US 20190230127A1

a2y Patent Application Publication o) Pub. No.: US 2019/0230127 A1

a9y United States

Gandham et al.

43) Pub. Date: Jul. 25, 2019

(54) SECURE PUBLISHING FOR POLICY
UPDATES

(71) Applicant: Cisco Technology, Inc., San Jose, CA
(US)

(72) Inventors: Shashi Gandham, Fremont, CA (US);
Navindra Yadav, Cupertino, CA (US);
Janardhanan Radhakrishnan, Dublin,
CA (US); Hoang-Nam Nguyen, San
Jose, CA (US); Umesh Paul Mahindra,
Cupertino, CA (US); Sunil Gupta,
Milpitas, CA (US); Praneeth Vallem,
San Jose, CA (US); Supreeth Rao,
Cupertino, CA (US); Darshan Shrinath
Purandare, Fremont, CA (US); Xuan
Zou, Sunnyvale, CA (US); Girish
Anant Kalele, Monte Sereno, CA (US);
Jothi Prakash Prabakaran, Fremont,
CA (US)

(21) Appl. No.: 16/032,765

(22) Filed: Jul. 11, 2018

Related U.S. Application Data
(60) Provisional application No. 62/621,900, filed on Jan.

Publication Classification

(51) Int. CL
HO4L 29/06 (2006.01)
HO4L 12/24 (2006.01)
(52) US.CL
CPC oo HO4L 63/20 (2013.01); HO4L 67/10

(2013.01); HO4L 41/0806 (2013.01); HO4L
63/0823 (2013.01)

(57) ABSTRACT

Aspects of the disclosed technology relate to ways to
authenticate customer/subscriber access to a policy update
stream. A process of the technology can include steps for
instantiating a network monitoring device in response to a
request, the request comprising one or more configuration
parameters for the network monitoring device, and receiving
a first certificate from the network monitoring device,
wherein the first certificate is based on the one or more
configuration parameters. In some aspects, the steps can
further include sending the first certificate to a processing
pipeline for authentication, wherein the processing pipeline
is configured to authenticate the first certificate based on a
second certificate received by the processing pipeline from
the network monitoring device. Systems and machine read-

25, 2018. able media are also provided.
Configuration
Manager 100
102
nalytics Engine
T Analytics Engi
110
VM
or Container Data Lake Engines
120 130 150
Hypervisor F’Ilg;v F1|g;v APl or CLI
or Server —= —< 160
ﬁ Host Attack SIEM
134 154 162
ASIC Data Mover|) N
124 108 Process DDoS Web
136 155 164
PCAP Policy Search Presentation
126 138 156 112
Sensors Policy
M | ﬁ
Out of Band Pﬁ:\)ﬂ ||
Data —
114
Third Party Network
Data Controller
116 118

Patent Application Publication Jul. 25,2019 Sheet 1 of 10 US 2019/0230127 A1

Configuration
Manager 100
102
‘ Analytics Engine
110
VM
or Container Data Lake Engines
120 130 150
. Flow Flow APlorCL|
Hypervisor
o}:'pServer 132 152 160
J-ZZ Host Attack SIEM
ASIC Data Mover| R 134 . 164 L, 162
124 108 " Process DDoS Web
136 155 164
PCAP Policy Search Presentation
126 138 156 112
391"5':'3 Policy
— 158
A 4
Out of Band ﬁ%" o
Data i
14
Third Party Network
Data Controller

Patent Application Publication Jul. 25,2019 Sheet 2 of 10 US 2019/0230127 A1

222

9. | DA ..
212a 212b 212¢] 212d 212e
Eie it i il
@ S S S S | 220a
=% = “‘\,

208 = —
a
2200 _{ ayer 2 Network @ @
aeig | 2080\ 204
Acll 216
S 2200 58| 208d

®

| b = E 208e
218 VM s
22047 %S :-@ — @ T Ig. 2

=9

Patent Application Publication Jul. 25,2019 Sheet 3 of 10 US 2019/0230127 A1

300

N o ! ;) f'\ { /
s ai);;zm foput E’ea’:ia!{ }E;{ Pre-Peocessing | L] pmiiitg i ihf Output f \1
| oA s ‘ so |1 ¥]
‘x U e X L

FIG. 3

Patent Application Publication Jul. 25,2019 Sheet 4 of 10 US 2019/0230127 A1

Hstwork Trullie Strean Processing
Manitodng Bystam “Bervios SBubscribisy
410 420 430
Analytics Bngine. o Snapshal Steam { | | _ Stroam Reader
Rty ’k 455 }‘ i i 435
' J

FIG. 4

Patent Application Publication

Jul. 25,2019 Sheet 5 of 10 US 2019/0230127 Al

508

v ot S e efvark m&w&z

W= o

Patent Application Publication Jul. 25,2019 Sheet 6 of 10 US 2019/0230127 A1

L B0s

W @

fenit s difersnce Betenen the Srel! notvor soapshot snd|
, ./ B18
the second selvork ssapshot o R

yalsm g*’mﬁﬁﬁ

Sy

FIG. 6

Patent Application Publication Jul. 25,2019 Sheet 7 of 10 US 2019/0230127 A1

« 100
Vendor
105
e : n /| Processing Pipeline |/
Vendor — Tet{auon H g Fip 8 B
n . I/ Certificate 107
/. Ceriicate / A —
i
: Policy /
Tetration S — / Updage /
Backend /- Policy !
s /. Update
e /" Customer /
s o
s /__ Certficate /
,’ Configuration Parameters
‘\
\
\\
/" Customer /| Customer Upload
--------- Certficate /| 701 Policy Stream (download)-—————————-

FIG. 7

Patent Application Publication Jul. 25,2019 Sheet 8 of 10 US 2019/0230127 A1

800
(__START) 2

INSTANTIATE A NETWORK MONITORING DEVICE IN RESPONSE TO A
REQUEST, THE REQUEST COMPRISING ONE OR MORE PARAMETERS
FOR THE NETWORK MONITORING DEVICE
(802)

RECEIVE A FIRST CERTIFICATE FROM THE NETWORK MONITORING
DEVICE, WHEREIN THE FIRST CERTIFICATE IS BASED ON THE ONE OR
MORE CONFIGURATION PARAMETERS

|
| SENDING THE FIRST CERTIFICATE TO A PROCESSING PIPELINE FOR ;
! AUTHENTICATION, WHEREIN THE PROCESSING PIPELINE IS !
| CONFIGURED TO AUTHENTICATE THE FIRST CERTIFICATE BASED ON |
| A'SECOND CERTIFICATE RECEIVED BY THE PROCESSING PIPELINE }
| (806) 3

RECEIVE ONE OR MORE POLICY UPDATES FROM A POLICY STREAM
PROVIDED BY THE PROCESSING PIPELINE IF THE PIPELINE
SUCCESSFULLY AUTHENTICATES THE FIRST CERTIFICATE

——— o d

Patent Application Publication Jul. 25,2019 Sheet 9 of 10 US 2019/0230127 A1

INTERFACES
968
CPU 962
MEMORY
961
PROCESSOR
963
915

FIG. 9

Patent Application Publication Jul. 25,2019 Sheet 10 of 10 US 2019/0230127 A1l

030
Storage
Device
1000~ L 1032
MOD 1
1025 1034
- Input (1015 rl 020] MOD 2
1045 Device . 1036
Memory ROM RAM MOD 3
Output
Device
1035 ’] Connection
Communication 1005
Interface
cache » Processor
1040
1012 1010

FIG. 10

US 2019/0230127 Al

SECURE PUBLISHING FOR POLICY
UPDATES

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims priority to U.S. Provisional
Application 62/621,900, filed on Jan. 25, 2018, entitled
“SECURE PUBLISHING OF NETWORK POLICIES,” the
content of which is incorporated herein by reference in its
entirety.

TECHNICAL FIELD

[0002] The subject matter of this disclosure relates in
general to the field of computer networks, and more spe-
cifically to efficiently transferring large amounts of data
generated by systems managing a network.

BACKGROUND

[0003] An enterprise application is a set of workloads
(e.g., computing, networking, and storage) that are generally
distributed across various nodes (or endpoints) of a network
and the relationships (e.g., connectivity, dependencies, net-
work and security policies, etc.) between the workloads. A
typical application may include a presentation tier, an appli-
cation tier, and a data tier. The presentation tier may depend
on the application tier and authentication services, and the
application tier may depend on the web tier and external
network services (e.g., a travel reservation system, an order-
ing tool, a billing tool, etc.). These tiers may further depend
on firewall, load balancing, wide area network (WAN)
acceleration, and other network services. An enterprise can
include hundreds or thousands of applications of similar and
different architectures.

[0004] An expansive or thorough understanding of a data
center and applications running in the data center can be
critical for network management tasks such as anomaly
detection (e.g., network attacks and misconfiguration), asset
management (e.g., monitoring, capacity planning, consoli-
dation, migration, and continuity planning), and compliance
(e.g. conformance with governmental regulations, industry
standards, and corporate policies). Despite the complexities
of the interrelationships among workloads discussed above,
the many approaches for developing insight into an enter-
prise’s workloads require comprehensive knowledge on the
part of human operators and processes that are manual and
largely customized for a particular enterprise.

BRIEF DESCRIPTION OF THE FIGURES

[0005] In order to describe the manner in which the
above-recited and other advantages and features of the
disclosure can be obtained, a more particular description of
the principles briefly described above will be rendered by
reference to specific embodiments that are illustrated in the
appended drawings. Understanding that these drawings
depict only embodiments of the disclosure and are not
therefore to be considered to be limiting of its scope, the
principles herein are described and explained with additional
specificity and detail through the use of the accompanying
drawings in which:

[0006] FIG. 1 illustrates an example of a network traffic
monitoring system, in accordance with an embodiment;
[0007] FIG. 2 illustrates an example of a network envi-
ronment, in accordance with an embodiment;

Jul. 25,2019

[0008] FIG. 3 illustrates an example of a data pipeline for
generating network insights based on collected network
information, in accordance with an embodiment;

[0009] FIG. 4 illustrates an example of a network traffic
monitoring system providing network snapshots to subscrib-
ers, in accordance with an embodiment;

[0010] FIG. 5 illustrates an example of a process for
compiling a network snapshot, in accordance with an
embodiment;

[0011] FIG. 6 illustrates an example of a process for
identifying a difference between network snapshots, in
accordance with an embodiment;

[0012] FIG. 7 illustrates an example architecture for
implementing a secure policy update publishing stream,
according to some aspects of the technology;

[0013] FIG. 8 illustrates an example process for authen-
ticating customer access to a secure policy stream, for
receiving network policy updates, according to some aspects
of the technology;

[0014] FIG. 9 illustrates an example of a processor based
networking device that can be used for implementing some
aspects of the disclosed technology; and

[0015] FIG. 10 illustrates an example processing device
that may be used to implement some aspects of the tech-
nology.

