US 20160246842A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2016/0246842 A1

LI et al.

43) Pub. Date: Aug. 25, 2016

(54)

(71)

(72)

@

(22)

(1)

QUERY OPTIMIZATION ADAPTIVE TO
SYSTEM MEMORY LOAD FOR PARALLEL
DATABASE SYSTEMS

(52) US.CL
CPC ... GOGF 17/30463 (2013.01); GOGF 17/30598
(2013.01); GOGF 17/30864 (2013.01); HO4L
67/10 (2013.01)

Applicant: g;tlcl[rjesv)vel Technologies, Inc., Plano, (57) ABSTRACT
A method for adaptively generating a query execution plan
Inventors: Huaizhi LI, Belmont, CA (US); Guogen for a parallel database distributed among a cluster of data
ZHANG, San Jose, CA (US) nodes includes receiving memory usage data from a multiple
data nodes including network devices, calculating a represen-
Appl. No.: 14/631,074 tative memory load correspondir.lg: to the data nodes based on
the memory usage data, categorizing a memory mode corre-
_ sponding to the data nodes based on the calculated represen-
Filed: Feb. 25, 2015 tative memory load, calculating an available work memory
corresponding to the data nodes based on the memory mode,
Publication Classification and generating the query execution plan for the data nodes
based on the available work memory, wherein the memory
Int. Cl. usage data is based on monitored individual memory loads
GOG6F 17/30 (2006.01) associated with the data nodes and the query execution plan
HO4L 29/08 (2006.01) corresponds to the currently available work memory.
32
Client
P - 12 N LN
/ Database Database \\
10 Coordinator 1 Coordinator 2 |
!
«— 30 |
i
i
|
16 20 |
— e
Data Node 1 Data Node 2 Data Node 3 !
i i
18 ;
J—— — !
= = j
Storage 2 Storage 3 /
W\ 24 26" /
o, T ~

reoone corocs sovoens wooven coeeces wooses. wovenn meonset ovoce. soocnes oneos ooenee secoeos oonoes |~

Aug. 25,2016 Sheet1 of 5 US 2016/0246842 A1

Patent Application Publication

e Aanann mnnnans ann AnAmn AMAAARS nan AAARAA AAARAn AMAAAA AAAA AAAARR AMRAAA AR RARAR RAnan AR ARARAR AARAA AAARAR ARAAAR MAARAR AAAAA MAAAAR AAAAAR ARRAAN ARAAARS AmmAa RAmman SARAne AR,

¢ a8ei01g

£ 2PON BlE(

-5

74
7 28pi0ig

{ 3PCN B18(

N

7 JO1RUIDIO0)
2580RIEQ

T j

T 9885014

T 2pop IR

/

- QT

e everrs eerree v vemees rvrme oo

T I01eUIDIO0D
aseqeieq

BT

/

43

81

=
a < "Bid
oy
e.=]
o
N
= - 43 5 g
5 ﬂ \ /
@ \ \
5 N
iuueid puIBu3
Fialhlglels) e ACUWIBIN 10883204
Aiany [eqo|n 29019
. J

Aug. 25,2016 Sheet2 of 5

Sl —
.m _\ R “\\ b //
i | _
.m w Joienaen P 1az1108a187) ! Joemnaen
= | b ! JBpdwiod
z | Alowsigom | | PO Aowspy | peo AIOWSIA ANy
g | 240D ;o 2909 | [2Go[9
1 i] |
M ﬂ/ ; ”/ 4 \
[5] nmn e an e angr fmm o e oo nne A A 1onn - e st e o p Aneu mmn e A o e e ~
= / / / /
< 14 Sb 144 [44
=
L
=
=¥

US 2016/0246842 A1

Aug. 25,2016 Sheet 3 of 5

Patent Application Publication

€ "Did
(44 174
0L)
\
\ \ |
audug
UOIINDB XY AJOWiaiN 105530044
12207
1
74
{ Vo Voo)
“ P Joenoen _ ! 19715089187 i
_ OB ! AJCLUBIA YIO M | | BpPOW AICLUBIA | 1OULOW
w ANy 12007 ! w A w M P M pE0T AICUWSIN
| Ly ey _ m Loy _
_ j w j m [
i { ; ;

9

Patent Application Publication = Aug. 25,2016 Sheet 4 of 5 US 2016/0246842 A1

FIG. 4

(START >

80—

Receive guery

82 —

Parse query

84 ot

Compile semantic tree

Create candidate execution plans

Optimize exacution plan

88 —

Segment execution plan

Send local plan segments to data nodes

Patent Application Publication Aug. 25,2016 Sheet 5 of 5 US 2016/0246842 A1

e L . TR
1ig —r Receive semantic tree [
mmmmmmmmmmmmmmmmmmmmmmmmmmmm i
112 — Receive local plan segments
114 — Monitor memaory usage

124 — Execute local plan segments

< END >

US 2016/0246842 Al

QUERY OPTIMIZATION ADAPTIVE TO
SYSTEM MEMORY LOAD FOR PARALLEL
DATABASE SYSTEMS

TECHNICAL FIELD

[0001] This description relates generally to databases, and
more particularly to adaptively optimizing parallel database
query execution plans based on system memory load.

BACKGROUND

[0002] Database systems are used to store information and
relationship data that can be queried to find individual pieces
of information, related pieces of information or relations
between pieces of information. A typical parallel database
system includes a coordinator node, or multiple coordinator
nodes, along with multiple data processing nodes intercon-
nected by a network.

