US 20160246465A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2016/0246465 A1

Nguyen et al.

(54)

(71)
(72)

@
(22)

(1)

DUPLICATING A TASK SEQUENCE FROM A
GRAPHICAL USER INTERFACE
INTERACTION FOR A DEVELOPMENT
APPLICATION IN VIEW OF TRACE DATA

Applicant: Red Hat, Inc., Raleigh, NC (US)

Inventors: Filip Nguyen, Brno (CZ); Filip Elias,
Brno (CZ)

Appl. No.: 14/629,092
Filed: Feb. 23,2015

Publication Classification

Int. Cl1.
GO6F 3/0484 (2006.01)
GO6F 1130 (2006.01)

43) Pub. Date: Aug. 25, 2016
(52) US.CL
CPC ... GOGF 3/0484 (2013.01); GO6F 11/3041
(2013.01)
(57) ABSTRACT

A computing system provides a recording, by a processing
device, trace data that is generated for one or more graphical
user interface (GUI) interactions of a user. The computing
system extracts a subset of the trace data from the recorded
trace data, the subset of trace data being associated with one
or more GUI interactions specifying operations of a develop-
ment application performed on a work item. The computing
system assembles a script in view of the subset of the trace
data to duplicate the operations of the development applica-
tions specified by the one or more GUI interactions for one or
more other work items.

100
¥

190
¥

110 i
Graphical user interface (GUI)

101 Presentation layer

i
120
Development application

102 Application layer

131 Trace

T 130 Agent

- 103 System level layer

sub-module

143 Duplication module

144 Extractor sub-module ;

¥ ‘
/ 1 165 Subset Eof trace data %"i'ig'p'l'é'yéq

|| 146 Assembler submodule |/

/7

/106 Déia store -

162 167 yd
Trace log Duplication
script
< Network)
[- 170
Work item 105 Data store Work item

151 Component]

Patent Application Publication Aug. 25,2016 Sheet1 of 5 US 2016/0246465 A1

100
¥

/.,—4 90
¥

110 101 Presentation layer
Graphical user interface (GUI) |

hid

120
Development application

121 GUI translator

102 Application layer

nnnnnnnnnnnnn

195 Task 130 Agent 103 System level Iayeré

Sequence 131 Trace
""""""""""""""""" sub-module

143 Duplication module

s 144 Extractor sub-module

¥

/ ¥ ,
/|| 165 Subset of trace data |

/ 146 Assembler sub-module

i ¥ /106 Data store

162 | 67 |/

Tracelog Duplication |
script

Netvvm
180

150 | 170
Work item 105 Data store Work item

- 151 Component | - 171 Component

FIG. 1

Patent Application Publication Aug. 25,2016 Sheet 2 of 5 US 2016/0246465 A1

v 200
y 4

205
(“““””“““””“”““”“”““”“”““”“”““”“”“7/
: Monitor system behaviors caused by a development application during
E a user action modifying a work item of a development application,
g where the user action is via a graphical user interface (GUI) ;

210

¥

Record trace data that is generated for one or more GUI interactions of
a user

l 215

Extract, from the recorded trace data, a subset of the trace data from
the recorded trace data, the subset of trace data being associated with
one or more GUI interactions specifying operations of a development
application performed on a work item

g 220
. /
Assemble a script in view of the subset of the trace data to duplicate
the operations of the development applications specified by the one or |
more GUI interactions for one or more other work items '
225
¥l

Execute the script independent of output to the graphical user interface
‘ and modify one or more other work items ?

FIG. 2

Patent Application Publication Aug. 25,2016 Sheet 3 of 5 US 2016/0246465 A1

305

Determine an end point in the
recorded trace data that corresponds 300

to an instance of an operation performed »
on a work item and/or component

I 310

Determine an entry point in the
recorded trace data that corresponds
to the end point for the operation

L 315

Select a portion of the recorded trace data
that corresponds to the operation based on
the entry point and the end point

] 320

Determine one or more variables
used to perform the operation from
the selected portion

] 325

Assemble the entry point, variable(s),
selected portion, and end pointinto a
subset of the trace data associated with the
operation as a sequence of instructions to
duplicate the operation

.
__—Determine an end point ™~
~_for another operation?

o -

.
o -
\(//
NO

4

335
/

Create a script including
the subset(s) of trace data for
the respective operation(s)

FIG. 3

Patent Application Publication Aug. 25,2016 Sheet 4 of 5 US 2016/0246465 A1

400
s

405
-
Prompt a user to provide input
for execution of a script for duplicating
operations of
a development application
410

Set up an environment for the development
application and provide instructions of entry
point(s) for performing operations of the
development application

415

Execute the script to perform the
operation(s) on one or more work items
and/or components

FIG. 4

Patent Application Publication Aug. 25,2016 Sheet S of 5

US 2016/0246465 Al
500
502 /
¥
PROCESSOR / N L 510
INSTRUCTIONS ‘L - # VIDEQ DISPLAY
- 526
BUS
»»»»» -530
904 512
MAIN MEMORY
" B L _ | ALPHA-NUMERIC
o il ®1' INPUT DEVICE
INSTRUCTIONS |-
-~ 506 - 514
| CURSOR
| STATIC MEMORY |- | = CONTROL
DEVICE
522 0
; {
NETWORK DRIVE UNIT
INTERFACE = = COMPUTER- |
DEVICE READABLE STORAGE .| _ 524
| a w MEDIUM
‘; 1526
i g
i INSTRUCTIONS +
Y 521
520
SIGNAL
ot s GENERATION
DEVICE

FIG. 5

US 2016/0246465 Al

DUPLICATING A TASK SEQUENCE FROM A
GRAPHICAL USER INTERFACE
INTERACTION FOR A DEVELOPMENT
APPLICATION IN VIEW OF TRACE DATA

TECHNICAL FIELD

[0001] The present disclosure relates to graphical user
interface (GUI) interactions for a development application
and, more particularly, for duplicating a task sequence from a
GUI interaction in view of trace data.