DETAILED DESCRIPTION

[0016] The detailed description set forth below is intended
as a description of various configurations of embodiments
and is not intended to represent the only configurations in
which the subject matter of this disclosure can be practiced.
The appended drawings are incorporated herein and consti-
tute a part of the detailed description. The detailed descrip-
tion includes specific details for the purpose of providing a
more thorough understanding of the subject matter of this
disclosure. However, it will be clear and apparent that the
subject matter of this disclosure is not limited to the specific
details set forth herein and may be practiced without these
details. In some instances, structures and components are
shown in block diagram form in order to avoid obscuring the
concepts of the subject matter of this disclosure.

[0017] Overview:

[0018] Aspects of the disclosed technology relate to ways
to authenticate customer/subscriber access to a policy update
stream. A process of the technology can include steps for
instantiating a network monitoring device in response to a
request, the request comprising one or more configuration
parameters for the network monitoring device, and receiving
a first certificate from the network monitoring device,
wherein the first certificate is based on the one or more
configuration parameters. In some aspects, the steps can
further include sending the first certificate to a processing
pipeline for authentication, wherein the processing pipeline
is configured to authenticate the first certificate based on a
second certificate received by the processing pipeline from
the network monitoring device. Systems and machine read-
able media are also provided.

[0019] In some implementations, a process implementing
the disclosed technology could include additional steps for
receiving one or more policy updates from a policy stream
provided by the processing pipeline if the processing pipe-
line successfully authenticates the first certificate, decrypt-
ing the one or more policy updates received from the policy

US 2019/0230127 Al

stream, and implementing at least one change indicated by
the one or more policy updates to an associated customer
network.

DESCRIPTION

[0020] Various embodiments of the disclosure are dis-
cussed in detail below. While specific implementations are
discussed, it should be understood that this is done for
illustrative purposes only. A person skilled in the relevant art
will recognize that other components and configurations
may be used without departing from the spirit and scope of
the disclosure.

[0021] Sensors deployed in a network can be used to
gather network information related to network traffic of
nodes operating in the network and process information for
nodes and applications running in the network. Gathered
network information can be analyzed to provide insights into
the operation of the nodes in the network, otherwise referred
to as analytics. In particular, discovered application or
inventories, application dependencies, policies, efficiencies,
resource and bandwidth usage, and network flows can be
determined for the network using the network traffic data.
For example, an analytics engine can be configured to
automate discovery of applications running in the network,
map the applications’ interdependencies, or generate a set of
proposed network policies for implementation. For example,
new network policies may be created and published, e.g., via
a secure policy stream, for properly authenticated users, e.g.,
customers or “subscribers.”

[0022] However, one problem in providing network policy
updates is to ensure that network intents can only be read
and processed by authorized customers and third-party ven-
dor applications. Securing network policy updates is espe-
cially important for preventing attackers from modifying/
overwriting intents in order to create backdoors, for
example, by opening ports that can be used to launch
cyber-attacks.

[0023] One limitation of conventional network policy
update processes is that the updates are un-encrypted and/or
that the credentials used to authenticate the receiving party
only rely on a single authentication certificate. These weak
security protocols jeopardize the policy update process of
conventional networks by leaving them open to potential
man-in-the-middle attacks. For example, a nefarious user
may only need to find the correct channel on which unen-
crypted policy updates are provided to compromise the
network. Alternatively, by compromising a single system
(e.g., the network management cluster, or vendor certifi-
cate), policy updates may be compromised in systems using
single-certificate authentication procedures.

[0024] Aspects of the disclosed technology address the
foregoing problems of policy security by ensuring authori-
zation of policy subscriber (customer) and third-party ven-
dor applications using a Tetration inventory manager to
identify network appliances based on their addresses or
corresponding proxy server. In some aspects, authorization
requires permitted systems to be known by the Tetration
inventory manager, for example, using an automatic (or
manual) registration mechanism.

[0025] In some implementations, the publisher (e.g., Tet-
ration cluster) can create a secure message queuing channel
that is configured such that only permitted applications/
customers with validated client certificates to access the
channel to receive policy updates. In some implementations,

Jul. 25,2019

the publisher can issue a customer/subscriber certificate
upon creation/instantiation of the monitoring cluster (pub-
lisher). Additionally the publisher, can independently pro-
vide a corresponding certificate to the secure message queu-
ing channel (e.g., Kafka), that can be used to validate the
customer certificate. As an added layer of security, policy
updates can encrypted before being pushed through the
queuing channel

[0026] Referring now to the drawings, FIG. 1 is an illus-
tration of a network traffic monitoring system 100 in accor-
dance with an embodiment. The network traffic monitoring
system 100 can include a configuration manager 102, sen-
sors 104, a collector module 106, a data mover module 108,
an analytics engine 110, and a presentation module 112. In
FIG. 1, the analytics engine 110 is also shown in commu-
nication with out-of-band data sources 114, third party data
sources 116, and a network controller 118.

[0027] The configuration manager 102 can be used to
provision and maintain the sensors 104, including installing
sensor software or firmware in various nodes of a network,
configuring the sensors 104, updating the sensor software or
firmware, among other sensor management tasks. For
example, the sensors 104 can be implemented as virtual
partition images (e.g., virtual machine (VM) images or
container images), and the configuration manager 102 can
distribute the images to host machines. In general, a virtual
partition may be an instance of a VM, container, sandbox, or
other isolated software environment. The software environ-
ment may include an operating system and application
software. For software running within a virtual partition, the
virtual partition may appear to be, for example, one of many
servers or one of many operating systems executed on a
single physical server. The configuration manager 102 can
instantiate a new virtual partition or migrate an existing
partition to a different physical server. The configuration
manager 102 can also be used to configure the new or
migrated sensor.

[0028] The configuration manager 102 can monitor the
health of the sensors 104. For example, the configuration
manager 102 may request for status updates and/or receive
heartbeat messages, initiate performance tests, generate
health checks, and perform other health monitoring tasks. In
some embodiments, the configuration manager 102 can also
authenticate the sensors 104. For instance, the sensors 104
can be assigned a unique identifier, such as by using a
one-way hash function of a sensor’s basic input/out system
(BIOS) universally unique identifier (UUID) and a secret
key stored by the configuration image manager 102. The
UUID can be a large number that may be difficult for a
malicious sensor or other device or component to guess. In
some embodiments, the configuration manager 102 can keep
the sensors 104 up to date by installing the latest versions of
sensor software and/or applying patches. The configuration
manager 102 can obtain these updates automatically from a
local source or the Internet.

[0029] The sensors 104 can reside on various nodes of a
network, such as a virtual partition (e.g., VM or container)
120; a hypervisor or shared kernel managing one or more
virtual partitions and/or physical servers 122, an application-
specific integrated circuit (ASIC) 124 of a switch, router,
gateway, or other networking device, or a packet capture
(pcap) 126 appliance (e.g., a standalone packet monitor, a
device connected to a network devices monitoring port, a
device connected in series along a main trunk of a datacen-

US 2019/0230127 Al

ter, or similar device), or other element of a network. The
sensors 104 can monitor network traffic between nodes, and
send network traffic data and corresponding data (e.g., host
data, process data, user data, etc.) to the collectors 106 for
storage. For example, the sensors 104 can sniff packets being
sent over its hosts’ physical or virtual network interface card
(NIC), or individual processes can be configured to report
network traffic and corresponding data to the sensors 104.
Incorporating the sensors 104 on multiple nodes and within
multiple partitions of some nodes of the network can provide
for robust capture of network traffic and corresponding data
from each hop of data transmission. In some embodiments,
each node of the network (e.g., VM, container, or other
virtual partition (e.g., container) 120, hypervisor, shared
kernel, or physical server 122, ASIC 124, pcap 126, etc.)
includes a respective sensor 104. However, it should be
understood that various software and hardware configura-
tions can be used to implement the sensor network 104.
[0030] As the sensors 104 capture communications and
corresponding data, they may continuously send network
traffic data to the collectors 106. The network traffic data can
include metadata relating to a packet, a collection of packets,
a flow, a bidirectional flow, a group of flows, a session, or a
network communication of another granularity. That is, the
network traffic data can generally include any information
describing communication on all layers of the Open Systems
Interconnection (OSI) model. For example, the network
traffic data can include source/destination MAC address,
source/destination IP address, protocol, port number, etc. In
some embodiments, the network traffic data can also include
summaries of network activity or other network statistics
such as number of packets, number of bytes, number of
flows, bandwidth usage, response time, latency, packet loss,
jitter, and other network statistics.

[0031] The sensors 104 can also determine additional data
for each session, bidirectional flow, flow, packet, or other
more granular or less granular network communication. The
additional data can include host and/or endpoint informa-
tion, virtual partition information, sensor information, pro-
cess information, user information, tenant information,
application information, network topology, application
dependency mapping, cluster information, or other informa-
tion corresponding to each flow.

[0032] Insomeembodiments, the sensors 104 can perform
some preprocessing of the network traffic and corresponding
data before sending the data to the collectors 106. For
example, the sensors 104 can remove extraneous or dupli-
cative data or they can create summaries of the data (e.g.,
latency, number of packets per flow, number of bytes per
flow, number of flows, etc.). In some embodiments, the
sensors 104 can be configured to only capture certain types
of network information and disregard the rest. In some
embodiments, the sensors 104 can be configured to capture
only a representative sample of packets (e.g., every 1,000th
packet or other suitable sample rate) and corresponding data.
[0033] Since the sensors 104 may be located throughout
the network, network traffic and corresponding data can be
collected from multiple vantage points or multiple perspec-
tives in the network to provide a more comprehensive view
of network behavior. The capture of network traffic and
corresponding data from multiple perspectives rather than
just at a single sensor located in the data path or in
communication with a component in the data path, allows
the data to be correlated from the various data sources,

Jul. 25,2019

which may be used as additional data points by the analytics
engine 110. Further, collecting network traffic and corre-
sponding data from multiple points of view ensures more
accurate data is captured. For example, other types of sensor
networks may be limited to sensors running on external-
facing network devices (e.g., routers, switches, network
appliances, etc.) such that east-west traffic, including VM-
to-VM or container-to-container traffic on a same host, may
not be monitored. In addition, packets that are dropped
before traversing a network device or packets containing
errors may not be accurately monitored by other types of
sensor networks. The sensor network 104 of various
embodiments substantially mitigates or eliminates these
issues altogether by locating sensors at multiple points of
potential failure. Moreover, the network traffic monitoring
system 100 can verify multiple instances of data for a flow
(e.g., source endpoint flow data, network device flow data,
and endpoint flow data) against one another.

