
US 20220258346A1
INI

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0258346 A1

HALL (43) Pub . Date : Aug. 18 , 2022

(54) AUTOMATION WINDOWS FOR ROBOTIC
PROCESS AUTOMATION

(52) U.S. CI .
CPC B25J 9/1661 (2013.01) ; G06F 9/54

(2013.01) ; G05B 2219/31124 (2013.01) ; G05B
2219/50391 (2013.01) ; G06F 9/542 (2013.01) (71) Applicant : UiPath , Inc. , New York , NY (US)

(72) Inventor : Andrew HALL , Bellevue , WA (US)

(73) Assignee : UiPath , Inc. , New York , NY (US)
(21) Appl . No .: 17 / 733,591

(22) Filed : Apr. 29 , 2022 a

Related U.S. Application Data
(63) Continuation of application No. 16 / 989,003 , filed on

Aug. 10 , 2020 , now Pat . No. 11,325,254 .

(57) ABSTRACT

Automation windows for RPA for attended or unattended
robots are disclosed . A child session is created and hosted as
a window including the Uls of applications of a window
associated with a parent session . Running multiple sessions
allows a robot to operate in this child session while the user
interacts with the parent session . The user may thus be able
to interact with applications that the robot is not using or the
user and the robot may be able to interact with the same
application if that application is capable of this functionality .
The user and the robot are both interacting with the same
application instances and file system . Changes made via the
robot and the user in an application will be made as if a
single user made them , rather than having the user and the
robot each work with separate versions of the applications
and file systems .

Publication Classification

(51) Int . Ci .
B25J 9/16
G06F 9/54

(2006.01)
(2006.01)

100

UNATTENDED
ROBOT

134 110 120 130

EXECUTE AUTOMATE }
}
{ < / mainframe > }

DEPLOY Robot (s) 1 < / web >
}
1 < VM >

}

MONITOR
} < ienterprise app >
}
{ < desktop app > } Designer Conductor

132

ATTENDED
ROBOT

100

FIG . 1

UNATTENDED ROBOT ?
Patent Application Publication

134

110

120

130

EXECUTE

AUTOMATE < / mainframe >

-DEPLOYS

Robot (s) 1 < / web >

888

Aug. 18 , 2022 Sheet 1 of 22

| < M >

I

| < / enterprise app >

MONITOR

Designer

Conductor

< / desktop app >

} 132

US 2022/0258346 A1

ATTENDED ROBOT

200

212

216

220

. FIG . 2

? ? ? ? ? ? ? ? ? ? ? ?

210

=
Executor

Designer

Patent Application Publication

Browser
214

Agent (s)

Client Side 232

Web Application (HTML / JS)

236

Presentation Layer

1
Config . Logging Monitoring Queues

Config . Logging Monitoring Queues

Aug. 18 , 2022 Sheet 2 of 22

234

230

OData REST API Endpoints

Notification and Monitoring API

Service Layer

API Implementation / Business Logic

238

240

250

Persistence Layer

US 2022/0258346 A1

Database Server

Indexer Server

Server Side

300

FIG . 3

Cases

Designer

Patent Application Publication

320

User - Defined Activities

H

330

UI Automation Activities Drivers

310

340

Aug. 18 , 2022 Sheet 3 of 22

740

man

.com

}

con
cartoon

mais

340

OS

Browser

VM

Enterprise

US 2022/0258346 A1

342

344

346

348

Patent Application Publication Aug. 18 , 2022 Sheet 4 of 22 US 2022/0258346 A1

Robots
410

440

Conductor 420
FIG . 4 Indexer Server

DB Server

430

400

500

FIG . 5

Patent Application Publication

Display 525

Communication Device 520

Processor (s)
510

Aug. 18 , 2022 Sheet 5 of 22

Keyboard 530

Bus 505

540

545

550

/

Automation Window Module

Operating System

Other Functional Modules

Cursor Control Device 535

US 2022/0258346 A1

Memory
515

600

FIG . 6

Patent Application Publication

610

Web Browser Application
WI

Session 1 (User)

we

630

X

Aug. 18 , 2022 Sheet 6 of 22

18

File System

Spreadsheet Application

3

Session 2 (Robot)

640

660

mercedes

Fortune
Toro
won

Email Application

US 2022/0258346 A1

620

650

Patent Application Publication Aug. 18 , 2022 Sheet 7 of 22 US 2022/0258346 A1

FIG . ZA

jo
700

Patent Application Publication Aug. 18 , 2022 Sheet 8 of 22 US 2022/0258346 A1

?

*** OLL

FIG . 7B

700

Patent Application Publication Aug. 18 , 2022 Sheet 9 of 22 US 2022/0258346 A1

FIG . 7C

*** a

700

Patent Application Publication Aug. 18 , 2022 Sheet 10 of 22 US 2022/0258346 A1

1 30

720

FIG . 7D

WS
w

700

Patent Application Publication Aug. 18 , 2022 Sheet 11 of 22 US 2022/0258346 A1

720

29

FIG . ZE
732

9
???????

730

Patent Application Publication Aug. 18 , 2022 Sheet 12 of 22 US 2022/0258346 A1

081

110

FIG . 7F
720

5
700

Patent Application Publication Aug. 18 , 2022 Sheet 13 of 22 US 2022/0258346 A1

.

720

FIG . 7G Google
? ? ?

700

Patent Application Publication Aug. 18 , 2022 Sheet 14 of 22 US 2022/0258346 A1

730

720

732

FIG . ZH
NativeActivity Base Class

*

?

700

Patent Application Publication Aug. 18 , 2022 Sheet 15 of 22 US 2022/0258346 A1

730

FIG . ZI

732

A

720

Patent Application Publication Aug. 18 , 2022 Sheet 16 of 22 US 2022/0258346 A1

750

::: FIG . 7J

delete

740

Patent Application Publication Aug. 18 , 2022 Sheet 17 of 22 US 2022/0258346 A1

730

720

732

700
FIG . ZK

XX

750 ..

WA

740

Patent Application Publication Aug. 18 , 2022 Sheet 18 of 22 US 2022/0258346 A1

800 FIG . 8
START

810
Launch User Session

Window

820
Launch Robot Session

Window

830
Initiate Robot in Robot

Session

840
Execute Robot Workflow

in Robot Session

850 Automatically End Robot
Session and Close Robot

I Session Window

START

Patent Application Publication Aug. 18 , 2022 Sheet 19 of 22 US 2022/0258346 A1

900 FIG . 9
START

910
Launch Developer Session

Window

920
Launch IDE

930
Begin Executing Attended
Automation on Command

940
Launch Robot Session

Window

950
Initialize Robot in Robot

Session

970
960

Execute Robot Workflow
in Robot Session

End Robot Session and
Close Robot Session

Window
1
1

Patent Application Publication Aug. 18 , 2022 Sheet 20 of 22 US 2022/0258346 A1 9

1000 FIG . 10
START

1010
Launch Child Session

Window and Child Session

1020
Initialize Robot in Child

Session

1030
Execute Robot in Child

Session

1040

User Accesses
Same App ? -NO

YES 1050 1060

Display Message to User
End Robot Session and
Close Robot Session

Window

END

Patent Application Publication Aug. 18 , 2022 Sheet 21 of 22 US 2022/0258346 A1

1100 FIG . 11
START

1110 Launch Child Session
Window and Child Session

from IDE

1120
Initialize Robot in Child

Session

1130
Execute Robot in Child

Session

1140 Receive Status Messages
from Robot and Display in

IDE

1150 Terminate Robot
Execution from IDE on

Command

END

Patent Application Publication Aug. 18 , 2022 Sheet 22 of 22 US 2022/0258346 A1

1200 FIG . 12
START

1210 Initialize / Execute
Monitoring Application in

Parent Session

1220
Launch Child Session

Window and Child Session

1230
Initialize and Execute
Robot in Child Session

1240
Receive Command

1250
Pause or Terminate Robot

Execution

1260

Kill Child Session and Child
Session Window END

US 2022/0258346 Al Aug. 18 , 2022
1

AUTOMATION WINDOWS FOR ROBOTIC
PROCESS AUTOMATION

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of , and claims the
benefit of , U.S. Nonprovisional patent application Ser . No.
16 / 989,003 , filed Aug. 10 , 2020 , which is a continuation of
U.S. Nonprovisional patent application Ser . No. 16 / 793,064
filed Feb. 18 , 2020 , now issued as U.S. Pat . No. 10,654,166
on May 19 , 2020. The subject matter of these earlier filed
applications is hereby incorporated by reference in its
entirety .

