
THE TWO TORT DIT U NONTON MOMENTIN
US 20180032379A1

(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0032379 A1

Meredith et al . (43) Pub . Date : Feb . 1 , 2018

(54) TASK ALLOCATION AMONG DEVICES IN A
DISTRIBUTED DATA STORAGE SYSTEM

@ (71) Applicant : AT & T Intellectual Property I , L . P . ,
Atlanta , GA (US) (57)

@ (72) Inventors : Sheldon Kent Meredith , Roswell , GA
(US) ; William Cottrill , Canton , GA
(US) ; Juliette Zerick , Alpharetta , GA
(US)

(52) U . S . CI .
CPC GO6F 9 / 5083 (2013 . 01) ; H04L 67 / 1097

(2013 . 01) ; G06F 9 / 5016 (2013 . 01) ; G06F
9 / 5038 (2013 . 01)

ABSTRACT
In one example , a processor may receive a first request to
process a first task , the first request including a first esti
mated central processing unit utilization for the first task and
a first estimated memory utilization for the first task and
receive central processing unit capacities and memory
capacities of a plurality of sub - data routers including at least
a first sub - data router . The processor may further determine
that the first sub - data router has a lowest central processing
unit capacity from among the plurality of sub - data routers
that is sufficient to accommodate the first estimated central
processing unit utilization for the first task and determine
that the first sub - data router has a memory capacity that is
sufficient to accommodate the first estimated memory utili
zation for the first task . The processor may then assign the
first task to the first sub - data router .

@ (21) Appl . No . : 15 / 222 , 729

(22) Filed : Jul . 28 , 2016

Publication Classification
(51) Int . Cl .

G06F 9 / 50 (2006 . 01)
H04L 29 / 08 (2006 . 01)

100
180

SUB - DATA ROUTER SET
150

STORAGE AND
PROCESSING NODES

160
" .

h 170 .

TASK HANDLER SET
120

TASK HANDLER
121

BUFFER LOGIC
131 141

REQUESTING
MACHINES

110

. . . SUB - DATA ROUTER |
151

. NODES
161

. . . .

181)

TASK HANDLER
122 REQUESTING

MACHINES
111

SUB - DATA ROUTER
152 TITY BUFFER

132
LOGIC
142

NODES
162

TASK HANDLER
123 190

37
31 76
99 ,

REQUESTING
MACHINES

112

NODES
163

BUFFER
133

LOGIC
143

SUB - DATA ROUTER
153

NODES
164 REQUESTING

MACHINES
113

TASK HANDLER
124

BUFFER LOGIC
134 144

190
. . . SUB - DATA ROUTER

154

- . -

. . . -

-

100

-

-

-

-

-

-

-

-

-

-

-

SUB - DATA ROUTER SET 150

180

STORAGE AND PROCESSING NODES 160
- -

170

-

TASK HANDLER SET 120 TASK HANDLER 121 BUFFER LOGIC
131

-

Patent Application Publication

-

190

-

REQUESTING MACHINES 110

- -

SUB - DATA ROUTER
151

179

141

NODES 161

180

170

REQUESTING MACHINES

TASK HANDLER 122

190

SUB - DATA ROUTER 152

111

LOGIC

BUFFER 132

NODES 162

142

- - - - - - - - -

Feb . 1 , 2018 Sheet 1 of 5

170

REQUESTING MACHINES 112

TASK HANDLER 123 BUFFER LOGIC
143

NODES 163

1190

SUB - DATA ROUTER
153

133

NODES 164

TASK HANDLER

170

-

124

REQUESTING MACHINES 113

190

LOGIC

180

BUFFER 134

SUB - DATA ROUTER 154

144

- -

US 2018 / 0032379 A1

FIG . 1

205

200

(

START
Y

RECEIVE A FIRST REQUEST TO PROCESS A FIRST TASK , THE FIRST REQUEST INCLUDING A FIRST ESTIMATED CENTRAL PROCESSING UNIT (CPU) UTILIZATION AND A FIRST ESTIMATED MEMORY UTILIZATION FOR THE FIRST TASK

210

Patent Application Publication

ORY CAPACITES DE LA LIBRE

RECEIVE CPU CAPACITIES AND MEMORY CAPACITIES OF A PLURALITY OF SUB - DATA ROUTERS INCLUDING AT LEAST A
FIRST SUB - DATA ROUTER

DETERMINE FIRST SUB - DATA ROUTER WITH LOWEST CPU CAPACITY FROM AMONG THE PLURALITY OF SUB - DATA ROUTERS THAT IS SUFFICIENT TO ACCOMMODATE THE FIRST ESTIMATED CPU UTILIZATION FOR THE FIRST TASK
DETERMINE THAT THE FIRST SUB - DATA ROUTER HAS A MEMORY CAPACITY THAT IS SUFFICIENT TO ACCOMMODATE THE

FIRST ESTIMATED MEMORY UTILIZATION FOR THE FIRST TASK ASSIGN THE FIRST TASK TO THE FIRST SUB - DATA ROUTER

Feb . 1 , 2018 Sheet 2 of 5

-

-

-

-

- -

-

-

-

- -

-

-

-

097

RECEIVE A NOTIFICATION FROM THE FIRST SUB - DATA ROUTER THAT THE FIRST TASK IS PLACED IN A PROCESSING QUEUE AT THE FIRST SUB - DATA ROUTER

- -

.

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- - . . .

- - - - -

- -

-

- -

-

-

-

-

-

-

-

-

-

- - - - - - - - -

-

-

- -

-

-

-

- -

- -

-

-

-

-

-

- -

-

-

-

-

-

- -

-

-

-

-

-

-

- -

- -

-

-

- -

-

—

—

. - -

-

- -

- - -

-

-

-

-

-

-

-

-

- -

-

-

-

-

ASSIGN THE FIRST TASK TO ANOTHER SUB - DATA ROUTER

- - - - - - - - - - - - - - -

-

-

-

-

-

. ara

-

mes -

-

-

-

-

-

-

-

-

-

-

-

- -

- -

-

. . .

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- -

-

-

-

-

-

-

-

-

-

-

-

-

www
-

i

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- -

-

- -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- -

-

-

-

-

-

-

-

-

- -

- -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

i

1 - 17

TRANSMIT A CANCELLATION TO THE FIRST SUB - DATA ROUTER

.

.

.

-

-

-

- -

-

-

-

-

-

-

- -

-

-

- -

-

-

-

-

-

-

-

-

-

M

-

-

-

M

-

- -

-

w

-

-

ww

- -

-

-

ni

-

-

w

-

-

w

-

-

ran

-

-

-

-

—

-

- -

.

-

-

-

-

-

-

-

-

- -

-

-

- -

Š

-

-

-

-

-

-

-

-

-

wey

women
w

.

.

.

- -

- -

-

| RECEIVE FROM FIRST SUB - DATA ROUTER ACTUAL CPU AND MEMORY UTILIZATIONS FOR PROCESSING THE FIRST TASK

-

- -

-

-

-

-

-

-

-

-

- - - -

-

-

-

-

-

-

-

-

-

-

-

-

-

- - -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

295 295

END CEND

US 2018 / 0032379 A1

FIG . 2

305

START

300

305

START RECEIVE A FIRST REQUEST TO PROCESS A FIRST TASK , THE FIRST REQUEST INCLUDING A FIRST ESTIMATED CENTRAL PROCESSING UNIT (CPU) UTILIZATION AND A FIRST ESTIMATED MEMORY UTILIZATION FOR THE FIRST TASK

210

Patent Application Publication

320

RECEIVE CPU CAPACITIES AND MEMORY CAPACITIES OF A PLURALITY OF SUB - DATA ROUTERS INCLUDING AT LEASTA FIRST SUB - DATA ROUTER
DETERMINE FIRST SUB - DATA ROUTER WITH LOWEST MEMORY CAPACITY FROM AMONG THE PLURALITY OF SUB - DATA ROUTERS THAT IS SUFFICIENT TO ACCOMMODATE THE FIRST ESTIMATED MEMORY UTILIZATION FOR THE FIRST TASK

se poate

DETERMINE THAT THE FIRST SUB - DATA ROUTER HAS A CPU CAPACITY THAT IS SUFFICIENT TO ACCOMMODATE THE FIRST
ESTIMATED CPU UTILIZATION FOR THE FIRST TASK ASSIGN THE FIRST TASK TO THE FIRST SUB - DATA ROUTER

Feb . 1 , 2018 Sheet 3 of 5

ea

-

-

-

- -

-

-

- -

-

-

- - - - - - -

- -

-

-

-

- -

-

-

-

-

-

-

- -

- -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

pe

. . -

-

-

-

—

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- -

-

-

-

- - - - - - IL

RECEIVE A NOTIFICATION FROM THE FIRST SUB - DATA ROUTER THAT THE FIRST TASK IS PLACED IN A PROCESSING
QUEUE AT THE FIRST SUB - DATA ROUTER _ _ _ _

-

ASSIGN THE FIRST TASK TO ANOTHER SUB - DATA ROUTER

-
-

TRANSMIT A CANCELLATION TO THE FIRST SUB - DATA ROUTER

!