[0003] In general, the coordinator nodes form the front end
of'the system that interfaces with client systems by way of the
same or another network, and coordinates with the data pro-
cessing nodes. Typically, parallel database clients submit
queries to the coordination nodes, or coordinators, which in
turn dispatch the queries to the data nodes for execution.
[0004] In some existing distributed parallel database sys-
tems, for example, massively parallel processing (MPP) data-
base systems, multiple coordinator nodes and multiple data
nodes together form a cluster of computing systems. In dis-
tributed database systems the tables of a database typically
are divided into multiple sections, or partitioned, and the
resulting partitions reside on multiple data nodes in the clus-
ter.

[0005] In general, in both traditional, single-node, non-
distributed relational database management systems and dis-
tributed relational database management systems, when a
database receives a query, such as a structured query language
(SQL) query, from a client the database system compiles the
query, creates and optimizes a query execution plan, and
executes the query execution plan. The database system then
generates query results and sends the results back to the
client.

[0006] In typical parallel database systems, the query plan
compilation and optimization is carried out by the coordina-
tor node, and the query is executed in parallel on all the nodes.
Upon receiving a query, a coordinator invokes a query com-
piler to create a semantic tree based on the query. The query
is parsed using aggregated statistics in the global catalog as if
the database were running on single computer. The coordina-
tor then invokes a query planner that processes the semantic
tree, creates and compares all possible query execution plans,
and outputs an optimal query execution plan.

[0007] The query plan typically is subdivided into seg-
ments and parallelized for the number of distributed data
nodes or data partitions in system. Some query segments are
executed on the coordinator nodes, and other query segments
are executed on the data nodes. Thus, the coordinator sends
the latter query plan segments to the various data nodes in the
cluster for execution. Typically, the coordinator node passes
the same query plan segment, or segments, to each of the
individual data nodes, all of which execute the same query
execution plan segment, or segments, against the various
stored data partitions.

[0008] With regard to any particular query, the query plan-
ner considers multiple candidate query execution plans, any

Aug. 25,2016

one of which the parallel database system is capable of pro-
cessing and generating the results. For example, a typical
query execution plan consists of database operators such as
join, sort and aggregation operators. As an example, with
regard to the join operator there are different join algorithms,
including hash join, nested loop join and sort-merge join.
[0009] Since each operator has differing efficiencies, even
though all of the candidate plans are able to determine the
appropriate final query output, the cost of executing each of
the plans varies substantially. The query planner takes into
consideration system resources, such as memory and table
partitions statistics, when optimizing the algorithms for data-
base operators. The optimizer function of the query planner
on the coordinator node determines the optimal plan, for
example, making a choice between an external merge sort
operation and a quick sort operation, or deciding between a
hash join operation and a nested loop join operation.

[0010] In some existing solutions, the concept of work
memory, the amount of system memory area or space cur-
rently available for use regarding the query, drives the deter-
mination of the optimal execution plan. In general, existing
solutions apply the concept of a fixed work memory to opti-
mize query plans, without taking into consideration the dis-
crepancies between loading of different data nodes over time.
As a result, all of the data nodes typically execute the same
plan segment, which is not always the optimal plan with
respect to each of the data nodes.

[0011] Thus, due to factors such as non-uniform distribu-
tion of database table partitions across the various data nodes
and the dynamic change of memory availability on different
data nodes over time, the fixed work memory configuration
sometimes results in a non-optimal query plan being selected
for the data nodes. For example, given a system with substan-
tial available memory, if the predetermined work memory is
too small the query planner selects an external sort for a
sorting operation, even though a quick sort operation under
the circumstances could be more efficient.

[0012] Such optimization errors can result in general data-
base performance degradation. As a result, some existing
query optimization methodologies can have drawbacks when
used in distributed parallel database systems, since database
query performance is of relatively high importance.

SUMMARY

[0013] According to one general aspect, a method for adap-
tively generating a query execution plan for a parallel data-
base distributed among a cluster of data nodes includes
receiving memory usage data from multiple data nodes
including network devices, calculating a representative
memory load corresponding to the data nodes based on the
memory usage data, categorizing a memory mode corre-
sponding to the data nodes based on the calculated represen-
tative memory load, calculating an available work memory
corresponding to the data nodes based on the memory mode,
and generating the query execution plan for the data nodes
based on the available work memory. The memory usage data
is based on monitored individual memory loads associated
with the data nodes and the query execution plan is adapted to
the currently available work memory.

[0014] According to another general aspect, a device for
adaptively generating a query execution plan for a parallel
database distributed among a cluster of data nodes includes an
individual data node that includes an individual network
device associated with the cluster configured to store at least

US 2016/0246842 Al

aportion of data corresponding to the database and to receive
a query execution plan segment, a memory load monitor
associated with the individual data node and configured to
monitor a memory load associated with the individual data
node, and a local execution engine configured to execute the
query execution plan segment.

[0015] The details of one or more embodiments of the
invention are set forth in the accompanying drawings and the
description below. Other features, objects, and advantages of
the invention will be apparent from the description and draw-
ings, and from the claims.

DESCRIPTION OF THE DRAWINGS

[0016] FIG.1isaschematic drawing depicting a system for
adaptively generating a query execution plan for a parallel
database distributed among a cluster of data nodes.

[0017] FIG. 2 is a block diagram of an exemplary coordi-
nator device implemented in a system for adaptively gener-
ating a query execution plan for a parallel database distributed
among a cluster of data nodes.

[0018] FIG.3is ablock diagram of an exemplary data node
implemented in a system for adaptively generating a query
execution plan for a parallel database distributed among a
cluster of data nodes.

[0019] FIG. 4 is a flowchart representing a method of adap-
tively generating a query execution plan for a parallel data-
base distributed among a cluster of data nodes.

[0020] FIG.5 isaflowchart representing another method of
adaptively generating a query execution plan for a parallel
database distributed among a cluster of data nodes.

