a2 United States Patent

Riguer et al.

US011521293B2

US 11,521,293 B2
*Dec. 6,2022

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@1

(22)

(65)

(63)

(1)

MEMORY MANAGEMENT IN GRAPHICS
AND COMPUTE APPLICATION
PROGRAMMING INTERFACES

Applicants: Advanced Micro Devices, Inc., Santa
Clara, CA (US); ATI Technologies
ULC, Markham (CA)

Inventors: Guennadi Riguer, Thornhill (CA);
Brian K. Bennett, Northborough, MA

Us)

Assignees: Advanced Micro Devices, Inc., Santa
Clara, CA (US); ATI Technologies
ULC, Ontario (CA)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 196 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 16/943,637

Filed: Jul. 30, 2020

Prior Publication Data

US 2020/0357093 Al Nov. 12, 2020

Related U.S. Application Data

Continuation of application No. 15/477,795, filed on
Apr. 3, 2017, now Pat. No. 10,733,696, which is a
continuation of application No. 14/560,757, filed on
Dec. 4, 2014, now Pat. No. 9,612,884.

GO6F 12/02
GO6T 1720
G09G 5/36
U.S. Cl.
CPC

(2006.01)
(2006.01)
(2006.01)
(52)
................ GO6T 1/60 (2013.01); GOGF 3/064
(2013.01); GO6F 9/5016 (2013.01); GO6F
9/54 (2013.01); GO6F 12/023 (2013.01); GO6T
1720 (2013.01); G09G 5/363 (2013.01)
Field of Classification Search

CPC ... GOGF 3/064; GOGF 9/5016; GOGF 9/54;
GOG6F 12/00; GOGF 13/00; GO6T 1/20;
GO09G 5/363

See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

8,928,680 Bl1* 1/2015 Sanketi GO6T 1/60
345/543

9,785,332 B1 10/2017 Karppanen
2005/0219241 Al* 10/2005 Chun HO4N 13/363

348/E13.056

(Continued)

Primary Examiner — Tuan V Thai
(74) Attorney, Agent, or Firm — Volpe Koenig

(57) ABSTRACT

Methods are provided for creating objects in a way that
permits an API client to explicitly participate in memory
management for an object created using the API. Methods
for managing data object memory include requesting
memory requirements for an object using an API and
expressly allocating a memory location for the object based
on the memory requirements. Methods are also provided for

Int. C1. cloning objects such that a state of the object remains
GOG6F 3/06 (2006.01) unchanged from the original object to the cloned object or
GO6T 1/60 (2006.01) can be explicitly specified.
GOG6F 9/54 (2006.01)
GOG6F 9/50 (2006.01) 20 Claims, 8 Drawing Sheets
/’\-—106
100 Storage
1 104
(I 1 {_/102

S S

r -
| LA

! Input driver ,<

| i
Lt g e

Processor

N/

Memeory

i

Input devices

[y

1l

i
—— el

QOutput driver

=114

| —

108

ﬁ

Gutput devices

!\fﬂo

US 11,521,293 B2

(56) References Cited

U.S. PATENT DOCUMENTS

2008/0184063 Al 7/2008
2011/0185134 Al 7/2011
2011/0242125 A1 10/2011
2012/0259843 Al* 10/2012

2013/0057562 Al* 3/2013

2013/0275656 Al 10/2013

* cited by examiner

Page 2
Abdulvahid
Toews et al.
Hall et al.
Childccoovenin GO6F 16/24569
707/769
Nordlund GO6F 12/0802
345/522

Talagala et al.

US 11,521,293 B2

Sheet 1 of 8

m.m...\\.,w

saoAD INdIND

w%

o e
m
oAUp Inding | seaAep ndug
j
S
j

!
!
!
!
L

—

f~———"77771
m

PIT—~-/
Ao \AEL/ 10858901 A

J2Aup ndug

!
!
!
!
—d

Dec. 6, 2022

U.S. Patent

~

) o

0T It

abeiols oot

@@M.\;/\\

U.S. Patent Dec. 6, 2022 Sheet 2 of 8 US 11,521,293 B2

260

/7

Request to Create GPU Object 210

l

API Returns Object Identifier 220

$

API Allocates GPU Memory for Object f—r"""230

'

API Client Binds Object ID to
Allocated GPU Memory

N i 240

FIG. 2

U.S. Patent Dec. 6, 2022 Sheet 3 of 8 US 11,521,293 B2

300

/

Request to Create Image 310
GPU Cblect

¥

API Returns Cbiect Image 320
“mage 17

¥

API Allocates GPU Memory 330
for Image 1
\id
Program Binds Image 1
to Allocated GPU Memory 340

