US 20230030316A1

asy United States

a2 Patent Application Publication o) Pub. No.: US 2023/0030316 A1

PESSL

43) Pub. Date: Feb. 2, 2023

(54) CRYPTOGRAPHIC PROCESSING DEVICE
AND METHOD FOR PERFORMING A
LATTICE-BASED CRYPTOGRAPHY

OPERATION

(71) Applicant:

(72)

@n
(22)

Inventor:
Appl. No.:
Filed:
(30)

Aug. 2, 2021

Peter PESSL, Munich (DE)
17/878,085
Aug. 1, 2022

Foreign Application Priority Data
102021 120 010.5

Publication Classification

(51) Int.CL
HO4L 9/30

Infineon Technologies AG, Neubiberg

(52) US.CL
CPC oo HO04L 93093 (2013.01)

57 ABSTRACT

According to various embodiments, a cryptographic proces-
sing device is described comprising a processor configured
to determine a masking component, generate a masked ver-
sion of a secret first element by masking multiple compo-
nents of the secret first element with the masking compo-
nent, determine a first share of the product of the secret
first element and a second element by multiplying the sec-
ond element with the masked version of the secret first ele-
ment, determine a second share of the product of the secret
first element and the second element by multiplying the sec-
ond element with the difference of the secret first element
and the masked version of the secret first element and con-
tinue with a lattice-based cryptography operation using the

(2006.01) first share and the second share of the product.
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FIG 3 N300

A 301

Determine a masking component

302

Generate a masked version of a first secret
element by masking multiple components of the
first secret element with the masking component

~ 303

Determine the product of a second element with
the masked version of the first secret element to
determine a first share of the product between the
first secret element and the second element

A~ 304

Determine the product of the second element with
the difference of the first secret element and the
masked version of the first secret element to
determine a second share of the product between
the first secret element and the second element

l £\ 305

Continue with a lattice-based cryptography
operation using the first share and the second
share of the product
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CRYPTOGRAPHIC PROCESSING DEVICE
AND METHOD FOR PERFORMING A
LATTICE-BASED CRYPTOGRAPHY
OPERATION

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims priority to German Patent
Application Serial No. 10 2021 120 010.5, which was filed
Aug. 2, 2021, and is incorporated herein by reference in its
entirety.

TECHNICAL FIELD

[0002] The present disclosure relates to cryptographic pro-
cessing devices and methods for performing a lattice-based
cryptography operation.

BACKGROUND

[0003] With the development of quantum computers alter-
natives to classical asymmetric cryptosystems like RSA
(Rivest Shamir Adleman) and ECC (Elliptic Curve Crypto-
graphy) are investigated which cannot be attacked by quan-
tum computers. Currently, quantum computers which are
sufficiently powerful are not available due to the technical
complexity and engineering challenges but once built they
will be able to break RSA and ECC in polynomial time.
Therefore, standardization bodies like NIST (National Insti-
tute of Standards and Technology) now actively investigate
alternative cryptosystems. Schemes that are supposed to
resist attacks by quantum computers are, among others, lat-
tice-based public key encryption, key exchange, or signature
schemes. They could become the successor of RSA and
ECC and typically operate on large matrices (standard lat-
tices) or polynomial rings (ideal lattices). Accordingly, the
execution of most lattice-based cryptographic schemes
involves some form of multiplication of large matrices, vec-
tors, or polynomials. This already leads to high memory
requirements which are further increased by further protec-
tion measures which are typically necessary to make the
implementation of the cryptosystems secure, like masking
to protect against side-channel attacks. This may result in
memory requirements which security controllers (like on a
chip card) may not be able to fulfill, thus leading to security
issues for security controllers, at least when large quantum
computers become available. Therefore, approaches are
desirable which allow secure implementation of post-quan-
tum cryptosystems, in particular lattice-based cryptographic
schemes, on security controllers.