DETAILED DESCRIPTION

[0021] This disclosure describes a query plan optimization
strategy for use in distributed relational database manage-
ment systems in which query execution plans are adaptively
determined based on current system memory availability.
Instead of assuming a fixed work memory configuration, as in
existing prior art technologies, the methods and devices
described in this disclosure monitor the system load and
memory availability on the distributed data processing nodes
associated with the database cluster on a current and ongoing
basis.

[0022] In an embodiment, a coordinator node determines
the global work memory configuration using memory usage
data received from memory load monitors on each of the data
nodes and generates a query plan that is optimized for the
current aggregate work memory available on the data nodes.
In an alternative embodiment, each data node determines the
local work memory configuration depending on the current
memory usage and availability monitored at that node and
modifies or re-optimizes the query plan for the current local
work memory available on the data node. In the former
embodiment the query plan is tailored to the cluster of data
nodes, and in the latter embodiment the query plan is tailored
for each of the individual data nodes.

[0023] As illustrated in FIG. 1, a system 10 for adaptively
generating a query execution plan for a parallel database
distributed among a cluster of data nodes includes a pair of
database coordinator nodes, or coordinators, 12, 14 and three
data processing nodes, or data nodes, 16, 18, 20 having three
storage devices 22, 24, 26, respectively. In various embodi-
ments, the storage devices 22, 24, 26 is either integrated into
or peripherally connected to the data nodes 16, 18, 20. The

Aug. 25,2016

coordinator nodes 12, 14 are interconnected with each of the
data nodes by data links 28, 30, including, for example, a
communications network.

[0024] The storage devices 22, 24, 26 at the data nodes 16,
18, 20 each have stored a partition, or multiple partitions, of a
distributed database table. Together, the storage devices 22,
24, 26 contain the information data for the complete database
table.

[0025] In operation, the coordinator nodes receive query
requests from a client node, or client, 32. As an example,
referring still to FIG. 1, the coordinator node 12 receives a
query request from the client 32. In response, the coordinator
12 compiles the query and create a query plan. The coordi-
nator 12 further subdivides the query plan into segments and
send the query plan segments to each of the data nodes 16, 18,
20 by way of the data links 28, such as a network, for local
execution on each of the data nodes 16, 18, 20.

[0026] As a result of the working environment, including
factors such as data skew or input/output (I/O), the memory
usage and availability at the various data nodes 16, 18, 20
sometimes is uneven. In an embodiment, each of the data
nodes 16, 18, 20 monitors the memory usage at the individual
data node 16, 18, 20 and sends memory usage data to each of
the coordinators 12, 14. The coordinators 12, 14 use the
memory usage data from all of the data nodes 16, 18, 20 to
determine an aggregate work memory that represents the
average amount of memory currently available on each ofthe
data nodes 16, 18, 20 to be dedicated to locally executing the
query plan on the data nodes 16, 18, 20. The coordinators 12,
14 optimize the query plans, or the query plan segments, for
globally optimal execution performance on all the data nodes
16, 18, 20, and send the same query plan, or query plan
segments, to all of the data nodes 16, 18, 20.

[0027] Similarly, in an alternative embodiment each of the
data nodes 16, 18, 20 monitors the memory usage at the
individual data node 16, 18, 20. However, each of the indi-
vidual data nodes 16, 18, 20 determines a local work memory
that indicates the amount of memory currently available on
the individual data node 16, 18, 20 to be dedicated to locally
executing the query plan on the data node 16, 18, 20. Each of
the individual data nodes 16, 18, 20 further performs local-
ized query planning to adapt query plan segments received
from one of the coordinators 12, 14 for optimal execution
performance on the individual data node 16, 18, 20.

[0028] These implementations provide advantages with
respect to existing solutions, which typically do not take
actual system load or memory usage and availability variation
among the data nodes into consideration, but rather presume
a fixed work memory. By determining a more accurate work
memory instead of a predetermined value, the implementa-
tions described in this disclosure can generate a more efficient
query plan dynamically tailored to the actual working envi-
ronment of the data nodes, and thus improve the overall
performance of the distributed parallel database system.

[0029] Referring to FIG. 2, a coordinator node, or coordi-
nator, 40 implemented in the system 10 of FIG. 1 includes a
query compiler 42, an optional global memory load calculator
44, an optional global memory mode categorizer 46, an
optional global work memory calculator 48, a global query
planner 50, a global execution engine 52, a memory 54 and a
processor 56, all of which are interconnected by a data link
58. The coordinator 40 is configured to receive a query
request, such as a structured query language (SQL) query

US 2016/0246842 Al

request, from a client. Components shown with dashed lines
in FIG. 2 are optional items that are not included in all imple-
mentations.

[0030] The query compiler 42 is configured to parse the
received query request and create a semantic tree that corre-
sponds to the query request. The global memory load calcu-
lator 44 optionally calculates a global memory load that rep-
resents, for example, the average current memory load on the
data nodes that form the cluster using memory usage data
received from all the data nodes.

[0031] The global memory mode categorizer 46 optionally
assigns a global category, or mode, that indicates the approxi-
mate level of current memory usage or availability among the
data nodes that form the cluster. The global memory mode
categorizer 46 in some implementations maps the current
average memory load among the data nodes to one of three
categories, for example, LIGHT, NORMAL and HEAVY,
according to how heavy the current global memory load is
throughout the system.

[0032] For example, the global memory mode categorizer
46 assigns the LIGHT mode when average memory usage
among all the data nodes is below thirty percent (30%) of the
total system memory capacity, assign the NORMAL mode
when average memory usage among all the datanodes is from
thirty percent (30%) to seventy percent (70%) of the total
system memory capacity, and assign the HEAVY mode when
average memory usage among all the data nodes is above
seventy percent (70%) of the total system memory capacity.

