US 20180032379A1

a2y Patent Application Publication o) Pub. No.: US 2018/0032379 A1l

a9y United States

Meredith et al.

43) Pub. Date: Feb. 1, 2018

(54) TASK ALLOCATION AMONG DEVICES IN A (52) US. CL
DISTRIBUTED DATA STORAGE SYSTEM CpPC ... GO6F 9/5083 (2013.01); HO4L 67/1097
(2013.01); GO6F 9/5016 (2013.01); GO6F
(71) Applicant: AT&T Intellectual Property I, L.P., 9/5038 (2013.01)
(72) Inventors: Sheldon Kent Meredith, Roswell, GA In one example, a processor may recgive a.ﬁr st request to
(US); William Cottrill, Canton, GA process a first task, the ﬁrs.t request including a first esti-
(US); Juliette Zerick, Alpharetta, GA mated cen.tral processing umt.u.tlhz.atlon for the first task and
(US) a first estimated memory utilization for the first task and
receive central processing unit capacities and memory
) capacities of a plurality of sub-data routers including at least
(21) Appl. No.: 15/222,729 a first sub-data router. The processor may further determine
that the first sub-data router has a lowest central processing
(22) Filed: Jul. 28, 2016 unit capacity from among the plurality of sub-data routers
that is sufficient to accommodate the first estimated central
Publication Classification processing unit utilization for the first task and determine
that the first sub-data router has a memory capacity that is
(51) Int. CL sufficient to accommodate the first estimated memory utili-
GO6F 9/50 (2006.01) zation for the first task. The processor may then assign the
HO4L 29/08 (2006.01) first task to the first sub-data router.
100 TASK HANDLER SET
120 SUB-DATA ROUTER SET STORAGE AND
L TASK HANDLER 1880 150 PROCESSING NODES
REQUESTING 1 2 121 SUB-DATA ROUTER 190 10
MACHINES > !
110 BUFFER LOGIC 151 o
] 179 131 4 NODES
e B o
180 —_ !
170 TASK HANDLER !
REQUESTING 1~ ') 199 L 190 L
MACHINES — SUB-DATA ROUTER 8 NODES -
11 BUFFER LOGIC 152 15
m 132 14 182
- S — 1820
TASK HANDLER n
REQUESTING [_ 1730 123 - NODES | I
MACHINES | [| _ - 190 163
11 BUFFER LOGIC | [___I.| SUB-DATA ROUTER 2
— 133 " - — |
NODES |
170 TASK HANDLER 164
REQUESTING |7_ 8 124 — 1 e -
MACHINES SUFFER Lo0GiC 180 — 7| SUBDATAROUTER |) | T
— 134 w |l 1o

Feb.1,2018 Sheet 1 of § US 2018/0032379 Al

Patent Application Publication

31
SANIHOVA
ONILSINOIY

zl
SINIHOYIA
ONILSIND3Y

. 73T b | VEL
—— 1 | wainow viva-ans 2 08} o190t g344nd
064 - o)
ol MTTONYH YSV1 04
S30ON
T : Ev eer
_ (|| ¥aLnoy viva-ans [t 21907 ¥344nd
£ol 061 =T w
|| S3AON)T uTiaNwH syl 0k
08}
—
_
o I.. p ot el
cot PN est b 91901 ¥344ng
—| S3dON %2 ¥3LNOY YLYA-NS 3 P 7
} | uEIaNwHISYL 0L
1 08l ,
o — — (-
) IeT 6Ll
o sAON i o : 21901 | | ¥34dng
M3LNOY Y1Ya-ans [.
09t 06} { o ON&
S3AON ONISSIO0Yd | T 08! I 1ANYH ASV.L
ONYIOWHMOLS | | 13SNILNOY VLYa-aNns 73

3
SANIHOVI
ONILSINO3Y

135 HITANYH MSYL

0rt
SANIHOVI
ONILSINOI

0l

US 2018/0032379 Al

mmhzom<p<oﬁgmhmgmmzph<m:m:o “ d
owm\X ONISSTOON ¥ NI A39v1d SIMSYL 1S¥Id IHL LYHL ¥3LN0Y VLYA-anS 1SY14 IHL WOYL NOILYDIJILON ¥V IAIFDIY

___ DNISS300¥d ¥ NI G30VTd SI ¥SYL ISl FHL LYHL ¥31r YY1 LSHH UL O NOLYOL

* d31N0Y Y.1va-ansS LSYId 3HL OL MSV. 1SHId JHL NOISSY _
052

!

ASV.L LSHId IHL HO4 NOILYZITILN AONIN A31VINILST 1SHIS

| 3HL 31YQOWWODOY OL INFIDIHANS SI LYHL ALIDYAYD AHOWIN ¥ SYH ¥3LNOY Y1Va-8NS 1SHI4 JHL LYHL ININYAL3Q
ove »

] MSYL 1SYId FHL HO4 NOILYZITILN NdD G3LVYNILST 1SHI4 3HL ILYTOWNOIDV OL INFIDIH4NS SILVHL SH3LN0Y
134 Y.1¥3-9nS 40 ALNYENTd JHL ONOWY WOYL ALIQYdYO NdI LSIMOTHLIM ¥3LNOY Y1VA-8NS LSHld INIAMILIA

Feb. 1,2018 Sheet 2 of 5

d31N0Y Y1va-ans LSy

omm\ Y 1SV LV ONIGNTONI S¥3.1N0Y vivad-ans 40 >._._._<m:._n_»< 40 S31LI0VdYO AHOWIN ANV S3ILIOVAYO NdI IAIF03Y
YSVL LSHI4 FHL 404 NOILYZITILN AYOWIN OILYWILST 1SHI4 ¥ ANY NOILYZITILN (NdD) LINN ONISSIO0Md