FIG. 3

U.S. Patent Dec. 6, 2022 Sheet 4 of 8 US 11,521,293 B2

400

/7

API Client Request to 410
API to Create Object
API Returns Object 420

Identifier o API Client

i

API Client Reguest to
API for Memory Requirements e 430
for Chject

i

API Returns Memory Requirements [—"""440

i

API Client Determines Desired

GPU Memory 450
API Client Binds Desired GPU 460

Memory to Object Identifier

FIG. 4

U.S. Patent Dec. 6, 2022 Sheet 5 of 8 US 11,521,293 B2

/ﬂ%
Program Calls API Library 510
to Create Image Object
API Returns Identifier
“Image A” for Object 520

i

Program Calls API Library
to Determine Memory Reguirements """ 530
for Object “Image A”

¥
API Returns Memory Requirements " 540

¥
Program Determines Desired o 5EQ
GPU Memory
¥
Program Binds Desired GPU P

Memory to Identifier “Image A"

FIG. 5

U.S. Patent Dec. 6, 2022 Sheet 6 of 8 US 11,521,293 B2

/OG
AP Client Requests 510
Copy of GPU Object
¥
API Allocates GPU Memory
for Object Copy ~ 620
APT Writes Object Data
Metadata and State to e 630
Allocated GPU Memory
¥
API Returns Identifier
M“"m
for Object Copy to API Client 640

FIG. 6

U.S. Patent Dec. 6, 2022 Sheet 7 of 8 US 11,521,293 B2

700
710
API Client Requests Clone of GPU Object ’J
¥
API Returns Identifier for Object Clone w)
7’3(3»/\\ ! v 720
API Client Requests API Client 750
Memory Requirements Infers Memory ./
for Object Clone Reguirements
@ v
780
APT Returns ﬂ\ﬁﬁ API Allocates
Memory Requirements GPUY Memory for
Clone
¥ ¥

API Client Allocates GPU Memory
for Clone Based on Requirements

I I | 70

API Client Binds Allocated GPU Memory to Object Name ”"J

e 760

¥ 780
,,..J
API Client Requests API to Write Data to Clone

FIG. 7

U.S. Patent Dec. 6, 2022 Sheet 8 of 8 US 11,521,293 B2

800
/ 810
Program Calls API Library to Clone Image Obiject J

“Image X”

l

API Returns Identifier “Image Y" for Clone \/)

83@‘-/\ . ¥ 820

860
Program Requests y ngrgm Infers . &
Memory Requirements emory Reguiremen

for Image Y
for I Y
or image Based on Image X 870
i v
840 API Allocates
API Returns o
Memory Requirements ?5? I:i;??

ki ¥

Program Allocates GPU Memory 850
Based on Memory Requirements for T
Image Y

¥ ¥ ¥ 38@

Program Binds Allocated GPU Memory to Image Y "”J
¥ 890

.

Program Reguests API to Write Data to Image Y

FIG. 8

US 11,521,293 B2

1
MEMORY MANAGEMENT IN GRAPHICS
AND COMPUTE APPLICATION
PROGRAMMING INTERFACES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 15/477,795, filed Apr. 3, 2017, which is a
continuation of U.S. patent application Ser. No. 14/560,757,
filed Dec. 4, 2014, which issued as U.S. Pat. No. 9,612,884
on Apr. 4, 2017, the contents of which are incorporated by
reference as if fully set forth herein.

FIELD OF INVENTION

The present invention relates to computer data structures
generally, and more specifically to allocation of memory for
data objects.

BACKGROUND

In computer graphics processing applications, a program
executing on a central processing unit (CPU), may create an
object which is accessible to a GPU to take advantage of the
processing capabilities of a graphics processing unit (GPU).
The program may store an object, such as an image object,
in GPU memory such that a component of the GPU, such as
a shader, may perform calculations on the object.

SUMMARY OF EMBODIMENTS

Some embodiments provide a method for managing data
object memory. An object identifier is requested for an
object using an application programming interface (API).
Memory requirements are requested for the object based
upon the object identifier using the API. A portion of a
memory is determined for storing object data based upon the
memory requirements for the object. The determined
memory is bound to the object.

Some embodiments provide a method for managing data
object memory. A data object identifier is provided in
response to a data object identifier request to an application
programming interface (API). Memory requirements are
provided for the object in response to a memory require-
ments request to the API which includes the object identifier.

Some embodiments provide a method for creating a clone
data object based on an original data object. Data of the data
object is specified based on the original data object. A state
of the data of the original data object as well as destination
data object is specified to an application programming
interface (API). The data of the data object having the
specified state is written to a memory.