[0033] Based on the currently assigned memory mode, the
global work memory calculator 48 optionally calculates the
current global work memory for use in optimizing the query
plan. The current global work memory corresponds to the
average memory space available on each of the data nodes
that form the cluster. For example, the global work memory
calculator 48 in some implementations uses a memory load
factor corresponding to the current memory mode, or cat-
egory, to compute the available global work memory accord-
ing to the following formula:

work_memory=system_memory_for_queryx
memory_load_factor

where

system_memory— memory_for bufferpool—

other_memory overhead

system_memory for_query = -
¥ Ltorquery connection_number

using the following definition for the memory load factor:

if memory_ load == HEAVY
memory__load_ factor = 0.3;
if memory_ load == LIGHT
memory__load_ factor = 0.9;
if memory_ load == NORMAL

if query is JOIN

memory__load_ factor = 0.6;
else

memory__load_ factor =0.5;

Aug. 25,2016

in addition to the following definitions:

[0034] system_memory_for_query is the amount of
memory available for query operations for each connec-
tion;

[0035] system_memory is the total amount of memory

on an individual data node;

[0036] memory_for_bufferpool is the amount of
memory currently used for bufferpool;

[0037] other_memory_overhead is the amount of
memory currently used for log file caching, thread cre-
ation, and so on; and

[0038] connection_number is the recent average number
of connections to the database.

[0039] As a result, when the memory mode is LIGHT,
query plans are generated based on a larger work memory
suitable for doing relatively memory-intensive operations
like building a hash table or a sort operation. This can be
desirable, because even though query execution plans com-
puted with larger work memory will likely to consume more
memory resources, the query plans generally will execute
with a faster response. Conversely, when the memory mode is
HEAVY, query plans are computed based on a smaller work
memory.

[0040] Onthe other hand, when the memory mode is NOR-
MAL, queries are differentiated based on one or more fea-
tures of the query. That is, a query with a higher probability of
being relatively memory-intensive will be assigned a larger
size work memory for query planning, and a query with a
lower chance of being relatively memory-intensive will be
assigned a smaller size work memory for query planning.
Accordingly, the optimizer adaptively plans queries based on
the current memory load situation, achieving dynamic
memory utilization and better execution performance.
[0041] The global query planner 50 creates multiple alter-
native candidate query plans and determine the optimal plan
using the calculated global work memory. The selected query
plan generally results in improved query execution perfor-
mance with respect to fixed work memory solutions, because
the calculated global work memory more accurately reflects
the system resources currently available on the distributed
data nodes.

[0042] The global query planner 50 further divides the
query plan into multiple segments to be forwarded to the data
nodes, and then send one or more of the optimized query plan
segments to each of the data nodes to be locally executed on
the data nodes. The global execution engine executes portions
of'the query plan segments on the coordinator node 40.
[0043] Referring to FIG. 3, a data processing node, or data
node, 60 implemented in the system 10 of FIG. 1 includes a
memory load monitor 62, an optional local memory mode
categorizer 64, an optional local work memory calculator 66,
an optional local query planner 68, a local execution engine
70, a memory 72 and a processor 76, all of which are inter-
connected by a data link 76. The data node 60 is configured to
receive a query execution plan segment, or segments, from
one of the coordinator nodes. Components shown with
dashed lines in FIG. 2 are optional items that are not included
in all implementations.

[0044] The memory load monitor 62 monitors system
memory usage and availability in the data node 60. In an
implementation, the data node 60 periodically sends memory
usage and availability information to all the coordinator
nodes. As described above with regard to FIG. 2, the coordi-
nators use the memory usage and availability data to compute

US 2016/0246842 Al

the average memory load of all the data nodes in the database
cluster and map the memory load to a memory mode. The
coordinator further calculates the work memory, as described
above, and generate a query plan for all the data nodes.
[0045] In an alternative implementation, referring again to
FIG. 3, the local memory mode categorizer 64 optionally
assigns a local category, or mode, that indicates the approxi-
mate level of current memory usage or availability on the data
node 60. The local memory mode categorizer 64 in some
implementations maps the current memory load of the data
node 60 to one of three categories, for example, LIGHT,
NORMAL and HEAVY, according to how heavy the current
local memory load at the data node 60.

[0046] Forexample, the local memory mode categorizer 64
assigns the LIGHT mode when memory usage on the data
node 60 is below thirty percent (30%) of the data node 60
memory capacity, assign the NORMAL mode when memory
usage on the data node 60 is from thirty percent (30%) to
seventy percent (70%) of the data node 60 memory capacity,
and assign the HEAVY mode when memory usage on the data
node 60 is above seventy percent (70%) of the data node 60
memory capacity.

[0047] Based on the currently assigned local memory
mode, the local work memory calculator 66 optionally calcu-
lates the current local work memory for use in adapting the
plan segment to the current work environment at the data node
60. The current local work memory corresponds to the
memory space available on the datanode 60. For example, the
local work memory calculator 66 in some implementations
uses a memory load factor corresponding to the current
memory mode, or category, to compute the available local
work memory according to the following formula:

work_memory=system_memory_for_queryx
memory_load_factor

where

system_memory— memory_for bufferpool—

other_memory overhead

system_memory for_query = -
¥ Ltorquery connection_number

using the following definition for the memory load factor:

if memory_ load == HEAVY
memory__load_ factor = 0.3;
if memory_ load == LIGHT
memory__load_ factor = 0.9;
if memory_ load == NORMAL

{
if query is JOIN
memory__load_ factor = 0.6;
else
memory__load_ factor =0.5;
¥

in addition to the following definitions:

[0048] system_memory_for_query is the amount of
memory available for query operations for each connec-
tion;

[0049] system_memory is the amount of memory on the

data node 60;

[0050] memory_for_bufferpool is the amount of
memory currently used for bufferpool;

Aug. 25,2016

[0051] other_memory_overhead is the amount of
memory currently used for log file caching, thread cre-
ation, and so on; and

[0052] connection_number is the recent average number
of connections to the database.

