
US 20210027195A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0027195 A1

ALAKUIJALA et al . (43) Pub . Date : Jan. 28 , 2021

(54) SYSTEMS AND METHODS FOR
COMPRESSION AND DISTRIBUTION OF
MACHINE LEARNING MODELS

(52) U.S. CI .
CPC GO6N 20/00 (2019.01) ; GO6N 3/04

(2013.01)

(71) Applicant : GOOGLE LLC , Mountain View , CA
(US) (57) ABSTRACT

(72) Inventors : Jyrki ALAKUIJALA , Wollerau (CH) ;
Robert OBRYK , Zurich (CH)

(73) Assignee : Google LLC , Mountain View , CA (US)
(21) Appl . No .: 16 / 624,497

(22) PCT Filed : Jul . 6 , 2017

PCT / US2017 / 040798 (86) PCT No .:
$ 371 (c) (1) ,
(2) Date :

The present disclosure provides systems and methods for
compressing and / or distributing machine learning models .
In one example , a computer - implemented method is pro
vided to compress machine learned models , which includes
obtaining , by one or more computing devices , a machine
learned model . The method includes selecting , by the one or
more computing devices , a weight to be quantized and
quantizing , by the one or more computing devices , the
weight . The method includes propagating , by the one or
more computing devices , at least a part of a quantization
error to one or more non - quantized weights and quantizing ,
by the one or more computing devices , one or more of the
non - quantized weights . The method includes providing , by
the one or more computing devices , a quantized machine
learned model .

Dec. 19 , 2019

Publication Classification
(51) Int . Ci .

GO6N 20/00 (2006.01)
GOON 3/04 (2006.01)

200

202 Obtain Machine - Leamed
Model

Select First Weight (s) to
Quantize

Quantize Weight (s)

208 Determine Quantization
Error (s)

218 Remaining
Weights to be
Quantized ?

Provide Quantized ML Model

YES

Determine Associated Non
Quantized Weights

Distribute Quantization Error
Among Associated Non

Quantized Weights

Select Next Weight (s) to
Quantize

Server Computing System

142

Processor (s)

44

Memory

148

Patent Application Publication

Instructions

150

User Computing Device

Machine Learned Model (s)

152

104

Processor (s)

Model Compressor

154

108

Memory
Data

Input / Output Interface (s) Communication / Network Interface (s)

110

180

Instructions
112

Machine Learned Model (s)

160

Training Computing System

Jan. 28 , 2021 Sheet 1 of 5

162

Model Trainer (s)

Processor (s)

166

Input / Output Interface (s)

Memory
Data

168

Instructions

Communication / Network Interface (s)

170

Model Trainer (s)

172 174

Training Data Input / Output
Interface (s) Communication / Network Interface (s)

US 2021/0027195 A1

176

FIG . 1

Patent Application Publication Jan. 28 , 2021 Sheet 2 of 5 US 2021/0027195 A1

200

202 Obtain Machine - Learned
Model

204 Select First Weight (s) to
Quantize

206
Quantize Weight (s)

208 Determine Quantization
Error (s)

218 Remaining
Weights to be
Quantized ?

Provide Quantized ML Model

YES

212 Determine Associated Non
Quantized Weights

Distribute Quantization Error
Among Associated Non

Quantized Weights

Select Next Weight (s) to
Quantize

FIG . 2

Patent Application Publication Jan. 28 , 2021 Sheet 3 of 5 US 2021/0027195 A1

300

302 Obtain Machine Learned -
Model

304 Select First Weight (s) to
Quantize

306
Quantize Weight (s)

308
Determine Quantization Error

Provide Quantized 320 Remaining
Weights to be
Quantized ?

312 Determine Associated Non
Quantized Weights

314 Distribute Quantization Error
Among Associated Non

Quantized Weights

Perform Additional Training
Iteration (s) Keeping

Quantized Weights Locked

318 Select Next Weight (s) to
Quantize

FIG . 3

Patent Application Publication Jan. 28 , 2021 Sheet 4 of 5 US 2021/0027195 A1

WWWWW

402
Machine Learning Model

Coefficient importance
Estimation

Size Change & Loss Change
Estimation for a Quantization

Strategy

408
Selection of Strategies to Apply

Application of Strategies to ML

Output Quantized ML Model

FIG . 4

Patent Application Publication Jan. 28 , 2021 Sheet 5 of 5 US 2021/0027195 A1

500

502 Obtain Machine Learned
Model

Select Weight (s) to Quantize

506
Quantize Weight (s)

508 Propagate Quantization Error
to Non - Quantized Weight (s)

Quantize Non - Quantized
Weight (s)

Provide Quantized ML Model

FIG . 5

US 2021/0027195 A1 Jan. 28 , 2021
1

SYSTEMS AND METHODS FOR
COMPRESSION AND DISTRIBUTION OF

MACHINE LEARNING MODELS

FIELD

[0001] The present disclosure relates generally to machine
learning models . More particularly , the present disclosure
relates to leveraging compression in the distribution of
machine learning models .

BACKGROUND

[0002] Machine learning models can help in solving a
variety of tasks that have traditionally been difficult for a
computing system . However , the machine learning models
are often large and require a considerable amount of storage
capacity and transfer bandwidth to be delivered to a com
puting system . As such , to make machine learning models
more appealing for application in bandwidth - limited net
works , for example in mobile applications and the like , ways
are needed to reduce the cost of transfer and storage of
machine learning models .

instructions further causes the computing device to propa
gate at least a part of a quantization error to one or more
non - quantized weights . Execution of the instructions further
causes the computing device to quantize one or more of the
non - quantized weights . Execution of the instructions further
causes the computing device to provide a quantized
machine learned model .
[0007] Another example aspect of the present disclosure is
directed to one or more non - transitory computer - readable
media that store instructions that , when executed by one or
more processors of a computing system , cause the comput
ing system to perform operations . Execution of instructions
causes the computing system to obtain a machine learned
model . Execution of instructions causes the computing
system to , for one or more weights of the machine learned
model , select a weight to be quantized and quantize the
weight . Execution of instructions further causes the com puting system to propagate at least a part of a quantization
error to one or more non - quantized weights . Execution of
instructions further causes the computing system to provide
a quantized machine - learned model .
[0008] Other example aspects of the present disclosure are
directed to systems , apparatus , tangible , non - transitory com
puter - readable media , user interfaces , memory devices , and
electronic devices .
[0009] These and other features , aspects , and advantages
of various embodiments will become better understood with
reference to the following description and appended claims .
The accompanying drawings , which are incorporated in and
constitute a part of this specification , illustrate embodiments
of the present disclosure and , together with the description ,
serve to explain the related principles .