BRIEF DESCRIPTION OF THE DRAWINGS

A more detailed understanding may be had from the
following description, given by way of example in conjunc-
tion with the accompanying drawings wherein:

FIG. 1 is a block diagram of an example device in which
one or more disclosed embodiments may be implemented.

FIG. 2 is a flow chart illustrating an example method for
GPU object creation using a graphics APL.

FIG. 3 is a flow chart illustrating an example method for
image object creation using a graphics API.

FIG. 4 is a flow chart illustrating another example method
for GPU object creation using a graphics APIL.

20

25

30

35

40

45

50

55

60

65

2

FIG. 5 is a flow chart illustrating another example method
for image object creation using a graphics API.

FIG. 6 is a flow chart illustrating an example method for
object copying using a graphics API.

FIG. 7 is a flow chart illustrating an example method for
object cloning using a graphics API.

FIG. 8 is a flow chart illustrating an example method for
image object cloning using a graphics API.

DETAILED DESCRIPTION

FIG. 1 is a block diagram of an example device 100 in
which one or more disclosed embodiments may be imple-
mented. The device 100 may include, for example, a com-
puter, a gaming device, a handheld device, a set-top box, a
television, a mobile phone, or a tablet computer. The device
100 includes a processor 102, a memory 104, a storage 106,
one or more input devices 108, and one or more output
devices 110. The device 100 may also optionally include an
input driver 112 and an output driver 114. It is understood
that the device 100 may include additional components not
shown in FIG. 1.

The processor 102 may include a central processing unit
(CPU), a graphics processing unit (GPU), a CPU and GPU
located on the same die, or one or more processor cores,
wherein each processor core may be a CPU or a GPU
(different core types and sizes may be used on the single die
or in the single package). The memory 104 may be located
on the same die as the processor 102, or may be located
separately from the processor 102. The memory 104 may
include a volatile or non-volatile memory, for example,
random access memory (RAM), dynamic RAM, or a cache.
It is noted that memory 104 may be implemented as one or
more discrete units and that device 100 may include multiple
distinct memories (not shown). For example, device 100
may include both CPU and GPU memories (not shown) as
further discussed herein.

The storage 106 may include a fixed or removable stor-
age, for example, a hard disk drive, a solid state drive, an
optical disk, or a flash drive. The input devices 108 may
include a keyboard, a keypad, a touch screen, a touch pad,
a detector, a microphone, an accelerometer, a gyroscope, a
biometric scanner, or a network connection (e.g., a wireless
local area network card for transmission and/or reception of
wireless IEEE 802 signals). The output devices 110 may
include a display, a speaker, a printer, a haptic feedback
device, one or more lights, an antenna, or a network con-
nection (e.g., a wireless local area network card for trans-
mission and/or reception of wireless IEEE 802 signals).

The input driver 112 communicates with the processor
102 and the input devices 108, and permits the processor 102
to receive input from the input devices 108. The output
driver 114 communicates with the processor 102 and the
output devices 110, and permits the processor 102 to send
output to the output devices 110. It is noted that the input
driver 112 and the output driver 114 are optional compo-
nents, and that the device 100 will operate in the same
manner if the input driver 112 and the output driver 114 are
not present.

In various computing applications it may be desirable to
use a dedicated graphics processing unit (GPU) to perform
certain types of calculations on certain types of data to
accelerate generation of graphical images from data or to
perform other graphical or non-graphical calculations, such
as calculations involving transformation of matrices.

To take advantage of the functionality of a GPU, a
program running on a CPU or other computing device may

US 11,521,293 B2

3

store data in a memory location dedicated for use by the
GPU. Such memory is referred to herein as GPU memory.
It is noted that such memory may be located on or off of the
GPU itself, on or off of a graphics card or daughterboard
incorporating the GPU, in a portion of CPU memory or main
memory, or in another location depending upon the desired
implementation.

In general, data objects are data structures having asso-
ciated data fields. In computer graphics applications, these
fields may contain data, such as color; metadata, which may
describe the layout of the data (for example image height
and width); state information, such as data format or usage
information for the data which indicates the state of the data
in the object and/or how the data should be processed; or
pointers to locations in memory where such data, metadata,
and state are stored. In computer graphics processing appli-
cations, a program executing on a CPU (such as an end-user
application like a game, CAD application, etc.) may create
an object which is accessible to a GPU to take advantage of
the processing capabilities of the GPU. The program may
store an object, such as an image object, in GPU memory
such that a component of the GPU, such as a shader, may
perform calculations on the object. Such an object may be
referred to as a GPU object.