-

-

-

-

-

-

-

-

-

-

- - -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- -

-

-

-

-

-

-

-

- -

- -

a beau
L

— . .

—

-

-

-

-

MAL

U

-

-

-

-

-

-

-

. . . -

-

-

-

. . . .

- -

-

-

.

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- -

- -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

in

—

-

—

—

—

—

-

-

-

—

-

-

-

-

-

-

-

-

-

.

- -

-

-

-

- - -

-

-

-

-

-

-

-

-

-

-

RECEIVE FROM FIRST SUB - DATA ROUTER ACTUAL CPU AND MEMORY UTILIZATIONS FOR PROCESSING THE FIRST TASK

-

-

-

-

-

-

-

- -

-

- - -

-

-

-

- - -

-

-

-

- -

- -

-

-

-

- -

-

- -

- -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- -

-

-

-

-

- - - -

-

-

-

-

-

-

-

-

-

-

- -

-

-

-

-

-

-

-

-

-

-

-

- -

- 395

END ENDY FIG . 3

US 2018 / 0032379 A1

- 405

400

C

START

- 410

RECEIVE A SECOND REQUEST TO PROCESS A SECOND TASK , THE SECOND REQUEST INCLUDING A SECOND ESTIMATED CPU UTILIZATION AND A SECOND ESTIMATED MEMORY UTILIZATION FOR THE SECOND TASK

Patent Application Publication

YES

- 420

BELOW THRESHOLD CPU AND / OR MEMORY UTILIZATION ?
NO DETERMINE SECOND SUB - DATA ROUTER WITH LOWEST CPU CAPACITY OR LOWEST MEMORY CAPACITY FROM AMONG THE PLURALITY OF SUB - DATA ROUTERS THAT IS SUFFICIENT TO ACCOMMODATE THE SECOND ESTIMATED CPU

UTILIZATION OR THE SECOND ESTIMATED MEMORY UTILIZATION FOR THE SECOND TASK

- 440

DETERMINE THAT THE SECOND SUB - DATA ROUTER HAS A MEMORY CAPACITY OR A CPU CAPACITY THAT IS SUFFICIENT TO ACCOMMODATE THE SECOND ESTIMATED MEMORY UTILIZATION OR THE SECOND ESTIMATED CPU UTILIZATION FOR THE SECOND TASK

Feb . 1 , 2018 Sheet 4 of 5

450

ASSIGN THE SECOND TASK TO THE SECOND SUB - DATA ROUTER

- 495

END CEND Y

- 460

ASSIGN THE SECOND TASK TO A SUB - DATA ROUTER WITH A LOWEST LATENCY

FIG . 4

US 2018 / 0032379 A1

500

Patent Application Publication

MODULE 505

I / O DEVICES , E . G . , STORAGE DEVICE 506

Feb . 1 , 2018 Sheet 5 of 5

PROCESSOR 502

MEMORY 504 wwwwww

US 2018 / 0032379 A1

FIG . 5

US 2018 / 0032379 A1 Feb . 1 , 2018

TASK ALLOCATION AMONG DEVICES IN A
DISTRIBUTED DATA STORAGE SYSTEM

utilization for the first task . The processor may then assign
the first task to the first sub - data router .

BRIEF DESCRIPTION OF THE DRAWINGS [0001] The present disclosure relates generally to distrib
uted data storage and processing systems , and more particu
larly to an architecture where multiple task handlers service
requests for task processing from multiple requesting
devices , and route the tasks to different sub - data routers
depending upon the memory and central processing unit
requirements of the tasks , and the memory and central
processing unit capacities of the sub - data routers .

BACKGROUND
[0002] Some types of distributed data storage and pro
cessing systems store files as large blocks , e . g . , 128 mega
bytes (MB) or more , which may be spread over multiple
physical storage devices in various locations . In addition ,
multiple copies of the blocks may be stored in different
physical storage devices for redundancy purposes . To track
the locations of files and / or the blocks of such files , some
systems may include a central data router that knows where
the blocks are being stored . When a requesting machine
seeks to access a file , data within a file , or multiple files
stored in the system , a request may be directed to the central
data router to determine which physical devices have stored
the relevant blocks . However , numerous simultaneous
requests may overload the central data router .

[0005] The teaching of the present disclosure can be
readily understood by considering the following detailed
description in conjunction with the accompanying drawings ,
in which :
[0006] FIG . 1 illustrates an example network or system
related to the present disclosure ;
[0007] FIG . 2 illustrates a flowchart of an example method
for assigning a task to a sub - data router , in accordance with
the present disclosure ;
[0008] FIG . 3 illustrates a flowchart of an additional
example method for assigning a task to a sub - data router , in
accordance with the present disclosure ;
[0009] FIG . 4 illustrates a flowchart of an example method
of further operations for assigning a task to a sub - data router ,
in accordance with the present disclosure ; and
[0010] FIG . 5 illustrates an example high - level block
diagram of a computer specifically programmed to perform
the steps , functions , blocks , and / or operations described
herein .
[0011] To facilitate understanding , identical reference
numerals have been used , where possible , to designate
identical elements that are common to the figures .

SUMMARY
DETAILED DESCRIPTION [0003] In one example , the present disclosure discloses a

device , computer - readable medium , and method for assign
ing a task to a sub - data router . For instance , a method may
include a processor receiving a first request to process a first
task , the first request including a first estimated central
processing unit utilization for the first task and a first
estimated memory utilization for the first task , and receiving
central processing unit capacities and memory capacities of
a plurality of sub - data routers including at least a first
sub - data router . The processor may further determine that
the first sub - data router has a lowest central processing unit
capacity from among the plurality of sub - data routers that is
sufficient to accommodate the first estimated central pro
cessing unit utilization for the first task , and determine that
the first sub - data router has a memory capacity that is
sufficient to accommodate the first estimated memory utili
zation for the first task . The processor may then assign the
first task to the first sub - data router .
[0004] In another example , the present disclosure dis
closes an additional device , computer - readable medium , and
method for assigning a task to a sub - data router . For
instance , a method may include a processor receiving a first
request to process a first task , the first request including a
first estimated central processing unit utilization for the first
task and a first estimated memory utilization for the first
task , and receiving central processing unit capacities and
memory capacities of a plurality of sub - data routers includ
ing at least a first sub - data router . The processor may further
determine that the first sub - data router has a lowest memory
capacity from among the plurality of sub - data routers that is
sufficient to accommodate the first estimated memory utili
zation for the first task , and determine that the first sub - data
router has a central processing unit capacity that is sufficient
to accommodate the first estimated central processing unit

[0012] Examples of the present disclosure optimize the
allocation of tasks among distributed computers , or nodes ,
by relocating the decision processing about which nodes
should handle which tasks from a central data router to a set
of sub - data routers . For example , in other approaches , when
a machine has a task to execute , the machine monitors the
availability of a set of other , remote machines and deter
mines which among them to send the task . Some types of
distributed data storage and processing systems have a
central data router that knows where files , or blocks of the
files , are being stored in order to manage access and redun
dancy . Accordingly , when a requesting machine seeks to
access a file , data within a file , or multiple files stored in the
system , a request may be directed to the central data router
to determine which nodes have stored the relevant blocks .
However , numerous simultaneous requests may overload
the central data router . In contrast , in examples of the present
disclosure a plurality of sub - data routers are utilized , where
each of the sub - data routers has a view of the statuses and
capabilities of the various nodes in the system .
[0013] In one example , a task from a requesting machine
may be distributed to any sub - data router based upon which
sub - data router is most idle in terms of processing and
memory . However , if each requesting machine were left to
select which sub - data router to process a task , multiple
requesting machines could still overload one of the sub - data
routers by making the same selection at or around the same
time . In one example , randomization of task assignments to
sub - data routers might avoid this issue . However , this
assumes that all of the sub - data routers have the same
capabilities . If the sub - data routers do not have similar
capabilities , then every requesting machine tasking the sub
data routers has to know about the relative capabilities . In

