
US 20180324129A1

(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0324129 A1

Varadarajan et al . (43) Pub . Date : Nov . 8 , 2018

(54) SYSTEM AND METHOD FOR DEQUEUE
OPTIMIZATION USING CONDITIONAL
ITERATION

(52) U . S . CI .
CPC H04L 51 / 18 (2013 . 01) ; H04L 51 / 12

(2013 . 01)
(71) Applicant : Microsoft Technology Licensing , LLC ,

Redmond , WA (US) (57) ABSTRACT

(72) Inventors : Krishnan Varadarajan , Redmond , WA
(US) ; Jieqing Wang , Sammamish , WA
(US) ; Venkates Paramasivam
Balakrishnan , Redmond , WA (US) ;
Shane K . Mainali , Duvall , WA (US) ;
Quan Zhang , Kenmore , WA (US) ;
Zichen Sun , Sammamish , WA (US)

(21) Appl . No . : 15 / 588 , 477
(22) Filed : May 5 , 2017

Publication Classification
(51) Int . Ci .

H04L 12 / 58 (2006 . 01)

Methods for dequeue optimizations in queues are performed
by systems and apparatuses . The methods optimize dequeue
operations using aggregation of expired messages enqueued
in a queue and conditional iteration over enqueued messages
based on the aggregation to service dequeue commands .
Queues utilize page hierarchies such as root pages , index
pages , and data pages . The aggregation of expired messages
for pages in the queue determines the latest expired time for
messages for a given page , and these latest expired times are
stored in their respective pages , including data pages , index
pages , and root pages , for use in the conditional iteration .
The conditional iteration bypasses pages for which a latest
expired time for all messages is prior to the current time
when servicing dequeue requests for the queue .

102a
Remote device Host server

104

Network
Aggregator

logic
Iterator
logic 7102b

Remote device 106 110
100

Patent Application Publication Nov . 8 , 2018 Sheet 1 of 5 US 2018 / 0324129 A1

7102a
Remote device Host server

Mimmi 104

Aggregator
logic Network Iterator

logic - 102b

Remote device 106 1084 110

1001 FIG . 1

7202
204 206 7 218 222

Processor (s) Memories / Storage I / O interface Queue data

208 Queue logic
Enqueue / Dequeue Aggregator

logic
210

Iterator
logic

212
logic

| 220

Timout logic Expiry logic

214 216

2001
FIG . 2

Patent Application Publication Nov . 8 , 2018 Sheet 2 of 5 US 2018 / 0324129 A1

In the queue that includes a first index page of the queue linked with a
first data page of the queue and a second data page of the queue , and

having first expired messages that were previously queued stored in the
first data page , queue at least one valid message , each having an expiry

time , in the second data page

304 Aggregate the first expired messages for the first data page to determine
a first latest expiration time for the first expired messages in the first

data page

306 Store the first latest expiration time in the first data page and in the first
index page based on the aggregating

Receive by the queue a dequeue request to dequeue a valid message of 1308
the at least one valid message

7310 Determine a next valid message is in the second data page based on a
comparison of a current time and at least the first latest expiration time

312
300 + Bypass the first data page to dequeue the valid message , corresponding

to the dequeue request , from the second data page
FIG . 3

Queue name Current time
04 / 21 / 2017
12 : 05 : 00 Message ID Visible Time Expiry Time

04 / 21 / 2017 12 : 01 : 00 04 / 21 / 2017 12 : 03 : 00
Expired

Y
412 402

404 04 / 21 / 2017 12 : 02 : 00 04 / 21 / 2017 12 : 04 : 00 Y 404

04 / 21 / 2017 12 : 02 : 00 04 / 21 / 2017 12 : 04 : 00 406

04 / 21 / 2017 12 : 04 : 00 04 / 21 / 2017 12 : 06 : 00 4084 N 408

410 x 04 / 21 / 2017 12 : 05 : 00 04 / 21 / 2017 12 : 07 : 00 N

400 4147
FIG . 4

Patent Application Publication Nov . 8 , 2018 Sheet 3 of 5 US 2018 / 0324129 A1

Iterator
logic

RootPage
MaxTime

516 504

MaxTime
IndexPage0 IndexPagel
MaxTime

518a 518b

50621 506b

IndexPagen
MaxTime

518n
* rre

506n1
512

4 522
Aggregator

. . . med logic

7 Aggregaten / Aggregateo Aggregatel
E - de

508a1 5081J evan 508n

DataPagek
MaxTime

500
DataPage DataPagel
MaxTime MaxTime

520a L 520b1
510a 510b

520k * * * * * * * * * * * *

510kv FIG . 5

602 Aggregate the expired messages for the second data page to determine a
second latest expiration time for the expired messages in the second data

page

Store the second latest expiration time in the second data page based on
the aggregating 604 600

FIG . 6

Dequeue the valid message from the second data page F702
2704

Mark the dequeued valid message as having been dequeued and as invalid
700

FIG . 7

Patent Application Publication Nov . 8 , 2018 Sheet 4 of 5 US 2018 / 0324129 A1

Aggregate the latest expiration time for each of the at least one data page
uniquely linked thereto to determine a latest index expiration time

802 802 in page
Aggregate the latest index expiration time for each of the at least one index

page to determine a latest root expiration time 1804

800 FIG . 8

Store a latest expiration time of the expiration times for a data page in the
data page based on the aggregating

Store a latest expiration time of the expiration times for one or more data
pages linked to an index page in the index page based on the aggregating

7906
Store a latest expiration time of the expiration times for one or more index

pages linked to a root page in the root page based on the aggregating

900 FIG . 9

1 Mark one or more valid messages as expired subsequent to the passage
of their expiry times

1002 1000
FIG . 10

TreeRoot
1102

1106a
Brancho Branchi Branchm

Queuel | | Queue27 Queue2 Queue3 Oueue z

00

1104a . 11061 1104b 1104m 1106b _ 1100 11060 - _

FIG . 11

1244

Patent Application Publication

1204

-

- - - - - - - -

System Memory i
(ROM) 1208 1

1200

-

1202 Processing Unit

(1246

Video Adapter

H7 11

BIOS
- - -

(RAM)

1210

1206

-

1230

-

Operating System
- - - -

]

Application Programs
-

11232

- - -

Lr1234

- -

Other Program Modules

Hard Disk Drive I / F

Magnetic Disk Drive |
I / F

Optical Drive Interface
Serial Port Interface

Network Interface

Nov . 8 , 2018 Sheet 5 of 5

-

1

-

11224

1226

Program Data

1228

1242

1250

-

WWW

1214 - - - - - - - - - - -

-

-

-

- - -

- t1916 - Ft

s

Network

.

1218

1240

, 1230 1232 51234

Other

Operating Application

Program
Program

System Programs

Data

Modules

1236

1222 236 12 O

0

1238 1238

1248

US 2018 / 0324129 A1

FIG . 12

US 2018 / 0324129 A1 Nov . 8 , 2018

SYSTEM AND METHOD FOR DEQUEUE
OPTIMIZATION USING CONDITIONAL

ITERATION

BACKGROUND

[0001] Queue structures may be used for workflows , such
as producer - consumer workflows , to queue tasks or mes
sages provided , or acted upon , by different participants or
users (e . g . , application components or other software enti
ties) of the workflow . For example , a first software entity
may enqueue a message in a queue that is subsequently ,
within an expiry time of the message , dequeued by a second
software entity and acted upon for purposes of the workflow .
Dequeue commands for these queues may result in signifi
cant latency when many messages have expired . That is ,
each dequeue request may move a queue header cursor in a
nested table forward through each entry in the queue until
the header cursor reaches the end of the queue or the first
non - expired message in the queue .
[0002] In some queue structures , a garbage collection
mechanism may be utilized to clear expired queue tasks or
messages to reduce the latency of searching over large
numbers of expired queue tasks or messages . In cases where
thousands or millions of expired tasks or messages remain
queued , garbage collection is unable to perform a cleanup of
the expired entries at a rate that prevents system time - outs or
conflicts for extended dequeue searches of the queue struc
ture .

system may include a non - volatile storage device (s) config
ured to store queue logic for providing and managing a
queue , the queue being configured to include at least one
data page . The system may also include a processor (s)
configured to perform operations on the queue based on the
queue logic . In the example system , the queue logic includes
enqueue logic configured to enqueue valid messages , each
having an expiry time , in a tail data page that includes a tail
of the queue . The example system also includes aggregator
logic configured to , for each data page of the queue , aggre
gate expired messages to determine an expiration time of the
expired messages , and store a latest expiration time , the
latest expiration time representing a latest value of the
aggregated expired messages of its associated data page ,
with its associated data page . In the example system ,
dequeue logic is configured to receive requests to dequeue
valid messages , and iterator logic is configured to determine
a queue location in the data pages for the next valid message
based on a comparison of a current time and the latest
expiration time for a data page , and to bypass the data page
to dequeue valid messages corresponding to the request to
dequeue from a data page based on the queue location .
10006] In still another example , a computer readable
memory storing program instructions that , when executed
by one or more processing devices , performs a method , is
described . The method includes aggregating expired mes
sages in a queue to determine expiration times for the
expired messages , where the queue comprises a first root
page , a first index page linked to the first root page , and a
first data page and a second data page linked with the first
index page . The method also includes determining a location
in the queue for a next valid message based on a comparison
of a current time and the expiration times , and bypassing at
least one of a root page of the queue , an index page of the
queue , or a data page of the queue to dequeue a valid
message based the location .
[0007] These and other objects , advantages and features
will become readily apparent in view of the following
detailed description of examples of the invention . Note that
the Brief Summary and Abstract sections may set forth one
or more , but not all examples contemplated by the inventor
(s) . Further features and advantages , as well as the structure
and operation of various examples , are described in detail
below with reference to the accompanying drawings . It is
noted that the ideas and techniques are not limited to the
specific examples described herein . Such examples are pre
sented herein for illustrative purposes only . Additional
examples will be apparent to persons skilled in the relevant
art (s) based on the teachings contained herein .