[0053] Thelocal query planner 68 modifies or re-optimizes
the query execution plan segment, or segments, using the
calculated local work memory in order to adapt the plan
segment, or segments, to the current local work environment.
The modified or re-optimized query plan segment generally
results in improved query execution performance with
respect to fixed work memory solutions, because the calcu-
lated local work memory more accurately reflects the system
resources currently available on the data node 60. In any
embodiment, the local execution engine 70 executes the
query execution plan segment, or segments, on the data node
60.

[0054] With regard to FIGS. 1-3, the coordinator nodes 12,
14, 40 and the data processing nodes 16, 18, 40, 60 includes
a general computing device, and the memory 54, 42 and
processor 56, 54 is integral components of a general comput-
ing device, such as a personal computer (PC), a workstation,
a server, a mainframe computer, or the like. Peripheral com-
ponents coupled to the general computing device further
includes programming code, such as source code, objectcode
or executable code, stored on a computer-readable medium
that can be loaded into the memory 54, 52 and executed by the
processor 56, 54 in order to perform the functions of the
system 10.

[0055] Thus, in various embodiments, the functions of the
system 10 is executed on any suitable processor, such as a
server, amainframe computer, a workstation, a PC, including,
for example, a note pad or tablet, a PDA, a collection of
networked servers or PCs, or the like. Additionally, as modi-
fied or improved versions of the system 10 are developed, for
example, in order to revise or add a template or country-
specific information, software associated with the processor
is updated.

[0056] Invarious embodiments, the system 10 is coupled to
a communication network, which can include any viable
combination of devices and systems capable of linking com-
puter-based systems, such as the Internet; an intranet or extra-
net; alocal area network (LAN); a wide area network (WAN);
a direct cable connection; a private network; a public net-
work; an Ethernet-based system; a token ring; a value-added
network; a telephony-based system, including, for example,
T1 or E1 devices; an Asynchronous Transfer Mode (ATM)
network; a wired system; a wireless system; an optical sys-
tem; a combination of any number of distributed processing
networks or systems or the like.

[0057] The system 10 is coupled to the communication
network by way of the local data links 58, 56, which in various
embodiments incorporates any combination of devices—as
well as any associated software or firmware-configured to
couple processor-based systems, such as modems, access
points, network interface cards, serial buses, parallel buses,
LAN or WAN interfaces, wireless or optical interfaces and the
like, along with any associated transmission protocols, as
desired or required by the design.

[0058] An embodiment of the present invention communi-
cates information to the user and request user input, for
example, by way of an interactive, menu-driven, visual dis-
play-based user interface, or graphical user interface (GUI).
The user interface is executed, for example, on a personal

US 2016/0246842 Al

computer (PC) or terminal with a mouse and keyboard, with
which the user interactively inputs information using direct
manipulation of the GUIL. Direct manipulation can include the
use of a pointing device, such as a mouse or a stylus, to select
from avariety of windows, icons and selectable fields, includ-
ing selectable menus, drop-down menus, tabs, buttons, bul-
lets, checkboxes, text boxes, and the like. Nevertheless, vari-
ous embodiments of the invention incorporates any number
of'additional functional user interface schemes in place of this
interface scheme, with or without the use of a mouse or
buttons or keys, including for example, a trackball, a touch
screen or a voice-activated system.

[0059] Inanexemplary implementation of the system 10 of
FIG. 1, the coordinator nodes 12, 14 includes the query com-
piler 42, the global memory load calculator 44, the global
memory mode categorizer 46, the global work memory cal-
culator 48, the global query planner 50, the global execution
engine 52, the memory 54 and the processor 56, while the data
processing nodes 16, 18, 20 includes the memory load moni-
tor 62, the local execution engine 70, the memory 72 and the
processor 74. The data nodes 16, 18, 20 periodically send
memory usage data monitored at the data nodes 16, 18, 20 to
all the coordinator nodes 12, 14, and the coordinator nodes
12, 14 calculates the average memory load and global work
memory, and generate and optimize query execution plan
segments to be sent to and carried out on each of the data
nodes 16, 18, 20.

[0060] As an example, memory load monitors associated
with each of the data nodes 16, 18, 20 of FIG. 1 at a particular
point in time determines that the data nodes 16, 18, 20 are
currently operating at approximately ninety percent (90%),
twenty-five percent (25%) and fifty percent (50%), respec-
tively. The data nodes 16, 18, 20 subsequently passes this
information on to both coordinator nodes 12, 14. Then, when
one of the coordinator nodes 12, 14, say, for example, coor-
dinator 12, processes a query request that has been received at
the coordinator 12, the coordinator 12 computes the average
memory load of the system as fifty-five percent (55%) and
assign the current memory mode to the NORMAL category.
The coordinator 12 further computes the available global
work memory for the data nodes in accordance with the
NORMAL memory mode and generate the same optimized
plan segments for all the data nodes in light of the current
work environment.

[0061] Inanalternative implementation of the system 10 of
FIG. 1, the coordinator nodes 12, 14 includes the query com-
piler 42, the global query planner 50, the global execution
engine 52, the memory 54 and the processor 56, while the data
processing nodes 16, 18, 20 includes the memory load moni-
tor 62, the local memory mode categorizer 64, the local work
memory calculator 66, the local query planner 68, the local
execution engine 70, the memory 72 and the processor 74.
The coordinator nodes 12, 14 generates global query execu-
tion plan segments and send these to all of the data nodes 16,
18, 20. The data nodes 16, 18, 20 monitor memory usage at
the individual data nodes 16, 18, 20, calculate the local work
memory, and modify or optimize the query execution plan
segments for execution on the individual data nodes 16, 18,
20.