[0007] Docker® containers are conceptually a hybrid form
of virtual machine . All of the applications that need to be
executed are packaged into an immutable package that is
executed directly on the host operating system . The package
is not a complete copy of another operating system , but it
does not by default share or have access to any of the
applications or resources on the host machine . Thus , from a
user experience perspective , Docker® containers feel simi
lar to a virtual machine , but technically , the containers are
not executing on a completely separate operating system .
[0008] However , conventional emulators , simulators , vir
tual machines (VMs) , and hybrid VMs providing operating
system (OS) -level virtualization (e.g. , Dockerk containers)
do not address the issues that arise with attended automation
robots operating on the same computing system as the user .
Thus , the user essentially becomes a spectator for his or her
own computing system , watching the robot work and being
unable to interact with other applications on the machine
that require user interaction . Accordingly , an improved
approach may be beneficial .

FIELD

[0002] The present invention generally relates to robotic
process automation (RPA) , and more specifically , to auto
mation windows for RPA for attended or unattended robots .

BACKGROUND SUMMARY

a

a

[0003] Attended automation robots run on a computing
system operated by a user . An issue that can arise in attended
automation scenarios is that the robot may “ take over ” the
user's computing system while the user is trying to interact
with the computing system . In other words , the robot
controls applications through the user interface (UI) in the
same manner that the user would (e.g. , simulating mouse
clicks and keyboard input) .
[0004] Various technologies exist that create complete or
partial copies of an operating system or the applications
running thereon . Emulators have been around for decades
and may provide developers with the ability to test and
debug applications . For instance , emulators may provide
developers with the ability to test and debug mobile appli
cations that use an operating system that does not support
running development tools directly . Both Android® and
iOS® offer emulators that can be run from a development
machine to test and debug an Android or iOS® application
since the developer tools cannot be natively run on those
mobile operating systems .
[0005] Simulators allow a developer to host a window on
his or her local machine that lets the developer test and
debug behavior of an application that are difficult or impos
sible to perform on a development machine . For example ,
simulators allow the developer to click a button to rotate the
simulator , which tells the application running inside the
simulator the device has been rotated for the purposes of
testing and debugging application behavior that responds to
these events . Another common example is multi - touch .
Many developer machines do not support touch , so the
simulator lets the developer test and debug how the appli
cation responds to multiple touch points . Android® and
iOS® emulators also offer simulation capabilities . Further
more , Microsoft® offers a simulator for their Universal
Windows Platform (UWP) applications .
[0006] Virtual machines host a second operating system
on the machine and can be opened and monitored through a
window . This runs a completely different operating system
and shares the hardware with the host machine . The " guest ”
machine must have its own copies of applications installed
and does not share common resources or files with the user
machine .

[0009] Certain embodiments of the present invention may
provide solutions to the problems and needs in the art that
have not yet been fully identified , appreciated , or solved by
current RPA technologies . For example , some embodiments
of the present invention pertain to automation windows for
RPA for attended or unattended robots .
[0010] In an embodiment , a computer program is embod
ied on a non - transitory computer - readable medium . The
program is configured to cause at least one processor to
launch a child session window and a child session . The child
session is a child of a parent session for an operating system
and the child window is located within a parent window of
the parent session . The program is also configured to cause
the at least one processor to launch a user session window
on a user computing system , launch a robot session window
for a robot session as a child window of the user session
window , initialize an RPA robot in the robot child session as
a process , and execute the RPA robot . During execution , the
RPA robot executes an RPA workflow including a plurality
of activities within the child session window . The parent
session and the child session have access to a common file
system .
[0011] In another embodiment , a computer - implemented
method for performing attended automation for RPA at
design time includes launching a child session window and
a child session from an integrated development environment
(IDE) . The child session is a child of a parent session for an
operating system and the child window is located within a
parent window of the parent session . The computer - imple
mented method also includes initializing an RPA robot in the
child session as a process and executing the RPA robot .
During execution , the RPA robot executes an RPA workflow
including a plurality of activities within the child session
window . The parent session and the child session have
access to a common file system .
[0012] In yet another embodiment , a computer - imple
mented method for automation monitoring in RPA includes
initializing and executing a monitoring and troubleshooting
application in a parent session associated with a computing
system . The computer - implemented method also includes
launching a child session window and a child session . The
child session is a child of the parent session for an operating

a

a

US 2022/0258346 A1 Aug. 18 , 2022
2

system . The computer - implemented method further includes
initializing and executing an unattended RPA robot in the
child session as a process , receiving a command from a user
of the monitoring and troubleshooting application to termi
nate operation of the unattended RPA robot , and pausing or
terminating the operation of the unattended RPA robot
responsive to receiving the command . The parent session
and the child session have access to a common file system .

[0025] FIG . 12 is a flowchart illustrating a process for
performing automation monitoring , according to an embodi
ment of the present invention .
[0026] Unless otherwise indicated , similar reference char
acters denote corresponding features consistently through
out the attached drawings .

DETAILED DESCRIPTION OF THE
EMBODIMENTS

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] In order that the advantages of certain embodi
ments of the invention will be readily understood , a more
particular description of the invention briefly described
above will be rendered by reference to specific embodiments
that are illustrated in the appended drawings . While it should
be understood that these drawings depict only typical
embodiments of the invention and are not therefore to be
considered to be limiting of its scope , the invention will be
described and explained with additional specificity and
detail through the use of the accompanying drawings , in
which :
[0014] FIG . 1 is an architectural diagram illustrating a
robotic process automation (RPA) system , according to an
embodiment of the present invention .
[0015] FIG . 2 is an architectural diagram illustrating a
deployed RPA system , according to an embodiment of the
present invention .
[0016] FIG . 3 is an architectural diagram illustrating the
relationship between a designer , activities , and drivers ,
according to an embodiment of the present invention .
[0017] FIG . 4 is an architectural diagram illustrating an
RPA system , according to an embodiment of the present
invention .
[0018] FIG . 5 is an architectural diagram illustrating a
computing system configured to execute automation win
dows for RPA , according to an embodiment of the present
invention .
[0019] FIG . 6 illustrates some applications of a user com
puting system running user and attended automation robot
sessions with some applications also running on the user
computing system , according to an embodiment of the
present invention .
[0020] FIGS . 7A - K screenshots illustrating an
example of separate sessions for a user and a robot for RPA ,
according to an embodiment of the present invention .
[0021] FIG . 8 is a flowchart illustrating a process for
enabling a robot and a user to operate a computing system
simultaneously using attended automation windows , accord
ing to an embodiment of the present invention .
[0022] FIG . 9 is a flowchart illustrating a process for
enabling a robot and an RPA developer to operate a com
puting system simultaneously using attended automation
windows , according to an embodiment of the present inven
tion .
[0023] FIG . 10 is a flowchart illustrating a process for
performing attended or unattended automation using auto
mation windows for users , according to an embodiment of
the present invention .
[0024] FIG . 11 is a flowchart illustrating a process for
performing attended or unattended automation using auto
mation windows for RPA developers , according to an
embodiment of the present invention .