SUMMARY
[0003] This Brief Summary is provided to introduce a
selection of concepts in a simplified form that are further
described below in the Detailed Description . This Brief
Summary is not intended to identify key features or essential
features of the claimed subject matter , nor is it intended to
be used to limit the scope of the claimed subject matter .
[0004] Methods , systems , and apparatuses for dequeue
optimization using conditional iteration are described for
queues . For example , methods may be performed in server
computers and / or computing devices from which software
entities provide / enqueue messages to a queue that are con
sumed / dequeued by other software entities . In one example ,
a computer - implemented method for dequeuing messages in
a queue that is temporally ordered is provided . The queue
includes a first index page linked with a first data page and
a second data page , and has expired messages that were
previously queued stored in the first data page . The com
puter - implemented method includes queuing at least one
valid message , each having an expiry time , in the second
data page . The computer - implemented method also includes
aggregating expired messages for the first data page to
determine a latest expiration time for the expired messages
in the first data page , and storing the latest expiration time
in the first data page and / or in the first index page based on
the aggregating . The method also includes receiving by the
queue a request to dequeue a valid message , determining a
next valid message is in the second data page based on a
comparison of a current time and the latest expiration time
of the first data page , and bypassing the first data page to
dequeue the valid message , corresponding to the dequeue
request , from the second data page .
[0005] In another example , a system for dequeuing mes
sages in a queue that is temporally ordered is described . The

BRIEF DESCRIPTION OF THE
DRAWINGS / FIGURES

[0008] The accompanying drawings , which are incorpo
rated herein and form a part of the specification , illustrate
examples of the present application and , together with the
description , further explain the principles of the example
embodiments and to enable a person skilled in the pertinent
art to make and use the example embodiments .
[0009] FIG . 1 shows a block diagram of a system for
dequeue optimization using conditional iteration , according
to an example embodiment .
[0010] FIG . 2 shows a block diagram of the host server of
the system shown in FIG . 1 , according to an example
embodiment .

US 2018 / 0324129 A1 Nov . 8 , 2018

[0011] FIG . 3 shows a flowchart for dequeue optimization
using conditional iteration , according to an example
embodiment .
[0012] FIG . 4 shows a queue with queued messages ,
according to an example embodiment .
[0013] FIG . 5 shows a flow diagram for dequeue optimi
zation using conditional iteration by the host server of FIG .
2 , according to an example embodiment .
[0014] FIG . 6 shows a flowchart for dequeue optimization
using conditional iteration , according to an example
embodiment .
[0015] FIG . 7 shows a flowchart for dequeue optimization
using conditional iteration , according to an example
embodiment .
[0016 FIG . 8 shows a flowchart for dequeue optimization
using conditional iteration , according to an example
embodiment .
[0017 FIG . 9 shows a flowchart for dequeue optimization
using conditional iteration , according to an example
embodiment .
[0018] FIG . 10 shows a flowchart for dequeue optimiza
tion using conditional iteration , according to an example
embodiment .
[0019] FIG . 11 shows a block diagram for a storage tree ,
according to an example embodiment .
[0020] FIG . 12 shows a block diagram of an example
processor - based computer system that may be used to imple
ment various example embodiments .
[0021] The features and advantages of the examples
described herein will become more apparent from the
detailed description set forth below when taken in conjunc
tion with the drawings , in which like reference characters
identify corresponding elements throughout . In the draw
ings , like reference numbers generally indicate identical ,
functionally similar , and / or structurally similar elements .
The drawing in which an element first appears is indicated
by the leftmost digit (s) in the corresponding reference
number .

implementations of the structures described herein can be
spatially arranged in any orientation or manner .
0025] Numerous embodiments are described as follows .
It is noted that any section / subsection headings provided
herein are not intended to be limiting . Embodiments are
described throughout this document , and any type of
embodiment may be included under any section / subsection .
Furthermore , embodiments disclosed in any section / subsec
tion may be combined with any other embodiments
described in the same section / subsection and / or a different
section / subsection in any manner .
10026] Section II below describes example embodiments
for dequeue optimization using conditional iteration . In
particular , sub - sections A and B of Section II describe
example queue embodiments and storage tree embodiments ,
respectively .
[0027] Section III below describes an example processor
based computer system that may be used to implement
features of the example described herein .
[0028] Section IV below describes some additional
examples and advantages .
[0029] Section V provides some concluding remarks .
en

DETAILED DESCRIPTION

I . Introduction
[0022] The following detailed description discloses
numerous embodiments . The scope of the present patent
application is not limited to the disclosed embodiments , but
also encompasses combinations of the disclosed embodi
ments , as well as modifications to the disclosed embodi
ments .
[0023] References in the specification to " one embodi
ment , " " an example embodiment , " " an example , " etc . , indi
cate that the embodiment described may include a particular
feature , structure , or characteristic , but every embodiment
may not necessarily include the particular feature , structure ,
or characteristic . Moreover , such phrases are not necessarily
referring to the same embodiment . Further , when a particular
feature , structure , or characteristic is described in connection
with an embodiment , it is submitted that it is within the
knowledge of one skilled in the art to implement such
feature , structure , or characteristic in connection with other
embodiments whether or not explicitly described .
[0024] Furthermore , it should be understood that spatial
descriptions (e . g . , " above , " " below , " " up , ” “ left , " " right , "
" down , " " top , " " bottom , " " vertical , ” “ horizontal , " etc .) used
herein are for purposes of illustration only , and that practical

II . Example Embodiments
[0030] The example techniques and embodiments
described herein are provided for illustrative purposes , and
are not limiting . The embodiments described herein may be
adapted to any type of electronic and / or processing device ,
as well as systems thereof . Further structural and operational
embodiments , including modifications / alterations , will
become apparent to persons skilled in the relevant art (s)
from the teachings herein .
[0031] When different software entities are configured to
participate in a workflow , orchestration of the workflow may
be accomplished at least in part by communication using
messages stored in a queue . For instance , a producer
consumer workflow implementing a queue for messaging
may allow software entities to provide / enqueue tasks and / or
messages to a project queue that are consumed / dequeued by
other software entities . In other words , these tasks and / or
messages can be provided , or acted upon , by different
software entities associated with the workflow .
[0032] . For example , a queue for tasks and messages
shared between different software entities involved in a
project may be used to support a workflow service for
compiling source code to generate builds for the project . In
such a case , developers may add source code (e . g . , program
code , etc .) , design code (e . g . , code for designing processors ,
application - specific integrated circuits (ASICs) , etc .) , file
libraries , media / multi - media objects like pictures , audio
files , animations , movie files , and / or the like , via a software
entity , e . g . , a software program , to file / code repositories
through a gated check - in mechanism such as a build queue
of a development environment . A development project may
use Visual Studio Team Services or other elements of the
Microsoft® Visual Studio development suite provided by
Microsoft Corporation of Redmond , Wash . Similarly , a
queue for tasks and messages may be implemented for bug
tracking and bug fixes on software and hardware develop
ment projects . In embodiments , any software entity may
enqueue and dequeue messages and tasks in a queue that
orchestrates project development for different types of proj
ects . In other embodiments , project queues may be used for
action items that not related to submission / check - in activi

US 2018 / 0324129 A1 Nov . 8 , 2018

ties to be performed by developers , and / or for action items
to be performed by software entities .
[0033] However , for applications and services for which
many messages may be enqueued , e . g . , thousands or mil
lions of messages , search times for dequeue commands and
requests experience latency that impede system performance
and functionality . For instance , queues may implement
expiry times for enqueued messages / tasks , and when many
expired messages / tasks remain enqueued in a queue , a
search for the next available / un - expired or next valid mes
sage / task must traverse the entire queue from the head of the
queue to locate the desired message / task .
[0034] The techniques and embodiments herein provide
for dequeue optimization of messages / tasks using aggrega
tion and conditional iteration that eliminate or mitigate this
issue . In embodiments , expired messages in a queue may be
aggregated . This aggregation may be performed in a bottom
up manner , according to embodiments , or other manners as
will be understood by persons of skill in the relevant art (s)
having the benefit of this disclosure . For instance , a queue
may be organized to accommodate large numbers of mes
sages / tasks , as described herein . A queue , according to
embodiments , may include a hierarchical structure imple
menting one or more of a root page (s) , an index page (s) , or
a data page (s) . Root pages are the top level of the organi
zational hierarchy and may include information related to
the queue , such as but without limitation , a queue name or
identifier , index pages linked to the root page , a latest
expiration time for the messages / tasks enqueued under the
root page , etc . A root page may be linked with one or more
index pages , which in turn may be linked with one or more
data pages that store the enqueued messages / tasks . Index
pages may include information , such as but without limita
tion , an index page name or identifier , data pages linked to
the index page , a latest expiration time for the messages /
tasks enqueued under the index page , etc . Data pages may
include information , such as but without limitation , a data
page name or identifier , a latest expiration time for the
messages / tasks enqueued in the data page , etc .
[0035] The described techniques and embodiments for
dequeue optimization of messages / tasks using conditional
iteration may perform aggregation of the expired messages
beginning with the data pages . Enqueued messages / tasks in
a given data page that are expired are aggregated by tra
versing the messages in the data page to identify those that
are expired . During or subsequent to this identification , an
expired message with a latest expiry time (i . e . , the most
recently expired message / task , or the message / task with the
maximum expiry time value) is determined and identified
for the data page . This data page aggregation process is
repeated for , i . e . , iterated over , each data page under the
index page to determine and identify the latest expiry time
for the remaining data pages linked to the index page . Of the
messages / tasks with the latest expiry times for the data
pages under the index page , an overall latest expiry time is
determined and identified for the index page . This “ max ”
expiry time is then provided to the index page linked to the
data pages , and is stored in the index page as the latest expiry
time for all data pages under the index page of the queue .
[0036] The overall index page aggregation process is
repeated for , i . e . , iterated over , each index page under the
root page to determine and identify the latest expiry time for
the index pages linked to the root page . The “ max ” root page

