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SYSTEMS AND METHODS FOR 
COMPRESSION AND DISTRIBUTION OF 

MACHINE LEARNING MODELS 

FIELD 

[ 0001 ] The present disclosure relates generally to machine 
learning models . More particularly , the present disclosure 
relates to leveraging compression in the distribution of 
machine learning models . 

BACKGROUND 

[ 0002 ] Machine learning models can help in solving a 
variety of tasks that have traditionally been difficult for a 
computing system . However , the machine learning models 
are often large and require a considerable amount of storage 
capacity and transfer bandwidth to be delivered to a com 
puting system . As such , to make machine learning models 
more appealing for application in bandwidth - limited net 
works , for example in mobile applications and the like , ways 
are needed to reduce the cost of transfer and storage of 
machine learning models . 

instructions further causes the computing device to propa 
gate at least a part of a quantization error to one or more 
non - quantized weights . Execution of the instructions further 
causes the computing device to quantize one or more of the 
non - quantized weights . Execution of the instructions further 
causes the computing device to provide a quantized 
machine learned model . 
[ 0007 ] Another example aspect of the present disclosure is 
directed to one or more non - transitory computer - readable 
media that store instructions that , when executed by one or 
more processors of a computing system , cause the comput 
ing system to perform operations . Execution of instructions 
causes the computing system to obtain a machine learned 
model . Execution of instructions causes the computing 
system to , for one or more weights of the machine learned 
model , select a weight to be quantized and quantize the 
weight . Execution of instructions further causes the com puting system to propagate at least a part of a quantization 
error to one or more non - quantized weights . Execution of 
instructions further causes the computing system to provide 
a quantized machine - learned model . 
[ 0008 ] Other example aspects of the present disclosure are 
directed to systems , apparatus , tangible , non - transitory com 
puter - readable media , user interfaces , memory devices , and 
electronic devices . 
[ 0009 ] These and other features , aspects , and advantages 
of various embodiments will become better understood with 
reference to the following description and appended claims . 
The accompanying drawings , which are incorporated in and 
constitute a part of this specification , illustrate embodiments 
of the present disclosure and , together with the description , 
serve to explain the related principles . 

SUMMARY 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0003 ] Aspects and advantages of embodiments of the 
present disclosure will be set forth in part in the following 
description , or may be learned from the description , or may 
be learned through practice of the embodiments . 
[ 0004 ] One example aspect of the present disclosure is 
directed to a computer - implemented method to compress 
machine learned models . The method can include obtaining , 
by one or more computing devices , a machine learned 
model . The method can further include selecting , by the one 
or more computing devices , a weight to be quantized . The 
method can further include quantizing , by the one or more 
computing devices , the weight . The method can further 
include propagating , by the one or more computing devices , 
at least a part of a quantization error to one or more 
non - quantized weights . The method can further include 
quantizing , by the one or more computing devices , one or 
more of the non - quantized weights . The method can further 
include providing , by the one or more computing devices , a 
quantized machine learned model . 
[ 0005 ] In some embodiments , the method can additionally 
include where propagating the quantization error includes 
determining , by the one or more computing devices , the 
quantization error . Propagating the quantization error can 
further include determining , by the one or more computing 
devices , one or more non - quantized weights associated with 
the weight . Propagating the quantization error can further 
include allocating , by the one or more computing devices , a 
fractional part of the quantization error to each of the 
associated non - quantized weights . 
[ 0006 ] Another example aspect of the present disclosure is 
directed to a computing device . The computing device 
includes one or more processors ; and one or more non 
transitory computer - readable media that store instructions 
that , when executed by the one or more processors , cause the 
computing device to perform operations . Execution of the 
instructions causes the computing device to obtain a 
machine learned model . Execution of the instructions fur 
ther causes the computing device to select a weight to be 
quantized . Execution of the instructions further causes the 
computing device to quantize the weight . Execution of the 

[ 0010 ] Detailed discussion of embodiments directed to 
one of ordinary skill in the art are set forth in the specifi 
cation , which makes reference to the appended figures , in 
which : 
[ 0011 ] FIG . 1 depicts a block diagram of computing 
system according to example embodiments of the present 
disclosure ; 
[ 0012 ] FIG . 2 depicts a flowchart diagram of an example 
method of model quantization with loss management 
according to example embodiments of the present disclo 
sure ; 
[ 0013 ] FIG . 3 depicts a flowchart diagram of another 
example method of model quantization with loss manage 
ment according to example embodiments of the present 
disclosure ; 
[ 0014 ] FIG . 4 depicts a flowchart diagram of an example 
method of model quantization according to example 
embodiments of the present disclosure ; and 
[ 0015 ] FIG . 5 depicts a flowchart diagram of another 
example method of model quantization according to 
example embodiments of the present disclosure . 