[0034] In some embodiments, the network traffic moni-
toring system 100 can assess a degree of accuracy of flow
data sets from multiple sensors and utilize a flow data set
from a single sensor determined to be the most accurate
and/or complete. The degree of accuracy can be based on
factors such as network topology (e.g., a sensor closer to the
source may be more likely to be more accurate than a sensor
closer to the destination), a state of a sensor or a node
hosting the sensor (e.g., a compromised sensor/node may
have less accurate flow data than an uncompromised sensor/
node), or flow data volume (e.g., a sensor capturing a greater
number of packets for a flow may be more accurate than a
sensor capturing a smaller number of packets).

[0035] In some embodiments, the network traffic moni-
toring system 100 can assemble the most accurate flow data
set and corresponding data from multiple sensors. For
instance, a first sensor along a data path may capture data for
a first packet of a flow but may be missing data for a second
packet of the flow while the situation is reversed for a second
sensor along the data path. The network traffic monitoring
system 100 can assemble data for the flow from the first
packet captured by the first sensor and the second packet
captured by the second sensor.

[0036] As discussed, the sensors 104 can send network
traffic and corresponding data to the collectors 106. In some
embodiments, each sensor can be assigned to a primary
collector and a secondary collector as part of a high avail-
ability scheme. If the primary collector fails or communi-
cations between the sensor and the primary collector are not
otherwise possible, a sensor can send its network traffic and
corresponding data to the secondary collector. In other
embodiments, the sensors 104 are not assigned specific
collectors but the network traffic monitoring system 100 can
determine an optimal collector for receiving the network
traffic and corresponding data through a discovery process.
In such embodiments, a sensor can change where it sends it
network traffic and corresponding data if its environments
changes, such as if a default collector fails or if the sensor
is migrated to a new location and it would be optimal for the
sensor to send its data to a different collector. For example,
it may be preferable for the sensor to send its network traffic
and corresponding data on a particular path and/or to a
particular collector based on latency, shortest path, monetary
cost (e.g., using private resources versus a public resources
provided by a public cloud provider), error rate, or some
combination of these factors. In other embodiments, a sensor

US 2019/0230127 Al

can send different types of network traffic and corresponding
data to different collectors. For example, the sensor can send
first network traffic and corresponding data related to one
type of process to one collector and second network traffic
and corresponding data related to another type of process to
another collector.

[0037] The collectors 106 can be any type of storage
medium that can serve as a repository for the network traffic
and corresponding data captured by the sensors 104. In some
embodiments, data storage for the collectors 106 is located
in an in-memory database, such as dashDB from IBM®,
although it should be appreciated that the data storage for the
collectors 106 can be any software and/or hardware capable
of providing rapid random access speeds typically used for
analytics software. In various embodiments, the collectors
106 can utilize solid state drives, disk drives, magnetic tape
drives, or a combination of the foregoing according to cost,
responsiveness, and size requirements. Further, the collec-
tors 106 can utilize various database structures such as a
normalized relational database or a NoSQL database, among
others.

[0038] Insome embodiments, the collectors 106 may only
serve as network storage for the network traffic monitoring
system 100. In such embodiments, the network traffic moni-
toring system 100 can include a data mover module 108 for
retrieving data from the collectors 106 and making the data
available to network clients, such as the components of the
analytics engine 110. In effect, the data mover module 108
can serve as a gateway for presenting network-attached
storage to the network clients. In other embodiments, the
collectors 106 can perform additional functions, such as
organizing, summarizing, and preprocessing data. For
example, the collectors 106 can tabulate how often packets
of certain sizes or types are transmitted from different nodes
of the network. The collectors 106 can also characterize the
traffic flows going to and from various nodes. In some
embodiments, the collectors 106 can match packets based on
sequence numbers, thus identifying traffic flows and con-
nection links. As it may be inefficient to retain all data
indefinitely in certain circumstances, in some embodiments,
the collectors 106 can periodically replace detailed network
traffic data with consolidated summaries. In this manner, the
collectors 106 can retain a complete dataset describing one
period (e.g., the past minute or other suitable period of time),
with a smaller dataset of another period (e.g., the previous
2-10 minutes or other suitable period of time), and progres-
sively consolidate network traffic and corresponding data of
other periods of time (e.g., day, week, month, year, etc.). In
some embodiments, network traffic and corresponding data
for a set of flows identified as normal or routine can be
winnowed at an earlier period of time while a more complete
data set may be retained for a lengthier period of time for
another set of flows identified as anomalous or as an attack.

[0039] Computer networks may be exposed to a variety of
different attacks that expose vulnerabilities of computer
systems in order to compromise their security. Some net-
work traffic may be associated with malicious programs or
devices. The analytics engine 110 may be provided with
examples of network states corresponding to an attack and
network states corresponding to normal operation. The ana-
Iytics engine 110 can then analyze network traffic and
corresponding data to recognize when the network is under
attack. In some embodiments, the network may operate
within a trusted environment for a period of time so that the

Jul. 25,2019

analytics engine 110 can establish a baseline of normal
operation. Since malware is constantly evolving and chang-
ing, machine learning may be used to dynamically update
models for identifying malicious traffic patterns.

[0040] In some embodiments, the analytics engine 110
may be used to identify observations which differ from other
examples in a dataset. For example, if a training set of
example data with known outlier labels exists, supervised
anomaly detection techniques may be used. Supervised
anomaly detection techniques utilize data sets that have been
labeled as normal and abnormal and train a classifier. In a
case in which it is unknown whether examples in the training
data are outliers, unsupervised anomaly techniques may be
used. Unsupervised anomaly detection techniques may be
used to detect anomalies in an unlabeled test data set under
the assumption that the majority of instances in the data set
are normal by looking for instances that seem to fit to the
remainder of the data set.

[0041] The analytics engine 110 can include a data lake
130, an application dependency mapping (ADM) module
140, and elastic processing engines 150. The data lake 130
is a large-scale storage repository that provides massive
storage for various types of data, enormous processing
power, and the ability to handle nearly limitless concurrent
tasks or jobs. In some embodiments, the data lake 130 is
implemented using the Hadoop® Distributed File System
(HDFS™) from Apache® Software Foundation of Forest
Hill, Md. HDFS™ is a highly scalable and distributed file
system that can scale to thousands of cluster nodes, millions
of files, and petabytes of data. HDFS™ is optimized for
batch processing where data locations are exposed to allow
computations to take place where the data resides. HDFS™
provides a single namespace for an entire cluster to allow for
data coherency in a write-once, read-many access model.
That is, clients can only append to existing files in the node.
In HDFS™, files are separated into blocks, which are
typically 64 MB in size and are replicated in multiple data
nodes. Clients access data directly from data nodes.

[0042] In some embodiments, the data mover 108 receives
raw network traffic and corresponding data from the collec-
tors 106 and distributes or pushes the data to the data lake
130. The data lake 130 can also receive and store out-of-
band data 114, such as statuses on power levels, network
availability, server performance, temperature conditions,
cage door positions, and other data from internal sources,
and third party data 116, such as security reports (e.g.,
provided by Cisco® Systems, Inc. of San Jose, Calif., Arbor
Networks® of Burlington, Mass., Symantec® Corp. of
Sunnyvale, Calif., Sophos® Group plc of Abingdon, Eng-
land, Microsoft® Corp. of Seattle, Wash., Verizon® Com-
munications, Inc. of New York, N.Y., among others), geo-
location data, IP watch lists, Whois data, configuration
management database (CMDB) or configuration manage-
ment system (CMS) as a service, and other data from
external sources. In other embodiments, the data lake 130
may instead fetch or pull raw traffic and corresponding data
from the collectors 106 and relevant data from the out-of-
band data sources 114 and the third party data sources 116.
In yet other embodiments, the functionality of the collectors
106, the data mover 108, the out-of-band data sources 114,
the third party data sources 116, and the data lake 130 can
be combined. Various combinations and configurations are
possible as would be known to one of ordinary skill in the
art.

US 2019/0230127 Al

[0043] Each component of the data lake 130 can perform
certain processing of the raw network traffic data and/or
other data (e.g., host data, process data, user data, out-of-
band data or third party data) to transform the raw data to a
form useable by the elastic processing engines 150. In some
embodiments, the data lake 130 can include repositories for
flow attributes 132, host and/or endpoint attributes 134,
process attributes 136, and policy attributes 138. In some
embodiments, the data lake 130 can also include repositories
for VM or container attributes, application attributes, tenant
attributes, network topology, application dependency maps,
cluster attributes, etc.

[0044] Flow attributes 132 relate to information about
flows traversing the network. A flow is generally one or
more packets sharing certain attributes that are sent within a
network within a specified period of time. The flow attri-
butes 132 can include packet header fields such as a source
address (e.g., Internet Protocol (IP) address, Media Access
Control (MAC) address, Domain Name System (DNS)
name, or other network address), source port, destination
address, destination port, protocol type, class of service,
among other fields. The source address may correspond to a
first endpoint (e.g., network device, physical server, virtual
partition, etc.) of the network, and the destination address
may correspond to a second endpoint, a multicast group, or
a broadcast domain. The flow attributes 132 can also include
aggregate packet data such as flow start time, flow end time,
number of packets for a flow, number of bytes for a flow, the
union of TCP flags for a flow, among other flow data.
[0045] The host and/or endpoint attributes 134 describe
host and/or endpoint data for each flow, and can include host
and/or endpoint name, network address, operating system,
CPU usage, network usage, disk space, ports, logged users,
scheduled jobs, open files, and information regarding files
and/or directories stored on a host and/or endpoint (e.g.,
presence, absence, or modifications of log files, configura-
tion files, device special files, or protected electronic infor-
mation). As discussed, in some embodiments, the host
and/or endpoints attributes 134 can also include the out-of-
band data 114 regarding hosts such as power level, tempera-
ture, and physical location (e.g., room, row, rack, cage door
position, etc.) or the third party data 116 such as whether a
host and/or endpoint is on an IP watch list or otherwise
associated with a security threat, Whois data, or geocoordi-
nates. In some embodiments, the out-of-band data 114 and
the third party data 116 may be associated by process, user,
flow, or other more granular or less granular network ele-
ment or network communication.

[0046] The process attributes 136 relate to process data
corresponding to each flow, and can include process name
(e.g., bash, httpd, netstat, etc.), ID, parent process 1D, path
(e.g., fusr2/usemame/bin/, /ustr/local/bin, /usr/bin, etc.), CPU
utilization, memory utilization, memory address, scheduling
information, nice value, flags, priority, status, start time,
terminal type, CPU time taken by the process, the command
that started the process, and information regarding a process
owner (e.g., user name, ID, user’s real name, e-mail address,
user’s groups, terminal information, login time, expiration
date of login, idle time, and information regarding files
and/or directories of the user).