[0027] Some embodiments pertain to automation windows
for RPA for attended or unattended robots . In some embodi
ments , automation windows are used for attended automa
tion . However , in some embodiments , and as discussed
below , automation windows may be used for monitoring
unattended robots , such as when an operations engineer
remotely monitors one or more robots executing on a server .
Applications for automation windows include , but are not
limited to , emulators , simulators , VMs , and hybrid VMs
providing OS - level virtualization (e.g. , Docker® contain
ers) . Some embodiments create and host a second (e.g. ,
child) session as a window including the Uls of applications
being controlled by an attended automation process . As used
herein , a " window " may apply to a window representing a
UI shown within the main UI , a second screen of a second
display of a computing system , a virtual desktop , an isolated
environment (i.e. , a window (referred to as the " host ") that
draws the Uls of all applications launched inside the envi
ronment (referred to as " children ”) and runs them in the
context of the host session) , etc. without deviating from the
scope of the invention .
[0028] Running multiple sessions allows the robot to
operate in this second session while the user interacts with
a first session (e.g. , a parent session) . Alternatively , the robot
may operate in the first session while the user operates in the
second session . The user may thus be able to interact with
applications that the robot is not using (e.g. , the user could
use Outlook® while the robot is moving data from Excel®
to a web browser) , or the user and the robot may be able to
interact with the same application if that application is
capable of this functionality (e.g. , the robot is interacting
with one instance in a web browser while the user interacts
with another instance) .
[0029] The user and the robot are both interacting with the
same application installations and file system . Changes
made via the robot and the user in an application will be
made as if a single user made them , rather than having the
user and the robot each work with separate versions of the
applications and file systems . In other words , the applica
tions are the user's local Excel , Outlook® , etc. Also , the
local file system may be utilized with no additional con
figuration . This differs from a Docker® container , for
example , which requires an additional configuration step to
have access to the file system .
[0030] In some embodiments , any desired number of
sessions for any number of robots may be created and used
without deviating from the scope of the invention . For
instance , a user may interact with a first session , a first robot
may interact with a second session , a second robot may
interact with a third session , etc. In certain embodiments ,
multiple robots may interact with a single session .
[0031] The functionality for creating the session may be
implemented via Windows® Terminal Services Child Ses
sions , for example , which can create a session back into a
user's own machine without the user having to log out . The

a

are

a

2

US 2022/0258346 A1 Aug. 18 , 2022
3

a

a

a

newly created session appears as a child window and
contains and launches applications that exist in the user's
session . In other words , the separation between the user and
the robot occurs at the UI level . If a file is deleted , for
example , this occurs across all sessions running on the
computing system .
[0032] Certain embodiments may be employed for robotic
process automation (RPA) . FIG . 1 is an architectural dia
gram illustrating an RPA system 100 , according to an
embodiment of the present invention . RPA system 100
includes a designer 110 that allows a developer to design and
implement workflows . Designer 110 may provide a solution
for application integration , as well as automating third - party
applications , administrative Information Technology (IT)
tasks , and business IT processes . Designer 110 may facilitate
development of an automation project , which is a graphical
representation of a business process . Simply put , designer
110 facilitates the development and deployment of work
flows and robots .
[0033] The automation project enables automation of rule
based processes by giving the developer control of the
execution order and the relationship between a custom set of
steps developed in a workflow , defined herein as “ activities . ”
One commercial example of an embodiment of designer 110
is UiPath StudioTM . Each activity may include an action ,
such as clicking a button , reading a file , writing to a log
panel , etc. In some embodiments , workflows may be nested
or embedded
[0034] Some types of workflows may include , but are not
limited to , sequences , flowcharts , FSMs , and / or global
exception handlers . Sequences may be particularly suitable
for linear processes , enabling flow from one activity to
another without cluttering a workflow . Flowcharts may be
particularly suitable to more complex business logic ,
enabling integration of decisions and connection of activities
in a more diverse manner through multiple branching logic
operators . FSMs may be particularly suitable for large
workflows . FSMs may use a finite number of states in their
execution , which are triggered by a condition (i.e. , transi
tion) or an activity . Global exception handlers may be
particularly suitable for determining workflow behavior
when encountering an execution error and for debugging
processes .
[0035] Once a workflow is developed in designer 110 ,
execution of business processes is orchestrated by conductor
120 , which orchestrates one or more robots 130 that execute
the workflows developed in designer 110. One commercial
example of an embodiment of conductor 120 is UiPath
OrchestratorTM . Conductor 120 facilitates management of
the creation , monitoring , and deployment of resources in an
environment . Conductor 120 may act as an integration point ,
or one of the aggregation points , with third - party solutions
and applications .
[0036] Conductor 120 may manage a fleet of robots 130 ,
connecting and executing robots 130 from a centralized
point . Types of robots 130 that may be managed include , but
are not limited to , attended robots 132 , unattended robots
134 , development robots (similar to unattended robots 134 ,
but used for development and testing purposes) , and non
production robots (similar to attended robots 132 , but used
for development and testing purposes) . Attended robots 132
may be triggered by user events or be scheduled to auto
matically happen , and operate alongside a human on the
same computing system . Attended robots 132 may be used

with conductor 120 for a centralized process deployment
and logging medium . Attended robots 132 may help the
human user accomplish various tasks , and may be triggered
by user events . In some embodiments , processes cannot be
started from conductor 120 on this type of robot and / or they
cannot run under a locked screen . In certain embodiments ,
attended robots 132 can only be started from a robot tray or
from a command prompt . Attended robots 132 should run
under human supervision in some embodiments .
[0037] Unattended robots 134 run unattended in virtual
environments and can automate many processes . Unat
tended robots 134 may be responsible for remote execution ,
monitoring , scheduling , and providing support for work
queues . Debugging for all robot types may be run from
designer 110 in some embodiments . Both attended and
unattended robots may automate various systems and appli
cations including , but not limited to , mainframes , web
applications , VMs , enterprise applications (e.g. , those pro
duced by SAP® , SalesForce® , Oracle® , etc.) , and comput
ing system applications (e.g. , desktop and laptop applica
tions , mobile device applications , wearable computer
applications , etc.) .
[0038] Conductor 120 may have various capabilities
including , but not limited to , provisioning , deployment ,
versioning , configuration , queueing , monitoring , logging ,
and / or providing interconnectivity . Provisioning may
include creating and maintenance of connections between
robots 130 and conductor 120 (e.g. , a web application) .
Deployment may include assuring the correct delivery of
package versions to assigned robots 130 for execution .
Versioning may include management of unique instances of
some process or configuration in some embodiments . Con
figuration may include maintenance and delivery of robot
environments and process configurations . Queueing may
include providing management of queues and queue items .
Monitoring may include keeping track of robot identification
data and maintaining user permissions . Logging may
include storing and indexing logs to a database (e.g. , an SQL
database) and / or another storage mechanism (e.g. , Elas
ticSearch® , which provides the ability to store and quickly
query large datasets) . Conductor 120 may provide intercon
nectivity by acting as the centralized point of communica
tion for third - party solutions and / or applications .
[0039] Robots 130 are execution agents that run work
flows built in designer 110. One commercial example of
some embodiments of robot (s) 130 is UiPath RobotsTM . In
some embodiments , robots 130 install the Microsoft Win
dows® Service Control Manager (SCM) -managed service
by default . As a result , such robots 130 can open interactive
Windows® sessions under the local system account , and
have the rights of a Windows® service .
[0040] In some embodiments , robots 130 can be installed
in a user mode . For such robots 130 , this means they have
the same rights as the user under which a given robot 130 has
been installed . This feature may also be available for High
Density (HD) robots , which ensure full utilization of each
machine at its maximum potential . In some embodiments ,
any type of robot 130 may be configured in an HD envi
ronment .