TvHINTD Q3LYNILST 1S¥I4 ¥ ONIGNTONI LSINDIY LSHI4 FHL NSYL 1SHId ¥ SSI00¥d OL 1SINDIY 1SHl4 ¥V IAIFOIN

1HVLS 0

N

14

Patent Application Publication
(o=l
{

US 2018/0032379 Al

MSYL LSHI4 FHL HO4 NOLLYZITILN NdD d3LVAILLSE
oqm\ 18414 3HL IIYAOWNOIJY OL INSIDI44NS SI LYHL >to<m<w NdO ¥ SYH ¥31N0Y Y1V¥A-9nS LSHld IHL LvHI ININYF13a

w,

S

=

e

3 | Y3LNOY Y1va-ang L8414 IHL 1v In3nD |
= 09¢ A __ONISSI00¥d ¥ NI 00V 1d S1ISYL LSUId JHL 1Y I._.xw_wuﬁom YLYQ-8NS LSHI4 IHL WOHL NOILYOIAILON Y IAIFOIY___ |
= & MALNOY VLYA-NS LSl FHL OL YSYL LSl HL N9ISSY

S 03¢ A

<

=

>}

=

M MSVL 18414 IHL YO NOILVZITILN AHOW3N QFLYNILST 1SHI4 FHL F1YAOWNODIY OL INJIDI44NS SI LYHL SH3LNOY
0ee Y.1¥Q-gns 40 ALVENTd IHL ONOWY WOHA ALIDVdYD >mmw_>_m=>_ 1S3IMOT HLIM ¥3IN0Y Y.LVA-aNS 1SHl4 ININYI1FA

d31LN0Y V.1vVa-9Nns 1S4l

omm\ Y LSVIT.LY ONIANTONI SH31N0Y Yivd-ans 40 >._._._<m:._n_»< 40 SAILIQYLYD AHOWIW ANV S3ILIDYdYD NdD IAIFOTH

YSVL 1S4I4 IH1 J04 NOILVZIMILA AHOWAW QILVNILST 1SHI4 ¥ ANY NOLLYZITILN (D) LINN ONISSIO0Hd
TYYLINTD A3LYWILST 1SHIH Y ONIANTONI 1SINDIY LSHI4 FHL MSVL 1SHIH ¥ SSI00Hd OL LSINDIY LSHId ¥ JAIFIIY

LHYLS

(e
]

Go¢

Patent Application Publication
o
|

Feb.1,2018 Sheet 4 of 5 US 2018/0032379 Al

Patent Application Publication

¥ Old

AINILYT L1SIMOT ¥V HLIM ¥3LNOY Y.LV3-9NS ¥ OL ASVL ANOD3S FHL NOISSY _A’

oow_

an3
1317

HALNOY Y1¥3-8NS ANODIS JHL 0L MSVL ANOD3S JHL NOISSY

0sy _

i

MSVLANOOIS 3HL
¥O4 NOILYZITILN NdD QILVINILST ANOQIS IFHL HO NOILYZITILN AJOWNIN GILVYINILST ANOD3S FHL ILYAOWNOJOV OL
INFIDI44NS SI LYH1L ALIDVAYD NdO ¥ HO ALIOYdYO AMOWIIN ¥V SYH ¥3.1N0Y YLvd-anS ANODS FHL LYHL ININY3130

owv\

!

0ty —

MSYL ANODIS IHL ¥O4 NOILYZMILN AYONWIN A3LYINILST ANOJ3S FHL HO NOLLYZITLLN
NdD Q3LVNILST ANOD3S 3HL 3LYAOWWOIIY OL INIIDI44NS SI LYHL SH3LNOY V1va-ans 40 ALITYYNId FHL
ONOWY WOH ALIDYdYD AHSOWIW LSIMOT HO ALIDVdYD NdD LSIMOT HLIM ¥31N0d V1vQ-ans aNoD3s ININYG13d

ON

T
T NOILYZIILIN T

< AMOWIW HO/ANY NdD TTOHSIHHL

MSVYL ANOD3S FHL HO4 NOLLYZIMILN AYOWIW A3 LVYNILST ANOJIS ¥V ANV NOILVZIMILNA NdD
a31yNILST ANODIS ¥ ONIONTONI LSINDIH ANOJIS FHL HSYL ANOJIS ¥ SS300¥d OL 1S3INDIH ANODIS ¥ JAIFOTY

b _
A wwwis) 00
GOy

Patent Application Publication Feb. 1,2018 Sheet 5 of 5 US 2018/0032379 A1

LLI
0 Q
i3

i >
@D x
W = © O X
OUJO| -t > s Q
S@LD = 0
W 5 =
e

|._.
2%

A A

Lo
L
Y A J
o
- %
D W) D oy
o9 -t > o
ow 8Ln
= o
[a

()
Lo

US 2018/0032379 Al

TASK ALLOCATION AMONG DEVICES IN A
DISTRIBUTED DATA STORAGE SYSTEM

[0001] The present disclosure relates generally to distrib-
uted data storage and processing systems, and more particu-
larly to an architecture where multiple task handlers service
requests for task processing from multiple requesting
devices, and route the tasks to different sub-data routers
depending upon the memory and central processing unit
requirements of the tasks, and the memory and central
processing unit capacities of the sub-data routers.

BACKGROUND

[0002] Some types of distributed data storage and pro-
cessing systems store files as large blocks, e.g., 128 mega-
bytes (MB) or more, which may be spread over multiple
physical storage devices in various locations. In addition,
multiple copies of the blocks may be stored in different
physical storage devices for redundancy purposes. To track
the locations of files and/or the blocks of such files, some
systems may include a central data router that knows where
the blocks are being stored. When a requesting machine
seeks to access a file, data within a file, or multiple files
stored in the system, a request may be directed to the central
data router to determine which physical devices have stored
the relevant blocks. However, numerous simultaneous
requests may overload the central data router.

SUMMARY

[0003] In one example, the present disclosure discloses a
device, computer-readable medium, and method for assign-
ing a task to a sub-data router. For instance, a method may
include a processor receiving a first request to process a first
task, the first request including a first estimated central
processing unit utilization for the first task and a first
estimated memory utilization for the first task, and receiving
central processing unit capacities and memory capacities of
a plurality of sub-data routers including at least a first
sub-data router. The processor may further determine that
the first sub-data router has a lowest central processing unit
capacity from among the plurality of sub-data routers that is
sufficient to accommodate the first estimated central pro-
cessing unit utilization for the first task, and determine that
the first sub-data router has a memory capacity that is
sufficient to accommodate the first estimated memory utili-
zation for the first task. The processor may then assign the
first task to the first sub-data router.

