US 20190230043A1
a9y United States

12y Patent Application Publication o) Pub. No.: US 2019/0230043 A1

Kommula et al. 43) Pub. Date: Jul. 25, 2019
(54) METHODS AND APPARATUS TO PERFORM (52) US.CL
DYNAMIC LOAD BALANCING FOR A CPC ... HO4L 47/726 (2013.01); HO4L 47/125
MULTI-FABRIC ENVIRONMENT IN (2013.01); HO4L 47/781 (2013.01); HO4L
NETWORK-BASED COMPUTING 47/803 (2013.01)
(71) Applicant: VMware, Inc., Palo Alto, CA (US)
(72) Inventors: Raja Kommula, Cupertino, CA (US); 7 ABSTRACT
Raj Yavatkar, Saratoga, CA (US);
Thayumanavan Sridhar, Sunnyvale,
CA (US)
An example apparatus to manage network resources
(21) Appl. No.: 15/879,148 includes a load balancing detector to determine to reassign
first and second network fabrics; and a network fabric
(22) Filed: Jan. 24, 2018 configurator to, in response to the detecting to reassign the
first and second network fabrics, configuring a virtual net-
Publication Classification work distributed switch to: assign the first network fabric to
(51) Int. CL ones of the first applications previously assigned to the

HO4L 12911
HO4L 12/927

(2006.01)
(2006.01)

second network fabric; and assign the second network fabric
to the second application.

START

702
v i
ASSIGMN NON-CRITICAL APPLICATIONS TO FIRST AND
SECOND NETWORK FABRICS

1 704
. MULTI-FABRIC LOAD BALANCING EVENT NO
i’ DETECTED?
YES
! — 106
SET TIMER |
1 _— 708

REASSIGN FIRST NETWORK FABRIC TO ONES OF
NON-CRITICAL APPLICATIONS PREVIOUSLY
ASSIGNED TO SECOND NETWORK FABRIC

Y
ASSIGN SECOND NETWORK FABRIC TC CRITICAL
AFPPLICATION

'

‘ 712
N
© TIMER EXPIRED? >
YES
¥ i 714
ASSIGN FIRST AND SECOND NETWORK FARRICS TO
NON-CRITICAL APPLICATIONS
YES v
CONTINUE MONITORING? >
NO INT

A 4

(END)

US 2019/0230043 A1

Jul. 25,2019 Sheet 1 of 11

Patent Application Publication

. Zol
Vi 'Ol N L 0w
égm\ﬁaw
IS
L ppzi~ ov2s arZl~_ BPZL~_ LSOH
- 901+ N N N N “
\ | lpoind] [eomd] [zomnd] [Loind] |
(WY HIDOYNVW | |—S==—=——————————————————
ANBHNNDIZSY Ommmm\umw\ll“\\ WY (1NN HOSIAMIGAH w
o111 (SGA) HOLIMS T31NERLSIT MHOMLINA “
ooy A TLBOIAD | £190AT | Z18OdAT | 11¥0dAT] | |
" o¥EL \mz z/@mm\ mqﬁ\ 5IT m
WA
180H " E SNOILYOITddY | I
o) | {PEzis o7z e diVazidil
Ho L] pomNe || goma | | zoma] 10N |]
T 7 ¥
1OV >
| e
_
DHoL |, 1| gyoL v oL || ayol oMeL | 1] gwyoL V HOL
| I HEH I |
bt Vet s o=t E oo A e -
azelL 09z} /)
OFL e ¢ S L e S S ST =i nm\t_ v}
zomayd | e N— — - - == = | b Didav
St [panigs | [cangs | U zangs | | 1 angs | Tlr\

US 2019/0230043 A1

Jul. 25,2019 Sheet 2 of 11

Patent Application Publication

gl "9Oid
SNOILYDITddY TWOILLIMO-NON OL SOIMEYA MHOMLIN ONODIS ANV 1SHI4 40 INFWNDISSY
VoL~ ZM0ovY 20b —~ L MOYY
(NY4) HIDYNYIN
INFNNDISSY DRIEVH N oo
LSOH T~ -7 1SOH
Oﬁnng@j q .O Oﬁnwﬁwgﬁwﬂq _ mO
O O O O
<31 29v1 D LoVl > <1 2ov1 O 1OVl [
L OIMEv4 /2 Oongv
—Illl - - _ll IIIIIIII -1 _Illl - III_~I IIIIIIIIII -
\"_Qmﬁguumﬁ _:_ guol i vuor || [guer I ool _: guol Hi{ wuol |
——oNmo oot e TS oS = il bt aa:/w
obl SR S Ay . N == Sy R W A
2omaYd | X - o= = e Sl AR RS LR
(ﬂ\l__ paNIIS | | £3NIdS || : ZANIIS | | L3NS _T:T\
b e e ! e e e e e e e e e !
e e e e e e e e e o D\ e o e e e o e oo o e B et e e e e o o o e o o |
MHAOMLIN

:. SNOILVYOddY
pe1] TYOLLIAD-NON

US 2019/0230043 A1

Jul. 25,2019 Sheet 3 of 11

Patent Application Publication

S 9
NOILYOUIddY TYDILIND
FLVAVYNODOVY OL SOREYH MHOMLIN GNODIS ANV LS¥I3 40 LNIWNDISSYIY
0 wl/ < MOYH 0 w’/ L MOV
(WY HIDYNYIN
INIWNDISSY D1daYd M—2G1
1SOH S~ -7 1SOH
O _Aw,}\uuouuuuﬂl_ " | O O jﬂOuOAHOJuA u ~ O
O O O O
< 2oVl >) L Zovl o LoOv1 >
L OlgvYH Z gy
R S S ﬂ.U ;;;;;;;; o | hs.:z ;;;;;;;;;; 0
[awor [owol NER VoL | | [asor H ower || \[gL VoL | |
| —— IL_IIIZ//L/ e llll._ul\\.kllill/.h
oyl N L s L T T ST . <N)
¢ Oldiey " | N o= - == -x-7 “W\me.mw<w
f‘\\“ | ¥3NdS € INIS | | " | Zanids L INIdS | Ts_r\
vV - o L T T |
b o e e e e e e e e e e e e b |
MHOAMLIN
NOILY D! IddY : =
SNOILLYDIddY
TYOLLIMO
8g1 — TYDLLIMO-NON
pGl — *_ oot

Patent Application Publication

Jul. 25,2019 Sheet 4 of 11

US 2019/0230043 A1

SPINE SWITCHES COMMUNICATIONS
. BETWEEN
8‘ = = PHYSICAL RACKS
< e Qx’.:;—_p THROUGH SPINE
& A SWITCHES
126a-d . \‘ 1323~
TR SWITCHES] TR SWITCHES —

007 1 Iﬂ I l i
. W memtswiteH [e M MoMTSwiTCH He)
208 HMS HMS 214
CHT | 1 FH—
200 Il HMS HMS 211
(._//’ﬁ —
VIRTUAL RACK VIRTUAL RACK

o MANAGER MANAGER 997
T (VRM) (1) (VRM) (2} T
5 0 e [ool
)| - = el %
X X o e [L Ll
0 o === [T LI
C Je— [ot
E = [ooobl)
0 e [oooobl)
5 o e [T T
102—7 51V SICAL RACK 1 PHYSICAL RACK 2 — 104
VIRTUAL SERVER RACK

206 /

FIG. 2

US 2019/0230043 A1

Jul. 25,2019 Sheet 5 of 11

Patent Application Publication

HHOMLIN ¢ "4
C g SumaH |)
_ SO 4 ~
| [0 1 ﬂMwW
| s pan|oss Hons pdof o divﬁwmw |
pezyl (" p-egzl
| : . C |
| [E=n=g|E=0=0 - o] [SBIve “
| {(SNH) WILSAS (] INS HOL |
| 7H2'80Z | ININAOYNW | gog| GVELSAS | VINALSAS | VINILSAS |
_ FEVAACIEYH SNLYH3H0 OINLEYEAO ONILREED |
= SWHMOYIAN LSS oSS ST T T T o o |.||4
_ ~ s 1 [uzzivniadin 10
| mwm* HAZIVNLYIA FOVHOLS | ﬁ somiEN |2 “
| _ ; 4 ‘
122622 (SuQ) MFINATHOS)
~ \ |
" \\\\\ _@x”,momDOmmmmmwaém»mmw\ HOLVHOW WA flvre
_ HIOVNYIN | | T = ﬁ SAA HOSIAYAdAH me “ yoe
F1IN3NDISSY - \ J e
gl owavd | p-77 TS0 T NowvamMueA,
INTNEOYNYA 'S SNOLLVHE0
_ STONES wxmmm
“ TIOD YOV) | ommdan | |
YO MOV TYALHIA u
| Id¥ HOvar | tHoisnioo | “
| NOLLY LSMHOM H
| ADVH TN LA OVOA H FZIWINA u |
o e e o e | e e T . praapsnsgrrosagpronlliiiieveapepeeapeeeesea N 4 _
SAUCLYHIALO
ALIHEISNELXE OO wainas viva =
00¢

-
902

> MOV
HIAHIS
TYALHIA

US 2019/0230043 A1

Jul. 25,2019 Sheet 6 of 11

Patent Application Publication

¥ "Old

HFOVNYIN LNIWNDISEY DR{48vd

id¥

Yoy ™

HO103d130
ONIONYIVE V0T

H380dd

1414 —

HOLVHNDIANGD
SiHaYd MHOMLEN

2oy —

US 2019/0230043 A1

Jul. 25,2019 Sheet 7 of 11

Patent Application Publication

S "Old
AR 015 bil
205 sm,, 906 m\m,, bOS m\mf
(! (] (]
NTLSAS ONILYHILO WILSAS ONILYNILO WILSAS ONILYHIALO
INERL LNEOY ANIDY
SOILYNITIL SOLLYWITEL SOILYINT 3L
5208 - 4708 ~ 220G —
4! Qw.m \@OW
HIZIVNLEIA 0
HOSIANIIAH
L E HIFON mﬂ HAZIVNLHIA 39VHOLS : SHOMISN Trm
(SHA) ¥INGIHDS ﬂ ﬁ w\w
ﬁ HOLIMS 3LNGMLSIA TYALYIA w @2 30MNOS3Y aaLngitsig | |HOLVEOIN WA flyie
\\IV
N HOSIAYTAH oLE

0£e

Patent Application Publication Jul. 25,2019 Sheet 8 of 11 US 2019/0230043 A1

(START)

v s 602
DETERMINE TO REASSIGN NETWORK FABRICS

e 604
v

ASSIGN FIRST NETWORK FABRIC TO ONES OF FIRST
APPLICATIONS PREVIOUSLY ASSIGNED TO SECOND
NETWORK FABRIC

S 606

4

ASSIGN SECOND NETWORK FABRIC TO SECOND
APPLICATION

END

FIG. 6

Patent Application Publication

RN

Jul. 25,2019 Sheet 9 of 11 US 2019/0230043 A1
(START)
) 4 702
ASSIGN NON-CRITICAL APPLICATIONS TO FIRST AND
SECOND NETWORK FABRICS
1 704
MULTI-FABRIC LOAD BALANCING EVENT NO
DETECTED?
YES
\ 4 - 708
SET TIMER |
1 708

REASSIGN FIRST NETWORK FABRIC TO ONES OF
NON-CRITICAL APPLICATIONS PREVIOUSLY
ASSIGNED TO SECOND NETWORK FABRIC

X

o 710

ASSIGN SECOND NETWORK FABRIC TO CRITICAL

APPLICATION

e
f il

X

_N9<

TIMER EXPIRED?