[0041] Robots 130 in some embodiments are split into
several components , each being dedicated to a particular
automation task . The robot components in some embodi
ments include , but are not limited to , SCM - managed robot
services , user mode robot services , executors , agents , and

a

2

US 2022/0258346 A1 Aug. 18 , 2022
4

a

user

a

command line . SCM - managed robot services manage and
monitor Windows® sessions and act as a proxy between
conductor 120 and the execution hosts (i.e. , the computing
systems on which robots 130 are executed) . These services
are trusted with and manage the credentials for robots 130 .
A console application is launched by the SCM under the
local system .
[0042] User mode robot services in some embodiments
manage and monitor Windows® sessions and act as a proxy
between conductor 120 and the execution hosts . User mode
robot services may be trusted with and manage the creden
tials for robots 130. A Windows® application may automati
cally be launched if the SCM - managed robot service is not
installed .
[0043] Executors may run given jobs under a Windows®
session (i.e. , they may execute workflows . Executors may be
aware of per - monitor dots per inch (DPI) settings . Agents
may be Windows® Presentation Foundation (WPF) appli
cations that display the available jobs in the system tray
window . Agents may be a client of the service . Agents may
request to start or stop jobs and change settings . The
command line is a client of the service . The command line
is a console application that can request to start jobs and
waits for their output .
[0044] Having components of robots 130 split as
explained above helps developers , support users , and com
puting systems more easily run , identify , and track what each
component is executing . Special behaviors may be config
ured per component this way , such as setting up different
firewall rules for the executor and the service . The executor
may always be aware of DPI settings per monitor in some
embodiments . As a result , workflows may be executed at
any DPI , regardless of the configuration of the computing
system on which they were created . Projects from designer
110 may also be independent of browser zoom level in some
embodiments . For applications that are DPI - unaware or
intentionally marked as unaware , DPI may be disabled in
some embodiments .
[0045] FIG . 2 is an architectural diagram illustrating a
deployed RPA system 200 , according to an embodiment of
the present invention . In some embodiments , RPA system
200 may be , or may be a part of , RPA system 100 of FIG .
1. It should be noted that the client side , the server side , or

include any desired number of computing systems
without deviating from the scope of the invention . On the
client side , a robot application 210 includes executors 212 ,
an agent 214 , and a designer 216. However , in some
embodiments , designer 216 may not be running on comput
ing system 210. Executors 212 are running processes . Sev
eral business projects may run simultaneously , as shown in
FIG . 2. Agent 214 (e.g. , a Windows® service) is the single
point of contact for all executors 212 in this embodiment . All
messages in this embodiment are logged into conductor 230 ,
which processes them further via database server 240 ,
indexer server 250 , or both . As discussed above with respect
to FIG . 1 , executors 212 may be robot components .
[0046] In some embodiments , a robot represents an asso
ciation between a machine name and a username . The robot
may manage multiple executors at the same time . On
computing systems that support multiple interactive sessions
running simultaneously (e.g. , Windows® Server 2012) ,
multiple robots may be running at the same time , each in a
separate Windows® session using a unique username . This
is referred to as HD robots above .

[0047] Agent 214 is also responsible for sending the status
of the robot (e.g. , periodically sending a “ heartbeat ” mes
sage indicating that the robot is still functioning) and down
loading the required version of the package to be executed .
The communication between agent 214 and conductor 230
is always initiated by agent 214 in some embodiments . In the
notification scenario , agent 214 may open a WebSocket
channel that is later used by conductor 230 to send com
mands to the robot (e.g. , start , stop , etc.) .
[0048] On the server side , a presentation layer (web appli
cation 232 , Open Data Protocol (OData) Representative
State Transfer (REST) Application Programming Interface
(API) endpoints 234 , and notification and monitoring 236) ,
a service layer (API implementation / business logic 238) ,
and a persistence layer (database server 240 and indexer
server 250) are included . Conductor 230 includes web
application 232 , OData REST API endpoints 234 , notifica
tion and monitoring 236 , and API implementation / business
logic 238. In some embodiments , most actions that
performs in the interface of conductor 230 (e.g. , via browser
220) are performed by calling various APIs . Such actions
may include , but are not limited to , starting jobs on robots ,
adding / removing data in queues , scheduling jobs to run
unattended , etc. without deviating from the scope of the
invention . Web application 232 is the visual layer of the
server platform . In this embodiment , web application 232
uses Hypertext Markup Language (HTML) and JavaScript
(JS) . However , any desired markup languages , script lan
guages , or any other formats may be used without deviating
from the scope of the invention . The user interacts with web
pages from web application 232 via browser 220 in this
embodiment in order to perform various actions to control
conductor 230. For instance , the user may create robot
groups , assign packages to the robots , analyze logs per robot
and / or per process , start and stop robots , etc.
[0049] In addition to web application 232 , conductor 230
also includes service layer that exposes OData REST API
endpoints 234. However , other endpoints may be included
without deviating from the scope of the invention . The
REST API is consumed by both web application 232 and
agent 214. Agent 214 is the supervisor of one or more robots
on the client computer in this embodiment .
[0050] The REST API in this embodiment covers configu ration , logging , monitoring , and queueing functionality . The
configuration endpoints may be used to define and configure
application users , permissions , robots , assets , releases , and
environments in some embodiments . Logging REST end
points may be used to log different information , such as
errors , explicit messages sent by the robots , and other
environment - specific information , for instance . Deployment
REST endpoints may be used by the robots to query the
package version that should be executed if the start job
command is used in conductor 230. Queueing REST end
points may be responsible for queues and queue item
management , such as adding data to a queue , obtaining a
transaction from the queue , setting the status of a transac
tion , etc.
[0051] Monitoring REST endpoints may monitor web
application 232 and agent 214. Notification and monitoring
API 236 may be REST endpoints that are used for register
ing agent 214 , delivering configuration settings to agent 214 ,
and for sending / receiving notifications from the server and
agent 214. Notification and monitoring API 236 may also
use WebSocket communication in some embodiments .

both , may

a

US 2022/0258346 A1 Aug. 18 , 2022
5

2

[0052] The persistence layer includes a pair of servers in
this embodiment database server 240 (e.g. , a SQL server)
and indexer server 250. Database server 240 in this embodi
ment stores the configurations of the robots , robot groups ,
associated processes , users , roles , schedules , etc. This infor
mation is managed through web application 232 in some
embodiments . Database server 240 may manages queues
and queue items . In some embodiments , database server 240
may store messages logged by the robots (in addition to or
in lieu of indexer server 250) .
[0053] Indexer server 250 , which is optional in some
embodiments , stores and indexes the information logged by
the robots . In certain embodiments , indexer server 250 may
be disabled through configuration settings . In some embodi
ments , indexer server 250 uses ElasticSearch® , which is an
open source project full - text search engine . Messages
logged by robots (e.g. , using activities like log message or
write line) may be sent through the logging REST endpoint
(s) to indexer server 250 , where they are indexed for future
utilization .
[0054] FIG . 3 is an architectural diagram illustrating the
relationship 300 between a designer 310 , activities 320 , 330 ,
and drivers 340 , according to an embodiment of the present
invention . Per the above , a developer uses designer 310 to
develop workflows that are executed by robots . Workflows
may include user - defined activities 320 and UI automation
activities 330. Some embodiments are able to identify non
textual visual components in an image , which is called
computer vision (CV) herein . Some CV activities pertaining
to such components may include , but are not limited to ,
click , type , get text , hover , element exists , refresh scope ,
highlight , etc. Click in some embodiments identifies an
element using CV , optical character recognition (OCR) ,
fuzzy text matching , and multi - anchor , for example , and
clicks it . Type may identify an element using the above and
types in the element . Get text may identify the location of
specific text and scan it using OCR . Hover may identify an
element and hover over it . Element exists may check
whether an element exists on the screen using the techniques
described above . In some embodiments , there may be hun
dreds or even thousands of activities that can be imple
mented in designer 310. However , any number and / or type
of activities may be available without deviating from the
scope of the invention .
[0055] UI automation activities 330 are a subset of special ,
lower level activities that are written in lower level code
(e.g. , CV activities) and facilitate interactions with the
screen . UI automation activities 330 facilitate these interac
tions via drivers 340 that allow the robot to interact with the
desired software . For instance , drivers 340 may include OS
drivers 342 , browser drivers 344 , VM drivers 346 , enterprise
application drivers 348 , etc.
[0056] Drivers 340 may interact with the OS at a low level
looking for hooks , monitoring for keys , etc. They may
facilitate integration with Chrome® , IE® , Citrix® , SAP® ,
etc. For instance , the “ click ” activity performs the same role
in these different applications via drivers 340 .
[0057] FIG . 4 is an architectural diagram illustrating an
RPA system 400 , according to an embodiment of the present
invention . In some embodiments , RPA system 400 may be
or include RPA systems 100 and / or 200 of FIGS . 1 and / or 2 .
RPA system 400 includes multiple client computing systems
410 running robots . Computing systems 410 are able to
communicate with a conductor computing system 420 via a