SUMMARY

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Aspects and advantages of embodiments of the
present disclosure will be set forth in part in the following
description , or may be learned from the description , or may
be learned through practice of the embodiments .
[0004] One example aspect of the present disclosure is
directed to a computer - implemented method to compress
machine learned models . The method can include obtaining ,
by one or more computing devices , a machine learned
model . The method can further include selecting , by the one
or more computing devices , a weight to be quantized . The
method can further include quantizing , by the one or more
computing devices , the weight . The method can further
include propagating , by the one or more computing devices ,
at least a part of a quantization error to one or more
non - quantized weights . The method can further include
quantizing , by the one or more computing devices , one or
more of the non - quantized weights . The method can further
include providing , by the one or more computing devices , a
quantized machine learned model .
[0005] In some embodiments , the method can additionally
include where propagating the quantization error includes
determining , by the one or more computing devices , the
quantization error . Propagating the quantization error can
further include determining , by the one or more computing
devices , one or more non - quantized weights associated with
the weight . Propagating the quantization error can further
include allocating , by the one or more computing devices , a
fractional part of the quantization error to each of the
associated non - quantized weights .
[0006] Another example aspect of the present disclosure is
directed to a computing device . The computing device
includes one or more processors ; and one or more non
transitory computer - readable media that store instructions
that , when executed by the one or more processors , cause the
computing device to perform operations . Execution of the
instructions causes the computing device to obtain a
machine learned model . Execution of the instructions fur
ther causes the computing device to select a weight to be
quantized . Execution of the instructions further causes the
computing device to quantize the weight . Execution of the

[0010] Detailed discussion of embodiments directed to
one of ordinary skill in the art are set forth in the specifi
cation , which makes reference to the appended figures , in
which :
[0011] FIG . 1 depicts a block diagram of computing
system according to example embodiments of the present
disclosure ;
[0012] FIG . 2 depicts a flowchart diagram of an example
method of model quantization with loss management
according to example embodiments of the present disclo
sure ;
[0013] FIG . 3 depicts a flowchart diagram of another
example method of model quantization with loss manage
ment according to example embodiments of the present
disclosure ;
[0014] FIG . 4 depicts a flowchart diagram of an example
method of model quantization according to example
embodiments of the present disclosure ; and
[0015] FIG . 5 depicts a flowchart diagram of another
example method of model quantization according to
example embodiments of the present disclosure .

DETAILED DESCRIPTION

[0016] Reference now will be made in detail to embodi
ments , one or more examples of which are illustrated in the
drawings . Each example is provided by way of explanation
of the embodiments , not limitation of the present disclosure .
In fact , it will be apparent to those skilled in the art that
various modifications and variations can be made to the

US 2021/0027195 A1 Jan. 28 , 2021
2

embodiments without departing from the scope or spirit of
the present disclosure . For instance , features illustrated or
described as part of one embodiment can be used with
another embodiment to yield a still further embodiment .
Thus , it is intended that aspects of the present disclosure
cover such modifications and variations .
[0017] Generally , the present disclosure is directed to
systems and methods to compress and / or distribute machine
learning models . In particular , the systems and methods of
the present disclosure can leverage compression methods to
reduce the size (e.g. , the data storage and transfer require
ments) of a machine learned model . By reducing the size of
the model , the systems and methods of the present disclosure
can reduce the network and / or computational expense asso
ciated with transfer , storage , and / or use of the model . In
particular , enabling reduced network expenses associated
with transfer or other forms of distribution of the machine
learned models can make the machine learned models more
appealing or useful in limited - bandwidth networks . Like
wise , enabling reduced storage expense and / or computa
tional expense associated with storage and / or use of the
machine learned models can make the machine learned
models more appealing or useful in resource - limited devices
or environments such as , for example , mobile applications ,
devices , and / or environments .
[0018] Thus , the present disclosure provides compression
techniques that can be used to reduce the size of machine
learned models . In particular , the systems and methods of
the present disclosure can perform various types of quanti
zation of weights of a model with loss management . As one
example , the systems and methods of the present disclosure
can provide model compression such that the distortion
introduced by compression has a bounded increase in loss .
As another example , in some implementations , when model
weights are quantized , the quantization errors can be com
pensated by later quantization errors . For example , quanti
zation error can be distributed among one model layer to the
previous or next layer , among nodes within a layer , within
connections of a single node , based on node correlation ,
and / or according to other schemes . As another example , an
iterative training process can be performed in which a
certain number of the best matching (e.g. , lowest quantiza
tion error producing) nodes are quantized and then frozen
while the model is subjected to additional training . By
implementing quantization with loss management , as
described herein , machine learned models can be com
pressed more densely while reducing the fitness degradation
of the machine - learned model .
[0019] In addition to compression techniques , the present
disclosure provides additional techniques for improved dis
tribution , storage , and / or use of machine learned models .
For example , in some implementations , the systems and
methods of the present disclosure can perform or enable one
or more of : patching for model updates , distributed learning ,
training for quantization , training for patching , and / or trans
fer learning . As an example , in some implementations ,
machine learned model distribution can include patching
where a smaller part (e.g. , only a portion) of the machine
learned model is delivered to update a deployed version of
the machine learned model , such as on a mobile device ,
rather than updating the entire machine learned model . In
another example , in some implementations , distributed
learning can be performed in which machine learned model
weights are changed at a client device and are then gathered

