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OPTIMAL CONTROL CONFIGURATION
ENGINE IN A MATERIAL PROCESSING
SYSTEM

CROSS-REFERENCE SECTION

The present application claims the benefit of U.S. Provi-
sional Application No. 63/229,931, filed Aug. 5, 2021 and
entitted “OPTIMAL CONTROL CONFIGURATION
ENGINE IN A MATERIAL PROCESSING SYSTEM”, the
entirety of which is incorporated by reference herein.

BACKGROUND

Many companies rely on material processing systems to
produce goods from raw materials. Material processing
systems implement manufacturing processes that include
steps through which raw materials are transformed into a
final product. For example, a manufacturing process can be
a mining process for extracting valuable minerals or other
geological materials from ores. A material processing sys-
tem can operate based on mining process configurations that
can include control schemes with several control variables,
where each control variable may be interdependent and have
an effect on the objective or desired outcome of a process.
For example, raising the temperature—a first control vari-
able—of a sealed vessel in a manufacturing process can also
cause the pressure—a second control variable—to increase.

Conventionally, material processing systems are not con-
figured with a computing infrastructure and logic to calcu-
late or estimate values of control variables based on accurate
relationships between control variables. For example, a
black-box machine learning model of a conventional mate-
rial processing system may be used to correlate values for a
set of control variables—of a control scheme—so that an
optimal outcome is achieved. While control variables in
control schemes can be configured based on values of
correlated controls, the correlated controls fall short in
producing optimal values because correlation merely iden-
tifies a relationship between the correlated control without
demonstrating a particular cause-effect relationship of a first
control variable on a second control variable. As such, a
more comprehensive material processing system—having
an alternative basis for providing material processing system
configurations and operations—can improve processing
techniques provided using material processing systems.

SUMMARY

Various aspects of the technology described herein are
generally directed to systems, methods, and computer stor-
age media, for among other things, providing an optimal
control configuration for an optimal control configuration
engine of a material processing system. The optimal control
configuration can refer optimal to optimal set points for
control variables given the system state of variables. The
optimal control configuration identifies inputs that are used
to manage, direct or regulate behavior of components in the
material processing system. The optimal control configura-
tion is generated based on causal intervention determination,
linkages between control variables through time, physical
processes that align with first principles, a plurality of
machine learning models, and an uncertainty measure asso-
ciated with risk adjustment.

In operation, a causal intervention determination can be
made for a continuous flow process of the material process-
ing system, where the causal intervention determination is
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made based on non-experimental data and input materials of
the continuous flow process. The causal intervention deter-
mination uses estimates of one or more causal relationships
between control variables and an optimization target. The
causal intervention determination is based on do-calculus
that facilitates identification of causal effects in non-para-
metric models. Do-calculus includes interference rules that
permit mapping interventional and observation distributions
whenever certain conditions hold in a causal graph, as
discussed in more detail below.

The causal intervention determination accounts for link-
ages between control variables through time in the continu-
ous flow process—and also known theoretical impacts of the
physical processes in the continuous flow process—such
that, the optimal control configuration (e.g., recommended
inputs for components of the material processing system) are
aligned with first principles (i.e., foundational propositions
or assumptions). It is contemplated that the optimal control
configuration can be dynamic in that the optimal control
changes as input materials into the material processing
system changes. The material processing system operates
based on machine learning models that generate inputs for
computing the optimal control configuration for the continu-
ous flow process. The optimal control configuration can be
computed with some level of uncertainty (e.g., objective
parameters and constraint parameters that are not observed
and remain unknown). The level of uncertainty can further
be used to produce a risk-adjusted optimal control configu-
ration.

This Summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

The technology described herein is described in detail
below with reference to the attached drawing figures,
wherein:

FIGS. 1A and 1B are block diagrams of an exemplary
material processing system with a material processing
engine, in which embodiments described herein may be
employed;

FIG. 2A is a block diagram of an exemplary material
processing system with an optimal control configuration
engine, in which embodiments described herein may be
employed;

FIG. 2B is a schematic associated with an exemplary
material processing system with an optimal control configu-
ration engine, in which embodiments described herein may
be employed;

FIG. 2C is a schematic associated with an exemplary
material processing system with an optimal control configu-
ration engine, in which embodiments described herein may
be employed;

FIG. 3 is a flow diagram showing an exemplary method
for implementing a material processing system with an
optimal control configuration engine, in accordance with
embodiments described herein;

FIG. 4 is a flow diagram showing an exemplary method
for implementing a material processing system with an
optimal control configuration engine, in accordance with
embodiments described herein;

FIG. 5 is a flow diagram showing an exemplary method
for implementing a material processing system with an
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optimal control configuration engine, in accordance with
embodiments described herein;

FIG. 6 provides a block diagram of an exemplary distrib-
uted computing environment suitable for use in implement-
ing aspects of the technology described herein; and

FIG. 7 is a block diagram of an exemplary computing
environment suitable for use in implementing aspects of the
technology described herein.

DETAILED DESCRIPTION OF THE
INVENTION

Overview

By way of background, a material processing system can
be associated with an industrial environment that manages
continuous flow of a material as the material is being
processed. The material processing system can refer to a
complex physical manufacturing system or mining process-
ing system that supports continuous flow of a particular
material. During the continuous material flow, the material
processing system can extract a particular material property
from the material. For example, the material processing
system can include components that support extracting a
valuable mineral from ores that are in a continuous flow
process in the material processing system. The material
processing system can also include on-premise gathering of
data. Data can be gathered—using sensors and computing
components where computing components process the
data—to improve the material processing system. For
example, sensors can measure different types of variables—
including temperature, vibrations, acidity—where the data is
gathered and stored in a database.

Conventionally, material processing systems may use
traditional optimization techniques for generating optimal
controls; however traditional techniques rely on machine
learning models that have several limitations in the material
processing context. For example, while optimal controls can
be generated using recommendation techniques that include
a first step of creating a representation of the physical world
as a model (e.g., a manufacturing process) and a second step
of'employing the model to compute a recommendation (e.g.,
a control variable setting recommendation). Nonetheless,
conventional material processing systems may support pro-
cess optimization via machine learning models that naively
are based exclusively on correlated data.