web application running thereon . Conductor computing sys
tem 420 , in turn , is able to communicate with a database
server 430 and an optional indexer server 440 .
[0058] With respect to FIGS . 1 and 3 , it should be noted
that while a web application is used in these embodiments ,
any suitable client / server software may be used without
deviating from the scope of the invention . For instance , the
conductor may run a server - side application that communi
cates with non - web - based client software applications on the
client computing systems .
[0059] FIG . 5 is an architectural diagram illustrating a
computing system 500 configured to execute automation
windows for RPA , according to an embodiment of the
present invention . In some embodiments , computing system
500 may be one or more of the computing systems depicted
and / or described herein . Computing system 500 includes a
bus 505 or other communication mechanism for communi
cating information , and processor (s) 510 coupled to bus 505
for processing information . Processor (s) 510 may be any
type of general or specific purpose processor , including a
Central Processing Unit (CPU) , an Application Specific
Integrated Circuit (ASIC) , a Field Programmable Gate Array
(FPGA) , a Graphics Processing Unit (GPU) , multiple
instances thereof , and / or any combination thereof . Processor
(s) 510 may also have multiple processing cores , and at least
some of the cores may be configured to perform specific
functions . Multi - parallel processing may be used in some
embodiments . In certain embodiments , at least one of pro
cessor (s) 510 may be a neuromorphic circuit that includes
processing elements that mimic biological neurons . In some
embodiments , neuromorphic circuits may not require the
typical components of a Von Neumann computing architec
ture .

[0060] Computing system 500 further includes a memory
515 for storing information and instructions to be executed
by processor (s) 510. Memory 515 can be comprised of any
combination of Random Access Memory (RAM) , Read
Only Memory (ROM) , flash memory , cache , static storage
such as a magnetic or optical disk , or any other types of
non - transitory computer - readable media or combinations
thereof . Non - transitory computer - readable media may be
any available media that can be accessed by processor (s)
510 and may include volatile media , non - volatile media , or
both . The media may also be removable , non - removable , or
both .
[0061] Additionally , computing system 500 includes a
communication device 520 , such as a transceiver , to provide
access to a communications network via a wireless and / or
wired connection . In some embodiments , communication
device 520 may be configured to use Frequency Division
Multiple Access (FDMA) , Single Carrier FDMA (SC
FDMA) , Time Division Multiple Access (TDMA) , Code
Division Multiple Access (CDMA) , Orthogonal Frequency
Division Multiplexing (OFDM) , Orthogonal Frequency
Division Multiple Access (OFDMA) , Global System for
Mobile (GSM) communications , General Packet Radio Ser
vice (GPRS) , Universal Mobile Telecommunications Sys
tem (UMTS) , cdma2000 , Wideband CDMA (W - CDMA) ,
High - Speed Downlink Packet Access (HSDPA) , High
Speed Uplink Packet Access (HSUPA) , High - Speed Packet
Access (HSPA) , Long Term Evolution (LTE) , LTE
Advanced (LTE - A) , 802.11x , Wi - Fi , Zigbee , Ultra - Wide
Band (UWB) , 802.16x , 802.15 , Home Node - B (HnB) , Blu
etooth , Radio Frequency Identification (RFID) , Infrared

2

a

US 2022/0258346 A1 Aug. 18 , 2022
6

Data Association (IrDA) , Near - Field Communications
(NFC) , fifth generation (5G) , New Radio (NR) , any com
bination thereof , and / or any other currently existing or
future - implemented communications standard and / or proto
col without deviating from the scope of the invention . In
some embodiments , communication device 520 may include
one or more antennas that are singular , arrayed , phased ,
switched , beamforming , beamsteering , a combination ,
thereof , and or any other antenna configuration without
deviating from the scope of the invention .
[0062] Processor (s) 510 are further coupled via bus 505 to
a display 525 , such as a plasma display , a Liquid Crystal
Display (LCD) , a Light Emitting Diode (LED) display , a
Field Emission Display (FED) , an Organic Light Emitting
Diode (OLED) display , a flexible OLED display , a flexible
substrate display , a projection display , a 4K display , a high
definition display , a Retina® display , an In - Plane Switching
(IPS) display , or any other suitable display for displaying
information to a user . Display 525 may be configured as a
touch (haptic) display , a three dimensional (3D) touch
display , a multi - input touch display , a multi - touch display ,
etc. using resistive , capacitive , surface - acoustic wave
(SAW) capacitive , infrared , optical imaging , dispersive sig
nal technology , acoustic pulse recognition , frustrated total
internal reflection , etc. Any suitable display device and
haptic I / O may be used without deviating from the scope of
the invention .
[0063] A keyboard 530 and a cursor control device 535 ,
such as a computer mouse , a touchpad , etc. , are further
coupled to bus 505 to enable a user to interface with
computing system 500. However , in certain embodiments , a
physical keyboard and mouse may not be present , and the
user may interact with the device solely through display 525
and / or a touchpad (not shown) . Any type and combination of
input devices may be used as a matter of design choice . In
certain embodiments , no physical input device and / or dis
play is present . For instance , the user may interact with
computing system 500 remotely via another computing
system in communication therewith , or computing system
500 may operate autonomously .
[0064] Memory 515 stores software modules that provide
functionality when executed by processor (s) 510. The mod
ules include an operating system 540 for computing system
500. The modules further include an automation window
module 545 that is configured to perform all or part of the
processes described herein or derivatives thereof . Comput
ing system 500 may include one or more additional func
tional modules 550 that include additional functionality .
[0065] One skilled in the art will appreciate that a “ sys
tem ” could be embodied as a server , an embedded comput
ing system , a personal computer , a console , a personal
digital assistant (PDA) , a cell phone , a tablet computing
device , a quantum computing system , or any other suitable
computing device , or combination of devices without devi
ating from the scope of the invention . Presenting the above
described functions as being performed by a “ system ” is not
intended to limit the scope of the present invention in any
way , but is intended to provide one example of the many
embodiments of the present invention . Indeed , methods ,
systems , and apparatuses disclosed herein may be imple
mented in localized and distributed forms consistent with
computing technology , including cloud computing systems .
[0066] It should be noted that some of the system features
described in this specification have been presented as mod