DETAILED DESCRIPTION 

[ 0016 ] Reference now will be made in detail to embodi 
ments , one or more examples of which are illustrated in the 
drawings . Each example is provided by way of explanation 
of the embodiments , not limitation of the present disclosure . 
In fact , it will be apparent to those skilled in the art that 
various modifications and variations can be made to the 
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embodiments without departing from the scope or spirit of 
the present disclosure . For instance , features illustrated or 
described as part of one embodiment can be used with 
another embodiment to yield a still further embodiment . 
Thus , it is intended that aspects of the present disclosure 
cover such modifications and variations . 
[ 0017 ] Generally , the present disclosure is directed to 
systems and methods to compress and / or distribute machine 
learning models . In particular , the systems and methods of 
the present disclosure can leverage compression methods to 
reduce the size ( e.g. , the data storage and transfer require 
ments ) of a machine learned model . By reducing the size of 
the model , the systems and methods of the present disclosure 
can reduce the network and / or computational expense asso 
ciated with transfer , storage , and / or use of the model . In 
particular , enabling reduced network expenses associated 
with transfer or other forms of distribution of the machine 
learned models can make the machine learned models more 
appealing or useful in limited - bandwidth networks . Like 
wise , enabling reduced storage expense and / or computa 
tional expense associated with storage and / or use of the 
machine learned models can make the machine learned 
models more appealing or useful in resource - limited devices 
or environments such as , for example , mobile applications , 
devices , and / or environments . 
[ 0018 ] Thus , the present disclosure provides compression 
techniques that can be used to reduce the size of machine 
learned models . In particular , the systems and methods of 
the present disclosure can perform various types of quanti 
zation of weights of a model with loss management . As one 
example , the systems and methods of the present disclosure 
can provide model compression such that the distortion 
introduced by compression has a bounded increase in loss . 
As another example , in some implementations , when model 
weights are quantized , the quantization errors can be com 
pensated by later quantization errors . For example , quanti 
zation error can be distributed among one model layer to the 
previous or next layer , among nodes within a layer , within 
connections of a single node , based on node correlation , 
and / or according to other schemes . As another example , an 
iterative training process can be performed in which a 
certain number of the best matching ( e.g. , lowest quantiza 
tion error producing ) nodes are quantized and then frozen 
while the model is subjected to additional training . By 
implementing quantization with loss management , as 
described herein , machine learned models can be com 
pressed more densely while reducing the fitness degradation 
of the machine - learned model . 
[ 0019 ] In addition to compression techniques , the present 
disclosure provides additional techniques for improved dis 
tribution , storage , and / or use of machine learned models . 
For example , in some implementations , the systems and 
methods of the present disclosure can perform or enable one 
or more of : patching for model updates , distributed learning , 
training for quantization , training for patching , and / or trans 
fer learning . As an example , in some implementations , 
machine learned model distribution can include patching 
where a smaller part ( e.g. , only a portion ) of the machine 
learned model is delivered to update a deployed version of 
the machine learned model , such as on a mobile device , 
rather than updating the entire machine learned model . In 
another example , in some implementations , distributed 
learning can be performed in which machine learned model 
weights are changed at a client device and are then gathered 

through patches from the client device . The use of patches 
for uploading of updated weights from the client device 
reduces the bandwidth used by the client device . 
[ 0020 ] In yet another example , in some implementations , 
the systems and methods of the present disclosure can 
perform or enable training for quantization , in which certain 
weights of a model are selected and frozen during training 
to improve error , and training for patching , in which whole 
layers of a model are selected and frozen during training to 
improve compression . In another example , in some imple 
mentations , machine learned model distribution can include 
transfer learning in which patching can be used to repurpose 
a model already existing on a client device , thereby elimi 
nating the need to transmit an entirely new model . 
[ 0021 ] More particularly , according to one aspect of the 
present disclosure , machine learned model distribution can 
include compressing machine learned models by imple 
menting quantization with loss management . Using quanti 
zation with loss management , a machine learned model can 
be compressed for distribution by quantizing model weights 
where quantization errors can be compensated by other 
quantization errors . In some implementations , for example , 
quantization error can be compensated for by dithering to 
distribute the quantization error among other associated 
weights . When a neural weight is quantized , some error is 
introduced which can then be distributed among weights that 
have yet to be quantized to compensate for the error . For 
example , when a weight is quantized , a determination can be 
made of which other weights ( that have yet to be quantized ) 
are associated with the quantized weight . The quantized 
weight's quantization error can then be fractionally distrib 
uted to those associated weights , for example , by using a 
predetermined multiplier . The next associated weight then 
takes its original value plus the transferred quantization 
error , and that new weight value is then quantized . The 
quantization error from the quantization of this next asso 
ciated weight can then be distributed among the remaining 
associated weights that have not yet been quantized . 
[ 0022 ] In some implementations , as the quantization of the 
weights continues , the quantization error can accumulate 
until reaching or exceeding a threshold which can then cause 
an opposite error to be made and thereby reduce the error in 
the remaining weight values . In some implementations , 
quantization decisions are not made one at a time , but 
instead consider the impact on other quantization decisions . 
[ 0023 ] Accordingly , quantization with loss management 
can include various strategies to reduce the fitness degrada 
tion of the model . In some implementations , for example , 
quantization of weights can be performed based on a best 
matching coefficient . For example , the quantization begins 
by determining the best matching coefficient ( e.g. , the 
weight that would result in the least amount of quantization 
error ) , and quantizing this weight . The quantization error 
from this weight can then be transferred to the other weights . 
By quantizing the best matching weight first , the transfer of 
the quantization error causes the worse matching weights to 
move and , no matter the direction of the move , these weights 
then have a higher probability of becoming better matching 
weights than if they were quantized in another order . 
[ 0024 ] In some implementations , one or more of the best 
matching coefficients are quantized and then additional 
training iterations are completed while keeping the quan 
tized coefficients locked . This can allow the first quantiza 
tion errors to propagate to coefficients that are more difficult 
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to quantize , allowing less overall error to be done in the 
quantization process . In some implementations , sets of best 
matching weights can be done simultaneously for faster 
computation , for example , the best matching 10 % of weights 
or the like . 
[ 0025 ] In some implementations , for example , quantiza 
tion error can be dithered from the previous layer . For 
example , a distance measure can be used between nodes 
within a layer , and signals coming from the nodes of a 
previous cell can be quantized with consideration ( e.g. , 
partial accumulation ) of the quantization error from similar 
nodes . As one example , node K1 and node K2 of layer K 
may have a similar connection to a previous layer J. As such , 
if the Jl - to - K1 connection is quantized down , the Jl - to - K2 
connection can be enforced to be more likely to be quantized 
up . 
[ 0026 ] In some implementations , the quantization error 
can be dithered within the node . For example , if a Jl - to - K1 
connection is quantized down , a J2 - to - K1 connection can be 
enforced to be more likely to be quantized up . 
[ 0027 ] In some implementations , the quantization error 
can be dithered within the node considering the correlation 
of activity , where the correlation of activity between two 
weights is descriptive of an activation relationship between 
the two weights . One goal for such correlation - based dis 
tribution scheme is that when the quantization error is 
dithered to a highly correlated node , the loss is decreased . 
By way of example , if a Jl - to - K1 connection is quantized 
down , a J2 - to - Kl connection should be more likely to be 
quantized as a function of the correlation between J1 and J2 . 
In some implementations , if there is an inverse correlation , 
the dithering may be done in the opposite direction , poten 
tially leading to a smaller error . 
[ 0028 ] According to another aspect of the present disclo 
sure , in some implementations , machine - learned model dis 
tribution can include patching where a smaller part of the 
machine learned model is updated and delivered for chang 
ing a deployed version of the machine learned model . For 
example , patching can provide for a part of a machine 
learned model to be delivered ( for example , to a mobile 
device or the like ) without updating other parts of the 
machine learned model . For example , patching can be used 
to deliver changes which are critical that they be delivered 
quickly to a large group of recipients . In some implemen 
tations , patching provides for updating smaller parts of a 
machine learned model that is deployed , for example , in 
mobile devices , and how those smaller parts of the model go 
through the learning process of neural network computation . 
Patching can allow for updates that only concern a small 
subset of the neural graph so that they can be updated in such 
a way compress the size of the update . For example , to 
develop a smaller patch , the part of the neural network 
structure where training is allowed could be limited such 
that training only happens with a small subset of the weights . 
By way of example , in some implementations , training 
could be done with new weights being found . It can then be 
determined where the weights have changed the most , and 
another round of training could be done where only a subset 
of the weights , for example , the top five percentile of 
changed weights , are allowed to change . This would then 
result in a smaller number of weights changing , thereby 
creating a smaller patch . In another example , to develop a 
smaller patch , the neural network can be retrained and then 
a set of nodes whose values changed the most , for example 