through patches from the client device . The use of patches
for uploading of updated weights from the client device
reduces the bandwidth used by the client device .
[0020] In yet another example , in some implementations ,
the systems and methods of the present disclosure can
perform or enable training for quantization , in which certain
weights of a model are selected and frozen during training
to improve error , and training for patching , in which whole
layers of a model are selected and frozen during training to
improve compression . In another example , in some imple
mentations , machine learned model distribution can include
transfer learning in which patching can be used to repurpose
a model already existing on a client device , thereby elimi
nating the need to transmit an entirely new model .
[0021] More particularly , according to one aspect of the
present disclosure , machine learned model distribution can
include compressing machine learned models by imple
menting quantization with loss management . Using quanti
zation with loss management , a machine learned model can
be compressed for distribution by quantizing model weights
where quantization errors can be compensated by other
quantization errors . In some implementations , for example ,
quantization error can be compensated for by dithering to
distribute the quantization error among other associated
weights . When a neural weight is quantized , some error is
introduced which can then be distributed among weights that
have yet to be quantized to compensate for the error . For
example , when a weight is quantized , a determination can be
made of which other weights (that have yet to be quantized)
are associated with the quantized weight . The quantized
weight's quantization error can then be fractionally distrib
uted to those associated weights , for example , by using a
predetermined multiplier . The next associated weight then
takes its original value plus the transferred quantization
error , and that new weight value is then quantized . The
quantization error from the quantization of this next asso
ciated weight can then be distributed among the remaining
associated weights that have not yet been quantized .
[0022] In some implementations , as the quantization of the
weights continues , the quantization error can accumulate
until reaching or exceeding a threshold which can then cause
an opposite error to be made and thereby reduce the error in
the remaining weight values . In some implementations ,
quantization decisions are not made one at a time , but
instead consider the impact on other quantization decisions .
[0023] Accordingly , quantization with loss management
can include various strategies to reduce the fitness degrada
tion of the model . In some implementations , for example ,
quantization of weights can be performed based on a best
matching coefficient . For example , the quantization begins
by determining the best matching coefficient (e.g. , the
weight that would result in the least amount of quantization
error) , and quantizing this weight . The quantization error
from this weight can then be transferred to the other weights .
By quantizing the best matching weight first , the transfer of
the quantization error causes the worse matching weights to
move and , no matter the direction of the move , these weights
then have a higher probability of becoming better matching
weights than if they were quantized in another order .
[0024] In some implementations , one or more of the best
matching coefficients are quantized and then additional
training iterations are completed while keeping the quan
tized coefficients locked . This can allow the first quantiza
tion errors to propagate to coefficients that are more difficult

US 2021/0027195 A1 Jan. 28 , 2021
3

to quantize , allowing less overall error to be done in the
quantization process . In some implementations , sets of best
matching weights can be done simultaneously for faster
computation , for example , the best matching 10 % of weights
or the like .
[0025] In some implementations , for example , quantiza
tion error can be dithered from the previous layer . For
example , a distance measure can be used between nodes
within a layer , and signals coming from the nodes of a
previous cell can be quantized with consideration (e.g. ,
partial accumulation) of the quantization error from similar
nodes . As one example , node K1 and node K2 of layer K
may have a similar connection to a previous layer J. As such ,
if the Jl - to - K1 connection is quantized down , the Jl - to - K2
connection can be enforced to be more likely to be quantized
up .
[0026] In some implementations , the quantization error
can be dithered within the node . For example , if a Jl - to - K1
connection is quantized down , a J2 - to - K1 connection can be
enforced to be more likely to be quantized up .
[0027] In some implementations , the quantization error
can be dithered within the node considering the correlation
of activity , where the correlation of activity between two
weights is descriptive of an activation relationship between
the two weights . One goal for such correlation - based dis
tribution scheme is that when the quantization error is
dithered to a highly correlated node , the loss is decreased .
By way of example , if a Jl - to - K1 connection is quantized
down , a J2 - to - Kl connection should be more likely to be
quantized as a function of the correlation between J1 and J2 .
In some implementations , if there is an inverse correlation ,
the dithering may be done in the opposite direction , poten
tially leading to a smaller error .
[0028] According to another aspect of the present disclo
sure , in some implementations , machine - learned model dis
tribution can include patching where a smaller part of the
machine learned model is updated and delivered for chang
ing a deployed version of the machine learned model . For
example , patching can provide for a part of a machine
learned model to be delivered (for example , to a mobile
device or the like) without updating other parts of the
machine learned model . For example , patching can be used
to deliver changes which are critical that they be delivered
quickly to a large group of recipients . In some implemen
tations , patching provides for updating smaller parts of a
machine learned model that is deployed , for example , in
mobile devices , and how those smaller parts of the model go
through the learning process of neural network computation .
Patching can allow for updates that only concern a small
subset of the neural graph so that they can be updated in such
a way compress the size of the update . For example , to
develop a smaller patch , the part of the neural network
structure where training is allowed could be limited such
that training only happens with a small subset of the weights .
By way of example , in some implementations , training
could be done with new weights being found . It can then be
determined where the weights have changed the most , and
another round of training could be done where only a subset
of the weights , for example , the top five percentile of
changed weights , are allowed to change . This would then
result in a smaller number of weights changing , thereby
creating a smaller patch . In another example , to develop a
smaller patch , the neural network can be retrained and then
a set of nodes whose values changed the most , for example

