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METHOD AND SYSTEM FOR
INTERACTIVE, INTERPRETABLE, AND
IMPROVED MATCH AND PLAYER
PERFORMANCE PREDICTIONS IN TEAM
SPORTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims reference to U.S. Provi-
sional Application Ser. No. 62/619,894, filed Jan. 21, 2018,
which is hereby incorporated by reference in its entirety.

FIELD OF THE DISCLOSURE

[0002] The present disclosure generally relates to system
and method for generating a predictive model and, more
specifically, a system and method for predicting pre-match
and in-match outcomes.

BACKGROUND

[0003] Increasingly, sports fans and data analysts have
become entrenched in sports analytics, particularly in pre-
dicting the outcome of a match both prior to initiation of the
match and during match play. For example, leading up to a
big match, sports networks continually host debate shows in
which multiple parties argue over which team will win an
upcoming match. Such analysis does not stop once the
match ends, however. Typical “Monday Morning Quarter-
back” sportscasters argue over how the outcome of a match
could have changed if, for example, the coach made one or
more roster adjustments. Accordingly, there is a continual
competition for developing a system that can more accu-
rately predict an outcome of a sporting event.

SUMMARY

[0004] Embodiments disclosed herein generally relate to a
system, method, and computer readable medium for gener-
ating an outcome for a sporting event is disclosed herein. A
computing system retrieves event data from a data store. The
event data includes play-by-play information for a plurality
of'events across a plurality of season. The computing system
generates a predictive model using a deep neural network.
The one or more neural networks of the deep neural network
generate one or more embeddings comprising team-specific
information and agent-specific information based on the
event data. The computing system selects, from the event
data, one or more features related to a current context of the
sporting event. The computing system learns, by the deep
neural network, one or more likely outcomes of one or more
sporting events based at least on team-specific embeddings,
agent-specific embeddings, and the current context of the
sporting event. The computing system receives a pre-match
lineup for the sporting event. The pre-match lineup includes
a plurality of agents for a home team and a plurality of
agents for an away team. The computing system generates,
via the predictive model, a likely outcome of the sporting
event based on historical information of each agent for the
home team, each agent for the away team, and team-specific
features.

[0005] In another embodiment, a system, method, and
computer readable medium for generating an outcome for a
sporting event. A computing system retrieves event data
from a data store. The event data includes play-by-play
information for a plurality of events across a plurality of
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season. The computing system generates a predictive model
using a deep neural network. A neural network learns one or
more players likely to be in each event at each time, t, given
time based on lineup features of each team, current state of
each event at each time t, and current box score at each time
t. The computing system generates a data set that includes
the one or more players likely to be in each event at each
time t. A mixture density network learns a score difference
at each time t, based on the lineup features of each team, the
current state of each event at time t, the current box score at
each time t, and the data set comprising the one or more
players likely to be in each event at each time t. The
computing system receives an indication to generate a
predicted outcome of the sporting event at a current time, T.
The computing system generates, via the predictive model,
a final score differential for the sporting event based on
lineup features of each team to the sporting event, current
state of the sporting event at the time T, current box score at
the time T, and current lineup in the sporting event at time
T.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] So that the manner in which the above recited
features of the present disclosure can be understood in detail,
a more particular description of the disclosure, briefly sum-
marized above, may be had by reference to embodiments,
some of which are illustrated in the appended drawings. It is
to be noted, however, that the appended drawings illustrated
only typical embodiments of this disclosure and are there-
fore not to be considered limiting of its scope, for the
disclosure may admit to other equally effective embodi-
ments.

[0007] FIG. 1 is a block diagram illustrating a computing
environment, according to example embodiments.

[0008] FIG. 2 is a block diagram illustrating a component
of the computing environment of FIG. 1, according to
example embodiments.

[0009] FIG. 3A is a block diagram illustrating a neural
network architecture, according to example embodiments.
[0010] FIG. 3B is a block diagram illustrating a neural
network architecture, according to example embodiments.
[0011] FIG. 3C is a block diagram illustrating a neural
network architecture, according to example embodiments.
[0012] FIG. 3D is a block diagram illustrating a neural
network architecture, according to example embodiments.
[0013] FIG. 4 is a flow diagram illustrating a method of
training a deep neural network model, according to example
embodiments.

[0014] FIG. 5Ais a block diagram illustrating a graphical
user interface, according to example embodiments.

[0015] FIG. 5B is a block diagram illustrating a graphical
user interface, according to example embodiments.

[0016] FIG. 6 is a flow diagram illustrating a method of
predicting a pre-match outcome, according to example
embodiments.

[0017] FIG. 7A is a block diagram of a structure of a
neural network model, according to example embodiments.
[0018] FIG. 7B is a block diagram illustrating a structure
of'a mixture density network, according to example embodi-
ments.

[0019] FIG. 8 is a flow diagram illustrating a method of
training a deep neural network model, according to example
embodiments.
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[0020] FIG. 9 is a block diagram illustrating an exemplary
graphical user interface, according to example embodi-
ments.

[0021] FIG. 10 is a flow diagram illustrating a method of
generating an in-game prediction of a sports event, accord-
ing to example embodiments.

[0022] FIG. 11A is a block diagram illustrating a comput-
ing device, according to example embodiments.

[0023] FIG. 11B is a block diagram illustrating a comput-
ing device, according to example embodiments.

[0024] To facilitate understanding, identical reference
numerals have been used, where possible, to designate
identical elements that are common to the figures. It is
contemplated that elements disclosed in one embodiment
may be beneficially utilized on other embodiments without
specific recitation.

DETAILED DESCRIPTION

[0025] One or more techniques disclosed herein generally
relate to a system and a method for generating predicted
outcomes of a sporting event (e.g., “match”). For example,
one or more techniques disclosed herein are directed to
predicting the outcome of a match both prior to initiation of
the match and during match play.

[0026] In some embodiments, one or more techniques
disclosed herein generate a prediction model utilizing the
power of personalized predictions to capture low-level non-
linearities that exist between player performances within a
team to generate a predicted outcome, prior to the match
initiation. The rationale behind this approach, for example,
is that agents and teams may have varying levels of talent,
but their talent level, which they can display, may be
intrinsically linked to other players on the field, as well as
their opponents. Although this approach may be intuitive, it
has proved extremely challenging to do this in practice due
to the vast array of permutations that exist between players
within and between teams. The one or more techniques
described herein, however, are able to take advantage of
lower-dimensional embeddings that capture these same
interactions.

[0027] The one or more techniques described herein uti-
lize the power of deep neural networks (i.e., multiple hidden
layers) to identify these embeddings. Identification of these
embeddings allow for (1) more accurate match prediction
over conventional techniques; (2) data-driven player influ-
ence rankings; and (3) interactive “what-if” analysis, which
may leverage the interpretability of the input feature space
to compare players in specific situations.

[0028] The one or more techniques described herein are
drastically different from current match-prediction models.
For example, one or more techniques described herein
explicitly encode the team lineup information in the feature
representation. Such techniques stand in stark contrast to
most other match-prediction models, which either forecast
the number of goals being scored via a Poisson distribution
with variables, which model the offensive and defensive
capabilities, or estimate the win, draw, or loss directly.
Conventional approaches also focus on “player ratings”
estimate the number of goals/points a player can expect, but
no conventional system explicitly predicts the outcome of
the match—which, ultimately, is a superior label to use to
correlate player performance.

[0029] Further, in some embodiments, the one or more
techniques disclosed herein relate to in-match game predic-
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tion (i.e., after the match has started). Such techniques may
allow the system described herein to dynamically generate
match predictions, at any time during the match. As illus-
trated in the following example, conventional systems are
unable to accurately predict match outcomes during the
course of the game.

[0030] In Game 1 of the 2017 Western Conference Finals
between the Golden State Warriors and the San Antonio
Spurs, with 7:53 remaining in the third quarter and the Spurs
up 78-55, Kawhi Leonard re-injured his left ankle while
taking a jump-shot. Following [L.eonard’s departure from the
game, the Warriors went on an 18-0 run, eventually winning
the game.

[0031] Intuition states that with Leonard off the court the
Spurs are less likely to win; however, conventional
approaches are unable to account for the severity of losing
Leonard as well as the dominant previous performances of
the Warriors over the past several seasons. Win probability
models should be responsive to in-game contextual features
such as injuries and fouls. Additionally, win probability
models should incorporate team identity, i.e. team strength.
Conventional systems fails to account for the Warriors’
dominance in prior seasons and demonstrated ability to
come back to win in similar situations should be captured by
the model.