the top five percentile of the changed weights ( e.g. , nodes 
with top five percent of | retrained value - original value , 
can be identified and included in the patch . 
[ 0029 ] In some implementations , patching can include 
patches for a rule - based system verifying the results of a 
deep learning model . For example , when some situation 
calls for an immediate change to a model but a high 
bandwidth update cannot be delivered to many users , 
patches could be used to check final results of text - based 
models or zero out parts of a machine learned model . In 
some implementations , patching can include using previous 
weights to give a statistical prior for new weights , allowing 
for tighter compression of the new weights . 
[ 0030 ) According to another aspect of the present disclo 
sure , in some implementations , machine - learned model dis 
tribution can include distributed learning in which machine 
learned model weights may be changed at a client device and 
are then gathered through patches from the client device to 
reduce the device bandwidth use . For example , in some 
implementations , machine learned model weights may be 
changed at a client device to further optimize the model loss 
function with real data . In some implementations , the 
changed weights could then be gathered in “ reverse ” patches 
to minimize the client device bandwidth use . In some 
implementations , distributed learning using client data can 
be applied in such a way that a smaller set of node weights 
is chosen , for example , partly randomly ( e.g. , to improve 
privacy and coverage ) and partly by what a central controller 
has seen as nodes worth updating ( e.g. , to improve effi 
ciency ) . 
[ 0031 ] According to another aspect of the present disclo 
sure , in some implementations , machine - learned model dis 
tribution can include training for quantization and training 
for patching . For example , training for quantization can 
include determining weights to freeze during training to 
improve error . In some implementations , for example , an 
annealing process can be applied to weights by freezing a set 
of weights that introduce the smallest error . Training for 
patching can include , for example , choosing which layers to 
freeze during training . For example , in some models , the 
lower layers may typically remain unchanged whereas 
higher layers exhibit more change . In some implementa 
tions , this can be made explicit during a training phase , such 
as by adding rules into learning to freeze layers ( e.g. , either 
stochastically or by another measure of fitness impact ) , to 
produce smaller patch sizes . 
[ 0032 ] According to another aspect of the present disclo 
sure , in some implementations , machine learned model dis 
tribution can include transfer learning whereby patching can 
benefit from an already learned model on a client device . For 
example , it can sometimes be beneficial to start training of 
a model from an already learned model . In some implemen 
tations , a patch approach can be applied for developing such 
models , thereby benefiting from an already deployed learned 
model such that an entire model does not need to be 
transferred , for example , providing for transfer of only small 
deltas . 
[ 0033 ] The systems and methods described herein provide 
a number of technical effects and benefits . For instance , the 
use of learned - model distribution strategies such as quanti 
zation with loss management leads to reductions in band 
width use which is a significant cost to mobile computing . 
Thus the systems and methods described herein allow for 
increased use of machine learned - models in bandwidth 
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or more 

limited networks , such as mobile computing , where the 
machine learned - models can provide benefits to a variety of 
user applications . Additionally , the systems and methods 
described herein may also provide a technical effect and 
benefit of reducing update size and improving performance 
due to reducing cache and memory bandwidth requirements . 
[ 0034 ] The systems and methods described herein also 
provide resulting improvements to computing technology 
tasked with the distribution and use of machine learned 
models . For example , through the use of advanced com 
pression techniques for machine learned model distribution 
as described herein , computing systems may optimize band 
width use and reduce transfer costs and more efficiently 
provide machine learned models for use in various applica 
tions , such as mobile applications . Further , the systems and 
methods described herein may provide reductions in storage 
requirements and system resources , thus making machine 
learned models more appealing in limited - bandwidth net 
works . 
[ 0035 ] With reference now to the Figures , example 
embodiments of the present disclosure will be discussed in 
further detail . 

