wo 2014/074164 A1 || I} OO0 OO0 OO

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/074164 A1

(51

eay)

(22)

(25)
(26)
(30)

1

15 May 2014 (15.05.2014) WIPOIPCT
International Patent Classification: (72)
GO6F 17/00 (2006.01)

International Application Number:
PCT/US2013/041128
International Filing Date:
15 May 2013 (15.05.2013)
Filing Language: English (81)
Publication Language: English
Priority Data:
13/671,825 8 November 2012 (08.11.2012) Us
Applicant: CONCURIX CORPORATION [US/US]; At-
tention: Russell S. Krajec, 244 Market Street, Kirkland
WA 98033 (US).
(84)

Inventors: GOUNARES, Alexander, G.; 2178 7th Aven-
ue West, Kirkland, Washington 98033 (US). LI, Ying;
9633 Vineyard Crest, Bellevue, Washington 98004 (US).
GARRETT, Charles, D.; 17641 167th Avenue NE,
Woodinville, Washington 98072 (US). NOAKES, Mi-
chael, D.; 16409 Maplewild Avenue SW, Burien, Wash-
ington 98166 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
IM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

[Continued on next page]

(34

Title: MEMOIZING WITH READ ONLY SIDE EFFECTS

(57) Abstract: A function may be memoized when a side effect is a read

METHOD FOR EVALUATING
FUNCTIONS FOR MEMOIZATION

602
| RECEIVE FUNCTION FOR EVALUATION
¥

FOR EACH SET OF
INPUTS TO FUNCTION

604

FUNCTION NOT
MEMOIZABLE FOR
INPUT SET

614
EVALUATE MEMOIZATION BASED ON
CONSISTENCY
T
618 v
[SELECT A SIDE EFFECT |

CONSIDER SIDE EFFECT
INPUT TO FUNCTH

623
MARK FUNCTION FOR
RE-EVALUATION
628

SIDE EFFECT OK TO
MEMOQOIZE

AS AN
N

624
| CLASSIFY SIDE EFFECT AGAINST
WHITE LIST / BLACK LIST

SIDE EFFECT OK TO
MEMOIZE UNDER
DEFINED CONDITIONS

SIDE EFFECT
CLASSIFIED?

634

ANQTHER
SIDE EFFECT?2.

STORE CONDITIONS

UNDER WHICH FUNCTION
1S MEMOIZABLE

FIG. 6

only side effect. Provided that the read only side effect does not mutate a
memory object, the side effect may be considered as an input to a function
for purity and memoization analysis. When a read only side eftect may be
encountered during memoization analysis, the read only side effect may be
treated as an input to a function for memoization analysis. In some cases,
such side effects may enable an impure function to behave as a pure function
for the purposes of memoization.

WO 2014/074164 A1 |IIWANT 000N 000 T A A

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, Declarations under Rule 4.17:
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, __ . . .

EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, of inventorship (Rule 4.17(iv))

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Published:

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, [P ,

GW, ML. MR, NE, SN, TD, TG). with international search report (Art. 21(3))

— with amended claims (Art. 19(1))

WO 2014/074164 PCT/US2013/041128

Memoizing with Read Only Side Effects

Claim of Priority

[0001] This application claims the benefit priority to U.S. Patent
Application No. 13/671,825, filed November 8, 2012, entitled “Memoizing with
Read Only Side Effects”, which is incorporated herein by reference in its

entirety.

Background

[0002] Memoization is an optimization technique for speeding up
computer programs by caching the results of a function call. Memoization
avoids having a function calculate the results when the results may be already
stored in cache. In cases where the function call may be computationally
expensive, memoization may drastically reduce computation time by only
performing a specific calculation one time.

[0003] Memoization may add overhead to a program. The overhead
may include testing a cache prior to executing a function, plus the overhead of
storing results.

[0004] Memoization is possible when functions are ‘pure’. A pure
function is one in which the function returns a consistent result given a set of
inputs and is free from side effects. Side effects may be any change of state or

other interaction with calling functions or the outside world.

Summary

[0005] A function may be memoized when a side effect is a read only
side effect. Provided that the read only side effect does not mutate a memory
object, the side effect may be considered as an input to a function for purity and

memoization analysis. When a read only side effect may be encountered during

WO 2014/074164 PCT/US2013/041128

memoization analysis, the read only side effect may be treated as an input to a
function for memoization analysis. In some cases, such side effects may enable
an impure function to behave as a pure function for the purposes of
memoization.

[0006] This Summary is provided to introduce a selection of concepts in
a simplified form that are further described below in the Detailed Description.
This Summary is not intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit the scope of the

claimed subject matter.

Brief Description of the Drawings

[0007] In the drawings,

[0008] FIGURE 1 is a diagram illustration of an embodiment showing a
sequence for analysis of impure code.

[0009] FIGURE 2 is a diagram illustration of an embodiment showing a
device that may memoize impure functions.

[0010] FIGURE 3 is a diagram illustration of an embodiment showing a
purity analyzer in a network environment.

[0011] FIGURE 4 is a flowchart illustration of an embodiment showing
a method for static analysis prior to execution.

[0012] FIGURE 5 is a flowchart illustration of an embodiment showing
a method for memoization analysis during execution.

[0013] FIGURE 6 is a flowchart illustration of an embodiment showing
a method for evaluating functions for memoization.

[0014] FIGURE 7 is a flowchart illustration of an embodiment showing
a detailed method for selecting functions for memoization.

[0015] FIGURE 8 is a flowchart illustration of an embodiment showing
a method for evaluating functions en masse.

[0016] FIGURE 9 is a diagram illustration of an embodiment showing a
system for memoizing an application.

[0017] FIGURE 10 is a flowchart illustration of an embodiment showing

a method for memoization.

WO 2014/074164 PCT/US2013/041128

[0018] FIGURE 11 is a diagram illustration of an embodiment showing
a system for creating decorated code.

[0019] FIGURE 12 is a flowchart illustration of an embodiment showing
a method for decorating code.

[0020] FIGURE 13 is a flowchart illustration of an embodiment showing
a method for executing decorating code.

[0021] FIGURE 14 is a diagram illustration of an embodiment showing
a vector space for an impure function.

[0022] FIGURE 15 is a flowchart illustration of an embodiment showing
a method for purity analysis and clustering.

[0023] FIGURE 16 is a flowchart illustration of an embodiment showing

a method for runtime analysis of input vectors.

Detailed Description

[0024] A purity analysis of a function may gather observations of the
execution of the function, then analyze the observations to determine when and
if the function behaves as a pure function. When the function is classified as a
pure function, the function may be memoized.

[0025] After analyzing several different sets of input parameters which
may be treated as input vectors, clustering may be performed to create areas of
known input vectors for which memoization may be performed and areas of
known input vectors for which memoization may not be performed. The areas
may be defined by clustering analysis performed within the n-dimensional space
defined by the input vectors. The clustering analysis may create confidence
boundaries within the input space.

[0026] The confidence boundaries may be used to estimate whether an
input vector may be memoized. When a new input vector lands within a
confidence boundary, the input vector may be treated as a memoizable or not
memoizable function without performing a memoization analysis on the input
vector.

[0027] The purity analysis may use a control flow graph, call trace

analysis, or other flow representation of an application to identify potential

WO 2014/074164 PCT/US2013/041128

functions for analysis, as well as to evaluate the downstream connections of a
given function to determine when and if any side effects occur. To select a
function for purity analysis, the control flow graph may be traversed to classify
functions regarding their side effects. Some side effects, such as input from
outside devices, may be side effects that prohibit memoization. Other side
effects, such as writing to a log file, may prohibit memoization when logging is
requested, but not prohibit memoization when logging may not be requests.

[0028] The control flow graph may be traversed to identify potential
functions that may benefit from memoization. In general, memoization of a
function that calls many other functions may yield a more significant
performance benefit than memoization of functions that call fewer other
functions. The selection process may favor functions that have the highest
payback from memoization.

[0029] The purity of a function may be defined on a conditional basis.
The conditions may be, for example, certain sets of input parameters, specific set
of side effects, or other conditions. When such a condition occurs, the function
may be memoized for one set of conditions and not memoized for other sets of
conditions.

[0030] The purity of a function may be determined using a statistical
confidence. For example, the operations of a function may be gathered over
many uses, many instances, and many devices. These data may be analyzed to
identify functions that behave as pure functions that may otherwise be classified
as impure functions using static analysis. In some cases, a function may be
considered pure when the behavior is predictable with a high confidence, such as
when the behavior may be consistent with a .90, .95, .99, or .999 confidence or
better.

[0031] Side effect analysis may also be a factor in determining purity.
In some cases, a side effect may be analyzed against a white list or black list to
classify the side effect as de minimus or substantial. Those functions with trivial
or de minimus side effects may be considered pure from a side effect standpoint,
while those with substantial side effects may not.

[0032] In some embodiments, the output of a side effect may be

captured and treated as a function input or result. In some such embodiments,

WO 2014/074164 PCT/US2013/041128

the function may be considered pure when the side effect behavior is consistent
and repeatable. Further, the global state of the application or device executing
the application may be considered as an input to an impure function. In cases
where the global state may play a role in the consistent behavior of a function,
the function may be declared pure for the specific cases corresponding to a
global state.

[0033] Once a function has been identified as pure, the purity
designation may be used by a memoization routine to cause the function to be
memoized. In some cases, the purity designation may be transmitted to an
execution environment to cause the function to be memoized. Such an execution
environment may be on the same device or a different device from a purity
analysis engine that designates the function as pure or not.

[0034] An offline memoization optimization mechanism may improve
performance of a target executable code by monitoring the executing code and
offline analysis to identify functions to memoize. The results of the analysis
may be stored in a configuration file or other database, which may be consumed
by an execution environment to speed up performance of the target executable
code.

[0035] The configuration file or database may identify the function to be
memoized and, in some cases, may include the input and output values of the
function. The execution environment may monitor execution of the target code
until a function identified in the configuration file may be executed. When the
function is to be executed, the execution environment may determine if the input
values for the function are found in the configuration file. If so, the execution
environment may look up the results in the configuration file and return the
results without executing the function.

[0036] In some embodiments, the configuration file may be used
without changing the target code, while in other embodiments, the configuration
file may be used to decorate the target code prior to execution. Some such
embodiments may decorate the target code by adding memoization calls within
the target code, which may be source code, intermediate code, binary executable

code, or other form of executable code.

WO 2014/074164 PCT/US2013/041128

[0037] The offline analysis may use monitoring results of the target code
over multiple instances of the target code. In some cases, the target code may be
executed on multiple different devices, and the aggregated results may be
analyzed when creating the configuration file. In some cases, the monitoring
results may be collected from many different users under many different
conditions.

[0038] Throughout this specification and claims, the term “configuration
file” is used to denote a database that may be consumed by an execution
environment. In some cases, the “configuration file” may be an actual file
managed within an operating system’s file system, but in other cases, the
“configuration file” may be represented as some other form of database that may
be consumed by the execution environment. The term “configuration file” is
used as convenient description but is not meant to be limiting.