[0032] Further, conventional win probability models are
limited in predicting the likelihood of a single, binary
outcome given an in-game scenario. In reality, there are
many paths to any one outcome, and the model should
highlight this complexity. The fact that such issues are
common in win probability estimates highlights a final
problem. Still further, there simply remains no publicly
available datasets or models against which researchers and
analysts can compare information.

[0033] The one or more techniques described herein
directly address the one or more limitations of conventional
system by providing a system that addresses the issues of
context and uncertainty through lineup encoding an explicit
prediction of the score difference distribution (e.g., final
score difference). For example, by using a mixture density
network with lineup encoding, the one or more techniques
described herein achieve levels of accuracy unattainable by
conventional methods.

[0034] FIG. 1 is a block diagram illustrating a computing
environment 100, according to example embodiments.
Computing environment 100 may include tracking system
102, organization computing system 104, and one or more
client devices 108 communicating via network 105.

[0035] Network 105 may be of any suitable type, includ-
ing individual connections via the Internet, such as cellular
or Wi-Fi networks. In some embodiments, network 105 may
connect terminals, services, and mobile devices using direct
connections, such as radio frequency identification (RFID),
near-field communication (NFC), Bluetooth™, low-energy
Bluetooth™ (BLE), Wi-Fi™ ZigBee™, ambient backscatter
communication (ABC) protocols, USB, WAN, or LAN.
Because the information transmitted may be personal or
confidential, security concerns may dictate one or more of
these types of connection be encrypted or otherwise secured.
In some embodiments, however, the information being
transmitted may be less personal, and therefore, the network
connections may be selected for convenience over security.
[0036] Network 105 may include any type of computer
networking arrangement used to exchange data or informa-
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tion. For example, network 105 may be the Internet, a
private data network, virtual private network using a public
network and/or other suitable connection(s) that enables
components in computing environment 100 to send and
receive information between the components of environ-
ment 100.

[0037] Tracking system 102 may be positioned in a venue
106. For example, venue 106 may be configured to host a
sporting event that includes one or more agents 112. Track-
ing system 102 may be configured to record the motions of
all agents (i.e., players) on the playing surface, as well as one
or more other objects of relevance (e.g., ball, referees, etc.).
In some embodiments, tracking system 102 may be an
optically-based system using, for example, a plurality of
fixed cameras. For example, a system of six stationary,
calibrated cameras, which project the three-dimensional
locations of players and the ball onto a two-dimensional
overhead view of the court may be used. In some embodi-
ments, tracking system 102 may be a radio-based system
using, for example, radio frequency identification (RFID)
tags worn by players or embedded in objects to be tracked.
Generally, tracking system 102 may be configured to sample
and record, at a high frame rate (e.g., 25 Hz). Tracking
system 102 may be configured to store at least player
identity and positional information (e.g., (X, y) position) for
all agents and objects on the playing surface for each frame
in a game file 110.

[0038] Game file 110 may be augmented with other event
information corresponding to event data, such as, but not
limited to, game event information (pass, made shot, turn-
over, etc.) and context information (current score, time
remaining, etc.).

[0039] Tracking system 102 may be configured to com-
municate with organization computing system 104 via net-
work 105. Organization computing system 104 may be
configured to manage and analyze the data captured by
tracking system 102. Organization computing system 104
may include at least a web client application server 114, a
pre-processing engine 116, a data store 118, and match
prediction agent 120. Each of pre-processing engine 116 and
match prediction engine 120 may be comprised of one or
more software modules. The one or more software modules
may be collections of code or instructions stored on a media
(e.g., memory of organization computing system 104) that
represent a series of machine instructions (e.g., program
code) that implements one or more algorithmic steps. Such
machine instructions may be the actual computer code the
processor of organization computing system 104 interprets
to implement the instructions or, alternatively, may be a
higher level of coding of the instructions that is interpreted
to obtain the actual computer code. The one or more
software modules may also include one or more hardware
components. One or more aspects of an example algorithm
may be performed by the hardware components (e.g., cir-
cuitry) itself, rather as a result of the instructions.

[0040] Match prediction agent 120 may be configured to
generate “personalized predictions” for the outcome of a
given match. In some embodiments, match prediction agent
120 may be configured to generate a predicted outcome of
a given match, prior to initiation of the match (i.e., the match
has not yet started). Accordingly, match prediction agent 120
may generate the predicted outcome based on a projected
starting lineup for each team. In some embodiments, match
prediction agent 120 may be configured to generate a
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predicted outcome of a given match, after initiation of the
match (i.e., the match has started). Accordingly, match
prediction agent 120 may be configured to predict, dynami-
cally, the outcome of a match at any point t during the match.
Match prediction agent 120 may utilize a deep learning
framework that is trained to learn various team-specific
attributes, player-specific attributes, and game context attri-
butes to generate predicted outcomes.

[0041] Data store 118 may be configured to store one or
more game files 124. Each game file 124 may include spatial
event data and non-spatial event data. For example, spatial
event data may correspond to raw data captured from a
particular game or event by tracking system 102. Non-
spatial event data may correspond to one or more variables
describing the events occurring in a particular match without
associated spatial information. For example, non-spatial
event data may correspond to each play-by-play event in a
particular match. In some embodiments, non-spatial event
data may be derived from spatial event data. For example,
pre-processing engine 116 may be configured to parse the
spatial event data to derive play-by-play information. In
some embodiments, non-spatial event data may be derived
independently from spatial event data. For example, an
administrator or entity associated with organization com-
puting system may analyze each match to generate such
non-spatial event data. As such, for purposes of this appli-
cation, event data may correspond to spatial event data and
non-spatial event data.

[0042] In some embodiments, each game file 124 may
further include the home and away team box scores. For
example, the home and away teams’ box scores may include
the number of team assists, fouls, rebounds (e.g., offensive,
defensive, total), steals, and turnovers at each time, t, during
gameplay. In some embodiments, each game file 124 may
further include a player box score. For example, the player
box score may include the number of player assists, fouls,
rebounds, shot attempts, points, free-throw attempts, free-
throws made, blocks, turnovers, minutes played, plus/minus
metric, game started, and the like. Although the above
metrics are discussed with respect to basketball, those
skilled in the art readily understand that the specific metrics
may change based on sport. For example, in soccer, the
home and away teams’ box scores may include shot
attempts, assists, crosses, shots, and the like.

[0043] Pre-processing agent 116 may be configured to
process data retrieved from data store 118. For example,
pre-processing agent 116 may be configured to generate one
or more sets of information that may be used to train one or
more neural networks associated with pre-match module
202 and/or in-match module 204. Pre-processing agent 116
may scan each of the one or more game files stored in data
store 118 to identify one or more statistics corresponding to
each specified data set, and generate each data set accord-
ingly. For example, pre-processing agent 116 may scan each
of the one or more game files in data store 118 to identify a
line-up of each team and the statistics associated with each
player in the line-up.

[0044] Client device 108 may be in communication with
organization computing system 104 via network 105. Client
device 108 may be operated by a user. For example, client
device 108 may be a mobile device, a tablet, a desktop
computer, or any computing system having the capabilities
described herein. Users may include, but are not limited to,
individuals such as, for example, subscribers, clients, pro-
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spective clients, or customers of an entity associated with
organization computing system 104, such as individuals
who have obtained, will obtain, or may obtain a product,
service, or consultation from an entity associated with
organization computing system 104.

[0045] Client device 108 may include at least application
126. Application 126 may be representative of a web
browser that allows access to a website or a stand-alone
application. Client device 108 may access application 126 to
access one or more functionalities of organization comput-
ing system 104. Client device 108 may communicate over
network 105 to request a webpage, for example, from web
client application server 114 of organization computing
system 104. For example, client device 108 may be config-
ured to execute application 126 to access content managed
by web client application server 114. The content that is
displayed to client device 108 may be transmitted from web
client application server 114 to client device 108, and
subsequently processed by application 126 for display
through a graphical user interface (GUI) of client device
108.

[0046] FIG. 2 illustrates match prediction agent 120 in
greater detail, according to example embodiments. Match
prediction agent 120 may include pre-match module 202,
in-match module 204, and interface module 206.