expiry time is then provided to the root page where it is
stored as the latest expiry time for all data pages under the
root page of the queue .
[0037] In embodiments , each data page of an index page
may be aggregated followed by providing a latest expiry
time to the index page , or all data pages of the queue may
be aggregated followed by providing a latest expiry time to
respective index pages of the data pages , or other ordered
combinations of aggregation and provision may be per
formed .
[0038] Subsequent to aggregation being performed on one
or more of a root page , an index page , or a data page , a
search for the next valid message / task in the queue may be
performed . The search may be performed in a top - down
manner , according to embodiments , or other manners as will
be understood by persons of skill in the relevant art (s)
having the benefit of this disclosure . For example , a search
may iterate over one or more of root pages , index pages , or
data pages while bypassing or skipping root pages , index
pages , and data pages for which the current time is greater
than the latest expiry time associated therewith . In this way ,
the techniques and embodiments described herein can
bypass data pages that do not include any valid messages /
tasks .
[0039] According to embodiments , aggregations may be
performed at any time there are expired messages / tasks
enqueued , including but not limited to , after predetermined
time intervals , after a threshold number of messages / tasks or
expired messages / tasks are enqueued , after a search time
exceeds a threshold , etc .
[0040] Examples described herein enable efficient , yet
robust , intelligent dequeuing for items having expiry times
that are stored in a queue . The described embodiments and
techniques provide for dequeue optimization using aggre
gation and conditional iteration . In the following descrip
tion , application components , operating systems and their
components , scripts , and / or or other computer software /
software entities that utilize a queue methodology (i . e . ,
enqueue / dequeue of items) according to the techniques and
embodiments described herein may be referred to as a
“ software entity ” . A “ host server ” as referred to herein
comprises one or more server computers or computing
devices that receive enqueue requests from software entities
and perform aggregation and dequeuing of queued items
according to the described embodiments and techniques .
" Remote devices ” are considered to be any type of comput
ing devices that execute software entities which provide
enqueue / dequeue commands to queues , such as but not
limited to , devices in the cloud , client computers like
desktops , workstations , laptops , etc . , on - premises servers
and / or enterprise servers , mobile / personal devices , and / or
the like . Additionally , while the embodiments described
below refer to queued “ messages , " this term is considered to
encompass queued tasks , action items , etc . , for purposes of
the following description .
10041] A . Example Queue Embodiments
[0042] Systems and devices may be enabled in various
ways for dequeue optimization using aggregation and con
ditional iteration . For example , FIG . 1 is a block diagram of
a system 100 system for dequeue optimization using aggre
gation and conditional iteration , according to an embodi
ment . As shown in FIG . 1 , system 100 includes a remote
device 102a , a remote device 102b , and a host server 104 ,
which may communicate over a network 110 . It should be

US 2018 / 0324129 A1 Nov . 8 , 2018

noted that the number of remote devices and host servers is
exemplary in nature , and may include more or fewer of each
in various embodiments .
[0043] Remote device 102a , remote device 102b , and a
host server 104 are configured to be communicatively
coupled via network 110 . Network 110 may comprise any
type of connection (s) that connects computing devices and
servers such as , but not limited to , the Internet , wired or
wireless networks and portions thereof , point - to - point con
nections , local area networks , enterprise networks , and / or
the like .
[0044] Remote device 102a and remote device 102b may
be any type of computing device or terminal that may be
used to execute software entities . Remote device 102a and
remote device 102b are configured to execute software
entities that provide enqueue and dequeue requests / com
mands to a queue , as described herein , of host server 104
over network 110 .
[0045] Host server 104 may comprise one or more server
computers and may be one or more distributed or “ cloud
based ” servers . Host server 104 is configured to receive
enqueue and dequeue requests / commands from remote
device 102a and / or remote device 102b via network 110 . As
illustrated , host server 104 includes aggregator logic 106
and iterator logic 108 .
[0046] Aggregator logic 106 is configured to aggregate
expired messages in a queue of host server 104 to determine
latest expiration times for portions of the queue . Iterator
logic 108 is configured to iterate over portions of the queue
to locate a next valid message to be dequeued . Accordingly ,
host server 104 is configured to utilize aggregator logic 106
and iterator logic 108 for dequeue optimization using aggre
gation and conditional iteration .
[0047] FIG . 2 is a block diagram of a system 200 for
dequeue optimization using aggregation and conditional
iteration , according to an embodiment . As shown in FIG . 2 ,
system 200 includes a host server 202 . System 200 may be
a further embodiment system 100 of FIG . 1 , and host server
202 may be a further embodiment of host server 104 of FIG .
1 . Host server 202 may be any type server computer or
computing device , as mentioned elsewhere herein , or as
otherwise known . As shown in FIG . 2 , host server 202
includes one or more of a processor 204 , one or more of a
memory and / or other physical storage device (" memory ”)
206 , an input / output (I / O) interface 218 , queue data 222 , and
queue logic 208 . System 200 may also include additional
components (not shown for brevity and illustrative clarity)
such as , but not limited to , those described below with
respect to FIG . 12 .
[0048] Processor 204 and memory 206 may respectively
be any type of processor or memory that is described herein ,
or as would be understood by a person of skill in the relevant
art (s) having the benefit of this disclosure . Processor 204 and
memory 206 may each respectively comprise one or more
processors or memories , different types of processors or
memories , and / or distributed processors or memories . Pro
cessor 204 is configured to execute computer program
instructions , e . g . , for dequeue optimization using aggrega
tion and conditional iteration , etc . , as described herein , and
memory 206 is configured to store such computer program
instructions , as well as to store other information and data
described in this disclosure , including but without limita
tion , queue data 222 .

[0049] I / O interface 218 may be any type of wired and / or
wireless network adapter , modem , etc . , configured to allow
host server 202 to communicate with other devices over a
network , e . g . , such as remote device 102a and / or remote
device 102b described above with respect to FIG . 1 .
[00501 While not shown for illustrative clarity , host server
202 may include an operating system (OS) that may be any
operating system used by computing devices described
herein such as , but without limitation , Microsoft® Win
dows® from Microsoft Corporation of Redmond , Wash . , OS
X® from Apple , Inc . of Cupertino , Calif . , UNIX® from The
Open Group , and / or the like . In embodiments , an OS may be
accessed by a remote device via a network connection to a
server (e . g . , host server 202) where such remote devices
operate as workstations or terminals , and / or the like .
[0051] Queue data 222 may comprise data associated with
a queue , such as but not limited to , a queue name , one or
more messages enqueued in a queue , visible times (e . g . ,
when a message was enqueued) , expiry times for messages ,
message identifiers (IDs) , message senders , message recipi
ents , and / or the like , as described herein . A queue may be
used , for example and without limitation , to orchestrate
workflows for development and / or design projects , etc .
Queue data 222 may be configured , for example and without
limitation , to be associated with online or “ cloud ” services
for workflows . In embodiments , queue data 222 may be
stored in a portion of memory 206 .
[0052] Queue logic 208 , as illustrated , includes a plurality
of components for performing the techniques described
herein for dequeue optimization using aggregation and con
ditional iteration . As shown , queue logic 208 includes aggre
gator logic 210 that may be an embodiment of aggregator
logic 108 of FIG . 1 , iterator logic 212 that may be an
embodiment of iterator logic 106 of FIG . 1 , expiry logic 214 ,
timeout logic 216 , and enqueue / dequeue logic 220 . While
shown separately for illustrative clarity , in embodiments ,
one or more of aggregator logic 210 , iterator logic 212 ,
expiry logic 214 , timeout logic 216 , or enqueue / dequeue
logic 220 may be included together with each other and / or
as a part of queue logic 208 .
[0053] Referring also to FIG . 3 , a flowchart 300 for
dequeue optimization using aggregation and conditional
iteration is shown , according to an example embodiment .
For purposes of illustration , flowchart 300 of FIG . 3 is
described with respect to system 200 of FIG . 2 and its
subcomponents , and also with reference to FIGS . 4 and 5 .
That is , host server 200 of FIG . 2 may perform various
functions and operations in accordance with flowchart 300
for dequeue optimization using aggregation and conditional
iteration of message for a queue with regard to enqueue /
dequeue commands received from remote device 102a and /
or remote device 102b of system 100 in FIG . 1 . Further
structural and operational examples will be apparent to
persons skilled in the relevant art (s) based on the following
description . Flowchart 300 is described as follows .
[0054] In step 302 , in the queue that includes a first index
page of the queue linked with a first data page of the queue
and a second data page of the queue , and having expired
messages that were previously queued stored in the first data
page , at least one valid message is queued , each having an
expiry time , in the second data page . For example , queue
logic 208 and / or queue data 222 may be loaded in , or
accessed from , memory 206 for execution and / or processing
by processor 204 to provide a queue in which messages may

US 2018 / 0324129 A1 Nov . 8 , 2018

be enqueued and dequeued using aggregation and condi
tional iteration , as described herein .
[0055] Referring also to FIG . 4 , a queue 400 with
enqueued messages is shown , according to an example
embodiment . Queue 400 is generated according to queue
data 222 of FIG . 2 . Queue 400 is executed and maintained
on host server 202 of FIG . 2 , according to embodiments .
Queue 400 is exemplary in nature for illustrative and dis
cussion purposes , and is not considered to be limiting . As
referred to below , when information , data , enqueue / dequeue
commands , etc . , are provided to a queue , such as queue 400 ,
it is contemplated herein that this also means such provision
may be made to queue logic 208 . Additional components
and information may be included in queue 400 , in various
embodiments , such as but without limitation , a queue name ,
one or more messages enqueued in a queue , visible times
(e . g . , when a message was enqueued) , expiry times for
messages , message identifiers (IDs) , message senders , mes
sage recipients , and / or the like . Queue 400 may enqueue any
number of messages for dequeue , and may maintain any
number of expired messages , as described herein . Enqueue /
dequeue logic 220 of FIG . 2 is configured to enqueue
messages for a queue , such as queue 400 of FIG . 4 .
Messages to be enqueued in queue 400 by enqueue / dequeue
logic 220 may be received from remote device 102a and / or
remote device 102b via I / O interface 218 .
[0056] As noted above , software entities may submit
enqueue commands associated with messages that include
details , information , or other data (e . g . , details , information ,
or other data related to a project workflow) to queue 400 .
Enqueued messages in queue 400 are submitted with expiry
times , according to embodiments , and after the expiry time
passes , the message becomes expired and cannot be
dequeued . Thus , a queue such as queue 400 may become
significantly filled with expired messages over time until
such messages are removed by a garbage collection mecha
nism .
[0057] For instance , queue 400 exemplarily has a current
time 412 of “ 04 / 21 / 2017 12 : 05 : 00 ” and shows the following
messages enqueued therein : a message 402 having an iden
tifier (ID) of 1 , a visible time of “ 04 / 21 / 2017 12 : 01 : 00 ” (i . e . ,
when message 402 was submitted) , an expiry time of
“ 04 / 21 / 2017 12 : 03 : 00 ” (i . e . , when message 402 expired) ,
and expired status of “ Y ” (i . e . , yes) ; a message 404 having
an ID of 2 , a visible time of “ 04 / 21 / 2017 12 : 02 : 00 " , an
expiry time of “ 04 / 21 / 2017 12 : 04 : 00 " , and expired status of
“ Y ” ; a message 406 having an ID of 3 , a visible time of
" 04 / 21 / 2017 12 : 02 : 00 " , an expiry time of “ 04 / 21 / 2017
12 : 04 : 00 ” , and expired status of “ Y ” ; a message 408 having
an ID of 4 , a visible time of " 04 / 21 / 2017 12 : 04 : 00 ” , an
expiry time of “ 04 / 21 / 2017 12 : 06 : 00 " , and an expired status
of “ N ” (i . e . , no) ; and a message 410 having an ID of x , a
visible time of “ 04 / 21 / 2017 12 : 05 : 00 " , an expiry time of
" 04 / 21 / 2017 12 : 07 : 00 " , and an expired status of “ N ” . As
illustrated , the message ID shown may provide the order of
submission of messages , although other types of ID are
contemplated herein , such as a key - value pair . In embodi
ments , the key may be the queue name and the value may be
the message or a message ID . In some embodiments , an
index of the key for a message may comprise the visibility
time . As shown in queue 400 , message 402 , message 404 ,
and message 406 , are expired because their respective expiry
times are earlier than current time 412 , while message 408

