the application
is saved and sync with an application gateway server com-
puter. The user may wish to work on the document using a
second version of the application managed by a second
managed container on a second device. The application
gateway server computer may communicate the state infor-
mation to the second managed container. When the second
version of the application is opened, the second managed
container may replicate the state of the application and the
user can work on the document where it was left off, using
the second version of the application managed by the second
managed container on the second device.

[0112] Cloud-Based Architecture and Database Sharding
[0113] FIG. 9 depicts a diagrammatic representation of an
example of a cloud based application gateway architecture
that may employ managed containers according to some
embodiments. In the example of FIG. 9, system 900 may
include cloud-based gateway services 910 communicatively
connected to backend systems 931 and one or more client
devices 925. Client device 925 shown in FIG. 9 is repre-
sentative of various client devices. Those skilled in the art



US 2019/0228177 Al

will appreciate that FIG. 9 shows a non-limiting example of
client device 925. Backend systems 931 may comprise
computer program products and/or applications developed
within a company and/or by third party developers/compa-
nies. Non-limiting examples of backend systems 931 may
include a content server, an information management sys-
tem, a document repository, a process management system,
a social server, an RM system, a database management
system, an enterprise resources planning system, a collabo-
ration and management system, a customer relationship
management system, a search system, an asset management
system, a case management system, etc. Embodiments as
shown in FIG. 9 of the cloud-based gateway may include
APIs and services configured for communicating with back-
end systems 931 and managed containers 921 operating on
client devices 925, in a manner generally similar to that
discussed above.

[0114] The architecture of FIG. 9 is illustrated with more
particularity with reference to FIG. 10. Specifically, archi-
tecture 1000 implements many features that can provide
increased throughput and scalability. For example, architec-
ture 1000 includes scalable cloud-based or hosted gateway
server 1004 which, in some embodiments, is implemented as
a Node.js application server. As those skilled in the art can
appreciate, Node.js provides an event-driven architecture
and can maintain a large number of connections without
having to reject new incoming connections. This feature
allows architecture 1000 to scale up massively by adding
new “nodes” and also allows gateway server node 1004 to
effortlessly handle real time applications. Some of such
applications may include lightweight applications for certain
functions normally provided by backend systems such as a
portal or a social tool (e.g., a blogging tool) for a content
server.

[0115] In some embodiments, architecture 1000 may be a
multi-tenant architecture where multiple tenants can share
the same application running on the same operating system
on the same hardware using the same data storage mecha-
nism. Every tenant (e.g., a group of users) is provided with
a share of a software instance and/or resource. However,
tenants do not share and cannot view each other’s data. In
some embodiments, tenants and their contents may be stored
in database shards and filtered using tenant identifiers.
Embodiments of database sharding are further described
below. This multi-tenant feature allows a large number of
users to use the applications and/or services provided by or
through gateway server node 1004 and further facilitates the
scalability of architecture 1000.

[0116] In some embodiments, gateway server node 1004
may coordinate with reverse proxy server 1002, and may be
in communication with a plurality of backend systems
1006-1014. In the example embodiment illustrated, such
systems may include utilities 1006 such as text extraction,
thumbnail generation, document conversion, and identity
management; search system 1008; queue manager 1010;
database manager 1012; and storage appliance 1014. Similar
to the common authentication described above, a user may
only need to authenticate once for all the applications
delivered through architecture 1000 to the user’s managed
container.

[0117] Reverse proxy server 102 may provide a plurality
of functions including load balancing, web content server,
and etc. In some embodiments, reverse proxy server 102
may be implemented as an Nginx server, with a focus on

Jul. 25,2019

high concurrency, high performance, and low memory
usage. Those skilled in the art can appreciate that an Nginx
reverse proxy server can be configured for HTTP, HTTPS,
SMTP, POP3, and IMAP protocols and can act as a load
balancer, HTTP cache, and a web server (origin server).
Additionally, reverse proxy server 102 may provide an
administration layer for administering new instances of
nodes, further increasing the scalability of architecture 1000.
[0118] Gateway server node 1004 may implement a web
application framework for REST API request handlers. In
addition, gateway server node 1004 may create and manage
background tasks and distribute jobs to the appropriate
backend engine(s) for processing. Furthermore, gateway
server node 1004 may provide a framework for defining
logical models and mapping them to a database’s physical
model.