[0039] The optimization process may use data gathered by monitoring
the target code during execution. The monitoring operation may passively or
actively collect parameter values, then pass the collected data to a remote
optimization system.

[0040] The remote optimization system may create a configuration file
based on the data received from the monitored target code. In some
embodiments, a baseline performance level may be identified prior to executing
with the configuration file, then a performance level with the configuration file
may be either measured or estimated.

[0041] In many embodiments, data may be collected when the target
executable code is run to determine dynamic and operational monitored
parameters. Monitored parameters collected from the target code may not
include any personally identifiable information or other proprietary information
without specific permission of the user. In many cases, many optimized
configurations may be generated without knowledge of the workload handled by
the executable code. In the case where the monitoring occurs in an execution
environment such as an operating system or virtual machine, the monitoring may
collect operating system and virtual machine performance data without
examining the application or other workload being executed. In the case where

the monitoring occurs within an application, the monitoring may collect

WO 2014/074164 PCT/US2013/041128

operational and performance data without collecting details about the input or
output of the application.

[0042] In the case when data may be collected without an agreement to
provide optimization, the collected data may be anonymized, summarized, or
otherwise have various identifiable information removed from the data.

[0043] Throughout this specification, like reference numbers signify the
same elements throughout the description of the figures.

[0044] When elements are referred to as being “connected” or
“coupled,” the elements can be directly connected or coupled together or one or
more intervening elements may also be present. In contrast, when elements are
referred to as being “directly connected” or “directly coupled,” there are no
intervening elements present.

[0045] The subject matter may be embodied as devices, systems,
methods, and/or computer program products. Accordingly, some or all of the
subject matter may be embodied in hardware and/or in software (including
firmware, resident software, micro-code, state machines, gate arrays, etc.)
Furthermore, the subject matter may take the form of a computer program
product on a computer-usable or computer-readable storage medium having
computer-usable or computer-readable program code embodied in the medium
for use by or in connection with an instruction execution system. In the context
of this document, a computer-usable or computer-readable medium may be any
medium that can contain, store, communicate, propagate, or transport the
program for use by or in connection with the instruction execution system,
apparatus, or device.

[0046] The computer-usable or computer-readable medium may be, for
example but not limited to, an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor system, apparatus, device, or propagation medium.
By way of example, and not limitation, computer readable media may comprise
computer storage media and communication media.

[0047] Computer storage media includes volatile and nonvolatile,
removable and non-removable media implemented in any method or technology
for storage of information such as computer readable instructions, data

structures, program modules or other data. Computer storage media includes,

WO 2014/074164 PCT/US2013/041128

but is not limited to, RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other optical storage,
magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium which can be used to store the desired
information and which can accessed by an instruction execution system. Note
that the computer-usable or computer-readable medium could be paper or
another suitable medium upon which the program is printed, as the program can
be electronically captured, via, for instance, optical scanning of the paper or
other medium, then compiled, interpreted, of otherwise processed in a suitable
manner, if necessary, and then stored in a computer memory.

[0048] When the subject matter is embodied in the general context of
computer-executable instructions, the embodiment may comprise program
modules, executed by one or more systems, computers, or other devices.
Generally, program modules include routines, programs, objects, components,
data structures, etc. that perform particular tasks or implement particular abstract
data types. Typically, the functionality of the program modules may be
combined or distributed as desired in various embodiments.

[0049] Figure 1 is a diagram of an embodiment 100 showing a
simplified example of an analysis sequence for assessing the purity of functions.
Embodiment 100 illustrates an overall process by which functions may be
memoized, including functions that fail static analysis for purity.

[0050] Memoization is an optimization technique where the results of a
function may be cached the first time the function is called. When the function
is called a second time with the same input values, the cached value may be
retrieved without having to recalculate the value.

[0051] The effectiveness of memoization is dependent on the cost to
compute the result. When the cost is high, the savings of memoization yields a
high performance gain. When the cost of computing a result is minimal,
memoization may be a neutral or negative to performance.

[0052] Memoization assumes that the function being memoized will
return consistent results given the inputs. Functions that have side effects often
cannot be memoized. Side effects may be interactions with calling functions or

the outside world, such as input or output devices or systems. A side effect may

WO 2014/074164 PCT/US2013/041128

include modifying an argument passed to a function, modifying a global or static
variable, raising an exception, writing data to a file or display, reading data, or
calling other side-effecting functions.

[0053] Embodiment 100 may be one example of an analysis sequence
that may examine one function or a small group of functions at a time. Such a
sequence may be useful in systems where memoization analysis may be
performed while an application is running. In such embodiments, a portion of
system resources may be allocated to memoization analysis, and single functions
may be traced and analyzed individually. A more detailed example of such a
system may be found in embodiment 400 presented later in this specification.

[0054] Memoization analysis may be performed en masse in other
embodiments. In such embodiments, an application may be analyzed using an
instrumented environment that may trace all functions, then evaluate the results
to select functions for memoization. In such embodiments, the performance of
the application may be very poor during the instrumented execution, but then the
application may be executed in with the memoization results in a non-
instrumented manner to realize the performance gains from memoization. A
more detailed example of such a system may be found in embodiment 500
presented later in this specification.

[0055] Source code 102 may be analyzed using static code analysis 104
to identify pure functions 106 and impure functions 110. Functions that are
known pure functions 106 may be capable of memoization 108.

[0056] The static code analysis 104 may examine the source code 102 to
identify functions that are free from side effects. Such functions may be labeled
as ‘pure’ based on analyzing code without executing the code. The source code
102 may be source code, intermediate code, decompiled code, or some other
form of application definition.

[0057] The static code analysis 104 may create a call tree or control flow
graph to determine the overall flow of an application, then traverse the
representation to determine whether or not a particular function calls an impure
function or has a side effect.

[0058] The impure functions 110 may be sorted 112 to identify potential

candidates for analysis. The computational costs 114 of each function may be

WO 2014/074164 PCT/US2013/041128

applied to each function to estimate the possible savings. The computational
costs may be estimates from static analysis or may be based on monitoring the
execution of the target application. When the execution of the application is
monitored, each function may also be tracked to determine how many times the
function was called, as well as the parameters passed to the function.

[0059] Candidate selection 116 may attempt to select those functions
having a high potential performance increase if the functions were memoized.
The selection criteria may score the impure functions 110 by the potential
improvement along with the frequency of execution. In one example, the
potential savings multiplied by the number of times a function may be called
may yield a score for ranking the functions.

[0060] The selection may rank the potential functions and select one or
more functions to monitor and analyze 118. In some embodiments, the
monitoring and analysis may consume a global state definition 120. In some
embodiments, the selection and analysis processes may iterate or cycle to
examine impure functions to identify statistically pure functions 122, which may
be used for memoization 108.

[0061] The analysis may measure the consistency of a function given a
set of inputs. In some cases, a function may be considered pure when the
function returns the same values for a given input within a statistical confidence
limit. For some functions, the confidence limit may be quite stringent, such as a
confidence of .999 or .9999. For other functions, the confidence limit may be
much less stringent, such as .75, .80, or .90. The confidence limit may be a
reflection of an acceptable variance limit or error that may be tolerated in results
from the function.

[0062] Some functions may process information that is not subject to
error, such as financial and other transactions. When such functions are not pure
from static analysis, such functions may not be memoizable because the
correctness of the function may have adverse effects. Another class of functions
may permit some error, and such functions may be memoizable even when the
memoized value may not reflect the exact results each function call may have
made. An example of such a class of functions may be the generation of

background areas during image processing for a computer game. The accuracy

10

WO 2014/074164 PCT/US2013/041128

of such functions may not be critical and as such may be memoized when the
repeatability confidence may be relatively low.

[0063] Figure 2 is a diagram of an embodiment 200 showing a computer
system with a system with an optimization server. Embodiment 200 illustrates
hardware components that may deliver the operations described in embodiment
100, as well as other embodiments.

[0064] The diagram of Figure 2 illustrates functional components of a
system. In some cases, the component may be a hardware component, a
software component, or a combination of hardware and software. Some of the
components may be application level software, while other components may be
execution environment level components. In some cases, the connection of one
component to another may be a close connection where two or more components
are operating on a single hardware platform. In other cases, the connections may
be made over network connections spanning long distances. Each embodiment
may use different hardware, software, and interconnection architectures to
achieve the functions described.

[0065] Embodiment 200 may illustrate a single device on which
memoization optimization may be deployed. The optimization may evaluate
functions to identify pure functions and impure functions, then evaluate the
impure functions to identify which of those impure functions may behave as
pure functions. The system may create a configuration database that may be
consumed during execution. The configuration database may contain records for
functions that may be memoized, among other optimization data.

[0066] Embodiment 200 illustrates a device 202 that may have a
hardware platform 204 and various software components. The device 202 as
illustrated represents a conventional computing device, although other
embodiments may have different configurations, architectures, or components.

[0067] In many embodiments, the optimization server 202 may be a
server computer. In some embodiments, the optimization server 202 may still
also be a desktop computer, laptop computer, netbook computer, tablet or slate
computer, wireless handset, cellular telephone, game console or any other type

of computing device.

11

WO 2014/074164 PCT/US2013/041128

[0068] The hardware platform 204 may include a processor 208, random
access memory 210, and nonvolatile storage 212. The hardware platform 204
may also include a user interface 214 and network interface 216.

[0069] The random access memory 210 may be storage that contains
data objects and executable code that can be quickly accessed by the processors
208. In many embodiments, the random access memory 210 may have a high-
speed bus connecting the memory 210 to the processors 208.

[0070] The nonvolatile storage 212 may be storage that persists after the
device 202 is shut down. The nonvolatile storage 212 may be any type of
storage device, including hard disk, solid state memory devices, magnetic tape,
optical storage, or other type of storage. The nonvolatile storage 212 may be
read only or read/write capable. In some embodiments, the nonvolatile storage
212 may be cloud based, network storage, or other storage that may be accessed
over a network connection.

[0071] The user interface 214 may be any type of hardware capable of
displaying output and receiving input from a user. In many cases, the output
display may be a graphical display monitor, although output devices may
include lights and other visual output, audio output, kinetic actuator output, as
well as other output devices. Conventional input devices may include keyboards
and pointing devices such as a mouse, stylus, trackball, or other pointing device.
Other input devices may include various sensors, including biometric input
devices, audio and video input devices, and other sensors.

[0072] The network interface 216 may be any type of connection to
another computer. In many embodiments, the network interface 216 may be a
wired Ethernet connection. Other embodiments may include wired or wireless
connections over various communication protocols.

[0073] The software components 206 may include an operating system
218 on which various applications 244 and services may operate. An operating
system may provide an abstraction layer between executing routines and the
hardware components 204, and may include various routines and functions that
communicate directly with various hardware components.

