US 20150254243A1
a9 United States

a2y Patent Application Publication o) Pub. No.: US 2015/0254243 A1l
Okochi et al. 43) Pub. Date: Sep. 10, 2015

(54) DATA PROCESSING APPARATUS, DATA Publication Classification
PROCESSING METHOD, AND RECORDING
MEDIUM STORING COMPUTER PROGRAM (51) Int.CL

FOR PERFORMING DATA PROCESSING GO6F 17/30 (2006.01)
(52) US.CL
(71) Applicant: FUJITSU LIMITED, Kawasaki-shi (JP) CPC ..ot GO6F 17/3028 (2013.01)
(72) Tnventors: Toshiki Okochi, Ota (JP); Yuji Wada, 67 ABSTRACT
Ota (JP); Kuniaki Shimada, Kawasaki A non-transitory, computer-readable recording medium hav-
(IP) ing stored therein a program for causing a computer to
execute a process, the process comprising: detecting whether
(73) Assignee: Fujitsu Limited, Kawasaki (JP) second data, stored in a second storage device, updated from
first data stored in a first storage device has been updated,
(21) Appl. No.: 14/609,519 upon detecting that the second data has been updated, obtain-
ing the second data before update from the second storage
(22) Filed: Jan. 30, 2015 device, and storing the second data into the first storage
device, and when the second data is contained in the first
(30) Foreign Application Priority Data storage device, obtaining the second data from the first stor-
age device, and generating third data using the second data,
Mar. 5,2014 (JP) .eeoeieriieieciceeeeee 2014-042834 and the first data.
START
[GENERATE DATALST 510
i y
| CBTAINALIST OF OPEN SOURCE SOFTWARE FS 102

o L5103
_RRETHERE S~ yo
< ANY UNSELECTED RPM

~PACKAGEST]
5104
(a0)
5106

[DELETE RPM PACKAGE FROM DISK IMAGE FILE }’(

FS‘EO"/

{ SELECT ONE UNSELECTED FILE

Patent Application Publication Sep. 10, 2015 Sheet 1 of 9

FIG. 1
10
J
#
EXTERNAL
REPOSITORY |11
SERVER

THE INTERNET 12

MANAGEMENT
APPARATUS

1

US 2015/0254243 Al

Patent Application Publication

US 2015/0254243 Al

Sep. 10,2015 Sheet 2 of 9
FIG. 2
o
2
MANAGEMENT APPARATUS
(5 c4
CONTROL UNIT STORAGE UNIT
- DECDP*‘F'\SI“);;?
NPT LN *OMPOSIT
INPUT UNIT e :
DISK IMAGEFILE | [Y-4a
(3 §5b —1-4a
coa\mw;ﬁ;}@m"som w%i\ﬂ;r%za ;
- k RESTORATION | Il 4b
5 NFORMATION L1 |
RESTORATION —
UNIT
FILE 4c
; _
FILE dc

Patent Application Publication Sep. 10, 2015 Sheet 3 of 9 US 2015/0254243 A1

FIG. 3

/(53

DECOMPOSITION UNIT

DISKIMAGE FILE ACQUISITION UNIT I~ 83

EXTERNAL REPOS[TORY 6
ACQUISITION UNIT

COMMON PART EXTRACTION UNIT i~6¢

IMAGE DECOMPOSITION UNIT -84

FIG. 4

MAKEDEV-3.23-1.2.x86_64
PyXML-0.8.4-4.615_4.2.x86_64

Patent Application Publication Sep. 10, 2015 Sheet 4 of 9 US 2015/0254243 A1

FIG. 5
c4b
Diskimage1
MAKEDEV-3.23-1.2.x86 64
PyXML-0.8.4-4.815_ 4.2, %8664
SysVinit-2.86-17.e15.x86_64
atk-1.12.2-116.x86_64
audnt libs-1.7.18-2.¢l5
Daskimdgﬁ Fie targz
FIG. 6
vache RESTORATION
. apacne s INFORMATION I~ 4b
tomeat apache
RESTORATION
INFORMATION ~4b
apache
fomoat