the top five percentile of the changed weights (e.g. , nodes
with top five percent of | retrained value - original value ,
can be identified and included in the patch .
[0029] In some implementations , patching can include
patches for a rule - based system verifying the results of a
deep learning model . For example , when some situation
calls for an immediate change to a model but a high
bandwidth update cannot be delivered to many users ,
patches could be used to check final results of text - based
models or zero out parts of a machine learned model . In
some implementations , patching can include using previous
weights to give a statistical prior for new weights , allowing
for tighter compression of the new weights .
[0030) According to another aspect of the present disclo
sure , in some implementations , machine - learned model dis
tribution can include distributed learning in which machine
learned model weights may be changed at a client device and
are then gathered through patches from the client device to
reduce the device bandwidth use . For example , in some
implementations , machine learned model weights may be
changed at a client device to further optimize the model loss
function with real data . In some implementations , the
changed weights could then be gathered in “ reverse ” patches
to minimize the client device bandwidth use . In some
implementations , distributed learning using client data can
be applied in such a way that a smaller set of node weights
is chosen , for example , partly randomly (e.g. , to improve
privacy and coverage) and partly by what a central controller
has seen as nodes worth updating (e.g. , to improve effi
ciency) .
[0031] According to another aspect of the present disclo
sure , in some implementations , machine - learned model dis
tribution can include training for quantization and training
for patching . For example , training for quantization can
include determining weights to freeze during training to
improve error . In some implementations , for example , an
annealing process can be applied to weights by freezing a set
of weights that introduce the smallest error . Training for
patching can include , for example , choosing which layers to
freeze during training . For example , in some models , the
lower layers may typically remain unchanged whereas
higher layers exhibit more change . In some implementa
tions , this can be made explicit during a training phase , such
as by adding rules into learning to freeze layers (e.g. , either
stochastically or by another measure of fitness impact) , to
produce smaller patch sizes .
[0032] According to another aspect of the present disclo
sure , in some implementations , machine learned model dis
tribution can include transfer learning whereby patching can
benefit from an already learned model on a client device . For
example , it can sometimes be beneficial to start training of
a model from an already learned model . In some implemen
tations , a patch approach can be applied for developing such
models , thereby benefiting from an already deployed learned
model such that an entire model does not need to be
transferred , for example , providing for transfer of only small
deltas .
[0033] The systems and methods described herein provide
a number of technical effects and benefits . For instance , the
use of learned - model distribution strategies such as quanti
zation with loss management leads to reductions in band
width use which is a significant cost to mobile computing .
Thus the systems and methods described herein allow for
increased use of machine learned - models in bandwidth

US 2021/0027195 A1 Jan. 28 , 2021
4

or more

limited networks , such as mobile computing , where the
machine learned - models can provide benefits to a variety of
user applications . Additionally , the systems and methods
described herein may also provide a technical effect and
benefit of reducing update size and improving performance
due to reducing cache and memory bandwidth requirements .
[0034] The systems and methods described herein also
provide resulting improvements to computing technology
tasked with the distribution and use of machine learned
models . For example , through the use of advanced com
pression techniques for machine learned model distribution
as described herein , computing systems may optimize band
width use and reduce transfer costs and more efficiently
provide machine learned models for use in various applica
tions , such as mobile applications . Further , the systems and
methods described herein may provide reductions in storage
requirements and system resources , thus making machine
learned models more appealing in limited - bandwidth net
works .
[0035] With reference now to the Figures , example
embodiments of the present disclosure will be discussed in
further detail .

Example Devices and Systems

[0036] FIG . 1 depicts a block diagram of an example
computing system 100 that can perform compression and
distribution of machine learning models according to
example embodiments of the present disclosure . The system
100 includes a user computing device 102 , a server com
puting device 140 , and a training computing system 160 that
are communicatively coupled over a network 180 .
[0037] The user computing device 102 can be any type of
computing device , such as , for example , a personal com
puting device (e.g. , laptop or desktop) , a mobile computing
device (e.g. , smartphone or tablet) , a gaming console or
controller , a wearable computing device , an embedded com
puting device , a personal assistant computing device , or any
other type of computing device .
[0038] The user computing device 102 includes one or
more processors 104 and a memory 106. The one or more
processors 104 can be any suitable processing device (e.g. ,
a processor core , a microprocessor , an ASIC , a FPGA , a
controller , a microcontroller , etc.) and can be one processor
or a plurality of processors that are operatively connected .
The memory 106 can include one or more non - transitory
computer - readable storage mediums , such as RAM , ROM ,
EEPROM , EPROM , flash memory devices , magnetic disks ,
etc. , and combinations thereof . The memory 106 can store
data 108 and instructions 110 which are executed by the
processor 104 to cause the user computing device 102 to
perform operations .
[0039] Furthermore , according to an aspect of the present
disclosure , the user computing device 102 can store or
include one or more machine learned models 112. The
machine learned models 112 can be or can otherwise include
one or more neural networks (e.g. , deep neural networks) ;
Markov models (e.g. , hidden Markov models) ; classifiers ;
regression models ; support vector machines ; Bayesian net
works ; multi - layer non - linear models ; or other types of
machine learned models . Neural networks (e.g. , deep neural
networks) can be feed - forward neural networks , convolu
tional neural networks , autoencoders , recurrent neural net