[0004] In another example, the present disclosure dis-
closes an additional device, computer-readable medium, and
method for assigning a task to a sub-data router. For
instance, a method may include a processor receiving a first
request to process a first task, the first request including a
first estimated central processing unit utilization for the first
task and a first estimated memory utilization for the first
task, and receiving central processing unit capacities and
memory capacities of a plurality of sub-data routers includ-
ing at least a first sub-data router. The processor may further
determine that the first sub-data router has a lowest memory
capacity from among the plurality of sub-data routers that is
sufficient to accommodate the first estimated memory utili-
zation for the first task, and determine that the first sub-data
router has a central processing unit capacity that is sufficient
to accommodate the first estimated central processing unit

Feb. 1,2018

utilization for the first task. The processor may then assign
the first task to the first sub-data router.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The teaching of the present disclosure can be
readily understood by considering the following detailed
description in conjunction with the accompanying drawings,
in which:

[0006] FIG. 1 illustrates an example network or system
related to the present disclosure;

[0007] FIG. 2 illustrates a flowchart of an example method
for assigning a task to a sub-data router, in accordance with
the present disclosure;

[0008] FIG. 3 illustrates a flowchart of an additional
example method for assigning a task to a sub-data router, in
accordance with the present disclosure;

[0009] FIG. 4 illustrates a flowchart of an example method
of further operations for assigning a task to a sub-data router,
in accordance with the present disclosure; and

[0010] FIG. 5 illustrates an example high-level block
diagram of a computer specifically programmed to perform
the steps, functions, blocks, and/or operations described
herein.

[0011] To facilitate understanding, identical reference
numerals have been used, where possible, to designate
identical elements that are common to the figures.

DETAILED DESCRIPTION

[0012] Examples of the present disclosure optimize the
allocation of tasks among distributed computers, or nodes,
by relocating the decision processing about which nodes
should handle which tasks from a central data router to a set
of sub-data routers. For example, in other approaches, when
a machine has a task to execute, the machine monitors the
availability of a set of other, remote machines and deter-
mines which among them to send the task. Some types of
distributed data storage and processing systems have a
central data router that knows where files, or blocks of the
files, are being stored in order to manage access and redun-
dancy. Accordingly, when a requesting machine seeks to
access a file, data within a file, or multiple files stored in the
system, a request may be directed to the central data router
to determine which nodes have stored the relevant blocks.
However, numerous simultaneous requests may overload
the central data router. In contrast, in examples of the present
disclosure a plurality of sub-data routers are utilized, where
each of the sub-data routers has a view of the statuses and
capabilities of the various nodes in the system.

[0013] In one example, a task from a requesting machine
may be distributed to any sub-data router based upon which
sub-data router is most idle in terms of processing and
memory. However, if each requesting machine were left to
select which sub-data router to process a task, multiple
requesting machines could still overload one of the sub-data
routers by making the same selection at or around the same
time. In one example, randomization of task assignments to
sub-data routers might avoid this issue. However, this
assumes that all of the sub-data routers have the same
capabilities. If the sub-data routers do not have similar
capabilities, then every requesting machine tasking the sub-
data routers has to know about the relative capabilities. In

US 2018/0032379 Al

addition, just knowing about the capabilities of any of the
sub-data routers will not provide any insights as to their
current utilizations.

[0014] Examples of the present disclosure avoid each
requesting machine having to know about the capabilities
and current utilizations of each sub-data router. Instead, each
requesting machine may send task requests to a designated
or assigned task handler of a plurality of task handlers, each
of which can take task requests from many different request-
ing machines. In one example, a requesting machine may
also include an estimate of a central processing unit (CPU)
utilization and memory utilization of the task in a request to
process a task. In addition, each task handler may also
collect central processing unit (CPU) utilization and
memory utilization information from multiple sub-data rout-
ers. It should be noted that CPU utilization and memory
utilization may be considered interchangeable with CPU
capacity and memory capacity, respectively. In particular,
once a sub-data router’s CPU or memory “utilization™ is
known, since each task handler also knows the overall
capabilities of each sub-data router, the CPU or memory
“capacity” of the sub-data router is also known, and vice
versa.

[0015] In one example, the task handlers buffer or queue
incoming tasks until the tasks are assigned. Each task
handler may then determine the sub-data router that can
optimally service the oldest requested task or the next task
to be processed within the task handler’s own buffer. For
instance, a task handler may have a buffer of tasks that is 32
deep. The task handler may look at the oldest task, or the
next task to be assigned based on some other criteria, such
as a priority rank of a requesting machine, a priority rank
based upon the type of request, and so forth. The task
handler may note the CPU utilization and memory utiliza-
tion estimates for the task and search among the sub-data
routers for an optimal sub-data router to service the task. In
one example, the estimated CPU utilization and memory
utilization may be independently scored, e.g., in terms of
megahertz (MHz) and megabytes (MB), on a scale of 1-10,
1-100, etc. In one example, the anticipated size of the dataset
and the type of processing involved may be used to set these
scores.

[0016] In one example, a task handler looks for a sub-data
router with the lowest CPU utilization (or greatest spare
CPU capacity), but then uses the sub-data router’s memory
utilization (or capacity) as a rejecting filter prior to forward-
ing the task. For example, there may be two sub-data routers
(for illustrative purposes with equal or substantially equal
total CPU and memory capabilities). The first sub-data
router may have a 10% CPU utilization and 80% memory
utilization and the second sub-data router may have a 40%
CPU utilization and 20% memory utilization. If the next task
in the buffer of the task handler is estimated to require 40%
of CPU and 30% of memory for processing, the task handler
would identify the first sub-data router as an initial candidate
for processing the task, since the first sub-data router has the
lower CPU utilization. However, the task handler would
determine that the first sub-data router’s memory utilization
is currently too high to service the task. Therefore, the
handler would next consider the second sub-data router and
determine that the second sub-data router has sufficient
capacity in terms of both CPU and memory utilizations to
process the task. Thus, the task may be assigned to the
second sub-data router. It should be noted that memory

Feb. 1,2018

utilization may be considered a more limiting factor than
CPU utilization because swapping memory contents with
storage is costly in terms of both time and CPU usage.
Accordingly, in another example, a task handler may first
identify a sub-data router with a lowest memory utilization,
and then use the CPU utilization as a rejecting criteria. In
any event, once the task handler assigns the task to a
sub-data router, the task handler may remove the task from
its buffer.