YES

Y

ASSIGN FIRST AND SECOND NETWORK FABRICS TO

NON-CRITICAL APPLICATIONS

YES

d

«

Y

CONTINUE MONITORINGY

NO

Y

{ END)

FIG. 7

8 9Old

ANIHOYW J1ViS
NOLLVHDIN DR48VL MHOMLIEN

US 2019/0230043 A1

008
-

y—

[

(=]

>

y—

b

2 NOILLY DI ddY

i TYOLLIMED HOd

(=)}

= HAAO S F1EUYAY OdgV ga1031340 AN

N TYAHILNI YOO HHOMLIN ONODIS LNIAT

& SOLLYWIEL
=

J

SORIgVd
AHHOMLIIN HLOF

450 01 G3MOTIY
SddV¥ TV

ohdgv4d

HHOMLIN ONOOIS
OL G3LYdOIN

dd¥ TWOLLIHO

OiHgvd HHOMIEN
1844 OL G31VHOIN
Sdd¥ TYOLLIEO-NON

TYOLLIAD

1853N03d
fd¥

Nm\m‘\

Patent Application Publication

Patent Application Publication

VOLATILE

-
N— 932

916

NONVOLATILE
MEMORY

-
N 032

912 —
PROCESSOR

LOCAL
MEMORY
. 913

2
P
SxY
L]

MEMORY Dl

Jul. 25,2019 Sheet 11 of 11

—[Q00

928

MASS
STORAGE

INPUT
DEVICE(S)

l 920

|
|
|
|

- INTERFACE

g

* 924

QUTPUT
DEVICE(S)

_— 918

|
|
|
|
|
|
|
|
|
|
|

US 2019/0230043 A1

926

NETWORK

US 2019/0230043 Al

METHODS AND APPARATUS TO PERFORM
DYNAMIC LOAD BALANCING FOR A
MULTI-FABRIC ENVIRONMENT IN
NETWORK-BASED COMPUTING

FIELD OF THE DISCLOSURE

[0001] The present disclosure relates generally to net-
work-based computing and, more particularly, to methods
and apparatus to perform dynamic load balancing for a
multi-fabric environment in network-based computing.

BACKGROUND

[0002] Virtualizing computer systems provides benefits
such as the ability to execute multiple computer systems on
a single hardware computer, replicating computer systems,
moving computer systems among multiple hardware com-
puters, and so forth. “Infrastructure-as-a-Service” (also
commonly referred to as “laaS™) generally describes a suite
of technologies provided by a service provider as an inte-
grated solution to allow for elastic creation of a virtualized,
networked, and pooled computing platform (sometimes
referred to as a “cloud computing platform”). Enterprises
may use laaS as a business-internal organizational cloud
computing platform (sometimes referred to as a “private
cloud”) that gives an application developer access to infra-
structure resources, such as virtualized servers, storage, and
networking resources. By providing ready access to the
hardware resources required to run an application, the cloud
computing platform enables developers to build, deploy, and
manage the lifecycle of a web application (or any other type
of networked application) at a greater scale and at a faster
pace than ever before.

[0003] Cloud computing environments may be composed
of many processing units (e.g., servers). The processing
units may be installed in standardized frames, known as
racks, which provide efficient use of floor space by allowing
the processing units to be stacked vertically. The racks may
additionally include other components of a cloud computing
environment such as storage devices, networking devices
(e.g., switches), etc.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1A is a block diagram of an example multi-
rack system connected via a multi-fabric network for use in
a software defined data center (SDDC).

[0005] FIG. 1B is a block diagram of the example multi-
rack system of FIG. 1A in which the fabric assignment
manager of FIG. 1A assigns the first and second network
fabrics of the multi-fabric network of FIG. 1A to first
applications.

[0006] FIG. 1C is a block diagram of the example multi-
rack system of FIGS. 1A and FIG. 1B in which the fabric
assignment manager of FIGS. 1A and 1B performs dynamic
multi-fabric load balancing by reassign the first and second
network fabrics between the first applications and a second
application.

[0007] FIG. 2 depicts the example physical racks of FIGS.
1A-1C in an example virtual server rack deployment in
which the multi-fabric network examples of FIGS. 1A-1C
may be implemented in accordance with teachings of this
disclosure.

[0008] FIG. 3 depicts an example architecture to configure
and deploy the example virtual server rack of FIG. 2 and to

Jul. 25,2019

implement the multi-fabric network examples of FIGS.
1A-1C in accordance with teachings of this disclosure.
[0009] FIG. 4 depicts a block diagram of the example
fabric assignment manager of FIGS. 1 and 3 that may be
used to perform dynamic multi-fabric load balancing in the
multi-fabric network of FIGS. 1A-1C.

[0010] FIG. 51is a block diagram of an example telematics
implementation that may be used in the multi-rack system of
FIGS. 1A-1C to determine when to reassign the first and
second network fabrics of the multi-fabric network of FIGS.
1A-1C.

[0011] FIG. 6 is a flowchart representative of example
machine-readable instructions that may be executed to
implement the example fabric assignment manager of FIGS.
1A-1C, 3, and 4 to perform dynamic multi-fabric load
balancing in the multi-fabric network of FIGS. 1A-1C.
[0012] FIG. 7 is another flowchart representative of
machine-readable instructions that may be executed to
implement the example fabric assignment manager of FIGS.
1A-1C, 3, and 4 to perform dynamic multi-fabric load
balancing in the multi-fabric network of FIGS. 1A-1C.
[0013] FIG. 8 is an example network fabric migration state
machine representative of different states of the virtual
network distributed switch of FIGS. 1A, 3, and 5 that may
be configured by the fabric assignment manager of FIGS.
1A-1C, 3, and 4 to perform dynamic multi-fabric load
balancing in the multi-fabric network of FIGS. 1A-1C.
[0014] FIG. 9 is a block diagram of an example processor
platform structured to execute the machine-readable instruc-
tions represented in FIGS. 7 and 8 to implement the fabric
assignment manager of FIGS. 1A-1C, 3, and 4 to perform
dynamic multi-fabric load balancing in the multi-fabric
network of FIGS. 1A-1C.

[0015] Wherever possible, the same reference numbers are
used throughout the drawing(s) and accompanying written
description to refer to the same or like parts. Connecting
lines or connectors shown in the various figures presented
are intended to represent example functional relationships
and/or physical or logical couplings between the various
elements.

DETAILED DESCRIPTION

[0016] Examples disclosed herein perform dynamic load
balancing for a multi-fabric environment in network-based
computing. For example, a first host server may be con-
nected to one or more other second host servers via two
network fabrics. Examples disclosed herein allow both net-
work fabrics to be assignable to any application of the first
host server for network traffic while a critical application
with a high-bandwidth need is not detected. However, in
response to detecting such a critical application, examples
disclosed herein reassign the first network fabric to the
non-critical applications that were previously assigned the
second network fabric, and assign the second network fabric
for exclusive use by the detected critical application. In this
manner, the critical application can exclusively use the
second network fabric to serve its high-bandwidth need
while the non-critical applications can continue their net-
work traffic on the first network fabric. When the high-
bandwidth need of the critical application no longer exists,
examples disclosed herein may reassign ones of the non-
critical applications to the second network fabric so that the
non-critical network load of the non-critical applications is
balanced across both of the first and second network fabrics.

US 2019/0230043 Al

In this manner, by load balancing network traffic of appli-
cations across multiple network fabrics, examples disclosed
herein enable more effective use of such multiple network
fabrics than prior techniques of using multi-fabric environ-
ments.

[0017] Some datacenters are equipped with hosts having
up to four 10/25 gigabits per second (Gbps) physical net-
work interface cards (pNICs) for high-availability purposes.
These pNICs are usually connected to two top-of-rack (ToR)
switches and to two leaf switches in a leaf-spine fabric using
a link aggregation group (LAG). Having a LAG from the
host to the leaf switches via the two ToR switches aggregates
the total available bandwidth to that LAG. For example, if
each pNIC has a bandwidth of 10 Gbps, with four pNICs
from a host, an application running on that host can get an
effective bandwidth of 40 Gbps by being assigned to com-
municate via the LAG. One drawback of this approach is, all
applications running on the host will share the total available
bandwidth of the LAG. As such, if a critical application
requires more bandwidth, the network cannot honor its
requirement because every application is treated the same
way in that all applications are given the same accessibility
to the LAG without preferential treatment. Another draw-
back is associated with cost. If a ToR switch with a large port
count is provided per rack to accommodate more network
connections in that rack, the cost of providing such high-
port-count switches increases the cost of each rack signifi-
cantly. For example, to provide network connectivity in a
rack with 32 hosts and four pNICs per host, a 96-port switch
may be used to configure network connectivity for the 32
hosts. These high-port-count switches require multiple net-
working chips (e.g., application specific integrated circuits
(ASICs)), which increases switch cost significantly relative
to low-port count switches (e.g., switches with substantially
fewer than 96 ports), which can be manufactured with a
single ASIC. In addition to the manufacturing costs associ-
ated with providing multiple ASICs in a single switch,
operating costs also increase because having such multiple
ASICs per switch requires additional cooling, power, and
internal cabling.

[0018] Examples disclosed herein overcome drawbacks
associated with prior uses of leaf-spine network fabric
configurations by creating a multi-fabric leaf-spine network
configuration to serve the network needs of a physical rack
of hosts, allowing any application to use any available
network fabric while a critical application having a high-
bandwidth need is not detected. Upon detection of such a
critical application, examples disclosed herein include free-
ing or releasing one of the network fabrics from non-critical
applications and exclusively assigning that network fabric to
the critical application to serve its high-bandwidth needs.

[0019] Network-based computing such as cloud comput-
ing is based on the deployment of many physical resources
across a network, virtualizing the physical resources into
virtual resources, and provisioning the virtual resources in
software defined data centers (SDDCs) for use across cloud
computing services and applications. Examples disclosed
herein may be used to manage network resources in SDDCs
to improve performance and efficiencies of network com-
munications between different virtual and/or physical
resources of the SDDCs. Examples disclosed herein may be
used in connection with different types of SDDCs. In some
examples, techniques disclosed herein are useful for man-
aging network resources that are provided in SDDCs based

Jul. 25,2019

on Hyper-Converged Infrastructure (HCI). In examples dis-
closed herein, HCI combines a virtualization platform such
as a hypervisor, virtualized software-defined storage, and
virtualized networking in an SDDC deployment. An SDDC
manager can provide automation of workflows for lifecycle
management and operations of a self-contained private
cloud instance. Such an instance may span multiple racks of
servers connected via a leaf-spine network topology and
connects to the rest of the enterprise network for north-south
connectivity via well-defined points of attachment.