SUMMARY

[0004] According to various embodiments, a crypto-
graphic processing device is provided including a processor
configured to determine a masking component, generate a
masked version of a secret first element by masking multiple
components of the secret first element with the masking
component, determine a first share of the product of the
secret first element and a second element by multiplying
the second element with the masked version of the secret
first element, determine a second share of the product of
the secret first element and the second element by multiply-
ing the second element with the difference of the secret first

Feb. 2, 2023

element and the masked version of the secret first element
and continue with a lattice-based cryptography operation
using the first share and the second share of the product.
[0005] According to a further embodiment, a method for
performing a lattice-based cryptography operation accord-
ing to the above cryptographic processing device is
provided.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] In the drawings, similar reference characters gen-
erally refer to the same parts throughout the different views.
The drawings are not necessarily to scale, emphasis instead
generally being placed upon illustrating the principles of the
invention. In the following description, various aspects are
described with reference to the following drawings, in
which:

[0007] FIG. 1 shows an example for a processing device
supporting lattice-based cryptography.

[0008] FIG. 2 shows a diagram illustrating the processing
of a cryptographic processing device according to an
embodiment.

[0009] FIG. 3 illustrates a method for performing a lattice-
based cryptography operation.

DESCRIPTION

[0010] The following detailed description refers to the
accompanying drawings that show, by way of illustration,
specific details and aspects of this disclosure in which the
invention may be practiced. Other aspects may be utilized
and structural, logical, and electrical changes may be made
without departing from the scope of the invention. The var-
ious aspects of this disclosure are not necessarily mutually
exclusive, as some aspects of this disclosure can be com-
bined with one or more other aspects of this disclosure to
form new aspects.
[0011] The examples described herein can be realized as
instructions processed by a processor of a processing device
like a personal computer, microcontroller, smart card, secure
microcontroller, hardware root of trust, (embedded) secure
element (ESE), Trusted Platform Module (TPM), or Hard-
ware Security Module (HSM).
[0012] FIG. 1 shows an example for a processing device
100 including a CPU 101, a RAM 102, a non-volatile mem-
ory 103 (NVM), a crypto module 104, an analog module
106, an input/output interface 107 and a hardware-random
number generator 112.
[0013] In this example, the CPU 101 (which may for
example be an application processor) has access to at least
one crypto module 104 (which may be part of a hardware
security module) over a shared bus 105 to which each crypto
module 104 is coupled. The shared bus is only an example
and there may be individual interfaces between the various
components. Each crypto module 104 may in particular
include one or more crypto cores to perform certain crypto-
graphic operations. Exemplary crypto cores are:

[0014] an AES core 109,

[0015] a SHA core 110,

[0016] an ECC core 111, and

[0017] a lattice-based crypto (LBC) core 108.
[0018] The lattice-based crypto core 108 may be provided
in order to accelerate lattice-based cryptography.
[0019] The CPU 101, the hardware random number gen-
erator 112, the NVM 103, the crypto module 104, the RAM
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102 and the input/output interface 107 are connected to the
bus 105. The input output interface 107 may have a connec-
tion 114 to other devices, which may be similar to the pro-
cessing device 100.

[0020] The analog module 106 is supplied with electrical
power via an electrical contact and/or via an electromag-
netic field. This power is supplied to drive the circuitry of
the processing device 100 and may in particular allow the
input/output interface to initiate and/or maintain connec-
tions to other devices via the connection 114.

[0021] The bus 105 itself may be masked or plain. Instruc-
tions for carrying out the processing and algorithms
described in the following may in particular be stored in
the NVM 103 and processed by the CPU 105. The data pro-
cessed may be stored in the NVM 103 or in the RAM 102.
Supporting functions may be provided by the crypto mod-
ules 104 (e.g., expansion of pseudo random data). Random
numbers (e.g. for masks) are supplied by the hardware-ran-
dom number generator 112.

[0022] The processing and algorithms described in the fol-
lowing may exclusively or at least partially be conducted on
the crypto module 104, e.g., on the lattice-based crypto core
108 (although they may also be performed on CPU 101 in
case there is no corresponding crypto module present on the
processing device 100). A crypto module 104 may or may
not be equipped with hardware-based security features.
Such hardware-based security features could be circuits
that implement countermeasures against side-channel
power analysis or fault injection (e.g., using a laser). This
in particular includes masking, i.e. splitting secret data into
multiple shares. Such countermeasures can be realized by
the use of randomness, redundant hardware, or redundant
processing. In general the goal of countermeasures is to dis-
guise the internally processed values from an attacker who is
able to observe the physical effect the processing of such
values.