works (e.g. , long short - term memory neural network , gated
recurrent units , etc.) and / or various other types of neural
networks .
[0040] In some implementations , the one
machine learned models 112 can be received from the server
computing device 140 over network 180 , stored in the user
computing device memory 108 , and then used or otherwise
implemented by the one or more processors 104. In some
implementations , the user computing device 102 can imple
ment multiple parallel instances of a single machine learned
model 112 .
[0041] More particularly , machine learned model (s) 112
can be implemented to provide assistance in various situa
tions and / or applications . As an example , the machine
learned model (s) 112 can be employed within the context of
a mobile application of the user computing device 102 ,
providing benefits and advantages during the execution of
such mobile applications . Thus , one or more models 112 can
be stored and implemented at the user computing device
102 .
[0042] The user computing device 102 can also include
model trainer (s) 114. The model trainer 114 can train or
re - train machine learned models 112 stored at user comput
ing device 102 using various training or learning techniques ,
such as , for example , backwards propagation of errors (e.g. ,
truncated backpropagation through time) . In particular , the
model trainer 114 can train or re - train one or more of the
machine learned models 112 using locally stored data as
training data . The model trainer 114 can perform a number
of generalization techniques to improve the generalization
capability of the models being trained . In some implemen
tations , some information about the trained model's param
eters can be delivered by the user computing device 102
back to the server computing device 140 .
[0043] The user computing device 102 can also include
one or more input / output interface (s) 116. One or more
input / output interface (s) 116 can include , for example ,
devices for receiving information from or providing infor
mation to a user , such as a display device , touch screen ,
touch pad , mouse , data entry keys , an audio output device
such as one or more speakers , a microphone , haptic feed
back device , etc. An input / output interface (s) 116 can be
used , for example , by a user to control operation of the user
computing device 102 .
[0044] The user computing device 102 can also include
one or more communication / network interface (s) 118 used
to communicate with one or more systems or devices ,
including systems or devices that are remotely located from
the user computing device 102. The communication / net
work interface (s) 118 can include any circuits , components ,
software , etc. for communicating with one or more networks
(e.g. , network 180) . In some implementations , the commu
nication / network interface (s) 118 can include , for example ,
one or more of a communications controller , receiver , trans
ceiver , transmitter , port , conductors , software , and / or hard
ware for communicating data .
[0045] The server computing device 140 includes one or
more processors 142 and a memory 144. The one or more
processors 142 can be any suitable processing device (e.g. ,
a processor core , a microprocessor , an ASIC , a FPGA , a
controller , a microcontroller , etc.) and can be one processor
or a plurality of processors that are operatively connected .
The memory 144 can include one or more non - transitory
computer - readable storage mediums , such as RAM , ROM ,

US 2021/0027195 A1 Jan. 28 , 2021
5

EEPROM , EPROM , flash memory devices , magnetic disks ,
etc. , and combinations thereof . The memory 144 can store
data 146 and instructions 148 which are executed by the
processor 142 to cause the server computing device 140 to
perform operations .
[0046] In some implementations , the server computing
device 140 includes or is otherwise implemented by one or
more server computing devices . In instances in which the
server computing device 140 includes plural server comput
ing devices , such server computing devices can operate
according to sequential computing architectures , parallel
computing architectures , or some combination thereof .
[0047] As described above , the server computing device
140 can store or otherwise include one or more machine
learned models 150. The machine learned models 150 can
be or can otherwise include one or more neural networks
(e.g. , deep neural networks) ; Markov models (e.g. , hidden
Markov models) ; classifiers ; regression models ; support
vector machines ; Bayesian networks ; multi - layer non - linear
models ; or other types of machine learned models . Neural
networks (e.g. , deep neural networks) can be feed - forward
neural networks , convolutional neural networks , autoencod
ers , recurrent neural networks (e.g. , long short - term memory
neural network , gated recurrent units , etc.) and / or various
other types of neural networks .
[0048] The server computing device 140 can also include
a model compressor 152 that can perform compression of
one or more machine learning models 150 to reduce the size
(e.g. , the data storage and transfer requirements) of the
machine learned model (s) . In particular , in some implemen
tations , the model compressor 152 can perform quantization
of one or more weights of the machine learning models 150
where the quantization error introduced by the quantization
can be compensated by later quantization errors .
[0049] Additionally , in some implementations , model
compressor 152 can also provide for additional techniques
for improved distribution , storage , and / or use of machine
learned models . For example , in some implementations , the
model compressor 152 can perform or enable one or more
of : patching for model updates , distributed learning , training
for quantization , training for patching , and / or transfer learn
ing .
[0050] The server computing device 140 can also include
one or more input / output interface (s) 154. The one or more
input / output interface (s) 154 can include , for example ,
devices for receiving information from or providing infor
mation to a user , such as a display device , touch screen ,
touch pad , mouse , data entry keys , an audio output device
such as one or more speakers , a microphone , haptic feed
back device , etc. An input / output interface (s) 154 can be
used , for example , by a user to control operation of the
server computing device 140 .
[0051] The server computing device 140 can also include
one or more communication / network interface (s) 156 used
to communicate with one or more systems or devices ,
including systems or devices that are remotely located from
the server computing device 140. The communication / net
work interface (s) 156 can include any circuits , components ,
software , etc. for communicating with one or more networks
(e.g. , network 180) . In some implementations , the commu
nication / network interface (s) 156 can include , for example ,
one or more of a communications controller , receiver , trans
ceiver , transmitter , port , conductors , software , and / or hard
ware for communicating data .