BACKGROUND

[0002] A development application, such as an integrated
development environment (IDE), is an application for devel-
oping a work item. Generally, development applications
assist users in developing large scale work items, such as
software-packages, databases, or documents. The large scale
work items usually include tens to hundreds of components,
such as software modules, database tables, or individual files.
[0003] Scripts are generally used to modify multiple com-
ponents of work items. For example, changing the design of a
table in a database can be repeated across multiple tables
using a script to save development time. Custom scripts are
traditionally generated by user input from a command line
interface, which involves manually writing custom lines of
code, and usually takes a prohibitive amount of time and user
expertise. A development application generally includes GUI
tools for users to modify a work item (e.g., software-package)
or components of a work item. GUI tools of an application
typically vary across different layouts, platforms, inputs, ver-
sions, or updates of the development application.

[0004] Built-in scripts in a GUI tool are typically pro-
grammed for the specific development application using pre-
defined associations of known GUI tools. Built-in scripts in a
GUI tool are limited to core operations and generally do not
support non-core operations.

[0005] Conventional add-on script generators in a GUI tool
typically record image cues (graphical elements, buttons,
image recognition, etc.) or on-screen cursor locations to tie
together user interface shortcuts. Conventional add-on script
generators usually playback to the user interface shortcuts as
on-screen animation and/or depend on outputting control
over the GUI. User interface shortcuts fail typically due to
variations in the GUI layout, platform, input, version, or an
update of the development application.

[0006] Conventional script generation usually has few
options for customization and limit a user’s (e.g., developer)
ability to repeat sequences of operations. Traditional script
generators require a high degree of maintenance and support
to remain operable, and have reduced reliability and compat-
ibility for execution of scripts across different development
applications, layouts, platforms, inputs, and/or versions.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The present disclosure will be understood more
fully from the detailed description given below and from the
accompanying drawings of various implementations of the
disclosure.

[0008] FIG.1illustrates an example system architecture, in
accordance with various implementations.

[0009] FIG.2isaflow diagram for a method for duplicating
operations of a development application, in accordance with
one or more implementations of the present disclosure.

Aug. 25,2016

[0010] FIG. 3 is a flow diagram for a method for creating a
script that duplicates operations of a development applica-
tion, in accordance with one or more implementations of the
present disclosure.

[0011] FIG. 4 is a flow diagram for a method for executing
the script for duplicating operations of a development appli-
cation, in accordance with one or more implementations of
the present disclosure.

[0012] FIG. 5 is a block diagram of an example computer
system that can perform one or more of the aspects described
herein, in accordance with various implementations.

DETAILED DESCRIPTION

[0013] Implementations of the present disclosure describe
duplicating a task sequence from a graphical user interface
(GUI) interaction for a development application in view of
trace data. A development application is an application that
enables users (e.g., developers) to develop and/or edit a work
item (e.g., software package, database) and/or components of
a work item. A work item is a product of the development
application stored in a memory. For example, a work item
may be a software package, and a document or file may be a
component of the software package. Developing large scale
work items, such as databases, which generally include tens
to hundreds of components, such as database tables, can take
a significant amount of time.

[0014] Work items can be modified. The development
application can include a GUI, which a user can interact with
to more efficiently develop and/or edit a work item and/or a
component of a work item. A GUI interaction is user input
received via the GUI that specifies one or more operations of
the development application to be performed on a work item
and/or a component of a work item. For example, a GUI
interaction may be a user selecting text in a document and
clicking on a font button in the GUI, and the operation that is
specified by the user selecting the text and clicking the font
button is to change the font of selected text.

[0015] A development application can operate in a multi-
layered architecture, which can include a presentation layer,
an application layer, and a system level layer. When an opera-
tion is performed in response to a GUI interaction, data is
communicated across the various layers. The presentation
layer can facilitate user input and presentation of information
to the user through the GUI, and contains the actual GUI
elements for users to view and interact (e.g., click) with. At
the presentation layer, the user can interact with the GUI to
engage one or more GUI elements (e.g., buttons, drop down
menu, icons, dialog box, etc.) of the development application
to indicate modification(s) that are to be made to the work
item and/or component. An application layer can interpret the
user input received via the presentation layer to determine the
operation(s) to be performed, and can communicate com-
mand(s) that correspond to the operation to the system level
layer. The system level layer can include software and/or
hardware of a machine that can perform actions to execute the
operation that is specified by the GUI interaction. For
example, the operating system, as part of the system level
layer, can process system calls to change the font value that is
stored in memory for the selected text.

[0016] A task sequence can be a set of GUI-agnostic
actions that are performed at the system level layer for execut-
ing the operation that is specified by the GUI interaction. The
task sequence can represent a set of instructions (e.g., method

US 2016/0246465 Al

calls, system calls, variables, etc.) for executing the operation,
described in detail with relation to FIG. 2.

[0017] Trace datais data that reflects the underlying behav-
iors that occur at the system level layer that correspond to the
operation specified by the GUI interaction. Trace data is
generated, for example, by the operating system executing the
task sequence. The trace data can be monitored and/or
recorded by an agent. A task sequence can be extracted from
a recorded set of trace data.

[0018] Implementations of the present disclosure create a
script from trace data that is recorded for executing an opera-
tion specified by a GUI interaction. The script, when
executed, can duplicate the operation (e.g., modify) of the
development application specified by the GUI interaction on
a work item and/or a component of a work item. Unlike
conventional scripting solutions that only support core GUI
operations, implementations of the present disclosure can
duplicate any operation of the development application speci-
fied by a GUI interaction for performing an action on a work
item and/or component. Core GUI operations are limited to
functionality with predefined scripts or direct mappings.
Non-core GUI operations can include any operation that devi-
ates from the predefined scripts. Examples of non-core GUI
operations can include, but are not limited to, a sequence of
multiple core operations, a sequence of custom operations,
and/or unmapped operations newly added to the development
application.

[0019] In one implementation, a duplication script is GUI-
agnostic, such that, the script executes across various devel-
opment applications with different user interface layouts,
versions, etc. Creating a script from recorded trace data for a
GUI interaction, as described herein, is compatible with GUI
interactions with any user input means supported by the pre-
sentation layer. The script created from recorded trace data
for a GUI interaction, as described herein, can also execute
independent of output to the presentation layer thereby
enhancing playback performance and resilience between dif-
ferent GUI platforms and development applications.