[0047] The policy attributes 138 contain information relat-
ing to network policies. Policies establish whether a par-
ticular flow is allowed or denied by the network as well as
a specific route by which a packet traverses the network.

Jul. 25,2019

Policies can also be used to mark packets so that certain
kinds of traffic receive differentiated service when used in
combination with queuing techniques such as those based on
priority, fairness, weighted fairness, token bucket, random
early detection, round robin, among others. The policy
attributes 138 can include policy statistics such as a number
of times a policy was enforced or a number of times a policy
was not enforced. The policy attributes 138 can also include
associations with network traffic data. For example, flows
found to be non-conformant can be linked or tagged with
corresponding policies to assist in the investigation of non-
conformance.

[0048] The analytics engine 110 may include any number
of'engines 150, including for example, a flow engine 152 for
identifying flows (e.g., flow engine 152) or an attacks engine
154 for identify attacks to the network. In some embodi-
ments, the analytics engine can include a separate distrib-
uted denial of service (DDoS) attack engine 155 for spe-
cifically detecting DDoS attacks. In other embodiments, a
DDoS attack engine may be a component or a sub-engine of
a general attacks engine. In some embodiments, the attacks
engine 154 and/or the DDoS engine 155 can use machine
learning techniques to identify security threats to a network.
For example, the attacks engine 154 and/or the DDoS engine
155 can be provided with examples of network states
corresponding to an attack and network states corresponding
to normal operation. The attacks engine 154 and/or the
DDoS engine 155 can then analyze network traffic data to
recognize when the network is under attack. In some
embodiments, the network can operate within a trusted
environment for a time to establish a baseline for normal
network operation for the attacks engine 154 and/or the
DDoS.

[0049] The analytics engine 110 may further include a
search engine 156. The search engine 156 may be config-
ured, for example to perform a structured search, an NLP
(Natural Language Processing) search, or a visual search.
Data may be provided to the engines from one or more
processing components.

[0050] The analytics engine 110 can also include a policy
engine 158 that manages network policy, including creating
and/or importing policies, monitoring policy conformance
and non-conformance, enforcing policy, simulating changes
to policy or network elements affecting policy, among other
policy-related tasks.

[0051] ADM module 140 can determine dependencies of
applications of the network. That is, particular patterns of
traffic may correspond to an application, and the intercon-
nectivity or dependencies of the application can be mapped
to generate a graph for the application (i.e., an application
dependency mapping). In this context, an application refers
to a set of networking components that provides connectiv-
ity for a given set of workloads. For example, in a three-tier
architecture for a web application, first endpoints of the web
tier, second endpoints of the application tier, and third
endpoints of the data tier make up the web application. ADM
module 140 can receive input data from various repositories
of the data lake 130 (e.g., the flow attributes 132, the host
and/or endpoint attributes 134, the process attributes 136,
etc.). The ADM module 140 may analyze the input data to
determine that there is first traffic flowing between external
endpoints on port 80 of the first endpoints corresponding to
Hypertext Transfer Protocol (HTTP) requests and responses.
The input data may also indicate second traffic between first

US 2019/0230127 Al

ports of the first endpoints and second ports of the second
endpoints corresponding to application server requests and
responses and third traffic flowing between third ports of the
second endpoints and fourth ports of the third endpoints
corresponding to database requests and responses. The
ADM module 140 may define an ADM for the web appli-
cation as a three-tier application including a first EPG
comprising the first endpoints, a second EPG comprising the
second endpoints, and a third EPG comprising the third
endpoints.

[0052] The presentation module 112 can include an appli-
cation programming interface (API) or command line inter-
face (CLI) 160, a security information and event manage-
ment (SIEM) interface 162, and a web front-end 164. As the
analytics engine 110 processes network traffic and corre-
sponding data and generates analytics data, the analytics
data may not be in a human-readable form or it may be too
voluminous for a user to navigate. The presentation module
112 can take the analytics data generated by analytics engine
110 and further summarize, filter, and organize the analytics
data as well as create intuitive presentations for the analytics
data.

[0053] In some embodiments, the API or CLI 160 can be
implemented using Hadoop® Hive from Apache® for the
back end, and Java® Database Connectivity (JDBC) from
Oracle® Corporation of Redwood Shores, Calif., as an API
layer. Hive is a data warehouse infrastructure that provides
data summarization and ad hoc querying. Hive provides a
mechanism to query data using a variation of structured
query language (SQL) that is called HiveQL. JDBC is an
application programming interface (API) for the program-
ming language Java®, which defines how a client may
access a database.

[0054] In some embodiments, SIEM interface 162 can be
implemented using Kafka for the back end, and software
provided by Splunk®, Inc. of San Francisco, Calif. as the
SIEM platform. Kafka is a distributed messaging system
that is partitioned and replicated. Kafka uses the concept of
topics. Topics are feeds of messages in specific categories.
In some embodiments, Kafka can take raw packet captures
and telemetry information from the data mover 108 as input,
and output messages to a SIEM platform, such as Splunk®.
The Splunk® platform is utilized for searching, monitoring,
and analyzing machine-generated data.

[0055] In some embodiments, web front-end 164 can be
implemented using software provided by MongoDB®, Inc.
of New York, N.Y. and Hadoop® ElasticSearch from
Apache® for the back-end, and Ruby on Rails™ as the web
application framework. MongoDB® is a document-oriented
NoSQL database based on documents in the form of
JavaScript® Object Notation (JSON) with dynamic sche-
mas. ElasticSearch is a scalable and real-time search and
analytics engine that provides domain-specific language
(DSL) full querying based on JSON. Ruby on Rails™ is
model-view-controller (MVC) framework that provides
default structures for a database, a web service, and web
pages. Ruby on Rails™ relies on web standards such as
JSON or extensible markup language (XML) for data trans-
fer, and hypertext markup language (HTML), cascading
style sheets, (CSS), and JavaScript® for display and user
interfacing.

[0056] Although FIG. 1 illustrates an example configura-
tion of the various components of a network traffic moni-
toring system, those of skill in the art will understand that the

Jul. 25,2019

components of the network traffic monitoring system 100 or
any system described herein can be configured in a number
of different ways and can include any other type and number
of components. For example, the sensors 104, the collectors
106, the data mover 108, and the data lake 130 can belong
to one hardware and/or software module or multiple separate
modules. Other modules can also be combined into fewer
components and/or further divided into more components.

[0057] FIG. 2 illustrates an example of a network envi-
ronment 200 in accordance with an embodiment. In some
embodiments, a network traffic monitoring system, such as
the network traffic monitoring system 100 of FIG. 1, can be
implemented in the network environment 200. It should be
understood that, for the network environment 200 and any
environment discussed herein, there can be additional or
fewer nodes, devices, links, networks, or components in
similar or alternative configurations. Embodiments with
different numbers and/or types of clients, networks, nodes,
cloud components, servers, software components, devices,
virtual or physical resources, configurations, topologies,
services, appliances, deployments, or network devices are
also contemplated herein. Further, the network environment
200 can include any number or type of resources, which can
be accessed and utilized by clients or tenants. The illustra-
tions and examples provided herein are for clarity and
simplicity.

[0058] Network environment 200 can include network
fabric 202, a Layer 2 (L2) network 204, a Layer 3 (L3)
network 206, and servers 208a, 2085, 208¢, 2084, and 208¢
(collectively, 208). The network fabric 202 can include spine
switches 210a, 2105, 210¢, and 2104 (collectively, “210”)
and leaf switches 212a, 2125, 212¢, 212d, and 212e (col-
lectively, “212”). The spine switches 210 can connect to leaf
switches 212 in the network fabric 202. Leaf switches 212
can include access ports (or non-fabric ports) and fabric
ports. The fabric ports can provide uplinks to the spine
switches 210, while the access ports can provide connectiv-
ity to endpoints (e.g., the servers 208), internal networks
(e.g., the L2 network 204), or external networks (e.g., the L3
network 206).

[0059] Leaf switches 212 can reside at the edge of the
network fabric 202, and can thus represent the physical
network edge. For instance, in some embodiments, leaf
switches 2124 and 212e operate as border leaf switches in
communication with edge devices 214 located in the exter-
nal network 206. Border leaf switches 2124 and 212¢ may
be used to connect any type of external network device,
service (e.g., firewall, deep packet inspector, traffic monitor,
load balancer, etc.), or network (e.g., the 1.3 network 206) to
the fabric 202.

[0060] Although the network fabric 202 is illustrated and
described herein as an example leaf-spine architecture, one
of ordinary skill in the art will readily recognize that various
embodiments can be implemented based on any network
topology, including any data center or cloud network fabric.
Indeed, other architectures, designs, infrastructures, and
variations are contemplated herein. For example, the prin-
ciples disclosed herein are applicable to topologies including
three-tier (including core, aggregation, and access levels),
fat tree, mesh, bus, hub and spoke, etc. Thus, in some
embodiments, leaf switches 212 can be top-of-rack switches
configured according to a top-of-rack architecture. In other
embodiments, leaf switches 212 can be aggregation switches
in any particular topology, such as end-of-row or middle-

US 2019/0230127 Al

of-row topologies. In some embodiments, leaf switches 212
can also be implemented using aggregation switches.
[0061] Moreover, the topology illustrated in FIG. 2 and
described herein is readily scalable and may accommodate
a large number of components, as well as more complicated
arrangements and configurations. For example, the network
may include any number of fabrics 202, which may be
geographically dispersed or located in the same geographic
area. Thus, network nodes may be used in any suitable
network topology, which may include any number of serv-
ers, virtual machines or containers, switches, routers, appli-
ances, controllers, gateways, or other nodes interconnected
to form a large and complex network. Nodes may be coupled
to other nodes or networks through one or more interfaces
employing any suitable wired or wireless connection, which
provides a viable pathway for electronic communications.
[0062] Network communications in the network fabric
202 can flow through leaf switches 212. In some embodi-
ments, leaf switches 212 can provide endpoints (e.g., the
servers 208), internal networks (e.g., the L2 network 204),
or external networks (e.g., the L3 network 206) access to the
network fabric 202, and can connect leaf switches 212 to
each other. In some embodiments, leaf switches 212 can
connect endpoint groups (EPGs) to the network fabric 202,
internal networks (e.g., the L2 network 204), and/or any
external networks (e.g., the L3 network 206). EPGs are
groupings of applications, or application components, and
tiers for implementing forwarding and policy logic. EPGs
can allow for separation of network policy, security, and
forwarding from addressing by using logical application
boundaries. EPGs can be used in the network environment
200 for mapping applications in the network. For example,
EPGs can comprise a grouping of endpoints in the network
indicating connectivity and policy for applications.