[0052] The server computing device 140 can train the
machine learned models 150 via interaction with the train
ing computing system 160 that is communicatively coupled
over the network 180. The training computing system 160
can be separate from the server computing device 140 or can
be a portion of the server computing device 140 .
[0053] The training computing system 160 includes one or
more processors 162 and a memory 164. The one or more
processors 162 can be any suitable processing device (e.g. ,
a processor core , a microprocessor , an ASIC , a FPGA , a
controller , a microcontroller , etc.) and can be one processor
or a plurality of processors that are operatively connected .
The memory 164 can include one or more non - transitory
computer - readable storage mediums , such as RAM , ROM ,
EEPROM , EPROM , flash memory devices , magnetic disks ,
etc. , and combinations thereof . The memory 164 can store
data 166 and instructions 168 which are executed by the
processor 162 to cause the training computing system 160 to
perform operations . In some implementations , the training
computing system 160 includes or is otherwise implemented
by one or more server computing devices .
[0054] The training computing system 160 can include
one or more model trainer (s) 170 that trains the machine
learned models 150 stored at the server computing device
140 using various training or learning techniques , such as ,
for example , backwards propagation of errors (e.g. , trun
cated backpropagation through time) . The model trainer 170
can perform a number of generalization techniques (e.g. ,
weight decays , dropouts , etc.) to improve the generalization
capability of the models being trained . In particular , the
model trainer 170 can train a machine learned model 150
based on a set of training data 172. The training data 172 can
include centrally collected data or remotely obtained data .
[0055] The training computing system 160 can also
include one or more input / output interface (s) 174. The one
or more input / output interface (s) 174 can include , for
example , devices for receiving information from or provid
ing information to a user , such as a display device , touch
screen , touch pad , mouse , data entry keys , an audio output
device such as one or more speakers , a microphone , haptic
feedback device , etc. An input / output interface (s) 174 can be
used , for example , by a user to control operation of the
training computing system 160 .
[0056] The training computing system 160 can also
include one or more communication / network interface (s)
176 used to communicate with one or more systems or
devices , including systems or devices that are remotely
located from the training computing system 160. The com
munication / network interface (s) 176 can include any cir
cuits , components , software , etc. for communicating with
one or more networks (e.g. , network 180) . In some imple
mentations , the communication / network interface (s) 176
can include , for example , one or more of a communications
controller , receiver , transceiver , transmitter , port , conduc
tors , software , and / or hardware for communicating data .
[0057] Each of model trainer 112 and model trainer 170
can include computer logic utilized to provide desired
functionality . Each of model trainer 112 and model trainer
170 can be implemented in hardware , firmware , and / or
software controlling a general purpose processor . For
example , in some implementations , each of model trainer
112 and model trainer 170 includes program files stored on
a storage device , loaded into a memory and executed by one
or more processors . In other implementations , each of model

US 2021/0027195 A1 Jan. 28 , 2021
6

trainer 112 and model trainer 170 includes one or more sets
of computer - executable instructions that are stored in a
tangible computer - readable storage medium such as RAM
hard disk or optical or magnetic media .
[0058] The network 180 can be any type of communica
tions network , such as a local area network (e.g. , intranet) ,
wide area network (e.g. , Internet) , or some combination
thereof and can include any number of wired or wireless
links . In general , communication over the network 180 can
be carried via any type of wired and / or wireless connection ,
using a wide variety of communication protocols (e.g. ,
TCP / IP , HTTP , SMTP , FTP) , encodings or formats (e.g. ,
HTML , XML) , and / or protection schemes (e.g. , VPN ,
secure HTTP , SSL) .
[0059] FIG . 1 illustrates one example computing system
that can be used to implement the present disclosure . Other
computing systems can be used as well .

Example Methods
[0060] FIGS . 2-4 illustrate example methods of the pres
ent disclosure . Although FIGS . 2-4 respectively depict steps
in a particular order for purposes of illustration and discus
sion , the methods of the present disclosure are not limited to
the particularly illustrated order or arrangement . The various
steps of the methods of FIGS . 2-4 can be omitted , rear
ranged , combined , and / or adapted in various ways without
deviating from the scope of the present disclosure .
[0061] FIG . 2 depicts a flowchart diagram of an example
method 200 of compressing machine learning models via
model quantization with loss management according to
example embodiments of the present disclosure .
[0062] At 202 , a computing device , such as server com
puting device 140 of FIG . 1 , can obtain a machine learning
model , for example , a machine learning model that is to be
compressed for distribution to other computing systems ,
such as in bandwidth - limited networks .
[0063] At 204 , the computing device can select one or
more weights to be quantized as part of reducing the size of
the machine learned model . In particular , in some imple
mentations , the computing device can select the one or more
weights based on various determinations . For example , in
some implementations , the computing device can select the
one or more weights to quantize first based on a best
matching coefficient (e.g. , the weight that would result in the
least amount of quantization error) .
[0064] At 206 , the computing device can quantize the
selected weight (s) . In some implementations , sets of best
matching weights can be done simultaneously for faster computation , for example , the best matching 10 % of weights
or the like .
[0065] At 208 , a quantization error for the weight being
quantized can be obtained . In particular , when a neural
weight is quantized some amount of quantization error is
introduced . This quantization error can be compensated for ,
at least partially , in the following manner .
[0066] At 210 , the computing device can determine if
there are the remaining weights of the machine learning
model that have yet to be quantized . If there are remaining
non - quantized weights , the method 200 can continue to 212 .
If there are no remaining weights to be quantized , the
method 200 can continue the 218 and provide the quantized
machine learning model for distribution .
[0067] At 212 , the computing device can determine one or
more of the non - quantized weights that are associated with

the quantized weight (e.g. , the weight being quantized and
introducing quantization error) . For example , the associated
non - quantized weights can be determined from nodes within
a same layer , nodes from a previous layer or following layer ,
within connections of a single node , based on node corre
lation , and / or according to other schemes .
[0068] At 214 , the quantization error can be propagated or
distributed among one or more of the associated non
quantized weights . In particular , in some implementations ,
for example , the quantization error can be compensated for
by dithering to distribute the quantization error among the
other associated weights . In one example , the quantization
error can be fractionally distributed to the associated weight
(s) , for example , by using a predetermined multiplier . The
next associated weight (s) then takes its original value plus
the transferred quantization error , and that new weight value
can then be quantized . In some implementations , as the
quantization of the weights continues , the quantization error
can accumulate until reaching or exceeding a threshold
which can then cause an opposite error to be made and
thereby reduce the error in the remaining weight values .
According to various implementations , quantization error
can be distributed from one model layer to the next layer ,
among nodes within a layer , within connections of a single
node , based on node correlation , and / or according to other
schemes , for example .
[0069] At 216 , the computing device can then select one
or more next weights to quantize from among the non
quantized weights , and then return to 206 to iteratively
continue the quantization with loss management .
[0070] At 218 , after completing the quantization iterations
of the model weights (e.g. , when there are no weights
remaining to be quantized at 210) , the computing system can
provide the quantized machine learning model , for example ,
to be distributed to other computing devices .
[0071] FIG . 3 depicts a flowchart diagram of an example
method 300 of compressing machine learning models via
model quantization with loss management according to
example embodiments of the present disclosure .
[0072] At 302 , a computing device , such as server com
puting device 140 of FIG . 1 , can obtain a machine learning
model , for example , a machine learning model that is to be
compressed for distribution to other computing systems ,
such as in bandwidth - limited networks .
[0073] At 304 , the computing device can select one or
more weights to be quantized as part of reducing the size of
the machine learned model . In particular , in some imple
mentations , the computing device can select the one or more
weights based on various determinations . For example , in
some implementations , the computing device can select the
one or more weights to quantize first based on a best
matching coefficient (e.g. , the weight that would result in the
least amount of quantization error) .
[0074] At 306 , the computing device can quantize the
selected weight (s) . In some implementations , sets of best
matching weights can be done simultaneously for faster
computation , for example , the best matching 10 % of weights
or the like .
[0075] At 308 , a quantization error for the weight being
quantized can be obtained . In particular , when a neural
weight is quantized some amount of quantization error is
introduced . This quantization error can be compensated for ,
at least partially , in the following manner .