Application Programming Interfaces (APIs) exist which
specify ways in which a program running on a processor
may interact with hardware and/or other software. Such
APIs may be implemented as one or more libraries, for
example, which may be used to specify a set of functions,
routines, or object classes for interacting with the hardware
and/or software in a standardized way. Such APIs may form
part of an operating system (e.g., Microsoft Windows,
Android from Google, etc.) running on a device 100.

Various APIs exist for computer graphics processing, and
well-known computer graphics processing APIs include
OpenGL and DirectX. Such APIs are typically used by
computer programs to interact with a graphics processing
unit (GPU) to perform hardware-accelerated rendering or
other GPU tasks, and may be implemented as a library or set
of libraries which the computer program can call during
execution. These libraries may include specifications for
object classes for use by a GPU and functions for creating
such objects, among other things. A computer program
which calls an API may be referred to as a client application,
or API client.

Several methods of object creation are discussed herein
whereby a graphics API is used for creating the object,
allocating GPU memory for the object, and binding the
object identifier to the allocated GPU memory. It is noted
that these methods may not be limited to GPU applications,
and may be generalized and applied to general computing
applications using a compute API or other type of API for
creating an object, allocating memory (such as main
memory or CPU memory) for the object, and binding the
object identifier to allocated memory.

FIG. 2 is a flow chart illustrating an example method 200
for GPU object creation using a graphics APIL.

In step 210, an API client may use an API to create a GPU
object for use by a GPU, for example, by calling a library
implementing the API.

In response to the object creation call, the API may return
an object name, number, handle or other identifier for the
object to the API client in step 220.

In addition to returning an identifier, GPU memory man-
agement tasks relating to the object may be performed
according to the API in response to the object creation call
in step 230. These memory management tasks may depend

20

25

30

35

40

45

50

55

60

65

4

on the object type or class, and may include allocating a
certain quantity or area of GPU memory for storing object
data, metadata, state, and so forth. These memory manage-
ment tasks may be performed according to the API without
API client intervention, and the API client may not be able
to configure or otherwise affect the memory management
tasks. For example, a certain quantity of GPU memory may
be allocated for the object in a certain available memory
location according to the functionality of the API, and the
API client may not be able to otherwise select, observe, or
influence either the quantity or location of the allocated GPU
memory.

After GPU memory has been allocated for the object, the
API client may then bind the object identifier to the allocated
GPU memory in step 240. Thereafter, the API client may
command the GPU to perform operations on the GPU
object.

FIG. 3 is a flow chart illustrating an example method 300
for creating a particular kind of object (in this case an image)
using a graphics APL

In step 310, a computer program calls a library imple-
menting the graphics API to create an image object in a GPU
memory so that the GPU can perform operations on the
image.

In response to the object creation call, the API returns an
object name, for example “image 1,” to the computer
program in step 320.

In addition to returning the name of the object, GPU
memory management tasks relating to the object image 1 are
performed according to the API in response to the object
creation call without further instructions from the computer
program in step 330. These memory management tasks
include allocating a quantity or region of a GPU memory
specified by the API for the image object type. In this
example, the computer program does not control the quan-
tity of memory allocated or where it is allocated within the
GPU memory beyond calling the API. The quantity and
location of the allocated memory is also not explicitly
returned to the program in this example.

The program then binds the object name to the allocated
GPU memory and may proceed to command the GPU to
perform operations on the object data in step 340. It is noted
that other types of GPU objects may also be created in this
way.

In some circumstances, it may be desirable to create GPU
objects in a way that permits the API client to participate in
GPU memory management for the GPU object.

FIG. 4 is a flow chart illustrating another example method
400 for GPU object creation using a graphics API. Accord-
ing to this approach, an API client may use an API to create
a GPU object, for example, by calling a library implement-
ing the API in step 410. In some implementations, the API
client may only be required to pass information that is
necessary to later determine memory requirements for the
object. For example, the API client may pass a subset of
object metadata such as image usage characteristics, its
format, height and width, or object state such as compres-
sion state but refrain from passing object data such as pixel
color. In this way, at the time the object identifier is
generated, the GPU object only occupies memory required
to refer to the object or to later allocate further memory to
the object.

In response, the API may return an object name or other
identifier for the object to the API client in step 420.
Thereafter, the API client may request memory requirements
for the object in step 430, for example, in another call to a
library implementing the API. In response to the memory

US 11,521,293 B2

5

requirements call, the API may return memory requirements
for the GPU object in step 440. For example, the memory
requirements call may return a memory size, memory align-
ment, memory placement or footprint, or other types of
memory specification for the GPU object type. These
memory requirements may be requirements for storing
object data and may be determined based on object metadata
or object state. The API client may then determine a desired
location or locations in GPU memory which fulfill the
memory requirements for the object in step 450, and bind the
GPU object identifier to the allocated GPU memory in step
460.