and message 410 are valid messages for dequeue and not
expired because their respective expiry times are later than
current time 412 .
[0058] Referring back to flowchart 300 of FIG . 3 and step
302 , message 410 is queued according to an enqueue com
mand 414 at current time 412 , and is a valid message . In
embodiments , message 410 is enqueued responsive to
enqueue command 414 (or an enqueue request) from a
software entity executing on a remote device , as described
herein , via network 110 , from a component of host system
202 , etc . Enqueue command 414 may include the queue
name for which enqueuing is desired (e . g . , the queue name
of queue 400) , an ID of message 410 , an expiry time for the
message , an ID of the message sender , an ID of the message
recipient , and / or the like . When enqueued , message 410 is
" placed ” in the next available location in queue 400 , e . g . , at
the tail of queue 400 , in a next available location in queue
400 , etc . In embodiments , queues such as queue 400 may be
accessed by software entities of remote devices , e . g . , remote
device 102a and / or remote device 102b , for enqueuing
messages using one or more application programming inter
faces (APIs) using universal resource locators (URLs) for
host servers (e . g . , host server 202) via a domain name
server (s) (DNS) .
[0059] Referring also to FIG . 5 , a flow diagram 500 for
dequeue optimization using aggregation and conditional
iteration by host server 202 of FIG . 2 is shown , according to
an embodiment . Flow diagram 500 depicts one or more
components of an embodiment of host server 202 . For
example , flow diagram 500 includes iterator logic 502 and
aggregator logic 522 , which may be configured the same or
similarly as iterator logic 212 and aggregator logic 210 of
FIG . 2 , respectively .
[0060] Additionally , flow diagram 500 includes exem
plary aspects of an embodiment of queue data 222 of FIG .
2 . For instance , flow diagram 500 includes a root page 504
that has stored there with a max time 516 representative of
the latest time that a message queued under root page 504
has expired . Linked to root page 504 are an index page 506a ,
an index page 506b , and an index page 506n respectively
having a max time 518a , a max time 518b , a max time 518n ,
each representative of the latest time that a message queued
under the respective index pages has expired . A data page
510a , a data page 510b , and a data page 510c each respec
tively having a max time 520a , a max time 520b , a max time
520k that are each representative of the latest time that a
message queued in the respective data pages has expired , are
linked to index page 506a .
10061] While not shown for brevity and illustrative clarity ,
index page 506b and index page 506n may each reference
one or more respective data pages . Likewise , the illustrated
root page , index pages , and data pages are illustrative in
nature for the embodiment shown in FIG . 5 , but it is
contemplated herein that in other embodiments additional or
fewer root pages , index pages , and data pages may be
included in queues .
10062] In the illustrated embodiment of FIG . 4 , and for
purposes of illustration and discussion herein , message 402
and message 404 of queue 400 may be enqueued in data
page 510a (e . g . , a first data page) , and message 406 ,
message 408 , and message 410 may be enqueued in data
page 510b (e . g . , a second data page) .
[0063] Referring again to flowchart 300 of FIG . 3 , in step
304 , the expired messages for the first data page are aggre

US 2018 / 0324129 A1 Nov . 8 , 2018

gated to determine a first latest expiration time for the
expired messages in the first data page . For instance , aggre
gator logic 522 is configured to aggregate expired messages
in data pages , such as data page 510a (e . g . , a first data page)
to determine a latest expiration time for the expired mes
sages in data page 510a . Aggregator logic 522 may be
configured to search data pages in various ways to determine
the latest expired message time , such as but without limi
tation , an ordered search , a binary search , and / or the like .
[0064] In embodiments , aggregator logic 522 may be
activated / executed to perform aggregation as described
herein responsive to a timeout as determined by timeout
logic 216 for a valid message search based on a received
dequeue command / request , as described below in step 308 .
That is , timeout logic 216 may trigger aggregator logic 522
to perform its various functions when a timer of timeout
logic 216 , that is activated upon receipt of the received
dequeue command / request , expires before the received
dequeue command / request is completed (e . g . , in such cases ,
the number of expired messages in a queue may be high
enough to prevent timely completion of received dequeue
commands / requests) . In other embodiments , aggregator
logic 522 may be activated / executed to perform aggregation
as described herein based on a timer , a threshold number of
expired messages remaining enqueued , a threshold number
of new messages being enqueued , etc . , and as described
elsewhere herein .
[0065] In embodiments , as noted above , aggregator logic
522 may aggregate expired messages over each data page
under a given index page , or under one or more additional
index pages , in performing aggregation as described herein .
As illustrated in FIG . 5 , aggregator logic 522 is configured
to perform aggregation , e . g . , for an aggregate 508a , for
expired messages in data pages such as data page 510a , data
page 510b , and data page 510k (with respect to aggregate
508a) . In addition , aggregator logic 522 is configured to
provide the max time for aggregated data pages , as described
herein , to respective index pages . As illustrated , an aggre
gate provision 514 shows how aggregator logic 522 provides
an overall max time of data page 510a , data page 510b , and
data page 510k to index page 506? to be stored therewith as
max time 518a . While not shown for illustrative clarity and
brevity , aggregator logic 522 is also configured to perform
similar aggregation for other sets of data pages under index
page 506b (as an aggregate 508b) , and under index page
506n (as an aggregate 508n) . Similarly , aggregator logic 522
is also configured to perform similar aggregation for each
data pages of a queue to store the max expiry time of each
data page therewith , and for sets of index pages to store the
max expiry time of sets of index pages with a linked root
page , as described herein .
[006] Referring also to FIG . 6 , a flowchart 600 for
dequeue optimization using aggregation and conditional
iteration is shown , according to an example embodiment .
For purposes of illustration , flowchart 600 of FIG . 6 is
described with respect to system 200 of FIG . 2 and its
subcomponents , and also with reference to FIGS . 4 and 5 .
That is , host server 200 of FIG . 2 may perform various
functions and operations in accordance with flowchart 600
for dequeue optimization using aggregation and conditional
iteration of message for a queue with regard to enqueuel
dequeue commands received from remote device 102a and /
or remote device 102b of system 100 in FIG . 1 . In embodi -
ments , flowchart 600 may be a further embodiment of

flowchart 300 of FIG . 3 , e . g . , of step 304 and / or step 306 .
Further structural and operational examples will be apparent
to persons skilled in the relevant art (s) based on the follow
ing description . Flowchart 600 is described as follows .
[0067] In step 602 , the expired messages for the second
data page are aggregated to determine a second latest
expiration time for the expired messages in the second data
page . As similarly described above with respect to step 304 ,
aggregator logic 522 is configured to aggregate expired
messages in data pages , such as data page 510b (e . g . , a
second data page) to determine a latest expiration time for
the expired messages in data page 510b . Aggregator logic
522 may be configured to search data page 510b in various
ways to determine the latest expired message time in data
page 510b , such as but without limitation , an ordered search ,
a binary search , and / or the like . Continuing with the
example above , message 406 , message 408 , and message
410 are enqueued in data page 510b , and message 410 has
the latest expiry time : 04 / 21 / 2017 12 : 07 : 00 . Aggregator
logic 522 is configured to determine this latest expiry time
based on aggregating message 406 , message 408 , and mes
sage 410 in data page 510b .
[0068] It is contemplated herein that the latest expired
message time under a given index page may be for a
message enqueued in any data page , according to embodi
ments .
100691 . Referring again to queue 400 of FIG . 4 , message
402 and message 404 , included in this example in data page
510a , may be aggregated by aggregator logic 522 to deter
mine that the most recent or latest expiration time of a
message in data page 510a is for message 404 : 04 / 21 / 2017
12 : 04 : 00 . That is , current time 410 is 04 / 21 / 2017 12 : 05 : 00 ,
and message 404 is expired , but with a later expiry time than
message 402 . Message 406 , included in this example in data
page 510b , may be aggregated by aggregator logic 522 to
determine that the most recent or latest expiration time of a
message in data page 510b is for message 406 : 04 / 21 / 2017
12 : 04 : 00 . That is , current time 410 is 04 / 21 / 2017 12 : 05 : 00 ,
and in this example message 404 is the only expired message
in data page 510b . In embodiments , each non - expired mes
sage (e . g . , message 406 and message 408 in this example) be
included in the aggregation of aggregator logic 522 to verify
that such messages are not expired .
[0070] In step 306 of FIG . 3 , the first latest expiration time
is stored in the first data page based on the aggregating . For
example , aggregator logic 522 may be configured to deter
mine the latest expiry time of messages in data page 510a
and store , or cause to be stored , this “ max time ” with data
page 510a as max time 520a .
[0071] Referring again to flowchart 600 of FIG . 6 , in step
604 , the second latest expiration time is stored in the first
index page based on the aggregating . As similarly described
above with respect to step 306 and data page 510b , aggre
gator logic 522 may be configured to determine the latest
expiry time of messages in data page 510b and store this
" max time ” with data page 510b as max time 520b .
[0072] In step 308 of FIG . 3 , a request is received by the
queue to dequeue a valid message of the at least one valid
message . As shown in the embodiment of queue 400 in FIG .
4 , a command to dequeue , e . g . , at dequeue 416 described in
further detail below , may be received at queue 400 by
enqueue / dequeue logic 220 , e . g . , from a remote device such
as remote device 102a or remote device 102b . In embodi
ments , the dequeue command may include a queue name ,