[0020] Examples disclosed herein may be used with one or
more different types of virtualization environments. Three
example types of virtualization environments are: full vir-
tualization, paravirtualization, and operating system (OS)
virtualization. Full virtualization, as used herein, is a virtu-
alization environment in which hardware resources are
managed by a hypervisor to provide virtual hardware
resources to a virtual machine (VM). In a full virtualization
environment, the VMs do not have access to the underlying
hardware resources. In a typical full virtualization, a host OS
with embedded hypervisor (e.g., a VMWARE® ESXI®
hypervisor) is installed on the server hardware. VMs includ-
ing virtual hardware resources are then deployed on the
hypervisor. A guest OS is installed in the VM. The hyper-
visor manages the association between the hardware
resources of the server hardware and the virtual resources
allocated to the VMs (e.g., associating physical random-
access memory (RAM) with virtual RAM). Typically, in full
virtualization, the VM and the guest OS have no visibility
and/or access to the hardware resources of the underlying
server. Additionally, in full virtualization, a full guest OS is
typically installed in the VM while a host OS is installed on
the server hardware. Example virtualization environments
include VMWARE® ESX® hypervisor, Microsoft HYPER-
V® hypervisor, and Kernel Based Virtual Machine (KVM).

[0021] Paravirtualization, as used herein, is a virtualiza-
tion environment in which hardware resources are managed
by a hypervisor to provide virtual hardware resources to a
VM, and guest OSs are also allowed to access some or all
the underlying hardware resources of the server (e.g., with-
out accessing an intermediate virtual hardware resource). In
a typical paravirtualization system, a host OS (e.g., a Linux-
based OS) is installed on the server hardware. A hypervisor
(e.g., the XEN® hypervisor) executes on the host OS. VMs
including virtual hardware resources are then deployed on
the hypervisor. The hypervisor manages the association
between the hardware resources of the server hardware and
the virtual resources allocated to the VMs (e.g., associating
RAM with virtual RAM). In paravirtualization, the guest OS
installed in the VM is configured also to have direct access
to some or all of the hardware resources of the server. For
example, the guest OS may be precompiled with special
drivers that allow the guest OS to access the hardware
resources without passing through a virtual hardware layer.
For example, a guest OS may be precompiled with drivers
that allow the guest OS to access a sound card installed in
the server hardware. Directly accessing the hardware (e.g.,
without accessing the virtual hardware resources of the VM)
may be more efficient, may allow for performance of opera-
tions that are not supported by the VM and/or the hypervisor,
etc.

[0022] OS virtualization is also referred to herein as
container virtualization. As used herein, OS virtualization
refers to a system in which processes are isolated in an OS.

US 2019/0230043 Al

In a typical OS virtualization system, a host OS is installed
on the server hardware. Alternatively, the host OS may be
installed in a VM of a full virtualization environment or a
paravirtualization environment. The host OS of an OS
virtualization system is configured (e.g., utilizing a custom-
ized kernel) to provide isolation and resource management
for processes that execute within the host OS (e.g., appli-
cations that execute on the host OS). The isolation of the
processes is known as a container. Thus, a process executes
within a container that isolates the process from other
processes executing on the host OS. Thus, OS virtualization
provides isolation and resource management capabilities
without the resource overhead utilized by a full virtualiza-
tion environment or a paravirtualization environment.
Example OS virtualization environments include Linux
Containers LXC and LXD, the DOCKER™ container plat-
form, the OPENVZ™ container platform, etc.

[0023] In some examples, a data center (or pool of linked
data centers) may include multiple different virtualization
environments. For example, a data center may include
hardware resources that are managed by a full virtualization
environment, a paravirtualization environment, and an OS
virtualization environment. In such a data center, a workload
may be deployed to any of the virtualization environments.
Through techniques to monitor both physical and virtual
infrastructure, examples disclosed herein provide visibility
into the virtual infrastructure (e.g., VMs, virtual storage,
virtual networks and their control/management counter-
parts) and the physical infrastructure (servers, physical stor-
age, network switches).

[0024] Examples disclosed herein employ such monitor-
ing of virtual and physical infrastructures to create and
manage network configurations based on load balancing
groups of aggregated network links (e.g., LAGs) connected
between spine switches, ToR switches (e.g., leaf switches),
and distributed virtual ports (dvports) of virtual distributed
network switches. In examples disclosed herein, such groups
of aggregated network links are formed using a LAG
method for aggregating physical network interface cards
(pNICs) into LAGs. Examples disclosed herein use multi-
fabric load balancing in connection with LAGs to increase
availability and throughput of network resources for critical
applications and overcome problems associated with prior
network fabric uses that treat network traffic of all applica-
tions in the same manner in terms of giving all applications
equal use of a network fabric regardless of critical high-
bandwidth needs.

[0025] LAG methods bundle multiple pNICs together into
a LAG. A dvport can be bound to the LAG (and, thus, to
multiple pNICs), and it is presented as a single virtual
network interface card (vNIC) available for use by applica-
tions executing in a VM. In such LAG methods, different
pNICs of a LAG can be connected to separate physical ToR
switches, and doing so enables creating high-available net-
works with redundant paths between any two hosts. Since
multiple pNICs can be bundled together using LAG, a single
dvport can achieve an effective throughput of all the pNICs’
maximum capacities combined. Thus, a physical host server
having four 10 Gbps pNICs can provide a single dvport with
a maximum possible throughput of 40 Gbps bandwidth, if
needed.

[0026] As defined herein, a “critical application” is an
application that has a current or imminent need for high-
bandwidth use to serve its network traffic. Examples of

Jul. 25,2019

critical applications include virtualized storage area network
(VSAN) rebalancing, user-triggered VM migration between
hosts, dynamic resource schedule (DRS)-triggered VM
migration between hosts, host evacuations, host upgrades,
etc. In some examples, this high-bandwidth need cannot be
effectively served in an optimal manner if a critical appli-
cation and non-critical applications share a LAG. In some
examples, the high-bandwidth need of the critical applica-
tion is a time-limited need such that after expiration of an
associated duration of the high-bandwidth need, the critical
application becomes a non-critical application. As defined
herein, a “non-critical application” is an application having
a substantially lower bandwidth need than a critical appli-
cation. In some examples, such substantially lower band-
width need can be satisfactorily served even when multiple
non-critical applications share a LAG for their network
traffic.

[0027] FIG. 1A is an example multi-rack system 100
connected via a multi-fabric network for use in a SDDC. The
example multi-rack system 100 includes a first physical rack
102 and a second physical rack 104. The example physical
racks 102, 104 include corresponding host servers 106, 108
(e.g., a first physical host server 106 and a second physical
host server 108). The example first physical host server 106
of the first physical rack 102 is shown in detail. Although
similar details are not shown for the second physical host
server 108, the second physical host server 108 of the second
physical rack 104 is substantially similar to the first physical
host server 106. As used herein, the term “host” refers to a
functionally indivisible unit of the physical hardware
resources (e.g., the example physical hardware resources
224, 226 of FIG. 2), such as a physical server that is
configured or allocated, as a whole, to a virtual rack and/or
workload; powered on or off in its entirety; or may otherwise
be considered a complete functional unit.

[0028] In the illustrated example of FIG. 1A, the host 106
executes an example hypervisor 110, which provides local
virtualization services to create an example virtual environ-
ment in the host 106. The example hypervisor 110 may be
implemented using any suitable Thypervisor (e.g.,
VMWARE® ESX® hypervisor, Microsoft HYPER-V®
hypervisor, and Kernel Based Virtual Machine (KVM)). In
the illustrated example of FIG. 1A, the hypervisor 110
executes one or more VMs (e.g., an example VM 114) and
an example virtual network (vnetwork) distributed switch
(VDS) 116. The example VDS 116 functions as a single
virtual switch that can be deployed in a single host and/or
across multiple hosts. This enables setting network configu-
rations that span across all the member hosts, and allows
VMs to maintain consistent network configurations as they
migrate across the multiple hosts. The example VM 114 of
the illustrated example is configured to include multiple
vNICs 122a-d for use by applications 118 executed by the
VM 114 to perform network communications via a network.
The example vNICs 122a-d are created by running virtual-
ization services for physical network interface cards (pNICs)
124a-d of the host 106 of the first physical rack 102.

[0029] The example first physical rack 102 includes first
and second ToR switches 1264,b (e.g., first and second leaf
switches 126a,b) that connect via an example network 128
to first and second ToR switches 132a,6 (e.g., first and
second leaf switches 132a,b) of the second physical rack
104. In addition, the example first physical rack 102 includes
third and fourth ToR switches 126¢,d (e.g., first and second

US 2019/0230043 Al

leaf switches 126¢,d) that connect via the network 128 to
third and fourth ToR switches 132¢,d (e.g., third and fourth
leaf switches 132¢,d) of the second physical rack 104.
[0030] In the illustrated example, the VDS 116 provides
dvports 134a-d assignable to the vNICs 122 a-d of the VM
114 to enable network communications between the appli-
cations 118 of the VM 114 and the ToR switches 126a-d. The
dvports 134a-d of the illustrated example are assigned port
numbers by the VDS 116 to identify a source/destination
side of a connection that terminates at the hypervisor 110.
The VDS 116 uses the port numbers of the dvports 134a-d
to determine the vNICs 122 a-d and the applications 118 to
which received network communications should be deliv-
ered.

[0031] In the illustrated example, the first physical rack
102 includes two separate LAGs indicated as example
LAG1 138a and example LAG2 138b. The example LAG1
138a of the first physical rack 102 is a first aggregated group
of the first and second vNICs 1224, (implemented by the
first and second pNICs 124a,b) that is connected between
the host 106 and the first and second ToR switches 126a,b
of the first physical rack 102. The example LAG2 1385 of
the first physical rack 102 is a second aggregated group of
the third and fourth vNICs 122¢,d (implemented by the third
and fourth pNICs 124¢,d) that is connected between the host
106 and the third and fourth ToR switches 126¢,d of the first
physical rack 102. In addition, the second physical rack 104
of the illustrated example includes two separate [LAGs
indicated as example LAG1 140q and example LAG2 1405
that connect corresponding ones of the ToR switches 132a-d
of'the second physical rack 104 to the host 108 of the second
physical rack 104.

[0032] In the illustrated example, the first and second ToR
switches 1264,b of the first physical rack 102 are connected
to the first and second ToR switches 132a,b of the second
physical rack 104 via first and second spine switches 142a,b
of'the network 128. In addition, the example third and fourth
ToR switches 126¢,d of the first physical rack 102 are
connected to the second and third ToR switches 132¢,d of
the second physical rack 104 via third and fourth spine
switches 142c¢,d of the network 128. In the illustrated
example, the first LAG 138a of the first physical rack 102,
the first and second ToR switches 126a,b of the first physical
rack 102, the first and second spine switches 1424, b, the first
and second ToR switches 132a,b of the second physical rack
104, and the first LAG 1404 of the second physical rack 104
form an example first network fabric 144. Also in the
illustrated example, the second LAG 1386 of the first
physical rack 102, the third and fourth ToR switches 126¢,d
of the first physical rack 102, the third and fourth spine
switches 142c¢,d, the third and fourth ToR switches 132¢,d of
the second physical rack 104, and the second LAG 1405 of
the second physical rack 104 form an example second
network fabric 146.

[0033] In the illustrated example, configurations in the
VDS 116 control assignments between the first and second
network fabrics 144, 146 and the applications 118. For
example, the first and second dvports 1344,5 connect the
first and second vNICs 122a,b to the first network fabric
144, and the third and fourth dvports 134c¢,d connect the
third and fourth vNICs 122c¢,d to the second network fabric
146. As such, the VDS 116 can be configured to assign the
first and second dvports 134a,b to applications 118 that are
to be assigned the first network fabric 144. In addition, the

Jul. 25,2019

VDS 116 can be configured to assign the third and fourth
dvports 134¢,d to applications 118 that are to be assigned the
second network fabric 146.