[0017] In another example, a task handler may select a
sub-data router with an initial criteria of a current CPU
utilization (or a memory utilization) that matches the esti-
mated demand of the task. For instance, the optimum use of
sub-data routers may be achieved when the tasks are sent to
sub-data routers that are the “best fit.” In an illustrative
example, there may be two tasks to be assigned within a
system having two identical or substantially similar sub-data
routers. The first task may have an estimate of needing 30%
of CPU and the second task may have an estimate of 60%.
Assuming the first sub-data router has 65% CPU capacity
and the second sub-data router has 45%, if the first task is
assigned to the first sub-data router, it will be processed
without issue, since there is plenty of CPU capacity. How-
ever, the second task has an estimate of 60% CPU utiliza-
tion, while the second sub-data router only has 45% spare
CPU capacity. Thus, if the second task is assigned to the
second sub-data router, processing of all operations at the
second sub-data router may be delayed. On the other hand,
if the first task is instead assigned to the second sub-data
router, the first task should be processed without issue since
the second sub-data router has sufficient CPU capacity
(assuming in the present example that it also has enough
memory resources). In addition, the second task may be
assigned to the first sub-data router, which still has sufficient
CPU resources to handle the estimated CPU utilization of
the second task.

[0018] Inone example, the optimal distribution of tasks to
sub-data routers may be achieved by the task handlers
assigning each task to the sub-data router that has just
enough CPU capacity to fulfill the estimated CPU utiliza-
tion. In one example, this is objectively achieved by the task
handler identitying the sub-data router with the lowest CPU
capacity that is still sufficient to meet the estimated CPU
utilization of the task, and assigning the task to that sub-data
router if the memory capacity of that sub-data router is also
sufficient to meet the estimated memory utilization for the
task. If the memory capacity is insufficient, the task handler
may then consider a second sub-data router with a next
lowest CPU capacity that is still sufficient to meet the
estimated CPU utilization of the task (noting that the second
sub-data router may have a greater spare CPU capacity than
the first sub-data router to be considered). As mentioned
above, in one example, memory utilization may be consid-
ered a more limiting factor than CPU utilization. Accord-
ingly, in another example, a task handler may select a
sub-data router with a lowest memory utilization that is still
sufficient to meet the estimated memory utilization of the
task, and assign the task to the sub-data router if the CPU
capacity of the sub-data router is also sufficient to meet the
estimated CPU utilization for the task.

[0019] Inone example, latencies in the system may also be
taken into account for various purposes. For instance, task
handlers may have a view of the transit time between various
requesting machines and various sub-data routers. The

US 2018/0032379 Al

latency may be impacted by the links and/or networks
between a requesting machine and a sub-data router that
may receive the task. Queuing/buffering in the task handlers
and/or sub-data routers may also add to the latency. In any
case, the task handlers may track the latency impacts of
various tasks with respect to various requesting machine/
sub-data router pairings over time to use in predicting
latencies associated with future requests to process tasks.
Thus, the latency can also be included in the determination
of which sub-data router should be assigned a task.

[0020] Inoneexample, latency estimates may also be used
in additional aspects. In particular, it is possible that some
smaller tasks may be sitting behind larger tasks in a buffer
of a task handler. In one example, small requests may be
assigned to the lowest latency sub-data router, even if the
sub-data router is approaching its limits. In one example,
small requests may also bypass buffering/queuing in the task
handlers and/or in the sub-data routers. In particular, it may
take CPU time to buffer a request/task. It may also involve
CPU time to perform various computations to assign the
task. In addition, at the sub-data router side, it may take CPU
time to buffer/queue the task, send a notification of the
buffering to the sending task handler, and so forth, which
could take even more time and resources than to simply
perform the task. Thus, in one example there is two aspects
of assigning a task to a sub-data router. A request/task over
a threshold is optimally assigned based upon CPU and
memory utilization estimates of the task and CPU and
memory capacities of the sub-data routers, while a request/
task under a threshold of anticipated CPU and/or memory
utilization may simply be assigned to the sub-data router
with the lowest latency path. In one example, a threshold
CPU utilization and/or memory utilization may be set to
differentiate “small” tasks from other tasks. In another
example, a threshold that defines the size of a “small” task
may be stated in terms of whether its size is such that
processing the task would be faster or use less resources than
the messaging that would be involved in sending a notifi-
cation that the sub-data router is busy.

[0021] Inone example, the present disclosure may include
a mechanism to avoid conflicts between task assignments
from different task handlers. Although it may be assumed
that a task handler will only assign a task to a sub-data router
with the capability to process the task, in some cases two
task handlers may attempt to assign tasks to the same
sub-data router at or around the same time, where the
sub-data router may be unable to process both requests
simultaneously. In one example, the sub-data routers may
also include queues for temporarily storing tasks awaiting
processing. In the event a sub-data router is not able to
process all requests that it has been assigned, the sub-data
router may select one or more of the tasks to be processed,
and may send a notification to the task handler(s) of one or
more other tasks that are queued. If a task handler receives
such a notification, the task handler may then select a
different sub-data router to reassign the task, or may simply
allow the sub-data router to process the task in the order in
which it is queued. In the event the task handler reassigns the
task, the sub-data router that queued the task may be notified
so that the task may be removed from the queue at the
sub-data router. In another example, task handlers may be
rank ordered, and a sub-data router may select which of two
or more conflicting tasks to process first in accordance with
the rank of the sending task handler. The rank may be

Feb. 1,2018

substantially fixed, or may rotate based upon which task
handler most recently assigned a task, which task handler
has waited the longest since last sending a task, and so forth.

[0022] In still another example, a task handler may con-
sider latencies between itself and the other task handlers. For
example, when the task handler makes a decision to send a
particular task to a particular sub-data router, the task
handler may first send a notification to the other task
handlers. Since it may know the longest latency to reach a
farthest of the other task handlers (e.g., in terms of distance
or latency/time of communication), the task handler may
delay sending the task to the sub-data router for such
duration of time. If a conflict occurs where two or more task
handlers send a notification of an intention to send a task to
the same sub-data router, the task handlers can then resolve
the conflict. For instance, a task handler that has recently
deferred to other task handlers for other conflicting task
assignments may receive a greater priority ranking in deter-
mining whether its task should take precedence in resolving
a current conflict. In another example, the task from the
closest or lowest latency task handler with respect to the
sub-data router may take precedence.