[0074] An application code 226 may be executed by the operating

system 218 or by the execution environment 222, depending on the embodiment.

12

WO 2014/074164 PCT/US2013/041128

Some applications may execute natively on the operating system 218, while
other applications may execute using a virtual machine or other execution
environment 222. For the purposes of this specification and claims, an
“execution environment” may be an operating system, virtual machine, or any
other construct that may manage execution of an application. Typically, an
execution environment may start, stop, pause, and manage execution, as well as
provide memory management functions, such as memory allocation, garbage
collection, and other functions.

[0075] A monitor 220 or 224 may collect operational data from an
application running on the operating system 218 or execution environment 222,
respectively. The monitors may collect function call information, as well as
performance parameters such as the resources consumed by an application and
various functions that make up the application.

[0076] The application code 226 may be analyzed using a static code
analyzer 228. The static code analyzer 228 may classify functions as pure and
impure. Impure functions may be those that may have side effects or that may
not deterministically return the same values for a given input. The static code
analyzer 228 may store the results of static analysis in a repository for code
metadata 232.

[0077] Static code analysis may be performed on source code,
intermediate code, object code, decompiled code, machine code, or any other
software form. In some cases, the static code analyzer 228 may operate as part
of a compiler.

[0078] A purity analyzer 230 may evaluate the code metadata 232 in
conjunction with the application code 226 to identify impure functions that may
be memoized. Such functions may be analyzed to determine whether or not the
functions may be considered pure for memoization, even though the functions
may be considered impure under static analysis.

[0079] The purity analyzer 230 may identify side effects for impure
functions and attempt to determine whether or not the side effects may have a
substantial effect. Such analysis may involve tracing the function to identify and
classify the side effects. The classification may be done by comparing the side

effects using a white list 238 or black list 240. The white list 238 may contain a

13

WO 2014/074164 PCT/US2013/041128

list of side effects that are innocuous or for which the side effects may be
ignored for memoization. The black list 240 may contain side effects that may
have substantial effects. Side effects that may be found in the black list 240 may
eliminate a function from consideration as a memoizable function.

[0080] Side effects that may not be found in the white list 238 or black
list 240 may be classified using behavioral data collected during tracing. Such
side effects may be traced under many different conditions and many different
runs to collect behavior data. When the behavior of the side effect may be
predictable with statistical confidence, the side effect may be considered to not
eliminate a function from possible memoization.

[0081] Similarly, the behavior of a function may be traced over many
different runs and under different conditions. The tracing may capture input
parameters and output values each time the function may be called, and the
purity analyzer 230 may correlate the input parameters and output values. In
some embodiments, external state information may also be collected. In such
embodiments, the external state information may be considered as input
variables for the function in an attempt to determine conditions under which the
function may behave predictably and reliably.

[0082] For functions that behave predictably and reliably with a
statistical confidence, those functions may be stored in the code metadata and
treated as pure functions for memoization.

[0083] A memoization configurator 234 may capture the code metadata
232 and create an optimization configuration database 236. The optimization
configuration database 236 may be used during program execution to identify
functions that may be memoized. The configuration database 236 may be
consumed by the execution environment 222 or operating system 218 in various
cases.

[0084] In some cases, a compiler 242 may consume the configuration
database 236 to compile the application code 226 with memoization enabled for
those functions identified as memoizable.

[0085] Figure 3 is a diagram illustration of an embodiment 300 showing

a system that may perform purity analysis in a network environment.

14

WO 2014/074164 PCT/US2013/041128

Embodiment 300 illustrates a system that may perform purity analysis, then
distribute the results to various client devices that may consume the results.

[0086] Embodiment 300 may illustrate a mechanism by which an entire
application may be analyzed for memoization. The application may be executed
in an instrumented execution environment where each function may be traced
and operational data may be collected. A subsequent purity analysis may
examine each function for memoization.

[0087] An application may be created and edited on a developer
platform 302. The developer platform 302 may have an editor 304 and compiler
306 with which a programmer may create, test, and debug an application. In
some embodiments, a static code analyzer 308 may also be contained in the
developer platform 302.

[0088] The output of the developer platform 302 may be application
code 310 and code metadata 312, which may be consumed by a purity analyzer
314. The purity analyzer 314 may use an instrumented system 316 to collect
trace data. The instrumented system 316 may execute the application code 310
in an instrumented execution environment 318 that may collect operational data
for various functions.

[0089] The instrumented environment 318 may collect operational data
for all functions. In such embodiments, a purity analyzer 314 may analyze each
impure function for memoization. Such analysis may be in contrast with the
mechanism described in embodiment 100 where functions may be independently
selected and analyzed.

[0090] In some embodiments, a load generator 317 may create a wide
range of loads that may be processed by the application code 310. The load
generator 317 may attempt to exercise the application code 310 so that
operational data may reflect a broad range of conditions. Such exercising may
be used to identify those impure functions that may operate with statistically
significant reliability and may therefore be treated as memoizable.

[0091] The output of the purity analyzer 314 may be metadata 320 that
may be packaged and distributed by a distribution server 322 to various client
devices 324, 326, and 328. The client devices may consume the memoization

information during execution of the application 310.

15

WO 2014/074164 PCT/US2013/041128

[0092] Figure 4 is a flowchart illustration of an embodiment 400
showing a method for independently evaluating functions for memoization.
Embodiment 400 illustrates the operations of a system that may identify impure
functions for memoization analysis and test those functions independently.

[0093] Other embodiments may use different sequencing, additional or
fewer steps, and different nomenclature or terminology to accomplish similar
functions. In some embodiments, various operations or set of operations may be
performed in parallel with other operations, either in a synchronous or
asynchronous manner. The steps selected here were chosen to illustrate some
principles of operations in a simplified form.

[0094] Embodiment 400 is a method by which functions may be
selected for memoization. Functions that are pure based on a static analysis may
be memoized. Other functions that behave as pure functions but which fail static
purity analysis may be treated as pure functions.

[0095] The analysis of impure functions may involve instrumenting the
function and running the function under load to determine whether the function
behaves consistently as well as to collect any side effect information. When the
behavior is consistent and the side effects are de minimus, the function may be
memoized.

[0096] Embodiment 400 illustrates a high level process. Detailed
examples of some parts of embodiment 400 may be found in embodiments 500,
600, and 700 presented later in this specification.

[0097] Source code may be received in block 402. The source code may
be any type of code that may be analyzed. In some cases, the source code may
be source code, intermediate code, decompiled code, or other type of code.

[0098] A static analysis may be performed in block 404 to identify pure
and impure functions. Pure functions may be those functions that return a
consistent result and that have no observable side effects. In many cases, the
purity of a function may be determined with certainty through direct analysis of
source code.

[0099] Each of the pure functions may be labeled as memoizable in
block 406.

16

WO 2014/074164 PCT/US2013/041128

[00100] For each impure function in block 408, any side effects may be
identified and classified in block 410 and the computational cost or complexity
may be estimated in block 412. The analysis of blocks 408 through 412 may be
used to collect various data about the functions, which may be evaluated in
block 414 to analyze the functions for memoization. The results may be stored
in a configuration file in block 416, and the configuration file may be distributed
in block 418.

[00101] Figure 5 is a flowchart illustration of an embodiment 500
showing a method for evaluating functions for memoization. Embodiment 500
illustrates the operations of a system that may select candidate functions for
memoization, then evaluate the functions to determine if those functions can be
memoized.

[00102] Other embodiments may use different sequencing, additional or
fewer steps, and different nomenclature or terminology to accomplish similar
functions. In some embodiments, various operations or set of operations may be
performed in parallel with other operations, either in a synchronous or
asynchronous manner. The steps selected here were chosen to illustrate some
principles of operations in a simplified form.

[00103] Embodiment 500 is a more detailed example of a memoization
evaluation that may be performed in the analyze block 414 from embodiment
400. Embodiment 500 illustrates a method by which functions may be evaluated
individually, as opposed to evaluating many or all functions en masse.
Embodiment 500 may be a detailed example of memoization evaluation that
may occur after static code analysis where pure and impure functions have been
identified.

[00104] Embodiment 500 is an example of a method that may be
performed while an application may be running. By selecting individual
functions for evaluation, a system may improve its performance over time
without producing a large burden on the system. Such a system may ‘learn’ or
improve itself over time.

[00105] Execution of an application may begin in block 502 and
lightweight monitoring may be applied in block 504. The lightweight

monitoring may evaluate each impure function in block 506 to determine call

17

WO 2014/074164 PCT/US2013/041128

frequency in block 508 and score the function based on cost, side effects, and
call frequency in block 510.

[00106] The evaluation of blocks 504 to 510 may collect information
that may be used to score impure functions for evaluation. The score may
attempt to identify those impure functions for which memoization may be both
likely and have a large performance improvement. The call frequency
multiplied by the estimated computational cost may be an estimate or proxy for
the potential benefit of memoization.

[00107] The side effect analysis that may be performed in block 510
may be a first order screening that may eliminate from consideration those
functions with side effects that may prohibit memoization. A more detailed
examination of side effects may be illustrated in embodiment 600.

[00108] The impure functions may be sorted in block 512 and a function
may be selected in block 514 for evaluation.

[00109] The function may be instrumented in block 516 and the function
may be operated under real or simulated loads in block 518. The
instrumentation may collect operational data, such as the parameters passed to
the function and returned from the function in block 520 as well as any
information regarding side effects in block 522. The instrumentation may
continue in block 524 until enough data have been collected. After collecting
sufficient data in block 524, the instrumentation may be removed in block 526.

[00110] The function may be evaluated for memoization in block 528.
An example of such evaluation may be found in embodiments 600 and 700,
presented later in this specification.

[00111] If another function is available for evaluation in block 530, the
process may return to block 514 to select another function for evaluation.

[00112] The code may be prepared for execution with memoization in
block 532. In some embodiments, each function that may be ready for
memoization may be memoized as soon as the evaluation in block 528 has
completed. In other embodiments, the memoization may be deployed later.

[00113] The results of the memoization analysis may be stored in a
configuration database in block 534, which may be distributed to client devices

in block 536.

18

WO 2014/074164 PCT/US2013/041128

[00114] Figure 6 is a flowchart illustration of an embodiment 600
showing a detailed method for evaluating functions for memoization.
Embodiment 600 illustrates a method that considers the consistency of a
function for memoization, as well as the side effects when determining whether
or not to memoize a function.

[00115] Other embodiments may use different sequencing, additional or
fewer steps, and different nomenclature or terminology to accomplish similar
functions. In some embodiments, various operations or set of operations may be
performed in parallel with other operations, either in a synchronous or
asynchronous manner. The steps selected here were chosen to illustrate some
principles of operations in a simplified form.

[00116] Embodiment 600 illustrates a method for evaluating a function
for consistency. Functions that behave in a consistent manner may be
memoized, and embodiment 600 illustrates one method by which the
consistency may be determined with a statistical level of confidence. The
consistency may be defined for certain conditions and not for others. For
example, some input parameters or other variables may cause the function to
behave unpredictably, while under other conditions, the function may behave
predictably and consistently.