Patent Application Publication Sep. 10, 2015 Sheet S of 9 US 2015/0254243 A1

FIG. 8
gﬁb
MONITOR UNIT
RESTORATION INFORMATION 75
ANALYSIS UNIT
EXTERNAL REPOSITORY L 7b
ACQUISITION UNIT
RESTORATION INFORMATION 7
UPDATE UNIT ¢
FI1G. §
55(3
RESTORATION UNIT
RESTORATION INFORMATION 85
ANALYSIS UNIT
EXTERNAL REPOSITORY . _8h

ACQUISITION UNIT

IMAGE RESTORATION UNIT 8¢

Patent Application Publication Sep. 10, 2015 Sheet 6 of 9 US 2015/0254243 A1
G, 10
GENERATE DATALST 5101
OTA AR % Hulg) CTUA f5102
OBTAIN A LIST OF OPEN SOURCE SOFTWARE
.
5103
f”’iﬁ%?i%%%?\\\a ND)
ANY UNSELECTED RPM
PACKAGES?
i
/5104 ¥
SELECT ONE UNSELECTED RPM PACKAG (BN)
A 5105
1S THE SAME

NO_—PACKAGE AS THE SELECTED RP
< PACKAGE CONTAINED I\ THE LIST

OF SOFTWARE? __—
/
YES
QANE
| DELETE RPM PACKAGE FROM DISK IMAGE FILE 5106
¥

RECORD THE DELETED RPM PACKAGE |-S107
INRESTORATION INFORMATION

g
%

Y _sie
NO /AEE/THERE
< i USELECTED

FILEST -
1R 5109
SELECT ONE UNSELECTED FILE

(A y
MO IVED i ;/
?Nﬁ 8111

ADD FILE TO FiLE GROUP
i

Patent Application Publication Sep. 10, 2015 Sheet 7 of 9 US 2015/0254243 A1

FIG. 11

GENERATE RESTRAﬂQN DATALIST 521
DOWNLOAD RPM PACKAGE 5202

~ ISVERSION —

— OF THE DOWNLOADED ™
RPM PACKAGE NEWER THAN VERGION

~_ OF RPM PACKAGE RECORDED

I IN RESTORATION

~ DATALIST?

YES ,«eSZC'Ar
DOWNLOAD RPM PACKAGE
' 8205
ADD RPM PACKAGE FILE TO FILE GROUP

' 5205

DELETE ADDED FiLE FROM
RESTORATION INFORMATION

Patent Application Publication Sep. 10, 2015 Sheet 8 of 9 US 2015/0254243 A1

FIG. 12

GENERATE RESTRAT@N DATALIST -""ng
DOWNLOAD RPM PACKAGE),8302
GENERATE DISK IMAGE FILE 0303
CAPABLE OF RESTORING VM

END
FIG. 13
RESTORATION RESTORATION
INFORMATION [:i\B INFORMATION
apache v / apache ve
fomeat v tomeat v2

Patent Application Publication Sep. 10, 2015 Sheet 9 of 9 US 2015/0254243 A1

FIG. 14

apache v1.0.0

apache v1.0.1

FIG. 15
(300
COMPUTER 330
HOD 330a
340 DATA PROCESSING
AN PROGRAM
350
310 320
CPU ROM

US 2015/0254243 Al

DATA PROCESSING APPARATUS, DATA
PROCESSING METHOD, AND RECORDING
MEDIUM STORING COMPUTER PROGRAM

FOR PERFORMING DATA PROCESSING

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is based upon and claims the ben-
efit of priority of the prior Japanese Patent Application No.
2014-042834, filed on Mar. 5, 2014, the entire contents of
which are incorporated herein by reference.

FIELD

[0002] The embodiments discussed herein are related to a
data processing apparatus, a data processing method, and a
recording medium storing a computer program for perform-
ing data processing.

BACKGROUND

[0003] Management apparatuses that manage system
backup images (hereinafter referred to as “images”) for
restoring an apparatus, such as a virtual machine (VM), or the
like are provided. A description will be given of an example of
such a management apparatus. A management apparatus does
not hold data that is allowed to be obtained through the
Internet, for example, data held by an external repository, or
the like among data included in the image of the apparatus,
because the data is allowed to be obtained through the Inter-
net. Then, the management apparatus obtains data through
the Internet at predetermined timing, for example, at timing
when the apparatus is restored, or the like, and generates an
image for restoring the apparatus using the obtained data, and
the image data held by the management apparatus.