[0020] FIG. 1 illustrates a system architecture 100, in
accordance with various implementations. In one implemen-
tation, the system architecture 100 can include a computing
machine 190 executing one or more development applica-
tions 120 (e.g., computer-aided software development appli-
cation, integrated development environment, middleware
solution, thick client, etc.). The system architecture 100 can
include a computing machine 190 coupled to one or more data
stores 105, 106 via one or more networks 180. The network
180 may be public networks (e.g., the Internet), private net-
works (e.g., a local area network (LAN) or wide area network
(WAN)), or a combination thereof. The databases 113A,B can
be geographically decentralized.

[0021] The computing machine 190 can be a computing
device such as a server computer, a desktop computer, a
set-top box, a gaming console, a television, a portable com-
puting device such as, and not limited to, mobile telephones,
personal digital assistants (PDAs), portable media players,
netbooks, laptop computers, an electronic book reader and
the like. Computing machine 190 can include one or more
processing devices, memory, and/or additional devices such
as a graphics card, internal input/output (I/O) device, key-
board, mouse, speaker, etc.

[0022] The computing machine 190 can include a presen-
tation layer 101, an application layer 102, and a system level
layer 103. The application layer 102 can include the devel-

Aug. 25,2016

opment application 120, which can run on an operating sys-
tem that executes at the system level layer 103. Users can
interact with the development application 120 via a graphical
user interface (e.g., GUI 110), which executes at the presen-
tation layer 101, to develop one or more work items 150,170
and/or one or more components 151, 171 of the work items
150,170.

[0023] A work item 150,170 can be a product of the devel-
opment application 120. Examples of work items 150,170
can include, and are not limited to, software-packages, data-
bases, and documents. A work item 150,170 can include one
or more components 151,171. For example, a software-pack-
age may have software modules as components, a database
may have database tables as components, and a document
may have document headers and/or footers as components.
[0024] The work items 150,170 and components 151,171
can be stored in a data store 105 or data store 106. Data stores
105 and/or 106 can be a persistent storage unit. A persistent
storage unit can be a local storage unit or a remote storage
unit. Persistent storage units can be a magnetic storage unit,
optical storage unit, solid state storage unit, electronic storage
unit (e.g., main memory) or similar storage unit. Persistent
storage units can be a monolithic device or a distributed set of
devices. A ‘set’, as used herein, refers to any positive whole
number of items.

[0025] As described above, one or more operations can be
performed on a work item 150,170 and/or component 151,
171. The development application 120 can access the work
items 150,170 and/or components 151,171 in the data store
105 to perform the one or more operations on one or more of
the work items 150,170 and/or components 151,171. Opera-
tions can include creating a work item and/or component,
modifying a work item and/or component, deleting a work
item and/or component, and/or overwriting a work item and/
or component.

[0026] User inputcanbereceived by the GUI 110 to specify
the one or more operations to perform on a work item 150,170
and/or component 151,171. The user can engage a GUI ele-
ment (e.g., icons, buttons, menus, menu items, etc.) of the
GUI 110 to specify one or more operations of the develop-
ment application 120 to be performed. As described above, a
GUI interaction is user input received via the GUI 110 that
specifies an operation of the development application to be
performed on a work item 150,170 and/or a component of
work items 151, 171. When the operation (e.g., modify) is
performed, GUI 110 can display the change(s) to a work item
150,170 and/or component 151, 171.

[0027] The development application 120 at the application
layer 102 can receive information from GUI 110 at the pre-
sentation layer 101 for performing the operation(s) specified
by the GUI interaction. The information that is received from
GUI 110 can include GUI element data (e.g., interface short-
cuts, parameters, etc.), which the development application
120 can use to relate the user input to an operation of the
development application 120. The GUI element data (e.g.,
interface shortcuts, parameters, etc.) can enable application
defined associations between the GUI elements and opera-
tions of the development application 120.

[0028] The development application 120 can include a GUI
translator 121 to interpret the information (e.g., GUI element
data) received from GUI 110 and determine a corresponding
operation to be performed on the one or more work items
150,170 and/or one or more components 151,171. The GUI
translator 121 can translate the user input into non-platform-

US 2016/0246465 Al

specific code. For example, if the information (e.g., GUI
element data) from the GUI 110 indicates that text is selected
and the font button is activated, the GUI translator 121 may
translate the information to correspond to an operation of the
development application for changing an assigned font value
stored in memory for the selected text.

[0029] To translate the information (e.g., GUI element
data), the GUI translator 121 in the development application
120 can identify one or more commands, which correspond to
the information, for the operating system to perform at the
system level layer 103, and can send the commands to the
operating system at the system level layer 103. For example,
the GUl interaction may include user input selecting a header
of'a document and the user activating a font size button. The
GUI 110 at the presentation layer 101 can send GUI element
data pertaining to the GUI interaction to the GUI translator
121 at the application layer 102. The GUI translator 121 can
generate a task sequence 123 that can be executed by the
operating system to perform changes (e.g., change font size)
to the work item 160 (e.g., header of a document). The task
sequence 123 can include method calls, system calls, vari-
ables, etc. for the operating system to use in order to perform
changes to the work item 160. The operating system can
receive the task sequence 123 from the GUI translator 121.
The operating system generates trace data reflecting the pro-
cessing of the task sequence 123.

[0030] The system level layer 103 can include a kernel as
the central component of the operating system that bridges
the development application 120 at the application layer 102
to the data processing that is performed by hardware of the
computing machine 190. An example of an operating system
is the Linux® operating system. In one implementation, trace
data can be in the form of binary instructions for data pro-
cessing by the kernel (e.g., bytecode).

[0031] The trace data can include irrelevant data that is
generated by the operating system and is not related to a GUI
interaction or to performing the specified operation on the
work item 150 and/or component 151. An example of irrel-
evant data in the trace data can include data pertaining to other
processes or threads of the operating system that are not
related to GUI interaction that specifies the operation to be
duplicated. For example, the trace data can include data per-
taining to a user closing an informative pop-up window,
which is user interaction with the GUI that is not related to the
GUI interaction to modify the work item 150 and/or compo-
nent 151. In one implementation, the user can select a task
identifier (task ID) or process identifier (PID) of the develop-
ment application 120 to instruct an agent 130 as to which trace
data the agent 130 should record.