Unlike method 300, the API client in method 400 is
provided with express knowledge of the memory require-
ments for the object, and may participate in allocating
memory for the object. In some implementations, this may
have the advantage of permitting greater flexibility in GPU
memory management. For example, in some implementa-
tions the API client may alias a given memory footprint to
more than one object by allocating that memory to each
object. Further, the API client may reuse all or part of a given
GPU memory location by subsequently allocating that
memory location to a new GPU object or simply unbinding
the memory from the GPU object. Still further, by separating
object data memory allocation from object creation, GPU
memory may be kept free until needed by the object.

FIG. 5 is a flow chart illustrating an example method 500
for image object creation using a graphics API. In step 510,
a computer program calls a library implementing a graphics
API to create an image type object. This call may contain
only a subset of object metadata and/or state, and may not
include object data.

In response to the object creation call, the API returns an
object handle or a name, for example “image A,” to the
program in step 520. Subsequently, the program requests
memory requirements for image A in another call to a library
implementing the API in step 530. In response to the
memory requirements call, the API returns memory require-
ments for image A in step 540, including memory size,
memory location, and memory alignment. The program then
determines a location in a GPU memory which fulfills the
memory requirements in step 550. This determination may
be made using another API call or using other non-API
functionality such as a predetermined memory location, a
call to a different API, or other program functionality.
Thereafter, the program binds the identifier image A to the
determined GPU memory in step 560, and data for image A
may be stored in GPU memory at the bound location for
subsequent operations using the GPU.

Explicitly allocating memory in this way may allow
increased GPU memory flexibility in some implementations.
For example, the GPU memory allocated to image A (or a
portion of this memory) may be aliased to another object,
e.g. “image B,” by binding the identifier image B to the same
GPU memory. The GPU memory allocated to image A may
also be replaced by data for another object, e.g. “image C,”
by allocating the memory previously allocated to image A to
image C and storing data, metadata, and/or state for image
C in this memory location. This may enable more efficient
use of GPU memory in some implementations as discussed
above.

In addition to creating new GPU objects, it may also be
desired to create a GPU object by copying another GPU
object. A graphics API may provide a copy command for this
purpose.

FIG. 6 is a flow chart illustrating an example method 600
for object copying using a graphics API. During execution,

5

20

25

30

35

40

45

50

55

60

65

6

an API client may use a copy function of the API to copy a
GPU object in step 610, for example by calling a library
implementing the API. In response to the object copy call,
the API may allocate an area of GPU memory for the a
destination object for the copy in step 620, write the object
data from the original object to the allocated GPU memory
for the destination object, possibly including metadata and
state, to the allocated area of GPU memory in step 630, and
return an identifier for the destination object to the API client
in step 640. It is noted that during execution of the copy
function the API may take into account the state of the
original object, and may change the state of the original
object and destination object.

The allocation of GPU memory and copying of object
data, metadata, and state may be performed according to the
API without API client intervention, and the API client may
not be able to configure or otherwise affect the API memory
allocation or copying procedures. For example, a certain
quantity of GPU memory may be allocated for the object in
a certain available memory location according to the func-
tionality of the API, and the API client may not be able to
select, observe, or influence either the quantity or location of
the allocated GPU memory. Further, the copy functionality
of the API may change the state of the data during the copy.
For example, if the original object contains compressed data,
the API may decompress the original object data (i.e. change
its state), and write the decompressed data to the destination
object (which will reflect the changed decompressed state).
The API may also write the decompressed data to the
original object.

In some circumstances, it may be desirable to copy GPU
objects in a way that permits the API client to participate in
memory management for the GPU object or to control other
features of the copied object, according to the source object
state and desired destination object state provided by the API
client. In this context, an example of state may be a format
of the data or whether the data is compressed or uncom-
pressed, and/or information which may be used to process or
maintain the object data state, for example, GPU operations
or commands which may be used to process or manage the
object’s data, metadata, or state.

In this case, an API may support a type of copy command
which creates a new GPU object based on an original GPU
object while explicitly controlling or influencing the state of
the copied object. This operation may be referred to as
cloning. In an example, if an original GPU object contains
data in a compressed state, it may be specified that this data
not be decompressed before copying. In contrast, this cannot
be specified in a copy operation and it may not be known
whether data was decompressed or decompressed and
recompressed by the copy operation. In another example, it
may be specified that the state of the clone object be different
from the state of the original object. This may permit, for
example, data to be explicitly decompressed as a part of the
cloning operation.