[0119] As noted above, embodiments provide an improved
system and method for database sharding. As those skilled
in the art can appreciate, database sharding is complex. In
database sharding, a single large database is fragmented, or
“sharded” into multiple smaller databases that operate vir-
tually independently. Shards can be located on separate
database servers or physical locations. Database sharding
allows scaling near-linearly to hundreds or thousands of
database clusters. Collectively, these shards form a single,
very large database. In this way, database sharding can scale
databases beyond what a single cluster of database servers
can handle. This scalability comes with a few limitations,
however. For example, cross-shard queries are not allowed,
and APIs must be able to join in data that would span
multiple shards (usually users).

[0120] A system according to embodiments can take away
much of that complexity, making shards appear to an API as
a single database. In some embodiments, this can be done by
generating IDs that are unique across a cluster of shards;
routing queries to the correct shards; and maintaining split
relationships across shards.

[0121] To generate unique IDs, each shard is tagged with
a shard ID on initialization. In some embodiments, a shard
ID can range from 0-8191. This shard ID is encoded into
every 1D generated by a shard. Some embodiments employ
41 bits for timestamp; 13 bits for shard ID; and 10 bits for
uniqueness. In some embodiments, each shard can generate
object IDs completely independently.

[0122] An example of a Full ID is: FFFF FFFF FFFF
FFFF

[0123] An example of the Timestamp mask is: FFFF FFFF
FFEO 0000

[0124] An example of a Shard ID mask is: 0000 0000
001F FCO00

[0125] An example of a Uniqueness mask is: 0000 0000
0000 O3FF

[0126] An example of querying the correct shard in a

multi-shard scenario follows.
[0127] First, suppose a query for an object by ID is:
{where: {id: 2047} }

[0128] To perform the query, the shard ID is extracted as
follows:
[0129] 0000 0000 0000 O7FF (the hex value for the

example full ID: 2047)

[0130] && 0000 0000 001F FCOO (the example shard ID
mask)
[0131] =0000 0000 0000 0400 (compare this value with

the example uniqueness mask)



US 2019/0228177 Al

[0132] 10>>0000 0000 0000 0001 (the remainder indi-
cates the shard ID)

[0133] In this case, the object is found in shard 1 and the
query is routed to that shard.

[0134] Thus, upon receiving a query for an object, the
system determines which database server to query, and also
handles relationships between objects that might be in
completely separate shards. If a complex query is received,
an API can provide a ‘context’ in which to route the query.
Each repository may be routed differently, depending upon
the type of objects stored therein. For example, user objects
and tenant objects may be routed round-robin on creation
and by ID on query. On creation, resources (e.g., docs and
folders) may be routed first by their parent ID, and then by
the context user’s ID. Versions may be routed based on their
resource’s ID. In some embodiments, if a query is received
with no ID and no context, it may be routed to a specific
shard. In this way, the system can guarantee unique IDs for
objects without creating a single point of failure.

[0135] As those skilled in the art can appreciate, resources
in database systems can be locked using a synchronization
mechanism (referred to as a resource lock) to enforce limits
on access to a resource (e.g., a database record) in an
environment where there are many threads of execution.
Such a resource lock can enforce a mutual exclusion con-
currency control policy, for instance.

[0136] FIGS. 11A and 11B illustrate how resource locking
is handled in a standard (single) database system. In FIG.
11A, a data structure such as a list or a function table
“Resourcel.ock” may include a Resourceld entry associated
with a primary key (PK) and a foreign key (FK). Likewise,
the locked-by party, i.e., the party for whom the resource is
locked, is identified by “LockedByld” and associated with a
PK and a FK. In FIG. 11B, a “share” table stores an
identification (Id) as a PK and also stores a plurality of FKs
including an identification of the resource shared (Resour-
celd), an identification of the party performing the sharing
(SharedByld), and an identification of the party to whom the
object is shared (SharedTold).

[0137] In conventional database systems, these locks are
managed in memory and therefore consume memory
resources. As the number of locks increase, so do the
memory resources required to store and track these locks.
This can significantly increase operation cost and reduce
system performance.

[0138] These issues are even more challenging to address
in multi-shard environments. For example, in a system that
allows a user to “like,” “comment,” or “follow” a document,
a first user may like a second user’s document. In such a
case, the system needs to know which documents the first
user likes and which user(s) like the second user’s docu-
ments. However, if this relationship (between the first user
and the second user’s document) is stored with the docu-
ment, a search to find what documents user 1 likes will
involve searching all shards, which can be time consuming
and computationally expensive. Likewise, if the relationship
is stored with the user (the first user in this example), a
search to find who likes this particular document will
involve searching all shard.