Example Devices and Systems 

[ 0036 ] FIG . 1 depicts a block diagram of an example 
computing system 100 that can perform compression and 
distribution of machine learning models according to 
example embodiments of the present disclosure . The system 
100 includes a user computing device 102 , a server com 
puting device 140 , and a training computing system 160 that 
are communicatively coupled over a network 180 . 
[ 0037 ] The user computing device 102 can be any type of 
computing device , such as , for example , a personal com 
puting device ( e.g. , laptop or desktop ) , a mobile computing 
device ( e.g. , smartphone or tablet ) , a gaming console or 
controller , a wearable computing device , an embedded com 
puting device , a personal assistant computing device , or any 
other type of computing device . 
[ 0038 ] The user computing device 102 includes one or 
more processors 104 and a memory 106. The one or more 
processors 104 can be any suitable processing device ( e.g. , 
a processor core , a microprocessor , an ASIC , a FPGA , a 
controller , a microcontroller , etc. ) and can be one processor 
or a plurality of processors that are operatively connected . 
The memory 106 can include one or more non - transitory 
computer - readable storage mediums , such as RAM , ROM , 
EEPROM , EPROM , flash memory devices , magnetic disks , 
etc. , and combinations thereof . The memory 106 can store 
data 108 and instructions 110 which are executed by the 
processor 104 to cause the user computing device 102 to 
perform operations . 
[ 0039 ] Furthermore , according to an aspect of the present 
disclosure , the user computing device 102 can store or 
include one or more machine learned models 112. The 
machine learned models 112 can be or can otherwise include 
one or more neural networks ( e.g. , deep neural networks ) ; 
Markov models ( e.g. , hidden Markov models ) ; classifiers ; 
regression models ; support vector machines ; Bayesian net 
works ; multi - layer non - linear models ; or other types of 
machine learned models . Neural networks ( e.g. , deep neural 
networks ) can be feed - forward neural networks , convolu 
tional neural networks , autoencoders , recurrent neural net 

works ( e.g. , long short - term memory neural network , gated 
recurrent units , etc. ) and / or various other types of neural 
networks . 
[ 0040 ] In some implementations , the one 
machine learned models 112 can be received from the server 
computing device 140 over network 180 , stored in the user 
computing device memory 108 , and then used or otherwise 
implemented by the one or more processors 104. In some 
implementations , the user computing device 102 can imple 
ment multiple parallel instances of a single machine learned 
model 112 . 
[ 0041 ] More particularly , machine learned model ( s ) 112 
can be implemented to provide assistance in various situa 
tions and / or applications . As an example , the machine 
learned model ( s ) 112 can be employed within the context of 
a mobile application of the user computing device 102 , 
providing benefits and advantages during the execution of 
such mobile applications . Thus , one or more models 112 can 
be stored and implemented at the user computing device 
102 . 
[ 0042 ] The user computing device 102 can also include 
model trainer ( s ) 114. The model trainer 114 can train or 
re - train machine learned models 112 stored at user comput 
ing device 102 using various training or learning techniques , 
such as , for example , backwards propagation of errors ( e.g. , 
truncated backpropagation through time ) . In particular , the 
model trainer 114 can train or re - train one or more of the 
machine learned models 112 using locally stored data as 
training data . The model trainer 114 can perform a number 
of generalization techniques to improve the generalization 
capability of the models being trained . In some implemen 
tations , some information about the trained model's param 
eters can be delivered by the user computing device 102 
back to the server computing device 140 . 
[ 0043 ] The user computing device 102 can also include 
one or more input / output interface ( s ) 116. One or more 
input / output interface ( s ) 116 can include , for example , 
devices for receiving information from or providing infor 
mation to a user , such as a display device , touch screen , 
touch pad , mouse , data entry keys , an audio output device 
such as one or more speakers , a microphone , haptic feed 
back device , etc. An input / output interface ( s ) 116 can be 
used , for example , by a user to control operation of the user 
computing device 102 . 
[ 0044 ] The user computing device 102 can also include 
one or more communication / network interface ( s ) 118 used 
to communicate with one or more systems or devices , 
including systems or devices that are remotely located from 
the user computing device 102. The communication / net 
work interface ( s ) 118 can include any circuits , components , 
software , etc. for communicating with one or more networks 
( e.g. , network 180 ) . In some implementations , the commu 
nication / network interface ( s ) 118 can include , for example , 
one or more of a communications controller , receiver , trans 
ceiver , transmitter , port , conductors , software , and / or hard 
ware for communicating data . 
[ 0045 ] The server computing device 140 includes one or 
more processors 142 and a memory 144. The one or more 
processors 142 can be any suitable processing device ( e.g. , 
a processor core , a microprocessor , an ASIC , a FPGA , a 
controller , a microcontroller , etc. ) and can be one processor 
or a plurality of processors that are operatively connected . 
The memory 144 can include one or more non - transitory 
computer - readable storage mediums , such as RAM , ROM , 
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EEPROM , EPROM , flash memory devices , magnetic disks , 
etc. , and combinations thereof . The memory 144 can store 
data 146 and instructions 148 which are executed by the 
processor 142 to cause the server computing device 140 to 
perform operations . 
[ 0046 ] In some implementations , the server computing 
device 140 includes or is otherwise implemented by one or 
more server computing devices . In instances in which the 
server computing device 140 includes plural server comput 
ing devices , such server computing devices can operate 
according to sequential computing architectures , parallel 
computing architectures , or some combination thereof . 
[ 0047 ] As described above , the server computing device 
140 can store or otherwise include one or more machine 
learned models 150. The machine learned models 150 can 
be or can otherwise include one or more neural networks 
( e.g. , deep neural networks ) ; Markov models ( e.g. , hidden 
Markov models ) ; classifiers ; regression models ; support 
vector machines ; Bayesian networks ; multi - layer non - linear 
models ; or other types of machine learned models . Neural 
networks ( e.g. , deep neural networks ) can be feed - forward 
neural networks , convolutional neural networks , autoencod 
ers , recurrent neural networks ( e.g. , long short - term memory 
neural network , gated recurrent units , etc. ) and / or various 
other types of neural networks . 
[ 0048 ] The server computing device 140 can also include 
a model compressor 152 that can perform compression of 
one or more machine learning models 150 to reduce the size 
( e.g. , the data storage and transfer requirements ) of the 
machine learned model ( s ) . In particular , in some implemen 
tations , the model compressor 152 can perform quantization 
of one or more weights of the machine learning models 150 
where the quantization error introduced by the quantization 
can be compensated by later quantization errors . 
[ 0049 ] Additionally , in some implementations , model 
compressor 152 can also provide for additional techniques 
for improved distribution , storage , and / or use of machine 
learned models . For example , in some implementations , the 
model compressor 152 can perform or enable one or more 
of : patching for model updates , distributed learning , training 
for quantization , training for patching , and / or transfer learn 
ing . 
[ 0050 ] The server computing device 140 can also include 
one or more input / output interface ( s ) 154. The one or more 
input / output interface ( s ) 154 can include , for example , 
devices for receiving information from or providing infor 
mation to a user , such as a display device , touch screen , 
touch pad , mouse , data entry keys , an audio output device 
such as one or more speakers , a microphone , haptic feed 
back device , etc. An input / output interface ( s ) 154 can be 
used , for example , by a user to control operation of the 
server computing device 140 . 
[ 0051 ] The server computing device 140 can also include 
one or more communication / network interface ( s ) 156 used 
to communicate with one or more systems or devices , 
including systems or devices that are remotely located from 
the server computing device 140. The communication / net 
work interface ( s ) 156 can include any circuits , components , 
software , etc. for communicating with one or more networks 
( e.g. , network 180 ) . In some implementations , the commu 
nication / network interface ( s ) 156 can include , for example , 
one or more of a communications controller , receiver , trans 
ceiver , transmitter , port , conductors , software , and / or hard 
ware for communicating data . 