[00117] Embodiment 600 also illustrates a method for analyzing side
effects. Side effects may be any observable outside interaction for a function,
other than the parameters sent to the function and those returned.

[00118] Insome cases, a function may have side effects that may be
read only. Read only side effects may read a memory value that may be outside
the scope of the input parameters passed to the function. When such a side
effect may be encountered, the side effect may be considered as an input to the
function. The function may be re-evaluated for consistency and other side
effects to determine whether the function may be memoized.

[00119] A read only side effect may be a side effect that accesses a
memory object without mutating the object. When a mutation of a memory
object occurs, the side effect may not be pure. However, when the side effect
merely reads the memory object, the memory object may be considered as an

input to the function.

19

WO 2014/074164 PCT/US2013/041128

[00120] A white list, black list, or other database may be referenced
when evaluating side effects. In some embodiments, a white list may be used to
identify side effects that may be known to be innocuous or to have effects that
are de minimus. Such side effects may be ignored and may thus permit the
impure function to be memoized. A black list may be used to identify those side
effects for which memoization would be improper. Such side effects may
remove the function from consideration for memoization.

[00121] Manual analysis and classification may place certain side
effects in a white list or black list. Manual analysis may involve having a
programmer, analyst, or other person evaluate the side effect to determine
whether the side effect is de minimus or may have some other classification. In
some cases, side effects that have not been classified may be placed in a
database for human analysis and classification.

[00122] In some cases, the side effect may be classified into different
classifications, where the classification may indicate when memoization may be
appropriate or not. For example, a side effect may perform logging used for
debugging. In such an example, the function may be memoized when logging is
not desired, but not memoized when logging may be requested. Such a function
may be classified as not being memoizable when logging is desired but
memoizable when logging is not requested. The classification may be added to
a configuration file as a condition under which memoization may or may not
occut.

[00123] A function may be received in block 602. Each set of inputs to
the function may be evaluated in block 604. The set of inputs may be
parameters passed to the function. In some cases, the set of inputs may be
additional state items, such as memory values for read only side effects, calling
function identifiers, or other external state metadata.

[00124] For a given set of inputs, the return values may be evaluated for
consistency in block 606. In some cases, a statistical confidence may be
generated from repeated observations of the function. When the return values
are not consistent within a statistical confidence in block 608, the function may

be considered not memoizable for the input set in block 610. When the return

20

WO 2014/074164 PCT/US2013/041128

values are consistent in block 608, the function may be considered memoizable
in block 612.

[00125] The consistency of the function may be evaluated in block 614.
In some cases, a function may be considered consistent under one group of input
sets, but not consistent under another group of input sets. In such cases, the
function may be memoizable under conditions when the function behaves
consistently, but not memoizeable otherwise. In some cases, the evaluation of
blocks 604 through 612 may reveal that the function may be consistent under all
nput sets.

[00126] The side effects may be evaluated by classifying the side effects
and translating the classification to the memoization of the function.

[00127] A side effect may be selected in block 618.

[00128] When the side effect is a read only side effect in block 620, the
side effect may be considered as an input to the function in block 622 and the
function may be marked for reevaluation in block 623. The reevaluation may
cause the function’s consistency to be evaluated to determine if the function
behaves consistently with the side effect considered as an input parameter to the
function.

[00129] The side effect may be classified in block 624 using a white list,
black list, or other database. When the side effect is known good or has de
minimus effects in block 626, the side effect may not disqualify the function for
memoization in block 628.

[00130] When the side effect may have a classification in block 630, the
side effect may disqualify the function for memoization in one condition but not
another. Such a condition may be added to the memoization information in
block 632. An example of a classified side effect may be a side effect that may
be used for debugging or logging but may not otherwise be used.

[00131] If the side effect is not classified in block 630, the side effect
may disqualify the function from memoization in block 636. When a function is
disqualified in block 636, the process may end in block 638.

[00132] After the function may be marked in block 623, 628, or 632 and

another side effect is available for evaluation, the process may return to block

21

WO 2014/074164 PCT/US2013/041128

618. When all of the side effects have been evaluated, the conditions under
which the function may be memoized may be stored in block 640.

[00133] Figure 7 is a flowchart illustration of an embodiment 700
showing a method for evaluating functions for memoization. Embodiment 700
illustrates an evaluation of memoizable functions to determine whether
memoizing the functions may result in a performance savings.

[00134] Other embodiments may use different sequencing, additional or
fewer steps, and different nomenclature or terminology to accomplish similar
functions. In some embodiments, various operations or set of operations may be
performed in parallel with other operations, either in a synchronous or
asynchronous manner. The steps selected here were chosen to illustrate some
principles of operations in a simplified form.

[00135] Embodiment 700 may illustrate a method by which functions
that may be tagged as memoizable are evaluated for memoization. In many
embodiments, memoization adds overhead to a function, which may cause a
function to perform slower than if the memoization were not present.
Embodiment 700 compares the computational cost of the function to a threshold
to determine if the potential savings justifies memoization.

[00136] One or more memoizable functions may be received in block
702. The memoizable functions may be pure functions or impure functions that
may have been analyzed by the process in embodiment 600.

[00137] For each memoizable function in block 704, the computational
cost may be determined in block 706. When the cost not over a predefined
threshold in block 708, the function may be labeled as not to memoize in block
710. When the cost is over the threshold in block 708, the function may be
labeled as memoizable in block 712. The results may be stored in a
configuration file in block 714.

[00138] Figure 8 is a flowchart illustration of an embodiment 800
showing a method for evaluating functions en masse for memoization.
Embodiment 800 illustrates a method whereby an instrumented environment
may capture operational data from each function in an application, then perform

memoization optimization for the entire application.

22

WO 2014/074164 PCT/US2013/041128

[00139] Other embodiments may use different sequencing, additional or
fewer steps, and different nomenclature or terminology to accomplish similar
functions. In some embodiments, various operations or set of operations may be
performed in parallel with other operations, either in a synchronous or
asynchronous manner. The steps selected here were chosen to illustrate some
principles of operations in a simplified form.

[00140] Embodiment 800 illustrates a memoization analysis that may be
performed on an entire application at one time. The process of embodiment 800
illustrates an example of evaluating an application in an instrumented
environment and creating a configuration database that may be used when the
application may be executed in a production environment.

[00141] The instrumented environment may exercise an application
under many different loads while collecting operational data regarding each
function. The operational data may include input parameters, internal and
external state descriptors, return values, and any other information that may
affect the operation of various functions in the application. The loads may
include many simulated inputs or other loads that may cause many of the
functions to be executed.

[00142] The results of the instrumented runs may be analyzed to identify
pure functions, as well as impure functions that behave as pure functions. In
some cases, the impure functions may behave as pure functions in certain
circumstances but not in other circumstances.

[00143] Embodiment 800 analyzes all of the functions in an application
and identifies those that are memoizable as having a higher performance
increase than cost to memoize. Such a screening may be performed on all pure
functions as well as impure functions. After screening, the impure functions
may be evaluated to determine whether or not the functions may be memoizable
and under which conditions. The memoizable functions may be stored in a
configuration database, which may be used during subsequent executions of the
application.

[00144] The source code for an application may be received in block
802. The source code may be source code, intermediate code, decompiled code,

or any other code that may be analyzed using static analysis in block 804. The

23

WO 2014/074164 PCT/US2013/041128

static analysis in block 804 may identify functions as pure or impure, based on
side effects or other issues.

[00145] In block 806, all of the pure functions may be labeled as
memoizable based on the static analysis.

[00146] In block 808, the application may be executed in an
instrumented environment. In some cases, the instrumented environment may
include a load generator which may exercise the application. During the
executing in the instrumented environment, various operational data may be
collected. The operational data may include a measurement of the
computational or other costs for executing specific functions, as well as
capturing the input parameters and results returned by each function. In many
cases, the instrumented environment may also capture the state of the application
and system at various points during execution.

[00147] Each pure function may be analyzed in block 810. For each
pure function in block 810, a computational cost for the function may be
determined in block 812. When the cost is below a threshold in block 814, the
function may be removed from the memoizable list in block 816. When the cost
is over the threshold in block 814, the function may be kept on the memoizable
list in block 818.

[00148] The threshold may represent a minimum computational cost or
overhead that memoization may add to a function. When the cost of
implementing memoization exceeds the benefit, memoization may not be
performed for the specific function.

[00149] The computational cost for each function may be determined
cither statically or dynamically. In a static mechanism, the cost may be
estimated by the number of memory accesses, function calls, or other steps
performed by the source code. In a dynamic mechanism, the cost may be
measured by the instrumented environment. Such a mechanism may measure
the resources consumed and time consumed by a function. The resources may
include computational resources, memory resources, storage resources, network
access resources, or other resource.

[00150] Similarly, each impure function may be analyzed in block 820.

For each impure function in block 820, a computational cost may be determined

24

WO 2014/074164 PCT/US2013/041128

in block 822. When the computational cost is not over a threshold in block 824,
the function may be skipped in block 826 and not considered for memoization.
When the computational cost is above the threshold in block 824, further
analysis may be performed to determine whether or not the impure function can
safely memoized.

[00151] The impure function may be evaluated for side effects in block
828 and evaluated for consistency in block 830. An example of such evaluations
may be illustrated in embodiment 600 presented earlier in this specification.

[00152] When the impure function may be considered unsafe for
memoization in block 832, the function may be skipped in block 834. When the
impure function may be considered safe for memoization in block 832, the
impure function may be added to the memoizable list in block 836.

[00153] After analyzing each impure function, the results may be stored
in a configuration database in block 838 and distributed in block 840 to client
devices.

[00154] Embodiment 900 illustrates a mechanism by which an offline or
remote optimization server 902 may participate in memoization. The
optimization server 902 may collect data from various devices 904 to identify
which functions may be appropriate for memoization. In some cases, the
optimization server 902 may merely identify the functions to memoize, and in
other cases, the optimization server 902 may also determine the memoized
results of the functions.

[00155] The optimization sever 902 may receive results from many
different devices 904 and analyze the aggregated results. In such embodiments,
the optimization server 902 may analyze much more data than could be analyzed
on a single device.

[00156] A function may be identified as memoizable when memoization
meets a set of objectives. The objectives may be to increase throughput, reduce
cost, or other objectives. In many cases, a limited cache or database of
memoized functions may be available, forcing the optimization to select a subset
of available functions for memoizing.

[00157] An application 906 may execute on the devices 904. Within the
application 906, a set of inputs 908 may be passed to a function 910, which may

25

WO 2014/074164 PCT/US2013/041128

produce results 912, As the application 906 executes, a monitor 914 may collect
data. The monitor 914 may collect various monitored parameters 918 that may
be transmitted to the optimization server 902 and stored in an operational history
database 916.