US 2021/0027195 A1 Jan. 28 , 2021
7

[0076] At 310 , the computing device can determine if
there are the remaining weights of the machine learning
model that have yet to be quantized . If there are remaining
non - quantized weights , the method 300 can continue to 312 .
If there are no remaining weights to be quantized , the
method 300 can continue the 320 and provide the quantized
machine learning model for distribution .
[0077] At 312 , the computing device can determine one or
more of the non - quantized weights that are associated with
the quantized weight (e.g. , the weight being quantized and
introducing quantization error) . For example , the associated
non - quantized weights can be determined from nodes within
a same layer , nodes from a previous layer or a following
layer , within connections of a single node , based on node
correlation , and / or according to other schemes .
[0078] At 314 , the quantization error can be propagated or
distributed among one or more of the associated non
quantized weights . In particular , in some implementations ,
example , the quantization error can be compensated for by
dithering to distribute the quantization error among the other
associated weights . In one example , the quantization error
can be fractionally distributed to the associated weight (s) ,
for example , by using a predetermined multiplier . The next
associated weight (s) then takes its original value plus the
transferred quantization error , and that new weight value can
then be quantized .
[0079] At 316 , the computing device can perform one or
more additional training iterations for the machine learning
model while keeping the quantized weights locked . For
example , this locking of weights can allow the first quanti
zation errors to propagate to coefficients that are more
difficult to quantize , allowing less overall error to be intro
duced in the quantization process .
[0080] At 318 , the computing device can then select one
or more next weights to quantize from among the non
quantized weights , and then return to 306 to iteratively
continue the quantization with loss management .
[0081] At 320 , after completing the quantization iterations
of the model weights (e.g. , when there are no weights
remaining to be quantized at 310) , the computing system can
provide the quantized machine learning model , for example ,
to be distributed to other computing devices .
[0082] FIG . 4 depicts a flowchart diagram of an example
method 400 of quantizing machine - learning models accord
ing to example embodiments of the present disclosure .
[0083] At 402 , a computing device , such as server com
puting device 140 of FIG . 1 , can obtain a machine learning
model , for example , a machine learning model that is to be
compressed for distribution to other computing systems ,
such as in bandwidth - limited networks .
[0084] At 404 , the computing device can estimate the
importance of one or more coefficients of the machine
learning model . For example , the importance of a coefficient
can be based at least in part on its magnitude .
[0085] At 406 , the computing device can estimate the
change in size and change in loss for each of the coefficients
introduced by one or more quantization strategies . In par
ticular , in some implementations , the quantization strategies
can rely on coefficient importance estimation data .
[0086] At 408 , the computing device can select one or
more quantization strategies to be applied to the machine
learning model , based at least in part on the size change and
loss change estimations .

[0087] At 410 , the computing device can apply the one or
more selected quantization strategies to the machine learn
ing model .
[0088] At 412 , the computing device can then output the
quantized machine learning model , for example , to be
distributed to one or more computing systems (e.g. , band
width - limited systems such as mobile applications , devices ,
and / or networks) .
[0089] FIG . 5 depicts a flowchart diagram of an example
method 500 of compressing machine - learning models via
model quantization with loss management according to
example embodiments of the present disclosure .
[0090] At 502 , a computing device , such as server com
puting device 140 of FIG . 1 , can obtain a machine learning
model , for example , a machine learning model that is to be
compressed for distribution to other computing systems ,
such as in bandwidth - limited networks .
[0091] At 504 , the computing device can select one or
more weights to be quantized as part of reducing the size of
the machine learned model . In particular , in some imple
mentations , the computing device can select the one or more
weights based on various determinations . For example , in
some implementations , the computing device can select the
one or more weights to quantize first based on a best
matching coefficient (e.g. , the weight that would result in the
least amount of quantization error) .
[0092] At 506 , the computing device can quantize the
selected weight (s) . In some implementations , sets of best
matching weights can be done simultaneously for faster
computation , for example , the best matching 10 % of weights
or the like .
[0093] At 508 , the computing device can propagate the
quantization error from the quantized weight (s) to one or
more non - quantized weights . For example , in some imple
mentations , the quantization error can be compensated for
by dithering to distribute the quantization error among other
non - quantized weights .
[0094] At 510 , the computing device can quantize the
non - quantized weight (s) .
[0095] At 512 , the computing system can provide the
quantized machine learning model , for example , to be
distributed to other computing devices .