US 2018 / 0324129 A1 Nov . 8 , 2018

message ID , and / or the like , as described herein , to identify
the stored message to be dequeued . In other embodiments ,
the dequeue command may include a queue name from
which a valid message will be dequeued .
[0073] In step 310 , a next valid message is determined to
be in the second data page based on a comparison of a
current time and at least the first latest expiration time . For
instance , iterator logic 502 as shown in FIG . 5 is configured
to iterate over pages of a queue such as root pages , index
pages , and / or data pages by iteration 512 to determine if one
or more of these pages includes only expired messages by
comparing current time 412 to the max expiry times of the
different pages of the queue (e . g . , max times 516 , 518a - n ,
520a - k) .
[0074] In the example described above , data page 510a
has a max time 520a of 04 / 21 / 2017 12 : 04 : 00 , corresponding
to message 404 , which is prior to current time 412 . Accord
ingly , iterator logic 502 is configured to determine that all
messages in data page 510a are expired , hence the next valid
message available for dequeue is not in data page 510a .
Similarly , as data page 510b has a max time 520b of
04 / 21 / 2017 12 : 07 : 00 , which is after current time 412 , itera
tor logic 502 is configured to determine that valid , non
expired messages are enqueued in data page 510b . Likewise ,
because max time 520b is later than max time 520a , max
time 520b would be stored in association with index page
506 as max time 518a , and thus iterator logic 502 is
configured to determine that valid , non - expired messages
are enqueued under index page 506a (and similarly under
root page 504 based on max time 516 which would be at
most as early as max time 518a) .
[0075] In step 312 , the first data page is bypassed to
dequeue the valid message , corresponding to the dequeue
request , from the second data page . For instance , as noted
above in step 310 , iterator logic 502 is configured to
determine whether different pages of a queue contain only
expired messages , or contain valid messages , based on the
aggregated message expiry times . As iterator logic 502
iterates over the queue structure , e . g . , in a top - down manner
(such as beginning with root page 504) , pages with only
expired messages and no valid messages are bypassed or
skipped in the search for the valid messages , such as the next
valid message . In the illustrated embodiment , max time 516
of root page 504 and max time 518a of index page 506? each
indicate to iterator logic 502 that valid messages are
enqueued under these pages , and therefore , root page 504
and index page 506? are not bypassed . However , as noted in
step 310 , data page 510a has a max time 520a of 04 / 21 / 2017
12 : 04 : 00 , corresponding to message 404 , which is prior to
current time 412 , and iterator logic 502 is configured to
bypass data page 510a , as all messages enqueued therein are
expired , when iterating over queue 400 according to flow
diagram 500 .
[0076] Max time 520b (i . e . , “ 04 / 21 / 2017 12 : 07 : 00 ') of
data page 510b indicates that a next valid message is
enqueued in data page 510b , and iterator logic 502 is
configured to begin an identification of the enqueued mes
sage corresponding to the dequeue command / request of step
308 , e . g . , by comparing message IDs of enqueued messages
to the message ID in the dequeue command / request , at data
page 510b , thus bypassing any pages in which the desired
message is not enqueued based on the max times saved by
the pages in the queue . It should be noted that according to

embodiments , the next valid message may be the same
message that is identified in the dequeue command / request .
[0077] Because the enqueued messages of data page 510a
are bypassed entirely in the search for the next valid mes
sage , the search efficiency for dequeuing messages respon
sive to a dequeue command is increased . It should be noted
that the embodiments shown for queue 400 and flow dia
gram 500 are exemplary in nature for illustrative purposes ,
and that hundreds , thousands , or millions of expired mes
sages , spanning any number of data pages , index pages ,
and / or root pages , may remain enqueued in various embodi
ments . By allowing for a more efficient search capable of
bypassing any number of expired messages to determine the
next valid message , system timeouts and lockups may be
avoided , processor cycles are reduced on a per - search basis ,
and faster dequeuing of messages is achieved . For example ,
the described techniques and embodiments allow for a
reduction in search time of up to several minutes for
servicing dequeue commands .
[0078] Referring now to FIG . 7 , a flowchart 700 for
dequeue optimization using aggregation and conditional
iteration is shown , according to an example embodiment .
For purposes of illustration , flowchart 700 of FIG . 7 is
described with respect to system 200 of FIG . 2 and its
subcomponents , and also with reference to FIGS . 4 and 5 .
That is , host server 200 of FIG . 2 may perform various
functions and operations in accordance with flowchart 700
for dequeue optimization using aggregation and conditional
iteration of message for a queue with regard to enqueuel
dequeue commands received from remote device 102a and /
or remote device 102b of system 100 in FIG . 1 . In embodi
ments , flowchart 700 may be a further embodiment of
flowchart 300 of FIG . 3 . Further structural and operational
examples will be apparent to persons skilled in the relevant
art (s) based on the following description . Flowchart 700 is
described as follows .
[0079] In step 702 , the valid message is dequeued from the
second data page . For example , enqueue / dequeue logic 220
of FIG . 2 is configured to dequeue messages from a queue ,
such as queue 400 of FIG . 4 . In embodiments , subsequent to
step 312 of flowchart 300 in FIG . 3 , where a data page is
bypassed for having no valid (only expired) messages to
locate the enqueued valid message identified in the dequeue
command / request (e . g . , starting a message comparison
check at the next valid message enqueued) , enqueue / de
queue logic 220 is configured to dequeue the desired mes
sage . Continuing with the example above , if message 408 is
identified in the received dequeue command / request ,
enqueue / dequeue logic 220 dequeues message 408 at
dequeue operation 416 of FIG . 4 . Indications of messages
and / or messages to be dequeued from queue 400 by
enqueue / dequeue logic 220 may be transmitted to remote
device 102a and / or remote device 102b via I / O interface
218 . In embodiments , dequeue indications from queues such
as queue 400 may be received by software entities of remote
devices , e . g . , remote device 102a and / or remote device
102b , responsive to dequeue requests for enqueued mes
sages being fulfilled using one or more application program
ming interfaces (APIs) associated with the software entities .
[0080] In step 704 , the dequeued valid message is marked
as having been dequeued and as invalid . For example ,
enqueue / dequeue logic 220 of FIG . 2 is configured to mark
dequeued messages as dequeued and / or invalid . In some

US 2018 / 0324129 A1 Nov . 8 , 2018

embodiments , iterator logic 502 of FIG . 5 may be configured
to bypass dequeued messages thus marked .
[0081] As noted above , when aggregation of one or more
data pages in a queue is completed , latest expiry times for
data pages linked a give index page may be determined , and
max times , i . e . , latest expiry times , for the set of data pages
linked to an index page may be determined by further
aggregation and stored with the index page .
[0082] In FIG . 8 , a flowchart 800 for dequeue optimization
using aggregation and conditional iteration is shown ,
according to an example embodiment . For purposes of
illustration , flowchart 800 of FIG . 8 is described with respect
to system 200 of FIG . 2 and its subcomponents , and also
with reference to FIGS . 4 and 5 . That is , host server 200 of
FIG . 2 may perform various functions and operations in
accordance with flowchart 800 for dequeue optimization
using aggregation and conditional iteration of message for a
queue with regard to enqueue / dequeue commands received
from remote device 102a and / or remote device 102b of
system 100 in FIG . 1 . In embodiments , flowchart 800 may
be a further embodiment of flowchart 300 of FIG . 3 , e . g . , of
step 304 . Further structural and operational examples will be
apparent to persons skilled in the relevant art (s) based on the
following description . Flowchart 800 is described as fol
lows .
[0083] In step 802 , the latest expiration time for each of
the at least one data page uniquely linked thereto is aggre
gated to determine a latest index expiration time , and in step
804 , the latest index expiration time for each of the at least
one index is aggregated to determine a latest root expiration
time . For instance , aggregator logic 522 is configured to
aggregate a latest expiration time for each data page
uniquely linked to an index page to determine a latest index
expiration time for that index page , and to aggregate the
latest index expiration time for index pages to determine a
latest root expiration time for a root page .
[0084] Continuing the with example above , expired mes
sages for data pages containing enqueued messages , e . g . ,
data page 510a , data page 510b , to data page 510k , as
appropriate , are aggregated by aggregator logic 522 accord
ing to step 304 of FIG . 3 and step 802 . That is , any data page
linked to an index page of a queue may be aggregated by
aggregator logic 522 to determine a latest expiry time ,
according to embodiments . In the example , data page 510a
and data page 510b have messages enqueued , and data page
510b includes the message with the latest expiry time of the
data pages under index page 508a , as described above , as
determined by aggregator logic 522 . While the example
scenario described herein only provides for enqueued mes
sages in data page 510a and data page 510b , it is contem
plated herein that any combination of data pages may
include messages upon which aggregation may be per
formed by aggregator logic 522 . In embodiments , aggrega
tor logic 522 is configured to bypass aggregation for a data
page that does not have messages enqueued therein , e . g . ,
based on an indicator stored by the data page or its linked
index page by one or more components of queue logic 408
of FIG . 4 .
[0085] Likewise , aggregator logic 522 is configured to
aggregate latest expiry times for sets of index pages linked
to a root page to determine a max time for all enqueued
messages under the root page on a per - index page basis . For
instance , max time 518a of index page 506a , max time 518b
of index page 506b , and max time 518n of index page 506n ,