[0047] Pre-match module 202 may be configured to pre-
dict an outcome of a match, prior to initiation of the match.
At a high-level, pre-match module 202 may be configured to
predict an outcome of a match based on, for example, a
proposed starting lineup of the match. More specifically,
pre-match module 202 may be configured to predict an
outcome of a match based on, at least, team-specific embed-
dings, agent-specific embeddings, and match context. Pre-
match module 202 may include at least one or more neural
networks 210 and one or more fully trained models 212.
Each neural network 210 may be configured to learn a
specific embedding. For example, pre-match module 202
may include a first neural network to learn team history
embeddings, a second neural network to learn agent embed-
dings, and a third neural network to learn recent agent
embeddings. Such embeddings may be provided, as input, to
a fourth neural network, which learns how to predict a match
outcome based on, for example, team-specific information,
player-specific information, and the match context. One or
more fully trained models 212 may be generated as a result
of a training process via one or more neural networks 210.
For example, one or more fully trained models 212 may be
used to predict match outcome and perform “what-if”” analy-
sis as a result of the training process.

[0048] In-match module 204 may be configured to predict
an outcome of a match, after initiation of the match. For
example, in-match module 204 may be configured to predict
the outcome of the match during any point of the match.
In-match module 204 may be able to predict the outcome of
a match based on, for example, current game context, team
history, and agent history. In-match module 204 may include
neural network module 220, random forest classifier 222,
mixture density network module 224, and one or more fully
trained models 226.

[0049] Neural network module 220 may be configured to
predict which agents are in an event (e.g., on the court) at a
given time. For example, neural network module 220 may
be configured to learn how to predict which agents are in an
event based on team-specific information, player-specific
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information, and the current game state. In-match module
204 may train neural network module 220 with one or more
sets of data from data store 118.

[0050] Random forest classifier 222 may be configured to
aid in training neural network module 202. For example,
in-match module 204 may train a set of random forest
classifier models that use lineup encoding to report internal
and external performance of the models. Random forest
classifiers may be constructed using ensembles of decision
tree classifiers. Decision trees may be configured to learn to
make splits, i.e. infer rules, based upon values of the
incoming observations in order to identify the value of target
variables.

[0051] Mixture density network module 224 may be con-
figured to generate a match prediction based on the predicted
lineup from neural network module 202. For example,
mixture density network may be configured to learn how to
predict match outcomes based on the currently predicted
lineup, agent-specific information, team specific informa-
tion, and the current game state. In-match module 204 may
train mixture density network module 224 with one or more
sets of data from data store 118.

[0052] One or more fully trained models 212 may be
generated as a result of a training process via one or more
neural networks 220 and mixture density network 224. For
example, one or more fully trained models 212 may be used
to predict match outcome at any point during a match.
[0053] Pre-Match Prediction

[0054] FIG. 3A is a block diagram illustrating a neural
network architecture 300, according to example embodi-
ments. As illustrated in FIG. 3A, several types of input
features may be implemented with neural network architec-
ture: team context input feature 302, full agent performance
input 304, recent player performance input 306, and game
context input 308.

[0055] Team context input may be generated based on a
detailed breakdown of the previous performances that pre-
ceded the current match, for both teams. For example, for
every game in data store 118, pre-match module 202 may
select a subset of the most recent matches (e.g., last twenty
matches) played by each of the two teams, ordered by date,
aligned in pairs (e.g., most recent game by team A with most
recent game by team B, second most recent game by team
A with second most recent game by team B, etc.), and
characterized by one or more features. Such features may
include, but are not limited two:

[0056] atHomeA, atHomeB: binary variable to indicate
whether the teams were playing at home in the previous
fixture.

[0057] dataA, dataB: days from this previous match to
the match to be predicted.

[0058] rankAopp, promotedAopp, relegatedAopp,
rankBopp, promotedBopp, relegatedBopp: the ranking,
promotion, and relegation indications of the teams each
team (team A and team B) faced in the subset of most
recent matches.

[0059] strengthDiffA, strengthDifiB: league strength
difference between the teams and their previous oppo-
nents in the subset of most recent matches.

[0060] winA, drawA, lossA, winB, drawB, lossB: the
results of each teams in each match in the subset of the
most recent matches.

[0061] scoreA, scoreAopp, egvA, egvAopp, scoreB,
scoreBopp, egvB, egvBopp: the number of goals (ac-
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tual and expected) for each team and their opponents in
the subset of most recent matches.

[0062] CAstyleA, STstyleA, HPstyleA, FTstyleA,
DPstyleA, CRstyleA, CAstyleB, STstyleB, HPstyleB,
FTstyleB, DPstyleB, CRstyleB: the playing style of
each team and their opponents in the subset of most
recent matches.

[0063] In some embodiments, these features may be
derived from the outputs of a separate STATS framework,
e.g., a playing style analysis tool for soccer. Each output may
be defined as:

[0064] CAstyleA: an indicator of how much Counter
Attack (CA) the home team played in the subset of
most recent matches.

[0065] STstyleA: an indicator of how much Sustained
Threat (ST) the home team played in the subset of most
recent matches.

[0066] PstyleA: an indicator of how much High Press
(HP) the home team played in the subset of most recent
matches.

[0067] FTstyleA: an indicator of how much Fast Tempo
(FT) the home team played in the subset of most recent
matches.

[0068] DPstyleA: an indicator of how much Direct Play
(DP) the home team played in the subset of most recent
matches.

[0069] CRstyleA: an indicator of how much Crossing
(CR) the home team played in the subset of most recent
matches.

[0070] CAstyleB, STstyleB, etc. the away team coun-
terpart for each of the above.

[0071] Counter Attack, Sustained Threat, High Press,
Fast Tempo, Direct Play and Crossing are exemplary
playing styles that may be measured.

[0072] Player context input may be generated based on
one or more features that describes the starting lineups of
each team involved in the match to be predicted. Each agent
in the lineup may be characterized using their performance
in previous appearances, each of which may be measured
using the following indicators:

[0073] minutesPlayed: number of minutes played.

[0074] shots, goals, EGV: number of shots, goals, and
EGYV produced.

[0075] oBMP+, oBMP-, dBMP, dBMP-: scores for
ball distribution (offensive) and ball disruption (defen-
sive) produced.

[0076] passesMade, passesCompleted, passPCT, cross-
esMade, crossesCompleted, CrossPCT:

[0077] number of passes and crosses made and com-
pleted, and completion percentage.

[0078] passesDefended, crossDefended, shotsBlocked:
number of passes, crosses, and shots defended.

[0079] foulsMade, foulsReceived: number of fouls
made and received.

[0080] saves, ESVFaced: (goalkeepers only) number of
saves made, actual and expected.

[0081] on-pitchShotsOpp, on-pitchGoalsOPP,
on-pitchEGVOpp: number of shots, gals, and EGV
produced by the agent’s opposition while on the pitch.

[0082] Recent player performance input may be represen-
tative of a subset of player performance input. For example,
recent player performance input may be generated based on
a subset of recent player matches (e.g., last five matches).
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[0083] Game context input may be generated based on one
or more features that capture the high-level context around
a match to be predicted, thus providing a general overview
of the recent (e.g., last five games) and more distant (e.g.,
previous season) team statistics. For example, game context
input may include:

[0084] strengthDiff: the difference between the strength
of the domestic league of the two teams. For example,
this value may be non-zero in international competi-
tions and zero in domestic competitions.

[0085] rankA, rankB: the final position of the teams in
their previous season of the domestic league.

[0086] promotedA, promotedB, relegatedA, relegat-
edB: binary variables to indicate whether each team
was promoted or relegated into the current season

[0087] AGGpointsA, AGGscoreA, AGGscoreAopp,
AGGpointsB, AGGscoreB, AGGscoreBopp: average
points won, goals scored, and goals conceded. In some
embodiments, this metric may be limited to recent team
statistics (e.g., last five games).

[0088] The groups of input features described above may
represent a high dimensional space (e.g., about 900 inputs)
for a model to be trained using thousands of examples. To
simplify the learning process, pre-match module 202 may
generate one or more embeddings having a lower dimension
that the inputs alone. Each embedding may be generated
using a separate fully-connected neural network, each of
which is described below. For example, as illustrated team
context embeddings may be generated via neural network
302, agent embeddings may be generated via neural network
304, and recent agent embeddings may be generated via
neural network 306. FIGS. 3B-3D illustrate each neural
network in greater detail below.

[0089] FIG. 3B is a block diagram illustrating a neural
network architecture 330, according to example embodi-
ments. Neural network architecture 330 may be used to
generate team history embeddings. As illustrated, neural
network architecture 330 may include input data 332, a data
pre-processing module 334, a neural network 336, and
output 340.