[0032] The agent 130 can record the trace data in a trace log
162. The agent allows for monitoring and examination of the
activities of the development application that is executing.
The trace data is generated for actions that occur below the
presentation layer (i.e., at the application layer 102 and/or
system level layer 103) and includes information from the
application layer 102 and/or system level layer 103 to reflect
the operating system and underlying hardware behavior (e.g.,
thread states and/or memory states of a processing device)
that occurs as instructed by the task sequence. In one imple-
mentation, the agent 130 runs on the operating system of the
computing machine 190. In another implementation, the
agent 130 runs directly on hardware to access the trace data at
various levels of the computing machine 190, such as at the
hardware level, operating system level, application level, and

Aug. 25,2016

input/output level, etc. The agent 130 can be part of a dupli-
cation module 143 or separate from duplication module 143.
[0033] Inoneimplementation, agent 130 is a Java™ virtual
machine (JVM). A JVM is a virtual machine to monitor trace
data (e.g., Java bytecode, system behavior, etc.). Such trace
data includes, but is not limited to, bytecode, information
extracted from a class file, an object to be instantiated by a
Java™ application (e.g., development application 120), a
parameter to methods, a return value, local variables, and/or
intermediate results of computations. It should be understood
that implementations can include different hardware and/or
different operating systems. The agent 130 can include the
trace sub-module 131 that records the monitored trace data
into the trace log 162 stored in the data store 106.

[0034] Thetracelog162 can store state data (e.g., trace file,
memory heap, trace runs, and/or thread dump, etc.). The trace
log 162 can include multiple log versions. The log versions in
the trace log 162 can include data that represent multiple
instances of an operation that is specified by the GUI inter-
action, for example, when a user repeats the operation of the
development application, as described in reference to FIGS.
2-4. In one implementation, multiple log versions are used by
an extractor sub-module 144 of the duplication module 143.
[0035] The duplication module 143 on the computing
machine 190 can generate a duplication script 167 to dupli-
cate an operation of the development application 120 as
specified by a GUI interaction. Duplication module 143 can
duplicate custom sequences of operation of the development
application that executes independent of output to the GUI
110. For example, the duplication script 167 can associate a
task sequence of an operation of the development application
with instructions for the development applications 120 that
are agnostic to a GUI platform or layout. The duplication
module 143 can run as a standalone application or a feature of
the development application 120. In one implementation,
duplication module 143 includes an interface (not shown) to
aid in altering or maintaining the duplication script 167,
described in greater detail below in conjunction with FIG. 4.
[0036] Duplication module 143 can include an extractor
sub-module 144 to extract trace data from the trace log 162.
The extractor sub-module 144 can compare trace data in the
trace log 162 in view of the work item 150 and/or component
151 to extract a subset of trace data 165 representing an
operation of the development application specified by a GUI
interaction, described in greater detail below in conjunction
with FIGS. 2-4. Extractor sub-module 144 can output the
extracted subset of trace data 165 (e.g., Java bytecode,
method calls, variables, etc.) to an assembler sub-module
146.

[0037] The assembler sub-module 146 can assemble the
extracted subset of trace data 165 into the duplication script
167. Assembler sub-module 146 assembles the duplication
script in view of the extracted subset of trace data 165 to
duplicate the operations for modifying one or more work
items 150,170 and/or one or more components 151,171 as
specified by the GUI interaction. For example, assembler
sub-module 146 can assemble a sequence of instructions in
view of the extracted trace data (e.g., Java bytecode, method
calls, variables, etc.) to duplicate modifying the font size of
the header in the document to re-create the operation of the
development application for the user clicking the font button
function. The assembler sub-module 146 can generate output
of the duplication script 167 that, when executed, replicates
the modification to one or more work items 150,170 and/or

US 2016/0246465 Al

components 151,171. The assembler sub-module 146 is dis-
cussed in greater detail below in conjunction with FIGS. 2-4.
In one implementation, the duplication script 167 executes by
way of the agent 130 or via a separate player 148 in commu-
nication with the development application 120. The duplica-
tion script 167 is discussed in greater detail below in conjunc-
tion with FIG. 4.

[0038] FIG. 2 is a flow diagram of an implementation of a
method 200 for duplicating an operationin a development
application. Method 200 can be performed by processing
logic that can include hardware (e.g., circuitry, dedicated
logic, programmable logic, microcode, etc.), software (e.g.,
instructions run on a processing device), or a combination
thereof. In one implementation, method 200 is performed by
a duplication module (e.g., duplication module 143 of FIG.
1).

[0039] Atblock 205, the duplication module monitors trace
data (e.g., system behaviors) caused by a development appli-
cation during a GUI interaction of a user specifying an opera-
tion of the development application to be performed on a
work item (e.g., document) produced by the development
application. The GUI interaction of the user is via a GUIL. A
GUI interaction of a user modifying a document can repeat a
sequence of actions to perform the modification to one or
more other work items (e.g., documents). Each time the user
interacts with the GUI (e.g., clicking a button or a selecting
menu item), behaviors occur below the presentation layer, for
example, at the application layer and/or the system level
layer, that are associated with, for example, system thread
states and/or memory states of a processing device (e.g., trace
data). In one implementation, data that represents the mul-
tiple instances of an operation that is specified by the GUI
interaction are recorded as log versions of the recorded GUI
interaction. Multiple instances of the operation can be for the
same operation of the development application performed
with different values for performing the operation. As dis-
cussed above, trace data can include environment parameters,
variables, system calls, hardware operations, etc.

[0040] At block 210, the duplication module records trace
data that is generated when one or more GUI interactions of a
user is detected. The duplication module can store the trace
data in a trace log. The trace log can include extra trace data
related to multiple processes executed by an operating sys-
tem. In one implementation, the duplication module can
include controls to trigger the recording of trace data. For
example, a user can trigger the controls prior to interaction to
perform the GUI interaction. In another implementation, the
duplication module can receive input from the user indicating
specific trace data to record. For example, the user can indi-
cate a specific document, category of modification, or process
identifier of the development application that indicates trace
data to record. In one implementation, the agent (e.g., JVM or
java agent) includes a software logging or tracing feature
(e.g., java tracing tool) that creates a log. Duplication module
controls can stop, pause, or create versions of the recorded
trace data in the trace data log.

[0041] The user can repeat the GUI interaction of modify-
ing the document to record data that represents the multiple
instances of an operation that is specified by the GUI inter-
action. The multiple instances of the operation repeat a
sequence of actions to perform the modification triggering the
same or similar sequence of instructions. The actions per-
formed with different values create the task sequence that call
the same or similar variables to modify the work item and/or

Aug. 25,2016

component. For example, the sequence of actions to modify
the font size values call the same or similar variable for font
size. The agent can record the multiple instances as log ver-
sions of the user modifying the work item, for example,
changing the font heading to different font type values or size
values, such as Times New Roman or Arial.