Moreover, machine learning models, in conventional
material processing systems, may actually identify situations
of reverse causality and make erroneous recommendations
for optimal controls that result in the opposite intended
outcome. In this way, standard machine learning models can
lead to wrong conclusions and wrong recommendations
when sensing data that is continuous in time. In particular,
standard machine learning models do not include computa-
tions to avoid strong auto-correlation between factors, as
such, have difficulty identifying situations of reverse causa-
tion in material processing—especial in continuous flow
processes.

Standard machine learning models also operate based on
static data—in contrast to graph data—with no lower or
higher variables with regard to correlating to a target. As
such, while the machine learning model can provide a
correct prediction of an outcome, the machine learning
model does not provide information on how to manipulate a
particular process in a material processing system. In addi-
tion, with modeling the physical process, even if a reverse
causal relationship is determined, there exists no data to
resolve the reverse causal relationship’s impact on the
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machine learning model. As such, a more comprehensive
material processing system—having an alternative basis for
providing material processing system configurations and
operations—can improve processing techniques provided
using material processing systems.

Embodiments of the present disclosure are directed to
providing an optimal control configuration for an optimal
control configuration engine for a material processing sys-
tem. The optimal control configuration can refer optimal to
optimal set points for control variables given the system
state of variables. The optimal control configuration identi-
fies inputs that are used to manage, direct or regulate
behavior of components in the material processing system.
The optimal control configuration is generated based on
causal intervention determination, linkages between control
variables through time, physical processes that align with
first principles, a plurality of machine learning models, and
an uncertainty measure associated with risk adjustment.

Operationally, a material processing engine can process
different inputs that support generating and implementing an
optimal control configuration. The inputs (i.e., input data)
can include a description of a circuit design and an opera-
tional configuration of a manufacturing process (e.g., mining
process); a template of prior hypotheses, for example, a
range within which a control variable’s convex minimum
lies; and system state variable values for a time period in
which to make an optimal control configuration recommen-
dation as output. The material processing engine processes
the different inputs to generate the optimal control configu-
ration that indicates optimal set points for each control
variable give the system state variables.

The material processing engine can access causal graph
input data. Causal graph input data can include control and
system state variables (including input materials) and non-
experimental data of a continuous flow process being opti-
mized. Based on the causal graph input data, a causal
graph—that aligns with do-calculus manipulations associ-
ated with determining identifiable causal relationships cor-
responding to input materials of the continuous flow pro-
cess—can be generated. Do-calculus includes rules for
transformation of conditional probability expressions
involving a do-operator, such that, a causal model can be
generated. The causal model supports generating the optimal
control configuration based on identifying which control
variables can be included or controlled. As such, the causal
graph operates as a probabilistic graphic model that is used
to encode assumptions about the continuous flow process.

The causal graph can be parsed based on the do-calculus
manipulations to determine valid conditioning sets associ-
ated with estimating a causal impact on an optimization
target. Estimating the causal impact can be based on panel
data that includes multi-dimensional data involving mea-
surements over a period of time of the continuous flow
process. A minimum valid conditioning set is selected for the
valid conditioning sets to generate a most simple valid
solution. Causal theory is based on creating graphs of
variables in which the lines of causality are clearly imposed
based on theoretical considerations. Once this graph has
been created, depending on the structure of the graph and the
variable of interest (for which an estimate of a causal impact
needs to be determined), there may be multiple valid con-
ditioning sets to estimate the causal impact. For example, it
may be not-valid to regress A on B but valid to regress it on
C or D/E. In this case C would be the most simple valid
solution as it is valid and has the fewest variables.

The material processing engine can then be used to
partition the control variables into separate regimes.
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Regimes can refer to different operating conditions of the
continuous flow process (i.e., non-control variables) in
which the optimal control configuration should be different.
For each regime and for each control variable, the material
processing engine uses a shortest valid conditioning set and
a template prior hypothesis—as inputs—for training a
Bayesian regression using a Markov chain Monte Carlo
sampling. The Bayesian approach to linear regression can
include statistical analysis that is undertaken within the
context of Bayesian inference and the Markov chain Monte
Carlo (MCMC) technique can include class of algorithms
for sampling from a probability distribution. By constructing
a Markov chain that has the desired distribution as its
equilibrium distribution, a sample of the desired distribution
can be obtained based on recording states from the chain.
The more steps are included, the more closely the distribu-
tion of the sample matches the actual desired distribution.

Training the Bayesian regression results in learning a
quadratic causal impact of the control variable on an opti-
mization target. For example, a quadratic causal impact can
include a Bayesian structural time series model based on
multiple comparable control groups and uses the model to
project a series of the baseline values for the time period
after the event. It essentially takes one instance and then
compares it to a new timeframe by factoring in differences
in variables in that new time frame. In this way, the optimal
control configuration can include a first control variable
value and a second control variable value, where the first
control variable value and the second control variable value
are associated with corresponding machine learning models
that have learned a quadratic causal impact—of the first
control variable and second control variable, respectively—
on the optimization target. Operationally, the material pro-
cessing engine can repeat the training for any unknown
constraint parameters.

The material processing engine can further support vali-
dation operations that quantify the divergence between the
learned quadratic parameters of the control variable and the
observed data. The validation operations also support con-
firming that the causal relationship aligns with first prin-
ciples. The material processing engine can also support
rescaling and recombining quadratic parameters of the qua-
dratic parameters. The rescaled quadratic parameters can be
recombined into a set of quadratic equations including all
control variables—one for each operating regime.

The rescaled objective functions and constraint function
can be converted into symbolic equations using a symbolic
computing library. A function composition utility of the
symbolic library can be used to construct nested objective
and constraint functions to solve for linkages through time.
In particular, for a regime—corresponding to state variables
of a current time—regime optimization operations and
learned constraints functions can be construct a determinis-
tic convex optimization problem associated with minimizing
convex functions over convex sets.