[0090] Input data 332 may include one or more sets of
team history information. For example, input data 332 may
include one or more sets of team history information that
include the team context input data discussed above in
conjunction with FIG. 3A. As illustrated, input data 332 may
include team history information for both the home team and
away team. Such information may include a pre-defined
amount of matches for each team. For example, the data
illustrated in input data 332 may include data from each
teams’ 20 previous performances.

[0091] Data pre-processing module 330 may be config-
ured to process input data 332 prior to input to neural
network 336. For example, data pre-processing module 330
may be configured to normalize input data 332. In some
embodiments, data pre-processing module 330 may further
be configured to flatten input data 332.

[0092] Pre-match module 202 may then train neural net-
work 336 via the pre-processed team history information.
Neural network 336 may include one or more layers 338, -
338,. One or more layers may include three hidden layers
338,-338;. Layer 338, may include 200 nodes; layer 338,
may include 40 nodes; and layer 338 may include 15 nodes.
Each layer 338,-338; may include rectified linear units as
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the activation function. Layer 338, (i.e., the last layer in
neural network 336) may be a linear layer.

[0093] Neural network 336 may be trained using a com-
bination of mean square error and Adam optimization. The
output from neural network 336 may be a set of embeddings
directed to team history.

[0094] FIG. 3C is a block diagram illustrating a neural
network architecture 350, according to example embodi-
ments. Neural network architecture 350 may be used to
generate agent embeddings. As illustrated, neural network
architecture 350 may include input data 352, 354, data
summation modules 356, 358 data pre-processing module
364, a neural network 366, and output 370.

[0095] Input data 352 may include one or more sets of
agent information for each agent on the home team. For
example, input data 352 may include one or more sets of
agent information that include the agent context input data
discussed above in conjunction with FIG. 3A. Such infor-
mation may reflect all of the performances for each player.
For example, input data 352 may include the summation of
all performances for each home team agent 1-11.

[0096] Input data 354 may include one or more sets of
agent information for each agent on the away team. For
example, input data 354 may include one or more sets of
agent information that include the agent context input data
discussed above in conjunction with FIG. 3A. Such infor-
mation may reflect all of the performances for each player.
For example, input data 354 may include the summation of
all performances for each away team agent 1-11.

[0097] Summation module 356 may be configured to sum
(or aggregate) all of the values for each home team agent in
input data 352. For example, summation module 356 may be
configured to add together all of the values for each home
team player, thus generating a single data set representing all
agents of the home team. Accordingly, summation module
356 may output a set of home lineup features 360 repre-
senting one or more agents of the home team.

[0098] Summation module 358 may be configured to sum
(or aggregate) all of the values for each away team agent in
input data 354. For example, summation module 358 may be
configured to add together all of the values for each away
team player, thus generating a single data set representing all
agents of the away team. Accordingly, summation module
358 may output a set of away lineup features 360 represent-
ing one or more agents of the away team.

[0099] Data pre-processing module 364 may be config-
ured to process home lineup features 360 and away lineup
features 362 prior to input to neural network 366. For
example, data pre-processing module 360 may be config-
ured to normalize the data sets corresponding to home lineup
features 360 and away lineup features 362.

[0100] Pre-match module 202 may then train neural net-
work 366 via the pre-processed home lineup features 360
and away lineup features 362. Neural network 366 may
include one or more layers 368,-368,. One or more layers
may include three hidden layers 368,-368,. Layer 368, may
include 200 nodes; layer 368, may include 40 nodes; and
layer 368, may include 15 nodes. Each layer 368,-368, may
include rectified linear units as the activation function. Layer
368, (i.e., the last layer in neural network 366) may be a
linear layer.

[0101] Neural network 366 may be trained using a com-
bination of mean square error and Adam optimization. The
Adam optimization algorithm is a method of tuning the
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parameters defining a neural network and is an extension of
stochastic gradient descent. Optimization algorithms itera-
tively adjust the parameters of a neural network in order to
generate predictions which best match the supplied
examples. Adam optimization differs from classical gradient
stochastic gradient descent in that it adapts the learning rate
for each network parameter rather than using a fixed rate.
Adam optimization is widely adopted in the machine learn-
ing community because it has demonstrated to achieve good
results fast. The output from neural network 366 may be a
set of embeddings directed to the one or more agents (i.e.,
370).

[0102] FIG. 3D is a block diagram illustrating a neural
network architecture 380, according to example embodi-
ments. Neural network architecture 380 may be used to
generate recent agent embeddings. As illustrated, neural
network architecture 380 may include input data 382, 384,
data summation modules 386, 388 data pre-processing mod-
ule 394, a neural network 396, and output 399.

[0103] Input data 382 may include one or more sets of
agent information for each agent on the home team. For
example, input data 382 may include one or more sets of
agent information that include the agent context input data
discussed above in conjunction with FIG. 3A. Such infor-
mation may reflect a subset of the most recent performances
for each player on the home team. For example, input data
382 may include the summation of all performances for each
home team agent 1-11 in the last five matches.

[0104] Input data 384 may include one or more sets of
agent information for each agent on the away team. For
example, input data 384 may include one or more sets of
agent information that include the agent context input data
discussed above in conjunction with FIG. 3A. Such infor-
mation may reflect a subset of the most recent performances
for each player on the away team. For example, input data
384 may include the summation of all performances for each
away team agent 1-11 in the last five matches.

[0105] Summation module 386 may be configured to sum
(or aggregate) all of the values for each home team agent in
input data 382. For example, summation module 386 may be
configured to add together all of the values for each home
team player, thus generating a single data set representing all
agents of the home team. Accordingly, summation module
386 may output a set of home lineup features 390 repre-
senting one or more agents of the home team.

[0106] Summation module 388 may be configured to sum
(or aggregate) all of the values for each away team agent in
input data 384. For example, summation module 388 may be
configured to add together all of the values for each away
team player, thus generating a single data set representing all
agents of the away team. Accordingly, summation module
388 may output a set of away lineup features 390 represent-
ing one or more agents of the away team.

[0107] Data pre-processing module 394 may be config-
ured to process home lineup features 390 and away lineup
features 392 prior to input to neural network 396. For
example, data pre-processing module 390 may be config-
ured to normalize the data sets corresponding to home lineup
features 390 and away lineup features 392.

[0108] Pre-match module 202 may then train neural net-
work 396 via the pre-processed home lineup features 390
and away lineup features 392. Neural network 396 may
include one or more layers 398,-398,. One or more layers
may include three hidden layers 398,-398,. Layer 398, may



US 2019/0228290 Al

include 200 nodes; layer 398, may include 40 nodes; and
layer 398, may include 15 nodes. Each layer 398,-398, may
include rectified linear units as the activation function. Layer
398, (i.e., the last layer in neural network 396) may be a
linear layer.

[0109] Neural network 396 may be trained using a com-
bination of mean square error and Adam optimization. The
output from neural network 396 may be a set of embeddings
directed to the recent performance of the one or more agents
(i-e., 399).

[0110] The one or more embeddings may be able to
perform nonlinear dimensionality reductions of the inputs,
but supervised by an external target to ensure that the
combination of inputs may be guided by a relevant criterion
to the task at interest.

[0111] Referring back to FIG. 3A, as shown, the team
embeddings 340, the agent embeddings 370, the recent agent
embeddings 399, and game context 308 may be used as
input to neural network 310. Neural network 310 may be a
fully-connected neural network. Neural network 310 may
include two hidden layers 312, and 312,, followed by a
softmax function 312,. Hidden layer 312, may be of size 30;
hidden layer 312, may be of size 10. Each of hidden layer
312,, 312, may use a rectifier linear unit function as its
activation function. The final layer, 312;, may have three
outputs, one per possible match outcome (home win, draw,
away win), and one or more weights that were calculated by
minimizing the average cross-entropy loss over the training
data set. The output 314 may be a prediction for a given
match (e.g., home win, draw, away win).

[0112] FIG. 4 is a flow diagram illustrating a method 400
of generating a prediction model for predicting pre-match
outcomes, according to example embodiments. Method 400
may begin at step 402.

[0113] At step 402, pre-match module 202 may receive
one or more sets of information from data store 118. Data
store 118 may include spatial event data that captures every
touch of the ball, with XY coordinates and time stamps as
well as non-spatial event date, i.e., one or more variables
describing the events occurring without associated spatial
information. Accordingly, pre-match module 202 may be
able to reconstruct games both in space and time, and
therefore the ability to construct performance indicators of
verifying complexity. Such performance indicators may
include:

[0114] Traditional statistics: counts of passes, crosses
and shots, as well as their outcome (completed/missed,
saved/scored, etc.).