[0023] To perform the procedures described in the follow-
ing, instructions may be stored in the lattice-based crypto
core 108 or they may be provided by the CPU 101 via the
bus 105. Data may be stored locally within the lattice-based
crypto core 108. It is also an option that the data is tempora-
rily stored in the RAM 102 or the NVM 103. The lattice-
based crypto core 108 may also use other crypto modules to
provide supporting functions (e.g., expansion of pseudo ran-
dom data). The lattice-based crypto core 108 may also
include a hardware-random number generator 112 or a
means to generate physical and/or software random num-
bers (e.g. for masks).

[0024] The lattice-based crypto core 108 may support
operations like polynomial addition or polynomial multipli-
cation on data structures like array of coefficients, the sam-
pling of random polynomials.

[0025] In another instance, the procedures described
herein may at least partially be realized as a fixed CMOS
circuit in the lattice-based crypto core 108 that is not con-
trolled by the CPU 101 directly and where no intermediate
values are available outside of the crypto core 108. Addi-
tionally, the accelerator may implement specific schemes
as described in the literature like NewHope key exchange,
Kyber public key encapsulation, Dilithium signature
scheme, or Frodo public-key encryption. In this case only
high level functionality is available to the CPU 101. Exemp-
lary, a signature may be generated where a message and a
private key is transmitted into the lattice-based crypto core

Feb. 2, 2023

108 over the bus 105 and then a Dilithium signature is com-
puted that is retrieved by the CPU 101 using the bus 105 for
further processing.

[0026] The components of the processing device 100 may
for example be implemented on a single chip. The proces-
sing device 100 may be a chip card (or a chip card module)
powered by direct electrical contact or through an electro-
magnetic field. The processing device 100 may be a fixed
circuit or based on reconfigurable hardware (e.g., Field Pro-
grammable Gate Array, FPGA). The processing device 100
may be coupled to a personal computer, microcontroller,
FPGA or a smart phone System on a Chip (SoC) or other
components of a smart phone. The processing device 100
may be a chip that acts as Trusted Platform Module (TPM)
offering cryptographic functionality (secure storage, secure
time, signature generation and validation, attestation)
according to a standardized interface to a computer, smart
phone, Internet of Things (IoT) device, or car.

[0027] The execution of most lattice-based cryptographic
schemes involves some form of multiplication of large
matrices, vectors, or polynomials, each composed of many
values typically smaller than 32 bits. In the lattice-based
digital signature scheme Dilithium, for instance, one needs
to perform operations of the form b = A «s, where A is a
public (k x k) matrix and b, s are secret length-k vectors.
Each element in b, A, s is a polynomial of length n = 256,
where each polynomial coefficient is taken modulo a 23-bit
prime number q. This matrix-vector and the involved poly-
nomial multiplications are expensive in terms of runtime
and storing the inputs/outputs requires lots of memory. For
the smallest Dilithium parameter set (k = 4), s and b each
need 4kB of storage.

[0028] The vector s is typically secret and needs to be pro-
tected against side-channel attacks. This can be done
through the use of masking. There, s is represented by two
(or more) vectors (shares) s', s” such that s = s" + 5", but the
two shares are on their own statistically independent of s.
This is typically achieved by randomly sampling a s”, and
then computing s’ = s - s”. The vector s” can be seen as a
mask for the vector s and the vector s’ as the masked version
of s.

[0029] A masked matrix-vector multiplication is then per-
formed by A s = (A*s") + (A= s") = (b') + (b"). Parentheses
are used to signify that the shares are computed separately,
the two outcome shares also need to be used in masked man-
ner and not directly recombined.

[0030] A simple implementation of this masking approach
requires the computation of two (instead of one) matrix-vec-
tor multiplications. As such a multiplication is typically very
costly, doubling it can significantly increase the overall
computation time. Memory requirements also double, as
both shares of s and b need to be stored. This is problematic
for resource-constrained processing devices, such as secur-
ity controllers like in smart cards.

[0031] In view of the above, according to various embodi-
ments, an approach is provided which allows performing a
masked multiplication using significantly less resources.
Both the runtime and the memory overhead are reduced,
from originally a factor of two down to a constant increase
(independent of, e.g., k).