The deterministic convex optimization problem can be
solved, such that, the optimal control variable values and
constraint dual values are recorded. A convex optimization
problem can refer to an optimization problem in which the
objective function is a convex function and the feasible set
is a convex set. The constraint dual values—constraints of
the original problem—can refer to a measure of an increase
in the function’s value per unit increase in the control
variable’s value. The solution of the deterministic convex
optimization problem and standard deviations of estimated
quadratic parameters of each control variable are used to
formulate a stochastic optimization counterpart to the deter-
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ministic formulation. In this way, the control variables can
be optimized to improve the optimization target, while
minimizing the probability of decreasing system perfor-
mance in any single period. The stochastic optimization can
be solved and the optimal control variable values and
constraint dual values recorded in an optimal control con-
figuration. As such, the material processing engine supports
generating an optimal control configuration comprising opti-
mal control variable values associated with the continuous
flow process.

Aspects of the technical solution can be described by way
of examples and with reference to FIGS. 1A, 1B, and 1C.
FIG. 1A illustrates a material processing system 100 (e.g.,
mining process system 100X having pit 112, truck 114,
crusher 116, source 1 120, sink 1 130)-. The material
processing system 100 further includes material processing
input materials 100A, material processing sensors 100B,
material processing configuration interface 100C, material
processing engine client 110C, and material processing
engine interface 110D. The material processing system 100
also includes material processing engine 110 having an
optimal control configuration engine 110A and optimal
control configuration 110B.

The material processing system 100 provides an operating
environment for processing a material (e.g., ore from the
plurality of sources to the plurality of sinks). The material
processing system 100, for example, can support a mining
operation for the extraction of valuable minerals or other
geological materials from a pit (e.g., pit 112) transported for
processing using trucks (e.g., truck 114). For example, ores
recovered by mining include metals, coals, oil; however,
mining in a wider sense can include extraction of different
types of materials. The material processing system 100
includes the material processing engine 110 that supports
hardware and software operations in material processing
system. For example, the material processing engine 110 can
help receive and communicate configurations (e.g., optimal
control configuration 110B) and controller signals (e.g., via
material processing sensors 100B, material processing con-
figuration interface 110C, and material processing engine
client 110C) to support a continuous flow processing of a
material. Other variations and combinations of material
processing systems and physical manufacturing processes
are contemplated with embodiments described herein

The material processing engine 110 can include the opti-
mal control configuration engine 110A associated with opti-
mal control configuration 110B as described herein in more
detail. The material processing engine 110 can operate the
optimal control configuration engine 110A to support the
functionality associated with the material processing engine
110 to provide the optimal control configuration described
herein. And, the material processing engine 110 can operate
with a material processing engine client 110C that is opera-
tionally coupled to a material processing engine interface
110D. The material processing engine client 110C can be a
device that provides an interface for assisting (e.g., material
processing system operators) with user interactions with the
material processing engine 110 and other components of the
material processing system 100. The material processing
engine client 110C can be part of an optimization platform
that supports generating configuration files (e.g., optimal
control configuration, blending flow configuration files, or
overflow management configurations files) that can be used
as input and controls for components of the material pro-
cessing system 100. Other variations and combination of
material processing engines and materials processing engine
clients for generating and implementing configurations asso-
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ciated with components a material processing system are
contemplated with embodiment described herein.

With reference to FIG. 1B, FIG. 1B illustrates aspects of
the material processing engine 110. FIG. 1B includes input
data 140 having process circuit design and operation data
140A, template prior hypotheses data 140B, control and
system state variables 140C, process non-experimental data
140D; optimal control configuration engine 110A; optimal
control configuration 110B; machine learning engine 150,
validation engine 160, rescaling engine 170, linkages
through time computation model 180A, deterministic curve
optimization computation model 180B, and stochastic opti-
mization computation model 180C.

In operation, the machine processing engine 110 is
responsible for making a causal intervention determination
for a continuous flow process of the material processing
system 100. The causal intervention determination is made
based on input data including circuit design and operation
data 140A, template prior hypotheses data 140B, control and
system state variables 140C, process non-experimental data
140D. The causal intervention determination estimates one
or more causal relationships between control variables and
an optimization target of the continuous flow process. The
causal intervention determination is based on do-calculus
that facilitates identification of causal effects in non-para-
metric models. Do-calculus includes interference rules that
permit mapping interventional and observation distributions
whenever certain conditions hold in a causal graph.

Using the machine learning engine 150, validation engine
160, rescaling engine and computation models 180, the
causal intervention determination accounts for linkages
between control variables through time in the continuous
flow process and also known theoretical impacts of the
physical processes in the continuous flow process—such
that—the optimal control configuration (e.g., recommended
inputs for components of the material processing system) are
aligned with first principles (i.e., foundational propositions
or assumptions). It is contemplated that the optimal control
configuration is dynamic and changes as input materials into
the material processing system changes. The machine learn-
ing engine 150 includes machine learning models that
generate inputs for providing the optimal control configu-
ration for the continuous flow process with some level of
uncertainty (e.g., objective parameters and constraint param-
eters that are not observed and remain unknown). The level
of uncertainty can further be used to produce a risk-adjusted
optimal control configuration.

Aspects of the technical solution can be described by way
of examples and with reference to FIGS. 2A and 2B. FIG.
2A is a block diagram of an exemplary technical solution
environment, based on example environments described
with reference to FIGS. 6 and 7 for use in implementing
embodiments of the technical solution are shown. Generally
the technical solution environment includes a technical
solution system suitable for providing the example material
processing system 100 in which methods of the present
disclosure may be employed. In particular, FIG. 2A shows a
high level architecture of the material processing system 100
in accordance with implementations of the present disclo-
sure. Among other engines, managers, generators, selectors,
or components not shown (collectively referred to herein as
“components”), the technical solution environment of mate-
rial processing system 100 corresponds to FIG. 1A and 1B.