US 2018 / 0032379 A1 Feb . 1 , 2018

addition , just knowing about the capabilities of any of the
sub - data routers will not provide any insights as to their
current utilizations .
[0014] Examples of the present disclosure avoid each
requesting machine having to know about the capabilities
and current utilizations of each sub - data router . Instead , each
requesting machine may send task requests to a designated
or assigned task handler of a plurality of task handlers , each
of which can take task requests from many different request
ing machines . In one example , a requesting machine may
also include an estimate of a central processing unit (CPU)
utilization and memory utilization of the task in a request to
process a task . In addition , each task handler may also
collect central processing unit (CPU) utilization and
memory utilization information from multiple sub - data rout
ers . It should be noted that CPU utilization and memory
utilization may be considered interchangeable with CPU
capacity and memory capacity , respectively . In particular ,
once a sub - data router ' s CPU or memory " utilization ” is
known , since each task handler also knows the overall
capabilities of each sub - data router , the CPU or memory
" capacity of the sub - data router is also known , and vice
versa .
[0015] In one example , the task handlers buffer or queue
incoming tasks until the tasks are assigned . Each task
handler may then determine the sub - data router that can
optimally service the oldest requested task or the next task
to be processed within the task handler ' s own buffer . For
instance , a task handler may have a buffer of tasks that is 32
deep . The task handler may look at the oldest task , or the
next task to be assigned based on some other criteria , such
as a priority rank of a requesting machine , a priority rank
based upon the type of request , and so forth . The task
handler may note the CPU utilization and memory utiliza
tion estimates for the task and search among the sub - data
routers for an optimal sub - data router to service the task . In
one example , the estimated CPU utilization and memory
utilization may be independently scored , e . g . , in terms of
megahertz (MHz) and megabytes (MB) , on a scale of 1 - 10 ,
1 - 100 , etc . In one example , the anticipated size of the dataset
and the type of processing involved may be used to set these
scores .
[0016] In one example , a task handler looks for a sub - data
router with the lowest CPU utilization (or greatest spare
CPU capacity) , but then uses the sub - data router ' s memory
utilization (or capacity) as a rejecting filter prior to forward
ing the task . For example , there may be two sub - data routers
(for illustrative purposes with equal or substantially equal
total CPU and memory capabilities) . The first sub - data
router may have a 10 % CPU utilization and 80 % memory
utilization and the second sub - data router may have a 40 %
CPU utilization and 20 % memory utilization . If the next task
in the buffer of the task handler is estimated to require 40 %
of CPU and 30 % of memory for processing , the task handler
would identify the first sub - data router as an initial candidate
for processing the task , since the first sub - data router has the
lower CPU utilization . However , the task handler would
determine that the first sub - data router ' s memory utilization
is currently too high to service the task . Therefore , the
handler would next consider the second sub - data router and
determine that the second sub - data router has sufficient
capacity in terms of both CPU and memory utilizations to
process the task . Thus , the task may be assigned to the
second sub - data router . It should be noted that memory

utilization may be considered a more limiting factor than
CPU utilization because swapping memory contents with
storage is costly in terms of both time and CPU usage .
Accordingly , in another example , a task handler may first
identify a sub - data router with a lowest memory utilization ,
and then use the CPU utilization as a rejecting criteria . In
any event , once the task handler assigns the task to a
sub - data router , the task handler may remove the task from
its buffer .
[0017] In another example , a task handler may select a
sub - data router with an initial criteria of a current CPU
utilization (or a memory utilization) that matches the esti
mated demand of the task . For instance , the optimum use of
sub - data routers may be achieved when the tasks are sent to
sub - data routers that are the " best fit . ” In an illustrative
example , there may be two tasks to be assigned within a
system having two identical or substantially similar sub - data
routers . The first task may have an estimate of needing 30 %
of CPU and the second task may have an estimate of 60 % .
Assuming the first sub - data router has 65 % CPU capacity
and the second sub - data router has 45 % , if the first task is
assigned to the first sub - data router , it will be processed
without issue , since there is plenty of CPU capacity . How
ever , the second task has an estimate of 60 % CPU utiliza
tion , while the second sub - data router only has 45 % spare
CPU capacity . Thus , if the second task is assigned to the
second sub - data router , processing of all operations at the
second sub - data router may be delayed . On the other hand ,
if the first task is instead assigned to the second sub - data
router , the first task should be processed without issue since
the second sub - data router has sufficient CPU capacity
(assuming in the present example that it also has enough
memory resources) . In addition , the second task may be
assigned to the first sub - data router , which still has sufficient
CPU resources to handle the estimated CPU utilization of
the second task .
[0018] In one example , the optimal distribution of tasks to
sub - data routers may be achieved by the task handlers
assigning each task to the sub - data router that has just
enough CPU capacity to fulfill the estimated CPU utiliza
tion . In one example , this is objectively achieved by the task
handler identifying the sub - data router with the lowest CPU
capacity that is still sufficient to meet the estimated CPU
utilization of the task , and assigning the task to that sub - data
router if the memory capacity of that sub - data router is also
sufficient to meet the estimated memory utilization for the
task . If the memory capacity is insufficient , the task handler
may then consider a second sub - data router with a next
lowest CPU capacity that is still sufficient to meet the
estimated CPU utilization of the task (noting that the second
sub - data router may have a greater spare CPU capacity than
the first sub - data router to be considered) . As mentioned
above , in one example , memory utilization may be consid
ered a more limiting factor than CPU utilization . Accord
ingly , in another example , a task handler may select a
sub - data router with a lowest memory utilization that is still
sufficient to meet the estimated memory utilization of the
task , and assign the task to the sub - data router if the CPU
capacity of the sub - data router is also sufficient to meet the
estimated CPU utilization for the task .
[0019] In one example , latencies in the system may also be
taken into account for various purposes . For instance , task
handlers may have a view of the transit time between various
requesting machines and various sub - data routers . The

US 2018 / 0032379 A1 Feb . 1 , 2018

latency may be impacted by the links and / or networks
between a requesting machine and a sub - data router that
may receive the task . Queuing / buffering in the task handlers
and / or sub - data routers may also add to the latency . In any
case , the task handlers may track the latency impacts of
various tasks with respect to various requesting machine /
sub - data router pairings over time to use in predicting
latencies associated with future requests to process tasks .
Thus , the latency can also be included in the determination
of which sub - data router should be assigned a task .
[0020] In one example , latency estimates may also be used
in additional aspects . In particular , it is possible that some
smaller tasks may be sitting behind larger tasks in a buffer
of a task handler . In one example , small requests may be
assigned to the lowest latency sub - data router , even if the
sub - data router is approaching its limits . In one example ,
small requests may also bypass buffering / queuing in the task
handlers and / or in the sub - data routers . In particular , it may
take CPU time to buffer a request / task . It may also involve
CPU time to perform various computations to assign the
task . In addition , at the sub - data router side , it may take CPU
time to buffer / queue the task , send a notification of the
buffering to the sending task handler , and so forth , which
could take even more time and resources than to simply
perform the task . Thus , in one example there is two aspects
of assigning a task to a sub - data router . A request / task over
a threshold is optimally assigned based upon CPU and
memory utilization estimates of the task and CPU and
memory capacities of the sub - data routers , while a request /
task under a threshold of anticipated CPU and / or memory
utilization may simply be assigned to the sub - data router
with the lowest latency path . In one example , a threshold
CPU utilization and / or memory utilization may be set to
differentiate " small ” tasks from other tasks . In another
example , a threshold that defines the size of a “ small ” task
may be stated in terms of whether its size is such that
processing the task would be faster or use less resources than
the messaging that would be involved in sending a notifi
cation that the sub - data router is busy .
[0021] In one example , the present disclosure may include
a mechanism to avoid conflicts between task assignments
from different task handlers . Although it may be assumed
that a task handler will only assign a task to a sub - data router
with the capability to process the task , in some cases two
task handlers may attempt to assign tasks to the same
sub - data router at or around the same time , where the
sub - data router may be unable to process both requests
simultaneously . In one example , the sub - data routers may
also include queues for temporarily storing tasks awaiting
processing . In the event a sub - data router is not able to
process all requests that it has been assigned , the sub - data
router may select one or more of the tasks to be processed ,
and may send a notification to the task handler (s) of one or
more other tasks that are queued . If a task handler receives
such a notification , the task handler may then select a
different sub - data router to reassign the task , or may simply
allow the sub - data router to process the task in the order in
which it is queued . In the event the task handler reassigns the
task , the sub - data router that queued the task may be notified
so that the task may be removed from the queue at the
sub - data router . In another example , task handlers may be
rank ordered , and a sub - data router may select which of two
or more conflicting tasks to process first in accordance with
the rank of the sending task handler . The rank may be