[0032] According to one embodiment, a basic idea of the
approach provided can be seen in that one of the two shares
is composed of multiple copies of a smaller element (which
is referred to as a masking component), i.e., to reuse mask-
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ing components (in the formation of a share). Since multiple
entries of A are then multiplied with the same value, one can
speed up the multiplication with this compressed share by
pre-computing the row sums of A and then multiplying the
reused element with the row sums (as described in more
detail below). Further, an independent sampling of an output
mask (also in compressed form) may be used to prevent
accidental unmasking and also allows storing one share of
the product in compressed form.

[0033] In the following, a more detailed explanation and
examples are given. For ease of understanding of these
examples, vector and matrix elements can be considered as
scalars. However, in reality (e.g. when using Dilithium) they
are polynomials, which can require certain adaptations.
[0034] Considering the case that k = 3, then one can write

b=A-sas
by oo o1 9oz | [ So @
bi|=lay ay ay || s
b, dyg Ay Gy ) \5y

where each element of A, s, and b is a polynomial in the ring
R,=Z[x)/(x” + 1), with n = 256 and q a small, e.g., 23-bit,
prime number.

[0035] As described above, using straight-forward mask-
ing, one would split s by sampling a random s", then define

the shares as
so) (%) (50 (s0-5%) (5t @
s |=] st |+ st =] sy |+ s
s) \sy) \s3) \s=53) (53

and finally compute b'= A *s" and b” = A «s" separately. This
approach roughly doubles the memory and runtime require-
ments of the multiplication.

[0036] According to one embodiment, s is instead masked

as follows.
Sy 50 m Sq— 1M m ®
s =] s |+ =| s—m|+| m
5, 55 m 8, —m m

[0037] That is, the mask polynomial m (generally referred
to as masking component) is reused k = 3 times. As only one
copy of m needs to be stored (instead of the full vector s"),
the memory needs for storing the shared version of s is
reduced from 2k = 6 polynomials to k + 1 = 4 polynomials.
[0038] As s is multiplied with a matrix, reusing a mask
polynomial multiple times also allows reducing the runtime
of masked multiplication.

[0039] Consider the multiplication of the first row of A
with s". This can be simplified as follows:

” @

(‘100 ag aoz)-[m}aoo-eram-er ayy -m:(Elaol)-m
m
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[0040] The row sum %; dy; can either be precomputed (in
case A is static, e.g., part of the public key), or computed on
the fly in a significantly reduced runtime (compared to using
k polynomial multiplications). The entire masked multipli-
cation of A s can thus be written as:

. )
oo o1 oz | [ So Z,ay
As=||ay, a; ay || s ||+]| Za |'m
.
dyg Gy Ay ) 5y Ly,

[0041] Directly performing the multiplication as written
above can lead to two problems. First, the masked output
of the multiplication needs to be stored using 2k polyno-
mials, thus potentially eliminating the savings due to mask
reuse.

[0042] Second, the output of the multiplication might be
accidentally unmasked. Consider the possible scenario that
¥ dg; = 0 and followingly (X;a,;) * m = 0. Then, the first line
of A « s must be equal to A s. In other words, a part of the
masked product is unmasked. The matrix A is typically
either known to the attacker, or the attacker can even choose
it. Thus, the attacker can test for the occurrence of this sce-
nario or even force it.

[0043] Both these problems can be avoided by first sam-
pling an output masking component u and then computing
the product using said a mask formed of copies of the output
masking component u (such that the output mask may again
be stored in a compressed manner). Then, the multiplication
becomes:

, (6)
u —u Qoo Qo1 Yoz 5o Z 1 Qo
Avs=|u | |+] | —u|+| ag @y ay || s |+ Zlah -m
U —u Qyy Gy Gy Sé Z 1

u

u

Where [“ can be seen as the output mask formed of the
output masking component u.