At a high level, a material processing engine can access
causal graph input data. Causal graph input data can include
input materials and non-experimental data of a continuous
flow process. Based on the causal graph input data, a causal
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graph that aligns with do-calculus manipulations associated
with determining identifiable causal relationships corre-
sponding to input materials of the continuous flow process
can be generated. The causal graph can be parsed based on
the do-calculus manipulations to determine valid condition-
ing sets associated with estimating a causal impact on an
optimization target. Based on the valid conditioning sets,
generating the optimal control configuration comprising
optimal control variable values associated with the continu-
ous flow process.

The material processing system 100 is responsible for
providing a material processing engine (e.g., material pro-
cessing engine 110) for generating optimal control configu-
rations. In particular, an optimal control configuration
engine (e.g., optimal control configuration engine 110A) is
configured to find controls for the material processing sys-
tem 100 such that an objective function is optimized. In this
way, the optimal control configuration engine 110 derives
control policies, where optimal controls can include a set of
differential equations that describe the paths of the control
variables that minimize a cost function. The optimal control
configurations (e.g., optimal control configuration 110B)
include recommendations for controls for components in the
material processing system. The optimal control configura-
tions can include optimal set points that are targets or desired
values for an essential variable of the continuous flow
process. The optimal control configuration can be commu-
nicated to a controller interface or an operator interface
where the recommended controls in the optimal control
configuration are automatically or manually implemented.

With reference to FIG. 1C, FIG. 1C illustrate features
associated with an optimal control configuration (e.g., opti-
mal control configuration 110B of FIG. 2A). FIG. 1C
includes exogenous variable 102C, confounding variables
104C, operating levers 106C, and past system state 108C.
By way of example, consider copper recovery of copper-
sulphur ore. The composition of ore entering the bulk
flotation process is characterized by the first nine exogenous
variables (102C of FIG. 1C). The process is further charac-
terized by exogenous variable “Feed Particle Size,” which is
the result of an upstream operating lever decision, and
“Froth Depth,” which is measurable, but not directly con-
trollable in the copper-sulphur recovery process. The pro-
cess is further characterized by Past System State (108C of
FIG. 1C). Given the characterization of the process, the
Operating Levers (106C of FIG. 1C) are chosen so as to
minimize the Copper in Tails (%).

As such, the material processing engine 110 can support
identifying the relevant variables for a continuous flow
process. The features of the optimal control configuration
can be part features associated with machine learning opera-
tions (e.g., via machine learning engine 150) to train and
generate causal models. A causal model can refer to a
mathematical model representing causal relationships within
an individual system. Casual models facilitate inferences
about causal relationships from statistical data. As such, the
trained causal models can be used to estimate and recom-
mend values associated the features, in particular, based on
causal relationships identified a continuous flow process
relative to these features. Causal relationship or causal
recommendations can be based on non-experimental train-
ing data (e.g., process non-experiment training data 140 of
FIG. 2A), prior hypothesis input data (e.g., historical indus-
try consensus data), and linkages between control variables
through time (e.g., linkage through time computation model
180A) of a system state. The system state can be associated
with input materials and for a particular time period. Several
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machine learning models can be built to quantify unob-
served behavior in the continuous flow process, where the
machine learning models are associated with uncertainty
(via stochastic optimization) and risk adjusted recommen-
dations. Optimization can be associated with generating and
using random variables; and specifically for Stochastic prob-
lems, random variables appear in the formulation of a
optimization problem itself, which involves random objec-
tive functions or random constraints.

In this way, turning to FIG. 2A, the material processing
system 100 operates based on causal models and causal
intervention determinations, where the causal models sup-
port inferring and representing causal relationships based on
input data, and intervention determinations are based on
overriding normal causal structures to force variables to take
on certain values. For example, the material processing
engine 110 processes historical data from a particular pro-
cess to derive causal relationship between control set points
and a metric to be optimized. A causal graph associated with
a causal model can be generated to encode assumptions
about the continuous flow process, such that, the causal
graph can be parsed using do-calculus. Do-calculus can refer
to a set of manipulations that are available to transform one
expression into another, with the general goal of transform-
ing expressions that contain the do operator into expressions
that do not. Expressions that do not include the do operator
can be estimated from observational data alone, without the
need for an experimental intervention, which might be
expensive or lengthy. In this way, do-calculus supports
replacing probability formulas containing the do operator
with ordinary conditional probabilities. It consists of three
axiom schemas that provide graphical criteria for when
certain substitutions may be made. Advantageously, do-
calculus can support, identifying a control variable that
should be controlled and eliminates a reverse causal rela-
tionships.

The material processing system 110 can receive inputs
(e.g., input data 140) that support the optimal control con-
figuration engine. The input data 140 can include process
circuit design and operation data for a continuous flow
process in the material processing system 100. For example,
the blue prints and drawings and other suitable schematics
representations that model of features of the manufacturing
process (e.g., a continuous flow process). A continuous flow
process can refer to continuous production to manufacture,
produce, or process materials without interruption, such as
by continuously in motion, undergoing chemical reactions
or subject to a mechanical or heat treatment.

The material processing engine 110 supports causal
graphs associated with causal mapping that identifies factors
that drive a specific outcome (e.g., a mapping file). The
mapping file can be manually updated (e.g., using subject
matter experts) to make additional manual determinations to
the mapping. The mapping file can be converted into math-
ematical formulations that are processed using the optimal
control configuration engine to generate the optimal control
configuration. In this way, the mapping file models a physi-
cal process, for example, a mining process of the material
processing system. In one implementation, the data can be
represented in a hierarchical data structure without the
variables being on the same footing. Based on the data and
the hierarchal representation, the causal graph based on
do-calculus computation model is parsed to determine valid
condition sets in order to estimate a causal impact of each
level on the optimization target using panel data.

With reference to FIG. 2B, FIG. 2B illustrates material
processing engine 110, machine learning engine 150, vali-
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dation engine 160, rescaling engine 170, and computation
models 180. At block 10, a causal graph is generated with
control variables and system state variables. At block 12, the
causal graph is parsed to determine valid conditioning sets.
At block 24, a minimum valid conditioning set is selected to
generate a most simple valid solution. At block 16, the
control variables are partitioned into separate regimes. At
block 18, the machine learning engine 150 accesses the
template of prior hypotheses. At block 20, the machine
learning engine 150 trains a machine learning model asso-
ciated a variable’s quadratic impact on an optimization
target. At block 22, the machine learning engine 150 repeats
the training for unknown constraint parameters.