Additional Disclosure

[0096] The technology discussed herein may make refer
ence to servers , databases , software applications , and other
computer - based systems , as well as actions taken and infor
mation sent to and from such systems . The inherent flex
ibility of computer - based systems allows for a great variety
of possible configurations , combinations , and divisions of
tasks and functionality between and among components . For
instance , processes discussed herein can be implemented
using a single device or component or multiple devices or
components working in combination . Databases and appli
cations can be implemented on a single system or distributed
across multiple systems . Distributed components can oper
ate sequentially or in parallel .
[0097] While the present subject matter has been
described in detail with respect to various specific example
embodiments thereof , each example is provided by way of
explanation , not limitation of the disclosure . Those skilled in
the art , upon attaining an understanding of the foregoing ,
can readily produce alterations to , variations of , and equiva
lents to such embodiments . Accordingly , the subject disclo

US 2021/0027195 A1 Jan. 28 , 2021
8

sure does not preclude inclusion of such modifications ,
variations and / or additions to the present subject matter as
would be readily apparent to one of ordinary skill in the art .
For instance , features illustrated or described as part of one
embodiment can be used with another embodiment to yield
a still further embodiment . Thus , it is intended that the
present disclosure cover such alterations , variations , and
equivalents .

1. A computer - implemented method to compress
machine learned models , the method comprising :

obtaining , by one or more computing devices , a machine
learned model ;

selecting , by the one or more computing devices , a weight
to be quantized ;

quantizing , by the one or more computing devices , the
weight ;

propagating , by the one or more computing devices , at
least a part of a quantization error to one or more
non - quantized weights ;

quantizing , by the one or more computing devices , one or
more of the non - quantized weights ; and

providing , by the one or more computing devices , a
quantized machine learned model .

2. The computer - implemented method of claim 1 wherein
the step of propagating the quantization error comprises :

determining , by the one or more computing devices , the
quantization error ;

determining , by the one or more computing devices , one
or more non - quantized weights associated with the
weight ; and

allocating , by the one or more computing devices , a
fractional part of the quantization error to each of the
associated non - quantized weights .

3. The computer - implemented method of claim 2 wherein
the fractional part of the quantization error is allocated to
each of the associated non - quantized weights based in part
on a predetermined multiplier .

4. The computer - implemented method of claim 2 or 3
wherein :

determining , by the one or more computing devices , the
quantization error comprises determining , by the one or
more computing devices , the quantization error asso
ciated with a first node in a first layer of the machine
learned model ; and

determining , by the one or more computing devices , one
or more non - quantized weights associated with the
weight comprises identifying a second node in the first
layer , wherein the first and second nodes each have a
connection to a third node in a second layer .

5. The computer - implemented method of claim 2 wherein
allocating , by the one or more computing devices , a frac
tional part of the quantization error to each of the associated
non - quantized weights comprises dithering , by the one or
more computing devices , the quantization error within a
node of the model .

6. The computer - implemented method of claim 5 further
comprising dithering , by the one or more computing
devices , the quantization error within a node of the model
based in part on a correlation of activity between nodes of
the model .

7. The computer - implemented method of claim 6 wherein
when there is an inverse correlation of activity between
nodes of the model , the quantization error is dithered in an
opposite direction .

8. The computer - implemented method of claim 1 wherein
the step of propagating the quantization error comprises :

locking , by the one or more computing devices , the
quantized weight ; and

performing , by the one or more computing devices ,
additional training iterations of the machine learned
model , wherein performing the additional training
iterations comprises updating a non - quantized weight .

9. The computer - implemented method of claim 8 further
comprising locking , by the one or more computing devices ,
a number of quantized best matching coefficient weights .

10. The computer - implemented method of claim 1
wherein selecting the weight to be quantized comprises
selecting a best matching coefficient .

11. A computing device comprising :
one or more processors ; and
one or more non - transitory computer - readable media that

store instructions that , when executed by the one or
more processors , cause the computing devic to :
obtain a machine learned model ;
select a weight to be quantized ;
quantize the weight ;
propagate at least a part of a quantization error to one

or more non - quantized weights ;
quantize one or more of the non - quantized weights ; and
provide a quantized machine learned model .

12. The computing device of claim 11 wherein propagat
ing the quantization error comprises :

determining the quantization error ;
determining one or more non - quantized weights associ

ated with the weight ; and
allocating a fractional part of the error to each of the

associated non - quantized weights .
13. The computing device of claim 12 wherein the frac

tional part of the quantization error is allocated to each of the
associated non - quantized weights based in part on a prede
termined multiplier .

14. The computing device of claim 12 wherein :
determining the quantization error comprises determining

the quantization error associated with a first node in a
first layer of the machine learned model ; and

determining one or more non - quantized weights associ
ated with the weight comprises identifying a second
node in the first layer , wherein the first and second
nodes each have a connection to a third node in a
second layer .

15. The computing device of claim 12 wherein allocating
a fractional part of the quantization error to each of the
associated non - quantized weights comprises dithering the
quantization error within a node of the model .

16. The computing device of claim 15 further comprising
dithering the quantization error within a node of the model
based in part on a correlation of activity between nodes of
the model .

17. The computing device of claim 16 wherein when there
is an inverse correlation of activity between nodes of the
model , the quantization error is dithered in an opposite
direction .

US 2021/0027195 A1 Jan. 28 , 2021
9

18. The computing device of claim 11 wherein propagat
ing the quantization error comprises :

locking the quantized weight ; and
performing additional training iterations of the machine

learned model , wherein performing the additional train ing iterations comprises updating a non - quantized
weight .

19. The computing device of claim 18 further comprising
locking a number of the quantized best matching coefficient
weights .

20. (canceled)
21. One or more non - transitory computer - readable media

that store instructions that , when executed by one or more
processors of a computing system , cause the computing
system to perform operations , the operations comprising :

obtaining a machine - learned model ;
for one or more weights of the machine learned model :

selecting a weight to be quantized ;
quantizing the weight ;
propagating at least a part of a quantization error to one

or more non - quantized weights ; and
providing a quantized machine learned model .
22-30 . (canceled)