represent the latest time that a message queued under the
respective index pages has expired or will expire . Aggrega
tor logic 522 is configured to compare the max times of the
index pages to determine the latest expiry time over the set
of index pages .
0086] . That is , in embodiments , an index page such as
index page 506? may be configured to store a max time for
each data page linked thereto . Similarly , each root page such
as root page 504 may be configured to store a max time for
each index page linked thereto . In this way , iterator logic 502
may be configured to determine the data page for the next
valid message by interrogating the linked index page and
without having to interrogate data pages for their respective
max times .
[0087] It should be noted that in embodiments , any index
page may have a linked data page in which a message with
the latest overall expiry time is enqueued due to the wrap
around nature of queue mechanisms (e . g . , the head and tail
of a queue) .
[0088] Based on the aggregated messages and determined
latest expiry times , i . e . , the max times descripted with
respect to FIG . 5 , data pages , index pages , and root pages
may have overall latest expiry times respectively associated
therewith stored .
100891 . In FIG . 9 , a flowchart 900 for dequeue optimization
using aggregation and conditional iteration is shown ,
according to an example embodiment . For purposes of
illustration , flowchart 900 of FIG . 9 is described with respect
to system 200 of FIG . 2 and its subcomponents , and also
with reference to FIGS . 4 and 5 . That is , host server 200 of
FIG . 2 may perform various functions and operations in
accordance with flowchart 900 for dequeue optimization
using aggregation and conditional iteration of message for a
queue with regard to enqueue / dequeue commands received
from remote device 102a and / or remote device 102b of
system 100 in FIG . 1 . In embodiments , flowchart 900 may
be a further embodiment of flowchart 300 of FIG . 3 , e . g . , of
step 306 , and may be a continuation of flowchart 800 of FIG .
8 . Further structural and operational examples will be appar
ent to persons skilled in the relevant art (s) based on the
following description . Flowchart 900 is described as fol
lows .
[0090 In step 902 , a latest expiration time of the expira
tion times for a data page is stored in the data page based on
the aggregating . For example , as noted above , any data page
of a queue may be aggregated by aggregator logic 522 , as
similarly described above with respect to step 306 of FIG . 3
and / or step 604 of FIG . 6 , regardless of the number of data
pages and / or how many data pages are in a set that is linked
to a given index page . Subsequent to aggregation and
determination of the latest expiration times for the set of data
pages , e . g . , as in step 802 , aggregator logic 522 is configured
to store the latest expiration times as the max times for each
data page , e . g . , as described for max time 520a of data page
510a . Aggregator logic 522 is also configured to store the
latest expiration time for any other data pages , e . g . , data
page 510b to data page 510k .
[0091] In step 904 , a latest expiration time of the expira
tion times for one or more data pages linked to an index page
is stored in the index page based on aggregating . As simi
larly described in step 902 for data pages , any index page of
a queue may be aggregated by aggregator logic 522 . Sub
sequent to aggregation and determination of the latest expi
ration time for the set of data pages for an index page , e . g . ,

US 2018 / 0324129 A1 Nov . 8 , 2018

as in step 804 , aggregator logic 522 is configured to store the
latest expiration time as the max time for the index page ,
e . g . , as described for max time 518a of index page 506a .
Aggregator logic 522 is also configured to store the latest
expiration time for the set of data pages for each index page ,
e . g . , index page 506b to index page 506n .
[0092] In step 906 , a latest expiration time of the expira
tion times for one or more index pages linked to a root page
is stored in the root page based on the aggregating . Again ,
as similarly described in steps 902 and 904 for data and
index pages , any root page of a queue may be aggregated by
aggregator logic 522 . Subsequent to aggregation and deter -
mination of the latest expiration time for a set of index
pages , aggregator logic 522 is configured to store the latest
expiration time as the max time for the root page , e . g . , as
described for max time 516 of root page 504 .
[0093] Turning now to FIG . 10 , a flowchart 1000 for
dequeue optimization using aggregation and conditional
iteration is shown , according to an example embodiment .
For purposes of illustration , flowchart 1000 of FIG . 10 is
described with respect to system 200 of FIG . 2 and its
subcomponents , and also with reference to FIGS . 4 and 5 .
That is , host server 200 of FIG . 2 may perform various
functions and operations in accordance with flowchart 1000
for dequeue optimization using aggregation and conditional
iteration of message for a queue with regard to enqueue /
dequeue commands received from remote device 102a and /
or remote device 102b of system 100 in FIG . 1 . In embodi
ments , flowchart 1000 may be a further embodiment of
flowchart 300 of FIG . 3 . Further structural and operational
examples will be apparent to persons skilled in the relevant
art (s) based on the following description . Flowchart 1000 is
described as follows .
10094) In step 1002 , one or more valid messages are
marked as expired subsequent to the passage of their expiry
times . For example , expiry logic 214 of FIG . 2 is configured
to mark one or more valid messages as expired subsequent
to the passage of their expiry times , according to embodi
ments . As shown in queue 400 of FIG . 4 , message 402 ,
message 404 , and message 406 are each expired as their
expiry times are earlier than current time 412 . In embodi
ments , expiry logic 214 marks or denotes each of these
expired messages as " expired ” by setting a flag or other
indicator after , or as , current time passes the respective
expiry times of the messages . It should be noted that
messages with common expiry times may be concurrently
marked or denoted as being expired by expiry logic 214 .
Once a message is marked / denoted as being expired , such a
message may be aggregated by aggregator logic 522 , as
described above .
[0095] In embodiments , expiry logic 214 may set a default
expired status of “ No ” or “ N ” or the like for a message when
the message is enqueued .
[0096] As described in the follow subsection , queues such
as queue 400 of FIG . 4 , may be stored and maintained in
storage trees , and in embodiments , queues are implemented
as tree structures , such as but not limited to , large structure
merged (LSM) trees .
[0097] B . Example Storage Tree Embodiments
[0098] As previously noted , systems and devices may be
enabled in various ways for dequeue optimization using
aggregation and conditional iteration according to embodi
ments . For example , system 200 of FIG . 2 may be config -
ured to provide , execute , and maintain queues according to

the described techniques and embodiments by utilizing
storage trees , e . g . , a queue may be configured as a tree
structure , according to embodiments . Storage trees , as
described herein , may be hierarchical storage organization
mechanisms employed in one or more storage devices ,
including distributed and cloud storage , of cloud services ,
data storage farms , servers and / or server clusters , etc . Stor
age trees may store and / or implement zero or more queues ,
e . g . , queue 400 of FIG . 4 , according to embodiments . In
some embodiments , storage trees may be large structure
merged (LSM) trees .
[0099] In FIG . 11 , a block diagram for a storage tree 1100
is shown , according to an example embodiment . In embodi
ments , storage tree 1100 may be a part of memory 206 of
FIG . 2 and / or another accessible memory / storage , such as
external / network storage . According to the exemplary , illus
trated embodiment , storage tree 1100 includes a tree root
1102 and a plurality of branches : a branch 1104a , a branch
1104b , to a branch 1104m , although it is contemplated herein
that any number of branches may be included in a given
storage tree in various embodiments .
(0100] The illustrated branches of storage tree 1100 in
FIG . 11 are linked to tree root 1102 in a hierarchical manner
as would be understood by persons of skill in the relevant
art (s) having the benefit of this disclosure . Branch 1104a ,
branch 1104b , and branch 1104m may be defined or bounded
logically (e . g . , based on partition size) , physically (e . g . ,
based on storage device size) , or based on implementation
requirements / desires for storage tree 1100 .
[0101] The branches of storage tree 1100 are configured to
store , provide execution functions for , and / or maintain
queues , as described herein . For example , according to
embodiments , queue data 222 of FIG . 2 may be stored in one
or more branches of a storage tree such as storage tree 1100 .
As illustrated , storage tree 1100 includes a plurality of
queues : a queue 1106a in branch 1104a , a queue 1106b in
branch 1104a and branch 1104b , a queue 1106c in branch
1104b , to a queue 1106z in branch 1104m . One or more of
these queues may be a further embodiment of queue 400 of
FIG . 4 . According to embodiments , the data pages of the
queues may correspond to leaves of storage tree 1100 .
[0102] In embodiments of storage tree 1100 , system 200
of FIG . 2 may be a server (s) or other computing device
within the same fabric or cluster as storage tree 1100 , and
multiple instances of host server 202 or queue logic 208 may
be utilized in conjunction with one or more instances of
storage tree 1100 . For instance , system 200 may imple
mented in conjunction with storage tree 1100 , with various
instances of combinations therefor , to support multiple proj
ects that utilize message queuing . In such embodiments , I / O
interface 218 may receive enqueue commands and transmit
dequeued messages , while other subcomponents of system
200 such as queue logic 208 , aggregator logic 210 , iterator
logic 212 , expiry logic 214 , timeout logic 216 , and / or
enqueue / dequeue logic 220 , may perform their respective
functions as related to a queue , e . g . , queue 400 , by accessing
the queue through the root page tree root 1102 and the
branch (es) in which the queue is stored .

III . Example Processor - Based Computer System
Implementation

[0103] The embodiments and techniques described herein
may be implemented in hardware , or hardware with any
combination of software and / or firmware , including being

US 2018 / 0324129 A1 Nov . 8 , 2018
10

and a pointing device 1240 (e . g . , a mouse) . Other input
devices (not shown) may include a microphone , joystick ,
game controller , scanner , or the like . In one example , a touch
screen is provided in conjunction with a display 1244 to
allow a user to provide user input via the application of a
touch (as by a finger or stylus for example) to one or more
points on the touch screen . These and other input devices are
often connected to processing unit 1202 through a serial port
interface 1242 that is coupled to bus 1206 , but may be
connected by other interfaces , such as a parallel port , game
port , or a universal serial bus (USB) . Such interfaces may be
wired or wireless interfaces .
[0109] Display 1244 is connected to bus 1206 via an
interface , such as a video adapter 1246 . In addition to
display 1244 , system 1200 may include other peripheral
output devices (not shown) such as speakers and printers .
[0110] System 1200 is connected to a network 1248 (e . g . ,
a local area network or wide area network such as the
Internet) through a network interface 1250 , a modem 1252 ,
or other suitable means for establishing communications
over the network . Modem 1252 , which may be internal or
external , is connected to bus 1206 via serial port interface
1242 .