[0044] Using the above formulation, both the input and the
output of the multiplication can be stored in a compressed
manner (i.e. each time k+1 instead of 2k polynomials). For
the right part of Equation (6), it is important to initialize the
summation with —u as to avoid the risk of unmasking. This
means that it should be avoided to compute the above in the
order of, e.g.,

/ ’ /
[aoo-s0+a01-sl+a02 -SZJ{Z%IJ-mJ—u,
i

as the intermediate in the parentheses corresponds to the
unmasked result. Instead one can compute, e.g.,

([ T .s;){lzam].m)_

[0045] The exact ordering is not important, but it must be
ensured that u is contained in the innermost parentheses.
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[0046] In Kyber, Dilithium, and certain other schemes,
polynomial multiplication is commonly performed using
the Number Theoretic Transform (NTT), which can be
seen as a number-theoretic analogue to the Discrete Fourier
Transform. Using the convolution theorem, polynomial
multiplications can be computed as

a-b=INTT(NTT(a)O NTT(b))=INTT(a© b),

where © denotes a pointwise multiplication and o the NTT-
transformed of the polynomial a. This reduces the runtime
from n2 to n log n. Since the NTT is a linear transformation,
one can compute a sum of products by summing up the
point-wise multiplications and then only performing a single
inverse NTT (INTT) on the result. This means that a multi-
plication according to (6) can be performed using the fol-
lowing operations:

[0047] 1. Sample a random m directly in NTT domain

[0048] 2. Sample a random u and compute u

[0049] 3. Compute INTT((((-ut 2o ©s'o) + go1 © 81+

Uo208') + X; ;) Om).

[0050] The matrix A and the secret vector s are often
already given in their NTT form.
[0051] On first glance, performing a masked multiplica-
tion the above method reduces the number of polynomial
multiplications from 2k2 to k2 + k. In practice, the savings
may depend on the concrete setting. Using multiplication
with the NTT with Equation (6), the number of point-wise
products is indeed reduced from 2k?2 to k2 + k, whereas the
number of inverse NTTs is decreased from 2k tok + 1. For
schemes using some other multiplication method, the run-
time savings differ. Other factors, such as the choice of the
modular reduction algorithm, might also affect the concrete
runtime savings.
[0052] It should be noted that measures may be taken to
avoid accidental unmasking through micro-architectural
effects. For instance, when first loading s'y = (sy - m) imme-
diately followed by s'y = (s; - m), then microarchitectural
effects, such as glitches in the register file, might lead to
leakage that roughly correlates to the difference of two sub-
sequent operands. In the described scenario, this difference
is (8¢ - m) - (51 -m) =5, - 81, 1.€., an unmasked quantity. Such
effects typically only need to be considered when proces-
sing both shares at once, whereas here, they also need to
be considered when operating on a single share s'.
[0053] The approach described above can be used with
several granularities and can be combined with other coun-
termeasures. Some of these are now described.
[0054] The approach described above can be used to
achieve cheap higher-order masking, where keys and other
sensitive intermediates are split into more than two shares.
One can use multiple compressed shares, or combine, e.g.,
two full shares with an additional compressed share.
[0055] Tt should be noted that without further countermea-
sures, using multiple compressed shares will never result in
more than first-order security. This is because the difference
in the full shares leaks secret values, e.g., the difference
between s'y = (Sp - m' - m”) and s'; = (s; - m’ - m")) unveils
the value of 84 - 5.
[0056] The approach described above can be combined
with other countermeasures to improve the achieved secur-
ity level. For instance, instead of reusing the same exact
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mask multiple times, one can derive multiple masks from
the sampled mask.

[0057] For instance, different scalar factors C, can be used
for each use of the mask. Concretely, the masked represen-
tation of s would then be:

Sy Sy — Gyt cyt
s=| 5 |=|| s—am | |+|| m
Sy Sy = CyiM [

[0058] This representation can still allow faster masked
implementation, as

[

(oo o aoz).[clm}[lzam QJ'W’

Com

[0059] Similarly, it is also possible to multiply the poly-
nomial m(x) (the polynomial variable x is written explicitly
here) with different factors x’. For Kyber and Dilithium, this
corresponds to a negacyclic rotation of the polynomial coef-
ficients and can thus be more easily computed.

[0060] In the above examples, reuse of masking compo-
nents is applied on the granularity of polynomials. That is, a
polynomial m is reused k times to form a mask. The
approach fits well for schemes using a module structure,
i.e., schemes which work with matrices and vectors com-
posed of polynomials. Examples of such schemes are the
digital signature scheme Dilithium and the key-encapsula-
tion schemes Kyber and Saber.