At block 24, the validation engine 160 quantifies a diver-
gence between learned control variable quadratic parameters
and observed data. At block 26, the validation engine
determines if a relationship between learned control variable
quadratic parameters and observed data align with first
principles. At block 26, the rescaling engine 170 rescales
and combines each control variable’s quadratic parameters
into a set of quadratic equations. At block 28, the rescaling
engine 170, converts rescaled objective functions and con-
straint functions into symbolic equations.

At block 32, a computation model—in the computation
models 180—determine linkages between control variables
through time. At block 34, a computation model constructs
a deterministic convex optimization problem. At block 36, a
computation model solve the deterministic convex optimi-
zation problem associated with optimal control variable
values and constraint dual values. At block 38, a computa-
tion model formulates a stochastic optimization counterpart
to the deterministic formulation. At block 40, a computation
model, solves the stochastic optimization associated with
optimal control variable values and constraint dual values.
Exemplary Methods

With reference to FIGS. 3, 4 and 5, flow diagrams are
provided illustrating methods for providing an optimal con-
trol configuration for an optimal control configuration
engine of a material processing system. In embodiments,
one or more computer-storage media having computer-
executable or computer-useable instructions embodied
thereon that, when executed, by one or more processors can
cause the one or more processors to perform the methods
(e.g., computer-implemented method) in the material pro-
cessing system (e.g., a computerized system or computing
system).

Turning to FIG. 3, a flow diagram is provided that
illustrates a method 300 for providing an optimal control
configuration for an optimal control configuration engine of
a material processing system. At block 302, a causal graph—
with control variables and system state variables—is gen-
erated. At block 304, a causal graph is parsed to determine
valid conditioning sets. At block 306, a minimum valid
condition set is set is selected to generate a most simple valid
solution. At block 308, control variables are partitioned in
separate regimes.

In other exemplary embodiments, the method can include
accessing, at a material processing engine, causal graph
input data comprising input materials associated with a
continuous flow process; based on the causal graph input
data, generating a causal graph that aligns with do-calculus
manipulations associated with determining identifiable
causal relationships corresponding to the input materials of
the continuous flow process. The causal graph input data can
include the following associated with the continuous flow
process: a circuit-operation design schematic; a template of
prior hypotheses; a set of control variables; and a set of
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system state variables. The template of prior hypotheses are
associated with a range within which a convex minimum of
a control variable of the set of control variables is quantified.

The method can further include parsing the causal graph
based on the do-calculus manipulations to determine valid
conditioning sets associated with estimating a causal impact
on an optimization target; and based on the valid condition-
ing sets. Based on parsing the causal graph, partitioning
control variables of the causal graph input data into a
plurality of regimes comprising a first regime and a second
regime. The first regime and a first control variable of the
first regime, a shortest valid conditioning set is identified for
training a machine learning model that predicts a quadratic
causal impact of the first control variable on the optimization
target.

The method also includes generating an optimal control
configuration comprising optimal control variable values
associated with the continuous flow process. Generating the
optimal control configuration can be further based on quan-
tifying a divergence between quadratic parameters of control
variables and observed data, where a quantified divergence
operates as an indication that a relationship between the
quadratic parameters of a first control variable and observed
data aligns with first principles. Generating the optimal
control configuration can further be based on rescaling and
combining quadratic parameters of control variables for a
first regime comprising a first set of control variables
partitioned into a first regime; and based on a symbolic
computing library, converting rescaled object functions and
constraint functions associated with the quadratic param-
eters into symbolic equations.

Generating the optimal control configuration can also be
further based on, using a function composition utility of the
symbolic computing library, constructing nested objective
functions and nested constraint functions, wherein the
nested objective functions and nested constraint functions
are associated with identifying linkages through time in
input materials. And, generating the optimal control con-
figuration can also be further based on constructing a
deterministic convex optimization problem using a first
regime comprising a first set of control variables partitioned
into the first regime and an identified time period associated
with a set of system state variables.

The operations of the method can further include parti-
tioning unknown constraint parameters into a plurality addi-
tional regimes; solving the deterministic convex optimiza-
tion problem and recording optimal control variables values
and constraint dual values; based on solving the determin-
istic problem, accessing a standard deviation of a quadratic
parameter of a first control variable; formulating a stochastic
optimization problem that corresponds to the deterministic
convex optimization problem; and solving the stochastic
optimization problem and recording optimal control vari-
ables values and constraint dual values.

Turning to FIG. 4, a flow diagram is provided that
illustrates a method 400 for providing an optimal control
configuration for an optimal control configuration engine of
a material processing system. At block 402, a template prior
hypothesis is accessed. At block 404, a plurality of machine
learning models associated with corresponding variables’
quadratic impact on an optimization target are trained. At
block 406, the training is repeated for unknown constraint
parameters.

Turning to FIG. 5, a flow diagram is provided that
illustrates a method 500 for providing an optimal control
configuration for an optimal control configuration engine of
a material processing system. At block 502, determine
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linkage between control variables through time. At block
504, construct a deterministic convex optimization problem.
At block 506, solve the deterministic convex optimization
problem associated with optimal control variable values and
constraint dual values. At block 508, formulate a stochastic
optimization counterpart to the deterministic formulation. At
block 510, solve the stochastic optimization associated with
optimal control variable values and constraint dual values.

ADDITIONAL SUPPORT FOR DETAILED
DESCRIPTION OF THE INVENTION

Example Distributed Computing System Environment

Referring now to FIG. 6, FIG. 6 illustrates an example
distributed computing environment 600 in which implemen-
tations of the present disclosure may be employed. In
particular, FIG. 6 shows a high-level architecture of an
example cloud computing platform 610 that can host a
technical solution environment, or a portion thereof (e.g., a
data trustee environment). It should be understood that this
and other arrangements described herein are set forth only as
examples. For example, as described above, many of the
elements described herein may be implemented as discrete
or distributed components or in conjunction with other
components, and in any suitable combination and location.
Other arrangements and elements (e.g., machines, inter-
faces, functions, orders, and groupings of functions) can be
used in addition to or instead of those shown.