[0063] As discussed, the servers 208 can connect to the
network fabric 202 via leaf switches 212. For example, the
servers 208a and 2085 can connect directly to leaf switches
212a and 212b, which can connect the servers 208z and
2085 to the network fabric 202 and/or any of the other leaf
switches. Servers 208¢ and 2084 can connect to leaf
switches 21256 and 212c¢ via the L2 network 204. Servers
208¢ and 2084 and the [.2 network 204 make up a local area
network (LAN). LANs can connect nodes over dedicated
private communications links located in the same general
physical location, such as a building or campus.

[0064] The WAN 206 can connect to leaf switches 212d or
212e via the L3 network 206. WAN's can connect geographi-
cally dispersed nodes over long-distance communications
links, such as common carrier telephone lines, optical light
paths, synchronous optical networks (SONET), or synchro-
nous digital hierarchy (SDH) links. LANs and WANs can
include L2 and/or L3 networks and endpoints.

[0065] The Internet is an example of a WAN that connects
disparate networks throughout the world, providing global
communication between nodes on various networks. The
nodes typically communicate over the network by exchang-
ing discrete frames or packets of data according to pre-
defined protocols, such as the Transmission Control Proto-
col/Internet Protocol (TCP/IP). In this context, a protocol
can refer to a set of rules defining how the nodes interact
with each other. Computer networks may be further inter-
connected by an intermediate network node, such as a router,
to extend the effective size of each network. The endpoints
208 can include any communication device or component,

Jul. 25,2019

such as a computer, server, blade, hypervisor, virtual
machine, container, process (e.g., running on a virtual
machine), switch, router, gateway, host, device, external
network, etc.

[0066] In some embodiments, the network environment
200 also includes a network controller running on the host
208a. The network controller is implemented using the
Application Policy Infrastructure Controller (APIC™) from
Cisco®. The APIC™ provides a centralized point of auto-
mation and management, policy programming, application
deployment, and health monitoring for the fabric 202. In
some embodiments, the APIC™ is operated as a replicated
synchronized clustered controller. In other embodiments,
other configurations or software-defined networking (SDN)
platforms can be utilized for managing the fabric 202.
[0067] In some embodiments, a physical server 208 may
have instantiated thereon a hypervisor 216 for creating and
running one or more virtual switches (not shown) and one or
more virtual machines 218, as shown for the host 2085. In
other embodiments, physical servers may run a shared
kernel for hosting containers. In yet other embodiments, the
physical server 208 can run other software for supporting
other virtual partitioning approaches. Networks in accor-
dance with various embodiments may include any number
of physical servers hosting any number of virtual machines,
containers, or other virtual partitions. Hosts may also com-
prise blade/physical servers without virtual machines, con-
tainers, or other virtual partitions, such as the servers 208a,
208c¢, 208d, and 208e.

[0068] The network environment 200 can also integrate a
network traffic monitoring system, such as the network
traffic monitoring system 100 shown in FIG. 1. For example,
the network traffic monitoring system of FIG. 2 includes
sensors 220a, 2205, 220¢, and 220d (collectively, “220”),
collectors 222, and an analytics engine, such as the analytics
engine 110 of FIG. 1, executing on the server 208e. The
analytics engine on server 208e can receive and process
network traffic data collected by the collectors 222 and
detected by the sensors 220 placed on nodes located
throughout the network environment 200. Although the
analytics engine 208e is shown to be a standalone network
appliance in FIG. 2, it will be appreciated that analytics
engine 208¢ can also be implemented as a virtual partition
(e.g., VM or container) that can be distributed onto a host or
cluster of hosts, software as a service (SaaS), or other
suitable method of distribution. In some embodiments, the
sensors 220 run on leaf switches 212 (e.g., the sensor 220a),
hosts 208 (e.g., the sensor 2205), hypervisor 216 (e.g., the
sensor 220c¢), and VMs 218 (e.g., the sensor 220d). In other
embodiments, the sensors 220 can also run on the spine
switches 210, virtual switches, service appliances (e.g.,
firewall, deep packet inspector, traffic monitor, load bal-
ancer, etc.) and in between network elements. In some
embodiments, sensors 220 can be located at each (or nearly
every) network component to capture granular packet sta-
tistics and data at each hop of data transmission. In other
embodiments, the sensors 220 may not be installed in all
components or portions of the network (e.g., shared hosting
environment in which customers have exclusive control of
some virtual machines).

[0069] As shown in FIG. 2, a host may include multiple
sensors 220 running on the host (e.g., the host sensor 2205)
and various components of the host (e.g., the hypervisor
sensor 220c and the VM sensor 220d) so that all (or

US 2019/0230127 Al

substantially all) packets traversing the network environ-
ment 200 may be monitored. For example, if one of VMs
218 running on the host 2085 receives a first packet from the
WAN 206, the first packet may pass through the border leaf
switch 212d, the spine switch 2105, the leaf switch 2125, the
host 2085, hypervisor 216, and the VM. Since all or nearly
all of these components contain a respective sensor, the first
packet will likely be identified and reported to one of the
collectors 222. As another example, if a second packet is
transmitted from one of VMs 218 running on the host 2085
to the host 2084, sensors installed along the data path, such
as at the VM 218, hypervisor 216, host 2085, leaf switch
2125, and host 2084 will likely result in capture of metadata
from the second packet.

[0070] FIG. 3 illustrates an example of a data pipeline 300
for generating network insights based on collected network
information. The insights generated may include, for
example, discovered applications or inventories, application
dependencies, policies, efficiencies, resource and bandwidth
usage, and network flows can be determined for the network
using the network traffic data. In some embodiments, the
data pipeline 300 can be directed by a network traffic
monitoring system, such as the network traffic monitoring
system 100 of FIG. 1; an analytics engine, such as the
analytics engine 110 of FIG. 1; or other network service or
network appliance. For example, an analytics engine 110 can
be configured to discover of applications running in the
network, map the applications’ interdependencies, generate
a set of proposed network policies for implementation, and
monitor policy conformance and non-conformance among
other network-related tasks.

[0071] The data pipeline 300 includes a data collection
stage 302 in which network traffic data and corresponding
data (e.g., host data, process data, user data, etc.) are
captured by sensors (e.g., the sensors 104 of FIG. 1) located
throughout the network. The data may comprise, for
example, raw flow data and raw process data. As discussed,
the data can be captured from multiple perspectives to
provide a comprehensive view of the network. The data
collected may also include other types of information, such
as tenant information, virtual partition information, out-of-
band information, third party information, and other relevant
information. In some embodiments, the flow data and asso-
ciated data can be aggregated and summarized daily or
according to another suitable increment of time, and flow
vectors, process vectors, host vectors, and other feature
vectors can be calculated during the data collection stage
302. This can substantially reduce processing.

[0072] Data pipeline 300 can also include an input data
stage 304 in which a network or security administrator or
other authorized user may configure insight generation by
selecting the date range of the flow data and associated data
to analyze, and those nodes for which the administrator
wants to analyze. In some embodiments, the administrator
can also input side information, such as server load balance,
route tags, and previously identified clusters during the input
data stage 304. In other aspects, the side information can be
automatically pulled or another network element can push
the side information.

[0073] The next stage of the data pipeline 300 is pre-
processing 306. During the pre-processing stage 306, nodes
of the network are partitioned into selected node and depen-
dency node subnets. Selected nodes are those nodes for
which the user requests application dependency maps and

Jul. 25,2019

cluster information. Dependency nodes are those nodes that
are not explicitly selected by the users for an ADM run but
are nodes that communicate with the selected nodes. To
obtain the partitioning information, edges of an application
dependency map (i.e., flow data) and unprocessed feature
vectors can be analyzed.

[0074] Other tasks can also be performed during the
pre-processing stage 306, including identifying dependen-
cies of the selected nodes and the dependency nodes;
replacing the dependency nodes with tags based on the
dependency nodes’ subnet names; extracting feature vectors
for the selected nodes, such as by aggregating daily vectors
across multiple days, calculating term frequency-inverse
document frequency (tf-idf), and normalizing the vectors
(e.g., 1, normalization); and identifying existing clusters.
[0075] In some embodiments, the pre-processing stage
306 can include early feature fusion pre-processing. Early
fusion is a fusion scheme in which features are combined
into a single representation. Features may be derived from
various domains (e.g., network, host, virtual partition, pro-
cess, user, etc.), and a feature vector in an early fusion
system may represent the concatenation of disparate feature
types or domains.

[0076] Early fusion may be effective for features that are
similar or have a similar structure (e.g., fields of TCP and
UDP packets or flows). Such features may be characterized
as being a same type or being within a same domain. Early
fusion may be less effective for distant features or features
of different types or domains (e.g., flow-based features
versus process-based features). Thus, in some aspects, only
features in the network domain (i.e., network traffic-based
features, such as packet header information, number of
packets for a flow, number of bytes for a flow, and similar
data) may be analyzed. In other embodiments, analysis may
be limited to features in the process domain (i.e., process-
based features, such as process name, parent process, pro-
cess owner, etc.). In yet other aspects, feature sets in other
domains (e.g., the host domain, virtual partition domain,
user domain, etc.) may be the.

[0077] After pre-processing, the data pipeline 300 may
proceed to an insight generation stage 308. During the
insight generation stage 308, the data collected and inputted
into the data pipeline 300 may be used to generate various
network insights. For example, an analytics engine 110 can
be configured to discover of applications running in the
network, map the applications’ interdependencies, generate
a set of proposed network policies for implementation, and
monitor policy conformance and non-conformance among
other network-related tasks. Various machine learning tech-
niques can be implemented to analyze feature vectors within
a single domain or across different domains to generate
insights. Machine learning is an area of computer science in
which the goal is to develop models using example obser-
vations (i.e., training data), that can be used to make
predictions on new observations. The models or logic are not
based on theory but are empirically based or data-driven.
[0078] After clusters are identified, the data pipeline 300
can include a post-processing stage 310. The post-process-
ing stage 310 can include tasks such as filtering insight data,
converting the insight data into a consumable format, or any
other preparations needed to prepare the insight data for
consumption by an end user. At the output stage 312, the
generated insights may be provided to an end user. The end
user may be, for example a network administrator, a third-

US 2019/0230127 Al

party computing system, a computing system in the network,
or any other entity configured to receive the insight data. In
some cases, the insight data may be configured to be
displayed on a screen or provided to a system for further
processing, consumption, or storage.