[0004] Related techniques are disclosed in Japanese Laid-
open Patent Publication Nos. 2000-200208 and 2000-
293420, and Japanese National Publication of International
Patent Application No. 2005-501342.

[0005] However, as described in the following, with data
obtained by the above-described management apparatus,
there is a problem in that when the data held in an external
repository is updated, it is sometimes difficult to deal with the
data in order to restore the apparatus, or the like.

[0006] For example, data held in an external repository is
sometimes updated by a user who uses the external reposi-
tory. Also, an external repository sometimes does not hold all
updated data, and holds only a predetermined number of
generations of the data. Accordingly, even if the above-de-
scribed management apparatus attempts to obtain data before
update at predetermined timing through the Internet, the data
before the update is not held in the external repository, and
thus the management apparatus sometimes fails in obtaining
the data before the update. Also, it is thought that in the case
where the management apparatus is not allowed to obtain the
data before the update, the management apparatus obtains
data after the update, and attempts to generate an image for
restoring the apparatus using the obtained data and the image
data held by the management apparatus. However, since the
obtained data has been updated, there are cases where the
management apparatus fails in generating an image for restor-
ing the apparatus. Accordingly, there is a problem in that it is
difficult to deal with the case, such as to restore the apparatus,
or the like when data held in an external repository is updated
with the above-described obtained data by the management

Sep. 10, 2015

apparatus. In this regard, such a problem occurs not only in
the case where data held by the external repository is updated,
but also in the case where data stored in a storage device other
than the external repository is updated in the same manner.
Also, such a problem is not limited to the problem of unable
to restoring the apparatus.

SUMMARY

[0007] According to an aspect of the embodiments, a non-
transitory, computer-readable recording medium having
stored therein a program for causing a computer to execute a
process, the process comprising: detecting whether second
data, stored in a second storage device, updated from first data
stored in a first storage device has been updated, upon detect-
ing that the second data has been updated, obtaining the
second data before update from the second storage device,
and storing the second data into the first storage device, and
when the second data is contained in the first storage device,
obtaining the second data from the first storage device, and
generating third data using the second data, and the first data.
[0008] The object and advantages of the invention will be
realized and attained by means of the elements and combina-
tions particularly pointed out in the claims.

[0009] Itisto be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the invention,
as claimed.

BRIEF DESCRIPTION OF DRAWINGS

[0010] FIG. 1 is a diagram illustrating an example of a
system configuration to which a management apparatus,
which is an example of a data processing apparatus according
to an embodiment, is applied;

[0011] FIG. 2 is a diagram illustrating a functional configu-
ration of the management apparatus according to the embodi-
ment;

[0012] FIG. 3 is a diagram illustrating an example of a
functional configuration of a decomposition unit according to
the embodiment;

[0013] FIG. 4 is a diagram illustrating an example of a data
list generated by a disk image file acquisition unit;

[0014] FIG. 5 is a diagram illustrating an example of a data
structure of restoration information;

[0015] FIG. 6 is an explanatory diagram of an example of
processing executed by an image decomposition unit;
[0016] FIG. 7 is an explanatory diagram of an example of
processing executed by the image decomposition unit;
[0017] FIG. 8 is a diagram illustrating an example of a
functional configuration of a monitor unit according to the
embodiment;

[0018] FIG. 9 is a diagram illustrating an example of a
functional configuration of a restoration unit according to the
embodiment;

[0019] FIG. 10 is a flowchart illustrating a procedure of
decomposition processing according to the embodiment;
[0020] FIG. 11 is a flowchart illustrating a procedure of
monitor processing according to the embodiment;

[0021] FIG. 12 is a flowchart illustrating a procedure of
restoration processing according to the embodiment;

[0022] FIG. 13 is an explanatory diagram of an example of
processing executed by a management apparatus according to
a variation;

US 2015/0254243 Al

[0023] FIG. 14 is an explanatory diagram of an example of
processing executed by a management apparatus according to
a variation; and

[0024] FIG. 15 is a diagram illustrating a computer that
executes a data processing program.

DESCRIPTION OF EMBODIMENTS

[0025] Inthe following, a detailed description will be given
of'each of embodiments of a data processing program, a data
processing apparatus, and a data processing method accord-
ing to the present disclosure with reference to the drawings. In
this regard, each of the embodiments will not limit the tech-
nique of the disclosure.