[ 0052 ] The server computing device 140 can train the 
machine learned models 150 via interaction with the train 
ing computing system 160 that is communicatively coupled 
over the network 180. The training computing system 160 
can be separate from the server computing device 140 or can 
be a portion of the server computing device 140 . 
[ 0053 ] The training computing system 160 includes one or 
more processors 162 and a memory 164. The one or more 
processors 162 can be any suitable processing device ( e.g. , 
a processor core , a microprocessor , an ASIC , a FPGA , a 
controller , a microcontroller , etc. ) and can be one processor 
or a plurality of processors that are operatively connected . 
The memory 164 can include one or more non - transitory 
computer - readable storage mediums , such as RAM , ROM , 
EEPROM , EPROM , flash memory devices , magnetic disks , 
etc. , and combinations thereof . The memory 164 can store 
data 166 and instructions 168 which are executed by the 
processor 162 to cause the training computing system 160 to 
perform operations . In some implementations , the training 
computing system 160 includes or is otherwise implemented 
by one or more server computing devices . 
[ 0054 ] The training computing system 160 can include 
one or more model trainer ( s ) 170 that trains the machine 
learned models 150 stored at the server computing device 
140 using various training or learning techniques , such as , 
for example , backwards propagation of errors ( e.g. , trun 
cated backpropagation through time ) . The model trainer 170 
can perform a number of generalization techniques ( e.g. , 
weight decays , dropouts , etc. ) to improve the generalization 
capability of the models being trained . In particular , the 
model trainer 170 can train a machine learned model 150 
based on a set of training data 172. The training data 172 can 
include centrally collected data or remotely obtained data . 
[ 0055 ] The training computing system 160 can also 
include one or more input / output interface ( s ) 174. The one 
or more input / output interface ( s ) 174 can include , for 
example , devices for receiving information from or provid 
ing information to a user , such as a display device , touch 
screen , touch pad , mouse , data entry keys , an audio output 
device such as one or more speakers , a microphone , haptic 
feedback device , etc. An input / output interface ( s ) 174 can be 
used , for example , by a user to control operation of the 
training computing system 160 . 
[ 0056 ] The training computing system 160 can also 
include one or more communication / network interface ( s ) 
176 used to communicate with one or more systems or 
devices , including systems or devices that are remotely 
located from the training computing system 160. The com 
munication / network interface ( s ) 176 can include any cir 
cuits , components , software , etc. for communicating with 
one or more networks ( e.g. , network 180 ) . In some imple 
mentations , the communication / network interface ( s ) 176 
can include , for example , one or more of a communications 
controller , receiver , transceiver , transmitter , port , conduc 
tors , software , and / or hardware for communicating data . 
[ 0057 ] Each of model trainer 112 and model trainer 170 
can include computer logic utilized to provide desired 
functionality . Each of model trainer 112 and model trainer 
170 can be implemented in hardware , firmware , and / or 
software controlling a general purpose processor . For 
example , in some implementations , each of model trainer 
112 and model trainer 170 includes program files stored on 
a storage device , loaded into a memory and executed by one 
or more processors . In other implementations , each of model 
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trainer 112 and model trainer 170 includes one or more sets 
of computer - executable instructions that are stored in a 
tangible computer - readable storage medium such as RAM 
hard disk or optical or magnetic media . 
[ 0058 ] The network 180 can be any type of communica 
tions network , such as a local area network ( e.g. , intranet ) , 
wide area network ( e.g. , Internet ) , or some combination 
thereof and can include any number of wired or wireless 
links . In general , communication over the network 180 can 
be carried via any type of wired and / or wireless connection , 
using a wide variety of communication protocols ( e.g. , 
TCP / IP , HTTP , SMTP , FTP ) , encodings or formats ( e.g. , 
HTML , XML ) , and / or protection schemes ( e.g. , VPN , 
secure HTTP , SSL ) . 
[ 0059 ] FIG . 1 illustrates one example computing system 
that can be used to implement the present disclosure . Other 
computing systems can be used as well . 