[00158] An optimizer 920 may analyze the operational history database
916 to generate an optimized configuration 922. The optimized configuration
may be one or more records that may be transmitted to the devices 904 and
stored in a memoization database 924. The memoization database 924 may
contain records with identifiers for specific functions, along with the inputs and
results for the functions.

[00159] The memoization records may include various metadata about
the functions. For example, the metadata may include whether or not a specific
function is appropriate for memoization. In some cases, the metadata may
identify specific conditions for memoizing a function, such as memoizing a
function with only a subset of inputs and not memoizing for other sets of inputs.

[00160] In some embodiments, the metadata may include a binary
indicator that indicates whether or not a specific function may be memoized or
not. In some instances, the metadata may include a definition of which instances
a function may or may not be memoized. For example, some embodiments may
have a descriptor that permits memoization for a function with a set of inputs,
but does not permit memoization with a different set of inputs. In another
example, the metadata may indicate that the function may be memoized for all
inputs.

[00161] Insome embodiments, the metadata may indicate that a specific
function is not to be memoized. Such metadata may affirmatively show that a
specific function is not to be memoized. The metadata may also indicate that a
different function is to be memoized.

[00162] When the application 906 is executed on the device 904, a
memoization library 926 may be a set of routines that may be called to
implement memoization. The memoization library 926 may be called with each
memoizable function, and the memoization library 926 may perform the various
functions for memoizing a particular function, including managing the various

inputs and results in the memoization database 924.

26

WO 2014/074164 PCT/US2013/041128

[00163] In some cases, the memoization library 926 may populate the
memoization database 924. In one such example, the optimization server 902
may identify a specific function for memoization. Once identified, the
memoization library 926 may store each call to the function, along with its
inputs and results, thus populating the memoization database 924.

[00164] In other cases, the memoization database 924 may be populated
by the optimization server 902. In such cases, the memoization library 926 may
not add information to the memoization database 924.

[00165] In one such embodiment, the optimization server 902 may
collect data from a first device and transmit an updated configuration 922 to a
second device. In such an embodiment, the device receiving the records in the
memoization database 924 may not have been the device that generated the data
used to create the record.

[00166] The optimization server 902 may transmit the optimized
configuration 922 to the devices 904 through various mechanisms. In some
cases, the optimization server 902 may have a push distribution mechanism,
where the optimization server 902 may transmit the optimized configuration as
the configuration becomes available. In some cases, the optimization server 902
may have a pull distribution mechanism, where the devices 904 may request the
optimized configuration, which may be subsequently transmitted.

[00167] The monitored parameters 918 gathered by the monitor 914
may include various aspects of the function 910. For example, the monitored
parameters 918 may include information about the amount of work consumed by
the function 910. Such information may be expressed in terms of start time and
end time from which elapsed time may be computed. In some cases, the amount
of work may include the number of operations performed or some other
expression.

[00168] Other aspects of the function 910 may include the inputs 908
and results 912 for each execution of the function. The inputs and results of the
function 910 may be stored and compared over time. Some embodiments may
compare the inputs 908 and results 912 over time to determine if a function is

repeatable and therefore memoizable.

27

WO 2014/074164 PCT/US2013/041128

[00169] Some embodiments may include a static analysis component
928 and dynamic analysis component 930 which may gather static and dynamic
data, respectively, regarding the operation of the function 910. A static analysis
component 928 may analyze the function 910 prior to execution. One such
analysis may classify the function 910 as pure or not pure. A pure function may
be one in which the function has no side effects and therefore should return the
same value for a given input. Impure functions may have side effects and may
not return the same results for a given input.

[00170] In some embodiments, the purity of a function may be
determined based on static analysis of the function. In other embodiments, the
purity may be determined through observations of the behavior of the function.
In such embodiments, the repeated observation of the function may be used to
determine a statistical confidence that the function may be pure. Sucha
dynamic evaluation of function purity may be limited to a set of conditions, such
as when a first set of inputs are applied, but purity may not be true when a
second set of inputs are applied, for example.

[00171] The static analysis component 928 may create a control flow
graph for the application 906, which may be included in the monitored
parameters 918. The optimizer 920 may traverse the control flow graph as part
of a process of selecting a function for memoization.

[00172] A dynamic analysis component 930 may analyze the actual
operation of the function 910 to generate various observations. In some cases,
the dynamic analysis component 930 may measure the frequency the function
910 was called with the various inputs 908. The dynamic analysis may also
include performance measurements for the function 910.

[00173] The optimized configuration 922 may be distributed to the
devices 904 in many different forms. In some cases, the optimized configuration
922 may be distributed in a file that may be transmitted over a network. In other
cases, the optimized configuration 922 may be transmitted as records that may
be added to the memoization database 924.

[00174] The example of embodiment 900 illustrates several client

devices 904 that may provide data to an optimization server 902. In a typical

28

WO 2014/074164 PCT/US2013/041128

deployment, the client devices may be executing different instances of the
application 906, each on a separate device.

[00175] In another embodiment, separate instances of the application
906 may be executing on different processors on the same device. In one
version of such an embodiment, a monitor 914 may be operating on a subset of
the processors and the remaining processors may be executing the application
906 without the monitor 914 or with a different, lightweight monitor. In such an
embodiment, some of the processors may execute the application 906 with
memoization but without the monitor 914.

[00176] Figure 10 is a flowchart illustration of an embodiment 1000
showing a method for memoization. The method of embodiment 1000 may
illustrate a memoization mechanism that may be performed by an execution
environment by monitoring the operation of an application and applying
memoization.

[00177] Other embodiments may use different sequencing, additional or
fewer steps, and different nomenclature or terminology to accomplish similar
functions. In some embodiments, various operations or set of operations may be
performed in parallel with other operations, either in a synchronous or
asynchronous manner. The steps selected here were chosen to illustrate some
principles of operations in a simplified form.

[00178] Embodiment 1000 illustrates a method that may be performed
in a virtual machine, operating system, or other execution environment. The
execution environment may memoize any function that has a record in a
memoization database by monitoring execution, detecting that the function has
been identified for memoization, and then memoizing the function.

[00179] The execution environment may be a virtual machine, operating
system, or other software construct that may execute an application. In some
cases, the execution environment may automatically memoize a function when
that function is identified in a memoization database. In some embodiments,
such an execution environment may receive optimization information from a
process that identifies functions to memoize, and such a process may execute on

the same device or a different device from the execution environment.

29

WO 2014/074164 PCT/US2013/041128

[00180] The application code may be executed in block 1002. During
execution, a function may be encountered in block 1004. If the function has not
been tagged as memoizable in block 1006, the function may be executed in
block 1008 without any memoization. The process may return to block 1002 to
continue execution in block 1002.

[00181] If the function has been tagged as memoizable in block 1006,
and the results are in the memoization database in block 1010, the results may be
looked up in the database in block 1012 and returned as the results for the
function in block 1014. The process may return to block 1002 to continue
execution without having to execute the function.

[00182] When the process follows the branch of blocks 1010-1014, the
memoization mechanism may avoid the execution of the function and merely
look up the answer in the memoization database. Such a branch may yield large
improvements in processing speed when the computational cost of the function
is large.

[00183] If the results are not found in the database in block 1010, the
function may be executed in block 1016 and the results may be stored in the
memoization database in block 1018. The process may return to block 1002 to
continue execution.

[00184] The branch of blocks 1016-1018 may be performed the first
time a function executes with a given input. Each time after the function is
called with the same input, the branch of 1010-1014 may be executed, thus
yielding a performance improvement.

[00185] The application code executed in block 1002 may be any type
of executable code. In some cases, the code may be an actual application, while
in other cases, the executable code may be an operating system, execution
environment, or other service that may support other applications. In such cases,
the process of embodiment 1000 may be used to speed up execution of the
operating system or execution environment.

[00186] Figure 11 is a diagram illustration of an embodiment 1100
showing the creation of decorated code. Embodiment 1100 illustrates how a
configuration database may be used during compilation to annotate, decorate, or

otherwise modify source code prior to execution.

30

WO 2014/074164 PCT/US2013/041128

[00187] Embodiment 1100 is an example method by which code may be
analyzed and decorated prior to execution. The process of embodiment 1100
may be performed during compilation, or during some other pre-execution
process. During compiling, the process may receive source code and emit object
code. Insuch a case, the beginning code may be source code, intermediate code,
or other form of code that may be compiled into a lower level code.

[00188] In some cases, the process of embodiment 1100 may be
performed in a just in time environment. For example, the process of
embodiment 1100 may be performed by a just in time compiler to add
memoization decorations to intermediate code at runtime. In such cases, a
configuration database may be downloaded and decorations added to an
application close to real time.

[00189] Embodiment 1100 may be performed on precompiled code in
some cases. For example, object code may be decompiled and then analyzed
using embodiment 1100. In such a case, the memoization decorations may be
added to existing executable code.

[00190] Source code 1102 may be compiled by a compiler 1104.
During compilation, an examination of each function call may be performed.
When a function call may be found in a configuration database 1106, the code
may be decorated to produce decorated compiled code 1110.

[00191] The decorated compiled code 1110 may be consumed by the
runtime environment 1112,

[00192] An optimizer 1108 may produce the configuration database
1106. In some cases, the optimizer 1108 may consume tracing code that may be
generated by interpreted or compiled code, while the configuration database
1106 may be consumed by compiled code.

[00193] The decorations performed during compiling may be merely
flagging a function call that a record in the configuration database 1106 may
exist. In such an embodiment, the runtime environment 1112 may attempt to
look up the function call in the configuration database 1106.

[00194] In other embodiments, the decorations may include adding
instructions to the decorated compiled code 1110 that perform a lookup against

the configuration database 1106.

31

WO 2014/074164 PCT/US2013/041128

[00195] In still other embodiments, the decorations may include
information from the configuration database 1106 that may be used by the
runtime environment 1112, In such embodiments, the decorations may include
all of the information regarding the modified function call and the runtime
environment 1112 may not query the configuration database 1106 at runtime.

[00196] The source code 1102 may be human readable source code
which may produce intermediate code or machine executable code. In some
cases, the source code 1102 may be intermediate code that may be compiled to
machine executable code.

[00197] The compiler 1104 may be a just-in-time compiler that may
perform compilation at runtime in some embodiments.

[00198] Figure 12 is a flowchart illustration of an embodiment 1200
showing a method for decorating compiled code. Embodiment 1200 may
represent the operations of a compiler, such as compiler 1104 in embodiment
1100.

[00199] Other embodiments may use different sequencing, additional or
fewer steps, and different nomenclature or terminology to accomplish similar
functions. In some embodiments, various operations or set of operations may be
performed in parallel with other operations, either in a synchronous or
asynchronous manner. The steps selected here were chosen to illustrate some
principles of operations in a simplified form.

[00200] Embodiment 1200 may process source code during compilation
to identify function calls and decorate the compiled code with annotations
regarding memoization of the function call. The decorations may be hooks or
identifiers that may be processed by a runtime environment. In some cases, the
decorations may be executable code or parameters that may cause memoization
to occur according to a configuration database.