FIG. 7 is a flow chart illustrating an example method 700
for object cloning using a graphics API. In step 710 an API
client may use an API to clone a GPU object, for example,
by calling a library implementing the API. The API client
may pass enough information in the object cloning call to
specify the original object and a desired state of the desti-
nation object. The API client may also specify whether the
state of the original object should remain the same or
change, and/or may specify that the state of the destination
object should remain the same as the original object
throughout the cloning process or change to a different
specified state. In some implementations, the API client may

US 11,521,293 B2

7

need to pass only this information with the object cloning
call. The API may return an object name (or other identifier)
for the destination object to the API client in step 720.
Memory management using cloning may follow one or
another of the approaches discussed herein depending on the
desired implementation.

For example, after receiving an identifier for the destina-
tion object, the API client may request memory require-
ments (such as memory size, memory alignment, memory
placement or footprint, or other types of memory specifica-
tion as discussed above) for the destination object from the
APl in step 730. In response, the API may return the memory
requirements for the destination object in step 740. In
another approach, the API client may infer memory require-
ments for the destination object based upon the requirements
of the original GPU object and the desired state of the
destination object in step 750. In either case, the API client
may determine a desired location or locations in GPU
memory which fulfill the returned memory requirements for
the destination object in step 760, and may bind the desti-
nation object to the allocated GPU memory in step 770.

Thereafter the API client may call a function of the API
in step 790, passing identifiers for the source and destination
objects. In response to the function call the API may store
data and metadata for the destination object in GPU memory
at the bound location for subsequent operations using the
GPU. The destination object metadata and data may be
stored by the API without modification, or modified,
depending on a desired state of the destination object passed
with the function call in step 790 or in step 710. The source
object metadata and data may remain unchanged or may be
modified based on a desired state of the source object passed
with the function call in step 790 or in step 710.

It is noted that this type of API client driven memory
management, which may be available for a cloning opera-
tion, may not be possible using a copy operation because the
copy operation may change the state of the source or
destination object data during copying without notifying the
API client or soliciting input from the API client. In this
case, an API client’s explicit memory allocation for a copy
operation might match the original GPU object but not
match the copy, resulting in errors or corrupted GPU
memory when data for the copied object is written to an area
of GPU memory which does not match the data size or
footprint, for example. Thus it may be impossible for the
API client to correctly allocate GPU memory explicitly for
a copy because it may have no way of determining or
inferring the state of the object copy’s data until after the
copy operation is complete. In approaches using cloning
however, the API client may expressly require the object
state of the clone to match the original, which may permit
the API client to correctly allocate GPU memory for the
clone.

It is noted that it may be desired to implement cloning
with APl memory management rather than the API client
specified memory management discussed above. For
example, the API client may specify that the data state
should remain the same during the cloning operation, but
permit the API to handle memory management by allocating
GPU memory for the clone in step 780. In this case, the API
client may bind the cloned object to memory allocated by the
API in step 770 without intervening in allocating the
memory and possibly without full knowledge of the memory
allocation.

FIG. 8 is a flow chart illustrating an example method 800
for image object cloning using a graphics API. In step 810
a computer program calls a library implementing a graphics

20

25

30

35

40

45

50

55

60

65

8

API to clone an image type object having an identifier, for
example “image X”, and may specify a desired state for the
destination object. The program may also specify whether
the state of the image X should remain the same or change,
and/or may specify that the state of the destination object
should remain the same as the original object throughout the
cloning process or change to a different state. In response to
the object cloning call, the API returns a name for the
destination object, for example “image Y,” to the API client
in step 820.

At this stage several implementations are possible. In one
approach, the program may request memory requirements
forimage Y in another call to a library implementing the API
in step 830. In response, the API returns memory require-
ments in step 840, and the program determines an area or
areas of GPU memory to allocate for image Y based on the
returned memory requirements in step 850.

In another approach, the program may infer the memory
requirements for image Y based on its knowledge of the
memory requirements for image X in step 860, and deter-
mine an area or areas of GPU memory to allocate to image
Y in step 850 based on the inferred memory requirements.
This may be possible because the computer program has
explicitly directed the API to maintain the state of image X
for cloning to image Y, or to change the state of image X or
image Y to a particular state, and can duplicate or extrapolate
the memory requirements for image Y from the memory
requirements for object X.

In yet another possible approach, the APl may allocate
GPU memory without intervention by the program in step
870 based upon the memory requirements of image Y.

In any of these cases, the API client thereafter binds the
object image Y to the determined GPU memory in step 880.