[0061] However, there exist lattice-based schemes which
do not work with polynomials and use large matrices and
vectors of scalars directly (such as FrodoKEM). The lat-
tice-based KEM (Key Encapsulation Mechanism) New-
Hope does not use matrices and vectors altogether and
instead operates on larger polynomials. The approach can
still be applied to such schemes, but other granularities
have to be used, e.g., one can sample a block of 1 random

n

entries, and then use these ! times to fill up the entire vector
or polynomial, respectively.

[0062] For schemes using matrices/vectors of polyno-
mials, such as Kyber and Dilithium, different granularities
may also be used. One can, e.g., compose m of multiple
copies of an even smaller polynomial, to further save on
memory. This can, in theory, be done down to the level of
scalars, 1.e., where m consists of n copies of a single value.
One can also decrease the reuse level, e.g., by sampling mul-
tiple m and then reusing each one only once. As an example,
when using k =4, an (mg, m;) can be sampled and then the
second share s’ can be composed as (mg, m;, mg, m;). This
can help to increase side-channel robustness at the cost of
higher memory usage.

[0063] In summary, according to various embodiments, a
cryptographic processing device is provided as described in
the following with reference to FIG. 2.

[0064] FIG. 2 shows a diagram 200 illustrating the proces-
sing of a cryptographic processing device according to an
embodiment.

[0065] In FIG. 2, dashed lines represent components and
full lines represent full elements (vector or matrix). The
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block 201 with the three adders represents the formation of a
vector, wherein each adder gives one component.
[0066] The cryptographic processing device includes a
processor configured to
[0067] determine a masking component (m)
[0068] generate a masked version (s’ in the above exam-
SO —m

sy —m

]

ple ) of a secret first element 27"/ in the above
example) by masking multiple components (s, sy, S2
in the above example) of the secret first element with
the (same) masking component (-m in the above
example)

[0069] determine the product of a second element (A in
the above example) with the masked version of the
secret first element (s’ in the above example ) to deter-
mine a first share of the product between the secret first
element and the second element (first share of b=A + s
in the above example);

[0070] determine the product of the second element (A
in the above example) with the difference (s™- s, i.e.

m

[m}
"/ in the above example) of the secret first element

and the masked version of the secret first element

m

"//in the above example to determine a second
share of the product between the secret first element
and the second element (second share of b = A *s in
the above example).

[0071] perform the lattice-based cryptography opera-
tion using the first share and the second share of the
product.

[0072] According to various embodiments, in other words
a masking component is re-used for masking multiple com-
ponents of a secret first element that is multiplied with
another element. Re-using the masking component saves
memory requirements and may also reduce computational
effort. Thus, the approach of FIG. 2 makes implementation
of lattice-based cryptography with masking possible on low-
memory devices such as security controllers and thus
ensures their security even when quantum computers have
become available.

[0073] The approach of FIG. 2 allows efficient masking of
lattice-based cryptographic schemes. It may for example be
applied to Kyber, Saber, NTRU, Dilithium and Falcon.
[0074] The cryptographic processor may for example be
part of a processing device like described with reference to
FIG. 1 and may in particular correspond to a crypto module
(e.g. lattice-based crypto (LBC) core 108, a CPU, an appli-
cation processor, etc.

[0075] The processor may in particular be a circuit which
may be understood as any kind of a logic implementing
entity, which may be hardware, software, firmware, or any
combination thereof. Thus, in an embodiment, a “circuit”
may be a hard-wired logic circuit or a programmable logic
circuit such as a programmable processor, €.g. a micropro-
cessor (e.g. a Complex Instruction Set Computer (CISC)
processor or a Reduced Instruction Set Computer (RISC)
processor). A “circuit” may also be software being imple-
mented or executed by a processor, e.g. any kind of compu-
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ter program, e.g. a computer program using a virtual
machine code such as e.g. Java. Any other kind of imple-
mentation of the respective functions which are described
herein may also be understood as a “circuit” in accordance
with an alternative embodiment.

[0076] FIG. 3 illustrates a method for performing a lattice-
based cryptography operation.