implemented as computer program code configured to be
executed in one or more processors and stored in a computer
readable storage medium , or being implemented as hard
ware logic / electrical circuitry , such as being implemented
together in a system - on - chip (SOC) or ASIC .
[0104] FIG . 12 depicts an example processor - based com
puter system 1200 that may be used to implement various
examples described herein . For example , system 1200 may
be used to implement any server , host , system , remote
device , mobile / personal device , etc . , as described herein .
System 1200 may also be used to implement any of the steps
of any of the flowcharts , as described herein . The description
of system 1200 provided herein is provided for purposes of
illustration , and is not intended to be limiting . Examples
may be implemented in further types of computer systems ,
as would be known to persons skilled in the relevant art (s) .
[0105] As shown in FIG . 12 , system 1200 includes a
processing unit 1202 , a system memory 1204 , and a bus
1206 that couples various system components including
system memory 1204 to processing unit 1202 . Processing
unit 1202 may comprise one or more circuits , microproces -
sors or microprocessor cores . Bus 1206 represents one or
more of any of several types of bus structures , including a
memory bus or memory controller , a peripheral bus , an
accelerated graphics port , and a processor or local bus using
any of a variety of bus architectures . System memory 1204
includes read only memory (ROM) 1208 and random access
memory (RAM) 1210 . A basic input / output system 1212
(BIOS) is stored in ROM 1208 .
10106] System 1200 also has one or more of the following
drives : a hard disk drive 1214 for reading from and writing
to a hard disk , a magnetic disk drive 1216 for reading from
or writing to a removable magnetic disk 1218 , and an optical
disk drive 1220 for reading from or writing to a removable
optical disk 1222 such as a CD ROM , DVD ROM , BLU
RAYTM disk or other optical media . Hard disk drive 1214 ,
magnetic disk drive 1216 , and optical disk drive 1220 are
connected to bus 1206 by a hard disk drive interface 1224 ,
a magnetic disk drive interface 1226 , and an optical drive
interface 1228 , respectively . The drives and their associated
computer - readable media provide nonvolatile storage of
computer - readable instructions , data structures , program
modules and other data for the computer . Although a hard
disk , a removable magnetic disk and a removable optical
disk are described , other types of computer - readable
memory devices and storage structures can be used to store
data , such as flash memory cards , digital video disks ,
random access memories (RAMs) , read only memories
(ROM) , and the like .
[01071 A number of program modules may be stored on
the hard disk , magnetic disk , optical disk , ROM , or RAM .
These program modules include an operating system 1230 ,
one or more application programs 1232 , other program
modules 1234 , and program data 1236 . In accordance with
various examples , the program modules may include com
puter program logic that is executable by processing unit
1202 to perform any or all of the functions and features of
any technique or example described herein , including com
puter program logic . The program modules may also include
computer program logic that , when executed by processing
unit 1202 , causes processing unit 1202 to perform any of the
steps of any of the flowcharts , as described above .
0108] A user may enter commands and information into
system 1200 through input devices such as a keyboard 1238

[0111] As used herein , the terms “ computer program
medium , " " computer - readable medium , ” and / or “ computer
readable storage medium ” are used to generally refer to
memory devices or storage structures such as the hard disk
associated with hard disk drive 1214 , removable magnetic
disk 1218 , removable optical disk 1222 , as well as other
memory devices or storage structures such as flash memory
cards , digital video disks , random access memories (RAMs) ,
read only memories (ROM) , and the like . Such computer
readable media / storage media are distinguished from and
non - overlapping with communication media , software pro
grams , and transitory signals (do not include communication
media , software programs , or transitory signals) . Commu
nication media typically embodies computer - readable
instructions , data structures , program modules or other data
in a modulated data signal such as a carrier wave . The term
“ modulated data signal ” means a signal that has one or more
of its characteristics set or changed in such a manner as to
encode information in the signal . By way of example , and
not limitation , communication media includes wireless
media such as acoustic , RF , infrared and other wireless
media . Examples are also directed to such communication
media .
[0112] As noted above , computer programs and modules
(including application programs 1232 and other program
modules 1234) may be stored on the hard disk , magnetic
disk , optical disk , ROM , or RAM . Such computer programs
may also be received via network interface 1250 , serial port
interface 1242 , or any other interface type . Such computer
programs , when executed or loaded by an application ,
enable systems to implement features of examples discussed
herein . Accordingly , such computer programs represent con
trollers of the system 1200 . Examples are also directed to
computer program products comprising software stored on
any computer useable medium . Such software , when
executed in one or more data processing devices , causes a
data processing device (s) to operate as described herein .
Examples may employ any computer - useable or computer
readable medium , known now or in the future . Examples of
computer - readable mediums include , but are not limited to
memory devices and storage structures such as RAM , hard

US 2018 / 0324129 A1 Nov . 8 , 2018

drives , floppy disks , CD ROMs , DVD ROMs , zip disks ,
tapes , magnetic storage devices , optical storage devices ,
MEMs , nanotechnology - based storage devices , and the like .

IV . Additional Example Advantages and
Embodiments

[0113] As described , systems and devices embodying the
techniques herein may be configured in various ways to
perform their respective functions . In embodiments , one or
more of the steps or operations of any flowchart described
herein may not be performed . Moreover , steps or operations
in addition to or in lieu of those in any flowchart described
herein may be performed . Further , in examples , one or more
operations of any flowchart described herein may be per
formed out of order , in an alternate sequence , or partially (or
completely) concurrently with each other or with other
operations .
[0114] The embodiments and techniques described herein
provide improved performance of computing devices and
operations executing thereon for dequeue optimization using
aggregation and conditional iteration . For instance , the
described embodiments and techniques provide for
increased efficiency , e . g . , faster returns for dequeue com
mands , in dequeuing messages from queues using aggrega
tion and conditional iteration , as described herein . Addition
ally , system lock ups and timeouts are reduced due to more
efficient dequeuing of messages . Accordingly , fewer pro
cessing cycles are required by the system in performing
dequeue operations because of the bypassing technique for
pages havening only expired messages , and system memory
is freed more quickly because fewer comparisons / identifi
cations are required to locate a message to be dequeued thus
reducing the required memory footprint . Still further , project
management is improved in such systems based on the
efficiencies noted above which improve overall dequeue and
project progression times and reduce resource conflicts for
developers and / or software entities seeking to dequeue mes
sages by avoiding system lock ups and extended message
search times .
[0115] The additional examples described in this Section
may be applicable to examples disclosed in any other
Section or subsection of this disclosure .
[0116] A computer - implemented method for dequeuing
messages in a queue that is temporally ordered is described
herein . The method includes queuing at least one valid
message , each having an expiry time , in the second data
page in the queue that includes a first index page of the
queue linked with a first data page of the queue and a second
data page of the queue , and having first expired messages
that were previously queued stored in the first data page . The
method also includes aggregating the first expired messages
for the first data page to determine a first latest expiration
time for the first expired messages in the first data page , and
storing the first latest expiration time in the first data page
and in the first index page based on the aggregating . The
method further includes receiving by the queue a dequeue
request to dequeue a valid message of the at least one valid
message , determining a next valid message is in the second
data page based on a comparison of a current time and at
least the first latest expiration time , and bypassing the first
data page to dequeue the valid message , corresponding to
the dequeue request , from the second data page .

[0117] In an embodiment , the method also includes
dequeuing the valid message from the second data page , and
marking the dequeued valid message as having been
dequeued and as invalid .
[0118] In an embodiment of the method , one or more of
said determining , said bypassing , or said dequeuing is
aborted based on a timeout timer elapsing from a time of
said receiving .
[0119] In an embodiment of the method , the second data
page includes the at least one valid message and at least one
second expired message . In the embodiment , aggregating
further comprises aggregating the at least one second
expired message for the second data page to determine a
second latest expiration time for the at least one second
expired message . In the embodiment , storing further com
prises storing the second latest expiration time in the second
data page based on the aggregating .
[0120] In an embodiment , the method includes receiving
at least one enqueue request to queue the at least one valid
message , each of the at least one enqueue request including
a message - specific value for the expiry time , and marking
the valid message as expired subsequent to the passage of
the expiry time . In an embodiment of the method , two of the
at least one enqueue request comprise the message - specific
value for at least one respective expiry time , and the method
further includes marking the two of the at least one enqueue
request as expired subsequent to the passage of the expiry
time , wherein the two of the at least one enqueue request that
have a common expiry time are aggregated together , sub
sequent to expiring , during aggregating .
[0121] In an embodiment of the method , the queue is
maintained in a storage tree comprising zero or more addi
tional queues , where the queue is configured as a tree
structure , and the request comprises a name of the queue . In
the embodiment , the method further includes locating the
queue in the storage tree based on the name of the queue
prior to the determining .
[0122] A system for dequeuing messages in a queue that is
temporally ordered , is also described . The system includes at
least one non - volatile storage device configured to store
queue logic for providing and managing the queue , the
queue being configured to include at least one data page . The
system also includes at least one processor configured to
perform operations on the queue based on the queue logic .
The queue logic of the system includes enqueue logic
configured to enqueue at least one valid message , each
having an expiry time , in a tail data page of the least one data
page that includes a tail of the queue . The queue logic also
includes aggregator logic configured to , for each of the at
least one data page , aggregate expired messages to deter
mine an expiration time of the expired messages of the at
least one data page , and store a latest expiration time , the
latest expiration time representing a latest value of the
aggregated expired messages of its associated data page ,
with its associated data page . The queue logic also includes
dequeue logic configured to receive a dequeue request to
dequeue a valid message of the at least one valid message ,
and iterator logic configured to determine a queue location
in one of the at least one data page for a next valid message
based on a comparison of a current time and the latest
expiration time for one or more of the at least one data page ,
and bypass one or more of the at least one data page to
dequeue the valid message from a data page that includes the
queue location of the at least one data page .

US 2018 / 0324129 A1 Nov . 8 , 2018

a next valid message based on a comparison of a current
time and the expiration times , and bypassing at least one of
an index page of the queue , or a data page of the queue to
dequeue a valid message based on the location .
[0130] In an embodiment , the method includes storing a
latest expiration time of the expiration times for the data
page in the data page based on the aggregating , determining
comprises comparing the current time to the latest expiration
time , and bypassing comprises bypassing the data page
when the latest expiration time is before the current time .
[0131] In an embodiment , the method includes storing a
latest expiration time of the expiration times for one or more
data pages linked to the index page , including the data page ,
in the index page based on the aggregating , determining
comprises comparing the current time to the latest expiration
time , and bypassing comprises bypassing the index page
when the latest expiration time is before the current time .
0132] In an embodiment , the method includes dequeuing
the valid message based on the location , and marking the
dequeued valid message as having been dequeued and as
invalid , where the queue has a tree structure .
[0133] In an embodiment , the method includes receiving a
request to enqueue the next valid message that comprises a
message - specific value for an expiry time , marking the next
valid message as expired responsive to the passage of the
expiry time , and subsequently aggregating the expired mes
sages in the queue again to determine updated expiration
times for the expired messages .