substantially fixed , or may rotate based upon which task
handler most recently assigned a task , which task handler
has waited the longest since last sending a task , and so forth .
[0022] In still another example , a task handler may con
sider latencies between itself and the other task handlers . For
example , when the task handler makes a decision to send a
particular task to a particular sub - data router , the task
handler may first send a notification to the other task
handlers . Since it may know the longest latency to reach a
farthest of the other task handlers (e . g . , in terms of distance
or latency / time of communication) , the task handler may
delay sending the task to the sub - data router for such
duration of time . If a conflict occurs where two or more task
handlers send a notification of an intention to send a task to
the same sub - data router , the task handlers can then resolve
the conflict . For instance , a task handler that has recently
deferred to other task handlers for other conflicting task
assignments may receive a greater priority ranking in deter
mining whether its task should take precedence in resolving
a current conflict . In another example , the task from the
closest or lowest latency task handler with respect to the
sub - data router may take precedence .
[0023] In accordance with the present disclosure , request
ing machines do not need to know anything about the set of
task handlers or the set of sub - data routers . In one example ,
each requesting machine sends its requests to one task
handler . In one example , a second task handler may be
identified as a redundancy backup . Each task handler is able
to buffer / queue requests from multiple requesting machines .
Therefore , the requesting machines assigned to a particular
task handler do not have to wait on the task handler while the
task handler is momentarily busy . In addition each sub - data
router is optimally utilized so that no single sub - data router
is over - burdened while others are relatively idle . The archi
tecture supports automatic , relatively uniform distribution of
tasks during demand spikes . In addition , due to a more even
distribution of tasks , the total amount of sub - data router
resources may be lessened , thereby improving initial capital
outlays , maintenance costs , and facilities costs . These and
other aspects of the present disclosure are discussed in
greater detail below in connection with the examples of
FIGS . 1 - 4 .
[0024] To aid in understanding the present disclosure ,
FIG . 1 illustrates a block diagram depicting one example of
a network or system 100 suitable for performing or enabling
the steps , functions , operations and / or features described
herein . As illustrated in FIG . 1 , system 100 may comprise
groups of requesting machines 110 - 113 , a task handler set
120 comprising task handlers 121 - 124 , a sub - data router set
150 comprising sub - data routers 151 - 154 , and storage and
processing nodes 160 , which may include several groups of
nodes 161 - 164 . Each of the groups of requesting machines
110 - 113 may be assigned to a respective task handlers
121 - 124 in the task handler set 120 . Alternatively , or in
addition , task handlers 121 - 124 may be designated for
different groups of requesting machines 110 - 113 . The groups
of requesting machines 110 - 113 and task handlers 121 - 124
are illustrated as being connected via links 170 (and link
179) . In one example , links 170 and link 179 represent any
physical connections that may be made directly or indirectly
between computing devices . Thus , links 170 and link 179
may represent electrical or optical wiring between machines ,
a wireless physical layer , one or more networks , and so
forth . Links 180 between the task handlers 121 - 124 and

US 2018 / 0032379 A1 Feb . 1 , 2018

sub - data routers 151 - 154 , and links 190 between the sub -
data routers 151 - 154 and the storage and processing nodes
160 may have the same or similar composition . In one
example , requesting machines may have a redundant or a
failover task handler assigned in the event there is a problem
with a primary task handler . For instance , the group of
requesting machines 110 may be assigned to task handler
121 , while task handler 122 is designated as a backup
(reachable via link 179) .
[0025] The task handlers 121 - 124 in the task handler set
120 may be co - located , e . g . , in a same data center , in a same
rack , etc . , or may be distributed in various geographically
diverse locations . Similarly , each of the sub - data routers
151 - 154 in sub - data router set 150 may be co - located with
one or more other sub - data routers 151 - 154 in one location
or in several different locations . In addition , groups of nodes
161 - 164 may be in one location , or in several different
locations . In one example , the groups of requesting
machines 110 - 113 may be grouped based upon location or
based upon another criteria , such as a type of request that is
characteristic of the requesting machines in the group . For
example , requesting machines 110 may be co - located in one
data center , while requesting machines 111 are co - located in
another data center . Alternatively , or in addition , requesting
machines 110 may be deployed in several different locations
in a first region of a country , while requesting machines 111
may be deployed in several different locations in a second
region of the country . In still another example , requesting
machines 110 may be grouped together based upon the
requesting machines 110 generating requests that relate to a
first type of file containing a first type of records , while
requesting machines 111 may be grouped together based
upon the requesting machines 111 generating requests that
relate to a second type of file containing a second type of
records .
[0026] . In one example , a requesting machine in one of the
groups of requesting machines 110 - 113 may generate a
request to process a task , and forward the request to the
respective one of task handlers 121 - 124 . The task may relate
to storing files or accessing files stored in the storage and
processing nodes 160 , manipulating the files or performing
operations or transformations on the data contained in the
files , creating new files based upon the processing , deliver
ing raw data points , collecting records from multiple loca
tions and correlating the records to make various determi
nations , aggregating the records to make summary reports ,
and so on . In one example , the request to process the task
may include estimates of a CPU utilization and a memory
utilization for the task . In one example , the task handers
121 - 124 include respective buffers 131 - 134 . In the event that
the task handler is currently assigning a task to one of the
sub - data routers 151 - 154 , an incoming task may be placed
in the respective one of the buffers 131 - 134 . In one example ,
task handlers 121 - 124 may simply assign “ small ” requests
without buffering , e . g . , to a lowest latency sub - data router in
the sub - data router set 150 .
100271 . As illustrated in FIG . 1 , each of the task handlers
121 - 124 also includes respective logic modules 141 - 144 for
assigning a task to a sub - data router . For instance , in one
example , task handlers 121 - 124 may each comprise a com
puting device , such as computing device 500 depicted in
FIG . 5 , specifically configured to provide one or more
functions for assigning a task to a sub - data router , in
accordance with the present disclosure . In one example , the