[0077] In 301, a masking component is determined.
[0078] In 302, a masked version of a secret first element is
determined by masking multiple components of the secret
first element with the masking component.

[0079] In 303, the product of a second element with the
masked version of the secret first element is determined to
determine a first share of the product between the secret first
element and the second element;

[0080] In 304, the product of the second element with the
difference of the secret first element and the masked version
of the secret first element is determined to determine a sec-
ond share of the product between the secret first element and
the second element.

[0081] In 305, a lattice-based cryptography operation is
continued with using the first share and the second share
of the product.

VARIOUS EXAMPLES ARE DESCRIBED IN THE
FOLLOWING

[0082] Example 1 is a cryptographic processing device
including a processor configured to determine a masking
component, generate a masked version of a secret first ele-
ment by masking multiple components of the secret first ele-
ment with the masking component, determine a first share of
the product of the secret first element and a second element
by multiplying the second element with the masked version
of the secret first element, determine a second share of the
product of the secret first element and the second element by
multiplying the second element with the difference of the
secret first element and the masked version of the secret
first element; and continue with a lattice-based cryptography
operation using the first share and the second share of the
product.

[0083] Example 2 is the cryptographic processing device
of Example 1, wherein the processor is further configured to
determine a further masking component, mask multiple
components of the sum of the first share of the product and
the second share of the product using the further masking
component to generate a masked version of the product
and perform the lattice-based cryptography operation using
the masked version of the product.

[0084] Example 3 is the cryptographic processing device
of Example 1 or 2, wherein generating the masked version
of the secret first element includes masking multiple com-
ponents of the secret first element by the masking
component.

[0085] Example 4 is the cryptographic processing device
of Example 3, wherein masking the multiple components by
the masking component includes adding the masking com-
ponent or a scalar multiple of the masking component to
each of the multiple components.

[0086] Example 5 is the cryptographic processing device
of any one of Examples 1 to 4, wherein the processor is
further configured to determine a further masking compo-
nent, wherein generating the masked version of the secret
first element includes masking a first set of components of
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the secret first element by the masking component and a
second set of components of the secret first element by the
further masking component.

[0087] Example 6 is the cryptographic processing device
of Example 5, wherein the first set and the second set are
disjoint.

[0088] Example 7 is the cryptographic processing device
of any one of Examples 1 to 6, wherein the secret first ele-
ment is a vector of polynomials, wherein the second element
is a matrix of polynomials and the masking component is a
polynomial.

[0089] Example 8 is the cryptographic processing device
of any one of Examples 1 to 7, wherein the secret first ele-
ment is a polynomial and the masking component is a coef-
ficient for a polynomial.

[0090] Example 9 is the cryptographic processing device
of any one of Examples 1 to 8, wherein the secret first ele-
ment at least partially represents a cryptographic key.
[0091] Example 10 is the cryptographic processing device
of any one of Examples 1 to 9, wherein the cryptographic
processing device is a security controller.

[0092] Example 11 is the cryptographic processing device
of any one of Examples 1 to 10, including a random number
generator, wherein the processor is configured to determine
the masking component using an output of the random num-
ber generator.

[0093] Example 12 is the cryptographic processing device
of any one of Examples 1 to 11, wherein the processor is
configured to perform the lattice-based cryptography opera-
tion in a signature or public key crypto processing.

[0094] Example 13 is a method for performing a lattice-
based cryptography operation as described with reference to
FIG. 3.

[0095] Example 14 is the method of Example 13, further
including determining a further masking component, mask-
ing multiple components of the sum of the first share of the
product and the second share of the product using the further
masking component to generate a masked version of the
product and performing the lattice-based cryptography
operation using the masked version of the product.

[0096] Example 15 is the method of Example 13 or 14,
wherein generating the masked version of the secret first
element includes masking multiple components of the secret
first element by the masking component.

[0097] Example 16 is the method of Example 15, wherein
masking the multiple components by the masking compo-
nent includes adding the masking component or a scalar
multiple of the masking component to each of the multiple
components.

[0098] Example 17 is the method of any one of Examples
13 to 16, further including determining a further masking
component, wherein generating the masked version of the
secret first element includes masking a first set of compo-
nents of the secret first element by the masking component
and a second set of components of the secret first element by
the further masking component.