Example Methods 
[ 0060 ] FIGS . 2-4 illustrate example methods of the pres 
ent disclosure . Although FIGS . 2-4 respectively depict steps 
in a particular order for purposes of illustration and discus 
sion , the methods of the present disclosure are not limited to 
the particularly illustrated order or arrangement . The various 
steps of the methods of FIGS . 2-4 can be omitted , rear 
ranged , combined , and / or adapted in various ways without 
deviating from the scope of the present disclosure . 
[ 0061 ] FIG . 2 depicts a flowchart diagram of an example 
method 200 of compressing machine learning models via 
model quantization with loss management according to 
example embodiments of the present disclosure . 
[ 0062 ] At 202 , a computing device , such as server com 
puting device 140 of FIG . 1 , can obtain a machine learning 
model , for example , a machine learning model that is to be 
compressed for distribution to other computing systems , 
such as in bandwidth - limited networks . 
[ 0063 ] At 204 , the computing device can select one or 
more weights to be quantized as part of reducing the size of 
the machine learned model . In particular , in some imple 
mentations , the computing device can select the one or more 
weights based on various determinations . For example , in 
some implementations , the computing device can select the 
one or more weights to quantize first based on a best 
matching coefficient ( e.g. , the weight that would result in the 
least amount of quantization error ) . 
[ 0064 ] At 206 , the computing device can quantize the 
selected weight ( s ) . In some implementations , sets of best 
matching weights can be done simultaneously for faster computation , for example , the best matching 10 % of weights 
or the like . 
[ 0065 ] At 208 , a quantization error for the weight being 
quantized can be obtained . In particular , when a neural 
weight is quantized some amount of quantization error is 
introduced . This quantization error can be compensated for , 
at least partially , in the following manner . 
[ 0066 ] At 210 , the computing device can determine if 
there are the remaining weights of the machine learning 
model that have yet to be quantized . If there are remaining 
non - quantized weights , the method 200 can continue to 212 . 
If there are no remaining weights to be quantized , the 
method 200 can continue the 218 and provide the quantized 
machine learning model for distribution . 
[ 0067 ] At 212 , the computing device can determine one or 
more of the non - quantized weights that are associated with 