[0123] In an embodiment of the system , the queue is
configured to include at least one index page and each of the
at least one data page is uniquely linked to one of the at least
one index page , and the aggregator logic is configured to , for
each of the at least one index page , aggregate the latest
expiration time for each of the at least one data page
uniquely linked thereto to determine a latest index expiration
time , and store the latest index expiration time in its asso
ciated index page of the at least one index page according to
the aggregated latest expired times . In the embodiment , the
iterator logic configured to determine a queue location in
one of the at least one data page for the next valid message
based on a comparison of the current time and the latest
index expiration time , and bypass one or more of the at least
one index page to dequeue the valid message .
[0124] In an embodiment of the system , the queue is
configured to include at least one root page to which each of
the at least one index page is uniquely linked , and the
aggregator logic is configured to aggregate the latest index
expiration time for each of the at least one index page to
determine a latest root expiration time , and store the latest
index expiration time in its associated root page of the at
least one root page according to the aggregated latest index
expired times . In the embodiment , the iterator logic is
configured to determine a queue location in one of the at
least one data page for the next valid message based on a
comparison of the current time and the latest root expiration
time , and bypass one or more of the at least one root page
to dequeue the valid message .
[0125] In an embodiment , the system includes dequeue
logic configured to dequeue the valid message from the data
page that includes the queue location , and mark the
dequeued valid message as having been dequeued and as
invalid , where the queue has a tree structure .
[0126] In an embodiment , the system further includes
timeout logic configured to abort one or more operations of
the iterator logic or the dequeue logic based on a timeout
timer elapsing from a time of said receiving .
[0127] In an embodiment of the system , the request com
prises a message - specific value for the expiry time , and the
system includes expiry logic configured to mark the next
valid message as expired subsequent to the passage of the
expiry time . In an embodiment , at least one additional
request also comprises the message - specific value for at
least one respective expiry time , and the expiry logic is
configured to mark the at least one additional request as
expired subsequent to the passage of the expiry time . In the
embodiment , the aggregator logic is configured to aggregate
messages that have a common expiry time together subse
quent to expiring .
[0128] In an embodiment , the system includes a storage
tree configured to store and maintain the queue and zero or
more additional queues , the queue being configured as a tree
structure , and the iterator logic is configured to locate the
queue in the storage tree based on a name of the queue
provided in the request .
[0129] A computer readable memory storing program
instructions that , when executed by one or more processing
devices , perform a method , is also described . The method
includes aggregating expired messages in a queue to deter
mine expiration times for the expired messages , the queue
comprising a first index page , and a first data page and a
second data page linked with the first index page . The
method also includes determining a location in the queue for

V . Conclusion
[0134] While various examples of the present invention
have been described above , it should be understood that they
have been presented by way of example only , and not
limitation . It will be apparent to persons skilled in the
relevant art that various changes in form and detail can be
made therein without departing from the spirit and scope of
the invention . Thus , the breadth and scope of the present
invention should not be limited by any of the above
described examples , but should be defined only in accor
dance with the following claims and their equivalents .
What is claimed is :
1 . A system for dequeuing messages in a queue that is

temporally ordered , the system comprising :
at least one non - volatile storage device configured to

store :
queue logic for providing and managing the queue , the

queue being configured to include at least one data
page ; and

at least one processor configured to perform operations on
the queue based on the queue logic , the queue logic
comprising :
enqueue logic configured to enqueue at least one valid
message , each having an expiry time , in a tail data
page of the least one data page that includes a tail of
the queue ;

aggregator logic configured to :
for each of the at least one data page :

aggregate expired messages to determine an expi
ration time of the expired messages of the at
least one data page ; and

store a latest expiration time , the latest expiration
time representing a latest value of the aggre
gated expired messages of its associated data
page , with its associated data page ;

US 2018 / 0324129 A1 Nov . 8 , 2018
13

dequeue logic configured to receive a request to
dequeue a valid message of the at least one valid
message ; and

iterator logic configured to :
determine a queue location in one of the at least one

data page for a next valid message based on a
comparison of a current time and the latest expi
ration time for one or more of the at least one data
page ; and

bypass one or more of the at least one data page to
dequeue the valid message from a data page that
includes the queue location of the at least one data
page .

2 . The system of claim 1 , wherein the queue is configured
to include at least one index page and each of the at least one
data page is uniquely linked to one of the at least one index
page ;

wherein the aggregator logic is configured to , for each of
the at least one index page :
aggregate the latest expiration time for each of the at

least one data page uniquely linked thereto to deter
mine a latest index expiration time ; and

store the latest index expiration time in its associated
index page of the at least one index page according
to the aggregated latest expired times ; and

wherein the iterator logic configured to :
determine a queue location in one of the at least one

data page for the next valid message based on a
comparison of the current time and the latest index
expiration time ; and

bypass one or more of the at least one index page to
dequeue the valid message .

3 . The system of claim 2 , wherein the queue is configured
to include at least one root page to which each of the at least
one index page is uniquely linked ;

wherein the aggregator logic is configured to :
aggregate the latest index expiration time for each of

the at least one index page to determine a latest root
expiration time ; and

store the latest index expiration time in its associated
root page of the at least one root page according to
the aggregated latest index expired times ; and

wherein the iterator logic is configured to :
determine a queue location in one of the at least one

data page for the next valid message based on a
comparison of the current time and the latest root
expiration time ; and

bypass one or more of the at least one root page to
dequeue the valid message .

4 . The system of claim 3 , further comprising dequeue
logic configured to :

dequeue the valid message from the data page that
includes the queue location ; and

mark the dequeued valid message as having been
dequeued and as invalid .

5 . The system of claim 3 , further comprising timeout logic
configured to :

abort one or more operations of the iterator logic or the
dequeue logic based on a timeout timer elapsing from
a time of said receiving .

6 . The system of claim 1 , wherein the request comprises
a message - specific value for the expiry time ;

the system further comprising expiry logic configured to
mark the next valid message as expired subsequent to
the passage of the expiry time .

7 . The system of claim 6 , wherein at least one additional
request also comprises the message - specific value for at
least one respective expiry time ;

wherein the expiry logic is configured to mark the at least
one additional request as expired subsequent to the
passage of the expiry time ; and

wherein the aggregator logic is configured to aggregate
messages that have a common expiry time together
subsequent to expiring .

8 . The system of claim 1 , the system further comprising :
a storage tree configured to store and maintain the queue

and zero or more additional queues , the queue being
configured as a tree structure ; and

wherein the iterator logic is configured to locate the queue
in the storage tree based on a name of the queue
provided in the request .

9 . A computer - implemented method for dequeuing mes
sages in a queue that is temporally ordered , the method
comprising :

in the queue that includes a first index page of the queue
linked with a first data page of the queue and a second
data page of the queue , and having first expired mes
sages that were previously queued stored in the first
data page , queuing at least one valid message , each
having an expiry time , in the second data page ;

aggregating the first expired messages for the first data
page to determine a first latest expiration time for the
first expired messages in the first data page ;

storing the first latest expiration time in the first data page
and in the first index page based on the aggregating ;

receiving by the queue a dequeue request to dequeue a
valid message of the at least one valid message ;

determining a next valid message is in the second data
page based on a comparison of a current time and at
least the first latest expiration time ; and

bypassing the first data page to dequeue the valid mes
sage , corresponding to the dequeue request , from the
second data page .

10 . The computer - implemented method of claim 9 , the
method further comprising :

dequeuing the valid message from the second data page ;
and

marking the dequeued valid message as having been
dequeued and as invalid .

11 . The computer - implemented method of claim 10 ,
wherein one or more of said determining , said bypassing , or
said dequeuing is aborted based on a timeout timer elapsing
from a time of said receiving .

12 . The computer - implemented method of claim 9 ,
wherein the second data page includes the at least one valid
message and at least one second expired message ;

wherein said aggregating further comprises aggregating
the at least one second expired message for the second
data page to determine a second latest expiration time
for the at least one second expired message ; and

wherein said storing further comprises storing the second
latest expiration time in the second data page based on
the aggregating

13 . The computer - implemented method of claim 9 , fur
ther comprising :

US 2018 / 0324129 A1 Nov . 8 , 2018
14

receiving at least one enqueue request to queue the at least
one valid message , each of the at least one enqueue
request including a message - specific value for the
expiry time ; and

marking the valid message as expired subsequent to the
passage of the expiry time .

14 . The computer - implemented method of claim 13 ,
wherein two of the at least one enqueue request comprise the
message - specific value for at least one respective expiry
time ; and

the method further comprising marking the two of the at
least one enqueue request as expired subsequent to the
passage of the expiry time , wherein the two of the at
least one enqueue request that have a common expiry
time are aggregated together , subsequent to expiring ,
during said aggregating .

15 . The computer - implemented method of claim 9 ,
wherein the queue is maintained in a storage tree comprising
zero or more additional queues , and wherein the queue has
a tree structure ; and

wherein the dequeue request comprises a name of the
queue ;

the method further comprising :
locating the queue in the storage tree based on the name
of the queue prior to said determining .

16 . A computer readable memory storing program instruc
tions that , when executed by one or more processing
devices , perform a method , the method comprising :

aggregating expired messages in a queue to determine
expiration times for the expired messages , the queue
comprising a first index page , and a first data page and
a second data page linked with the first index page ;

determining a location in the queue for a next valid
message based on a comparison of a current time and
the expiration times ; and

bypassing at least one of an index page of the queue , or
a data page of the queue to dequeue a valid message
based on the location .

17 . The computer readable memory of claim 16 , the
method further comprising :

storing a latest expiration time of the expiration times for
the data page in the data page based on the aggregating ;

wherein said determining comprises comparing the cur
rent time to the latest expiration time ; and

wherein said bypassing comprises bypassing the data
page when the latest expiration time is before the
current time .

18 . The computer readable memory of claim 16 , the
method further comprising :

storing a latest expiration time of the expiration times for
one or more data pages linked to the index page ,
including the data page , in the index page based on the
aggregating ;

wherein said determining comprises comparing the cur
rent time to the latest expiration time ; and

wherein said bypassing comprises bypassing the index
page when the latest expiration time is before the
current time .

19 . The computer readable memory of claim 16 , the
method further comprising :

dequeuing the valid message based on the location ; and
marking the dequeued valid message as having been

dequeued and as invalid ;
wherein the queue comprises a tree structure .
20 . The computer readable memory of claim 16 , the

method further comprising :
receiving a request to enqueue the next valid message that

comprises a message - specific value for an expiry time ;
marking the next valid message as expired responsive to

the passage of the expiry time ; and
subsequently aggregating the expired messages in the

queue again to determine updated expiration times for
the expired messages .