[0099] Example 18 is the method of Example 17, wherein
the first set and the second set are disjoint.

[0100] Example 19 is the method of any one of Examples
13 to 18, wherein the secret first element is a vector of poly-
nomials, wherein the second element is a matrix of polyno-
mials and the masking component is a polynomial.
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[0101] Example 20 is the method of any one of Examples
13 to 19, wherein the secret first element is a polynomial and
the masking component is a coefficient for a polynomial.
[0102] Example 21 is the method of any one of Examples
13 to 20, wherein the secret first element at least partially
represents a cryptographic key.

[0103] Example 22 is the method of any one of Examples
13 to 21, performed by a security controller.

[0104] Example 23 is the method of any one of Examples
13 to 22, including determining the masking component
using an output of a random number generator.

[0105] Example 24 is the method of any one of Examples
13 to 23, including performing the lattice-based cryptogra-
phy operation in a signature or public key crypto processing.
[0106] Although specific embodiments have been illu-
strated and described herein, it will be appreciated by
those of ordinary skill in the art that a variety of alternate
and/or equivalent implementations may be substituted for
the specific embodiments shown and described without
departing from the scope of the present invention. This
application is intended to cover any adaptations or varia-
tions of the specific embodiments discussed herein. There-
fore, it is intended that this invention be limited only by the
claims and the equivalents thereof.
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What is claimed is:

1. A cryptographic processing device comprising:

a processor configured to

determine a masking component;

generate amasked version of a secret first element by mask-
ing multiple

components of the secret first element with the masking
component;

determine a first share of the product of the secret first ele-
ment and a second element by multiplying the second
element with the masked version of the secret first
element;

determine a second share of the product of the secret first
element and the second element by multiplying the sec-
ond element with the difference of the secret first element
and the masked version of the secret first element; and

continue with a lattice-based cryptography operation using
the first share and the second share of the product;

wherein the secret first element is a vector of polynomials,
wherein the second element is a matrix of polynomials
and the masking component is a polynomial, or
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wherein the secret first element is a polynomial and the

masking component is a coefficient for a polynomial.

2. The cryptographic processing device of claim 1, wherein
the processor is further configured to determine a further mask-
ing component, mask multiple components of the sum of the
first share of the product and the second share of the product
using the further masking component to generate a masked ver-
sion of the product and perform the lattice-based cryptography
operation using the masked version of the product.

3. The cryptographic processing device of claim 1, wherein
masking the multiple components by the masking component
comprises adding the masking component or a scalar multiple
of the masking component to each of the multiple components.

4. The cryptographic processing device of claim 1, wherein
the processor is further configured to determine a further mask-
ing component, wherein generating the masked version of the
secret first element comprises masking a first set of components
of the secret first element by the masking component and a sec-
ond set of components of the secret first element by the further
masking component.

5. The cryptographic processing device of claim 4, wherein
the first set and the second set are disjoint.

6. The cryptographic processing device of claim 1, wherein
the secret first element at least partially represents a crypto-
graphic key.

7. The cryptographic processing device of claim 1, wherein
the cryptographic processing device is a security controller.

8. The cryptographic processing device of claim 1, compris-
ing a random number generator, wherein the processor is
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configured to determine the masking component using an out-
put of the random number generator.

9. The cryptographic processing device of claim 1, wherein
the processor is configured to perform the lattice-based crypto-
graphy operation in a signature or public key crypto processing.

10. A method for performing a lattice-based cryptography
operation comprising: determining a masking component

generating amasked version of a secretfirst element by mask-

ing multiple components of the secret firstelement with the
masking component;

determining the product of a second element with the masked

version of the secret first element to determine a first share
of the product between the secret first element and the sec-
ond element;
determining the product of the second element with the dif-
ference of the secret first element and the masked version
of the secret first element to determine a second share of the
product between the secret first element and the second
element; and
continuing with a lattice-based cryptography operation using
the first share and the second share of the product;

wherein the secret first element is a vector of polynomials,
wherein the second element is a matrix of polynomials
and the masking component is a polynomial, or

wherein the secret first element is a polynomial and the mask-

ing component is a coefficient for a polynomial.
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