[0115] Playing styles: how a team play when in a
particular possession. This may be assessed along a
number of predefined styles, such as, but not limited to,
direct play, counter attack, build up, fast tempo, and
high press.

[0116] Expected metrics: the probability that a given
shot is scored based on its characteristics. For example,
to generate an expected goal value (EGV), the location
of a shot, its type, and the characteristic of play
preceding the shot may be used to obtain its (EGV).

[0117] Ball movement points: indicators of player per-
formance from the point of view of ball distribution and
disruption. Every player possession may be analyzed
(e.g., start location, end location, and outcome) and a
value may be assigned that estimates the value that it
had for their teams. In some embodiments, this value
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may be positive for beneficial contributions, or nega-

tive for successful ones, and it is evaluated both offen-

sively (0BMP) and defensively (dBMP).
[0118] At step 404, pre-match module 202 may construct
one or more data sets for each neural network architecture.
Pre-match module 202 may parse the received one or more
sets of information to construct a first data set directed to
team history features for neural network 336. Pre-match
module 202 may parse the received one or more sets of
information to construct a second data set directed to agent
performance features for neural network 366. Pre-match
module 202 may parse the received one or more sets of
information to construct a third data set directed to agent
performance features for neural network 396.
[0119] At step 406, pre-match module 202 may generate
one or more team history embeddings based on team history
features. For example, pre-match module 202 may imple-
ment neural network 336 to generate the one or more team
history embeddings. Neural network 336 may take, as input,
one or more metrics related to team history features. Such
metrics may include, but are not limited to home team
performance in a pre-defined number of events and away
team performance in a pre-defined number of events. Such
information may be used to train neural network 336 to
generate the one or more team history embeddings.
[0120] At step 408, pre-match module 202 may generate
one or more team agent embeddings based on agent perfor-
mance features. For example, pre-match module 202 may
implement neural network 366 to generate the one or more
agent embeddings. Neural network 366 may take, as input,
one or more metrics related to agent performance across all
previous matches for each agent on each team. Such infor-
mation may be used to train neural network 366 to generate
the one or more team history embeddings.
[0121] At step 410, pre-match module 202 may generate
one or more team recent agent embeddings based on recent
agent performance features. For example, pre-match module
202 may implement neural network 396 to generate the one
or more agent embeddings. Neural network 396 may take, as
input, one or more metrics related to recent agent perfor-
mance across a subset of the most recent matches for each
agent on each team. For example, neural network 396 may
receive, as input, one or more metrics related to agent
performance in the last give matches. Such information may
be used to train neural network 396 to generate the one or
more recent team history embeddings.
[0122] At step 412, pre-match module 202 may generate
a fourth data set related to game context features. For
example, pre-match module 202 may parse the received one
or more sets of information to construct to identify one or
more features related to game context for use with neural
network 310. Such features may include high-level context
around each match to be predicted, thus providing a general
idea of the recent (e.g., last five matches) and more distant
(e.g., previous season) performances.
[0123] At step 414, pre-match module 202 may learn how
to predict the outcome of a match based on team history
embeddings, agent history embeddings, recent agent embed-
dings, and match context. For example, neural network 310
may be trained using a combination of team history embed-
dings, player embeddings, recent player embeddings, and
game context as input. The weights of neural network 310
may be calculated by, for example, reducing (e.g., minimiz-
ing) the average cross-entropy loss over the data set.
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[0124] At step 416, pre-match module 202 may compare
the predicted outcome of each match to the actual outcome
of'each match. For example, trajectory agent 120 may utilize
a cross-entropy loss and Adam optimizer to minimize the
error between the inferred outcome (i.e., output from neural
network 310) and the actual outcome (e.g., from data store
118).

[0125] FIG. 5A s a block diagram illustrating a graphical
user interface (GUI) 500, according to example embodi-
ments. GUI 500 may be generated by interface module 206.
In some embodiments, GUI 500 may be made available to
one or more end users through application 126. In some
embodiments, match prediction agent 120 may transmit GUI
500 to one or more client devices 106, via application 126,
such that each client device 106 may render and display GUI
500.

[0126] GUI 500 may include a visual representation of a
current starting lineup 501 for a team for a match. As
illustrated, GUI 500 may include a visual representation of
each agent 502,-502,, (generally “agent 502”) in the current
starting lineup, as well as a predicted outcome 504 of an
upcoming match based on this current starting lineup. Via
GUI 500, end users may substitute an agent in the current
starting lineup to generate a proposed starting lineup. For
example, as illustrated, an end user may replace agent 502,
with a new agent 506.

[0127] FIG. 5B is a block diagram illustrating a graphical
user interface (GUI) 550, according to example embodi-
ments. GUI 550 may be generated by interface module 206
after a use substitutes an agent 502 in FIG. 5A with a new
agent. In some embodiments, GUI 550 may be made avail-
able to one or more end users through application 126. In
some embodiments, match prediction agent 120 may trans-
mit GUI 550 to one or more client devices 106, via appli-
cation 126, such that each client device 106 may render and
display GUI 550.

[0128] When user replaces agent 502, with new agent 506,
match prediction agent 120 may generate a new predicted
outcome based on an adjusted starting lineup 551. For
example, match prediction agent 120 may parse the received
input and may generate a new pre-match outcome prediction
554 based on the adjusted started lineup. Accordingly,
interface agent 156 may generate an updated GUI 530 that
reflects the adjusted starting lineup with an updated pre-
dicted outcome.

[0129] FIG. 6 is a flow diagram illustrating a method 600
of generating a pre-match prediction, according to example
embodiments. Method 600 may begin at step 602.

[0130] At step 602, match prediction agent 120 may
generate a graphical user interface that includes a current
lineup for a team for a given match. For example, interface
module 206 may generate GUI 500 that illustrates a current
starting lineup for a particular match. Current starting lineup
may include one or more agents that are selected to start the
particular match.

[0131] At step 604, match prediction agent 120 may
transmit GUI 500 to client device 106. For example, match
prediction agent 120 may transmit GUI 500 to client device
106 via application 126 executing thereon. Client device 106
may receive GUI 500, render GUI 500, and display GUI 500
for one or more end users.

[0132] At step 606, match prediction agent 120 may
receive, via GUI 500, an indication to change a first agent in
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the current lineup to a second agent. For example, match
input agent may receive an indication to substitute agent
502, for agent 506.

[0133] At step 608, in response to receiving the indication,
match prediction agent 120 may generate a predicted out-
come of the match, based on the adjusted starting lineup. For
example, pre-match module 202 may leverage a prediction
model to generate the predicted outcome of the event. In
some embodiments, pre-match module 202 may gather
team-specific information, agent specific information, and
game context, and provide such information to a neural
network represented by neural network architecture 300.
[0134] At step 610, match prediction agent 120 may
update GUI 500 to include the generated predicted outcome.
For example, interface module 206 may generate GUI 550
that includes graphical representations of the adjusted lineup
and the new predicted outcome.

[0135] In-Match Prediction

[0136] As recited above, in-match module 204 may be
configured to generalize personalized predictions for the
outcome of a given match, during gameplay. For example,
in-match module 204 may be configured to predict the
outcome of a match, based on a combination of current game
context, team context (both home and away), agent context
(both home and away), and current agents in the match.
[0137] FIG. 7A is a block diagram illustrating a neural
network architecture 700 of neural network 220, according
to example embodiments. Neural network architecture 700
may be used to predict the line-ups of each team that are
currently in a match.

[0138] To train neural network 220, a data set may be
generated. The data set may include data from over 8 million
basketball play-by-play events over the course of several
seasons. Hach play-by-play event, P,, may be described by
game time, ball possession, and score differences, represent-
ing the base feature set. In some embodiments, the base
feature set may be enhanced by the inclusion of home and
away team identity, as well as event code (i.e., P,*).
[0139] As illustrated in FIG. 7A, P, X, and L, may be
used as input to neural network 220. X, may represent the
box scores for each of the home and away teams. For
example, X, may represent each team’s box score aggre-
gated in the game up to the time t. Such information may
include, but is not limited to, team assists, team blocks, team
fouls, team rebounds (e.g., offensive, defensive, and total),
team steals, team turnovers, and the like.