[0034] In the illustrated example, the hypervisor 110 is
provided with a fabric assignment manager 152. The
example fabric assignment manager 152 is provided to
manage assignments of the first and second network fabrics
144, 146 to the applications 118 and to perform load
balancing of the applications 118 between the first and
second network fabrics 144, 146 based on the presence of
critical applications needing high-bandwidth network usage.
In some examples, the fabric assignment manager 152 is
implemented by the VDS 116. In other examples, the fabric
assignment manager 152 is implemented separate from the
VDS 116 in the hypervisor 110. For example, as shown in
FIG. 3 described below, the fabric assignment manager 152
could alternatively be implemented in an example virtual
rack manager (VRM) 225, 227 (e.g., a software defined data
center (SDDC) manager). In some examples, the fabric
assignment manager 152 is implemented in both the VDS
116 and the VRM 225, 227. For example, separate instances
of the fabric assignment manager 152 may be implemented
in both the VDS 116 and the VRM 225, 227 for redundancy
and/or different aspects of the fabric assignment manager
152 may be implemented across the VDS 116 and the VRM
225, 227. The example fabric assignment manager 152 is
described in more detail below in connection with FIG. 4.

[0035] In the illustrated example of FIG. 1A, the fabric
assignment manager 152 monitors the VM 114 (and any
other VM running on the hypervisor 110) to determine
whether there are any critical applications of the applications
118 requiring load balancing. In some examples, the fabric
assignment manager 152 receives API calls from the VM
114 indicative of the presence of such critical applications
requesting exclusive use of a network fabric to serve high-
bandwidth needs for network traffic. In some examples, the
fabric assignment manager 152 sends probe messages using
telematics to the VM 114 to check for the presence of any
critical applications. Upon determining that a critical appli-
cation exists, the fabric assignment manager 152 performs
load balancing operations as described below in connection
with FIGS. 1B and 1C to grant exclusive use of one of the
network fabrics 144, 146 to the critical application.

[0036] FIG. 1B is the example multi-rack system 100 of
FIG. 1A in which the fabric assignment manager 152 assigns
the first and second network fabrics 144, 146 to first appli-
cations (e.g., of the applications 118 of FIG. 1A) that are
non-critical applications 154 when the fabric assignment
manager 152 does not detect any critical application (e.g.,
the critical application 156 of FIG. 1C). The example fabric
assignment manager 152 assigns the first and second net-
work fabrics 144, 146 by configuring the VDS 116 to assign
ones of the dvports 134a-d to the non-critical applications
154 such that the non-critical applications 154 are assigned
across both of the first and second network fabrics 144, 146
by virtue of corresponding dvports 134a-d corresponding to
VvNICs 122 a-d connected to corresponding ones of the first
and second network fabrics 144, 146. In the illustrated
example of FIG. 1B, the fabric assignment manager 152
does not reserve either of the network fabrics 144, 146 for
exclusive use by any non-critical application 154.

[0037] Turning to FIG. 1C, the fabric assignment manager
152 performs dynamic multi-fabric load balancing when it
detects the presence of a second application of the applica-

US 2019/0230043 Al

tions 118 that is a critical application 156 needing exclusive
use of a network fabric for high-bandwidth network traffic.
In the illustrated example of FIG. 1C, the fabric assignment
manager 152 releases the second network fabric 146 from
any non-critical applications 154 of the applications 118 that
were previously assigned to the second network fabric 146
by assigning the first network fabric 144 to those non-critical
applications 154. The example fabric assignment manager
152 assigns the first network fabric 144 to the non-critical
applications 154 by configuring the VDS 116 to assign the
first and second dvports 134a,b (FIG. 1A) to the non-critical
applications 154 such that the non-critical applications 154
are assigned to only the first network fabric 144 by virtue of
first and second dvports 134a,b corresponding to the first
and second vNICs 122a,b connected to the first network
fabric 144. When the second network fabric 146 is freed, the
example fabric assignment manager 152 assigns the second
network fabric 146 to the critical application 156 of the
applications 118 for exclusive use by the critical application
156. The example fabric assignment manager 152 assigns
the second network fabric 146 to the critical application 156
by configuring the VDS 116 to assign the third and fourth
dvports 134¢,d to the critical application 156 such that the
second network fabric 146 is assigned exclusively to the
critical application 156 by virtue of third and fourth dvports
134c,d corresponding to the third and fourth vNICs 122¢,d
connected to the second network fabric 146. In the illus-
trated example, the high-bandwidth need of the critical
application 156 is a time-limited need such that after expi-
ration of an associated duration of the high-bandwidth need,
the critical application 156 becomes a non-critical applica-
tion 154. When the critical application 156 becomes a
non-critical application 154, the fabric assignment manager
152 makes both of the first and second network fabrics 144,
146 assignable to any non-critical application 154. In this
manner, the fabric assignment manager 152 can again assign
the non-critical applications 154 to both of the first and
second network fabrics 144, 146.

[0038] Examples disclosed herein may be employed with
HClI-based SDDCs deployed using virtual server rack sys-
tems such as the virtual server rack 206 of FIG. 2. A virtual
server rack system can be managed using a set of tools that
is accessible to all components of the virtual server rack
system. Virtual server rack systems can be configured in
many different sizes. Some systems are as small as four
hosts, and other systems are as big as tens of racks. As
described in more detail below in connection with FIGS. 2
and 3, multi-rack deployments can include ToR switches
(e.g., leaf switches) (e.g., the ToR switches 126a-d and
132a-d of FIG. 1A) and spine switches (e.g., the spine
switches 142a-d of FIG. 1A) connected using a leaf-spine
architecture. A virtual server rack system also includes
software-defined data storage (e.g., storage area network
(SAN), VWWARE® VIRTUAL SAN™,) distributed across
multiple hosts for redundancy and virtualized networking
software (e.g., VMWARE NSX™)

[0039] FIG. 2 depicts the example physical racks 102, 104
of FIG. 1A in an example deployment of a virtual server rack
206 in which the multi-fabric load balancing described
above in connection with FIGS. 1A-1C may be imple-
mented. The virtual server rack 206 of the illustrated
example enables representing hardware resources (e.g.,
physical hardware resources 224, 226) as logical/virtual
resources. In some examples, the virtual server rack 206

Jul. 25,2019

includes a set of physical units (e.g., one or more racks) with
each unit including hardware such as server nodes (e.g.,
compute+storage+network links), network switches, and,
optionally, separate storage units. From a user perspective,
the example virtual server rack 206 is an aggregated pool of
logic resources exposed as one or more VMWARE ESXI™
clusters along with a logical storage pool and network
connectivity. In examples disclosed herein, a cluster is a
server group in a virtual environment. For example, a
VMWARE ESXI™ cluster is a group of physical servers in
the physical hardware resources that run VMWARE ESX1™
hypervisors to virtualize processor, memory, storage, and
networking resources into logical resources to run multiple
VMs that run OSs and applications as if those OSs and
applications were running on physical hardware without an
intermediate virtualization layer.

[0040] In the illustrated example, the first physical rack
102 includes the example ToR switches 126a-d of FIG. 1A,
an example management switch 207, and an example server
host node(0) 209. In the illustrated example, the manage-
ment switch 207 and the server host node(0) 209 run a
hardware management system (HMS) 208 for the first
physical rack 102. The second physical rack 104 of the
illustrated example is also provided with the example ToR
switches 132a-d of FIG. 1A, an example management
switch 213, and an example server host node(0) 211. In the
illustrated example, the management switch 213 and the
server host node (0) 211 run an HMS 214 for the second
physical rack 104.

[0041] In the illustrated example, the HMS 208, 214
connects to server management ports of the server host
node(0) 209, 211 (e.g., using a baseboard management
controller (BMC)), connects to ToR switch management
ports (e.g., using 1 Gbps links) of the ToR switches 126a-d,
132a-d, and also connects to spine switch management ports
of the spine switches 142a-d. In the illustrated example, the
ToR switches 126a-d, 132a-d implement leaf switches such
that the ToR switches 126a-d, 132a-d, and the spine
switches 142a-d are in communication with one another in
a leaf-spine switch configuration. These example connec-
tions form a non-routable private Internet protocol (IP)
management network for out-of-band (OOB) management.
The HMS 208, 214 of the illustrated example uses this OOB
management interface to the server management ports of the
server host node(0) 209, 211 for server hardware manage-
ment. In addition, the HMS 208, 214 of the illustrated
example uses this OOB management interface to the ToR
switch management ports of the ToR switches 126a-d,
132a-d and to the spine switch management ports of the
spine switches 142a-d for switch management. In examples
disclosed herein, the ToR switches 126a-d, 132a-d connect
to pNICs (e.g., using 10 Gbps links) of server hosts in the
physical racks 102, 104 for downlink communications. For
example, the ToR switches 126a-d connect to the pNICs
1244-d via the vNICs 122 g-d as shown in FIG. 1A. The
example ToR switches 126a-d, 132a-d also connect to the
spine switch(es) 142a-d (e.g., using 40 Gbps links) for
uplink communications. In the illustrated example, the man-
agement switch 207, 213 is also connected to the ToR
switches 126a-d, 132a-d (e.g., using a 10 Gbps link) for
internal communications between the management switch
207, 213 and the ToR switches 126a-d, 132a-d. Also in the
illustrated example, the HMS 208, 214 is provided with
in-band (IB) connectivity to individual server nodes (e.g.,

US 2019/0230043 Al

server nodes in example physical hardware resources 224,
226) of the physical rack 102, 104. In the illustrated
example, the IB connection interfaces to physical hardware
resources 224, 226 via an OS running on the server nodes
using an OS-specific application programming interface
(API) such as VMWARE VSPHERE® API, command line
interface (CLI), and/or interfaces such as Common Infor-
mation Model from Distributed Management Task Force
(DMTF).

[0042] Example OOB operations performed by the HMS
208, 214 include discovery of new hardware, bootstrapping,
remote power control, authentication, hard resetting of non-
responsive hosts, monitoring catastrophic hardware failures,
and firmware upgrades. The example HMS 208, 214 uses 1B
management to periodically monitor status and health of the
physical resources 224, 226 and to keep server objects and
switch objects up to date. Example IB operations performed
by the HMS 208, 214 include controlling power state,
accessing temperature sensors, controlling Basic Input/Out-
put System (BIOS) inventory of hardware (e.g., central
processing units (CPUs), memory, disks, etc.), event moni-
toring, and logging events.

[0043] The HMSs 208, 214 of the corresponding physical
racks 102, 104 interface with VRMs 225, 227 (e.g., software
defined data center managers) of the corresponding physical
racks 102, 104 to instantiate and manage the virtual server
rack 206 using physical hardware resources 224, 226 (e.g.,
processors, pNICs, servers, switches, storage devices,
peripherals, power supplies, etc.) of the physical racks 102,
104. In the illustrated example, the VRM 225 of the first
physical rack 102 runs on a cluster of three server host nodes
of' the first physical rack 102, one of which is the server host
node(0) 209. In the illustrated example, the VRM 227 of the
second physical rack 104 runs on a cluster of three server
host nodes of the second physical rack 104, one of which is
the server host node(0) 211. In the illustrated example, the
VRMs 225, 227 of the corresponding physical racks 102,
104 communicate with each other through the spine
switches 142a-d. Also in the illustrated example, commu-
nications between physical hardware resources 224, 226 of
the physical racks 102, 104 are exchanged between the ToR
switches 126a-d, 132a-d of the physical racks 102, 104
through the spine switches 142a-d. In other examples, fewer
or more spine switches 142a-d may be used. For example,
additional spine switches may be added when physical racks
are added to the virtual server rack 206.