Data centers can support distributed computing environ-
ment 600 that includes cloud computing platform 610, rack
620, and node 630 (e.g., computing devices, processing
units, or blades) in rack 620. The technical solution envi-
ronment can be implemented with cloud computing platform
610 that runs cloud services across different data centers and
geographic regions. Cloud computing platform 610 can
implement fabric controller 640 component for provisioning
and managing resource allocation, deployment, upgrade,
and management of cloud services. Typically, cloud com-
puting platform 610 acts to store data or run service appli-
cations in a distributed manner. Cloud computing infrastruc-
ture 610 in a data center can be configured to host and
support operation of endpoints of a particular service appli-
cation. Cloud computing infrastructure 610 may be a public
cloud, a private cloud, or a dedicated cloud.

Node 630 can be provisioned with host 650 (e.g., oper-
ating system or runtime environment) running a defined
software stack on node 630. Node 630 can also be config-
ured to perform specialized functionality (e.g., compute
nodes or storage nodes) within cloud computing platform
610. Node 630 is allocated to run one or more portions of a
service application of a tenant. A tenant can refer to a
customer utilizing resources of cloud computing platform
610.

Service application components of cloud computing plat-
form 610 that support a particular tenant can be referred to
as a tenant infrastructure or tenancy. The terms service
application, application, or service are used interchangeably
herein and broadly refer to any software, or portions of
software, that run on top of, or access storage and compute
device locations within, a datacenter.

When more than one separate service application is being
supported by nodes 630, nodes 630 may be partitioned into
virtual machines (e.g., virtual machine 652 and virtual
machine 654). Physical machines can also concurrently run
separate service applications. The virtual machines or physi-
cal machines can be configured as individualized computing
environments that are supported by resources 660 (e.g.,
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hardware resources and software resources) in cloud com-
puting platform 610. It is contemplated that resources can be
configured for specific service applications. Further, each
service application may be divided into functional portions
such that each functional portion is able to run on a separate
virtual machine. In cloud computing platform 610, multiple
servers may be used to run service applications and perform
data storage operations in a cluster. In particular, the servers
may perform data operations independently but exposed as
a single device referred to as a cluster. Each server in the
cluster can be implemented as a node.

Client device 680 may be linked to a service application
in cloud computing platform 610. Client device 680 may be
any type of computing device, which may correspond to
computing device 600 described with reference to FIG. 6,
for example, client device 680 can be configured to issue
commands to cloud computing platform 610. In embodi-
ments, client device 680 may communicate with service
applications through a virtual Internet Protocol (IP) and load
balancer or other means that direct communication requests
to designated endpoints in cloud computing platform 610.
The components of cloud computing platform 610 may
communicate with each other over a network (not shown),
which may include, without limitation, one or more local
area networks (LANs) and/or wide area networks (WANs).
Example Distributed Computing Environment

Having briefly described an overview of embodiments of
the present invention, an example operating environment in
which embodiments of the present invention may be imple-
mented is described below in order to provide a general
context for various aspects of the present invention. Refer-
ring initially to FIG. 7 in particular, an example operating
environment for implementing embodiments of the present
invention is shown and designated generally as computing
device 700. Computing device 700 is but one example of a
suitable computing environment and is not intended to
suggest any limitation as to the scope of use or functionality
of the invention. Neither should computing device 700 be
interpreted as having any dependency or requirement relat-
ing to any one or combination of components illustrated.

The invention may be described in the general context of
computer code or machine-useable instructions, including
computer-executable instructions such as program modules,
being executed by a computer or other machine, such as a
personal data assistant or other handheld device. Generally,
program modules including routines, programs, objects,
components, data structures, etc. refer to code that perform
particular tasks or implement particular abstract data types.
The invention may be practiced in a variety of system
configurations, including hand-held devices, consumer elec-
tronics, general-purpose computers, more specialty comput-
ing devices, etc. The invention may also be practiced in
distributed computing environments where tasks are per-
formed by remote-processing devices that are linked through
a communications network.

With reference to FIG. 7, computing device 700 includes
bus 710 that directly or indirectly couples the following
devices: memory 712, one or more processors 714, one or
more presentation components 716, input/output ports 718,
input/output components 720, and illustrative power supply
722. Bus 710 represents what may be one or more buses
(such as an address bus, data bus, or combination thereof).
The various blocks of FIG. 7 are shown with lines for the
sake of conceptual clarity, and other arrangements of the
described components and/or component functionality are
also contemplated. For example, one may consider a pre-
sentation component such as a display device to be an 1/O
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component. Also, processors have memory. We recognize
that such is the nature of the art, and reiterate that the
diagram of FIG. 7 is merely illustrative of an example
computing device that can be used in connection with one or
more embodiments of the present invention. Distinction is
not made between such categories as “workstation,”
“server,” “laptop,” “hand-held device,” etc., as all are con-
templated within the scope of FIG. 7 and reference to
“computing device.”

Computing device 700 typically includes a variety of
computer-readable media. Computer-readable media can be
any available media that can be accessed by computing
device 700 and includes both volatile and nonvolatile media,
removable and non-removable media. By way of example,
and not limitation, computer-readable media may comprise
computer storage media and communication media.

Computer storage media include volatile and nonvolatile,
removable and non-removable media implemented in any
method or technology for storage of information such as
computer-readable instructions, data structures, program
modules or other data. Computer storage media includes, but
is not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical disk storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium which can be used to
store the desired information and which can be accessed by
computing device 700. Computer storage media excludes
signals per se.

Communication media typically embodies computer-
readable instructions, data structures, program modules or
other data in a modulated data signal such as a carrier wave
or other transport mechanism and includes any information
delivery media. The term “modulated data signal” means a
signal that has one or more of its characteristics set or
changed in such a manner as to encode information in the
signal. By way of example, and not limitation, communi-
cation media includes wired media such as a wired network
or direct-wired connection, and wireless media such as
acoustic, RF, infrared and other wireless media. Combina-
tions of any of the above should also be included within the
scope of computer-readable media.