[0042] The recorded GUI interaction can include supertlu-
ous trace data irrelevant to modifying the document, such as
reacting to a distraction in the GUI. Multiple recordings of the
GUTl interaction can increase the recognition of operatinons in
the trace data during extraction. In one example, instances of
the GUI interaction are recorded as trace data for the opera-
tion of the development application in the form of a trace run.
A trace run is a sequence of method calls and parameters that
can be sent by the development application for execution by
an operating system.

[0043] At block 215, the duplication module extracts a
subset of trace data associated with the GUI interaction from
the recorded trace data. The subset of trace data corresponds
to a task sequence for the operation of the development appli-
cation specified by the GUI interaction. The subset of trace
data can include, for example, one or more parameters, a
sequence of method calls, and/or state data from the recorded
trace data. Parameters can include variables to execute the
operation of the application, such as file path, document
fields, font size, etc. A task sequence of method calls to
duplicate the operation of the development application can be
extracted from recorded trace data. State data can include a
memory heap, a thread state, an object, etc. Extracting the
subset of trace data associated with the GUI interaction from
the recorded trace data is described in greater detail below in
conjunction with FIG. 3. The multiple instances of the opera-
tion specified by the GUI interaction trigger similar
sequences of instructions that the duplication module can
compare to extract the subset of trace data to duplicate the
task sequence. In one implementation, the duplication mod-
ule compares the recorded trace data among the multiple
instances and identifies the method calls, system calls, state
changes, and variables associated with the GUI interaction.
The duplication module extracts the subset of the recorded
trace data. The duplication module can select a portion of the
subset of trace data associated with the GUI interaction from
the recorded trace data to assemble a duplication script.

[0044] Atblock 220, the duplication module assembles the
script in view of the subset of trace data to duplicate the action
of the development application for modifying one or more
other work items. The duplication module can apply various
data manipulation techniques to parse, construct, look-up,
etc. for assembling the subset of trace data as the duplication
script. In some implementations, the assembled instructions
can include variables, method calls, and state data from
memory. The creation of the script is described in greater
detail below in conjunction with FIG. 3.

[0045] At block 225, the duplication module executes the
script independent of output to the GUI to modify multiple
work items. The generated script includes instructions for
development applications that are platform-neutral to a pre-
sentation layer and execute independent from output to the
GUI. In one example, a JVM can be used to execute the script.
In one implementation, the duplication module can receive
input from the user indicating values for customizing dupli-
cation of the operation prior to the script executing, described
in greater detail below in conjunction with FIG. 4.

US 2016/0246465 Al

[0046] FIG. 3 is a flow diagram of an implementation for
creating a script that duplicates operations of a development
application. Method 300 can be performed by processing
logic that can include hardware (e.g., circuitry, dedicated
logic, programmable logic, microcode, etc.), software (e.g.,
instructions run on a processing device), or a combination
thereof. In one implementation, method 300 is performed by
a duplication module (e.g., duplication module 143 of FIG.
1).

[0047] Atblock 305, the duplication module determines an
end point, in the recorded trace data, corresponding to an
instance of an operation (e.g., modification) of the develop-
ment application performed on a work item and/or compo-
nent as specified in a GUI interaction. The recorded trace data
(e.g., tracelog 162 of FIG. 1) can be stored in a data store. The
operation can include creating, modifying, deleting, and
overwriting a work item and/or component. The operation
can be an operation that is to be duplicated without user
interaction.

[0048] The recorded trace data can represent actions per-
formed at the system level layer for one or more task
sequences that are executed by the operating system. There
can be multiple instances of an operation that are performed
on the work item and/or component. One or more of the
instances can include different input values and/or parameters
for performing the operation. For example, there may be a
GUI interaction, where a user selects Text1 of a work item and
changes Textl to Font-X, followed by another GUI interac-
tion, where the user selects a header of the work item and
changes the header to Font-Size-Y, and yet followed by
another GUI interaction, where the user selects Text2 of the
work item and changes Text2 to Font-Z. In this example, there
are two instances of changing the font of various text and one
instance of changing the font size of a header. The recorded
trace data can include data that represents the multiple
instances of an operation that is specified by the GUI inter-
action. For example, the trace data can include portions of
trace data that respectively represent changing Textl to
Font-X and changing Text2 to Font-Z.

[0049] The trace data can include timestamps, and the por-
tions of the trace data that correspond to the instances of an
operation (e.g., modification) performed on the work item
and/or component can be in an order in the recorded trace data
that is based on the timestamps. For example, the trace data
can include a portion of trace data that represents changing
Textl to Font-X, followed by a portion of trace data that
represents changing the header font size to Font-Size-Y, fol-
lowed by a portion of trace data that represents changing
Text2 to Font-Z.

[0050] Each portion of trace data that corresponds to an
operation (e.g., change) performed on the work item and/or
component can include a dynamic parameter, such as a spe-
cific type of call, that is used to change a value (e.g., font
value, font size value) that is stored in memory to execute the
operation (e.g., change font, change font size). For a change
operation (e.g., change font, change font size), the dynamic
parameter can be a write to memory call to change the value
(e.g., font value, font size value) that is stored in memory for
performing the change operation.

[0051] To identify an end point that corresponds to an
instance of an operation (e.g., change font) at block 305, in
one implementation, the duplication module searches the
trace data for a dynamic parameter (e.g., write to memory
call). The duplication module can start at the end of the

Aug. 25,2016

recorded trace data and search backwards in the recorded
trace data to find an end point (e.g., write to memory call). The
duplication module can include processing logic to recognize
dynamic parameters (e.g., write to memory calls) from a
framework associated with the development application. In
one implementation, the duplication module uses mappings
and/or dynamic program analysis to identify an end point that
corresponds to an operation (e.g., change) performed on the
work item and/or component. Analysis of the trace data can
locate an end point by mapping the logical state changes
between activities to physical state changes. In one imple-
mentation, a profile of the trace data is used to dynamically
analyze memory usage of a particular step or frequency and
duration of call operations in the trace data. In one implemen-
tation, the duplication module analyzes program source code,
object references, and/or binary executable code to determine
an end point in the recorded trace data.