[0062] As an example, memory load monitors associated
with each of the data nodes 16, 18, 20 of FIG. 1 at a particular
point in time determines that the data nodes 16, 18, 20 are
currently operating at approximately ninety percent (90%),
twenty-five percent (25%) and fifty percent (50%), respec-

Aug. 25,2016

tively. The data nodes 16, 18, 20 subsequently receive a query
execution plan segment from one of the coordinator nodes 12,
14. The data node 16 assigns the current local memory mode
to the HEAVY category, the data node 18 assigns the current
local memory mode to the LIGHT category, and the data node
20 assigns the current local memory mode to the NORMAL
category. Each of the data nodes 16, 18, 20 further computes
the available local work memory in accordance with the
HEAVY, LIGHT and NORMAL memory modes, respec-
tively, and re-optimize the query plan segment in parallel for
the each of the individual data nodes 16, 18, 20 in light of the
current work environment at the corresponding individual
data nodes 16, 18, 20. As a result, the query plan segments
executed at each of the data nodes 16, 18, 20 differs.

[0063] Referring now to FIG. 4, a process flow is illustrated
that is performed, for example, by the coordinator node 40 of
FIG. 2 to implement the method described in this disclosure
for adaptively generating a query execution plan for a parallel
database distributed among a cluster of data nodes. Blocks
shown with dashed lines in FIG. 4 are optional actions, or
events, that are not performed in all implementations. The
process begins at block 80, where a query request, such as a
structured query language (SQL) query is received, for
example, from a client node.

[0064] In block 82, the received query is parsed, and in
block 84 a semantic tree corresponding to the query is com-
piled. Multiple candidate query execution plans are created,
in block 86, based on the semantic tree. Current memory
usage or availability information regarding the individual
data nodes are received in block 88, and in block 90 the
current global memory load is calculated as described above
using the received memory usage or availability data. Inblock
92, the memory mode is assigned to an appropriate category,
as described above, corresponding to the current global
memory load. The available global work memory is com-
puted as described above, in block 94, and used in block 96 to
optimize the query execution plan selected from among the
candidate plans, as described above.

[0065] Inblock 98, the query execution plan is divided into
multiple segments for distribution to the data nodes, and in
block 100 the same query execution plan segment, or seg-
ments, is transmitted to all of the data nodes in the database
cluster. Additionally, the compiled semantic tree is forwarded
to the data nodes in block 102.

[0066] Referring now to FIG. 5, a process flow is illustrated
that is performed, for example, by the data processing node 60
of FIG. 3 to implement the method described in this disclo-
sure for adaptively generating a query execution plan for a
parallel database distributed among a cluster of data nodes.
Blocks shown with dashed lines in FIG. 5 are optional
actions, or events, that is performed in all implementations.
The process begins at block 110, where a query execution
plan segment, or segments, are received. In block 112, a
compiled semantic tree also is received.

[0067] Inblock 114, the current memory usage or availabil-
ity of an individual data node is monitored. Optionally, in
block 116 memory usage or availability information periodi-
cally is sent, for example, to all coordinator nodes. In block
118, the local memory mode is optionally assigned to a cat-
egory, as described above, corresponding to the current
memory usage or availability

[0068] The available local work memory is computed as
described above, in block 120, and used in block 122 to
modify or re-optimize the query execution plan segment, or

US 2016/0246842 Al

segments, as described above. In block 124, the query plan
segment, or segments, is executed on the data node.

[0069] Inanexemplary implementation of the system 10 of
FIG. 1, the coordinator nodes 12, 14 performs the actions or
events described in blocks 80 through 102 of FIG. 4, while the
datanodes 16, 18, 20 performs the actions or events described
in blocks 112, 114, 116, and 124 of FIG. 5. Thus, the same
query execution plan segment, or segments, which is opti-
mized according to the dynamically-determined global work
memory configuration across all the data nodes, is sent to all
of the data nodes in the cluster.

[0070] Inanalternative implementation of the system 10 of
FIG. 1, the coordinator nodes 12, 14 performs the actions or
events described in blocks 80 through 86, and blocks 96
through 100 of FIG. 4, while the data nodes 16, 18, 20 per-
forms the actions or events described in blocks 110 through
114, and blocks 118 through 124 of FIG. 5. Thus, each data
node throughout the cluster individually re-optimizes the
query execution plan segment, or segments, in parallel using
the dynamically-determined local work memory configura-
tion corresponding to each individual data node.

[0071] As an example, the following query request is
received by one of the coordinator nodes 12, 14 of FIG. 1, say,
for example, by the coordinator 12:

[0072] select count(*) from lineitem,part where
1_partkey=p_partkey group by 1_partkey;

Inresponse, the coordinator 12 generates the following query
execution plan segment and send the segment to the three data
nodes 16, 18, 20 of FIG. 1:

QUERY PLAN

GroupAggregate
—> GATHER
Node/s: All datanodes
—> GroupAggregate
—>Join
Condition: (lineitem.l__partkey = part.p__partkey)

[0073] The first three lines of the query plan segment are
executed on the coordinator 12, while the aggregation and
join operations are executed on each of the data nodes 16, 18,
20 in accordance with the current local memory mode cat-
egory assigned to each of the data nodes 16, 18, 20 in light of
the current work environment at the corresponding individual
data nodes 16, 18, 20. Thus, for example, if the local memory
mode of data node 16 currently is assigned to the HEAVY
category, the datanode 16 re-optimizes the query plan to carry
out a sort-based aggregation operation and a nested loop join
operation. At the same time, if the local memory modes of the
datanode 18 and the data node 20 currently are assigned to the
LIGHT and NORMAL -categories, respectively, the data
nodes 18, 20 each instead re-optimizes the query plan to carry
out a hash aggregation operation and a hash join operation.