[0044] The VRM 225 of'the first physical rack 102 runs on
a cluster of three server host nodes of the first physical rack
102 using a high availability (HA) mode configuration. In
addition, the VRM 227 of the second physical rack 104 runs
on a cluster of three server host nodes of the second physical
rack 104 using the HA mode configuration. Using the HA
mode in this manner, enables fault tolerant operation of the
VRM 225, 227 in the event that one of the three server host
nodes in the cluster for the VRM 225, 227 fails. Upon failure
of'a server host node executing the VRM 225, 227, the VRM
225, 227 can be restarted to execute on another one of the
hosts in the cluster. Therefore, the VRM 225, 227 continues
to be available even in the event of a failure of one of the
server host nodes in the cluster.

[0045] In examples disclosed herein, a CLI and APIs are
used to manage the ToR switches 126a-d, 132a-d. For
example, the HMS 208, 214 uses CLI/APIs to populate
switch objects corresponding to the ToR switches 126a-d,

Jul. 25,2019

132a-d. On HMS bootup, the HMS 208, 214 populates
initial switch objects with statically available information. In
addition, the HMS 208, 214 uses a periodic polling mecha-
nism as part of an HMS switch management application
thread to collect statistical and health data from the ToR
switches 126a-d, 132a-d (e.g., Link states, Packet Stats,
Availability, etc.). There is also a configuration buffer as part
of the switch object which stores the configuration informa-
tion to be applied on the switch.

[0046] The HMS 208, 214 of the illustrated example of
FIG. 2 is a stateless software agent responsible for managing
individual hardware resources in a physical rack 102, 104.
Examples of hardware elements that the HMS 208, 214
manages are servers and network switches in the physical
rack 102, 104. In the illustrated example, the HMS 208, 214
is implemented using Java on Linux so that an 00B man-
agement portion of the HMS 208, 214 runs as a Java
application on a white box management switch (e.g., the
management switch 207, 213) in the physical rack 102, 104.
However, any other programming language and any other
OS may be used to implement the HMS 208, 214.

[0047] FIG. 3 depicts an example virtual server rack
architecture 300 that may be used to configure and deploy
the virtual server rack 206 of FIG. 2 and to implement the
dynamic multi-fabric load balancing described above in
connection with FIGS. 1A-1C. The example architecture
300 of FIG. 3 includes a hardware layer 302, a virtualization
layer 304, and an operations and management (OAM) layer
306. In the illustrated example, the hardware layer 302, the
virtualization layer 304, and the OAM layer 306 are part of
the example virtual server rack 206 of FIG. 2. The virtual
server rack 206 of the illustrated example is based on the
physical racks 102, 104 of FIGS. 1A-1C and 2. The example
virtual server rack 206 configures the physical hardware
resources 224, 226, virtualizes the physical hardware
resources 224, 226 into virtual resources, provisions virtual
resources for use in providing cloud-based services, and
maintains the physical hardware resources 224, 226 and the
virtual resources.

[0048] The example hardware layer 302 of FIG. 3 includes
the HMS 208, 214 of FIG. 2 that interfaces with the physical
hardware resources 224, 226 (e.g., processors, pNICs, serv-
ers, switches, storage devices, peripherals, power supplies,
etc.), the ToR switches 126a-d, 132a-d of FIGS. 1A and 2,
the spine switches 142a-d of FIGS. 1A and 2, and network
attached storage (NAS) hardware 308. The HMS 208, 214 is
configured to manage individual hardware nodes such as
different ones of the physical hardware resources 224, 226.
For example, managing of the hardware nodes involves
discovering nodes, bootstrapping nodes, resetting nodes,
processing hardware events (e.g., alarms, sensor data thresh-
old triggers) and state changes, exposing hardware events
and state changes to other resources and a stack of the virtual
server rack 206 in a hardware-independent manner. The
HMS 208, 214 also supports rack-level boot-up sequencing
of the physical hardware resources 224, 226 and provides
services such as secure resets, remote resets, and/or hard
resets of the physical hardware resources 224, 226.

[0049] The HMS 208, 214 of the illustrated example is
part of a dedicated management infrastructure in a corre-
sponding physical rack 102, 104 including the dual-redun-
dant management switches 207, 213 and dedicated manage-
ment ports attached to the server host nodes(0) 209, 211 and
the ToR switches 126a-d, 132a-d. In the illustrated example,

US 2019/0230043 Al

one instance of the HMS 208, 214 runs per physical rack
102, 104. For example, the HMS 208, 214 may run on the
management switch 207, 213 and the server host node(0)
209, 211 installed in the example physical rack 102 of FIGS.
1A-1C and 2. In the illustrated example of FIG. 2 both of the
HMSs 208, 214 are provided in corresponding management
switches 207, 213 and the corresponding server host nodes
(0) 209, 211 as a redundancy feature in which one of the
HMSs 208, 214 is a primary HMS, while the other one of the
HMSs 208, 214 is a secondary HMS. In this manner, one of
the HMSs 208, 214 may take over as a primary HMS in the
event of a failure of a hardware management switch 207,
213 and/or a failure of the server host nodes(0) 209, 211 on
which the other HMS 208, 214 executes. In some examples,
to achieve seamless failover, two instances of an HMS 208,
214 run in a single physical rack 102, 104. In such examples,
the physical rack 102, 104 is provided with two management
switches, and each of the two management switches runs a
separate instance of the HMS 208, 214. In such examples,
the physical rack 102 of FIGS. 1A-1C and 2 runs two
instances of the HMS 208 on two separate physical hard-
ware management switches and two separate server host
nodes(0), and the physical rack 104 of FIGS. 1A-1C and 2
runs two instances of the HMS 214 on two separate physical
hardware management switches and two separate server host
nodes(0). In this manner, for example, one of the instances
of the HMS 208 on the physical rack 102 serves as the
primary HMS 208 and the other instance of the HMS 208
serves as the secondary HMS 208. The two instances of the
HMS 208 on two separate management switches and two
separate server host nodes(0) in the physical rack 102 (or the
two instances of the HMS 214 on two separate management
switches and two separate server host nodes(0) in the
physical rack 104) are connected over a point-to-point,
dedicated Ethernet link which carries heartbeats and
memory state synchronization between the primary and
secondary HMS instances.

[0050] The example virtualization layer 304 includes the
VRM 225, 227. The example VRM 225, 227 communicates
with the HMS 208, 214 to manage the physical hardware
resources 224, 226. The example VRM 225, 227 creates the
example virtual server rack 206 out of underlying physical
hardware resources 224, 226 that may span one or more
physical racks (or smaller units such as a hyper-appliance or
half rack) and handles physical management of those
resources. The example VRM 225, 227 uses the virtual
server rack 206 as a basis of aggregation to create and
provide operational views, handle fault domains, and scale
to accommodate workload profiles. The example VRM 225,
227 keeps track of available capacity in the virtual server
rack 206, maintains a view of a logical pool of virtual
resources throughout the SDDC life-cycle, and translates
logical resource provisioning to allocation of physical hard-
ware resources 224, 226. The example VRM 225, 227
interfaces with an example hypervisor 310 of the virtual-
ization layer 304. The example hypervisor 310 is installed
and runs on server hosts in the example physical resources
224, 226 to enable the server hosts to be partitioned into
multiple logical servers to create VMs. For example, the
hypervisor 310 of FIG. 3 may be used to implement the
hypervisor 110 of FIG. 1A to create the VM 114 in a virtual
environment. In some examples, the hypervisor 310 may be
implemented using a VMWARE ESXI™ hypervisor avail-
able as a component of a VMWARE VSPHERE® virtual-

Jul. 25,2019

ization suite developed and provided by VMware, Inc. The
VMWARE VSPHERE® virtualization suite is a collection
of components to setup and manage a virtual infrastructure
of servers, networks, and other resources.

[0051] In the illustrated example, the VRM 225, 227
and/or the hypervisor 310 may be used to implement a
virtual cloud management system such as an SDDC man-
ager for a SDDC platform. An example virtual cloud man-
agement system that may be used with examples disclosed
herein is the VMware Cloud Foundation (VCF) platform
developed and provided by VMware, Inc. The virtual cloud
management system implemented by the VRM 225, 227
and/or the hypervisor 310 manages different parameters of
the ToR switches 126a-d, 132a-d, the spine switches 142a-d,
and the NAS 308. In some examples, the virtual cloud
management system commands different components even
when such components run different OSs.

[0052] In the illustrated example of FIG. 3, the hypervisor
310 is shown having a number of virtualization components
executing thereon including an example network virtualizer
312, an example VM migrator 314, an example distributed
resource scheduler (DRS) 316, an example storage virtual-
izer 318, and an example VDS 320. In the illustrated
example, the VRM 225, 227 communicates with these
components to manage and present the logical view of
underlying resources such as hosts and clusters. The
example VRM 225, 227 also uses the logical view for
orchestration and provisioning of workloads.

[0053] The example network virtualizer 312 virtualizes
network resources such as physical hardware switches (e.g.,
the management switches 207, 213 of FIG. 2, the ToR
switches 126a-d, 132a-d, and/or the spine switches 142a-d)
to provide software-based virtual networks. The example
network virtualizer 312 enables treating physical network
resources (e.g., switches) as a pool of transport capacity. In
some examples, the network virtualizer 312 also provides
network and security services to VMs with a policy driven
approach. The network virtualizer 312 includes a number of
components to deploy and manage virtualized network
resources across servers, switches, and clients. For example,
the network virtualizer 312 includes a network virtualization
manager that functions as a centralized management com-
ponent of the network virtualizer 312 and runs as a virtual
appliance on a server host. In some examples, the network
virtualizer 312 may be implemented using a VMWARE
NSX™ network virtualization platform that includes a num-
ber of components including a VMWARE NSX™ network
virtualization manager.

[0054] The example VM migrator 314 is provided to move
or migrate VMs between different hosts without losing state
during such migrations. For example, the VM migrator 314
allows moving an entire running VM from one physical
server to another with substantially little or no downtime.
The migrating VM retains its network identity and connec-
tions, which results in a substantially seamless migration
process. The example VM migrator 314 enables transferring
the VM’s active memory and precise execution state over a
high-speed network, which allows the VM to switch from
running on a source server host to running on a destination
server host.

[0055] The example DRS 316 is provided to monitor
resource utilization across resource pools, to manage
resource allocations to different VMs, to deploy additional
storage capacity to VM clusters with substantially little or no

US 2019/0230043 Al

service disruptions, and to work with the VM migrator 314
to automatically migrate VMs during maintenance with
substantially little or no service disruptions.

[0056] The example storage virtualizer 318 is software-
defined storage for use in connection with virtualized envi-
ronments. The example storage virtualizer 318 clusters
server-attached hard disk drives (HDDs) and solid state
drives (SSDs) to create a shared datastore for use as virtual
storage resources in virtual environments. In some
examples, the storage virtualizer 318 may be implemented
using a VMWARE® VIRTUAL SAN™ network data stor-
age virtualization component developed and provided by
VMware, Inc.