[0023] In accordance with the present disclosure, request-
ing machines do not need to know anything about the set of
task handlers or the set of sub-data routers. In one example,
each requesting machine sends its requests to one task
handler. In one example, a second task handler may be
identified as a redundancy backup. Each task handler is able
to buffer/queue requests from multiple requesting machines.
Therefore, the requesting machines assigned to a particular
task handler do not have to wait on the task handler while the
task handler is momentarily busy. In addition each sub-data
router is optimally utilized so that no single sub-data router
is over-burdened while others are relatively idle. The archi-
tecture supports automatic, relatively uniform distribution of
tasks during demand spikes. In addition, due to a more even
distribution of tasks, the total amount of sub-data router
resources may be lessened, thereby improving initial capital
outlays, maintenance costs, and facilities costs. These and
other aspects of the present disclosure are discussed in
greater detail below in connection with the examples of
FIGS. 1-4.

[0024] To aid in understanding the present disclosure,
FIG. 1 illustrates a block diagram depicting one example of
a network or system 100 suitable for performing or enabling
the steps, functions, operations and/or features described
herein. As illustrated in FIG. 1, system 100 may comprise
groups of requesting machines 110-113, a task handler set
120 comprising task handlers 121-124, a sub-data router set
150 comprising sub-data routers 151-154, and storage and
processing nodes 160, which may include several groups of
nodes 161-164. Each of the groups of requesting machines
110-113 may be assigned to a respective task handlers
121-124 in the task handler set 120. Alternatively, or in
addition, task handlers 121-124 may be designated for
different groups of requesting machines 110-113. The groups
of requesting machines 110-113 and task handlers 121-124
are illustrated as being connected via links 170 (and link
179). In one example, links 170 and link 179 represent any
physical connections that may be made directly or indirectly
between computing devices. Thus, links 170 and link 179
may represent electrical or optical wiring between machines,
a wireless physical layer, one or more networks, and so
forth. Links 180 between the task handlers 121-124 and

US 2018/0032379 Al

sub-data routers 151-154, and links 190 between the sub-
data routers 151-154 and the storage and processing nodes
160 may have the same or similar composition. In one
example, requesting machines may have a redundant or a
failover task handler assigned in the event there is a problem
with a primary task handler. For instance, the group of
requesting machines 110 may be assigned to task handler
121, while task handler 122 is designated as a backup
(reachable via link 179).

[0025] The task handlers 121-124 in the task handler set
120 may be co-located, e.g., in a same data center, in a same
rack, etc., or may be distributed in various geographically
diverse locations. Similarly, each of the sub-data routers
151-154 in sub-data router set 150 may be co-located with
one or more other sub-data routers 151-154 in one location
or in several different locations. In addition, groups of nodes
161-164 may be in one location, or in several different
locations. In one example, the groups of requesting
machines 110-113 may be grouped based upon location or
based upon another criteria, such as a type of request that is
characteristic of the requesting machines in the group. For
example, requesting machines 110 may be co-located in one
data center, while requesting machines 111 are co-located in
another data center. Alternatively, or in addition, requesting
machines 110 may be deployed in several different locations
in a first region of a country, while requesting machines 111
may be deployed in several different locations in a second
region of the country. In still another example, requesting
machines 110 may be grouped together based upon the
requesting machines 110 generating requests that relate to a
first type of file containing a first type of records, while
requesting machines 111 may be grouped together based
upon the requesting machines 111 generating requests that
relate to a second type of file containing a second type of
records.

[0026] Inone example, a requesting machine in one of the
groups of requesting machines 110-113 may generate a
request to process a task, and forward the request to the
respective one of task handlers 121-124. The task may relate
to storing files or accessing files stored in the storage and
processing nodes 160, manipulating the files or performing
operations or transformations on the data contained in the
files, creating new files based upon the processing, deliver-
ing raw data points, collecting records from multiple loca-
tions and correlating the records to make various determi-
nations, aggregating the records to make summary reports,
and so on. In one example, the request to process the task
may include estimates of a CPU utilization and a memory
utilization for the task. In one example, the task handers
121-124 include respective buffers 131-134. In the event that
the task handler is currently assigning a task to one of the
sub-data routers 151-154, an incoming task may be placed
in the respective one of the buffers 131-134. In one example,
task handlers 121-124 may simply assign “small” requests
without buffering, e.g., to a lowest latency sub-data router in
the sub-data router set 150.

[0027] As illustrated in FIG. 1, each of the task handlers
121-124 also includes respective logic modules 141-144 for
assigning a task to a sub-data router. For instance, in one
example, task handlers 121-124 may each comprise a com-
puting device, such as computing device 500 depicted in
FIG. 5, specifically configured to provide one or more
functions for assigning a task to a sub-data router, in
accordance with the present disclosure. In one example, the

Feb. 1,2018

logic modules 141-144, may configure the respective task
handlers 121-124 to select sub-data routers from the sub-
data router set 150 based upon the estimated CPU and
memory utilizations of various tasks that are requested, and
based upon the CPU and memory capacities of the respec-
tive sub-data routers 151-154. In this regard, sub-data rout-
ers 151-154 may monitor their own statuses and periodically
report CPU and memory capacities to the task handlers
121-124.

[0028] In one example, the task handlers 121-124 may
communicate with one another to determine a priority of
making assignments of tasks to sub-data routers in the
sub-data router set 150. In one example, task handlers
121-124 may also determine latencies between and among
themselves such that a task handler making an assignment to
a sub-data router in the sub-data router set 150 may first send
a notification to the other task handlers in the task handler set
120, and wait for a certain period of time corresponding to
the largest latency associated with another task handler in
the task handler set 120 before actually assigning the task to
the sub-data router that is selected.