[0074] Use of the adaptive query planning methodology
described in this disclosure, which implements a dynamically
calculated work memory configuration reflecting the current
system load, results in improved query execution efficiency
or performance with respect to solutions using fixed work
memory configuration. By using the more accurate work
memory configuration, rather than a predetermined, or fixed,
value, the adaptive query planner can generate a modified or
optimized query plan tailored to the current work environ-
ment at the data nodes, resulting in improved performance of

Aug. 25,2016

the distributed parallel database system, reduced query
response time, improved memory resource utilization and
reduced data spilling.

[0075] Aspects of this disclosure are described herein with
reference to flowchart illustrations or block diagrams, in
which each block or any combination of blocks can be imple-
mented by computer program instructions. The instructions
are provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to effectuate a machine or article of manu-
facture, and when executed by the processor the instructions
create means for implementing the functions, acts or events
specified in each block or combination of blocks in the dia-
grams.

[0076] In this regard, each block in the flowchart or block
diagrams corresponds to a module, segment, or portion of
code that including one or more executable instructions for
implementing the specified logical function(s). It should also
be noted that, in some alternative implementations, the func-
tionality associated with any block can occur out of the order
noted in the figures. For example, two blocks shown in suc-
cession can, in fact, be executed substantially concurrently, or
blocks can sometimes be executed in reverse order.

[0077] A person of ordinary skill in the art will appreciate
that aspects of this disclosure can be embodied as a device,
system, method or computer program product. Accordingly,
aspects of this disclosure, generally referred to herein as
circuits, modules, components or systems, can be embodied
in hardware, in software (including firmware, resident soft-
ware, micro-code, etc.), or in any combination of software
and hardware, including computer program products embod-
ied in a computer-readable medium having computer-read-
able program code embodied thereon.

[0078] In this respect, any combination of one or more
computer readable media can be utilized, including, but not
limited to, an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor system, apparatus, or device, or
any suitable combination of these. More specific examples of
computer readable storage media would include the follow-
ing non-exhaustive list: a portable computer diskette, a hard
disk, a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM), a Flash memory, a portable compact disc read-
only memory (CD-ROM), an optical storage device, net-
work-attached storage (NAS), a storage area network (SAN),
magnetic tape, or any suitable combination of these. In the
context of this disclosure, a computer readable storage
medium can include any tangible medium that is capable of
containing or storing program instructions for use by or in
connection with a data processing system, apparatus, or
device.

[0079] Computer program code for carrying out operations
regarding aspects of this disclosure can be written in any
combination of one or more programming languages, includ-
ing object oriented programming languages such as Java,
Smalltalk, C++, or the like, as well as conventional proce-
dural programming languages, such as the “C,” FORTRAN,
COBOL, Pascal, or the like. The program code can execute
entirely on an individual personal computer, as a stand-alone
software package, partly on a client computer and partly on a
remote server computer, entirely on a remote server or com-
puter, or on a cluster of distributed computer nodes. In gen-
eral, a remote computer, server or cluster of distributed com-
puter nodes can be connected to an individual (user) computer

US 2016/0246842 Al

through any type of network, including a local area network
(LAN), a wide area network (WAN), an Internet access point,
or any combination of these.

[0080] It will be understood that various modifications can
be made. For example, useful results still could be achieved if
steps of the disclosed techniques were performed in a differ-
ent order, and/or if components in the disclosed systems were
combined in a different manner and/or replaced or supple-
mented by other components. Accordingly, other implemen-
tations are within the scope of the following claims.

What is claimed is:

1. A method for adaptively generating a query execution
plan for a parallel database distributed among a cluster of data
nodes, comprising:

receiving, with a processor, memory usage data from a

plurality of data nodes comprising a plurality of network
devices;
calculating a representative memory load corresponding to
the data nodes based on the memory usage data;

categorizing a memory mode corresponding to the data
nodes based on the calculated representative memory
load;
calculating an available work memory corresponding to
the data nodes based on the memory mode; and

generating the query execution plan for the data nodes
based on the available work memory, wherein the
memory usage data is determined from a plurality of
monitored individual memory loads associated with the
data nodes and the query execution plan corresponds to
the currently available work memory.

2. The method of claim 1, further comprising:

receiving first memory usage data from a first data node

associated with the cluster; and

receiving second memory usage data from a second data

node associated with the cluster.

3. The method of claim 1, wherein the representative
memory load is calculated as a statistical mean based on the
memory usage data corresponding to all of the data nodes
associated with the cluster.

4. The method of claim 1, wherein the memory mode is
categorized in a first category when the representative
memory load is below a first predetermined percentage of a
system capacity, in a second category when the representative
memory load is from the first predetermined percentage to a
second predetermined percentage of the system capacity, or
in a third category when the representative memory load is
above the second predetermined percentage of the system
capacity, wherein the system capacity corresponds to an
aggregate capacity of the data nodes.

5. The method of claim 4, wherein the available work
memory is calculated based on a multiple corresponding to
the memory mode, the multiple selected from a first multiple
greater than one-half corresponding to the first category, a
second multiple between three-tenths and seven-tenths cor-
responding to the second category if the query execution plan
includes a relatively memory-intensive operator, a third mul-
tiple between four-tenths and eight-tenths if the query execu-
tion plan does not include a relatively memory-intensive
operator, and a fourth multiple between one-tenth and five-
tenths corresponding to the third category, wherein the first
multiple is greater than the second multiple, the second mul-
tiple is greater than the third multiple, and the third multiple
is greater than the fourth multiple.

Aug. 25,2016

6. The method of claim 1, wherein the available work
memory is calculated based on a multiple corresponding to
the memory mode.