Thereafter the API client may call a function of the API
in step 890, passing identifiers for the source and destination
objects “image X” and “image Y”. In response to the
function call the API may store data and metadata, for image
Y in GPU memory at the bound location for subsequent
operations using the GPU. The data and metadata stored for
image Y may be stored by the API without modification, or
modified, depending on a desired state of image Y passed
with the function call in step 890 or in step 810. Similarly,
the source object metadata and data may remain unchanged
or may be modified based on a desired state of image X
passed with the function call in step 890 or in step 810.

For example, if the state of image Y is specified as
“compressed” in step 710, the data from image X will be
written to image X in compressed form. If the state of image
X is also specified as “compressed,” the data may not be
decompressed during the cloning operation. In another
example, if the state of image Y is specified as “decom-
pressed” but the state of image X is specified as “com-
pressed,” the data written to image Y will be decompressed,
however no decompression will be performed on the data
resident in memory for image X.

It is noted that in some implementations it may not be
necessary for the API to create a destination object for the
cloning process. For example, if the destination object image
Y is pre-created by the API and bound to appropriate
memory based on its desired state, the program may pass
identifiers for source object image X and destination object
image Y along with their desired states to the API in a
function call. The cloning operation may then proceed as
described above regarding step 890 (and step 790 described
above with respect to FIG. 7).

US 11,521,293 B2

9

The following pseudocode illustrates an example of a
memory binding procedure consistent with some of the
implementations described herein:

10

provided. At this stage, no memory is allocated for the image
data, which may have the advantage of conserving memory
or increasing the flexibility of memory usage. Memory is

void AllocAndBindImageMemory(OBJECT object)
{
MEMORY__REQUIREMENTS memRegs = { };
SIZE_ T reqSize = sizeof(MEMORY__REQUIREMENTS);
// Get memory requirements
GetObjectInfo (object,
INFO_TYPE_ MEMORY_ REQUIREMENTS,
&reqSize, &memReqs);
if (memReqs.size > 0)

// If object has memory requirements, the client finds where
// it can be placed in memory...
SIZE_ T bindOffs = 0;

GPU_MEMORY mem = GetMatchingMemObject(&memReqs, &bindOffs);

// ... and binds API object to that memory
BindObjectMemory(object, mem, bindOffs);

Here, the program calls the API using GetObjectlnfo to
obtain memory size “reqSize” and other memory require-
ments “memReqs” for a GPU object “object.” The program
then determines a suitable area of GPU memory using
GetMatchingMemObject. In this example, GetMatchingMe-
mObject may be a part of the API, or may be specified by
the program or part of another library. An optional memory
offset bindOffs may also be specified. Once the program has
determined an appropriate GPU memory location “mem,”
the program binds the object name “object” to the memory
location using the BindObjectMemory call to the APL.

The following pseudocode illustrates an example of cre-
ation of an image object according to some of the imple-
mentations described herein, where “imglnfo™ represents
metadata for an object “image’:

IMAGE__CREATE__INFO imglnfo = { };
imgInfo.imageType = IMAGE_TYPE_2D;
imgInfo.format = format;

imgInfo.arraySize = 1;

imgInfo.extent.width = 256;

imgInfo.extent.height = 256;

imgInfo.extent.depth = 1;

imglnfo.mipLevels = 5;

imglnfo.samples = 1;

imgInfo.tiling = OPTIMAL_ TILING;

imgInfo.usage =IMAGE_USAGE_SHADER_ACCESS_READ;
IMAGE image = NULL_HANDLE;

// Create image using provided parameters

RESULT result = CreateImage(device, &imglnfo, &image);
if (result == SUCCESS)

// And after creation query memory requirements and bind memory as
// in example above
AllocAndBindImageMemory(image);

}

Here, the program API client calls the API using Creat-
elmage to create the object “image.” In this example, the
API call passes the identity of the GPU (device) or its
context, the relevant subset of the metadata for the object
(imgInfo), and a storage for the name or handle of the object
(image) to the API. Here, only enough information to
determine memory requirements for the object is passed to
the API at this stage. Thus, only a part of the image metadata
(e.g. width, height, and so forth) and part of the state (e.g.
format, usage) is provided for the image, while data (e.g.
color) and remaining parts of state and metadata are not

30

35

40

45

50

55

60

65

subsequently allocated for the object and bound to the object
identifier according to one of the methods described herein.

It should be understood that many variations are possible
based on the disclosure herein. Although features and ele-
ments are described above in particular combinations, each
feature or element may be used alone without the other
features and elements or in various combinations with or
without other features and elements.

It is noted that example computer code and psuedocode
listings herein are illustrative only, and that the described
functionality may be implemented using various other com-
puter languages, structures, and APIs, or may be imple-
mented in hardware where appropriate.