[00201] Source code may be received in block 1202. The source code
may be human readable source code, intermediate code, or other code that may
be compiled.

[00202] The configuration database may be received in block 1204.

[00203] Compilation may be started in block 1206.

32

WO 2014/074164 PCT/US2013/041128

[00204] If a function call is not detected in block 1208 and the
compiling has not completed, the process loops back to block 1206. When the
compiling has completed in block 1210, the decorated compiled code may be
stored in block 1212.

[00205] When a function call is detected in block 1208, the function call
may be looked up in the configuration file in block 1214. When there is no
match in block 1216, the process may return to block 1210. When there is a
match, the compiled code may be decorated in block 1218.

[00206] In some embodiments, the decorations may be executable
commands, sequences, or other code that cause the function call to be memoized
according to the configuration database. Such embodiments may not perform a
look up to the configuration database at runtime. In other embodiments, the
decorations may include executable code that performs a look up a configuration
database at runtime. In still other embodiments, the decorations may be
identifiers that may assist a runtime environment in identifying a function call
that may have an entry in the configuration database.

[00207] Figure 13 is a flowchart illustration of an embodiment 1300
showing a method for executing decorated code. Embodiment 1300 may
illustrate the operations of a client device that executes code that may have been
created by the process of embodiment 1100.

[00208] Other embodiments may use different sequencing, additional or
fewer steps, and different nomenclature or terminology to accomplish similar
functions. In some embodiments, various operations or set of operations may be
performed in parallel with other operations, either in a synchronous or
asynchronous manner. The steps selected here were chosen to illustrate some
principles of operations in a simplified form.

[00209] Embodiment 1300 illustrates a method by which decorated code
may be executed. In some cases, the decorated code may be compiled code that
may contain decorations or additions to the code at places where memory
allocation may occur. In other cases, the decorated code may be interpreted
code to which decorations may have been added.

[00210] The executable code may be received in block 1302 and may
begin executing in block 1304.

33

WO 2014/074164 PCT/US2013/041128

[00211] During execution, a function call may be detected in block
1306. If the function call is not decorated in block 1308, the function may not
be memoized in block 1310 and the process may return to block 1304,

[00212] If the function call is decorated in block 1310, the decoration
may be evaluated to determine how to memoize the function. In some cases, the
decoration may fully define how to memoize the function. For example, the
decoration may define that the function may be memoized in certain situations
but not in other situations. When the decoration completely defines
memoization settings in block 1312, those allocation settings may be used in
block 1314.

[00213] In other cases, the decoration code may be executed in block
1316 to determine the memoization settings. In some cases, a lookup may be
performed in block 1318. In some cases, the decoration code may define a
calculation that may be performed in block 1320. In one example of such a
calculation, values that may be passed to a memozied function may be evaluated
prior to memoization. The newly determined allocation settings may be used in
block 1322 to perform the memoization operation.

[00214] Figure 14 is a diagram illustration of an embodiment 1400
showing an input vector space 1402 for an impure function. Embodiment 1400
illustrates an example of a method for determining whether or not a function
may be memoizable.

[00215] The function being analyzed may be an impure or some other
function that may be memoizable in certain conditions but not memoizable in
other conditions. The function may be exercised in many different conditions,
and each condition may be analyzed to determine whether the function may be
memoized in the condition. The results may be plotted in the vector space 1402.

[00216] Each input vector may be a set of input values passed to the
function. Each value or parameter passed to the function may be one dimension
in the input vector space, which may be n-dimensional.

[00217] In some cases, different numbers of parameters may be passed
to a function when the function may be called. For example, a function may

accept an array of any size or a string of characters in different lengths. In such

34

WO 2014/074164 PCT/US2013/041128

cases, the input vectors for a given function may have different number of
factors or numbers of dimensions with different function calls.

[00218] Some impure functions may be memoizable in some conditions
but not in others. For example, a function may call an impure function with
some input values, rendering the function not memoizable. However, the same
function may receive a different input vector and may not call the impure
function or otherwise may not behave as an impure function. The conditions
under which the function may or may not be memoizable may be identified by
static analysis or through observations of the function’s behavior.

[00219] For each condition where the function may have been
evaluated, a vector may be stored in the vector space 1402. In some cases, a
clustering analysis may be performed to identify groups of memoizable
instances 1404 and non-memoizable instances 1406. A further analysis may
identify a confidence boundary for memoizable input vectors 1408 and for non-
memoizable input vectors 1410.

[00220] The confidence boundaries may assist in estimating the
memoizability of a function’s input vector. For example, the input vector 1412
may be evaluated. Because the input vector 1412 may land within the
confidence boundary 1408, the input vector 1412 may be estimated to be
memoizable, even though no memoization analysis may be performed.
Similarly, input vector 1416 may land within the non-memoizable confidence
boundary 1410 and therefore would be assumed to be not memoizable. Input
vector 1414 may land outside the confidence boundaries 1408 and 1410. Input
vector 1414 may or may not be memoizable, and therefore may be treated as an
unknown. Input vector 1414 may then be analyzed to determine whether the
vector may be memoizable.

[00221] Confidence boundaries may be defined at different degrees of
confidence. For example, boundaries may be created for a statistical confidence
0t 90%, 95%, 99%, 99.9%, or other degrees of confidence.

[00222] Figure 15 is a flowchart illustration of an embodiment 1500
showing a method for dynamic purity analysis and clustering. Embodiment
1500 may illustrate the operations of a client device that may generate a vector

input space and cluster the resultsc.

35

WO 2014/074164 PCT/US2013/041128

[00223] Other embodiments may use different sequencing, additional or
fewer steps, and different nomenclature or terminology to accomplish similar
functions. In some embodiments, various operations or set of operations may be
performed in parallel with other operations, either in a synchronous or
asynchronous manner. The steps selected here were chosen to illustrate some
principles of operations in a simplified form.

[00224] Embodiment 1500 may be a process that may be performed in
an instrumented execution environment to characterize a function as memoizable
or not memoizable, then to cluster the results.

[00225] An application may be received in block 1502. An impure
function may be selected for analysis in block 1504. The impure function may
be monitored over multiple input vectors in block 1506. The monitoring may be
performed by an instrumented execution environment, which may detect
whether or not the impure function produces any detectable side effects.

[00226] For each test performed against the function in block 1508, the
purity of the function behavior may be determined for a given input vector. The
purity may be determined by static or dynamic code analysis. The purity results
may be stored in block 1512.

[00227] Clustering analysis may be performed after analyzing all of the
input vectors in block 1514, and the clustering information may be stored in
block 1516.

[00228] Figure 16 is a flowchart illustration of an embodiment 1600
showing a method for runtime analysis of input vectors for a given function.
Embodiment 1600 may illustrate the operations of an execution environment for
running an application that may have been analyzed using the method of
embodiment 1500.

[00229] Other embodiments may use different sequencing, additional or
fewer steps, and different nomenclature or terminology to accomplish similar
functions. In some embodiments, various operations or set of operations may be
performed in parallel with other operations, either in a synchronous or
asynchronous manner. The steps selected here were chosen to illustrate some

principles of operations in a simplified form.

36

WO 2014/074164 PCT/US2013/041128

[00230] Embodiment 1600 illustrates a method by which an execution
environment may determine whether or not an input vector falls within the
clusters of known memoizable or non-memoizable input vectors. When a new
input vector falls within the clusters, an estimated memoizability may be
assumed and acted upon. When the new input vector falls outside the clusters,
the new input vector may be analyzed for memoizability.

[00231] Application execution may begin in block 1602.

[00232] The execution of an impure function may be captured in block
1604 for an input vector identified in block 1606.

[00233] When the input vector is a previously analyzed input vector in
block 1608, the results of the previous analysis may be used. If the results were
that the vector was memoizable in block 1610, the function may be memoized in
block 1612. When the results were that the function was not memoizable for the
input vector in block 1610, the function may not be memoized for the input
vector in block 1614.

[00234] When the current input vector has not been analyzed in block
1608, the input vector may be compared to purity clusters in block 1616. When
the input vector may fall within a confidence boundary for an input cluster, the
input vector may be assumed to belong to the group associated with the
boundary and processed in block 1610. Such input vectors may correspond with
input vectors 1412 and 1416

[00235] When the input vector is not within the clusters in block 1618,
the input vector may correspond with input vector 1414. Such an input vector
may be instrumented in block 1620 and purity analysis may be performed in
block 1622. The purity results and input vector may be added to a local database
in block 1624 and an update transmitted to an optimization server in block 1626.

[00236] In some cases, a purity determination may be made after
exercising a function with the same input vector several times. For example, a
function may be monitored during execution to compare results of multiple
executions of the function. When the results are consistent, the function may be
considered predictable and therefore potentially memoizable. The function may
be also analyzed for side effects to determine whether or not the function is

actually memoizable.

37

WO 2014/074164 PCT/US2013/041128

[00237] The analysis of embodiment 1600 may be useful in situations
where one or more input parameters to a function may be continuous variables.
In some cases, an input parameter may be a categorized parameter that may have
a discrete number of options. In such cases, each and every number of options
may be exercised to completely define an input space. In other cases, a
continuous parameter may be such that all of the options for the parameter
cannot be exhaustively tested. Examples of continuous input parameters may be
numerical values as real or integer numbers, text strings, or other variables.

[00238] The foregoing description of the subject matter has been
presented for purposes of illustration and description. It is not intended to be
exhaustive or to limit the subject matter to the precise form disclosed, and other
modifications and variations may be possible in light of the above teachings.
The embodiment was chosen and described in order to best explain the
principles of the invention and its practical application to thereby enable others
skilled in the art to best utilize the invention in various embodiments and various
modifications as are suited to the particular use contemplated. It is intended that
the appended claims be construed to include other alternative embodiments

except insofar as limited by the prior art.