[0139] Embodiments can handle relationships across
shards in a significantly more efficient way. Specifically,
embodiments of a sharding manager can generate, manage,
and maintain a relationship (e.g., a resource lock) by split-
ting the relationship into two or more functional tables and

Jul. 25,2019

storing a copy of each table in each shard. Following the
above example, the user item associated with the first user
on one shard and the document item associated with the
second user on another shard are considered to be in a
relationship (the resource lock) and the relationship can be
processed (e.g., searched) from either the perspective of the
user item (a first split relationship) or the perspective of the
document item (a second split relationship). Together these
two split relationships represent one complete relationship
between the user item and the document item.

[0140] This is further illustrated in FIGS. 12A and 12B. In
FIG. 12A, a data structure such as a table referred to as
“Resourcelock™ 1202 has the same column and same data
as the resource lock shown in FIG. 11A. However, instead
of having the “Resourceld” and the “LockedByld” be a
foreign key (FK) to both the resource (e.g., a document) and
the user resource on the same table as shown in FIG. 11A,
Resourcel.ock 1202 in FIG. 12 A has first split function table
1204 representing a first split relationship from a first
perspective (e.g., a user item associated with the first user in
the above example) and second split function table 1206
representing a second split relationship from a second per-
spective (a document item associated with the second user in
the above example). Specifically, split table 1204
“Resourcel.ock_LockedBy” has  “Resourceld” and
“LockedByld” but only the “LockedByld” is the foreign key
to the user table. That is, “Resourcel.ocklockedBy” (split
table 1204) enforces the “Locked_By” half of the relation-
ship. Split table “Resourcel.ock_Resource” 1206 also has
“Resourceld” and “LockedByld,” but its foreign key is on
the “Resourceld” which is linked to the resource table. The
“LockedByld” is still part of the PK, but it is not the FK
because the user could appear in a different shard. These two
tables together represent a complete relationship between
the two items in the above example. A copy of these tables
is stored in each shard. The data in them represents what is
local to that shard.

[0141] For example, if there is a lock on a resource, there
will be an entry of a “ResourcelLock_Resource” table (e.g.,
table 1206) on that shard. For a user obtaining that lock,
there will be a “Resourcel.ocklockedBy” table (table 1204)
in that user’s shard. If someone wants to query for the user
to see all the resources that are locked by the user, the system
can query for that user and all of their locks will appear in
the “Resourcel.ockl.ockedBy” table on their shard. From
that query result, the system can get the resource ID’s.
Because those resource ID’s are using the same sharding
algorithm described herein, the system can extract the shard
ID (since, as described above, the shard ID mask is included
in each object’s ID) and use that shard ID to query the
correct database to get the resource that the user has locked.
This query routing mechanism allows the system to navigate
from one shard to another. As such, the generation and
maintenance of these relationships can be hidden from the
API layer, thereby eliminating the need for APIs to join in
data that would span multiple shards.

[0142] Embodiments can handle relationships involving
multiple database items in a similar manner. FIG. 12B
illustrates by example how embodiments disclosed herein
may handle three-database-item relationships. In particular,
as shown, a share relationship is split into three parts, one
associated with each shard storing an item involved in the
share operation. In the embodiment illustrated, the share
relationship includes a Share_SharedBy relationship in



US 2019/0228177 Al

which the SharedByld is a foreign key (table 1204); a
Share_SharedTo relationship, in which the SharedTold is a
foreign key (table 1206); and a Share_Resource relationship
in which the Resourceld is a foreign key (table 1208).
[0143] FIG. 13A schematically illustrates an example of
database sharding in accordance with some embodiments.
As shown, gateway server node 1300 includes or is in
communication with sharding manager 1302 (which may be
part of a database manager) which, in turn, communicates
with database(s) 1305 via one or more APIs 1304. In the
non-limiting embodiment illustrated, database 1305
includes one or more database servers 1307a, 13075, . . . ,
13075, which maintain one or more shards 1306a, 13065, .
.., 1306n. As discussed above, embodiments can maintain
relationships across shards. For example, embodiments can
store relationships between items on different shards, such as
items on shards 13064 and 13065. To do so, embodiments
store split relationship 1308a, 13085 on each shard. Each
shard that includes the item in the relationship maintains a
corresponding portion of the relationship. In the embodi-
ment illustrated in FIG. 13A, the resource lock relationships
are shown. Thus, shard 13064 includes copy 1308a of the
Resourcel.ock_LockedBy portion of the relationship (a first
split of the relationship), while shard 13065 includes copy
13085 of the Resourcel.ock_Resource portion of the rela-
tionship (a second split of the relationship).