[0057] The example VDS 320 implements software-de-
fined networks for use in connection with virtualized envi-
ronments in the form of a networking module for the
hypervisor 310. For example, the VDS 320 of FIG. 3 may be
used to implement the VDS 116 of FIG. 1A. In the illustrated
example, the VDS 320 and/or the VRM 225, 227 may be
used to implement the example fabric assignment manager
152 of FIGS. 1A-1C. In some examples, the VDS 320 is
distributed across multiple hosts and across separate hyper-
visors of those hosts (e.g., as shown in FIG. 5).

[0058] The virtualization layer 304 of the illustrated
example, and its associated components are configured to
run VMs. However, in other examples, the virtualization
layer 304 may additionally, and/or alternatively, be config-
ured to run containers. For example, the virtualization layer
304 may be used to deploy a VM as a data computer node
with its own guest OS on a host using resources of the host.
Additionally, and/or alternatively, the virtualization layer
304 may be used to deploy a container as a data computer
node that runs on top of a host OS without the need for a
hypervisor or separate OS.

[0059] In the illustrated example, the OAM layer 306 is an
extension of a VMWARE VCLOUD® AUTOMATION
CENTERTM (VCAC) that relies on the VCAC functionality
and also leverages utilities such as VMWARE VCENTER™
Log Insight™, and VMWARE VCENTER™ HYPERIC®
to deliver a single point of SDDC operations and manage-
ment. The example OAM layer 306 is configured to provide
different services such as health monitoring service, capacity
planner service, maintenance planner service, events and
operational view service, and virtual rack application work-
loads manager service.

[0060] Example components of FIG. 3 may be imple-
mented using products developed and provided by VMware,
Inc. Alternatively, some or all of such components may
alternatively be supplied by components with the same
and/or similar features developed and/or provided by other
virtualization component developers.

[0061] FIG. 4 depicts a block diagram of the example
fabric assignment manager 152 of FIGS. 1A-1C and 3 that
may be used to implement dynamic multi-fabric load bal-
ancing in accordance with teachings of this disclosure. In
some examples, the fabric assignment manager 152 is
implemented by a virtual network distributed switch (e.g.,
the VDS 116 of FIG. 1A and/or the VDS 320 of FIG. 3). In
other examples, the fabric assignment manager 152 is imple-
mented by a virtual rack manager (e.g., the VRM 225, 227
of FIGS. 2 and 3). In yet other examples, the fabric assign-
ment manager 152 is implemented by the hypervisor 110,
310 as a component separate from the VDS 116, 320 and the
VRM 225, 227.

Jul. 25,2019

[0062] In the illustrated example of FIG. 4, the fabric
assignment manager 152 is provided with an example net-
work fabric configurator 402 to assign network fabrics to
different applications. For example, the network fabric con-
figurator 402 can configure the VDS 116 as described above
in connection with FIG. 1A to assign the first and second
network fabrics 144, 146 by assigning different ones of the
dvports 134a-d to different applications 118. When a critical
application 156 (FIG. 1C) is not detected, the example
network fabric configurator 402 configures the VDS 116 to
assign the first and second network fabrics 144, 146 to
non-critical applications 154 (FIG. 1B). In addition, the
network fabric configurator 402 performs dynamic multi-
fabric load balancing when a critical application 156 (FIG.
1C) needing exclusive use of a network fabric for high-
bandwidth network traffic is detected. For example, the
network fabric configurator 402 configures the VDS 116 to
release the second network fabric 146 from any non-critical
applications 154 of the applications 118 that were previously
assigned to the second network fabric 146 by assigning the
first network fabric 144 to those non-critical applications
154, and configures the VDS 116 to assign the second
network fabric 146 to the critical application 156 of the
applications 118 for exclusive use by the critical application
156. When the critical application 156 becomes a non-
critical application 154, the network fabric configurator 402
configures the VDS 116 to again assign the non-critical
applications 154 to both of the first and second network
fabrics 144, 146.

[0063] The example fabric assignment manager 152 is
provided with an example load balancing detector 404 to
detect the presence of a critical application 156 indicative
that the load balancing detector 404 should signal the
network fabric configurator 402 to perform dynamic multi-
fabric load balancing to grant exclusive use of a network
fabric to the critical application 156 as described above in
connection with FIG. 1C. The example load balancing
detector 404 also determines when the high-bandwidth need
of the critical application 156 no longer exists such that the
critical application 156 becomes a non-critical application
154. When the load balancing detector 404 determines that
the critical application 156 no longer exists, the load bal-
ancing detector 404 signals the network fabric configurator
402 to perform dynamic multi-fabric load balancing by
rebalancing network loads from the non-critical applications
154 across both of the first and second network fabrics
144,146 (FIGS. 1A-1C).

[0064] In the illustrated example, the load balancing
detector 404 may determine the need for dynamic multi-
fabric load balancing based on multi-fabric load balancing
events. To generate such multi-fabric load balancing events,
the fabric assignment manager 152 is provided with an
example prober 406 and/or an example application program-
ming interface (API) 408. In some examples, the fabric
assignment manager 152 is provided with both of the
example prober 406 and the example API 408. In other
examples, the fabric assignment manager 152 is provided
with only one of the example prober 406 or the example API
408.

[0065] The example prober 406 generates multi-fabric
load balancing events based on using telematics to detect the
existence of critical applications 156. For example, the
prober 406 may send probe messages to VMs (e.g., the VM
114 of FIG. 1A) for querying the status of the VMs to

US 2019/0230043 Al

determine whether there are any critical applications 156
executing therein having imminent high-bandwidth usage
needs. When the prober 406 receives a probe response
indicative of the existence of a critical application 156, the
prober 406 generates a multi-fabric load balancing event that
is detectable by the load balancing detector 404 to initiate
dynamic multi-fabric load balancing. In the illustrated
example, a probe response indicative of the existence of a
critical application 156 also includes a duration value of
“interval_in_seconds” that identifies the duration for which
the critical application 156 needs exclusive use of a network
fabric. Example telematics techniques that may be used to
implement the prober 406 are described below in connection
with FIG. 5.

[0066] The example API 408 generates multi-fabric load
balancing events based on receiving API calls from critical
applications 156 executing in VMs (e.g., the VM 114 of FIG.
1A). For example, a counterpart API corresponding to the
API 408 may be provided as part of a guest OS executing on
the VM 114. When an application 118 of the VM 114
becomes a critical application 156, the critical application
156 generates an API call indicative of its critical application
status to request exclusive network fabric use, and the API
call is received by the API 408. The example API 408 then
generates a multi-fabric load balancing event that is detect-
able by the load balancing detector 404 to initiate dynamic
multi-fabric load balancing. In the illustrated example, the
example API 408 is defined as: “int request_critical_fabric
(int interval_in_seconds).” In this example, an API call via
the API 408 is indicative of the existence of a critical
application that requires high-bandwidth usage for a time
limit or duration specified in terms of seconds by the
variable value “interval_in_seconds.” In other examples,
other units of time may be used instead. The example
specified duration “interval_in_seconds” identifies the dura-
tion or time limit for which the critical application 156 needs
exclusive use of a network fabric, after which time the
exclusively assigned network fabric can again be assigned to
non-critical applications 154.

[0067] In the illustrated example of FIG. 4, to track the
duration specified in the variable “interval_in_seconds,” the
fabric assignment manager 152 is provided with an example
timer 410. In the illustrated example, upon receiving the
duration value of “interval_in_seconds” in connection with
telematics-based monitoring or an API call, the network
fabric configurator 402 loads the duration value in the timer
410, and it starts the timer 410 when the critical application
156 is assigned exclusive use of a network fabric. When the
network fabric configurator 402 detects that the timer 410
has expired, the network fabric configurator 402 determines
that the critical application 156 has become a non-critical
application 154, and performs dynamic multi-fabric load
balancing to assign all available network fabrics (e.g., the
first and second network fabrics 144, 146) for non-exclusive
use to the non-critical applications 154.

[0068] FIG. 5 is an example telematics implementation
that may be used to implement the example prober 406 of
FIG. 4 to determine the existence of critical applications 156
(FIG. 1C) for which dynamic multi-fabric load balancing
should be performed by the example fabric assignment
manager 152 (FIGS. 1A-1C, 3, and 4). In the illustrated
example, the prober 406 is in communication with multiple
telematics agents 502a-¢ running in guest OSs 504, 506, 508
executing on corresponding VMs 114, 510, 512. In the

Jul. 25,2019

illustrated example, the telematics agents 502a-c are pro-
vided as add-on modules installable and executable on the
guest OSs 504, 506, 508 to collect information from the
different guest OSs 504, 506, 508 regarding non-critical
applications 154 and/or critical applications 156 that are
running and provide the information to the prober 406. In the
illustrated example, the telematics agents 502a-c run while
providing little or no interference with the operations of the
OSs 504, 506, 508. For example, the telematics agents
502a-c may be implemented as a set of Access Control List
(ACL) rules that operate as data collection rules to capture
signatures of events that are happening in the OSs 504, 506,
508. Such data collection rules can include static rules
and/or dynamic rules. Example data collection rules can be
used to collect any information that could be indicative of
the existence of a critical application including statistics for
various packet flows, starts of VM migrations (e.g., user
triggered and/or DRS-triggered), starts of virtualized storage
area network rebalancing, starts of host evacuation, starts of
host upgrades, virtual extensible local area network (VX-
LAN) flow statistics, quality of service (QoS) statistics,
maximum transmission unit (MTU) configurations, routing
changes, etc. The example telematics agents 502a-c also
collect identifiers of applications 118 corresponding to such
collected information to identify whether any of the appli-
cations 118 are critical applications 156 based on such
collected data. The example telematics engines 502a-c col-
lect such information periodically and send the telematics-
collected information to the example prober 406 as probe
responses in response to probe requests received from the
prober 406. The example prober 406 analyzes the probe
responses to identify the existence of critical applications
156. In the illustrated example, the prober 406 sends probe
request messages to the different VMs 114, 510, 512 using
corresponding destination addresses (e.g., internet protocol
(IP) addresses, media access control (MAC) addresses, etc.).

[0069] In some examples, means for configuring network
assignments is implemented by the network fabric configu-
rator 402 of FIG. 4. In some examples, means for determin-
ing to reassign network fabrics is implemented by the load
balancing detector 404 of FIG. 4. In some examples, means
for probing is implemented by the prober 406 of FIG. 4. In
some examples, means for receiving API calls is imple-
mented by the API 408. In some examples, means for timing
is implemented by the timer 410 of FIG. 4.