[0079] As noted above, a network traffic monitoring sys-
tem may be configured to continually collect network data
and generate various insights based on the collected network
data. This network data and the insights may be updated over
time and each set of network data and/or insights may
provide a network snapshot or view of the state of the
network for a particular period of time. The network snap-
shot may be generated periodically over time or in response
to one or more events. Events may include, for example, a
change to a network policy or configuration; an application
experiencing latency that exceeds an application latency
threshold; the network experiencing latency that exceeds a
network latency threshold; failure of server, network device,
or other network element; and similar circumstances. Vari-
ous network snapshots may further be compared in order to
identify changes in the state of the network over time and be
used to provide additional insights into the operations of the
network.

[0080] However, each network snapshot for an entire
network or network cluster, may be quite large in size. The
network may include a large number of nodes and a sensor
may be implemented on some or all of the nodes in the
network. Nodes may include, for example, a virtual partition
(e.g., VM or container); a hypervisor or shared kernel
managing one or more virtual partitions and/or physical
servers, an application-specific integrated circuit (ASIC) of
a switch, router, gateway, or other networking device, or a
packet capture (pcap) appliance (e.g., a standalone packet
monitor, a device connected to a network devices monitor-
ing port, a device connected in series along a main trunk of
a datacenter, or similar device), servers, end-user devices, or
other element of a network. The amount of data generated by
these sensors and the insights that may be derived from the
data may be quite large. Furthermore, the network state may
be updated often, causing several network snapshots to be
created and created often.

[0081] There are many technical limitations to transmit-
ting and receiving that amount of data often enough for end
users to stay in sync, especially when multiple network
snapshots are generated in relatively quick succession. Addi-
tionally, in some cases, the network snapshots may be
requested by a large number of end users or consumers of the
network snapshots. Communication of such large amounts
of data to multiple entities may be difficult for the network
traffic monitoring system to transmit and difficult for each
entity to receive, especially when the network traffic moni-
toring system and/or each receiving entity may crash or deal
with transmission errors. Aspects of the subject technology
address these technical problems by fragmenting each net-
work snapshot into smaller chunks or segments and using a
stream processing service to publish the network snapshots
to one or more subscribers.

[0082] FIG. 4 illustrates an example of a network traffic
monitoring system 410 providing network snapshots to
subscribers 430, in accordance with various embodiments.
An analytics engine 415 of a network monitoring system
410 may be configured to collect the network data generated
by sensors deployed in a network, derive insights based on
the network data, and generate network snapshots based on

Jul. 25,2019

the network data and/or insights. The network snapshots
may be generated periodically over time (e.g., every 15
minutes) and/or in response to network changes or events.
Each network snapshot that is generated by the analytics
engine 415 may be quite large in size. Accordingly, the
analytics engine 415 may be configured to partition a
network snapshot into smaller network snapshot segments
(e.g., a 10 megabyte segment) and transmit the network
snapshot segments to a stream processing service 420.
[0083] According to some embodiment, the stream pro-
cessing service 420 may be implemented in the network
traffic monitoring system 410, as part of the analytics engine
415, or in the network managed by the network traffic
monitoring system 410. In other aspects, however, the
stream processing service 420 may be outside of the network
managed by the network traffic monitoring system 410. The
stream processing service 420 is configured to receive
network snapshots or network snapshot segments from the
analytics engine 415 and publish the network snapshot
segments to one or more subscribers via a snapshot stream
425.

[0084] According to other embodiments, the analytics
engine 415 may provide the network snapshots to the stream
processing service 420 and the stream processing service
420 may partition each snapshot into smaller network snap-
shot segments for the snapshot stream 425.

[0085] A subscriber 430 may be a device, application, or
other entity that can make use of the network snapshots
provided by the analytics engine 415. For example, the
subscriber 430 may use the network snapshots to update
network policies, generate additional insights, or store for
analysis. The stream reader 435 may be a component of the
subscriber 430 that subscribes to the snapshot stream 425 of
the stream processing service 420. The stream reader 435 is
further configured to receive messages from the stream
processing service 420 that include one or more network
snapshot segments and reconstruct the network snapshot
based on the received network snapshot segments. The
reconstruction of a network snapshot faces additional tech-
nical obstacles in cases where subscribers 430 start receiving
network snapshot segments in the middle of a network
snapshot or the sequence of network snapshot segments that
are received is broken.

[0086] Various aspects of the subject technology address
these and other technical obstacles by having the analytics
engine 415 annotate or tag each network snapshot segment
with metadata that may be used by the stream reader 435 to
reconstruct a network snapshot. The metadata may include,
for example a “start” label, an “end” label, and/or a number
associated with the location of the network snapshot seg-
ment within the network snapshot. For example, a first
segment of a network snapshot may be tagged with the
“start” label and a last segment of the network snapshot may
be tagged with the “end” label. Each segment of a snapshot
may also be numbered (e.g., from O to n, where n is assigned
to the last segment). The network segments of the network
snapshot are then provided to the stream processing service
420 for distribution in a snapshot output stream 425.
[0087] Once the stream reader 435 subscribes to the
snapshot stream 425 or otherwise begins receiving stream
messages from the stream processing service 420, the stream
reader 435 may use the tags (e.g., start/end tags) and/or the
enumeration of a received network snapshot segment to
determine which network snapshot segment has been

US 2019/0230127 Al

received and which network snapshot segments, if any,
should be requested from the stream processing service. For
example, if the first network snapshot segment received by
the stream reader 435 is segment 5, the stream reader 435
may transmit requests for segments 0-4 from the stream
processing service 420 or request transmission of the stream
starting from 5 segments back from the recently received
network snapshot segment (e.g., rewinding the stream).
Once a network snapshot segment tagged with the “end”
label is received, the stream reader 435 may compile the
network snapshot segments into a network snapshot.
[0088] FIG. 5 illustrates an example of a process 500 for
compiling a network snapshot, in accordance with an
embodiment. It should be understood that, for any process
discussed herein, there can be additional, fewer, or alterna-
tive steps performed in similar or alternative orders, or in
parallel, within the scope of the various embodiments unless
otherwise stated. Process 500 can be performed by a com-
puting device, and particularly, a subscriber device (e.g., the
subscriber 430 of FIG. 4), a stream reader application (e.g.,
the stream reader 435 of FIG. 4), or similar system.
[0089] The subscriber device may subscribe to a snapshot
stream provided by a stream processing service. The stream
processing service may be configured to publish network
snapshot segments to potentially a large number of subscrib-
ers. The network snapshot segments may be provided to
subscribers in a series of messages that each include a
network snapshot segment and metadata for the network
snapshot segment (e.g., labels, tags, enumerations, segment
identifiers, network snapshot identifiers, etc.) that may be
used to indicate a position of the network snapshot segment
within the snapshot stream.

[0090] Once the subscriber device is subscribed to the
snapshot stream, at operation 505, the subscriber device may
receive a message containing a network snapshot segment
from a stream processing service. Based on the metadata
also contained in the message, the subscriber device may
identify an offset associated with the network snapshot
segment received in the message at operation 510. Based on
the offset, the subscriber device may determine whether the
network snapshot segment is the first segment for the
network snapshot or whether additional network snapshot
segments should be requested at operation 515.

[0091] For example, if the metadata for the network snap-
shot segment contains a “start” label or a “0” for the
enumerated snapshot offset identifier, the subscriber device
may determine that the offset for the network snapshot
segment is 0, indicating that the network snapshot segment
received in the message is the first network snapshot seg-
ment for a network snapshot. Accordingly, the subscriber
device has not missed any network snapshot segments for
the current network snapshot. The subscriber device can
continue to operation 525 and receive subsequent network
snapshot segments for the network snapshot from the snap-
shot stream and compile the network snapshot without
having to request other network snapshot segments that the
subscriber device has missed.

[0092] If, on the other hand, the metadata for the network
snapshot segment does not contain the “start” label or the
“0” value for the enumerated snapshot segment offset iden-
tifier, the subscriber device may determine that the network
snapshot segment received in the message is not the first
network snapshot segment for the network snapshot. If the
subscriber device has not received the previous network

10

Jul. 25,2019

snapshot segments for the network snapshot, the subscriber
device may request additional messages containing the
previous network snapshot segments from the stream pro-
cessing service at operation 520.

[0093] There may be several reasons for the subscriber
device not having received one or more of the previous
network snapshot segments. For example, the subscriber
device may have just subscribed to the snapshot stream and
the network snapshot segment received at operation 505
may be the first segment received for the network snapshot.
The subscriber device or the stream reader associated with
the subscriber device may have just restarted operation or
one or more of the previous snapshot segments may not have
been transmitted properly based on network failures, inter-
face failures, or errors by the subscriber device or the stream
processing service.

[0094] As an illustrative example, the metadata for the
network snapshot segment may contain a snapshot offset
identifier value of “8.” The subscriber device may determine
that the offset for the network snapshot segment is 8§,
indicating that there are 8 previous network snapshot seg-
ments (e.g., network snapshot segments with offset identifier
values 0-7) for the current network snapshot before the
current network snapshot. If the subscriber device has not
received these previous network snapshot segments, the
subscriber device may request them from the stream pro-
cessing service at operation 520. These network stream
segments may be provided out-of-stream. That is, the stream
processing service may provide them separately to the
subscriber device upon request, outside the normal sequen-
tial operation of the snapshot stream.

[0095] While the requested network snapshot segments
are being sent by the stream processing service and/or after
they are received by the subscriber device, the subscriber
device can continue receiving additional message from the
snapshot stream at operation 525. Once the last network
snapshot segment for a network snapshot is received, the
subscriber device may compile the network snapshot seg-
ments into a network snapshot at operation 530. The sub-
scriber device may identify the last network snapshot seg-
ment for the network snapshot because the metadata
associated with the network snapshot segment may include
an “end” or “last” label.

[0096] After the network snapshot segments for a first
network snapshot are received and compiled, the subscriber
device may continue to receive messages from the snapshot
stream containing additional network snapshot segments for
subsequent network snapshots. As a result, a series of
network snapshots generated by a network traffic monitoring
system may be provided to a stream processing service and
provided to one or more subscribers in network snapshot
segments that may be compiled by the subscriber system.
These network snapshots may further processed or analyzed
by the subscriber device for further use by the subscriber
device or downstream consumers. For example, according to
some embodiments, after a network snapshot is compiled,
the subscriber device or the stream reader associated with
the subscriber device may convert the network snapshot into
a generic format that may be consumed by a group of diverse
downstream consumers.

[0097] As noted above, the network snapshots may rep-
resent the state of a network or information associated with
the network during a particular time period. Accordingly,
multiple network snapshots that are compiled by the sub-

US 2019/0230127 Al

scriber system may be compared in order to identify changes
in the state of the network over time and be used to provide
additional insights into the operations of the network. The
subscriber system may further be configured to compare two
or more network snapshots, identify the differences between
the network snapshots, and provide the differences to a
downstream consumer.