Memory 712 includes computer storage media in the form
of volatile and/or nonvolatile memory. The memory may be
removable, non-removable, or a combination thereof. Exem-
plary hardware devices include solid-state memory, hard
drives, optical-disc drives, etc. Computing device 700
includes one or more processors that read data from various
entities such as memory 712 or /O components 720. Pre-
sentation component(s) 716 present data indications to a
user or other device. Exemplary presentation components
include a display device, speaker, printing component,
vibrating component, etc.

1/0 ports 718 allow computing device 700 to be logically
coupled to other devices including /O components 720,
some of which may be built in. Illustrative components
include a microphone, joystick, game pad, satellite dish,
scanner, printer, wireless device, etc.

Additional Structural and Functional Features of Embodi-
ments of the Technical Solution

Having identified various components utilized herein, it
should be understood that any number of components and
arrangements may be employed to achieve the desired
functionality within the scope of the present disclosure. For
example, the components in the embodiments depicted in
the figures are shown with lines for the sake of conceptual
clarity. Other arrangements of these and other components
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may also be implemented. For example, although some
components are depicted as single components, many of the
elements described herein may be implemented as discrete
or distributed components or in conjunction with other
components, and in any suitable combination and location.
Some elements may be omitted altogether. Moreover, vari-
ous functions described herein as being performed by one or
more entities may be carried out by hardware, firmware,
and/or software, as described below. For instance, various
functions may be carried out by a processor executing
instructions stored in memory. As such, other arrangements
and elements (e.g., machines, interfaces, functions, orders,
and groupings of functions) can be used in addition to or
instead of those shown.

Embodiments described in the paragraphs below may be
combined with one or more of the specifically described
alternatives. In particular, an embodiment that is claimed
may contain a reference, in the alternative, to more than one
other embodiment. The embodiment that is claimed may
specify a further limitation of the subject matter claimed.

The subject matter of embodiments of the invention is
described with specificity herein to meet statutory require-
ments. However, the description itself is not intended to
limit the scope of this patent. Rather, the inventors have
contemplated that the claimed subject matter might also be
embodied in other ways, to include different steps or com-
binations of steps similar to the ones described in this
document, in conjunction with other present or future tech-
nologies. Moreover, although the terms “step” and/or
“block™ may be used herein to connote different elements of
methods employed, the terms should not be interpreted as
implying any particular order among or between various
steps herein disclosed unless and except when the order of
individual steps is explicitly described.

For purposes of this disclosure, the word “including” has
the same broad meaning as the word “comprising,” and the
word “accessing” comprises “receiving,” “referencing,” or
“retrieving.” Further the word “communicating” has the
same broad meaning as the word “receiving,” or “transmit-
ting” facilitated by software or hardware-based buses,
receivers, or transmitters using communication media
described herein. In addition, words such as “a” and “an,”
unless otherwise indicated to the contrary, include the plural
as well as the singular. Thus, for example, the constraint of
“a feature” is satisfied where one or more features are
present. Also, the term “or” includes the conjunctive, the
disjunctive, and both (a or b thus includes either a or b, as
well as a and b).

For purposes of a detailed discussion above, embodiments
of the present invention are described with reference to a
distributed computing environment; however the distributed
computing environment depicted herein is merely exem-
plary. Components can be configured for performing novel
aspects of embodiments, where the term “configured for”
can refer to “programmed to” perform particular tasks or
implement particular abstract data types using code. Further,
while embodiments of the present invention may generally
refer to the technical solution environment and the schemat-
ics described herein, it is understood that the techniques
described may be extended to other implementation con-
texts.

Embodiments of the present invention have been
described in relation to particular embodiments which are
intended in all respects to be illustrative rather than restric-
tive. Alternative embodiments will become apparent to those
of ordinary skill in the art to which the present invention
pertains without departing from its scope.
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From the foregoing, it will be seen that this invention is
one well adapted to attain all the ends and objects herein-
above set forth together with other advantages which are
obvious and which are inherent to the structure.

It will be understood that certain features and sub-com-
binations are of utility and may be employed without
reference to other features or sub-combinations. This is
contemplated by and is within the scope of the claims.

What is claimed is:

1. A computerized system comprising:

one or more computer processors; and

computer memory storing computer-useable instructions

that, when used by the one or more computer proces-
sors, cause the one or more computer processors to
perform operations comprising:
accessing, at a material processing engine implemented
using the one or more computer processors, causal
graph input data from one or more hardware storage
devices, the causal graph input data comprising input
materials associated with a continuous flow process;

based on the causal graph input data, generating a causal
graph that aligns with do-calculus manipulations asso-
ciated with determining identifiable causal relation-
ships corresponding to the input materials of the con-
tinuous flow process;

parsing the causal graph based on the do-calculus manipu-

lations to determine valid conditioning sets associated
with estimating a causal impact on an optimization
target;

based on parsing the causal graph, partitioning a set of

control variables of the causal graph input data into a
plurality of regimes comprising a first regime and a
second regime, wherein for the first regime and a first
control variable of the first regime, a shortest valid
conditioning set is identified for training a machine
learning model that predicts a quadratic causal impact
of the first control variable on the optimization target;
and

based on the valid conditioning sets, generating an opti-

mal control configuration comprising optimal control
variable values associated with the continuous flow
process; and

controlling the continuous flow process in accordance

with the optimal control configuration.

2. The system of claim 1, wherein the causal graph input
data further comprises the following associated with the
continuous flow process:

a circuit-operation design schematic;

a template of prior hypotheses; and

a set of system state variables.

3. The system of claim 2, wherein the template of prior
hypotheses are associated with a range within which a
convex minimum of a control variable of the set of control
variables is quantified.

4. The system of claim 1, the operations further compris-
ing partitioning unknown constraint parameters into a plu-
rality of additional regimes.