ules , in order to more particularly emphasize their imple
mentation independence . For example , a module may be
implemented as a hardware circuit comprising custom very
large scale integration (VLSI) circuits or gate arrays , off
the - shelf semiconductors such as logic chips , transistors , or
other discrete components . A module may also be imple
mented in programmable hardware devices such as field
programmable gate arrays , programmable array logic , pro
grammable logic devices , graphics processing units , or the
like .
[0067] A module may also be at least partially imple
mented in software for execution by various types of pro
cessors . An identified unit of executable code may , for
instance , include one or more physical or logical blocks of
computer instructions that may , for instance , be organized as
an object , procedure , or function . Nevertheless , the
executables of an identified module need not be physically
located together , but may include disparate instructions
stored in different locations that , when joined logically
together , comprise the module and achieve the stated pur
pose for the module . Further , modules may be stored on a
computer - readable medium , which may be , for instance , a
hard disk drive , flash device , RAM , tape , and / or any other
such non - transitory computer - readable medium used to store
data without deviating from the scope of the invention .
[0068] Indeed , a module of executable code could be a
single instruction , or many instructions , and may even be
distributed over several different code segments , among
different programs , and across several memory devices .
Similarly , operational data may be identified and illustrated
herein within modules , and may be embodied in any suitable
form and organized within any suitable type of data struc
ture . The operational data may be collected as a single data
set , or may be distributed over different locations including
over different storage devices , and may exist , at least par
tially , merely as electronic signals on a system or network .
[0069] Attended Automation for Users (Runtime)
[0070] Per the above , in attended automation , a robot
works alongside a user on the same computing system . Since
robots in RPA often interact with the computing system in a
similar manner (e.g. , generating mouse click and key press
events , simulating these events via APIs (e.g. , using window
messages) , etc.) , some embodiments create a second session
to host and run attended automations therein . Unlike exist
ing RPA systems , users can benefit from the ability to
interact with their computing system while the robot is
running attended automations in the second session . The
user may still monitor what the robot is doing and interact
with the robot through the host automation window for the
second session . This effectively evolves the RPA robot from
merely doing tasks faster and more reliably than the user to
becoming a true digital assistant that can perform work in
parallel with the user , providing an even greater productivity
boost . In some embodiments , the first and second session
may be running on a remote machine that is controlled by
the user's computing system .
[0071] In certain embodiments , the RPA robot may be
running on a user's computing system and driving a remote
computing system through the remote runtime (e.g. , via
UiPath Remote RuntimeTM) . UiPath Remote RuntimeTM is a
component that facilitates the communication between a
remote application or desktop , such as Citrix Virtual Apps
and DesktopsTM , and the dedicated UiPath® extension (e.g. ,
the UiPath extension for Citrix® or the UiPath extension

US 2022/0258346 A1 Aug. 18 , 2022
7

2

for Windows® Remote Desktop) . UiPath Remote Run
timeTM gathers information pertaining to targeted UI ele
ments of remote applications and sends this information to
the corresponding extension so that selectors are natively
generated in UI ExplorerTM .
[0072] As stated previously , the user and the robot are both
interacting with the same application instances and file
system . FIG . 6 illustrates some applications of a user com
puting system 600 running a user session 610 and an
attended automation robot session 620 with some applica
tions also running on user computing system 600 , according
to an embodiment of the present invention . As can be seen
in FIG . 6 , web browser application 630 , spreadsheet appli
cation 640 , and email application 650 are accessible by both
user session 610 and attended automation robot session 620 .
User session 610 and attended automation robot session 620
can interact with web browser application 630 and email
application 650 at the same time .
[0073] However , when the robot is interacting with the
same file of a spreadsheet application 640 , the user cannot
interact with this application (e.g. , the user may only be able
to open a " read only ” view or the user may be prevented
from opening the file entirely) . The user may receive a
message indicating that spreadsheet application 640 is
locked , is being accessed by another " user " (i.e. , the robot) ,
etc. Both user session 610 and attended automation robot
session 620 can also interact with file system 660. Thus ,
changes made via the robot and the user in an application via
their respective sessions will be made as if a single user
made them , rather than having the user and the robot each
work with separate versions of the applications and file
systems .
[0074] FIGS . 7A - K screenshots illustrating an
example of separate sessions for a user and a robot for RPA ,
according to an embodiment of the present invention . In
FIG . 7A , a user session window 700 is shown , where a user
is able to interact with applications in the UI and no robot is
currently executing . In FIG . 7B , the user pulls up a robot tray
710 (e.g. , by clicking an icon at the bottom right of the
screen) and selects a robot to execute on his or her com
puting system . After selecting the robot to be executed , as
shown in FIG . 7C , a robot session window 720 appears as
a child window on the screen . The robot will operate in robot
session window 720 .
[0075] Turning to FIGS . 7D and 7E (which is an enlarged
view of a portion of FIG . 7D) , in this example , the robot
launches the Microsoft Notepad application 730 and
begins entering text 732 therein . While this is occurring , the
user can interact with applications in user session window
700 , move , resize , or minimize robot session window 720 ,
etc. As shown in FIG . 7F , robot tray 710 indicates that the
robot is running
[0076] In FIG . 7G , the user has opened Google Chrome
within user session window 700. Robot session window 720
is visible in the foreground . In FIG . 7H and the enlarged
portion thereof shown in FIG . 71 , as the user navigates the
web using Google Chrome , the robot continues to enter
text 732 in Microsoft Notepad® application 730 in parallel
with the user's web navigation .
[0077] FIG . 7J illustrates UiPath StudioTM 740 with part of
an RPA workflow 750 for the robot . As can be seen in FIG .
7K , a developer is able to step through RPA workflow 750
using UiPath StudioTM 740. UiPath StudioTM 740 and robot

session window 720 are both visible in user session window
700. With each step , text 732 is entered in Microsoft
Notepad application 730 .
[0078] FIG . 8 is a flowchart illustrating a process 800 for
enabling a robot and a user to operate a computing system
simultaneously using attended automation windows , accord
ing to an embodiment of the present invention . The process
begins with launching a user session window at 810. This
may be the main window associated with the operating
system running on the user computing system , for example .
A robot session window is then launched as a child window
of the user session window at 820. In some embodiments ,
the robot session window may be launched responsive to the
robot being initiated or otherwise launched , for example .
The robot is then initiated in the robot session at 830 and the
robot executes its workflow in the robot session at 840. In
some embodiments , the robot session is ended and the robot
session window is closed automatically at 850 .
[0079] In some embodiments , the child session may be
created via a child session API of the operating system .
Windows® Terminal Services Child Sessions or another
child session API provided by an operating system may be
used in some embodiments to create the second session
without deviating from the scope of the invention . The robot
tray application (e.g. , the UiPath® Robot Agent Desktop)
may then use the create process APIs in the operating system
with the appropriate arguments to start the robot process in
that child session . The robot tray application may then
communicate with the robot process using a suitable proto
col (e.g. , one built on named pipes) .
[0080] Communication with the robot between the two
sessions may be accomplished using IPC protocols . These
protocols may facilitation communication via the network ,
pipes , Component Object Model (COM) , Remote Procedure
Calls (RPC) , sockets , etc. Suitable session creation mecha
nisms and IPC protocols may be used for other operating
systems as well , where supported . When the user clicks a
button on the robot tray , the robot tray application may send
that command to the robot process using the IPC protocol .
The robot may send status notifications back to the robot tray
application (e.g. , indicating that the robot is starting , run
ning , paused , etc.) via the IPC protocol as well .
[0081] Attended Automation for Rpa Developers (Design
Time)
[0082] In some embodiments , an attended automation
window may create a second session to host and run
attended automations therein for the purposes of testing and
debugging automations when used from a development
environment at design time . This may enable RPA develop
ers to ensure that attended automations running inside the
robot attended automation window behave as intended .
[0083] RPA developers may also use this functionality to
create attended automations that provide a smooth experi
ence where users can access applications as desired while
the robot is running . If an attended automation makes it
difficult for a user to interact with his or her computing
system while running , or if it is difficult for RPA developers
who launch the attended automation from an integrated
development environment (IDE) to view and access the IDE
while the attended automation is running , it may be desirable
for the RPA developer to modify the robot to run in a less
intrusive manner . For example , if the automation brings an
application to the foreground in front of the IDE , the
developer loses the ability to view the logging information