logic modules 141 - 144 , may configure the respective task
handlers 121 - 124 to select sub - data routers from the sub
data router set 150 based upon the estimated CPU and
memory utilizations of various tasks that are requested , and
based upon the CPU and memory capacities of the respec
tive sub - data routers 151 - 154 . In this regard , sub - data rout
ers 151 - 154 may monitor their own statuses and periodically
report CPU and memory capacities to the task handlers
121 - 124 .
[0028] In one example , the task handlers 121 - 124 may
communicate with one another to determine a priority of
making assignments of tasks to sub - data routers in the
sub - data router set 150 . In one example , task handlers
121 - 124 may also determine latencies between and among
themselves such that a task handler making an assignment to
a sub - data router in the sub - data router set 150 may first send
a notification to the other task handlers in the task handler set
120 , and wait for a certain period of time corresponding to
the largest latency associated with another task handler in
the task handler set 120 before actually assigning the task to
the sub - data router that is selected .
[0029] When a task is assigned to one of the sub - data
routers 151 - 154 , the sub - data router may process the task if
the CPU capacity and the memory capacity of the sub - data
router permit such processing . Although it may be assumed
that a task handler will only assign a task to a sub - data router
with the capability to process the task , in some cases two
task handlers may attempt to assign tasks to the same
sub - data router at or around the same time , where the
sub - data router may be unable to process both requests
simultaneously . In one example , the sub - data routers 151
154 may also include queues for temporarily storing tasks
awaiting processing . In the event a sub - data router is not
able to process all requests that it has been assigned , the
sub - data router may select one or more of the tasks to be
processed , and may send a notification to the task handler (s)
of one or more other tasks that are queued . If a task handler
receives such a notification , the task handler may then select
a different sub - data router to reassign the task , or may
simply allow the sub - data router to process the task in the
order in which it is queued . In the event the task handler
reassigns the task , the sub - data router that queued the task
may be notified so that the task may be removed from the
queue at the sub - data router . In one example , sub - data
routers 151 - 154 may simply process “ small ” requests , with
out queuing , regardless of the current statuses of the sub
data routers 151 - 154 in terms of CPU utilization / capacity
and memory utilization / capacity .
[0030 When processing a task , a sub - data router in the
sub - data router set 150 may engage one more of nodes
161 - 164 in storage and processing nodes 160 . For instance ,
the sub - data router may parse the request and determine that
the request needs to access files with blocks stored in one of
nodes 161 and in one of nodes 163 . The sub - data router may
assign the one of nodes 161 and / or the one of nodes 163 to
process all or a portion of the blocks in accordance with the
task , or may assign a different node to copy the blocks and
to process the blocks in accordance with the task . For
instance , in one example , the sub - data router may implement
a map - reduce algorithm to distribute various operations of
the task to multiple nodes and to aggregate the results .
[0031] In one example , after a task is processed , a sub - data
router may report back to an assigning task handler with the
actual CPU and memory utilizations for the task . In addition

US 2018 / 0032379 A1 Feb . 1 , 2018

the actual CPU and memory utilizations , and parameters of
the task can be shared among all task handlers in the task
handler set 120 . Thus , statistics can be collected over all
tasks / requests and over all sub - data routers such that it can
lead to more accurate estimates of resource requirements of
requests for processing future tasks .
[0032] It should be noted that the system 100 has been
simplified . In other words , the system 100 may be imple
mented in a different form than that illustrated in FIG . 1 . For
example , the system 100 may be expanded to include other
components (not shown) such as additional groups of
requesting machines , additional task handlers , additional
sub - data routers , and so forth , without altering the scope of
the present disclosure . Similarly , system 100 may omit
various elements , substitute elements for components or
devices that perform the same or similar functions and / or
combine elements that are illustrated as separate compo
nents . Thus , these and other modifications of the system 100
are all contemplated within the scope of the present disclo
sure .
[0033] FIG . 2 illustrates a flowchart of an example method
200 for assigning a task to a sub - data router , in accordance
with the present disclosure . In one example , the steps ,
functions , or operations of the method 200 may be per
formed by a task handler , such as one of task handlers
121 - 124 in FIG . 1 . Alternatively , or in addition , in one
example , the steps , functions , or operations of method 200
may be performed by a computing device or system 500 ,
and / or processor 502 as described in connection with FIG .
5 below . For example , the processor 502 and memory 504
may represent the hardware logic and a memory storing
computer / hardware logic - executable instructions of an
example task handler , in accordance with the present dis
closure . For illustrative purposes , the method 200 is
described in greater detail below in connection with an
example performed by a processor , such as processor 502 in
FIG . 5 . The method begins in step 205 and proceeds to step
210 .
[0034] At step 210 , the processor receives a first request to
process a first task , the first request including a first esti
mated CPU utilization for the first task and a first estimated
memory utilization for the first task . The first request may be
received from one of a plurality of requesting devices that
may be assigned to send task requests to the processor . In
one example , the first task is associated with accessing data
that is stored in a distributed data storage system . In one
example , the first estimated CPU utilization and the first
estimated memory utilization are estimated from a knowl
edge base comprising feedback regarding past tasks as
processed via various sub - data routers . For example , sub
data routers may report on the actual CPU and memory
utilizations for completed tasks to a plurality of task sched
ulers within a distributed data storage system , which can
result in more accurate estimates for requests for new tasks
to be assigned . In one example , the estimated CPU utiliza
tion and memory utilization may be independently scored ,
e . g . , in terms of megahertz (MHz) and megabytes (MB) , on
a scale of 1 - 10 , 1 - 100 , etc . In one example , the anticipated
size of the dataset and the type of processing involved may
be used to set these scores . In one example , the first request
may further include a first latency requirement of the first
task .
0035] At step 220 , the processor receives CPU capacities
and memory capacities of a plurality of sub - data routers

including at least a first sub - data router . For instance , the
plurality of sub - data routers may monitor their current CPU
and memory utilizations (and / or CPU and memory capaci
ties) and report these utilizations / capacities to a plurality of
task schedulers of the distributed data storage system . In one
example , each of the plurality of sub - data routers includes a
list of blocks of the data , or files that are stored in the
distributed data storage system , and data nodes of the
distributed data storage system where the blocks are located
within the distributed data storage system .
(0036] At step 230 , the processor determines that a first
sub - data router has a lowest CPU capacity from among the
plurality of sub - data routers that is sufficient to accommo
date the first estimated CPU utilization for the first task . For
instance , the optimum use of sub - data routers may be
achieved when the tasks are sent to sub - data routers that are
the “ best fit . ” In one example , the optimal distribution of
tasks to sub - data routers may be achieved by the processor
assigning the first task to the sub - data router that has just
enough CPU capacity to fulfill the estimated CPU utiliza
tion . In one example , this is objectively achieved by the
processor identifying the sub - data router with the lowest
CPU capacity that is still sufficient to meet the estimated
CPU utilization of the task . In this case , the sub - data router
meeting this criterion is labeled as the first sub - data router
(where the term “ first " does not imply that it was the first one
of the sub - data routers evaluated according the CPU capac
ity at step 230) .
[0037] At step 240 , the processor determines that the first
sub - data router has a memory capacity that is sufficient to
accommodate the first estimated memory utilization for the
first task . For instance , more optimal processing of the task
may occur when the memory capacity of the first sub - data
router is also sufficient to meet the estimated memory
utilization for the task . If the memory capacity is insufficient ,
the processor may then consider a different sub - data router
with a next lowest CPU capacity that is still sufficient to
meet the estimated CPU utilization of the task . However , for
purposes of the present example , it is assumed that the
memory capacity of the first sub - data router is in fact
sufficient to accommodate the first estimated memory utili
zation for the first task .
10038] . At step 250 , the processor assigns the first task to
the first sub - data router , e . g . , when it is determined that the
first sub - data router has a CPU capacity that is sufficient to
accommodate the first estimated CPU utilization for the first
task and when it is determined that the first sub - data router
has a memory capacity that is sufficient to accommodate the
first estimated memory utilization for the first task . For
purposes of the present example it is assumed that the first
sub - data router has been determined to meet such criteria at
steps 230 and 240 . In one example , the first sub - data router
may send instructions to at least one data node of the
distributed data storage system to perform functions in
accordance with the first task .
[0039 . In one example , the assigning of the first task to the
first sub - data router at step 250 may be in accordance with
a priority of assignment between the processor and a second
task handler . For example , the processor may comprise a
processor of a first task handler that is in communication
with a plurality of additional task handlers for assigning
tasks to the plurality of sub - data routers . The processor may
receive a notification from the second task handler of a
second task to be assigned by the second task handler and