5. The system of claim 1, wherein generating the optimal
control configuration is further based on quantifying a
divergence between quadratic parameters of the set of con-
trol variables and observed data, where a quantified diver-
gence operates as an indication that a relationship between
the quadratic parameters of the first control variable and
observed data aligns with first principles.

6. The system of claim 1, wherein generating the optimal
control configuration is further based on:
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resealing and combining quadratic parameters of the

control variables for the first regime; and

based on a symbolic computing library, converting

resealed object functions and constraint functions asso-
ciated with the quadratic parameters into symbolic
equations.

7. The system of claim 1, wherein generating the optimal
control configuration is further based on constructing a
deterministic convex optimization problem using the first
regime and an identified time period associated with a set of
system state variables.

8. The system of claim 7, the operations further compris-
ing solving the deterministic convex optimization problem
and recording optimal control variables values and con-
straint dual values.

9. A computerized system comprising:

one or more computer processors; and

computer memory storing computer-useable instructions

that, when used by the one or more computer proces-

sors, cause the one or more computer processors to

perform operations comprising:

accessing, at a material processing engine implemented
using the one or more computer processors, causal
graph input data from one or more hardware storage
devices, the causal graph input data comprising input
materials associated with a continuous flow process;

based on the causal graph input data, generating a
causal graph that aligns with do-calculus manipula-
tions associated with determining identifiable causal
relationships corresponding to the input materials of
the continuous flow process;

parsing the causal graph based on the do-calculus
manipulations to determine valid conditioning sets
associated with estimating a causal impact on an
optimization target;

based on the valid conditioning sets, generating an
optimal control configuration comprising optimal
control variable values associated with the continu-
ous flow process,

wherein generating the optimal control configuration is
further based on, using a function composition utility
of'a symbolic computing library, constructing nested
objective functions and nested constraint functions,
wherein the nested objective functions and nested
constraint functions are associated with identifying
linkages through time in input materials; and

controlling the continuous flow process in accordance
with the optimal control configuration.

10. A computerized system comprising:

one or more computer processors; and

computer memory storing computer-useable instructions

that, when used by the one or more computer proces-

sors, cause the one or more computer processors to

perform operations comprising:

accessing, at a material processing engine implemented
using the one or more computer processors, causal
graph input data from one or more hardware storage
devices, the causal graph input data comprising input
materials associated with a continuous flow process;

based on the causal graph input data, generating a
causal graph that aligns with do-calculus manipula-
tions associated with determining identifiable causal
relationships corresponding to the input materials of
the continuous flow process;
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parsing the causal graph based on the do-calculus
manipulations to determine valid conditioning sets
associated with estimating a causal impact on an
optimization target;

based on the valid conditioning sets, generating an
optimal control configuration comprising optimal
control variable values associated with the continu-
ous flow process,

wherein generating the optimal control configuration is
further based on constructing a deterministic convex
optimization problem using a first regime compris-
ing a first set of control variables partitioned into the
first regime and an identified time period associated
with a set of system state variables;

solving the deterministic convex optimization problem
and recording optimal control variables values and
constraint dual values;

based on solving the deterministic problem, accessing
a standard deviation of a quadratic parameter of a
first control variable;

formulating a stochastic optimization problem that cor-
responds to the deterministic convex optimization
problem; and

controlling the continuous flow process in accordance
with the optimal control configuration.

11. The system of claim 10, the operations further com-
prising solving the stochastic optimization problem and
recording optimal control variables values and constraint
dual values.

12. One or more computer-storage media having com-
puter-executable instructions embodied thereon that, when
executed by a computing system having a processor and
memory, cause the processor to:

access, at a material processing engine implemented using

the one or more computer processors, causal graph
input data from one or more hardware storage devices,
the causal graph input data comprising input materials
associated with a continuous flow process;

based on the causal graph input data, generate a causal

graph that aligns with do-calculus manipulations asso-
ciated with determining identifiable causal relation-
ships corresponding to the input materials of the con-
tinuous flow process;

parse the causal graph based on the do-calculus manipu-

lations to determine valid conditioning sets associated
with estimating a causal impact on an optimization
target;

based on parsing the causal graph, partition control vari-

ables of the causal graph input data into a plurality of
regimes comprising a first regime and a second regime,
wherein for the first regime and a first control variable,
a shortest valid conditioning set is identified for train-
ing a machine learning model that predicts a quadratic
causal impact of the first control variable on the opti-
mization target;

based on the valid conditioning sets, generate an optimal

control configuration comprising optimal control vari-
able values associated with the continuous flow pro-
cess; and

control the continuous flow process in accordance with

the optimal control configuration.

13. The media of claim 12, wherein generating the opti-
mal control configuration is further based on:

quantifying a divergence between quadratic parameters of

control variables and observed data, where a quantified
divergence operates as an indication that a relationship
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between learned quadratic parameters of the first con-
trol variable and observed data aligns with first prin-
ciples;

solving a deterministic convex optimization problem and
a corresponding stochastic optimization problem; and

recording optimal control variables values and constraint
dual values associated with the deterministic convex
optimization problem and the stochastic optimization
problem.

14. A computer-implemented method, the method com-

prising:

accessing, at a material processing engine implemented
using one or more computer processors, causal graph
input data from one or more hardware storage devices,
the causal graph input data comprising input materials
associated with a continuous flow process;

based on the causal graph input data, generating a causal
graph associated with causal relationships correspond-
ing to the input materials of the continuous flow
process;

based on the causal graph, generating an optimal control
configuration comprising an optimal control variable
value associated with an optimization target of the
continuous flow process,
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wherein the optimal control configuration comprises a
first control variable value and a second control vari-
able value, wherein the first control variable value and
the second control variable value are associated with
corresponding machine learning models that have
learned a quadratic causal impact on the optimization
target; and

controlling the continuous flow process in accordance
with the optimal control configuration.

15. The method of claim 14, wherein generating the
optimal control configuration comprising the optimal con-
trol variable value associated with the continuous flow

15 process is based solving a deterministic convex optimization

problem and a corresponding stochastic optimization prob-
lem; and

recording optimal control variables values and constraint
dual values associated with the deterministic convex
optimization problem and the stochastic optimization
problem.