[0070] While an example manner of implementing the
fabric assignment manager 152 of FIGS. 1A-1C and 3 is
illustrated in FIG. 4, one or more of the elements, processes
and/or devices illustrated in FIG. 4 may be combined,
divided, re-arranged, omitted, eliminated and/or imple-
mented in any other way. Further, the example network
fabric configurator 402, the example load balancing detector
404, the example prober 406, the example API 408, the
example timer 410, and/or, more generally, the example
fabric assignment manager 152 of FIGS. 1A-1C and 3 may
be implemented by hardware, software, firmware and/or any
combination of hardware, software and/or firmware. Thus,
for example, any of the example network fabric configurator
402, the example load balancing detector 404, the example
prober 406, the example API 408, the example timer 410
and/or, more generally, the example fabric assignment man-
ager 152 could be implemented by one or more analog or
digital circuit(s), logic circuits, programmable processor(s),
programmable controller(s), graphics processing unit(s)

US 2019/0230043 Al

(GPU(s)), digital signal processor(s) (DSP(s)), application
specific integrated circuit(s) (ASIC(s)), programmable logic
device(s) (PLD(s)) and/or field programmable logic device
(s) (FPLD(s)). When reading any of the apparatus or system
claims of this patent to cover a purely software and/or
firmware implementation, at least one of the example net-
work fabric configurator 402, the example load balancing
detector 404, the example prober 406, the example API 408,
and/or the example timer 410 is/are hereby expressly defined
to include a non-transitory computer readable storage device
or storage disk such as a memory, a digital versatile disk
(DVD), a compact disk (CD), a Blu-ray disk, etc. including
the software and/or firmware. Further still, the example
fabric assignment manager 152 of FIGS. 1A-1C and 3 may
include one or more elements, processes and/or devices in
addition to, or instead of, those illustrated in FIG. 4, and/or
may include more than one of any or all of the illustrated
elements, processes and devices. As used herein, the phrase
“in communication,” including variations thereof, encom-
passes direct communication and/or indirect communication
through one or more intermediary components, and does not
require direct physical (e.g., wired) communication and/or
constant communication, but rather additionally includes
selective communication at periodic intervals, scheduled
intervals, aperiodic intervals, and/or one-time events.

[0071] Flowcharts representative of example hardware
logic or machine-readable instructions for implementing the
fabric assignment manager 152 of FIGS. 1A-1C, 3, and 4 are
shown in FIGS. 6 and 7. The machine-readable instructions
may be one or more programs or portions of one or more
programs for execution by a processor such as the processor
912 shown in the example processor platform 900 discussed
below in connection with FIG. 9. The programs may be
embodied in software stored on a non-transitory computer
readable storage medium such as a CD-ROM, a floppy disk,
a hard drive, a DVD, a Blu-ray disk, or a memory associated
with the processor 912, but the entire program and/or parts
thereof could alternatively be executed by a device other
than the processor 912 and/or embodied in firmware or
dedicated hardware. Further, although the example pro-
grams are described with reference to the flowcharts illus-
trated in FIGS. 6 and 7, many other methods of implement-
ing the example fabric assignment manager 152 may
alternatively be used. For example, the order of execution of
the blocks may be changed, and/or some of the blocks
described may be changed, eliminated, or combined. Addi-
tionally or alternatively, any or all of the blocks may be
implemented by one or more hardware circuits (e.g., discrete
and/or integrated analog and/or digital circuitry, an FPGA,
an ASIC, a comparator, an operational-amplifier (op-amp), a
logic circuit, etc.) structured to perform the corresponding
operation without executing software or firmware.

[0072] As mentioned above, the example processes of
FIGS. 6 and 7 may be implemented using executable
instructions (e.g., computer and/or machine readable
instructions) stored on a non-transitory computer and/or
machine readable medium such as a hard disk drive, a flash
memory, a read-only memory, a compact disk, a digital
versatile disk, a cache, a random-access memory and/or any
other storage device or storage disk in which information is
stored for any duration (e.g., for extended time periods,
permanently, for brief instances, for temporarily buffering,
and/or for caching of the information). As used herein, the
term non-transitory computer readable medium is expressly

Jul. 25,2019

defined to include any type of computer readable storage
device and/or storage disk and to exclude propagating
signals and to exclude transmission media.

[0073] “Including” and “comprising” (and all forms and
tenses thereof) are used herein to be open ended terms. Thus,
whenever a claim employs any form of “include” or “com-
prise” (e.g., comprises, includes, comprising, including,
having, etc.) as a preamble or within a claim recitation of
any kind, it is to be understood that additional elements,
terms, etc. may be present without falling outside the scope
of the corresponding claim or recitation. As used herein,
when the phrase “at least” is used as the transition term in,
for example, a preamble of a claim, it is open-ended in the
same manner as the term “comprising” and “including” are
open ended. The term “and/or” when used, for example, in
a form such as A, B, and/or C refers to any combination or
subset of A, B, C such as (1) A alone, (2) B alone, (3) C
alone, (4) A with B, (5) A with C, and (6) B with C.

[0074] FIG. 6 is a flowchart representative of example
machine-readable instructions that may be executed to
implement the example fabric assignment manager 152 of
FIGS. 1A-1C, 3, and 4 to perform dynamic multi-fabric load
balancing in the multi-fabric network of FIGS. 1A-1C. The
example process of FIG. 6 begins at block 602 at which the
load balancing detector 404 (FIG. 4) determines to reassign
network fabrics. For example, the load balancing detector
404 may determine to reassign the first and second network
fabrics 144, 146 between non-critical applications 154 (e.g.,
first applications) previously assigned to the first and second
network fabrics 144, 146 and a critical application 156 (e.g.,
a second application). In the illustrated example, the load
balancing detector 404 may determine to perform such a
reassigning of network fabrics based on detecting a multi-
fabric load balancing event generated by the prober 406
and/or the API 408 of FIG. 4. The example network fabric
configurator 402 (FIG. 4) reassigns the first network fabric
144 to ones of the non-critical applications 154 previously
assigned to the second network fabric 146 (block 604). For
example, the network fabric configurator 402 configures the
VDS 116 to assign the first network fabric 144 to the
non-critical applications 154. The example network fabric
configurator 402 also assigns the second network fabric 146
to the critical application 156 (block 606). For example, the
network fabric configurator 402 configures the VDS 116 to
assign the second network fabric 146 to the critical appli-
cation 156. In the illustrated example, the network fabric
configurator 402 performs the operations of block 604 and
606 in response to the load balancing detector 404 detecting
to reassign the first and second network fabrics 144, 146. In
this manner, the critical application 156 is provided with
exclusive use of the second network fabric 146 to service its
high-bandwidth network usage needs. The example process
of FIG. 6 ends.

[0075] FIG. 7 is another flowchart representative of
machine-readable instructions that may be executed to
implement the example fabric assignment manager 152 of
FIGS. 1A-1C, 3, and 4 to perform dynamic multi-fabric load
balancing in the multi-fabric network of FIGS. 1A-1C. The
example process of FIG. 7 begins at block 702 at which the
example network fabric configurator 402 (FIG. 4) assigns
the non-critical applications 154 to the first and second
network fabrics 144, 146. For example, the network fabric
configurator 402 configures the VDS 116 (FIG. 1A) to
assign the non-critical applications 154 to the first and

US 2019/0230043 Al

second network fabrics 144, 146. The example load balanc-
ing detector 404 (FIG. 4) determines whether a multi-fabric
load balancing event has been detected (block 704). In the
illustrated example, the load balancing detector 404 may
detect a multi-fabric load balancing event when such an
event is generated by the prober 406 based on a received
probe response indicative of current or imminent high
bandwidth usage corresponding to the critical application
156. Additionally or alternatively, the load balancing detec-
tor 404 may detect a multi-fabric load balancing event when
such an event is generated by the API 408 of FIG. 4 when
an API call is received by the API 408 indicative of a request
for exclusive network fabric use by the critical application
156. When the load balancing detector 404 determines at
block 704 that a multi-fabric load balancing event has not
been detected, control advances to block 716. When the load
balancing detector 404 determines at block 704 that a
multi-fabric load balancing event has been detected, the
network fabric configurator 402 sets the example timer 410
(FIG. 4) (block 706). For example, the network fabric
configurator 402 sets the timer 410 by loading a duration
value from the variable “interval_in_seconds” received by
the prober 406 in a probe response and/or received by the
API 408 in an API call from the critical application 156.

[0076] The example network fabric configurator 402 reas-
signs the first network fabric 144 to ones of the non-critical
applications 154 previously assigned to the second network
fabric 146 (block 708). For example, the network fabric
configurator 402 configures the VDS 116 to assign the first
network fabric 144 to the non-critical applications 154. The
example network fabric configurator 402 also assigns the
second network fabric 146 to the critical application 156
(block 710). For example, the network fabric configurator
402 configures the VDS 116 to assign the second network
fabric 146 to the critical application 156. In the illustrated
example, the network fabric configurator 402 performs the
operations of block 708 and 710 in response to the load
balancing detector 404 detecting to reassign the first and
second network fabrics 144, 146. In this manner, the critical
application 156 is provided with exclusive use of the second
network fabric 146 to service its high-bandwidth network
usage needs.

[0077] The example network fabric configurator 402
determines whether the timer 410 has expired (block 712).
For example, the network fabric configurator 402 may poll
the timer or check for a “timer expiration’ event generated by
the timer 410. When the network fabric configurator 402
determines at block 712 that the timer 410 has expired, the
network fabric configurator 402 assigns the first and second
network fabrics 144, 146 to the non-critical applications 154
(block 714). For example, the network fabric configurator
402 configures the VDS 116 to assign the first and second
network fabrics 144, 146 to the non-critical applications 154
such that the non-critical applications 154 are assigned
across both of the first and second network fabrics 144, 146
without either of the first and second network fabrics 144,
146 being reserved for exclusive use by any application. At
block 716, the load balancing detector 404 determines
whether it should continue to monitor for multi-fabric load
balancing events. If the load balancing detector 404 is to
continue monitoring for multi-fabric load balancing events,
control returns to block 704. Otherwise, the example process
of FIG. 7 ends.

Jul. 25,2019

[0078] FIG. 8 is an example network fabric migration state
machine 800 representative of different states of the VDS
116 of FIG. 1C that may be configured by the fabric
assignment manager 152 of FIGS. 1A-1C, 3, and 4 to
perform dynamic multi-fabric load balancing. The states of
the example network fabric migration state machine 800 are
representative of different logic circuit configurations of the
example fabric assignment manager 152 and/or the VDS 116
to perform dynamic multi-fabric load balancing using the
first and second network fabrics 144, 146 (FIGS. 1A-1C).
The example ‘network fabric migration state machine 800
includes an example ‘critical event monitoring’ state 802, an
example ‘non-critical application migrated to first network
fabric’ state 804, an example “critical application migrated to
second network fabric’ state 806, and an example ‘all
applications allowed to use both network fabrics state 808.
In the example “critical event monitoring’ state 802, the load
balancing detector 404 (FIG. 4) awaits detection of a multi-
fabric load balancing event. For example, the multi-fabric
load balancing event may be generated by the API 408 (FIG.
4) based on an example API request 812 sent by a critical
application 156 (FIG. 1C) requesting exclusive network
fabric use. Additionally or alternatively, the multi-fabric
load balancing event may be generated with telematics 814
using the prober 406 (FIG. 4). For example, the prober 406
may receive a probe response sent by a telematics agent
502a-c (FIG. 5) indicative of current or imminent high
bandwidth usage corresponding to the critical application
156.