38

WO 2014/074164 PCT/US2013/041128

CLAIMS
What is claimed is:
1. A method performed by at least one processor, said method
comprising:
receiving operational results for an application comprising a first
function, said operational results comprising inputs to said first
function, results returned from said first function, and a state
associated with said inputs to said first function;
determining that said first side effect comprises reading a first
memory object, said state comprising values for said first memory
object;
determining that said first side effect does not comprise mutating
said first memory object;
determining that said first function returns a first value given a
first condition, said first condition comprising a first set of input
parameter values and a first value for said first memory object;
causing said first function to be memoized under said first
condition.
2. The method of claim 1 further comprising:
analyzing said operational results and determining that said first
function under said first condition returns a consistent result.
3. The method of claim 2, said consistent result being determined within
a statistical certainty.
4. The method of claim 2, said plurality of results being captured during
executing an application comprising said first impure function.
5. The method of claim 4, said application being executed under
simulated loads.
6. The method of claim 4, said application being executed under actual
loads.
7. The method of claim 4 further comprising:
determining that said first function returns a second value under

a second condition, said second condition comprising said first set of

39

WO 2014/074164 PCT/US2013/041128

input parameter values and a second value for said first memory
object; and
causing said first function to be memoized under said second
condition.
8. The method of claim 7 further comprising:
determining that said first function returns inconsistent values
under a third condition, said third condition comprising said first set
of input parameter values and a third value for said first memory
object; and
causing said first function not to be memoized under said third
condition.
9. The method of claim 8 further comprising:
receiving said operational data from a client device.
10. The method of claim 9 further comprising:
storing a record in a configuration database for memoizing said
first function.
11. The method of claim 10, said record indicating that said first
function is memoizable under said first condition.
12. The method of claim 11, said record indicating that said first
function is not memoizable under said third condition.
13. A system comprising:
a processor;
a purity analyzer operating on said processor, said purity
analyzer that:
receives operational results for an application
comprising a first function, said operational results
comprising inputs to said first function, results returned
from said first function, and a state associated with said
mputs to said first function;
determines that said first side effect comprises reading
a first memory object, said state comprising values for said

first memory object;

40

WO 2014/074164 PCT/US2013/041128

determines that said first side effect does not comprise
mutating said first memory object;
determines that said first function returns a first value
given a first condition, said first condition comprising a
first set of input parameter values and a first value for said
first memory object;
stores said first function and said first condition in a
configuration database.
14. The system of claim 13 further comprising:
a distribution server that transmits said configuration database to
a client device.
15. The system of claim 14 further comprising:
an instrumented execution environment that executes an
application comprising said first function and generates said
operational results.
16. The system of claim 15, said instrumented execution environment
that further executes said application under simulated loads.
17. The system of claim 16, said purity analyzer that further:
determines that said first function returns inconsistent values
under a second condition, said second condition comprising said first
set of input parameter values and a second value for said first
memory object; and
stores said first function and said second condition in said
configuration database as being not memoizable.
18. The system of claim 17 further comprising:
a static code analyzer that examines said application to identify
said first function as impure.
19. The system of claim 18, said static code analyzer that analyzes said

application in source code form.

41

WO 2014/074164 PCT/US2013/041128

AMENDED CLAIMS
received by the International Bureau on 05 November 2013 (05.11.2013)

1. A method performed by at least one processor, said method comprising:
receiving operational results for an application comprising a first function, said operational results
comprising inputs to said first function, results returned from said first function, and a state
associated with said inputs to said first function;
determining that a first side effect comprises reading a first memory object, said state comprising
values for said first memory object;
determining that said first side effect does not comprise mutating said first memory object;
determining that said first function returns a first value given a first condition, said first condition
comprising a first set of input parameter values and a first value for said first memory object;
causing said first function to be memoized under said first condition.
2. The method of claim 1 further comprising:
analyzing said operational results and determining that said first function under said first condition
returns a consistent result.
3. The method of claim 2, said consistent result being determined within a statistical certainty.
4. The method of claim 2, said plurality of operational results being captured during executing an
application comprising said first function.
5. The method of claim 4, said application being executed under simulated loads.
6. The method of claim 4, said application being executed under actual loads.
7. The method of claim 4 further comprising:
determining that said first function returns a second value under a second condition, said second
condition comprising said first set of input parameter values and a second value for said first
memory object; and

causing said first function to be memoized under said second condition.

42
AMENDED SHEET (ARTICLE 19)

WO 2014/074164 PCT/US2013/041128

8. The method of claim 7 further comprising:
determining that said first function returns inconsistent values under a third condition, said third
condition comprising said first set of input parameter values and a third value for said first
memory object; and
causing said first function not to be memoized under said third condition.
9. The method of claim 8 further comprising:
receiving said operational results from a client device.
10. The method of claim 9 further comprising:
storing a record in a configuration database for memoizing said first function.
11. The method of claim 10, said record indicating that said first function is memoizable under said first
condition.
12. The method of claim 11, said record indicating that said first function is not memoizable under said
third condition.
13. A system comprising:
a processor,
a purity analyzer operating on said processor, said purity analyzer that:
receives operational results for an application comprising a first function, said operational
results comprising inputs to said first function, results returned from said first function,
and a state associated with said inputs to said first function;
determines a first side effect comprises reading a first memory object, said state comprising
values for said first memory object;
determines that said first side effect does not comprise mutating said first memory object;
determines that said first function returns a first value given a first condition, said first
condition comprising a first set of input parameter values and a first value for said first
memory object;
stores said first function and said first condition in a configuration database.
14. The system of claim 13 further comprising:
a distribution server that transmits said configuration database to a client device.

15. The system of claim 14 further comprising:

43
AMENDED SHEET (ARTICLE 19)

WO 2014/074164 PCT/US2013/041128

an instrumented execution environment that executes an application comprising said first function
and generates said operational results.
16. The system of claim 15, said instrumented execution environment that further executes said
application under simulated loads.
17. The system of claim 16, said purity analyzer that further:
determines that said first function returns inconsistent values under a second condition, said
second condition comprising said first set of input parameter values and a second value for
said first memory object; and
stores said first function and said second condition in said configuration database as being not
memoizable.
18. The system of claim 17 further comprising:
a static code analyzer that examines said application to identify said first function as impure.

19. The system of claim 18, said static code analyzer that analyzes said application in source code form.

44
AMENDED SHEET (ARTICLE 19)

WO 2014/074164

116
SEQUENCE FOR ANALYSIS
102~ OF IMPURE FUNCTIONS
SOURCE 100
CODE
104
STATIC
ANALYSIS
106~ 110
PURE IMPURE
FUNCTIONS FUNCTIONS
108~ () ~112 114
SORT COMPUTATIONAL
MEMOIZATION IMPURE |4 COSTS
FUNCTIONS
122~ () ~116
STAT|LSUTRI(éALLY SELECT
FUNGTIONS CANDIDATES
\ /120
MONITORING |, [GLoBAL
118~ AND STATE
ANALYSIS

PCT/US2013/041128

FIG. 1

WO 2014/074164 PCT/US2013/041128
2/16
SYSTEM THAT MAY
MEMOIZE IMPURE
FUNCTIONS
200
DEVICE
202
r-r-—-—-—-——-=-=--"-"""----"-""-""=--"=-"=-""=—-—-—"-="-""=""=""="—""="—"=-—-"=-= |
! 238 240 |
N Y :
| |
Lo g |
| 226 l
: 234 1
| PURITY MEMOIZATION | |
I | ANALYZER APPLICATION CONFIGURATOR | |
| —~ CODE |
| 230 036 |
|
|
|
| 228~ Q |
LS AN R CODE OPTIMIZATION | |
: METADATA CONFIGURATION| |
DATABASE |
| 232 ~ T
| 242 |
| COMPILER | |
|
|
|
| 224 '
EXECUTION |
l 2224 ENVIRONMENT | MONITOR |
|
|
|
220 I
l OPERATING - |
! 218™ T SYSTEM MONITOR |
|
T ______1]
206 ! :
SOFTWARE
1 214 |
COMPONENTS | USER | |
: INTERFACE] |
| |
2047~ f216 |
HARDWARE | NETWORK]] !
PLATFORM INTERFACE] |
L e e e e e |

WO 2014/074164 PCT/US2013/041128

3/16
PURITY ANALYZER IN
NETWORK ENVIRONMENT
EDITOR 300
s S
COMPILER || PLATFORM
308
STATIC CODE
ANALYZER
s L\
APPLICATION METADATA
CODE 320 s
DISTRIBUTION
\ METADATA] | "SERVER
PURITY _/ /
314™ ANALYZER 324~
CLIENT
(; DEVICE
316~ 326~
318 CLIENT
= 317 DEVICE
INSTRUMENTED
EXECUTION GENERATOR 328~
ENVIRONMENT OST
INSTRUMENTED SYSTEM DEVICE
‘4

FIG. 3

WO 2014/074164 PCT/US2013/041128

4/16

METHOD FOR STATIC ANALYSIS
PRIOR TO EXECUTION
400
402~

[RECEIVE SOURCE CODE |

404~ v
PERFORM STATIC ANALYSIS TO
CLASSIFY FUNCTIONS AS PURE OR
IMPURE DUE TO SIDE EFFECTS

406~ v
LABEL PURE ELEMENTS AS
MEMOIZABLE

v

FOR EACH
IMPURE FUNCTION
f_j

408 IDENTIFY AND CLASSIFY SIDE
EFFECTS ~~410

ESTIMATE COMPUTATIONAL |_~412
COST/COMPLEXITY
I

414~

A 4
ANALYZE FUNCTIONS FOR
MEMOIZATION

416~ v
STORE RESULTS IN CONFIGURATION
FILE

418~ v
| DISTRIBUTE CONFIGURATION FILE |

FIG. 4

WO 2014/074164 PCT/US2013/041128

5/16
METHOD FOR
502~ MEMOIZATION ANALYSIS
DURING EXECUTION
| BEGIN EXECUTION | 500
504~ v
PERFORM LIGHTWEIGHT MONITORING
FOR EACH FUNCTION
FOR EACH <
IMPURE FUNCTION
'~ 508
506 |[DETERMINE CALL FREQUENCY M

SCORE FUNCTION BASED ON
COST, SIDE EFFECTS, AND |~~510
CALL FREQUENCY

512~ ’ '

SORT IMPURE FUNCTIONS BASED ON
SCORE

N, 514
SELECTION FUNCTION FOR
EVALUATION

516~ v
| INSTRUMENT FUNCTION |

518~ v
BEGIN OPERATION UNDER REAL OR
SIMULATED LOADS

% ~520
| COLLECT INPUT AND OUTPUT VALUES |

522~
[COLLECT SIDE EFFECT INFORMATION |

526~ NO
| REMOVE INSTRUMENTATION |
528~ v

EVALUATE FUNCTION FOR
MEMOIZATION

532~
PREPARE CODE FOR EXECUTION WITH
MEMOIZATION
534~ v
STORE RESULTS IN CONFIGURATION
DATABASE
536~ v

| DISTRIBUTE TO CLIENT DEVICES |

FIG. 5

WO 2014/074164

PCT/US2013/041128

6/16

602~
| RECEIVE FUNCTION FOR EVALUATION |

METHOD FOR EVALUATING
FUNCTIONS FOR MEMOIZATION

600

FOR EACH SET OF
INPUTS TO FUNCTION
604 EVALUATE RETURN VALUES |_~g08
FOR CONSISTENCY o0
608
NO FUNCTION NOT
MEMOIZABLE FOR |—
INPUT SET
YES
FUNCTION IS MEMOIZABLE
FOR INPUT SET 612
614~ L |
EVALUATE MEMOIZATION BASED ON
CONSISTENCY
618~ I

[SELECT A SIDE EFFECT |

622

READ ONLY
SIDE EFFECT?