[0144] Similarly, FIG. 13B illustrates a further embodi-
ment of a share relationship between three database items
stored in different shards. A first item is stored in shard 1306,
a second item is stored in shard 13065, and a third item is
stored in shard 1306¢. Each item is identified by their unique
ID which is generated by the respective shard and which is
encoded with the respective shard ID mask as explained
above. In the embodiment illustrated, the first item has a lock
on a resource which is shared by the second item and which
is shared to the third item. These three items, therefore, are
in a relationship relative to the same resource identified by
the resource ID. Accordingly, shard 1306a stores a copy
13104 of the Share_Resource portion of the relationship (a
first split of the relationship), shard 13065 stores a copy
13105 of the Share_SharedBy portion of the relationship (a
second split of the relationship), and shard 1306¢ stores a
copy 1310c¢ of the Share_SharedTo portion of the relation-
ship (a third split of the relationship). At query time, the
system can navigate from one shard to another using the
query routing mechanism described above.

[0145] Embodiments disclosed here in can be imple-
mented in various ways. For example, in some embodi-
ments, components of an application gateway architecture
described above can be deployed on premises, on premises
as a virtual machine, or in a cloud computing environment
(including entirely or partially hosted in the cloud). Other
implementations may also be possible.

[0146] Although the invention has been described with
respect to specific embodiments thereof, these embodiments
are merely illustrative, and not restrictive of the invention.
The description herein of illustrated embodiments of the
invention, including the description in the Abstract and
Summary, is not intended to be exhaustive or to limit the
invention to the precise forms disclosed herein (and in
particular, the inclusion of any particular embodiment, fea-
ture or function within the Abstract or Summary is not
intended to limit the scope of the invention to such embodi-
ment, feature or function). Rather, the description is

Jul. 25,2019

intended to describe illustrative embodiments, features and
functions in order to provide a person of ordinary skill in the
art context to understand the invention without limiting the
invention to any particularly described embodiment, feature
or function, including any such embodiment feature or
function described in the Abstract or Summary. While
specific embodiments of, and examples for, the invention are
described herein for illustrative purposes only, various
equivalent modifications are possible within the spirit and
scope of the invention, as those skilled in the relevant art will
recognize and appreciate. As indicated, these modifications
may be made to the invention in light of the foregoing
description of illustrated embodiments of the invention and
are to be included within the spirit and scope of the inven-
tion. Thus, while the invention has been described herein
with reference to particular embodiments thereof, a latitude
of modification, various changes and substitutions are
intended in the foregoing disclosures, and it will be appre-
ciated that in some instances some features of embodiments
of the invention will be employed without a corresponding
use of other features without departing from the scope and
spirit of the invention as set forth. Therefore, many modi-
fications may be made to adapt a particular situation or
material to the essential scope and spirit of the invention.
[0147] Reference throughout this specification to “one
embodiment”, “an embodiment”, or “a specific embodi-
ment” or similar terminology means that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one embodiment and may
not necessarily be present in all embodiments. Thus, respec-
tive appearances of the phrases “in one embodiment”, “in an
embodiment”, or “in a specific embodiment” or similar
terminology in various places throughout this specification
are not necessarily referring to the same embodiment. Fur-
thermore, the particular features, structures, or characteris-
tics of any particular embodiment may be combined in any
suitable manner with one or more other embodiments. It is
to be understood that other variations and modifications of
the embodiments described and illustrated herein are pos-
sible in light of the teachings herein and are to be considered
as part of the spirit and scope of the invention.