7. The method of claim 6, wherein the available work
memory is calculated based on an aggregate system memory
size, an aggregate buffer memory area size, an aggregate
additional overhead memory area size, and an average num-
ber of client connections associated with the database.

8. The method of claim 1, further comprising:

receiving a query request from a client device intercon-

nected with the database by a network associated with
the cluster, wherein generating the query execution plan
further comprises:

compiling a semantic tree based on the query request;

creating a plurality of candidate query execution plans

based on the semantic tree;

substantially optimizing the query execution plan based on

at least one of the candidate query execution plans and
the available work memory;

segmenting the query execution plan into a plurality of

query execution plan segments; and

sending at least one of the query execution plan segments

to each of the data nodes.

9. The method of claim 1, further comprising executing a
global portion of the query execution plan.

10. A method for adaptively generating a query execution
plan for a parallel database distributed among a cluster of data
nodes, comprising:

monitoring, with a processor, a memory load associated

with a data node comprising a network device;
categorizing a memory mode corresponding to the data
node based on the memory load;

calculating an available work memory corresponding to

the data node based on the memory mode;

receiving a query execution plan segment; and

adapting the query execution plan segment for the data

node based on the available work memory, wherein the
data node is associated with the cluster and the query
execution plan segment corresponds to the current avail -
able work memory.

11. The method of claim 10, further comprising:

monitoring an additional memory load associated with an

additional data node comprising an additional network
device;

categorizing an additional memory mode corresponding to

the additional data node based on the additional memory
load;

calculating an additional available work memory corre-

sponding to the additional data node based on the addi-
tional memory mode; and

adapting the query execution plan segment for the addi-

tional data node based on the additional available work
memory, wherein the additional data node is associated
with the cluster and the query execution plan segment is
corresponds to the current additional available work
memory.

12. The method of claim 10, wherein the memory mode is
categorized in a first category when the representative
memory load is below a first predetermined percentage of a
system capacity, in a second category when the representative
memory load is from the first predetermined percentage to a
second predetermined percentage of the system capacity, or
in a third category when the representative memory load is
above the second predetermined percentage of the system

US 2016/0246842 Al

capacity, wherein the system capacity corresponds to an indi-
vidual capacity of the data node.

13. The method of claim 12, wherein the available work
memory is calculated based on a multiple corresponding to
the memory mode, the multiple selected from a first multiple
greater than one-half corresponding to the first category, a
second multiple between three-tenths and seven-tenths cor-
responding to the second category if the query execution plan
includes a relatively memory-intensive operator, a third mul-
tiple between four-tenths and eight-tenths if the query execu-
tion plan does not include a relatively memory-intensive
operator, and a fourth multiple between one-tenth and five-
tenths corresponding to the third category, wherein the first
multiple is greater than the second multiple, the second mul-
tiple is greater than the third multiple, and the third multiple
is greater than the fourth multiple.

14. The method of claim 10, wherein the available work
memory is calculated based on a multiple corresponding to
the memory mode.

15. The method of claim 14, wherein the available work
memory is calculated based on a system memory size, an
overhead memory buffer memory area size, an additional area
size, and an average number of client connections associated
with the database.

16. The method of claim 10, wherein adapting the query
execution plan further comprises:

receiving a semantic tree based on a query request from a

client device interconnected with the database by a net-
work associated with the cluster; and

substantially optimizing the received query execution plan

segment based on at least the available work memory.

17. The method of claim 10, further comprising executing
the query execution plan segment.

18. A device for adaptively generating a query execution
plan for a parallel database distributed among a cluster of data
nodes, comprising:

an individual network device associated with the cluster,

the individual network device comprising:

amemory that stores data corresponding to the database;

a memory load monitor that monitors a memory load
associated with the individual network device; and

a processor that receives a query execution plan seg-
ment, modifies the query execution plan segment to
create a modified query execution plan segment cor-
responding to the memory load, and executes the
modified query execution plan segment.

19. The device of claim 18, further comprising:

a database coordinator configured to receive a query

request from a client device coupled to the database
coordinator by a network associated with the cluster,

Aug. 25,2016

receive memory usage data, including the memory load

associated with the individual network device, from a

plurality of network devices including the individual

network device, and send at least one of a plurality of
query execution plan segments to each of the network
devices; and

one or more circuits for executing:

a query compiler configured to compile a semantic tree
based on the query request;

a global memory load calculator configured to calculate
a representative memory load corresponding to the
network devices based on the memory usage data;

aglobal memory mode categorizer configured to catego-
rize a memory mode corresponding to the network
devices based on the calculated representative
memory load;

aglobal work memory calculator configured to calculate
an available work memory corresponding to the net-
work devices based on the memory mode;

a global query planner configured to create a plurality of
candidate query execution plans based on the seman-
tic tree, generate and substantially optimize the query
execution plan for the network devices based on at
least one of the candidate query execution plans and
the available work memory, and segment the query
execution plan into the query execution plan seg-
ments; and

a global execution engine configured to execute a global
portion ofthe query execution plan, wherein the query
execution plan is corresponds to the currently avail-
able work memory.

20. The device of claim 18, further comprising one or more

circuits for executing:

a local memory mode categorizer configured to categorize
a memory mode corresponding to the individual net-
work device based on the memory load;

a local work memory calculator configured to calculate an
available work memory corresponding to the individual
network device based on the memory mode; and

a local query planner configured to substantially optimize
the received query execution plan segment for the indi-
vidual network device based on at least the available
work memory, wherein the individual network device is
further configured to receive a semantic tree based on a
query request from a client device interconnected with
the database by a network associated with the cluster and
the query execution plan segment is corresponds to the
current available work memory.

#* #* #* #* #*