the quantized weight ( e.g. , the weight being quantized and 
introducing quantization error ) . For example , the associated 
non - quantized weights can be determined from nodes within 
a same layer , nodes from a previous layer or following layer , 
within connections of a single node , based on node corre 
lation , and / or according to other schemes . 
[ 0068 ] At 214 , the quantization error can be propagated or 
distributed among one or more of the associated non 
quantized weights . In particular , in some implementations , 
for example , the quantization error can be compensated for 
by dithering to distribute the quantization error among the 
other associated weights . In one example , the quantization 
error can be fractionally distributed to the associated weight 
( s ) , for example , by using a predetermined multiplier . The 
next associated weight ( s ) then takes its original value plus 
the transferred quantization error , and that new weight value 
can then be quantized . In some implementations , as the 
quantization of the weights continues , the quantization error 
can accumulate until reaching or exceeding a threshold 
which can then cause an opposite error to be made and 
thereby reduce the error in the remaining weight values . 
According to various implementations , quantization error 
can be distributed from one model layer to the next layer , 
among nodes within a layer , within connections of a single 
node , based on node correlation , and / or according to other 
schemes , for example . 
[ 0069 ] At 216 , the computing device can then select one 
or more next weights to quantize from among the non 
quantized weights , and then return to 206 to iteratively 
continue the quantization with loss management . 
[ 0070 ] At 218 , after completing the quantization iterations 
of the model weights ( e.g. , when there are no weights 
remaining to be quantized at 210 ) , the computing system can 
provide the quantized machine learning model , for example , 
to be distributed to other computing devices . 
[ 0071 ] FIG . 3 depicts a flowchart diagram of an example 
method 300 of compressing machine learning models via 
model quantization with loss management according to 
example embodiments of the present disclosure . 
[ 0072 ] At 302 , a computing device , such as server com 
puting device 140 of FIG . 1 , can obtain a machine learning 
model , for example , a machine learning model that is to be 
compressed for distribution to other computing systems , 
such as in bandwidth - limited networks . 
[ 0073 ] At 304 , the computing device can select one or 
more weights to be quantized as part of reducing the size of 
the machine learned model . In particular , in some imple 
mentations , the computing device can select the one or more 
weights based on various determinations . For example , in 
some implementations , the computing device can select the 
one or more weights to quantize first based on a best 
matching coefficient ( e.g. , the weight that would result in the 
least amount of quantization error ) . 
[ 0074 ] At 306 , the computing device can quantize the 
selected weight ( s ) . In some implementations , sets of best 
matching weights can be done simultaneously for faster 
computation , for example , the best matching 10 % of weights 
or the like . 
[ 0075 ] At 308 , a quantization error for the weight being 
quantized can be obtained . In particular , when a neural 
weight is quantized some amount of quantization error is 
introduced . This quantization error can be compensated for , 
at least partially , in the following manner . 
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[ 0076 ] At 310 , the computing device can determine if 
there are the remaining weights of the machine learning 
model that have yet to be quantized . If there are remaining 
non - quantized weights , the method 300 can continue to 312 . 
If there are no remaining weights to be quantized , the 
method 300 can continue the 320 and provide the quantized 
machine learning model for distribution . 
[ 0077 ] At 312 , the computing device can determine one or 
more of the non - quantized weights that are associated with 
the quantized weight ( e.g. , the weight being quantized and 
introducing quantization error ) . For example , the associated 
non - quantized weights can be determined from nodes within 
a same layer , nodes from a previous layer or a following 
layer , within connections of a single node , based on node 
correlation , and / or according to other schemes . 
[ 0078 ] At 314 , the quantization error can be propagated or 
distributed among one or more of the associated non 
quantized weights . In particular , in some implementations , 
example , the quantization error can be compensated for by 
dithering to distribute the quantization error among the other 
associated weights . In one example , the quantization error 
can be fractionally distributed to the associated weight ( s ) , 
for example , by using a predetermined multiplier . The next 
associated weight ( s ) then takes its original value plus the 
transferred quantization error , and that new weight value can 
then be quantized . 
[ 0079 ] At 316 , the computing device can perform one or 
more additional training iterations for the machine learning 
model while keeping the quantized weights locked . For 
example , this locking of weights can allow the first quanti 
zation errors to propagate to coefficients that are more 
difficult to quantize , allowing less overall error to be intro 
duced in the quantization process . 
[ 0080 ] At 318 , the computing device can then select one 
or more next weights to quantize from among the non 
quantized weights , and then return to 306 to iteratively 
continue the quantization with loss management . 
[ 0081 ] At 320 , after completing the quantization iterations 
of the model weights ( e.g. , when there are no weights 
remaining to be quantized at 310 ) , the computing system can 
provide the quantized machine learning model , for example , 
to be distributed to other computing devices . 
[ 0082 ] FIG . 4 depicts a flowchart diagram of an example 
method 400 of quantizing machine - learning models accord 
ing to example embodiments of the present disclosure . 
[ 0083 ] At 402 , a computing device , such as server com 
puting device 140 of FIG . 1 , can obtain a machine learning 
model , for example , a machine learning model that is to be 
compressed for distribution to other computing systems , 
such as in bandwidth - limited networks . 
[ 0084 ] At 404 , the computing device can estimate the 
importance of one or more coefficients of the machine 
learning model . For example , the importance of a coefficient 
can be based at least in part on its magnitude . 
[ 0085 ] At 406 , the computing device can estimate the 
change in size and change in loss for each of the coefficients 
introduced by one or more quantization strategies . In par 
ticular , in some implementations , the quantization strategies 
can rely on coefficient importance estimation data . 
[ 0086 ] At 408 , the computing device can select one or 
more quantization strategies to be applied to the machine 
learning model , based at least in part on the size change and 
loss change estimations . 

[ 0087 ] At 410 , the computing device can apply the one or 
more selected quantization strategies to the machine learn 
ing model . 
[ 0088 ] At 412 , the computing device can then output the 
quantized machine learning model , for example , to be 
distributed to one or more computing systems ( e.g. , band 
width - limited systems such as mobile applications , devices , 
and / or networks ) . 
[ 0089 ] FIG . 5 depicts a flowchart diagram of an example 
method 500 of compressing machine - learning models via 
model quantization with loss management according to 
example embodiments of the present disclosure . 
[ 0090 ] At 502 , a computing device , such as server com 
puting device 140 of FIG . 1 , can obtain a machine learning 
model , for example , a machine learning model that is to be 
compressed for distribution to other computing systems , 
such as in bandwidth - limited networks . 
[ 0091 ] At 504 , the computing device can select one or 
more weights to be quantized as part of reducing the size of 
the machine learned model . In particular , in some imple 
mentations , the computing device can select the one or more 
weights based on various determinations . For example , in 
some implementations , the computing device can select the 
one or more weights to quantize first based on a best 
matching coefficient ( e.g. , the weight that would result in the 
least amount of quantization error ) . 
[ 0092 ] At 506 , the computing device can quantize the 
selected weight ( s ) . In some implementations , sets of best 
matching weights can be done simultaneously for faster 
computation , for example , the best matching 10 % of weights 
or the like . 
[ 0093 ] At 508 , the computing device can propagate the 
quantization error from the quantized weight ( s ) to one or 
more non - quantized weights . For example , in some imple 
mentations , the quantization error can be compensated for 
by dithering to distribute the quantization error among other 
non - quantized weights . 
[ 0094 ] At 510 , the computing device can quantize the 
non - quantized weight ( s ) . 
[ 0095 ] At 512 , the computing system can provide the 
quantized machine learning model , for example , to be 
distributed to other computing devices . 

Additional Disclosure 

[ 0096 ] The technology discussed herein may make refer 
ence to servers , databases , software applications , and other 
computer - based systems , as well as actions taken and infor 
mation sent to and from such systems . The inherent flex 
ibility of computer - based systems allows for a great variety 
of possible configurations , combinations , and divisions of 
tasks and functionality between and among components . For 
instance , processes discussed herein can be implemented 
using a single device or component or multiple devices or 
components working in combination . Databases and appli 
cations can be implemented on a single system or distributed 
across multiple systems . Distributed components can oper 
ate sequentially or in parallel . 
[ 0097 ] While the present subject matter has been 
described in detail with respect to various specific example 
embodiments thereof , each example is provided by way of 
explanation , not limitation of the disclosure . Those skilled in 
the art , upon attaining an understanding of the foregoing , 
can readily produce alterations to , variations of , and equiva 
lents to such embodiments . Accordingly , the subject disclo 
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sure does not preclude inclusion of such modifications , 
variations and / or additions to the present subject matter as 
would be readily apparent to one of ordinary skill in the art . 
For instance , features illustrated or described as part of one 
embodiment can be used with another embodiment to yield 
a still further embodiment . Thus , it is intended that the 
present disclosure cover such alterations , variations , and 
equivalents . 