are

a

US 2022/0258346 A1 Aug. 18 , 2022
8

a

streaming from the process in real time . The RPA developer
may thus change launch settings from the IDE so this does
not occur .
[0084] FIG . 9 is a flowchart illustrating a process 900 for
enabling a robot and an RPA developer to operate a com
puting system simultaneously using attended automation
windows , according to an embodiment of the present inven
tion . The process begins with launching a developer session
window at 910. This may be the main window associated
with the operating system running on the RPA developer
computing system , for example . Next , an IDE is launched at
920 , and the RPA developer issues a command to start the
attended automation at 930. This causes the robot session
window to launch at 940 and the robot is initialized in the
robot session at 950. The robot then executes its workflow
in the robot session at 960 to carry out the attended auto
mation logic . If the developer is not satisfied with the
operation of the robot , the developer may commend execu
tion to stop in the IDE , which ends the robot session and
closes the robot session window at 970. The process then
returns to step 930 .
[0085] Automation Monitoring for Rpa
[0086] In some embodiments , the second session may be
used for automation monitoring and troubleshooting . For
instance , an operations engineer responsible for a server that
is hosting unattended automations (i.e. , there is no licensing
requirement or expectation by the automation process that a
user is monitoring execution) may desire to intervene to
correct errors . The operations engineer may do this via the
second session window . For instance , the operations engi
neer may step in and kill operation of the robot (s) where
errors are occurring .
[0087] In some embodiments , the operations engineer may
access the computing system using a remote desktop tech
nology . For example , the operations engineer may be logged
into the computing system (e.g. , a production machine) and
able to see the user interface thereof on his or her own
computing system . Thus , the operations engineer may be
able to see the UI and control the remote computing system
as desired .
[0088] The robot may be running and controlling the UI in
the second session on a production machine . This means that
the operations engineer is freed to do things like monitor the
streaming logs coming from the robot and visually monitor
a UI being driven by the robot (if any) without losing control
of the machine . Because the robot control software is
running in the first or parent session , if a problem occurs , the
engineer is able to pause / terminate / resume execution from
the parent session that he or she is logged into . In some
embodiments , the robot may be running in the parent session
and the monitoring may be performed from the child ses
sion .
[0089] The Microsoft® Universal Windows Platforms
(UWP) Simulator provides the ability to simulate behaviors
such as geolocation , multi - touch , rotation , etc. Such behav
iors can be difficult or impossible to test on a developer
machine . For instance , if the developer wants to test behav
iors of an application that depends on different locations ,
such as a map program , it is highly inconvenient for the
developer to carry his or her computer around the country or
world for testing . Rather than being focused on isolating “ UI
takeover ” from the user , or being exclusively related to RPA ,
UWP applications are single applications contained in a
single window . As such , the need to isolate UI control should

not be an issue . The UWP simulator therefore may solve the
“ simulation scenarios ” for a single application .
[0090] FIG . 10 is a flowchart illustrating a process 1000
for performing attended or unattended automation using
automation windows for users , according to an embodiment
of the present invention . The process begins with launching
a child session window and a child session at 1010. The
child session is a child of a parent session for an operating
system and the child window is located within a parent
window of the parent session . An RPA robot is initialized in
the child session as a process at 1020 and the RPA robot is
executed at 1030. During execution , the RPA robot executes
an RPA workflow including a plurality of activities within
the child session window . The parent session and the child
session have access to a common file system .
[0091] If the user attempts to access the same application
as the RPA robot at 1040 , a message is displayed to the user
in the parent session window at 1050 indicating that the RPA
robot is currently accessing the application . The child ses
sion is automatically ended and the child session window is
automatically closed after the RPA robot completes execu
tion of the RPA workflow at 1060. Steps 1010-1060 may be
repeated for any desired number of robots executing in child
sessions in serial or in parallel .
[0092] In some embodiments , when executing the plural
ity of activities in the RPA workflow , the RPA robot interacts
with one or more common applications running on a com
puting system that are accessible via both the parent session
and the child session . In certain embodiments , the RPA robot
is an attended robot and a user interacting with an instance
of an application via the parent session does not interfere
with the RPA robot interacting with a different instance of
the application or an instance of a different application via
the child session . In some embodiments , the child session
window is launched from a robot tray application in the
parent session window . In certain embodiments , communi
cation between the robot tray application and the RPA robot
is accomplished using an IPC protocol and the robot tray
application is configured to send commands to the RPA
robot process via the IPC protocol . In some embodiments ,
the RPA robot is configured to send status notifications to the
robot tray application via the IPC protocol .
[0093] In some embodiments , the parent and child ses
sions are launched at design time , the RPA robot performs an
attended automation , and an IDE application executes on a
computing system associated with the parent session and is
configured to initiate the attended automation . In certain
embodiments , the parent session and the child session run on
different computing systems . In some embodiments , the
parent window , the child window , or both , include a window
representing a UI displayed within a main UI , a second
screen of a second display of a computing system , a virtual
desktop , or an isolated environment .
[0094] In some embodiments , the RPA robot is an attended
robot and the RPA robot is initialized and executed in the
parent session while a user interacts with the parent session .
In certain embodiments , the launching of the child session
window and the child session , the initialization of the RPA
robot in the child session , and the execution of the RPA robot
are performed via a remote computing system . In some
embodiments , the RPA robot is an unattended robot .
[0095] FIG . 11 is a flowchart illustrating a process 1100
for performing attended or unattended automation using
automation windows for RPA developers , according to an

a

m

US 2022/0258346 A1 Aug. 18 , 2022
9

.

embodiment of the present invention . The process begins
with launching a child session window and a child session
from an IDE at 1110. The child session is a child of a parent
session for an operating system and the child window is
located within a parent window of the parent session . An
RPA robot is initialized in the child session as a process at
1120 and the RPA robot is executed at 1130. During execu
tion , the RPA robot executes an RPA workflow including a
plurality of activities within the child session window . The
parent session and the child session have access to a com
mon file system .
[0096] Status messages are received from the RPA robot
during robot operation and the received status messages are
displayed in the IDE at 1140. If the robot is not operating as
intended , a user (e.g. , an RPA developer) may wish to end
its operation . When the user provides a command to termi
nate operation of the RPA robot , operation of the RPA robot ,
the child session , and the child window is terminated by the
IDE .
[0097] FIG . 12 is a flowchart illustrating a process 1200
for performing automation monitoring , according to an
embodiment of the present invention . The process beings
with initializing and executing a monitoring and trouble
shooting application in a parent session associated with a
computing system at 1210. A child session window and a
child session are launched at 1220. The child session is a
child of the parent session for an operating system .
[0098] An unattended RPA robot is initialized and
executed in the child session as a process at 1230. A
command is received from a user of the monitoring and
troubleshooting application to terminate operation of the
unattended RPA robot at 1240. Operation of the unattended
RPA robot is then paused or terminated at 1250 and the child
session and child session window are killed at 1260 respon
sive to receiving the command . The parent session and the
child session have access to a common file system .
[0099] In some embodiments , the child session window is
displayed on a different computing system than the parent
session is executing on . In certain embodiments , when
exe ng a plurality of activities in an RPA workflow , the
unattended RPA robot interacts with one or more common
applications that are accessible via both the parent session
and the child session . In some embodiments , the interactions
of the user with an instance of an application via the parent
session does not interfere with the unattended RPA robot
interacting with a different instance of the application or an
instance of a different application via the child session . In
certain embodiments , the child session is automatically
ended and the child session window is automatically closed
after the unattended RPA robot completes execution of an
RPA workflow .
[0100] In some embodiments , any desired number of
additional robots may be executed in respective child ses
sions in serial or in parallel with that of step 1220. In certain
embodiments , when the user attempts to interact with an
application that the unattended RPA robot is interacting
with , a message may be displayed to the user in the parent
session window indicating that the unattended RPA robot is
currently accessing the application . In some embodiments ,
the parent session and the child session run on different
computing systems . In certain embodiments , the parent
window , the child window , or both , comprise a window
representing a UI displayed within a main UI , a second
screen of a second display of a computing system , a virtual