[0052] Atblock 310, the duplication module determines an
entry point in the recorded trace data that corresponds to the
end point for the operation. The duplication module can
search backwards from the determined end point to locate a
certain type of function call (e.g., main), and use the located
function call as the entry point that corresponds to the end
point.

[0053] Atblock 315, the duplication module selects a por-
tion of the recorded trace data that corresponds to the opera-
tion in view of the entry point and the end point. As described
above, the recorded trace data can include data that is not
relevant to operations that are specified by GUI interactions.
The duplication module can separate the recorded trace data
that is associated with the operations from irrelevant data, and
select a portion that is related to an operation to be duplicated.
In one implementation, the duplication module traces the
sequence of instructions in the selected portion from the end
point backwards to the corresponding entry point to identify
system call(s) and method call(s). For example, the duplica-
tion module may start at the end point which is a system write
call to update memory, and may identify a method call in the
selected portion that passed the font value to the system call.
The duplication module may trace backwards from the
method call that passed the font value to the method call that
passed the location in the work item associated with the
operation. The duplication module can continue to trace
backwards to the entry point that corresponds to the end point.
[0054] At block 320, the duplication module determines
one or more variables, from the selected portion, used to
perform the operation. The duplication module can extract
the variable(s) that are used for the operation. For example,
for an overwrite operation, the duplication module can iden-
tify an attribute of the work item associated with the memory
location. In one implementation, the duplication module
compares data from a memory heap or thread dump for the
final states of variables that were used in arguments in iden-
tified method calls.

[0055] Atblock 325, the duplication module assembles the
entry point, variable(s), selected portion of trace data and end
point into a subset of trace data for the operation as a sequence
of instructions to duplicate the operation. The subset of trace
data for the operation is a set of instructions, which when
executed, duplicate the operation on a work item and/or com-
ponent. The duplication module can use timestamps in the
selected portion to manipulate the entry point, variable(s),
selected portion of trace data and end point into the subset of
trace data.

US 2016/0246465 Al

[0056] At block 330, the duplication module determines
whether to determine an end point for another operation in the
recorded trace data. As described above, the recorded trace
data can include data to represent multiple operations (e.g.,
change Text1 to Font-X, change header to Font-Size-Y, etc.)
that are performed on a work item and/or component. The
duplication module can detect that there is data in the
recorded trace data that has not been searched, which can
indicate that there may be data for another operation in the
recorded trace data. The duplication module can return to
block 305 to determine an end point for another operation.

[0057] If the duplication module determines not to deter-
mine an end point for another operation (block 330), for
example, because the duplication module detects that there is
no other data to be searched in the recorded trace data, the
duplication module creates a script including the subset(s) of
trace data for the respective operation(s) at block 335. Each
subset of trace data in the script can include an entry point to
be used as a trigger, a corresponding selection portion of trace
data, the corresponding variables, and a corresponding end
point to perform the operation of the development applica-
tion. An emulated environment (e.g., data structures, objects,
states, libraries, etc.) of the development application can be
used to execute the script to duplicate the operation(s), as
described in greater detail below in conjunction with FIG. 4.
It is noted that although described sequentially, the steps for
the selection of the portion, identification of the entry point,
and/or identification of variables can occur simultaneously.
The duplication module can tailor the subsets of trace data to
integrate into the development application framework for
duplicating the task sequence. The duplication module can
reuse the subsets of trace data with the target framework to
assemble the script. For example, in a Java integrated devel-
opment environment(IDE) development application, Swing
and Abstract Windowing Toolkit (AWT) frameworks are used
to derive functions and dependencies that carry out the opera-
tion. Swing is a toolkit in Java that can provide the graphical
user interface components implemented in non-platform-
specific code (i.e. Java). AWT provides an application pro-
gramming interface (API) for GUI and rich clients in Java.
APIs can be used to access the development application
framework.

[0058] FIG. 4 is a flow diagram of an implementation for
executing the script for duplicating operations of a develop-
ment application, in accordance with one or more implemen-
tations of the present disclosure. Method 400 can be per-
formed by processing logic that can include hardware (e.g.,
circuitry, dedicated logic, programmable logic, microcode,
etc.), software (e.g., instructions run on a processing device),
or acombination thereof. In one implementation, method 400
is performed by a duplication module (e.g., duplication mod-
ule 143 of FIG. 1) executing on a computing machine or by a
stand alone player (e.g., Player 148 of FIG. 1) executingon a
computing machine.

[0059] At block 405, the computing optionally prompts a
user to provide input for execution of the script for duplicating
operations of a development application. The user input can
include one or more target work items and/or one or more
components to modify, one or more values, and/or input
parameters. Input parameters for variables of the duplicated
task sequence can be used to customize the operation(s) per-
formed from executing the script. The user input can be
received via a command line, dialogue box, and/or GUI inter-
action to specify the target work item, components, values,

Aug. 25,2016

parameters, etc. For example, the user input may specify a
font value and the computing machine can execute the script
to duplicate the font change on the one or more target work
items and/or components using the specified font value.
[0060] The computing machine can use an agent to emulate
the environment of the development application. In one
implementation, an agent (e.g., agent 130 of FIG. 1) can be
used as a player (e.g., Player 148 of FIG. 1) to emulate the
environment of the development application.

[0061] At block 410, the computing machine sets up an
environment for the development application and provides
instructions of the entry point(s) in the script for performing
the operations of the development application. The comput-
ing machine can use an agent for setting up the environment.
The computing machine can provide the instructions to the
agent. An entry point of a corresponding subset of trace data
can be used to load the development application to a state for
the corresponding operation to be performed.