[0148] In the description herein, numerous specific details
are provided, such as examples of components and/or meth-
ods, to provide a thorough understanding of embodiments of
the invention. One skilled in the relevant art will recognize,
however, that an embodiment may be able to be practiced
without one or more of the specific details, or with other
apparatus, systems, assemblies, methods, components,
materials, parts, and/or the like. In other instances, well-
known structures, components, systems, materials, or opera-
tions are not specifically shown or described in detail to
avoid obscuring aspects of embodiments of the invention.
While the invention may be illustrated by using a particular
embodiment, this is not and does not limit the invention to
any particular embodiment and a person of ordinary skill in
the art will recognize that additional embodiments are
readily understandable and are a part of this invention.

[0149] Embodiments discussed herein can be imple-
mented in a computer communicatively coupled to a net-
work (for example, the Internet), another computer, or in a
standalone computer. As is known to those skilled in the art,
a suitable computer can include a central processing unit
(“CPU”), at least one read-only memory (“ROM?”), at least
one random access memory (“RAM”), at least one hard



US 2019/0228177 Al

drive (“HD”), and one or more input/output (“1/0”) device
(s). The I/O devices can include a keyboard, monitor, printer,
electronic pointing device (for example, mouse, trackball,
stylus, touch pad, etc.), or the like.

[0150] ROM, RAM, and HD are computer memories for
storing computer-executable instructions executable by the
CPU or capable of being compiled or interpreted to be
executable by the CPU. Suitable computer-executable
instructions may reside on a computer readable medium
(e.g., ROM, RAM, and/or HD), hardware circuitry or the
like, or any combination thereof. Within this disclosure, the
term “computer readable medium” is not limited to ROM,
RAM, and HD and can include any type of data storage
medium that can be read by a processor. For example, a
computer-readable medium may refer to a data cartridge, a
data backup magnetic tape, a floppy diskette, a flash memory
drive, an optical data storage drive, a CD-ROM, ROM,
RAM, HD, or the like. The processes described herein may
be implemented in suitable computer-executable instruc-
tions that may reside on a computer readable medium (for
example, a disk, CD-ROM, a memory, etc.). Alternatively,
the computer-executable instructions may be stored as soft-
ware code components on a direct access storage device
array, magnetic tape, floppy diskette, optical storage device,
or other appropriate computer-readable medium or storage
device.

[0151] Any suitable programming language can be used to
implement the routines, methods or programs of embodi-
ments of the invention described herein, including C, C++,
Java, JavaScript, HTML, or any other programming or
scripting code, etc. Other software/hardware/network archi-
tectures may be used. For example, the functions of the
disclosed embodiments may be implemented on one com-
puter or shared/distributed among two or more computers in
or across a network. Communications between computers
implementing embodiments can be accomplished using any
electronic, optical, radio frequency signals, or other suitable
methods and tools of communication in compliance with
known network protocols.

[0152] Different programming techniques can be
employed such as procedural or object oriented. Any par-
ticular routine can execute on a single computer processing
device or multiple computer processing devices, a single
computer processor or multiple computer processors. Data
may be stored in a single storage medium or distributed
through multiple storage mediums, and may reside in a
single database or multiple databases (or other data storage
techniques). Although the steps, operations, or computations
may be presented in a specific order, this order may be
changed in different embodiments. In some embodiments, to
the extent multiple steps are shown as sequential in this
specification, some combination of such steps in alternative
embodiments may be performed at the same time. The
sequence of operations described herein can be interrupted,
suspended, or otherwise controlled by another process, such
as an operating system, kernel, etc. The routines can operate
in an operating system environment or as stand-alone rou-
tines. Functions, routines, methods, steps and operations
described herein can be performed in hardware, software,
firmware or any combination thereof.

[0153] Embodiments described herein can be imple-
mented in the form of control logic in software or hardware
or a combination of both. The control logic may be stored in
an information storage medium, such as a computer-read-

Jul. 25,2019

able medium, as a plurality of instructions adapted to direct
an information processing device to perform a set of steps
disclosed in the various embodiments. Based on the disclo-
sure and teachings provided herein, a person of ordinary
skill in the art will appreciate other ways and/or methods to
implement the invention.

[0154] Itis also within the spirit and scope of the invention
to implement in software programming or code an of the
steps, operations, methods, routines or portions thereof
described herein, where such software programming or code
can be stored in a computer-readable medium and can be
operated on by a processor to permit a computer to perform
any of the steps, operations, methods, routines or portions
thereof described herein. The invention may be imple-
mented by using software programming or code in one or
more digital computers, by using application specific inte-
grated circuits, programmable logic devices, field program-
mable gate arrays, optical, chemical, biological, quantum or
nanoengineered systems, components and mechanisms may
be used. In general, the functions of the invention can be
achieved by any means as is known in the art. For example,
distributed, or networked systems, components and circuits
can be used. In another example, communication or transfer
(or otherwise moving from one place to another) of data may
be wired, wireless, or by any other means.