US 2018 / 0032379 A1 Feb . 1 , 2018

may then determine a priority of assignment between the
first task and the second task , and / or between the first task
handler and the second task handler . In one example , the
priority of assignment may be based upon pre - designated
ranks that are provided for the first task handler and for the
second task handler . In another example , the priority of
assignment may be in accordance with respective times
since a last assignment of a task by the processor (e . g . , by
the first task handler) and a last assignment of a task by the
second task handler .
[0040] In another example , the assigning of the first task
to the first sub - data router may comprise sending a notifi
cation to a second task handler (or a plurality of task
handlers) of the assigning the first task to the first sub - data
router , and sending the first task to the first sub - data router
after a hold - off time . In one example , the hold - off time is in
accordance with a latency between the processor and the
second task handler . For example , the processor may keep
track of latencies between different components within the
distributed data storage system such that the processor may
determine how long it may take for the notification to reach
the second task handler . For instance , the second task
handler may comprise a task handler that is the furthest (in
terms of time / latency) from the processor . If there is no
conflicting notification received during the hold - off time , the
processor may then continue with sending the first task to the
first sub - data router .
[0041] In one example , the first task is assigned to the first
sub - data router when it is determined that the first sub - data
router has a CPU capacity that is sufficient to accommodate
the first estimated CPU utilization for the first task , when it
is determined that the first sub - data router has a memory
capacity that is sufficient to accommodate the first estimated
memory utilization for the first task , and when a latency
between the device and the first sub - data router is in accor
dance with a first latency requirement for the first task . For
example , as mentioned above , in one example , the first
request may further include a first latency requirement of the
first task . In addition , in one example , the processor may
track latencies between different components within the
distributed data storage system such that the processor may
determine whether a latency associated with communica
tions to and / or from the first sub - data router is in accordance
with the first latency requirement .
[0042] Following step 250 , the method 200 may proceed
to optional step 260 , to optional step 290 , or to step 295 .
[0043] At optional step 260 , the processor may receive a
notification from the first sub - data router that the first task is
placed in a processing queue at the first sub - data router . For
example , as mentioned above , it may be possible for two
tasks to be assigned to a sub - data router at or around the
same time , which the sub - data router may not be able to
simultaneously process in accordance with its CPU capacity
and / or its memory capacity . Thus , in one example the first
sub - data router may queue / buffer the first task and send a
notification to the processor .
[0044] At optional step 270 , the processor may assign the
first task to a second sub - data router of the plurality of
sub - data routers . For instance , the processor may determine
that the first task should not await processing in the queue of
the first sub - data router , but should be reassigned to a
sub - data router that may begin processing the task immedi
ately i . e . , without queuing) . The processor may evaluate
other sub - data routers according to the same criteria as

described above in connection with steps 230 and 240 , while
omitting the first sub - data router from consideration . If
another sub - data router (e . g . , labeled as a " second sub - data
router ”) is found that has sufficient CPU and memory
capacity , and that can process the first task without queuing ,
the processor may reassign the first task to that sub - data
router .
[0045] At optional step 280 , the processor may transmit a
cancellation regarding the first task to the first sub - data
router . Accordingly , the first - sub data router may remove the
first task from the queue and free resources for additional
tasks . Following optional step 280 , the method 200 may
proceed to step 290 .
0046] . At optional step 290 , the processor may receive
from the first sub - data router an actual CPU utilization and
the actual memory utilization for processing the first task .
For instance , the actual CPU utilization and an actual
memory utilization for processing the first task may be used
in calculating a second estimated CPU utilization for a
second task and a second estimated memory utilization for
the second task . In addition , the processor may share the
actual CPU utilization and the actual memory utilization for
processing the first task with a plurality of task handlers . As
such , the task handlers may collectively improve the accu
racy of estimates for CPU utilizations and memory utiliza
tions of new tasks to be assigned to sub - data routers .
[0047] Following optional step 290 , the method 200 pro
ceeds to step 295 . At step 295 , the method 200 ends .
However , it should be noted that in one example , the method
200 may be expanded to include additional steps , functions ,
or operations . For instance , the steps , functions , or opera
tions of the method 400 of FIG . 4 , described in greater detail
below , may comprise an extension of the method 200 .
[0048] FIG . 3 illustrates a flowchart of an additional
example method 300 for assigning a task to a sub - data
router , in accordance with the present disclosure . In one
example , the steps , functions , or operations of the method
300 may be performed by a task handler , such as one of task
handlers 121 - 124 in FIG . 1 . Alternatively , or in addition , in
one example , the steps , functions , or operations of method
300 may be performed by a computing device or system
500 , and / or processor 502 as described in connection with
FIG . 5 below . For example , the processor 502 and memory
504 may represent the hardware logic and a memory storing
computer / hardware logic - executable instructions of an
example task handler , in accordance with the present dis
closure . For illustrative purposes , the method 300 is
described in greater detail below in connection with an
example performed by a processor , such as processor 502 in
FIG . 5 .
[0049] It should be noted that in one example , the method
300 is similar to the method 200 discussed above . However ,
the method 300 may first identify a sub - data router with a
lowest memory capacity that is still sufficient to accommo
date an estimated memory utilization of a task , and then use
an estimated CPU utilization of the task and a CPU capacity
of the sub - data router as the rejecting criteria . The method
begins in step 305 and proceeds to step 310 .
[0050] At step 310 , the processor receives a first request to
process a first task , the first request including a first esti
mated CPU utilization for the first task and a first estimated
memory utilization for the first task . In one example , the first
task is associated with accessing data that is stored in a
distributed data storage system . In one example the first

US 2018 / 0032379 A1 Feb . 1 , 2018

request may further include a first latency requirement of the
first task . In one example , step 310 may comprise the same
or substantially similar operations to that which is described
above in connection with step 210 of the method 200 .
[0051] At step 320 , the processor receives CPU capacities
and memory capacities of a plurality of sub - data routers
including at least a first sub - data router . For instance , the
plurality of sub - data routers may monitor their current CPU
and memory utilizations (and / or CPU and memory capaci
ties) and report these utilizations / capacities to a plurality of
task schedulers of the distributed data storage system . In one
example , step 320 may comprise the same or substantially
similar operations to that which is described above in
connection with step 220 of the method 200 .
[0052] At step 330 , the processor determines that a first
sub - data router has a lowest memory capacity from among
the plurality of sub - data routers that is sufficient to accom
modate the first estimated memory utilization for the first
task . In this case , the sub - data router meeting this criterion
is labeled as the first sub - data router (where the term “ first "
does not imply that it was the first one of the sub - data routers
evaluated according the memory capacity at step 330) .
[0053] At step 340 , the processor determines that the first
sub - data router has a CPU capacity that is sufficient to
accommodate the first estimated CPU utilization for the first
task . For instance , more optimal processing of the task may
occur when the memory capacity of the first sub - data router
is also sufficient to meet the estimated CPU utilization for
the task . If the CPU capacity is insufficient , the processor
may then consider a different sub - data router with a next
lowest memory capacity that is still sufficient to meet the
estimated memory utilization of the task . However , for
purposes of the present example , it is assumed that the CPU
capacity of the first sub - data router is in fact sufficient to
accommodate the first estimated CPU utilization for the first

zation for the first task , when it is determined that the first
sub - data router has a CPU capacity that is sufficient to
accommodate the first estimated CPU utilization for the first
task , and when a latency between the device and the first
sub - data router is in accordance with a first latency require
ment for the first task . Following step 350 , the method 300
may proceed to optional step 360 , to optional step 390 , or to
step 395 .
[0056] At optional step 360 , the processor may receive a
notification from the first sub - data router that the first task is
placed in a processing queue at the first sub - data router . In
one example , step 360 may comprise the same or substan
tially similar operations to that which is described above in
connection with step 260 of the method 200 .
[0057] At optional step 370 , the processor may assign the
first task to a second sub - data router of the plurality of
sub - data routers . In one example , step 370 may comprise the
same or substantially similar operations to that which is
described above in connection with step 270 of the method
200 .

task .
[0054] At step 350 , the processor assigns the first task to
the first sub - data router , e . g . , when it is determined that the
first sub - data router has the a memory capacity that is
sufficient to accommodate the first estimated memory utili
zation for the first task and when it is determined that the first
sub - data router has a CPU capacity that is sufficient to
accommodate the first estimated CPU utilization for the first
task . For purposes of the present example it is assumed that
the first sub - data router has been determined to meet such
criteria at steps 330 and 340 . The first sub - data router may
send instructions to at least one data node of the distributed
data storage system to perform functions in accordance with
the first task .
[0055] In one example , the assigning of the first task to the
first sub - data router at step 350 may be in accordance with
a priority of assignment between the device and a second
task handler (e . g . , as described above in connection with
step 250 of the method 200) . In another example , the
assigning of the first task to the first sub - data router may
comprise sending a notification to a second task handler (or
a plurality of task handlers) of the assigning the first task to
the first sub - data router , and sending the first task to the first
sub - data router after a hold - off time (e . g . , as described above
in connection with step 250 of the method 200) . Alterna
tively , or in addition , in one example , the first task is
assigned to the first sub - data router when it is determined
that the first sub - data router has a memory capacity that is
sufficient to accommodate the first estimated memory utili