[0140] L, may represent each team’s pre-game lineup for
each game. For example, a lineup vector for each game
(iegzn A}j:{o ~+}) may be constructed for each player (j) on
each team (i) and includes player identity, starter and avail-
ability flags, season to date games played, games started,
minutes played, plus-minus, minutes per game, plus-minus
per game, fouls per game, and the like. Team lineups may be
formed from the union of n-such vectors, with padding of
empty vectors (e.g., zeros) for rosters of less than n-players.
L, may be the concatenation of home and away lineups.
[0141] Neural network 220 may be set with a task of
predicting which players are on the court (e.g., O,) at every
game time, t, given the lineup features L,, current game state
P, and box score X,.

[0142] Neural network 220 may include four fully con-
nected encoding layers with ReLu activation. For example,
neural network 220 may include a first layer 702 having 256
units, a second layer 704 having 256 units, a third layer 706



US 2019/0228290 Al

having 128 units, and a fourth layer 708 having 10 units.
Although not shown, neural network 220 may include a
dropout layer following each layer 704-708. The last encod-
ing layer (i.e., fourth layer 708) may give the encoding
features E, to be used by other models. Random forest
classifiers 222 may be trained to use the encoding features,
E,, and report the internal and external performance of these
models.

[0143] To predict O,, neural network 220 may decode the
encoded data with two fully connected layers with 15 units
and Relu activation (i.e., layer 210) and 30 units with
sigmoid activation (e.g., layer 212), respectively. To train
neural network 220, in-match module 204 may reduce (e.g.,
minimize) the cross-entropy via backpropagation using
Adam optimization.

[0144] Because, in some embodiments (e.g., basketball),
there are only ten valid on-court flags, in-match module may
weight the cross-entropy to avoid the trivial solution of all
agents being off the court.

[0145] FIG. 7B is a block diagram is a block diagram
illustrating mixture density network architecture 750 of
mixture density network 224, according to example embodi-
ments. Mixture density network 224 may be trained to
predict the score difference distribution (e.g., final score
difference distribution) in a given match. Use of mixture
density network 224 allows for use of a combination of
neural network architectures and back propagation to find an
optimal set of mixture parameters.

[0146] As shown, mixture density network 224 may
receive, as input, L, X,, O,, and P,. Mixture density network
224 may include a fully connected layer 752, a batch
normalization layer 756, a dense layer 758, and an output
layer 760. Fully connected layer 752 may have a tan h
activation function and 128 units. Batch normalization layer
756 may be positioned at the output of fully connected layer
752. In-match module 204 may re-inject P, into mixture
density network via dense layer 758. Dense layer 758 may
be positioned at an output of batch normalization layer 756.
Dense layer 758 may include a tan h activation function and
64 units. Following dense layer 758 may be output layer
760. Output layer 760 may include one or more linear
activations.

[0147] Outputs from mixture density network 224 may be
the parameters of a mixture of N=10 Gaussian distributions,
such that the end of game score difference, Stf, may have a
distribution of:

N
Q(S :Srf) = Z”iN(ﬂia o)

where 7, may be the weight of the i” distribution, and p, and
o, may be the mean and standard deviation of the i

Gaussian NV, respectively, and s=Home Team Score-Away
Team Score. During training, in-match module 204 may
reduce (e.g., minimize) the negative log likelihood, -log {

Q (s=S,, )}, to find the optimal set of mixture parameters {rw,,
W, o,}, i€[0, NJ.

[0148] Accordingly, rather than generate an output that
provides a result that is home win, draw, away win, mixture
density network 224 may be configured to generate a
projected score difference between the away team and the

Jul. 25,2019

home team. By predicting the score difference distribution,
in-match module 204 may allow for the potential of various
outcomes and measures of uncertainty. In other words,
in-match module 204 may formulate the task of outcome
prediction as a one (game state) to many (possible score
differences) problem.

[0149] FIG. 8 is a flow diagram illustrating a method 800
of generating a prediction model for predicting in-match
outcomes, according to example embodiments. Method 800
may begin at step 802.

[0150] At step 802, in-match module 204 may receive one
or more sets of information from data store 118. Data store
118 may include spatial event data that captures every touch
of the ball, with XY coordinates and time stamps and
non-spatial event data that captures one or more variables
describing the events occurring without associated spatial
information. For example, in-match module 204 may iden-
tify a data set for training the in-match prediction model. For
example, in-match module 204 may compile a data set that
includes over 8.7 million basketball play-by-play events
from the 2002-03 through 2016-17 seasons.

[0151] At step 804, in-match module 204 may construct a
first vector representing team-specific statistics. In-match
module 204 may generate the first vector by parsing the one
or more sets of information received from data store 118,
and identifying those sets of information that are directed to
team metrics. For example, in-match module 204 may
construct a first vector, X,, that includes each team’s box
score. Each team’s box score may be aggregated up to a
time, t, and includes team assists, team fouls, team rebounds
(e.g., offensive, defensive, and total), team steals, and team
turnovers.

[0152] At step 806, in-match module 204 may construct a
second vector representing agent-specific  statistics.
In-match module 204 may generate the second vector by
parsing the one or more sets of information received from
data store 118, and identifying those sets of information that
are directed to individual, agent metrics. In-match module
204 may construct a second vector, L,, which may represent
each team’s in-game lineup for each game. For example, a
lineup vector for each game (1, A}j:{o - "}) may be
constructed for each player (j) on each team (i) and includes
player identity, starter and availability flags, season to date
games played, games started, minutes played, plus-minus,
minutes per game, plus-minus per game, fouls per game, and
the like. Team lineups may be formed from the union of
n-such vectors, with padding of empty vectors (e.g., zeros)
for rosters of less than n-players. L, may be the concatena-
tion of home and away lineups.

[0153] At step 808, in-match module 204 may construct a
third vector representing one or more play-by-play events
across all matches in the one or more sets of information. For
example, in-match module 204 may generate a third vector,
P, which includes one or more play-by-play events that may
be described by game time, ball possession, and score
differences, representing the base feature set. In some
embodiments, the base feature set may be enhanced by the
inclusion of home and away team identity, as well as event
code (i.e., P).

[0154] At step 810, in-match module 204 may predict one
or more players current in the match (e.g., on the court) at
each time, t. In-match module 204 may train neural network
220 to predict the one or more players currently in the match.
For example, neural network 220 may be set with a task of
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predicting which players are on the court (e.g., O,) at every
game time, t, given the lineup features L,, current game state
P, and box score X,. To train neural network 220, in-match
module 204 may reduce (e.g., minimize) the cross-entropy
via backpropagation using Adam optimization. Accordingly,
the output from neural network 220 may be the vector, O,
that represents the one or more agents in the match, for both
teams, at each time, t.

[0155] At step 812, In-match module 204 may generate a
predicted final score for each match at each time, t. In-match
module 204 may train mixture density network 224 to
predict the score difference distribution in a given match.
Use of mixture density network 224 allows for use of a
combination of neural network architectures and back
propagation to find an optimal set of mixture parameters.
Mixture density network 224 may receive, as input, L, X,,
O,, and P,. Accordingly, the output from mixture density
network 224 may be one or more sets of score differentials
during each time, t, of each match.

[0156] At step 814, in-match module 204 may reduce (or
minimize) the likelihood of finding the optimal set. Outputs
from mixture density network 224 may be the parameters of
a mixture of N=10 Gaussian distributions, such that the end
of game score difference, St/; may have a distribution of:

N
Q(S :Srf) = Z”iN(ﬂia o)

where 7, may be the weight of the i” distribution, and p, and
o, may be the mean and standard deviation of the i

Gaussian NV , respectively, and s=Home Team Score-Away
Team Score. During training, in-match module 204 may
reduce (e.g., minimize) the negative log likelihood, -log {

Q (s=S,, )}, to find the optimal set of mixture parameters {rw,,
W, 0;}, 1 €[0, NJ.

[0157] FIG. 9 is a block diagram illustrating a graphical
user interface (GUI) 900, according to example embodi-
ments. GUI 900 may be generated by interface module 206.
In some embodiments, GUI 900 may be made available to
one or more end users through application 126. In some
embodiments, match prediction agent 120 may transmit GUI
900 to one or more client devices 106, via application 126,
such that each client device 106 may render and display GUI
900.

[0158] GUI 900 may include graph 902. Graph 902 may
depict a plot Q, (s:Stf ) for twelve different game times, t. As
illustrated, t may plotted along the y-axis and the predicted
score difference may be plotted along the x-axis. As illus-
trated, the predictions generated by in-match module 204
may be multi-modal, mirroring the myriad possible out-
comes a game may have. As illustrated, initial predictions
maybe matchup specific. As further illustrated, as the match
progresses and the match state changes (i.e., one or more
lines 904), the model distributions may evolve as well, often
showing state switching and mean shifting over time. As
such, the evolution of Q, (s=S,) may be context and matchup
specific. The one or more preéictions may oscillate between
two initial states as the score difference oscillates. The actual
score may be represented by solid line 906.