[0029] When a task is assigned to one of the sub-data
routers 151-154, the sub-data router may process the task if
the CPU capacity and the memory capacity of the sub-data
router permit such processing. Although it may be assumed
that a task handler will only assign a task to a sub-data router
with the capability to process the task, in some cases two
task handlers may attempt to assign tasks to the same
sub-data router at or around the same time, where the
sub-data router may be unable to process both requests
simultaneously. In one example, the sub-data routers 151-
154 may also include queues for temporarily storing tasks
awaiting processing. In the event a sub-data router is not
able to process all requests that it has been assigned, the
sub-data router may select one or more of the tasks to be
processed, and may send a notification to the task handler(s)
of one or more other tasks that are queued. If a task handler
receives such a notification, the task handler may then select
a different sub-data router to reassign the task, or may
simply allow the sub-data router to process the task in the
order in which it is queued. In the event the task handler
reassigns the task, the sub-data router that queued the task
may be notified so that the task may be removed from the
queue at the sub-data router. In one example, sub-data
routers 151-154 may simply process “small” requests, with-
out queuing, regardless of the current statuses of the sub-
data routers 151-154 in terms of CPU utilization/capacity
and memory utilization/capacity.

[0030] When processing a task, a sub-data router in the
sub-data router set 150 may engage one more of nodes
161-164 in storage and processing nodes 160. For instance,
the sub-data router may parse the request and determine that
the request needs to access files with blocks stored in one of
nodes 161 and in one of nodes 163. The sub-data router may
assign the one of nodes 161 and/or the one of nodes 163 to
process all or a portion of the blocks in accordance with the
task, or may assign a different node to copy the blocks and
to process the blocks in accordance with the task. For
instance, in one example, the sub-data router may implement
a map-reduce algorithm to distribute various operations of
the task to multiple nodes and to aggregate the results.
[0031] Inone example, after a task is processed, a sub-data
router may report back to an assigning task handler with the
actual CPU and memory utilizations for the task. In addition

US 2018/0032379 Al

the actual CPU and memory utilizations, and parameters of
the task can be shared among all task handlers in the task
handler set 120. Thus, statistics can be collected over all
tasks/requests and over all sub-data routers such that it can
lead to more accurate estimates of resource requirements of
requests for processing future tasks.

[0032] It should be noted that the system 100 has been
simplified. In other words, the system 100 may be imple-
mented in a different form than that illustrated in FIG. 1. For
example, the system 100 may be expanded to include other
components (not shown) such as additional groups of
requesting machines, additional task handlers, additional
sub-data routers, and so forth, without altering the scope of
the present disclosure. Similarly, system 100 may omit
various elements, substitute elements for components or
devices that perform the same or similar functions and/or
combine elements that are illustrated as separate compo-
nents. Thus, these and other modifications of the system 100
are all contemplated within the scope of the present disclo-
sure.

[0033] FIG. 2 illustrates a flowchart of an example method
200 for assigning a task to a sub-data router, in accordance
with the present disclosure. In one example, the steps,
functions, or operations of the method 200 may be per-
formed by a task handler, such as one of task handlers
121-124 in FIG. 1. Alternatively, or in addition, in one
example, the steps, functions, or operations of method 200
may be performed by a computing device or system 500,
and/or processor 502 as described in connection with FIG.
5 below. For example, the processor 502 and memory 504
may represent the hardware logic and a memory storing
computer’hardware logic-executable instructions of an
example task handler, in accordance with the present dis-
closure. For illustrative purposes, the method 200 is
described in greater detail below in connection with an
example performed by a processor, such as processor 502 in
FIG. 5. The method begins in step 205 and proceeds to step
210.

[0034] At step 210, the processor receives a first request to
process a first task, the first request including a first esti-
mated CPU utilization for the first task and a first estimated
memory utilization for the first task. The first request may be
received from one of a plurality of requesting devices that
may be assigned to send task requests to the processor. In
one example, the first task is associated with accessing data
that is stored in a distributed data storage system. In one
example, the first estimated CPU utilization and the first
estimated memory utilization are estimated from a knowl-
edge base comprising feedback regarding past tasks as
processed via various sub-data routers. For example, sub-
data routers may report on the actual CPU and memory
utilizations for completed tasks to a plurality of task sched-
ulers within a distributed data storage system, which can
result in more accurate estimates for requests for new tasks
to be assigned. In one example, the estimated CPU utiliza-
tion and memory utilization may be independently scored,
e.g., in terms of megahertz (MHz) and megabytes (MB), on
a scale of 1-10, 1-100, etc. In one example, the anticipated
size of the dataset and the type of processing involved may
be used to set these scores. In one example, the first request
may further include a first latency requirement of the first
task.

[0035] At step 220, the processor receives CPU capacities
and memory capacities of a plurality of sub-data routers

Feb. 1,2018

including at least a first sub-data router. For instance, the
plurality of sub-data routers may monitor their current CPU
and memory utilizations (and/or CPU and memory capaci-
ties) and report these utilizations/capacities to a plurality of
task schedulers of the distributed data storage system. In one
example, each of the plurality of sub-data routers includes a
list of blocks of the data, or files that are stored in the
distributed data storage system, and data nodes of the
distributed data storage system where the blocks are located
within the distributed data storage system.

[0036] At step 230, the processor determines that a first
sub-data router has a lowest CPU capacity from among the
plurality of sub-data routers that is sufficient to accommo-
date the first estimated CPU utilization for the first task. For
instance, the optimum use of sub-data routers may be
achieved when the tasks are sent to sub-data routers that are
the “best fit.” In one example, the optimal distribution of
tasks to sub-data routers may be achieved by the processor
assigning the first task to the sub-data router that has just
enough CPU capacity to fulfill the estimated CPU utiliza-
tion. In one example, this is objectively achieved by the
processor identifying the sub-data router with the lowest
CPU capacity that is still sufficient to meet the estimated
CPU utilization of the task. In this case, the sub-data router
meeting this criterion is labeled as the first sub-data router
(where the term “first” does not imply that it was the first one
of the sub-data routers evaluated according the CPU capac-
ity at step 230).

[0037] At step 240, the processor determines that the first
sub-data router has a memory capacity that is sufficient to
accommodate the first estimated memory utilization for the
first task. For instance, more optimal processing of the task
may occur when the memory capacity of the first sub-data
router is also sufficient to meet the estimated memory
utilization for the task. If the memory capacity is insufficient,
the processor may then consider a different sub-data router
with a next lowest CPU capacity that is still sufficient to
meet the estimated CPU utilization of the task. However, for
purposes of the present example, it is assumed that the
memory capacity of the first sub-data router is in fact
sufficient to accommodate the first estimated memory utili-
zation for the first task.