desktop , or an isolated environment . In some embodiments ,
the launching of the child session window and the child
session , the initialization of the unattended RPA robot in the
child session , and the execution of the unattended RPA robot
are performed via a remote computing system .
[0101] The process steps performed in FIGS . 8-12 may be
performed by a computer program , encoding instructions for
the processor (s) to perform at least part of the process (es)
described in FIGS . 8-12 , in accordance with embodiments of
the present invention . The computer program may be
embodied on a non - transitory computer - readable medium .
The computer - readable medium may be , but is not limited
to , a hard disk drive , a flash device , RAM , a tape , and / or any
other such medium or combination of media used to store
data . The computer program may include encoded instruc
tions for controlling processor (s) of a computing system
(e.g. , processor (s) 510 of computing system 500 of FIG . 5)
to implement all or part of the process steps described in
FIGS . 8-12 , which may also be stored on the computer
readable medium .
[0102] The computer program can be implemented in
hardware , software , or a hybrid implementation . The com
puter program can be composed of modules that are in
operative communication with one another , and which are
designed to pass information or instructions to display . The
computer program can be configured to operate on a general
purpose computer , an ASIC , or any other suitable device .
[0103] It will be readily understood that the components of
various embodiments of the present invention , as generally
described and illustrated in the figures herein , may be
arranged and designed in a wide variety of different con
figurations . Thus , the detailed description of the embodi
ments of the present invention , as represented in the attached
figures , is not intended to limit the scope of the invention as
claimed , but is merely representative of selected embodi
ments of the invention .
[0104] The features , structures , or characteristics of the
invention described throughout this specification may be
combined in any suitable manner in one or more embodi
ments . For example , reference throughout this specification
to " certain embodiments , " " some embodiments , ” or similar
language means that a particular feature , structure , or char
acteristic described in connection with the embodiment is
included in at least one embodiment of the present invention .
Thus , appearances of the phrases “ in certain embodiments , "
“ in some embodiment , ” “ in other embodiments , ” or similar
language throughout this specification do not necessarily all
refer to the same group of embodiments and the described
features , structures , or characteristics may be combined in
any suitable manner in one or more embodiments .
[0105] It should be noted that reference throughout this
specification to features , advantages , or similar language
does not imply that all of the features and advantages that
may be realized with the present invention should be or are
in any single embodiment of the invention . Rather , language
referring to the features and advantages is understood to
mean that a specific feature , advantage , or characteristic
described in connection with an embodiment is included in
at least one embodiment of the present invention . Thus ,
discussion of the features and advantages , and similar lan
guage , throughout this specification may , but do not neces
sarily , refer to the same embodiment .
[0106] Furthermore , the described features , advantages ,
and characteristics of the invention may be combined in any

a

US 2022/0258346 A1 Aug. 18 , 2022
10

suitable manner in one or more embodiments . One skilled in
the relevant art will recognize that the invention can be
practiced without one or more of the specific features or
advantages of a particular embodiment . In other instances ,
additional features and advantages may be recognized in
certain embodiments that may not be present in all embodi
ments of the invention .
[0107] One having ordinary skill in the art will readily
understand that the invention as discussed above may be
practiced with steps in a different order , and / or with hard
ware elements in configurations which are different than
those which are disclosed . Therefore , although the invention
has been described based upon these preferred embodi
ments , it would be apparent to those of skill in the art that
certain modifications , variations , and alternative construc
tions would be apparent , while remaining within the spirit
and scope of the invention . In order to determine the metes
and bounds of the invention , therefore , reference should be
made to the appended claims .

1. A non - transitory computer - readable medium storing a
computer program , the computer program configured to
cause at least one processor to :

initialize a robotic process automation (RPA) robot in a
child session as a process ; and

execute the RPA robot , wherein
during execution , the RPA robot executes an RPA work

flow comprising a plurality of activities within the child
session ,

the RPA robot is an attended or unattended robot , and
a user interacting with an instance of an application does

not interfere with the RPA robot interacting with a
different instance of the application or an instance of a
different application via the child session .

2. The non - transitory computer - readable medium of claim
1 , wherein when executing the plurality of activities in the
RPA workflow , the RPA robot interacts with one or more common applications running on a computing system that
are accessible via both a parent session and the child session .

3. The non - transitory computer - readable medium of claim
1 , wherein a parent session and the child session have access
to a common file system on a common computing system .

4. The non - transitory computer - readable medium of claim
1 , wherein

the child session is a child of a parent session for an
operating system ,

a child session window of the child session is located
within a parent session window of the parent session ,
and

the child session window is launched from a robot tray
application in the parent session window .

5. The non - transitory computer - readable medium of claim
4 , wherein

communication between the robot tray application and the
RPA robot is accomplished using an inter - process com
munication (IPC) protocol , and

the robot tray application is configured to send commands
to the RPA robot process via the IPC protocol .

6. The non - transitory computer - readable medium of claim
5 , wherein the RPA robot is configured to send status
notifications to the robot tray application via the IPC pro
tocol .

7. The non - transitory computer - readable medium of claim
1 , wherein the computer program is further configured to
cause the at least one processor to :

automatically end the child session after the RPA robot
completes execution of the RPA workflow .

8. The non - transitory computer - readable medium of claim
1 , wherein the computer program is further configured to
cause the at least one processor to :

launch an additional child session that shares a common
file system with the child session ;

initialize another RPA robot in the additional child ses
sion ; and

execute the other RPA robot .
9. The non - transitory computer - readable medium of claim

1 , wherein when the RPA robot is an attended robot and a
user attempts to interact with an application that the RPA
robot is interacting with , the computer program is further
configured to cause the at least one processor to :

display a message to the user indicating that the RPA
robot is currently accessing the application .

10. The non - transitory computer - readable medium of
claim 1 , wherein

the child session is executed at design time ,
the RPA robot performs an attended automation , and
an integrated development environment (IDE) application

executes on a computing system associated with a
parent session and is configured to initiate the attended
automation .

11. The non - transitory computer - readable medium of
claim 1 , wherein a parent session and the child session run
on different computing systems .

12. The non - transitory computer - readable medium of
claim 1 , wherein a parent session window for a parent
session , a child session window for the child session , or
both , comprise a window representing a user interface (UI)
displayed within a main UI , a second screen of a second
display of a computing system , a virtual desktop , or an
isolated environment .

13. The non - transitory computer - readable medium of
claim 1 , wherein the launching of the child session , the
initialization of the RPA robot in the child session , and the
execution of the RPA robot are performed via a remote
computing system .

14. A computer - implemented method for performing
attended automation for robotic process automation (RPA)
at design time , comprising :

launching a child session from an integrated development
environment (IDE) ;

initializing a robotic process automation (RPA) robot in
the child session as a process ; and

executing the RPA robot , wherein
during execution , the RPA robot executes an RPA work

flow comprising a plurality of activities within the child
session ,

the RPA robot is an attended or unattended robot , and
a user interacting with an instance of an application does

not interfere with the RPA robot interacting with a
different instance of the application or an instance of a
different application via the child session .

15. The computer - implemented method of claim 14 , fur
ther comprising :

receiving status messages from the RPA robot during
robot operation , and

displaying the status messages in the IDE .
16. The computer - implemented method of claim 14 ,

wherein when a user provides a command to terminate
operation of the RPA robot , the method further comprises :

US 2022/0258346 A1 Aug. 18 , 2022
11

a terminating operation of the RPA robot and the child
session , by the IDE .

17. A computer - implemented method , comprising :
initializing a robotic process automation (RPA) robot in a

child session as a process , by a computing system ; and
executing the RPA robot , by the computing system ,

wherein
during execution , the RPA robot executes an RPA work

flow comprising a plurality of activities within the child
session ,

the RPA robot is an attended or unattended robot , and
a user interacting with an instance of an application does

not interfere with the RPA robot interacting with a
different instance of the application or an instance of a
different application via the child session .

18. The computer - implemented method of claim 17 ,
wherein

the child session is launched from a robot tray application ,
communication between the robot tray application and the
RPA robot is accomplished using an inter - process com
munication (IPC) protocol , and

the robot tray application is configured to send commands
to the RPA robot process via the IPC protocol .

19. The computer - implemented method of claim 17 ,
wherein when executing the plurality of activities in the RPA
workflow , the RPA robot interacts with one or more common
applications running on a computing system that are acces
sible via both a parent session and the child session .

20. The computer - implemented method of claim 17 , fur
ther comprising :

automatically ending the child session after the RPA robot
completes execution of the RPA workflow , by the
computing system .