[0098] FIG. 6 illustrates an example of a process 600 for
identifying a difference between network snapshots, in
accordance with an embodiment. It should be understood
that, for any process discussed herein, there can be addi-
tional, fewer, or alternative steps performed in similar or
alternative orders, or in parallel, within the scope of the
various embodiments unless otherwise stated. Process 600
can be performed by a computing device, and particularly, a
subscriber device (e.g., the subscriber 430 of FIG. 4), a
stream reader application (e.g., the stream reader 435 of
FIG. 4), or similar system.

[0099] At operation 605, a stream reader or similar system
may receive from a stream processing system a set of
messages that contain network snapshot segments. The
messages may be received based on process 500 of FIG. 5
or a similar process. At operation 610, the stream reader may
compile the network snapshot segments into two or more
network snapshots. For the sake of illustrating the process of
FIG. 6, a first network snapshot and a second network
snapshot may be compiled.

[0100] At operation 615, the stream reader compares the
compiled network snapshots to identify a difference between
the first network snapshot and the second network snapshot.
This difference may represent a change in a network policy
or other data associated with the network. At operation 620,
the difference may then be provided to one or more con-
sumer systems. In some cases, the difference may be con-
verted into a generic format that is more accessible to the
consumer systems. The consumer systems may be down-
stream consumers of network information and may be
configured to use the difference to update network informa-
tion stored by the consumer system rather than store the
entire network snapshot. By using the difference to update
the network information rather than an entire network snap-
shot, network resources (e.g., bandwidth), memory, process-
ing time, and other computing resources may be conserved
or more efficiently utilized.

[0101] According to some embodiments, downstream
consumers systems of the network information may be
interested in different portions of the network snapshots. For
example, one consumer system may be interested in one set
of endpoint groups in the network while another consumer
system may be interested in another set of endpoint groups.
These two sets of endpoint groups may or may not have
overlapping portions. In order to reduce the information
provided to the consumer system and further improve the
efficient use of computing resources, the stream reader may
filter out portions of the network snapshots or the identified
differences between network snapshots provided to each
consumer system based on filtering criteria associated with
each consumer system. The filtering criteria may include, for
example, endpoint group identifiers, a list of IP addresses of
interest, a list of network policies of interest, or any other
criteria that may be used to filter, categorize, or group
network information or insights generated by the network
traffic monitoring system.

Jul. 25,2019

[0102] FIG. 7 illustrates an example architecture 700 for
implementing a secure policy update publishing stream,
according to some aspects of the technology. Architecture
700 includes customer 701 that represents a party or network
entity that wishes to subscribe to network policy updates,
e.g., via a policy stream. As illustrated, customer 701 is
communicatively coupled with a network monitoring appli-
ance (e.g., Tetration backend 703), as well as a processing
pipeline 707. Additionally, the Tetration backend 703 is
coupled to a vendor/service provider 705.

[0103] It is understood that the topology of architecture
700 is provided for illustrative purposes, and that additional
monitoring appliances (e.g., messaging queues), vendors, or
message queue pipelines may be implemented, without
departing the scope of the disclosed technology. Addition-
ally, vendor 705 can represent any third-party provider, for
example, that is capable of providing software, or computing
services over a computer network. By way of example,
vendor 705 may represent a product provider such as Citrix,
or F5 Networks, etc. Additionally, processing pipeline 707
can represent any messaging cueing service, such as that
provided using Katka for the back-end, and/or software
provided by Splunk®, Inc., as the SIEM platform, as dis-
cussed above.

[0104] The architecture 700 illustrated in FIG. 7 provides
systems configured for implementing a secure policy update
process of the subject technology. In practice, customer 701
can instantiate a network monitoring appliance, i.e. Tetration
backend 703, by providing necessary commands and con-
figuration parameters to a cloud based monitoring cluster.
Once instantiated, Tetration backend 703 produces a cus-
tomer certificate that is unique to customer 701. The cus-
tomer certificate can be generated based on configuration
parameters and/or other identitying information about cus-
tomer 701.

[0105] Separately, a processing pipeline 707 can also be
instantiated and connected to Tetration backend 703. Pro-
cessing pipeline 707 may be instantiated by customer 701,
or as an automatic process performed by Tetration backend
703, for example, that is performed in response to instan-
tiation of Tetration backend 703. Once the customer certifi-
cate is generated for customer 701, a second certificate
corresponding to the customer certificate is generated, i.e. a
Tetration certificate is generated identifying the relationship
between Tetration backend 703 and customer 701. The
Tetration certificate is provided to processing pipeline 707.
Because the Tetration certificate corresponds with the gen-
eration of the customer certificate, the Tetration certificate
can be used by processing pipeline to validate identity of
customer 701, for example, when customer 701 provides the
customer certificate.

[0106] Subsequently, customer 701 can connect to pro-
cessing pipeline 707 in order to subscribe to policy updates
that are pushed by Tetration backend 703. For example, as
illustrated in FIG. 7, a policy update provided by Tetration
backend 703 to processing pipeline 707 can be received by
customer 701, after customer 701 provides the customer
certificate to processing pipeline 707 (e.g., after authenti-
cating his identity). In some aspects, the policy stream
provided by processing pipeline 707 can be encrypted. As
such, potentially malicious users would not only need to
spoof both the Tetration and customer certificates, but would
also need to be able to decrypt any policy updates provided
on the policy stream. These multiple layers of security

US 2019/0230127 Al

provide added safeguards against man-in-the-middle type
attacks i.e., where malevolent users/hackers may attempt to
learn policy information being provided by the Tetration
backend 703.

[0107] In some aspects, additional information contained
in a vendor certificate may be used for customer/subscriber
authentication. For example, vendor 705 can provide a
vendor certificate to Tetration backend 703 and/or to the
processing pipeline 707. The vendor certificate may be
further used to authenticate the customer certificate that is
generated by Tetration backend 703.

[0108] FIG. 8 illustrates an example process 800 for
authenticating customer access to a secure policy stream,
e.g., for receiving network policy updates, according to
some aspects of the technology. Process 800 begins when a
network monitoring device is instantiated in response to
request (e.g., from a subscriber/customer), wherein the
request includes one or more parameters for the network
monitoring device (802). As discussed above, the request
can be provided by customer e.g. via a network connected
device, such as discussed above with respect to customer
701. Additionally the network monitoring device can be a
monitoring appliance that includes one or more computing
clusters, such as a Tetration cluster, e.g. Tetration backend
703.

[0109] Subsequently, a first certificate (e.g. customer cer-
tificate) is received from the network monitoring device,
wherein the first certificate is based on the configuration
parameters (804). As discussed above, the first certificate
can be used to uniquely identify the subscriber/customer that
instantiated the network monitoring application (e.g. Tetra-
tion cluster).

[0110] Once the subscriber/customer certificate has been
received, or certificate (e.g. the first certificate) can be sent
to a processing pipeline for authentication, wherein the
processing pipeline is configured to authenticate the first
certificate based on a second certificate that is received by
the processing pipeline (806).

[0111] The processing pipeline may be implemented using
a Directed Acyclic Graph buffer network, such as that
implemented by a Kafka messaging system. As discussed
above, the processing pipeline can also be configured to
receive multiple certificates that can be used to validate/
authenticate subscriber access to a policy update stream. In
the current example, the second certificate can be a Tetration
certificate that is generated by the Tetration cluster upon
instantiation in step (802), discussed above. That is, the
second certificate can be used by the Kafka messaging
system to validate/authenticate identity of the subscriber/
customer providing the first certificate (e.g. the customer
certificate) to the messaging queue.

[0112] Subsequently, if the pipeline successfully authen-
ticates the first certificate the subscriber/customer is pro-
vided access to one or more policy updates that are provided
via policy stream provided by the processing pipeline (808).
In this scenario, further to the above example discussed with
respect to FIG. 7, once properly authenticated using a
customer certificate, customer 701 can be subscribed to a
policy stream that is provided by processing pipeline 707
based on certificate validations performed for a Tetration
certificate. In some aspects policy subscriptions and/or
enforcements can be further authenticated using a vendor

Jul. 25,2019

certificate, for example, that is provided in the code of one
or more products provided by a vendor, e.g. vendor 705,
discussed above.

[0113] FIG. 9 illustrates an example of an electronic
system with which some aspects of the subject technology
can be implemented. Specifically, FIG. 9 illustrates an
example network device 900, which could include, but is not
limited to a mobile device, such as a smart phone, a
notebook computer, or a tablet computing device.

[0114] Network device 900 includes a master central pro-
cessing unit (CPU) 962, interfaces 968, and a bus 915 (e.g.,
a PCI bus). When acting under the control of appropriate
software or firmware, the CPU 962 is responsible for execut-
ing packet management, error detection, and/or routing
functions. The CPU 962 preferably accomplishes all these
functions under the control of software including an oper-
ating system and any appropriate applications software.
CPU 962 can include one or more processors 963 such as a
processor from the Motorola family of microprocessors or
the MIPS family of microprocessors. In an alternative
embodiment, processor 963 is specially designed hardware
for controlling the operations of network device 900. In a
specific embodiment, a memory 961 (such as non-volatile
RAM and/or ROM) also forms part of CPU 962. However,
there are many different ways in which memory could be
coupled to the system.

[0115] The interfaces 968 can be provided as interface
cards (sometimes referred to as “line cards™). Generally,
they control the sending and receiving of data packets over
the network and sometimes support other peripherals used
with a router. Among the interfaces that can be provided are
Ethernet interfaces, frame relay interfaces, cable interfaces,
DSL interfaces, token ring interfaces, and the like. In addi-
tion, various very high-speed interfaces can be provided
such as fast token ring interfaces, wireless interfaces, Eth-
ernet interfaces, Gigabit Ethernet interfaces, ATM inter-
faces, HSSI interfaces, POS interfaces, FDDI interfaces and
the like. Generally, these interfaces may include ports appro-
priate for communication with the appropriate media. In
some cases, they may also include an independent processor
and, in some instances, volatile RAM. The independent
processors may control such communications intensive
tasks as packet switching, media control and management.
By providing separate processors for the communications
intensive tasks, these interfaces allow the master micropro-
cessor 962 to efficiently perform routing computations,
network diagnostics, security functions, etc.

[0116] Although the system shown in FIG. 9 is one
specific network device of the present technology, it is by no
means the only network device architecture on which the
present technology can be implemented. For example, an
architecture having a single processor that handles commu-
nications as well as routing computations, etc. is often used.
Further, other types of interfaces and media could also be
used with the router.

[0117] Regardless of the network device’s configuration, it
may employ one or more memories or memory modules
(including memory 961) configured to store program
instructions for the general-purpose network operations and
mechanisms for roaming, route optimization and routing
functions described herein. The program instructions may
control the operation of an operating system and/or one or
more applications, for example. The memory or memories

US 2019/0230127 Al

may also be configured to store tables such as mobility
binding, registration, and association tables, etc.