[0038] At step 250, the processor assigns the first task to
the first sub-data router, e.g., when it is determined that the
first sub-data router has a CPU capacity that is sufficient to
accommodate the first estimated CPU utilization for the first
task and when it is determined that the first sub-data router
has a memory capacity that is sufficient to accommodate the
first estimated memory utilization for the first task. For
purposes of the present example it is assumed that the first
sub-data router has been determined to meet such criteria at
steps 230 and 240. In one example, the first sub-data router
may send instructions to at least one data node of the
distributed data storage system to perform functions in
accordance with the first task.

[0039] Inone example, the assigning of the first task to the
first sub-data router at step 250 may be in accordance with
a priority of assignment between the processor and a second
task handler. For example, the processor may comprise a
processor of a first task handler that is in communication
with a plurality of additional task handlers for assigning
tasks to the plurality of sub-data routers. The processor may
receive a notification from the second task handler of a
second task to be assigned by the second task handler and

US 2018/0032379 Al

may then determine a priority of assignment between the
first task and the second task, and/or between the first task
handler and the second task handler. In one example, the
priority of assignment may be based upon pre-designated
ranks that are provided for the first task handler and for the
second task handler. In another example, the priority of
assignment may be in accordance with respective times
since a last assignment of a task by the processor (e.g., by
the first task handler) and a last assignment of a task by the
second task handler.

[0040] In another example, the assigning of the first task
to the first sub-data router may comprise sending a notifi-
cation to a second task handler (or a plurality of task
handlers) of the assigning the first task to the first sub-data
router, and sending the first task to the first sub-data router
after a hold-off time. In one example, the hold-off time is in
accordance with a latency between the processor and the
second task handler. For example, the processor may keep
track of latencies between different components within the
distributed data storage system such that the processor may
determine how long it may take for the notification to reach
the second task handler. For instance, the second task
handler may comprise a task handler that is the furthest (in
terms of time/latency) from the processor. If there is no
conflicting notification received during the hold-off time, the
processor may then continue with sending the first task to the
first sub-data router.

[0041] Inone example, the first task is assigned to the first
sub-data router when it is determined that the first sub-data
router has a CPU capacity that is sufficient to accommodate
the first estimated CPU utilization for the first task, when it
is determined that the first sub-data router has a memory
capacity that is sufficient to accommodate the first estimated
memory utilization for the first task, and when a latency
between the device and the first sub-data router is in accor-
dance with a first latency requirement for the first task. For
example, as mentioned above, in one example, the first
request may further include a first latency requirement of the
first task. In addition, in one example, the processor may
track latencies between different components within the
distributed data storage system such that the processor may
determine whether a latency associated with communica-
tions to and/or from the first sub-data router is in accordance
with the first latency requirement.

[0042] Following step 250, the method 200 may proceed
to optional step 260, to optional step 290, or to step 295.
[0043] At optional step 260, the processor may receive a
notification from the first sub-data router that the first task is
placed in a processing queue at the first sub-data router. For
example, as mentioned above, it may be possible for two
tasks to be assigned to a sub-data router at or around the
same time, which the sub-data router may not be able to
simultaneously process in accordance with its CPU capacity
and/or its memory capacity. Thus, in one example the first
sub-data router may queue/buffer the first task and send a
notification to the processor.

[0044] At optional step 270, the processor may assign the
first task to a second sub-data router of the plurality of
sub-data routers. For instance, the processor may determine
that the first task should not await processing in the queue of
the first sub-data router, but should be reassigned to a
sub-data router that may begin processing the task immedi-
ately (i.e., without queuing). The processor may evaluate
other sub-data routers according to the same criteria as

Feb. 1,2018

described above in connection with steps 230 and 240, while
omitting the first sub-data router from consideration. If
another sub-data router (e.g., labeled as a “second sub-data
router”) is found that has sufficient CPU and memory
capacity, and that can process the first task without queuing,
the processor may reassign the first task to that sub-data
router.

[0045] At optional step 280, the processor may transmit a
cancellation regarding the first task to the first sub-data
router. Accordingly, the first-sub data router may remove the
first task from the queue and free resources for additional
tasks. Following optional step 280, the method 200 may
proceed to step 290.

[0046] At optional step 290, the processor may receive
from the first sub-data router an actual CPU utilization and
the actual memory utilization for processing the first task.
For instance, the actual CPU utilization and an actual
memory utilization for processing the first task may be used
in calculating a second estimated CPU utilization for a
second task and a second estimated memory utilization for
the second task. In addition, the processor may share the
actual CPU utilization and the actual memory utilization for
processing the first task with a plurality of task handlers. As
such, the task handlers may collectively improve the accu-
racy of estimates for CPU utilizations and memory utiliza-
tions of new tasks to be assigned to sub-data routers.
[0047] Following optional step 290, the method 200 pro-
ceeds to step 295. At step 295, the method 200 ends.
However, it should be noted that in one example, the method
200 may be expanded to include additional steps, functions,
or operations. For instance, the steps, functions, or opera-
tions of the method 400 of FIG. 4, described in greater detail
below, may comprise an extension of the method 200.
[0048] FIG. 3 illustrates a flowchart of an additional
example method 300 for assigning a task to a sub-data
router, in accordance with the present disclosure. In one
example, the steps, functions, or operations of the method
300 may be performed by a task handler, such as one of task
handlers 121-124 in FIG. 1. Alternatively, or in addition, in
one example, the steps, functions, or operations of method
300 may be performed by a computing device or system
500, and/or processor 502 as described in connection with
FIG. 5 below. For example, the processor 502 and memory
504 may represent the hardware logic and a memory storing
computer’hardware logic-executable instructions of an
example task handler, in accordance with the present dis-
closure. For illustrative purposes, the method 300 is
described in greater detail below in connection with an
example performed by a processor, such as processor 502 in
FIG. 5.

[0049] It should be noted that in one example, the method
300 is similar to the method 200 discussed above. However,
the method 300 may first identify a sub-data router with a
lowest memory capacity that is still sufficient to accommo-
date an estimated memory utilization of a task, and then use
an estimated CPU utilization of the task and a CPU capacity
of the sub-data router as the rejecting criteria. The method
begins in step 305 and proceeds to step 310.