1. A computer - implemented method to compress 
machine learned models , the method comprising : 

obtaining , by one or more computing devices , a machine 
learned model ; 

selecting , by the one or more computing devices , a weight 
to be quantized ; 

quantizing , by the one or more computing devices , the 
weight ; 

propagating , by the one or more computing devices , at 
least a part of a quantization error to one or more 
non - quantized weights ; 

quantizing , by the one or more computing devices , one or 
more of the non - quantized weights ; and 

providing , by the one or more computing devices , a 
quantized machine learned model . 

2. The computer - implemented method of claim 1 wherein 
the step of propagating the quantization error comprises : 

determining , by the one or more computing devices , the 
quantization error ; 

determining , by the one or more computing devices , one 
or more non - quantized weights associated with the 
weight ; and 

allocating , by the one or more computing devices , a 
fractional part of the quantization error to each of the 
associated non - quantized weights . 

3. The computer - implemented method of claim 2 wherein 
the fractional part of the quantization error is allocated to 
each of the associated non - quantized weights based in part 
on a predetermined multiplier . 

4. The computer - implemented method of claim 2 or 3 
wherein : 

determining , by the one or more computing devices , the 
quantization error comprises determining , by the one or 
more computing devices , the quantization error asso 
ciated with a first node in a first layer of the machine 
learned model ; and 

determining , by the one or more computing devices , one 
or more non - quantized weights associated with the 
weight comprises identifying a second node in the first 
layer , wherein the first and second nodes each have a 
connection to a third node in a second layer . 

5. The computer - implemented method of claim 2 wherein 
allocating , by the one or more computing devices , a frac 
tional part of the quantization error to each of the associated 
non - quantized weights comprises dithering , by the one or 
more computing devices , the quantization error within a 
node of the model . 

6. The computer - implemented method of claim 5 further 
comprising dithering , by the one or more computing 
devices , the quantization error within a node of the model 
based in part on a correlation of activity between nodes of 
the model . 

7. The computer - implemented method of claim 6 wherein 
when there is an inverse correlation of activity between 
nodes of the model , the quantization error is dithered in an 
opposite direction . 

8. The computer - implemented method of claim 1 wherein 
the step of propagating the quantization error comprises : 

locking , by the one or more computing devices , the 
quantized weight ; and 

performing , by the one or more computing devices , 
additional training iterations of the machine learned 
model , wherein performing the additional training 
iterations comprises updating a non - quantized weight . 

9. The computer - implemented method of claim 8 further 
comprising locking , by the one or more computing devices , 
a number of quantized best matching coefficient weights . 

10. The computer - implemented method of claim 1 
wherein selecting the weight to be quantized comprises 
selecting a best matching coefficient . 

11. A computing device comprising : 
one or more processors ; and 
one or more non - transitory computer - readable media that 

store instructions that , when executed by the one or 
more processors , cause the computing devic to : 
obtain a machine learned model ; 
select a weight to be quantized ; 
quantize the weight ; 
propagate at least a part of a quantization error to one 

or more non - quantized weights ; 
quantize one or more of the non - quantized weights ; and 
provide a quantized machine learned model . 

12. The computing device of claim 11 wherein propagat 
ing the quantization error comprises : 

determining the quantization error ; 
determining one or more non - quantized weights associ 

ated with the weight ; and 
allocating a fractional part of the error to each of the 

associated non - quantized weights . 
13. The computing device of claim 12 wherein the frac 

tional part of the quantization error is allocated to each of the 
associated non - quantized weights based in part on a prede 
termined multiplier . 

14. The computing device of claim 12 wherein : 
determining the quantization error comprises determining 

the quantization error associated with a first node in a 
first layer of the machine learned model ; and 

determining one or more non - quantized weights associ 
ated with the weight comprises identifying a second 
node in the first layer , wherein the first and second 
nodes each have a connection to a third node in a 
second layer . 

15. The computing device of claim 12 wherein allocating 
a fractional part of the quantization error to each of the 
associated non - quantized weights comprises dithering the 
quantization error within a node of the model . 

16. The computing device of claim 15 further comprising 
dithering the quantization error within a node of the model 
based in part on a correlation of activity between nodes of 
the model . 

17. The computing device of claim 16 wherein when there 
is an inverse correlation of activity between nodes of the 
model , the quantization error is dithered in an opposite 
direction . 
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18. The computing device of claim 11 wherein propagat 
ing the quantization error comprises : 

locking the quantized weight ; and 
performing additional training iterations of the machine 

learned model , wherein performing the additional train ing iterations comprises updating a non - quantized 
weight . 

19. The computing device of claim 18 further comprising 
locking a number of the quantized best matching coefficient 
weights . 

20. ( canceled ) 
21. One or more non - transitory computer - readable media 

that store instructions that , when executed by one or more 
processors of a computing system , cause the computing 
system to perform operations , the operations comprising : 

obtaining a machine - learned model ; 
for one or more weights of the machine learned model : 

selecting a weight to be quantized ; 
quantizing the weight ; 
propagating at least a part of a quantization error to one 

or more non - quantized weights ; and 
providing a quantized machine learned model . 
22-30 . ( canceled ) 