[0062] At block 415, the computing executes the script to
duplicate the operation(s) on the one or more work items
and/or one or more components. The duplication of the opera-
tions results in the one or more target work items and/or
components being modified in memory. The script executes
independent of the GUI (e.g., GUI 110 in FIG. 1) and without
further user interaction. In one implementation, the comput-
ing machine blocks input and output to the GUI. The com-
puting machine can execute the script to duplicate the opera-
tion(s) as a background process by the operating system and/
or hardware that does not output to the GUI. Variations in
platforms, GUI layouts or versions of the development appli-
cation do not change and/or affect the execution of the script.
[0063] FIG. 5 is a block diagram of an example computer
system 500 that can perform one or more of the operations
described herein, in accordance with various implementa-
tions. FIG. 5 illustrates a diagrammatic representation of a
machine in the form of a computer system 500 within which
a set of memory instructions 526, for causing the machine to
perform any one or more of the methodologies discussed
herein, can be executed. In an alternative example, the
machine can be connected (e.g., networked) to other
machines in a Local Area Network (LAN), an intranet, an
extranet, or the Internet. The machine can operate in the
capacity of a server or a client machine in a client-server
network environment, or as a peer machine in a peer-to-peer
(or distributed) network environment. The machine can be a
personal computer (PC), a tablet PC, a set-top box (STB), a
Personal Digital Assistant (PDA), a cellular telephone, a web
appliance, a server, a network router, switch or bridge, or any
machine capable of executing a set of instructions (sequential
or otherwise) that specitfy actions to be taken by that machine.
Further, while only a single machine is illustrated, the term
“machine” shall also be taken to include any collection of
machines (e.g., computers) that individually or jointly
execute a set (or multiple sets) of instructions to perform any
one or more of the methodologies discussed herein.

[0064] The computer system 500 includes a processor 502,
a main memory 504 (e.g., read-only memory (ROM), flash
memory, dynamic random access memory (DRAM) such as
synchronous DRAM (SDRAM), etc.), a static memory 506
(e.g., flash memory, static random access memory (SRAM),
etc.), and a secondary memory 516 (e.g., a data storage
device), which communicate with each other via a bus 530.
[0065] The processor 502 represents one or more general-
purpose processing devices such as a microprocessor, central

US 2016/0246465 Al

processing unit, or the like. More particularly, the processor
502 can be a complex instruction set computing (CISC)
microprocessor, reduced instruction set computing (RISC)
microprocessor, very long instruction word (VLIW) micro-
processor, processor implementing other instruction sets, or
processors implementing a combination of instruction sets.
The processor 502 can also be one or more special-purpose
processing devices such as an application specific integrated
circuit (ASIC), a field programmable gate array (FPGA), a
digital signal processor (DSP), network processor, or the like.
The processor 502 executes the duplication module 143 for
performing the operations and steps discussed herein.
[0066] The computer system 500 can further include a net-
work interface device 522. The network interface device 522
can be in communication with a network 521. The computer
system 500 also can include a video display unit 510 (e.g., a
liquid crystal display (LLCD), a touch screen, or a cathode ray
tube (CRT)), an alphanumeric input device 512 (e.g., a key-
board), a cursor control device 514, and a signal generation
device 520 (e.g., a speaker). Cursor control device 514 can,
for example, include a computer mouse, voice recognition,
video recognition, touch sensor, stylus, eye tracking, grip
equipment, switch, sensor, etc. to interact with the video
display 510.

[0067] The secondary memory 516 can include a com-
puter-readable storage medium 524 (or more specifically a
non-transitory computer-readable storage medium) on which
is stored one or more sets of instructions 526 (e.g., duplication
instructions executable by a system 100 in FIG. 1.) for the
computer data processing system 100 embodying any one or
more of the methodologies or functions described herein. The
instructions 526 for the computer data processing system 100
can also reside, completely or at least partially, within the
main memory 504 and/or within the processing device 502
during execution thereof by the computer system 500, the
main memory 504 and the processing device 502 also consti-
tuting computer-readable storage media. The instructions 526
for the computer data processing system 100 can further be
transmitted or received over a network via the network inter-
face device 522.

[0068] While the computer-readable storage medium 524
is shown in an example to be a single medium, the term
“computer-readable storage medium” should be taken to
include a single medium or multiple media (e.g., a centralized
or distributed database, and/or associated caches and servers)
that store the one or more sets of instructions 526. The term
“computer-readable storage medium” shall also be taken to
include any medium that is capable of storing or encoding a
set of instructions for execution by the machine that cause the
machine to perform any one or more of the methodologies of
the disclosure. The term “computer-readable storage
medium” shall accordingly be taken to include, but not be
limited to, solid-state memories, and optical and magnetic
media.

[0069] Some portions of the preceding detailed descrip-
tions have been presented in terms of algorithms and sym-
bolic representations of operations on data bits within a com-
puter memory. These algorithmic descriptions and
representations are the ways used by those skilled in the data
processing arts to most effectively convey the substance of
their work to others skilled in the art. An algorithm is here,
and generally, conceived to be a self-consistent sequence of
operations leading to a desired result. The operations are
those requiring physical manipulations of physical quantities.

Aug. 25,2016

Usually, though not necessarily, these quantities take the form
of electrical or magnetic signals capable of being stored,
combined, compared, and otherwise manipulated. It has
proven convenient at times, principally for reasons of com-
mon usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like.

[0070] Itshould be borne in mind, however, that all of these
and similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “recording,” “extracting,” “assembling,” “monitoring,”
“storing,” “identifying,” “selecting,” “comparing,” or the like,
refer to the action and processes of a computer system, or
similar electronic computing device, that manipulates and
transforms data represented as physical (electronic) quanti-
ties within the computer system’s registers and memories into
other data similarly represented as physical quantities within
the computer system memories or registers or other such
information storage devices.

[0071] The present disclosure also relates to an apparatus
for performing the operations herein. This apparatus can be
specially constructed for the intended purposes, or it can
include a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program can be stored in a computer read-
able storage medium, such as, but not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, and
magnetic-optical disks, read-only memories (ROMs), ran-
dom access memories (RAMs), EPROMs, EEPROMs, mag-
netic or optical cards, or any type of media suitable for storing
electronic instructions, each coupled to a computer system
bus.

[0072] The algorithms and displays presented herein are
not inherently related to any particular computer or other
apparatus. Various general purpose systems can be used with
programs in accordance with the teachings herein, or it can
prove convenient to construct a more specialized apparatus to
perform the method. The structure for a variety of these
systems will appear as set forth in the description below. In
addition, the present disclosure is not described with refer-
ence to any particular programming language. It will be
appreciated that a variety of programming languages can be
used to implement the teachings of the invention as described
herein.