[0118] FIG. 10 illustrates a system bus computing system
architecture 1000 wherein the components of the system are
in electrical communication with each other using a bus
1005. Exemplary system 1000 includes a processing unit
(CPU or processor) 1010 and a system bus 1005 that couples
various system components including the system memory
1015, such as read only memory (ROM) 1020 and random
access memory (RAM) 1025, to the processor 1010.
[0119] System 1000 can include a cache of high-speed
memory connected directly with, in close proximity to, or
integrated as part of the processor 1010. The system 1000
can copy data from the memory 1015 and/or the storage
device 1030 to the cache 1012 for quick access by the
processor 1010. In this way, the cache can provide a per-
formance boost that avoids processor 1010 delays while
waiting for data. These and other modules can control or be
configured to control the processor 1010 to perform various
actions. Other system memory 1015 can be available for use
as well. Memory 1015 can include multiple different types
of memory with different performance characteristics. The
processor 1010 can include any general purpose processor
and a hardware module or software module, such as module
11032, module 2 1034, and module 3 1036 stored in storage
device 1030, configured to control the processor 1010 as
well as a special-purpose processor where software instruc-
tions are incorporated into the actual processor design. The
processor 1010 may essentially be a completely self-con-
tained computing system, containing multiple cores or pro-
cessors, a bus, memory controller, cache, etc. A multi-core
processor can be symmetric or asymmetric.

[0120] To enable user interaction with the computing
device 1000, an input device 1045 can represent any number
of input mechanisms, such as a microphone for speech, a
touch-sensitive screen for gesture or graphical input, key-
board, mouse, motion input, speech and so forth. An output
device 1035 can also be one or more of a number of output
mechanisms known to those of skill in the art. In some
instances, multimodal systems can enable a user to provide
multiple types of input to communicate with the computing
device 1000. The communications interface 1040 can gen-
erally govern and manage the user input and system output.
There is no restriction on operating on any particular hard-
ware arrangement and therefore the basic features here may
easily be substituted for improved hardware or firmware
arrangements as they are developed.

[0121] Storage device 1030 is a non-volatile memory and
can be a hard disk or other types of computer readable media
which can store data that are accessible by a computer, such
as magnetic cassettes, flash memory cards, solid state
memory devices, digital versatile disks, cartridges, random
access memories (RAMs) 1025, read only memory (ROM)
1020, and hybrids thereof.

[0122] The storage device 1030 can include software
modules 1032, 1034, 1036 for controlling processor 1010.
Other hardware or software modules are contemplated. The
storage device 1030 can be connected to the system bus
1005. In one aspect, a hardware module that performs a
particular function can include the software component
stored in a computer-readable medium in connection with
the necessary hardware components, such as the processor
1010, bus 1005, display 1035, and so forth, to carry out the
function.

Jul. 25,2019

[0123] By way of example, software modules 1032, 1034,
1036 can be configured for facilitating a multi-certificate
authentication technique of the disclosed technology. For
example, the software modules can be configured for per-
forming steps to instantiate a network monitoring device in
response to a request, the request comprising one or more
configuration parameters for the network monitoring device,
receive a first certificate from the network monitoring
device, wherein the first certificate is based on the one or
more configuration parameters, and send the first certificate
to a processing pipeline for authentication, wherein the
processing pipeline is configured to authenticate the first
certificate based on a second certificate received by the
processing pipeline from the network monitoring device. In
some aspects, the modules can be further configured to
perform steps for receiving one or more policy updates from
a policy stream provided by the processing pipeline if the
processing pipeline successfully authenticates the first cer-
tificate, decrypting the one or more policy updates received
from the policy stream; and implementing at least one
change indicated by the one or more policy updates to an
associated customer network.

[0124] In some implementations, the processing pipeline
includes multiple buffers arranged in a Directed Acyclic
Graph (DAG) configuration. Additionally, in some imple-
mentations, the processing pipeline includes a Katka dis-
tributed messaging system.

[0125] For clarity of explanation, in some instances the
various embodiments may be presented as including indi-
vidual functional blocks including functional blocks com-
prising devices, device components, steps or routines in a
method embodied in software, or combinations of hardware
and software.

[0126] In some embodiments the computer-readable stor-
age devices, mediums, and memories can include a cable or
wireless signal containing a bit stream and the like. How-
ever, when mentioned, non-transitory computer-readable
storage media expressly exclude media such as energy,
carrier signals, electromagnetic waves, and signals per se.
[0127] Methods according to the above-described
examples can be implemented using computer-executable
instructions that are stored or otherwise available from
computer readable media. Such instructions can comprise,
for example, instructions and data which cause or otherwise
configure a general purpose computer, special purpose com-
puter, or special purpose processing device to perform a
certain function or group of functions. Portions of computer
resources used can be accessible over a network. The
computer executable instructions may be, for example,
binaries, intermediate format instructions such as assembly
language, firmware, or source code. Examples of computer-
readable media that may be used to store instructions,
information used, and/or information created during meth-
ods according to described examples include magnetic or
optical disks, flash memory, USB devices provided with
non-volatile memory, networked storage devices, and so on.
[0128] Devices implementing methods according to these
disclosures can comprise hardware, firmware, and/or soft-
ware, and can take any of a variety of form factors. Typical
examples of such form factors include laptops, smart
phones, small form factor personal computers, personal
digital assistants, rackmount devices, standalone devices,
and so on. Functionality described herein also can be
embodied in peripherals or add-in cards. Such functionality

US 2019/0230127 Al

can also be implemented on a circuit board among different
chips or different processes executing in a single device, by
way of further example.

[0129] The instructions, media for conveying such instruc-
tions, computing resources for executing them, and other
structures for supporting such computing resources are
means for providing the functions described in these disclo-
sures.

[0130] Although a variety of examples and other informa-
tion was used to explain aspects within the scope of the
appended claims, no limitation of the claims should be
implied based on particular features or arrangements in such
examples, as one of ordinary skill would be able to use these
examples to derive a wide variety of implementations.
Further and although some subject matter may have been
described in language specific to examples of structural
features and/or method steps, it is to be understood that the
subject matter defined in the appended claims is not neces-
sarily limited to these described features or acts. For
example, such functionality can be distributed differently or
performed in components other than those identified herein.
Rather, the described features and steps are disclosed as
examples of components of systems and methods within the
scope of the appended claims.

1. A computer-implemented method for authenticating a
subscriber to a policy stream, comprising:
instantiating a network monitoring device in response to
a request, the request comprising one or more configu-
ration parameters for the network monitoring device;

receiving a first certificate from the network monitoring
device, wherein the first certificate is based on the one
or more configuration parameters; and

sending the first certificate to a processing pipeline for

authentication, wherein the processing pipeline is con-
figured to authenticate the first certificate based on a
second certificate received by the processing pipeline
from the network monitoring device.

2. The computer-implemented method of claim 1, further
comprising:

receiving one or more policy updates from a policy stream

provided by the processing pipeline if the processing
pipeline successfully authenticates the first certificate.

3. The computer-implemented method of claim 2, further
comprising:

decrypting the one or more policy updates received from

the policy stream; and

implementing at least one change indicated by the one or

more policy updates to an associated customer net-
work.

4. The computer-implemented method of claim 1,
wherein the processing pipeline comprises a plurality of
buffers arranged in a Directed Acyclic Graph (DAG) con-
figuration.

5. The computer-implemented method of claim 1,
wherein the processing pipeline comprises a Kafka distrib-
uted messaging system.

6. The computer-implemented method of claim 1,
wherein the processing pipeline is further configured to
authenticate the first certificate based on a third certificate
provided by a third-party vendor.

7. The computer-implemented method of claim 6,
wherein the third certificate is integrated into product code
in a software package provided by the third-party vendor.

Jul. 25,2019

8. A non-transitory computer-readable medium having
computer readable instructions that, upon being executed by
a processor, cause the processor to:
instantiate a network monitoring device in response to a
request, the request comprising one or more configu-
ration parameters for the network monitoring device;

receive a first certificate from the network monitoring
device, wherein the first certificate is based on the one
or more configuration parameters; and

send the first certificate to a processing pipeline for

authentication, wherein the processing pipeline is con-
figured to authenticate the first certificate based on a
second certificate received by the processing pipeline
from the network monitoring device.

9. The non-transitory computer-readable medium of claim
8, wherein the instructions are further configured to cause to
processor to:

receive one or more policy updates from a policy stream

provided by the processing pipeline if the processing
pipeline successfully authenticates the first certificate.

10. The non-transitory computer-readable medium of
claim 9, wherein the instructions are further configured to
cause to processor to:

decrypting the one or more policy updates received from

the policy stream; and

implementing at least one change indicated by the one or

more policy updates to an associated customer net-
work.

11. The non-transitory computer-readable medium of
claim 8, wherein the processing pipeline comprises a plu-
rality of buffers arranged in a Directed Acyclic Graph
(DAG) configuration.

12. The non-transitory computer-readable medium of
claim 8, wherein the processing pipeline comprises a Kafka
distributed messaging system.

13. The non-transitory computer-readable medium of
claim 8, wherein the processing pipeline is further config-
ured to authenticate the first certificate based on a third
certificate provided by a third-party vendor.

14. The non-transitory computer-readable medium of
claim 13, wherein the third certificate is integrated into
product code in a software package provided by the third-
party vendor.

15. A system comprising:

a processor; and

memory including instructions that, upon being executed

by the processor, cause the system to:
instantiate a network monitoring device in response to a
request, the request comprising one or more configu-
ration parameters for the network monitoring device;

receive a first certificate from the network monitoring
device, wherein the first certificate is based on the one
or more configuration parameters; and

send the first certificate to a processing pipeline for

authentication, wherein the processing pipeline is con-
figured to authenticate the first certificate based on a
second certificate received by the processing pipeline
from the network monitoring device.

16. The system of claim 15, wherein the instructions are
further configured to cause to processor to:

receive one or more policy updates from a policy stream

provided by the processing pipeline if the processing
pipeline successfully authenticates the first certificate.

US 2019/0230127 Al Jul. 25,2019
15

17. The system of claim 16, wherein the instructions are
further configured to cause to processor to:

decrypting the one or more policy updates received from

the policy stream; and

implementing at least one change indicated by the one or

more policy updates to an associated customer net-
work.

18. The system of claim 15, wherein the processing
pipeline comprises a plurality of buffers arranged in a
Directed Acyclic Graph (DAG) configuration.

19. The system of claim 15, wherein the processing
pipeline comprises a Kafka messaging system.

20. The system of claim 15, wherein the processing
pipeline is further configured to authenticate the first cer-
tificate based on a third certificate provided by a third-party
vendor.