[0079] When a multi-fabric load balancing event is
detected, the example network fabric migration state
machine 800 transitions to the ‘non-critical application
migrated to first network fabric’ state 804 at which the first
network fabric 144 is assigned to all of the non-critical
applications 154. For example, the network fabric configu-
rator 402 (FIG. 4) assigns the first network fabric 144 to ones
of the non-critical applications 154 previously assigned to
the second network fabric 146. When the second network
fabric 146 is freed, it is available for the critical application
156, and the example network fabric migration state
machine 800 transitions to the ‘critical application migrated
to second network fabric’ state 806 at which the second
network fabric 146 is assigned exclusively to the critical
application 156. After a critical interval is over (e.g., a
duration identified in the variable “interval_in_seconds” has
expired), the example network fabric migration state
machine 800 transitions to the ‘all applications allowed to
use both network fabrics state 808 at which the first and
second network fabrics 144, 146 are again available to be
assigned to any non-critical application 154 without either of
the first and second network fabrics 144, 146 being exclu-
sively reserved for use by any single application. The
example network fabric migration state machine 800 then
transitions back to the ‘critical event monitoring’ state 802.

[0080] FIG. 9 is a block diagram of an example processor
platform 900 structured to execute the instructions of FIGS.
6 and 7 and/or to implement the logic circuit configurations
represented by the example network fabric migration state
machine 800 of FIG. 8 to implement the fabric assignment
manager 152 of FIGS. 1A-1C, 3, and 4. The processor
platform 900 can be, for example, a server, a personal
computer, a workstation, a self-learning machine (e.g., a
neural network), an Internet appliance, or any other type of
computing device.

US 2019/0230043 Al

[0081] The processor platform 900 of the illustrated
example includes a processor 912. The processor 912 of the
illustrated example is hardware. For example, the processor
912 can be implemented by one or more integrated circuits,
logic circuits, microprocessors, GPUs, DSPs, or controllers
from any desired family or manufacturer. The hardware
processor may be a semiconductor based (e.g., silicon
based) device. In this example, the processor 912 imple-
ments the network fabric configurator 402, the load balanc-
ing detector 404, the prober 406, the API 408, and the timer
410 of FIG. 4.

[0082] The processor 912 of the illustrated example
includes a local memory 913 (e.g., a cache). The processor
912 of the illustrated example is in communication with a
main memory including a volatile memory 914 and a
non-volatile memory 916 via a bus 918. The volatile
memory 914 may be implemented by Synchronous
Dynamic Random Access Memory (SDRAM), Dynamic
Random Access Memory (DRAM), RAMBUS® Dynamic
Random Access Memory (RDRAM®) and/or any other type
of random access memory device. The non-volatile memory
916 may be implemented by flash memory and/or any other
desired type of memory device. Access to the main memory
914, 916 is controlled by a memory controller.

[0083] The processor platform 900 of the illustrated
example also includes an interface circuit 920. The interface
circuit 920 may be implemented by any type of interface
standard, such as an Ethernet interface, a universal serial bus
(USB), a Bluetooth® interface, a near field communication
(NFC) interface, and/or a PCI express interface.

[0084] In the illustrated example, one or more input
devices 922 are connected to the interface circuit 920. The
input device(s) 922 permit(s) a user to enter data and/or
commands into the processor 912. The input device(s) can
be implemented by, for example, an audio sensor, a micro-
phone, a camera (still or video), a keyboard, a button, a
mouse, a touchscreen, a track-pad, a trackball, isopoint
and/or a voice recognition system.

[0085] One or more output devices 924 are also connected
to the interface circuit 920 of the illustrated example. The
output devices 924 can be implemented, for example, by
display devices (e.g., a light emitting diode (LED), an
organic light emitting diode (OLED), a liquid crystal display
(LCD), a cathode ray tube display (CRT), an in-place
switching (IPS) display, a touchscreen, etc.), a tactile output
device, a printer and/or speaker. The interface circuit 920 of
the illustrated example, thus, typically includes a graphics
driver card, a graphics driver chip and/or a graphics driver
processor.

[0086] The interface circuit 920 of the illustrated example
also includes a communication device such as a transmitter,
a receiver, a transceiver, a modem, a residential gateway, a
wireless access point, and/or a network interface to facilitate
exchange of data with external machines (e.g., computing
devices of any kind) via a network 926. The communication
can be via, for example, an Ethernet connection, a digital
subscriber line (DSL) connection, a telephone line connec-
tion, a coaxial cable system, a satellite system, a line-of-site
wireless system, a cellular telephone system, etc.

[0087] The processor platform 900 of the illustrated
example also includes one or more mass storage devices 928
for storing software and/or data. Examples of such mass
storage devices 928 include floppy disk drives, hard drive

Jul. 25,2019

disks, compact disk drives, Blu-ray disk drives, redundant
array of independent disks (RAID) systems, and digital
versatile disk (DVD) drives.

[0088] Example machine executable instructions 932 rep-
resentative of the machine-readable instructions of FIGS. 6
and 7 may be stored in the mass storage device 928, in the
volatile memory 914, in the non-volatile memory 916,
and/or on a removable non-transitory computer readable
storage medium such as a CD or DVD.

[0089] From the foregoing, it will be appreciated that
example methods, apparatus and articles of manufacture
have been disclosed to perform dynamic multi-fabric load
balancing to increase availability and throughput of network
resources for critical applications in need of high-bandwidth
usage. Examples disclosed herein enable more efficient use
of multi-fabric environments by allowing all applications
running on a host to use any network fabric without reserv-
ing any one of the network fabrics for use by a critical
application when such a critical application does not exist.
In this manner, instead of having a network fabric on
continuous reserve and allowing it to sit idly when it is not
needed by a critical application, all network fabrics are used
by non-critical applications. Only when a critical application
having a high-bandwidth usage need is detected, do
examples disclosed herein release a network fabric from
non-critical applications to accommodate an exclusive use
of the freed network fabric by the critical application. This
decreases the costs associated with configuring physical rack
systems by not needing to provide additional switches to
accommodate reserving permanent network fabrics for
exclusive use of critical applications. In addition, examples
disclosed herein increase the available bandwidth for use by
non-critical applications by allowing all network fabrics to
be assignable to any non-critical application when a critical
application does not exist. By load balancing non-critical
applications across all available network fabrics, network
throughput performance for those non-critical applications
can be improved when critical applications do not exist.
[0090] Although certain example methods, apparatus and
articles of manufacture have been disclosed herein, the
scope of coverage of this patent is not limited thereto. On the
contrary, this patent covers all methods, apparatus and
articles of manufacture fairly falling within the scope of the
claims of this patent.

1. An apparatus to manage network resources, the appa-
ratus comprising:

a load balancing detector to determine to reassign first and

second network fabrics; and

a network fabric configurator to, in response to the

detecting to reassign the first and second network

fabrics, configuring a virtual network distributed switch

to:

assign the first network fabric to ones of first applica-
tions previously assigned to the second network
fabric; and

assign the second network fabric to a second applica-
tion.

2. The apparatus as defined in claim 1, wherein the load
balancing detector is to determine to reassign the first and
second network fabrics based on a multi-fabric load balanc-
ing event indicative of high-bandwidth usage corresponding
to the second application.

3. The apparatus as defined in claim 1, further including
an application programming interface to receive a request

US 2019/0230043 Al

for exclusive network fabric use, the load balancing detector
to determine to reassign the first and second network fabrics
based on the request received by the application program-
ming interface.

4. The apparatus as defined in claim 3, wherein the request
is indicative of a time limit for the exclusive network fabric
use, the network fabric configurator further to assign at least
some of the first applications to the second network fabric
after the time limit expires.

5. The apparatus as defined in claim 1, further including
a prober to receive a probe response indicative of high-
bandwidth usage corresponding to the second application,
the load balancing detector to determine to reassign the first
and second network fabrics based on the high-bandwidth
usage of the second application.

6. The apparatus as defined in claim 1, wherein the
network fabric configurator is further to assign at least some
of the first applications to the second network fabric when
the second application is finished using the second network
fabric.

7. The apparatus as defined in claim 1, wherein the first
applications are to communicate via the first network fabric
using a first link aggregation group, and the second appli-
cation is to communicate via the second network fabric
using a second link aggregation group.

8. An apparatus to manage network resources, the appa-
ratus comprising:

means for determining to reassign first and second net-

work fabrics; and

means for configuring network fabric assignments in

response to the detecting to reassign the first and

second network fabrics by:

assigning the first network fabric to ones of first appli-
cations previously assigned to the second network
fabric; and

assigning the second network fabric to a second appli-
cation.

9. The apparatus as defined in claim 8, wherein the means
for determining to reassign is to determine to reassign the
first and second network fabrics based on a multi-fabric load
balancing event indicative of high-bandwidth usage corre-
sponding to the second application.

10. The apparatus as defined in claim 8, further including
means for receiving an application programming interface
call requesting exclusive network fabric use, the means for
determining to reassign to determine to reassign the first and
second network fabrics based on the application program-
ming interface call.

11. The apparatus as defined in claim 10, wherein the
application programming interface call is indicative of a
time limit for the exclusive network fabric use, the means for
configuring network fabric assignments further to assign at
least some of the first applications to the second network
fabric after the time limit expires.

12. The apparatus as defined in claim 8, further including
means for probing to receive a probe response indicative of
high-bandwidth usage corresponding to the second applica-
tion, the means for determining to reassign to determine to
reassign the first and second network fabrics based on the
high-bandwidth usage of the second application.

13. The apparatus as defined in claim 8, wherein the
means for configuring network fabric assignments is further

Jul. 25,2019

to assign at least some of the first applications to the second
network fabric when the second application is finished using
the second network fabric.

14. The apparatus as defined in claim 8, wherein the first
applications are to communicate via the first network fabric
using a first link aggregation group, and the second appli-
cation is to communicate via the second network fabric
using a second link aggregation group.

15. A non-transitory computer readable storage medium
comprising instructions that, when executed, cause at least
one processor to:

determine to reassign first and second network fabrics;

and

in response to the detecting to reassign the first and second

network fabrics, configure a virtual network distributed

switch to:

assign the first network fabric to ones of first applica-
tions previously assigned to the second network
fabric; and

assign the second network fabric to a second applica-
tion.

16. The non-transitory computer readable storage medium
as defined in claim 15, wherein the instructions are to cause
the at least one processor to determine to reassign the first
and second network fabrics based on a multi-fabric load
balancing event indicative of high-bandwidth usage corre-
sponding to the second application.

17. The non-transitory computer readable storage medium
as defined in claim 15, wherein the instructions are further
to cause the at least one processor to receive an application
programming interface call requesting exclusive network
fabric use, and to determine to reassign the first and second
network fabrics based on the application programming inter-
face call.

18. The non-transitory computer readable storage medium
as defined in claim 17, wherein the application programming
interface call is indicative of a time limit for the exclusive
network fabric use, and the instructions are to cause the at
least one processor to assign at least some of the first
applications to the second network fabric after the time limit
expires.

19. The non-transitory computer readable storage medium
as defined in claim 15, wherein the instructions are further
to cause the at least one processor to receive a probe
response indicative of high-bandwidth usage corresponding
to the second application, and to determine to reassign the
first and second network fabrics based on the high-band-
width usage of the second application.

20. The non-transitory computer readable storage medium
as defined in claim 15, wherein the instructions are further
to cause the at least one processor to assign at least some of
the first applications to the second network fabric when the
second application is finished using the second network
fabric.

21. The non-transitory computer readable storage medium
as defined in claim 15, wherein the first applications are to
communicate via the first network fabric using a first link
aggregation group, and the second application is to commu-
nicate via the second network fabric using a second link
aggregation group.

22-28. (canceled)