[0073] Thepresent invention can be provided as a computer
program product, or software, that can include a machine-
readable medium having stored thereon instructions, which
can be used to program a computer system (or other electronic
devices) to perform a process according to the present inven-
tion. A machine-readable medium includes any mechanism
for storing information in a form readable by a machine (e.g.,
a computer). For example, a machine-readable (e.g., com-
puter-readable) medium includes a machine (e.g., a com-
puter) readable storage medium such as a read only memory
(“ROM”), random access memory (“RAM”), magnetic disk
storage media, optical storage media, flash memory devices,
etc.

[0074] In the foregoing specification, implementations of
the invention have been described with reference to specific
example implementations thereof. It will be evident that vari-
ous modifications can be made thereto without departing
from the broader spirit and scope of implementations of the

2 <

US 2016/0246465 Al

invention as set forth in the following claims. The specifica-
tion and drawings are, accordingly, to be regarded in an illus-
trative sense rather than a restrictive sense.

What is claimed is:

1. A method comprising:

recording, by a processing device, trace data that is gener-

ated for one or more graphical user interface (GUI)
interactions of a user;
extracting a subset of the trace data from the recorded trace
data, the subset of the trace data being associated with
one or more GUI interactions specifying operations of a
development application performed on a work item; and

assembling a script in view of the subset of the trace data to
duplicate an operation of the development application
specified by the one or more GUI interactions for one or
more other work items.

2. The method of claim 1, wherein extracting a subset of the
trace data comprises:

identifying an end point in the recorded trace data that is

associated with the operation of the development appli-
cation performed on the work item; and

selecting a portion of the recorded trace data in view of the

end point, wherein the selected portion includes at least
an entry point in the trace data associated with the iden-
tified end point, one or more variables to perform the
operation, or a sequence of method calls to perform the
operation.

3. The method of claim 2, wherein identifying the end point
in the trace data that is associated with the operation com-
prises:

searching the recorded trace data, where the recorded trace

data comprises multiple instances of the operation of the
development application performed on the work item;
and

identifying a dynamic parameter by comparing the mul-

tiple instances of the operation.

4. The method of claim 1, wherein operations of the devel-
opment application performed on a work item comprises
modifying, deleting, or overwriting.

5. The method of claim 1, wherein the assembled script is
platform neutral.

6. The method of claim 1, wherein recording trace data
comprises:

monitoring the trace data output from the development

application using a trace agent of a java virtual machine;
and

storing the trace data in a trace data log.

7. The method of claim 1, further comprising duplicating
the operations of the development applications by executing
the assembled script, wherein executing the assembled script
does not output to the GUL.

8. The method of claim 1, wherein the development appli-
cation is a rich client comprising a GUIL.

9. The method of claim 1, further comprising:

duplicating the operations of the development applications

by executing the assembled script, wherein executing

the assembled script comprises:

setting up an environment for the development applica-
tion;

providing an entry point for performing the operation of
the development application; and

executing the script to perform the operation on the one
or more other work items.

Aug. 25,2016

10. The method of claim 9, wherein executing the
assembled script further comprises prompting a user to pro-
vide input for one or more variables, wherein the one or more
variables are used to perform the operation on the one or more
other work items.

11. A system comprising:

a memory;

aprocessing device operatively coupled to the memory, the

processing device to:

record, by the processing device, trace data that is gen-
erated for one or more graphical user interface (GUI)
interactions of a user;

extract a subset of the trace data from the recorded trace
data, the subset of the trace data being associated with
one or more GUI interactions specifying operations of
a development application performed on a work item;
and

assemble a script in view of the subset of the trace data to
duplicate an operation of the development application
specified by the one or more GUI interactions for one
or more other work items.

12. The system of claim 11, wherein to extract the subset of
trace data comprises to:

identify an end point in the recorded trace data that is

associated with the operation of a development applica-
tion performed on the work item; and

select a portion of the recorded trace data in view of the end

point, wherein the selected portion includes at least an
entry point in the trace data associated with the identified
end point, one or more variables to perform the opera-
tion, or a sequence of method calls to perform the opera-
tion.

13. The system of claim 12, wherein to identify the end
point in the trace data that is associated with the operation
comprises to:

search the recorded trace data, where the recorded trace

data comprises multiple instances of the operation of a
development application performed on the work item;
and

identify a dynamic parameter by comparing the multiple

instances of the operation.

14. The system of claim 11, wherein the processing device
is further to execute the assembled script comprises:

set up an environment for the development application;

provide an entry point for performing the operation of the
development application; and

execute the script to perform the operation on the one or
more other work items.

15. The system of claim 14, wherein to execute the
assembled script further comprises to prompt a user to pro-
vide input for variables, wherein the variables are used to
perform the operation on the one or more other work items.

16. A non-transitory computer-readable storage medium
comprising instructions to cause a processing device to:

record, by the processing device, trace data that is gener-

ated for one or more graphical user interface (GUI)
interactions of a user;

extract a subset of the trace data from the recorded trace

data, the subset of the trace data being associated with
one or more GUI interactions specifying operations of a
development application performed on a work item; and

US 2016/0246465 Al

assemble a script in view of the subset of the trace data to
duplicate an operation of the development application
specified by the one or more GUI interactions for one or
more other work items.

17. The non-transitory computer readable storage medium
of claim 16, wherein to extract the subset of trace data com-
prises to:

identify an end point in the recorded trace data that is

associated with the operation of a development applica-
tion performed on the work item; and

select a portion of the recorded trace data in view of the end
point, wherein the selected portion includes at least an
entry point in the trace data associated with the identified
end point, one or more variables to perform the opera-
tion, or a sequence of method calls to perform the opera-
tion.

18. The non-transitory computer readable storage medium

of'claim 17, wherein to identify the end point in the trace data
that is associated with the operation comprises to:

Aug. 25,2016

search the recorded trace data, where the recorded trace
data comprises multiple instances of the operation of a
development application performed on the work item;
and

identify a dynamic parameter by comparing the multiple

instances of the operation.

19. The non-transitory computer readable storage medium
of claim 16, wherein the processing device is further to
execute the assembled script comprises:

set up an environment for the development application;

provide an entry point for performing the operation of the

development application; and

execute the script to perform the operation on the one or

more other work items.

20. The non-transitory computer readable storage medium
of claim 19, wherein to execute the assembled script further
comprises to prompt a user to provide input for one or more
variables, wherein the one or more variables are used to
perform the operation on the one or more other work items.

#* #* #* #* #*