[0050] At step 310, the processor receives a first request to
process a first task, the first request including a first esti-
mated CPU utilization for the first task and a first estimated
memory utilization for the first task. In one example, the first
task is associated with accessing data that is stored in a
distributed data storage system. In one example the first

US 2018/0032379 Al

request may further include a first latency requirement of the
first task. In one example, step 310 may comprise the same
or substantially similar operations to that which is described
above in connection with step 210 of the method 200.
[0051] At step 320, the processor receives CPU capacities
and memory capacities of a plurality of sub-data routers
including at least a first sub-data router. For instance, the
plurality of sub-data routers may monitor their current CPU
and memory utilizations (and/or CPU and memory capaci-
ties) and report these utilizations/capacities to a plurality of
task schedulers of the distributed data storage system. In one
example, step 320 may comprise the same or substantially
similar operations to that which is described above in
connection with step 220 of the method 200.

[0052] At step 330, the processor determines that a first
sub-data router has a lowest memory capacity from among
the plurality of sub-data routers that is sufficient to accom-
modate the first estimated memory utilization for the first
task. In this case, the sub-data router meeting this criterion
is labeled as the first sub-data router (where the term “first”
does not imply that it was the first one of the sub-data routers
evaluated according the memory capacity at step 330).
[0053] At step 340, the processor determines that the first
sub-data router has a CPU capacity that is sufficient to
accommodate the first estimated CPU utilization for the first
task. For instance, more optimal processing of the task may
occur when the memory capacity of the first sub-data router
is also sufficient to meet the estimated CPU utilization for
the task. If the CPU capacity is insufficient, the processor
may then consider a different sub-data router with a next
lowest memory capacity that is still sufficient to meet the
estimated memory utilization of the task. However, for
purposes of the present example, it is assumed that the CPU
capacity of the first sub-data router is in fact sufficient to
accommodate the first estimated CPU utilization for the first
task.

[0054] At step 350, the processor assigns the first task to
the first sub-data router, e.g., when it is determined that the
first sub-data router has the a memory capacity that is
sufficient to accommodate the first estimated memory utili-
zation for the first task and when it is determined that the first
sub-data router has a CPU capacity that is sufficient to
accommodate the first estimated CPU utilization for the first
task. For purposes of the present example it is assumed that
the first sub-data router has been determined to meet such
criteria at steps 330 and 340. The first sub-data router may
send instructions to at least one data node of the distributed
data storage system to perform functions in accordance with
the first task.

[0055] Inone example, the assigning of the first task to the
first sub-data router at step 350 may be in accordance with
a priority of assignment between the device and a second
task handler (e.g., as described above in connection with
step 250 of the method 200). In another example, the
assigning of the first task to the first sub-data router may
comprise sending a notification to a second task handler (or
a plurality of task handlers) of the assigning the first task to
the first sub-data router, and sending the first task to the first
sub-data router after a hold-off time (e.g., as described above
in connection with step 250 of the method 200). Alterna-
tively, or in addition, in one example, the first task is
assigned to the first sub-data router when it is determined
that the first sub-data router has a memory capacity that is
sufficient to accommodate the first estimated memory utili-

Feb. 1,2018

zation for the first task, when it is determined that the first
sub-data router has a CPU capacity that is sufficient to
accommodate the first estimated CPU utilization for the first
task, and when a latency between the device and the first
sub-data router is in accordance with a first latency require-
ment for the first task. Following step 350, the method 300
may proceed to optional step 360, to optional step 390, or to
step 395.

[0056] At optional step 360, the processor may receive a
notification from the first sub-data router that the first task is
placed in a processing queue at the first sub-data router. In
one example, step 360 may comprise the same or substan-
tially similar operations to that which is described above in
connection with step 260 of the method 200.

[0057] At optional step 370, the processor may assign the
first task to a second sub-data router of the plurality of
sub-data routers. In one example, step 370 may comprise the
same or substantially similar operations to that which is
described above in connection with step 270 of the method
200.

[0058] At optional step 380, the processor may transmit a
cancellation regarding the first task to the first sub-data
router. In one example, step 380 may comprise the same or
substantially similar operations to that which is described
above in connection with step 280 of the method 200.
Following optional step 380, the method 300 may proceed
to step 390.

[0059] At optional step 390, the processor may receive
from the first sub-data router an actual CPU utilization and
an actual memory utilization for processing the first task. In
one example, step 390 may comprise the same or substan-
tially similar operations to that which is described above in
connection with step 290 of the method 200.

[0060] Following step 390, the method 300 proceeds to
step 395. At step 395, the method 300 ends. However, it
should be noted that in one example, the method 300 may be
expanded to include additional steps, functions, or opera-
tions. For instance, the steps, functions, or operations of the
method 400 of FIG. 4, described in greater detail below, may
comprise an extension of the method 300.

[0061] FIG. 4 illustrates a flowchart of an example method
400 of further operations for assigning a task to a sub-data
router, in accordance with the present disclosure. For
instance, the method 400 may comprise an extension of the
method 200 or the method 300 described above. In other
words, the steps, functions, or operations of the method 400
may be considered optional or additional steps in connection
with the above-described method 200 or method 300. In one
example, the steps, functions, or operations of the method
400 may be performed by a task handler, such as one of task
handlers 121-124 in FIG. 1. Alternatively, or in addition, in
one example, the steps, functions, or operations of method
400 may be performed by a computing device or system
500, and/or processor 502 as described in connection with
FIG. 5 below. For illustrative purposes, the method 400 is
described in greater detail below in connection with an
example performed by a processor, such as processor 502 in
FIG. 5.

[0062] At step 410, the processor receives a second
request to process a second task, the second request includ-
ing a second estimated CPU utilization for the second task
and a second estimated memory utilization for the second
task. It should be noted that the processor may receive a first

US 2018/0032379 Al

request to process a first task in accordance with step 210 of
the method 200 or step 310 of the method 300, as described
above.

[0063] At step 420, the processor determines whether the
second estimated CPU utilization for the second task is
below a threshold central processing unit utilization and/or
whether the second estimated memory utilization for the
second task is below a threshold memory utilization. For
instanc