[0159] As shown, the distributions may not collapse or
narrow with time. The apparent insensitivity of the distri-
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bution variance to game time may be a function of the
Markovian nature of the current prediction architecture. The
one or more models implemented by in-match module 204
may not have a sense of how much time remains in a match,
only that some amount of time has passed.

[0160] FIG. 10 is a flow diagram illustrating a method
1000 of generating an in-match predicted score of a match
using the prediction model generated in FIG. 8, according to
example embodiments. Method 1000 may begin at step
1002.

[0161] At step 1002, in-match module 204 may receive,
from event data. For example, in-match module 204 may
receive, from tracking system 102, in real-time, near real-
time, or periodically one or more sets of event data of a
match currently in progress. An another example, in-match
module 204 may receive, from one or more computing
systems, in real-time, near real-time, or periodically one or
more sets of event data derived from an entity associated
with organization computing system 104. Such event data
may include one or more features of match play (e.g.,
play-by-play events). Although method 1000 discusses use
of live (or near-live) data, those skilled in the art understand
that such operations may be performed with historical data.
[0162] At step 1004, in-match module 204 may receive a
request from a client device 106 to generate a predicted
score for the match at a certain time, t, such as, but not
limited to, predicting a final score of the match at each time,
t, during the match. For example, in-match module 204 may
receive the request from client device 106 via application
126 executing thereon. Although method 1000 includes
operation 1004, those skilled in the art may understand that
in-match module 204 need not wait for an explicit request
from an end-user to generate a predicted score of a match;
rather, in-match module 204 may dynamically generate one
or more predicted scores on-demand, as the match pro-
gresses.

[0163] At step 1006, in-match module 204 may construct
a first vector representing team-specific statistics. In-match
module 204 may generate the first vector by parsing the
event data, and identifying those sets of information that are
directed to team metrics. For example, in-match module 204
may construct a first vector, X,, that includes each team’s
box score up to time t. Each team’s box score may include,
but is not limited to, team assists, team fouls, team rebounds
(e.g., offensive, defensive, and total), team steals, and team
turnovers.

[0164] At step 1008, in-match module 204 may construct
a second vector representing player specific statistics. In-
match module 204 may generate the second vector by
parsing the event data received to identify one or more
agents in each team’s lineup. In-match module 204 may
retrieve from data store 118 one or more agent-specific
statistics associated with each agent. In-match module 204
may construct a second vector, L,, which may represent each
team’s pre-game lineup for each game. For example, a
lineup vector for each game (l_z A}j:{o - 7}) may be
constructed for each player (j) on each team (i) and includes
player identity, starter and availability flags, season to date
games played, games started, minutes played, plus-minus,
minutes per game, plus-minus per game, fouls per game, and
the like. Team lineups may be formed from the union of
n-such vectors, with padding of empty vectors (e.g., zeros)
for rosters of less than n-players. L, may be the concatena-
tion of home and away lineups.



US 2019/0228290 Al

[0165] At step 1010, in match-module 204 may construct
a third vector representing all play-by-play events up to
time, t. For example, in-match module 204 may generate a
third vector, P,, which includes one or more play-by-play
events that may be described by game time, ball possession,
and score differences, representing the base feature set. In
some embodiments, the base feature set may be enhanced by
the inclusion of home and away team identity, as well as
event code (i.e., P,*).

[0166] At step 1012, in-match module 204 may identify
one or more agents currently in the match (e.g., one or more
agents currently on the court). In some embodiments, in-
match module 204 may identify one or more agents cur-
rently in the match by parsing the play-by-play events up to
time, t. In some embodiments, in-match module 204 may
predict which agents are currently in the match utilizing
trained neural network 220 to predict the one or more
players currently in the match. For example, neural network
220 may predict which players are on the court (e.g., O,) at
time, t, given the lineup features L, current game state P,
and box score X,. The output from neural network 220 may
be the vector, O,, that represents the one or more agents in
the match, for both teams, at each time, t.

[0167] At step 1014, in-match module 204 may generated
a predicted outcome of the match. For example, in-match
module 204 may generate a predicted final score based on
the information generated at time, t. In-match module 204
may provide, as input, to trained mixture density network
224 L, X,, O, and P, The output from mixture density
network 224 may be one or more sets of score differentials
during each time, t, of each match.

[0168] FIG. 11A illustrates a system bus computing sys-
tem architecture 1100, according to example embodiments.
System 1100 may be representative of at least a portion of
organization computing system 104. One or more compo-
nents of system 1100 may be in electrical communication
with each other using a bus 1105. System 1100 may include
a processing unit (CPU or processor) 1110 and a system bus
1105 that couples various system components including the
system memory 1115, such as read only memory (ROM)
1120 and random access memory (RAM) 1125, to processor
1110. System 1100 may include a cache of high-speed
memory connected directly with, in close proximity to, or
integrated as part of processor 1110. System 1100 may copy
data from memory 1115 and/or storage device 1130 to cache
1112 for quick access by processor 1110. In this way, cache
1112 may provide a performance boost that avoids processor
1110 delays while waiting for data. These and other modules
may control or be configured to control processor 1110 to
perform various actions. Other system memory 1115 may be
available for use as well. Memory 1115 may include mul-
tiple different types of memory with different performance
characteristics. Processor 1110 may include any general
purpose processor and a hardware module or software
module, such as service 1 1132, service 2 1134, and service
3 1136 stored in storage device 1130, configured to control
processor 1110 as well as a special-purpose processor where
software instructions are incorporated into the actual pro-
cessor design. Processor 1110 may essentially be a com-
pletely self-contained computing system, containing mul-
tiple cores or processors, a bus, memory controller, cache,
etc. A multi-core processor may be symmetric or asymmet-
ric.
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[0169] To enable user interaction with the computing
device 1100, an input device 1145 may represent any num-
ber of input mechanisms, such as a microphone for speech,
a touch-sensitive screen for gesture or graphical input,
keyboard, mouse, motion input, speech and so forth. An
output device 1135 may also be one or more of a number of
output mechanisms known to those of skill in the art. In
some instances, multimodal systems may enable a user to
provide multiple types of input to communicate with com-
puting device 1100. Communications interface 1140 may
generally govern and manage the user input and system
output. There is no restriction on operating on any particular
hardware arrangement and therefore the basic features here
may easily be substituted for improved hardware or firm-
ware arrangements as they are developed.

[0170] Storage device 1130 may be a non-volatile memory
and may be a hard disk or other types of computer readable
media which may store data that are accessible by a com-
puter, such as magnetic cassettes, flash memory cards, solid
state memory devices, digital versatile disks, cartridges,
random access memories (RAMs) 1125, read only memory
(ROM) 1120, and hybrids thereof.

[0171] Storage device 1130 may include services 1132,
1134, and 1136 for controlling the processor 1110. Other
hardware or software modules are contemplated. Storage
device 1130 may be connected to system bus 1105. In one
aspect, a hardware module that performs a particular func-
tion may include the software component stored in a com-
puter-readable medium in connection with the necessary
hardware components, such as processor 1110, bus 1105,
display 1135, and so forth, to carry out the function.
[0172] FIG. 11B illustrates a computer system 1150 hav-
ing a chipset architecture that may represent at least a
portion of organization computing system 104. Computer
system 1150 may be an example of computer hardware,
software, and firmware that may be used to implement the
disclosed technology. System 1150 may include a processor
1155, representative of any number of physically and/or
logically distinct resources capable of executing software,
firmware, and hardware configured to perform identified
computations. Processor 1155 may communicate with a
chipset 1160 that may control input to and output from
processor 1155. In this example, chipset 1160 outputs infor-
mation to output 1165, such as a display, and may read and
write information to storage device 1170, which may include
magnetic media, and solid state media, for example. Chipset
1160 may also read data from and write data to RAM 1175.
A bridge 1180 for interfacing with a variety of user interface
components 1185 may be provided for interfacing with
chipset 1160. Such user interface components 1185 may
include a keyboard, a microphone, touch detection and
processing circuitry, a pointing device, such as a mouse, and
so on. In general, inputs to system 1150 may come from any
of a variety of sources, machine generated and/or human
generated.