[0026] FIG. 1 is a diagram illustrating an example of a
system configuration to which a management apparatus,
which is an example of a data processing apparatus according
to an embodiment, is applied. As illustrated by the example in
FIG. 1, a system 10 includes an external repository server 11,
and a management apparatus 1. The external repository server
11 and the management apparatus 1 are connected through
the Internet 12.

[0027] The external repository server 11 is a server that
stores open source software, and provides the software
through the Internet 12. Such software is updated by a user
who uses the external repository server 11. If certain software
has been updated for a plurality of times, the external reposi-
tory server 11 according to the present embodiment does not
store software of all the generations, but stores software of a
predetermined number of the latest generations (for example,
three generations). The external repository server 11 is, for
example, a Yellowdog Updater Modified (yum) external
repository server, a RedHat Update Infrastructure (RHUI), or
the like. Also, the external repository server 11 is an example
of a storage device, for example.

[0028] The management apparatus 1 restores a VM image
file, for example, a disk image. Here, the management appa-
ratus 1 deletes software stored in the external repository
server 11 from a storage unit 4 in the management apparatus
1 among the software included in the disk image. Thereby, it
is possible for the management apparatus 1 to suppress an
increase in the size of data stored in the storage unit 4 in the
management apparatus 1. Then, the management apparatus 1
performs the following processing in the case of restoring a
VM image file, or the like. That is to say, the management
apparatus 1 downloads the deleted software from the external
repository server 11, and restores the VM image file using the
downloaded software, and the disk image stored in the storage
unit 4 in the management apparatus 1.

[0029] Further, the management apparatus 1 according to
the present embodiment monitors whether the software
deleted from the storage unit 4 in the management apparatus
1 has been updated or not among the software stored in the
external repository server 11. Then, if the software has been
updated, the management apparatus 1 downloads the soft-
ware before the update from the external repository server 11.
Thereby, even if the software has been updated in the external
repository server 11, it is possible for the management appa-
ratus 1 to obtain and to store the software capable of restoring
the VM.

[0030] Example of functional configuration of manage-
ment apparatus 1

[0031] FIG.2is adiagram illustrating a functional configu-
ration of the management apparatus 1 according to the
embodiment. As illustrated in FIG. 2, the management appa-

Sep. 10, 2015

ratus 1 includes an input unit 2, a communication unit 3, a
storage unit 4, and a control unit 5. In this regard, the storage
unit 4 may be an external storage device connected to the
management apparatus 1.

[0032] The input unit 2 inputs various kinds of information
to the control unit 5. For example, if the input unit 2 receives
specification of a target VM on which the below-described
decomposition processing is executed from a user of the
management apparatus 1, the input unit 2 inputs the received
specification of the VM to the control unit 5. Also, if the input
unit 2 receives an instruction of which VM disk image file 4a
is to be restored from the user, the input unit 2 inputs the
received instruction to the control unit 5. As an example of a
device of the input unit 2, a mouse, a keyboard, or the like are
given.

[0033] The communication unit 3 is an interface for per-
forming communication between the management apparatus
1 and the other apparatus, not illustrated in FIG. 2, on which
a VM is operated. The communication unit 3 is connected to
the other apparatuses through the Internet 12 or a network.
[0034] The storage unit 4 stores various kinds of informa-
tion. For example, the storage unit 4 stores a disk image file 4a
for each VM to be restored, restoration information 45 for
each VM, and a file group 4¢ for each VM.

[0035] The disk image file 4a is an image file of a VM disk,
and an image file of a RedHat Package Manager (RPM)
package, for example. Binary files of programs, and the like,
and setting files are put together in the RPM package.
[0036] Therestoration information 45, and the file group 4¢
are information generated by a decomposition unit 5a
described below, and a set of a plurality of files that are put
together, respectively. The details will be described later.
[0037] The storage unit 4 is, for example, a semiconductor
memory element, such as a flash memory, or the like, or a
storage device, such as a hard disk, an optical disc, or the like.
[0038] The control unit 5 includes an internal memory for
storing programs defining various processing procedures,
and control data. A processor included in the management
apparatus 1 executes various kinds of processing using the
programs and the control data. As illustrated in FIG. 2, the
control unit 5 includes a decomposition unit Sa, a monitor
unit 55, and a restoration unit Sc.