YES

CONSIDER SIDE EFFECT AS AN
INPUT TO FUNCTION

624~

CLASSIFY SIDE EFFECT AGAINST
WHITE LIST / BLACK LIST

\ 623

MARK FUNCTION FOR
RE-EVALUATION

628

SIDE EFFECTOKTO [¥
MEMOIZE

632

SIDE EFFECT
CLASSIFIED?

SIDE EFFECT OK TO
MEMOIZE UNDER
DEFINED CONDITIONS

636~

REMOVE FUNCTION FROM
CONSIDERATION FOR MEMOIZATION

FIG.

634) 4

ANOTHER
SIDE EFFECT?

YES

640

STORE CONDITIONS
UNDER WHICH FUNCTION
IS MEMOIZABLE

6

WO 2014/074164 PCT/US2013/041128

7/16
METHOD FOR SELECTING
FUNCTIONS FOR MEMOIZATION
700
702~
[RECEIVE MEMOIZABLE FUNCTIONS |
FOR EACH MEMOIZABLE
FUNCTION
284 DETERMINE COVPUTATIONAL | 705
708 710
| T
R NO . [LABEL FUNCTION AS| |
THRESHOLD? DO NOT MEMOIZE [A
LABEL FUNCTION AS
MEMOIZABLE 712
[
714\ y

[STORE CONFIGURATIONFILE |

FIG. 7

WO 2014/074164

PCT/US2013/041128

8/16
802~
RECEIVE SOURCE CODE FOR M INeTIONS EN MASSE
APPLICATION 500
804~ v
PERFORM STATIC ANALYSIS TO
CLASSIFY FUNCTIONS AS PURE OR
IMPURE DUE TO SIDE EFFECTS
806~ v
LABEL PURE FUNCTIONS AS
MEMOIZABLE
808~ v
EXECUTE APPLICATION IN AN
INSTRUMENTED ENVIRONMENT WITH
LOAD GENERATOR
FOR EACH
PURE FUNCTION
810 DETERMINE COMPUTATIONAL
COST ~ 812
1
814 816
IS
COST OVER REMOVE FUNCTION] |
THRESHOLD? FROM LIST A
KEEP FUNCTION ON
MEMOIZABLE LIST 818
[
A
FOR EACH
IMPURE FUNCTION
r_J
890 DETERMINE COMPUTATIONAL |_~goo
COST
824 826
S
COST OVER
THRESHOLD? SKIP FUNCTION |
[EVALUATE SIDE EFFECTS 828
EVALUATE CONSISTENCY OF |_~830
OUTPUT FOR A GIVEN INPUT
832 834
MEMOIZABLE? SKIP FUNCTION
ADD FUNCTION TO |_~836
MEMOIZABLE LIST
838~ A !
STORE RESULTS IN CONFIGURATION
DATABASE
840~ v

| DISTRIBUTE TO CLIENT DEVICES |

FIG. 8

WO 2014/074164 PCT/US2013/041128
9/16
MEMOIZATION
SYSTEM
900
DEVICES
904
928~ APPLICATION
STATIC 906
ANALYSIS
COMPONENT 08 ______ 926
914 / I MEMOIZATION |
~ N 910 1 LIBRARY _ |
— MONITOR FUNCTION minininl it
[930~ | \
DYNAMIC 12
ANALYSIS
COMPONENT
FUNCTION] INPUT [RESULTS
DATABASE R INAA A
L e Y Ea Ve Vol R S NP
[S W S Ea YV e ol e W W)
N TN | AN | NS
1
v
922
OPERATIONAL ° 920 OPTIMIZATION
HISTORY OPTIMIZER OPTIMIZED SERVER
MONITORED CONFIGURATION
PARAMETERS

FIG. 9

WO 2014/074164

1002~
| EXECUTE CODE |

1004~ v
| ENCOUNTER A FUNCTION |

1006

IS FUNCTION
TAGGED AS
MEMOIZABLE?

10/16

ARE RESULTS
FOR FUNCTION IN
DATABASE?

1008~ NO 1012~ NO
EXECUTE FUNCTION LOOK UP RESULTS IN
WITHOUT MEMOIZATION DATABASE
1014~ v
USE RESULTS FOR
FUNCTION

PCT/US2013/041128

METHOD FOR
MEMOIZATION
1000

101

Ja—

EXECUTE

FUNCTION _ .
| RV

Y

STORE RESULT

IN DATABASE

A

| ¢
-

FIG. 10

WO 2014/074164 PCT/US2013/041128

11/16
DECORATED
CODE CREATION
‘;1100
SOURCE 1102 1108~ OPTIMIZER
CODE

11& /

COMPILER

1110 K‘

DECORATED

CONFIGURATION
DATABASE

COMPILED
CODE

RUNTIME |~
ENVIRONMENT 1112

FIG. 11

WO 2014/074164 PCT/US2013/041128

12/16
METHOD FOR
DECORATING
COMPILED CODE
1200
| RECEIVE SOURCE CODE 1202
| RECEIVE CONFIGURATION DATABASE |204
N
| COMPILE CODE 1206
1214

LOOKUP FUNCTION CALL
IN CONFIGURATION FILE

1216

DETECT
FUNCTION CALL?

NO

MATCH?
1218

DECORATE COMPILED
CODE WITH MODIFIER
FROM CONFIGURATION
DATABASE

DONE
COMPILING?

| STORE DECORATED CODE 212

FIG. 12

WO 2014/074164

A -

PCT/US2013/041128
13/16
EXECUTING
DECORATED CODE
RECEIVE EXECUTABLE CODE 1302 1300
EXECUTE 1304
DETECT FUNCTION CALL 1306
1308
DECORATED? YES
1310
DO NOT MEMOIZE FUNCTION |
| X 1312

1314

DOES
DECORATION

H MEMOIZE AS DEFINED IN DECORATION

YES ~COMPLETELY DEFINE
ALLOCATION

SETTINGS?

EXECUTE DECORATION
1316™4 CODE TO DETERMINE
MEMOIZATION SETTINGS

________ R CULATICE

USE DETERMINED
1322™ MEMOIZATION SETTINGS

FIG. 13

WO 2014/074164

1412
INPUT
VECTOR

PCT/US2013/041128

14/16

VECTOR SPACE FOR AN
EXAMPLE IMPURE FUNCTION

1400
INPUT
VECTOR
1414
Y h
\
\
o\\1'/_\1406
"NSTANCES T NON-MEMOIZABLE
1404 ‘\ o o INSTANCES
\\\ _
A7) TN 1410
S+ \ CONFIDENCE
/ + BOUNDARY FOR
NON-MEMOIZATION
R 1408
— A |7 CONFIDENCE
\ ; BOUNDARY
N " FORMEMOIZATION

-
>

1402
INPUT SPACE

FIG. 14

WO 2014/074164 PCT/US2013/041128

15/16

PURITY ANALYSIS AND
CLUSTERING

1502~ 1500
| RECEIVE APPLICATION |

1504~ v
IDENTIFY IMPURE FUNCTION FOR
MEMOIZATION ANALYSIS

1506~ v

PERFORM MULTIPLE TESTS FOR
PURITY WITH VARIOUS INPUT
VECTORS

v

FOR EACH
TEST
f_j

1508 ANALYZE PURITY FOR INPUT
VECTOR ~"1510

| STORE PURITY RESULTS [M"1512
[

1514\ \ 4
PERFORM CLUSTERING TO IDENTIFY
AREAS OF PURITY AND IMPURITY

1516~ v
| STORE CLUSTERING INFORMATION |

FIG. 15

WO 2014/074164 PCT/US2013/041128
16/16
RUNTIME ANALYSIS
OF INPUT VECTOR
1600
1602~
| BEGIN EXECUTION OF APPLICATION |
1604~ v
CAPTURE EXECUTION OF IMPURE

FUNCTION
1606~ v
| IDENTIFY INPUT VECTOR |

Y
1608 1612
PREVIOUSLY MEMOIZE
ANALYZED INPUT MEMOIZABLE? FUNCTION WITH |

VECTOR? INPUT VECTOR

1102 DO NOT
COMPARE INPUT VECTOR TO PURITY ~1614
CLUSTERS 'V'E'V'lo'ZE
1618
YES

1620~ NO
| INSTRUMENT FUNCTION |
1622~ v
| PERFORM PURITY ANALYSIS |
1624~ v

ADD INPUT VECTOR AND PURITY
RESULTS TO DATABASE

1626~ v
TRANSMIT UPDATE TO OPTIMIZATION
SERVER

FIG. 16

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2013/041128

A. CLASSIFICATION OF SUBJECT MATTER
GO6F 17/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classitication system followed by classification symbols)
GO6F 17/00; GO6F 9/44; GO6F 9/45

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & keywords: memoize, side effect, read, mutate, function, condition, and similar terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A HUGO RITO et al., “Memoization of Methods Using Software Transactional 1-19
Memory to Track Internal State Dependencies,” In: Proceedings of the 8th

International Conference on the Principles and Practice of Programming in
Java, peges 89-98, September 15-17, 2010.
See sections 4 and 5.

A RICHARD FROST, “Monadic Memoization towards Correctness-Preserving 1-19
Reduction of Search,” In: Proceedings of 16th the Canadian Society for
Computational Studies of Intelligence Conference on Advances in Artificial
Intelligence, pages 66-80, June 11-13, 2003.

See sections 1.2 and 1.3.

A JACK MOSTOW et al., “Automating Program Speedup by Deciding What to 1-19
Cache,” In: Proceedings of the 9th International Joint Conference on
Artificial Intelligence, Volume 1, pages 165-172, 1985.

See section 2.1,

A US 2008-0115116 A1 (TIMOTHY MARC FRANCIS et al.) 15 May 2008 1-19
See paragraphs [0054]-[0070]; claims 1 and 9; and figures 4A-4C.

A US 2009-0049421 A1 (HENRICUS JOHANNES MARIA MEIJER et al.) 19 February 2009 1-19
See paragraphs [0039]-[0050]; claim 1; and figure 3.

Further documents are listed in the continuation of Box C. g See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
21 August 2013 (21.08.2013) 21 August 2013 (21.08.2013)
Name and mailing address of the ISA/KR Authorized officer
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Dagjeon Metropolitan City, NHO Ji Myong
3 302-701, Republic of Korea
Facsimile No. +82-42-472-7140 Telephone No. +82-42-481-8528

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

PCT/US2013/041128

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

US 2012-0096448 Al (PATRICK R. DOYLE) 19 April 2012
See paragraphs [0034]-[0036]; claim 1; and figures 3A-3B.

1-19

Form PCT/ISA/210 (continuation of second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2013/041128
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2008-0115116 Al 15/05/2008 US 7996816 B2 09/08/2011
US 2009-0049421 Al 19/02/2009 US 8108848 B2 31/01/2012
US 2012-0096448 Al 19/04/2012 US 8418160 B2 09/04/2013

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - amend-body
	Page 45 - amend-body
	Page 46 - amend-body
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - wo-search-report
	Page 64 - wo-search-report
	Page 65 - wo-search-report