[0155] A “computer-readable medium” may be any
medium that can contain, store, communicate, propagate, or
transport the program for use by or in connection with the
instruction execution system, apparatus, system or device.
The computer readable medium can be, by way of example
only but not by limitation, an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system, appa-
ratus, system, device, propagation medium, or computer
memory. Such computer-readable medium shall be machine
readable and include software programming or code that can
be human readable (e.g., source code) or machine readable
(e.g., object code). Examples of non-transitory computer-
readable media can include random access memories, read-
only memories, hard drives, data cartridges, magnetic tapes,
floppy diskettes, flash memory drives, optical data storage
devices, compact-disc read-only memories, and other appro-
priate computer memories and data storage devices. In an
illustrative embodiment, some or all of the software com-
ponents may reside on a single server computer or on any
combination of separate server computers. As one skilled in
the art can appreciate, a computer program product imple-
menting an embodiment disclosed herein may comprise one
or more non-transitory computer readable media storing
computer instructions translatable by one or more processors
in a computing environment.

[0156] A “processor” includes any, hardware system,
mechanism or component that processes data, signals or
other information. A processor can include a system with a
central processing unit, multiple processing units, dedicated
circuitry for achieving functionality, or other systems. Pro-
cessing need not be limited to a geographic location, or have
temporal limitations. For example, a processor can perform
its functions in “real-time,” “offline,” in a “batch mode,” etc.
Portions of processing can be performed at different times
and at different locations, by different (or the same) pro-
cessing systems.

[0157] It will also be appreciated that one or more of the
elements depicted in the drawings/figures can also be imple-
mented in a more separated or integrated manner, or even



US 2019/0228177 Al

removed or rendered as inoperable in certain cases, as is
useful in accordance with a particular application. Addition-
ally, any signal arrows in the drawings/figures should be
considered only as exemplary, and not limiting, unless
otherwise specifically noted.

2 <

[0158] As used herein, the terms “comprises,” “compris-
ing,” “includes,” “including,” “has,” “having,” or any other
variation thereof, are intended to cover a non-exclusive
inclusion. For example, a process, product, article, or appa-
ratus that comprises a list of elements is not necessarily
limited only those elements but may include other elements
not expressly listed or inherent to such process, product,

article, or apparatus.

[0159] Furthermore, the term “or” as used herein is gen-
erally intended to mean “and/or” unless otherwise indicated.
For example, a condition A or B is satisfied by any one of
the following: A is true (or present) and B is false (or not
present), A is false (or not present) and B is true (or present),
and both A and B are true (or present). As used herein,

[Tt}

including the claims that follow, a term preceded by “a” or
“an” (and “the” when antecedent basis is “a” or “an”

includes both singular and plural of such term, unless clearly
indicated within the claim otherwise (i.e., that the reference
“a” or “an” clearly indicates only the singular or only the
plural). Also, as used in the description herein and through-
out the claims that follow, the meaning of “in” includes “in”
and “on” unless the context clearly dictates otherwise. The
scope of the present disclosure should be determined by the

following claims and their legal equivalents.

Jul. 25,2019

What is claimed is:

1. A system, comprising:

a processor;

a non-transitory computer-readable medium; and

stored instructions translatable by the processor for:
storing a first data structure representing a first split of

a relationship in a first database shard, the first data
structure referencing a second database item in a
second database shard and keyed to a first database
item in the first database shard, the first database item
having a first object identifier encoded with the shard
identifier of the first database shard; and

storing a second data structure representing a second

split of the relationship in a second database shard,
the second data structure referencing the first data-
base item in the first database shard and keyed to the
second database item in the second database shard,
the second database item having a second object
identifier encoded with the shard identifier of the
second database shard, the second object identifier
generated by the second database shard indepen-
dently of the first object identifier generated by the
first database shard;

wherein the second database item in the second data-

base shard is accessible by a sharding manager using
the first data structure keyed to the first database item
in the first database shard, the sharding manager
residing in a gateway server node or is in commu-
nication with the gateway server node.

#* #* #* #* #*