[0058] At optional step 380 , the processor may transmit a
cancellation regarding the first task to the first sub - data
router . In one example , step 380 may comprise the same or
substantially similar operations to that which is described
above in connection with step 280 of the method 200 .
Following optional step 380 , the method 300 may proceed
to step 390 .
[0059] At optional step 390 , the processor may receive
from the first sub - data router an actual CPU utilization and
an actual memory utilization for processing the first task . In
one example , step 390 may comprise the same or substan
tially similar operations to that which is described above in
connection with step 290 of the method 200 .
100601 Following step 390 , the method 300 proceeds to
step 395 . At step 395 , the method 300 ends . However , it
should be noted that in one example , the method 300 may be
expanded to include additional steps , functions , or opera
tions . For instance , the steps , functions , or operations of the
method 400 of FIG . 4 , described in greater detail below , may
comprise an extension of the method 300 .
[0061] FIG . 4 illustrates a flowchart of an example method
400 of further operations for assigning a task to a sub - data
router , in accordance with the present disclosure . For
instance , the method 400 may comprise an extension of the
method 200 or the method 300 described above . In other
words , the steps , functions , or operations of the method 400
may be considered optional or additional steps in connection
with the above - described method 200 or method 300 . In one
example , the steps , functions , or operations of the method
400 may be performed by a task handler , such as one of task
handlers 121 - 124 in FIG . 1 . Alternatively , or in addition , in
one example , the steps , functions , or operations of method
400 may be performed by a computing device or system
500 , and / or processor 502 as described in connection with
FIG . 5 below . For illustrative purposes , the method 400 is
described in greater detail below in connection with an
example performed by a processor , such as processor 502 in
FIG . 5 .
[0062] At step 410 , the processor receives a second
request to process a second task , the second request includ
ing a second estimated CPU utilization for the second task
and a second estimated memory utilization for the second
task . It should be noted that the processor may receive a first

US 2018 / 0032379 A1 Feb . 1 , 2018

request to process a first task in accordance with step 210 of
the method 200 or step 310 of the method 300 , as described
above .
[0063] At step 420 , the processor determines whether the
second estimated CPU utilization for the second task is
below a threshold central processing unit utilization and / or
whether the second estimated memory utilization for the
second task is below a threshold memory utilization . For
instance , as mentioned above “ small ” requests / tasks may be
assigned to the lowest latency sub - data router , even if the
sub - data router is approaching its limits . Thus , the threshold
(s) may be set to distinguish “ small ” requests / tasks from
other requests . If one or both of the thresholds is satisfied ,
the method 400 may proceed to step 460 . Otherwise , the
method 400 may proceed to step 430 .

[0064] At step 430 , the processor determines a second
sub - data router of the plurality of sub - data routers with a
lowest CPU capacity or a lowest memory capacity from
among the plurality of sub - data routers that is sufficient to
accommodate the second estimated CPU utilization or the
second estimated memory utilization for the second task .
For instance , if the method 400 is performed in connection
with the method 200 , step 430 may comprise determining a
second sub - data router of the plurality of sub - data routers
with a lowest CPU capacity from among the plurality of
sub - data routers that is sufficient to accommodate the second
estimated CPU utilization for the second task . However , if
the method 400 is performed in connection with the method
300 , step 430 may comprise determining a second sub - data
router of the plurality of sub - data routers with a lowest
memory capacity from among the plurality of sub - data
routers that is sufficient to accommodate the second esti
mated memory utilization for the second task . It should be
noted that in some cases , the “ second sub - data router ” that
is identified at step 430 may comprise a same sub - data router
as the " first sub - data router ” that is determined at step 220
of the method 200 or step 320 of the method 300 , e . g . ,
depending upon the relative capacities of the plurality of
sub - data routers in the distributed data storage system .
[0065] At step 440 , the processor determines that the
second sub - data router has a memory capacity or a CPU
capacity that is sufficient to accommodate the second esti
mated memory utilization or the second estimated CPU
utilization for the second task . For instance , if the method
400 is performed in connection with the method 200 , step
440 may comprise determining that the second sub - data
router has a memory capacity that is sufficient to accom
modate the second estimated memory utilization for the
second task . However , if the method 400 is performed in
connection with the method 300 , step 440 may comprise
determining that the second sub - data router has a CPU
capacity that is sufficient to accommodate the second esti
mated CPU utilization for the second task .
[0066) At step 450 , the processor assigns the second task
to the second sub - data router , e . g . , when the CPU capacity
and the memory capacity of the second sub - data router are
determined at steps 430 and 440 to be sufficient to accom
modate the second estimated CPU utilization and the second
estimated memory utilization for the second task . In one
example , step 450 may comprise similar operations to that
which is described above in connection with step 250 of the
method 200 or step 350 of the method 300 , e . g . , regarding

the assigning of a first task to a first sub - data router .
Following step 450 , the method 400 may proceed to step
495 .
[0067] At step 460 , the processor assigns the second task
to a sub - data router with a lowest latency from among the
plurality of sub - data routers . For instance , as mentioned
above " small ” requests may be assigned to the lowest
latency sub - data router , even if the sub - data router is
approaching its limits . It should be noted that the “ second
sub - data router ” that is assigned at step 460 may comprise
a same sub - data router as the “ first sub - data router ” that is
assigned at step 250 of the method 200 or at step 350 of the
method 300 , e . g . , depending upon the relative latencies
among components within the distributed data storage sys
tem .
10068] . Following step 460 , the method 400 proceeds to
step 495 . At step 495 , the method 400 ends .
[0069] It should be noted that although not specifically
specified , one or more steps , functions or operations of the
respective methods 200 , 300 , and 400 may include a storing ,
displaying and / or outputting step as required for a particular
application . In other words , any data , records , fields , and / or
intermediate results discussed in the respective methods can
be stored , displayed and / or outputted to another device as
required for a particular application . Furthermore , steps or
blocks in FIGS . 2 - 4 that recite a determining operation or
involve a decision do not necessarily require that both
branches of the determining operation be practiced . In other
words , one of the branches of the determining operation can
be deemed as an optional step . In addition , one or more
steps , blocks , functions , or operations of the above described
methods 200 , 300 , and 400 may comprise optional steps , or
can be combined , separated , and / or performed in a different
order from that described above , without departing from the
example embodiments of the present disclosure .
[0070] FIG . 5 depicts a high - level block diagram of a
computing device suitable for use in performing the func
tions described herein . As depicted in FIG . 5 , the system 500
comprises one or more hardware processor elements 502
(e . g . , a central processing unit (CPU) , a microprocessor , or
a multi - core processor , hardware logic , and so forth) , a
memory 504 (e . g . , random access memory (RAM) and / or
read only memory (ROM)) , a module 505 for assigning a
task to a sub - data router , and various input / output devices
506 (e . g . , storage devices , including but not limited to , a tape
drive , a floppy drive , a hard disk drive or a compact disk
drive , a receiver , a transmitter , a speaker , a display , a speech
synthesizer , an output port , an input port and a user input
device (such as a keyboard , a keypad , a mouse , a micro
phone and the like)) . Although only one processor element
is shown , it should be noted that the computing device may
employ a plurality of processor elements . Furthermore ,
although only one computing device is shown in the figure ,
if the method 200 , method 300 , or method 400 as discussed
above is implemented in a distributed or parallel manner for
a particular illustrative example , i . e . , the steps of the method ,
or the entire method is implemented across multiple or
parallel computing devices , then the computing device of
this figure is intended to represent each of those multiple
computing devices .
10071] Furthermore , one or more hardware processors can
be utilized in supporting a virtualized or shared computing
environment . The virtualized computing environment may
support one or more virtual machines representing comput