[0173] Chipset 1160 may also interface with one or more
communication interfaces 1190 that may have different
physical interfaces. Such communication interfaces may
include interfaces for wired and wireless local area net-
works, for broadband wireless networks, as well as personal
area networks. Some applications of the methods for gen-
erating, displaying, and using the GUI disclosed herein may
include receiving ordered datasets over the physical inter-
face or be generated by the machine itself by processor 1155
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analyzing data stored in storage 1170 or 1175. Further, the
machine may receive inputs from a user through user
interface components 1185 and execute appropriate func-
tions, such as browsing functions by interpreting these
inputs using processor 1155.

[0174] It may be appreciated that example systems 1100
and 1150 may have more than one processor 1110 or be part
of a group or cluster of computing devices networked
together to provide greater processing capability.

[0175] While the foregoing is directed to embodiments
described herein, other and further embodiments may be
devised without departing from the basic scope thereof. For
example, aspects of the present disclosure may be imple-
mented in hardware or software or a combination of hard-
ware and software. One embodiment described herein may
be implemented as a program product for use with a com-
puter system. The program(s) of the program product define
functions of the embodiments (including the methods
described herein) and can be contained on a variety of
computer-readable storage media. Illustrative computer-
readable storage media include, but are not limited to: (i)
non-writable storage media (e.g., read-only memory (ROM)
devices within a computer, such as CD-ROM disks readably
by a CD-ROM drive, flash memory, ROM chips, or any type
of solid-state non-volatile memory) on which information is
permanently stored; and (ii) writable storage media (e.g.,
floppy disks within a diskette drive or hard-disk drive or any
type of solid state random-access memory) on which alter-
able information is stored. Such computer-readable storage
media, when carrying computer-readable instructions that
direct the functions of the disclosed embodiments, are
embodiments of the present disclosure.

[0176] It will be appreciated to those skilled in the art that
the preceding examples are exemplary and not limiting. It is
intended that all permutations, enhancements, equivalents,
and improvements thereto are apparent to those skilled in the
art upon a reading of the specification and a study of the
drawings are included within the true spirit and scope of the
present disclosure. It is therefore intended that the following
appended claims include all such modifications, permuta-
tions, and equivalents as fall within the true spirit and scope
of these teachings.

What is claimed:
1. A method of generating an outcome for a sporting
event, comprising:
retrieving, by a computing system, tracking data from a
data store, the tracking data comprising event data for
a plurality of events across a plurality of season;
generating, by the computing system, a predictive model
using a deep neural network, by:
learning, by a neural network, one or more players
likely to be in each event at each time, t, given time
based on lineup features of each team, current state
of each event at each time t, and current box score at
each time t;
generating a data set comprising the one or more
players likely to be in each event at each time t;
learning, by a mixture density network, a score differ-
ence at each time t, based on the lineup features of
each team, the current state of each event at time t,
the current box score at each time t, and the data set
comprising the one or more players likely to be in
each event at each time t;

Jul. 25,2019

receiving, by the computing system, an indication to
generate a predicted outcome of the sporting event at a
time, T; and

generating, by the computing system via the predictive

model, a final score differential for the sporting event
based on lineup features of each team to the sporting
event, current state of the sporting event at the time T,
current box score at the time T, and current lineup in the
sporting event at time T.

2. The method of claim 1, wherein receiving, by the
computing system, the indication to generate the predicted
outcome of the sporting event at the time, T comprises:

receiving, from a client device, a request to predict the

outcome of the sporting event at the time T.

3. The method of claim 1, wherein learning, by the
mixture density network, the score difference at each time t,
comprises:

comparing the score difference at each time t to the actual

score difference at each time t; and

minimizing an error between the score difference and the

actual score difference using a negative log likelihood
of finding an optimal set of parameters.

4. The method of claim 1, wherein learning, by the neural
network, the one or more players likely to be in each event
at each time, t, given time based on the lineup features of
each team, the current state of each event at each time t, and
the current box score at each time t comprises:

learning one or more lineup encoding features.

5. The method of claim 4, further comprising:

training a set of random forest classifiers with the one or

more lineup encoding features.

6. The method of claim 1, wherein the lineup features of
each team are represented as a union of a plurality of lineup
vectors constructed for each player on each team.

7. The method of claim 1, wherein the current state of
each event at each time t is represented by a vector com-
prising each play-by-play event up to the time t and at each
time t.

8. A system for predicting the outcome of a sporting event,
comprising:

a processor; and

a memory having programming instructions stored

thereon, which, when executed by the processor, per-
forms one or more operations comprising:
retrieving tracking data from a data store, the tracking
data comprising event data for a plurality of events
across a plurality of season;
generating a predictive model using a deep neural
network, by:
learning, by a neural network, one or more players
likely to be in each event at each time, t, given
time based on lineup features of each team, cur-
rent state of each event at each time t, and current
box score at each time t;
generating a data set comprising the one or more
players likely to be in each event at each time t;
and
learning, by a mixture density network, a score
difference at each time t, based on the lineup
features of each team, the current state of each
event at time t, the current box score at each time
t, and the data set comprising the one or more
players likely to be in each event at each time t;
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receiving an indication to generate a predicted outcome
of the sporting event at a time, T; and

generating, via the predictive model, a final score
differential for the sporting event based on lineup
features of each team to the sporting event, current
state of the sporting event at the time T, current box
score at the time T, and current lineup in the sporting
event at time T.

9. The system of claim 8, wherein receiving the indication
to generate the predicted outcome of the sporting event at the
time, T comprises:

receiving, from a client device, a request to predict the

outcome of the sporting event at the time T.

10. The system of claim 8, wherein learning, by the
mixture density network, the score difference at each time t,
comprises:

comparing the score difference at each time t to the actual

score difference at each time t; and

minimizing an error between the score difference and the

actual score difference using a negative log likelihood
of finding an optimal set of parameters.

11. The system of claim 8, wherein learning, by the neural
network, the one or more players likely to be in each event
at each time, t, given time based on the lineup features of
each team, the current state of each event at each time t, and
the current box score at each time t comprises:

learning one or more lineup encoding features.

12. The system of claim 8, wherein the one or more
operations further comprise:

training a set of random forest classifiers with the one or

more lineup encoding features.

13. The system of claim 8, wherein the lineup features of
each team are represented as a union of a plurality of lineup
vectors constructed for each player on each team.

14. The system of claim 8, wherein the current state of
each event at each time t is represented by a vector com-
prising each play-by-play event up to the time t and at each
time t.

15. A non-transitory computer readable medium including
one or more sequences of instructions that, when executed
by the one or more processors, causes:

retrieving, by a computing system, tracking data from a

data store, the tracking data comprising event data for
a plurality of events across a plurality of season;
generating, by the computing system, a predictive model
using a deep neural network, by:
learning, by a neural network, one or more players
likely to be in each event at each time, t, given time
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based on lineup features of each team, current state
of each event at each time t, and current box score at
each time t;

generating a data set comprising the one or more
players likely to be in each event at each time t;

learning, by a mixture density network, a score differ-
ence at each time t, based on the lineup features of
each team, the current state of each event at time t,
the current box score at each time t, and the data set
comprising the one or more players likely to be in
each event at each time t;

receiving, by the computing system, an indication to

generate a predicted outcome of the sporting event at a

time, T; and

generating, by the computing system via the predictive

model, a final score differential for the sporting event
based on lineup features of each team to the sporting
event, current state of the sporting event at the time T,
current box score at the time T, and current lineup in the
sporting event at time T.

16. The non-transitory computer readable medium of
claim 15, wherein receiving, by the computing system, the
indication to generate the predicted outcome of the sporting
event at the time, T comprises:

receiving, from a client device, a request to predict the

outcome of the sporting event at the time T.

17. The non-transitory computer readable medium of
claim 15, wherein learning, by the mixture density network,
the score difference at each time t, comprises:

comparing the score difference at each time t to the actual

score difference at each time t; and

minimizing an error between the score difference and the

actual score difference using a negative log likelihood
of finding an optimal set of parameters.

18. The non-transitory computer readable medium of
claim 15, wherein learning, by the neural network, the one
or more players likely to be in each event at each time, t,
given time based on the lineup features of each team, the
current state of each event at each time t, and the current box
score at each time t comprises:

learning one or more lineup encoding features.

19. The non-transitory computer readable medium of
claim 18, further comprising:

training a set of random forest classifiers with the one or

more lineup encoding features.

20. The non-transitory computer readable medium of
claim 15, wherein the lineup features of each team are
represented as a union of a plurality of lineup vectors
constructed for each player on each team.
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