The methods provided may be implemented in a general
purpose computer, a processor, or a processor core. Suitable
processors include, by way of example, a general purpose
processor, a special purpose processor, a conventional pro-
cessor, a digital signal processor (DSP), a plurality of
microprocessors, one or more Mmicroprocessors in associa-
tion with a DSP core, a controller, a microcontroller, Appli-
cation Specific Integrated Circuits (ASICs), Field Program-
mable Gate Arrays (FPGAs) circuits, any other type of
integrated circuit (IC), and/or a state machine. Such proces-
sors may be manufactured by configuring a manufacturing
process using the results of processed hardware description
language (HDL) instructions and other intermediary data
including netlists (such instructions capable of being stored
on a computer readable media). The results of such process-
ing may be maskworks that are then used in a semiconductor
manufacturing process to manufacture a processor which
implements aspects of the embodiments.

The methods or flow charts provided herein may be
implemented in a computer program, software, or firmware
incorporated in a non-transitory computer-readable storage
medium for execution by a general purpose computer or a
processor. Examples of non-transitory computer-readable
storage mediums include a read only memory (ROM), a
random access memory (RAM), a register, cache memory,
semiconductor memory devices, magnetic media such as
internal hard disks and removable disks, magneto-optical
media, and optical media such as CD-ROM disks, and
digital versatile disks (DVDs).

What is claimed is:
1. A processor configured for managing object memory,
the processor comprising:

US 11,521,293 B2

11

circuitry configured to receive, by an application pro-
gramming interface (“API”), from a client, a request to
create an object;

circuitry configured to return, to the client, by the APL a

graphics processing unit (GPU) object identifier in
response to a GPU object identifier request;

circuitry configured to return, by the API, to the client,

memory requirements for the GPU object in response
to a memory requirements request to the API which
includes the GPU object identifier;

circuitry configured to receive, by the API, a request from

the client to bind a portion of GPU memory specified
by the client to the GPU object identifier; and
circuitry configured to, in response to the request to bind
the portion of GPU memory to the GPU object, bind the
portion of GPU memory to the GPU object identifier.

2. The processor of claim 1, wherein the GPU object
identifier request includes only information necessary to
return the memory requirements in response to the memory
requirements request.

3. The processor of claim 1, wherein the GPU object
identifier request includes GPU object metadata.

4. The processor of claim 1, wherein the GPU object
identifier request does not include GPU object data.

5. The processor of claim 1, wherein memory for the GPU
object is not allocated by the APIL.

6. The processor of claim 1, wherein memory for the GPU
object is allocated by an API client which passes the memory
requirements request to the APIL.

7. The processor of claim 1, wherein memory for the GPU
object is allocated based on the memory requirements.

8. The processor of claim 1, wherein memory for the GPU
object is allocated in response to the memory requirements.

9. The processor of claim 1, wherein memory for GPU
object data is allocated only after the memory requirements
are returned.

10. A processor configured for cloning a graphics pro-
cessing unit (GPU) object based on an original GPU object,
the processor comprising:

circuitry configured to create a destination GPU object;

20

25

30

35

12

circuitry configured to pass data of the destination GPU
object to an application programming interface (API)
based on the original GPU object;

circuitry configured to pass a state of the data of the

destination GPU object to the API; and

circuitry configured to write the data of the destination

GPU object having the state to a memory.

11. The processor of claim 10, further comprising cir-
cuitry configured to pass a state of the original GPU object
to the APIL.

12. The processor of claim 10, wherein the original GPU
object comprises a texture.

13. The processor of claim 10, wherein the state of the
data of the destination GPU object is a compressed state.

14. The processor of claim 10, wherein the state of the
data of the destination GPU object is a different video
encoding.

15. The processor of claim 10, wherein the memory is
accessible to a GPU.

16. A processor configured for cloning a data object based
on an original data object, the processor comprising:

circuitry configured to create a destination data object;

circuitry configured to pass data of the destination data
object to an application programming interface (API)
based on the original data object;

circuitry configured to pass a state of the data of the

destination data object to the API; and

circuitry configured to write the data of the destination

data object having the state to a memory.

17. The processor of claim 16, further comprising cir-
cuitry configured to pass a state of the original data object to
the APL

18. The processor of claim 16, wherein the state of the
data of the destination data object is a compressed state.

19. The processor of claim 16, wherein the memory is
accessible to a graphics processing unit (GPU).

20. The processor of claim 16, wherein the data of the
destination data object comprises image data.

#* #* #* #* #*

	Page 1 - Bibliography/Abstract
	Page 2 - Bibliography
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Description
	Page 12 - Description
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description/Claims
	Page 16 - Claims