US 2018 / 0032379 A1 Feb . 1 , 2018

ers , servers , or other computing devices . In such virtualized
virtual machines , hardware components such as hardware
processors and computer - readable storage devices may be
virtualized or logically represented .
[0072] It should be noted that the present disclosure can be
implemented in software and / or in a combination of soft
ware and hardware , e . g . , using application specific inte
grated circuits (ASIC) , a programmable gate array (PGA)
including a Field PGA , or a state machine deployed on a
hardware device , a computing device , or any other hardware
equivalents , e . g . , computer readable instructions pertaining
to the methods discussed above can be used to configure a
hardware processor to perform the steps , functions and / or
operations of the above disclosed method 200 , method 300 ,
or method 400 . In one example , hardware processor element
502 may function as a memory management unit of the
present disclosure when used in conjunction with computer /
hardware logic - executable code or instructions . For
instance , instructions and data for the present module or
process 505 for assigning a task to a sub - data router (e . g . , a
software program comprising computer - executable instruc
tions) can be loaded into memory 504 and executed by
hardware processor element 502 to implement the steps ,
functions or operations as discussed above in connection
with the illustrative method 200 , method 300 , or method
400 . Furthermore , when a hardware processor executes
instructions to perform “ operations , ” this could include the
hardware processor performing the operations directly and /
or facilitating , directing , or cooperating with another hard
ware device or component (e . g . , a co - processor and the like)
to perform the operations .
[0073] The processor executing the computer readable or
software instructions relating to the above described method
can be perceived as a programmed processor or a specialized
processor . As such , the present module 505 for assigning a
task to a sub - data router (including associated data struc
tures) of the present disclosure can be stored on a tangible
or physical (broadly non - transitory) computer - readable stor
age device or medium , e . g . , volatile memory , non - volatile
memory , ROM memory , RAM memory , magnetic or optical
drive , device or diskette and the like . Furthermore , a " tan
gible ” computer - readable storage device or medium com
prises a physical device , a hardware device , or a device that
is discernible by the touch . More specifically , the computer
readable storage device may comprise any physical devices
that provide the ability to store information such as data
and / or instructions to be accessed by a processor or a
computing device such as a computer or an application
server .
00741 While various embodiments have been described
above , it should be understood that they have been presented
by way of example only , and not a limitation . Thus , the
breadth and scope of a preferred embodiment should not be
limited by any of the above - described exemplary embodi
ments , but should be defined only in accordance with the
following claims and their equivalents .
What is claimed is :
1 . A device comprising :
a processor ; and
a computer - readable medium storing instructions which ,
when executed by the processor , cause the processor to
perform operations , the operations comprising :
receiving a first request to process a first task , the first

request including a first estimated central processing

unit utilization for the first task and a first estimated
memory utilization for the first task ;

receiving central processing unit capacities and
memory capacities of a plurality of sub - data routers
including at least a first sub - data router ;

determining that the first sub - data router has a lowest
central processing unit capacity from among the
plurality of sub - data routers that is sufficient to
accommodate the first estimated central processing
unit utilization for the first task ;

determining that the first sub - data router has a memory
capacity that is sufficient to accommodate the first
estimated memory utilization for the first task ; and

assigning the first task to the first sub - data router .
2 . The device of claim 1 , wherein the operations further

comprise :
receiving a second request to process a second task , the

second request including a second estimated central
processing unit utilization for the second task and a
second estimated memory utilization for the second
task .

3 . The device of claim 2 , wherein the operations further
comprise :

determining a second sub - data router of the plurality of
sub - data routers with a lowest central processing unit
capacity from among the plurality of sub - data routers
that is sufficient to accommodate the second estimated
central processing unit utilization for the second task ;

determining that the second sub - data router has a memory
capacity that is sufficient to accommodate the second
estimated memory utilization for the second task ; and

assigning the second task to the second sub - data router .
4 . The device of claim 2 , wherein the operations further

comprise :
determining that the second estimated central processing

unit utilization for the second task is below a threshold
central processing unit utilization ;

determining that the second estimated memory utilization
for the second task is below a threshold memory
utilization , and

assigning the second task to a sub - data router with a
lowest latency from among the plurality of sub - data
routers .

5 . The device of claim 1 , wherein the first request further
includes a first latency requirement of the first task , wherein
the first task is assigned to the first sub - data router when it
is determined that the first sub - data router has the lowest
central processing unit capacity that is sufficient to accom
modate the first estimated central processing unit utilization
for the first task , when it is determined that the first sub - data
router has the memory capacity that is sufficient to accom
modate the first estimated memory utilization for the first
task , and when a latency between the device and the first
sub - data router is in accordance with the first latency
requirement .

6 . The device of claim 1 , wherein the device comprises a
first task handler , wherein the assigning the first task to the
first sub - data router is in accordance with a priority of
assignment between the device and a second task handler .

7 . The device of claim 6 , wherein the priority of assign
ment is based upon pre - designated ranks that are provided
for the device and for the second task handler .

8 . The device of claim 6 , wherein the priority of assign
ment is in accordance with respective times since a last

US 2018 / 0032379 A1 Feb . 1 , 2018

assignment of a task by the device and a last assignment of
a task by the second task handler .

9 . The device of claim 1 , wherein the operations further
comprise :

receiving a notification from the first sub - data router that
the first task is placed in a processing queue at the first
sub - data router .

10 . The device of claim 9 , wherein the operations further
comprise :

assigning the first task to a second sub - data router of the
plurality of sub - data routers ; and

transmitting a cancellation regarding the first task to the
first sub - data router .

11 . The device of claim 1 , wherein the device comprises
a first task handler for assigning tasks to the plurality of
sub - data routers , and wherein the assigning the first task to
the first sub - data router comprises :

sending a notification to a second task handler of the
assigning of the first task to the first sub - data router ;
and

sending the first task to the first sub - data router after a
hold - off time .

12 . The device of claim 11 , wherein the hold - off time is
in accordance with a latency between the device and the
se second task handler .

13 . The device of claim 1 , wherein the first task is
associated with accessing data that is stored in a distributed
data storage system .

14 . The device of claim 13 , wherein each of the plurality
of sub - data routers includes a list of blocks of the data that
is stored in data nodes of the distributed data storage system .

15 . The device of claim 14 , wherein the first sub - data
router sends instructions to at least one of the data nodes of
the distributed data storage system to perform functions in
accordance with the first task .

16 . The device of claim 1 , wherein the device comprises
a first task handler for assigning tasks from a first plurality
of requesting devices to the plurality of sub - data routers ,
wherein at least a second task handler is for assigning tasks
from a second plurality of requesting devices to the plurality
of sub - data routers .

17 . The device of claim 1 , wherein the operations further
comprise :

receiving from the first sub - data router an actual central
processing unit utilization and an actual memory utili
zation for processing the first task , wherein the actual
central processing unit utilization and the actual
memory utilization for processing the first task are used

in calculating a second estimated central processing
unit utilization for a second task and a second estimated
memory utilization for the second task .

18 . A device comprising :
a processor ; and
a computer - readable medium storing instructions which ,

when executed by the processor , cause the processor to
perform operations , the operations comprising :
receiving a first request to process a first task , the first

request including a first estimated central processing
unit utilization for the first task and a first estimated
memory utilization for the first task ;

receiving central processing unit capacities and
memory capacities of a plurality of sub - data routers
including at least a first sub - data router ;

determining that the first sub - data router has a lowest
memory capacity from among the plurality of sub
data routers that is sufficient to accommodate the first
estimated memory utilization for the first task ;

determining that the first sub - data router has a central
processing unit capacity that is sufficient to accom
modate the first estimated central processing unit
utilization for the first task ; and

assigning the first task to the first sub - data router .
19 . The device of claim 18 , wherein the first task is

associated with accessing data that is stored in a distributed
data storage system .

20 . A method comprising :
receiving , by a processor , a first request to process a first

task , the first request including a first estimated central
processing unit utilization for the first task and a first
estimated memory utilization for the first task ;

receiving , by the processor , central processing unit
capacities and memory capacities of a plurality of
sub - data routers including at least a first sub - data
router ;

determining , by the processor , that the first sub - data router
has a lowest central processing unit capacity from
among the plurality of sub - data routers that is sufficient
to accommodate the first estimated central processing
unit utilization for the first task ;

determining , by the processor , that the first sub - data router
has a memory capacity that is sufficient to accommo
date the first estimated memory utilization for the first
task ; and

assigning , by the processor , the first task to the first
sub - data router .

* * * * *