[0039] As described in the following, the decomposition
unit 5¢ updates the disk image file 4a, and generates the
restoration information 45, and the file group 4¢. FIG. 3 is a
diagram illustrating an example of a functional configuration
of the decomposition unit according to the embodiment. As
illustrated in FIG. 3, the decomposition unit 5a includes a disk
image file acquisition unit 6a, an external repository acquisi-
tion unit 65, a common part extraction unit 6¢, and an image
decomposition unit 64.

[0040] A description will be given of one mode of the disk
image file acquisition unit 6a. For example, when the disk
image file acquisition unit 6a receives specification of VM on
which the decomposition processing described below is
executed from the input unit 2, the disk image file acquisition
unit 6a obtains a disk image file 4a corresponding to the
specified VM. Then, the disk image file acquisition unit 6a
obtains a list of RPM packages included in the obtained disk
image file 4a, and records the obtained the list of RPM pack-
ages in the data list so as to generate a data list. FIG. 4 is a
diagram illustrating an example of a data list generated by a
disk image file acquisition unit. The example in FIG. 4 illus-
trates a case where the disk image file acquisition unit 6a

US 2015/0254243 Al

recorded various RPM packages, and the like, such as
“MAKEDEV-3.23-1.2.x86_64", “PyXML-0.8.4-4.¢15_4.
2.x86__64" and the like in the data list.

[0041] A description will be given of one mode of the
external repository acquisition unit 6b. The external reposi-
tory acquisition unit 6ba obtains a list of open source software
from the external repository 11.

[0042] A description will be given of one mode of the
common part extraction unit 6¢. The common part extraction
unit 6¢ selects a RPM package recorded in the data list gen-
erated by the disk image file acquisition unit 6a one by one in
sequence. Then, the common part extraction unit 6¢ deter-
mines whether there is the same package as the selected RPM
package in the list of open source software obtained by the
external repository acquisition unit 65 each time the common
part extraction unit 6c¢ select one RPM package.

[0043] If there is the same package as the selected RPM
package in the list of open source software, the common part
extraction unit 6¢ performs the following processing between
the selected RPM package, which is the same package, and
the open source software. That is to say, the common part
extraction unit 6¢ determines whether the contents of the file
included in the RPM package, and the contents of the file
included in the open source software having the same name as
that file match completely for each binary. For example, the
common part extraction unit 6¢ determines whether the file
“/etc/makedev.d” included in the selected RPM package, and
the file “/etc/makedev.d” included in the open source software
match completely for each binary. Then, the common part
extraction unit 6¢ makes a determination of such complete
matching for all the files included in the selected RPM pack-
age.

[0044] A description will be given of one mode of the
image decomposition unit 64. If the common part extraction
unit 6¢ has determined that the two files do not completely
match for each binary, the image decomposition unit 64
extracts the file included in the selected RPM package
between the two files that do not completely match. Then, the
image decomposition unit 64 adds the extracted file to the file
group corresponding to the specified VM. In this manner, the
image decomposition unit 64 newly adds the file changed
from the original file to the file group 4¢ corresponding to the
specified VM.

[0045] For example, the image decomposition unit 6d per-
forms the following processing if the file “httpd.conf”
included in the RPM package “apache”, and the file “httpd.
cont” included in the open source software “apache” do not
completely match. That is to say, the image decomposition
unit 64 newly adds the file “httpd.conf” included in the
selected RPM package “apache” to the file group 4c¢ corre-
sponding to the specified VM.

[0046] Also, if the file “server.xml” included in the RPM
package “tomcat”, and the file “server.xml” included in the
open source software “tomcat” do not completely match, the
image decomposition unit 6d performs the following process-
ing. That is to say, the image decomposition unit 6d newly
adds the file “server.xml” included in the selected RPM pack-
age “tomcat” to the file group 4¢ corresponding to the speci-
fied VM.

[0047] Then, if the common part extraction unit 6¢ deter-
mines that there is the same package as the selected RPM
package in the list of the open source software, the image
decomposition unit 6d performs the following processing.
That is to say, the image decomposition unit 6d deletes the

Sep. 10, 2015

RPM package selected by the common part extraction unit 6¢
from the disk image file 4a corresponding to the specified
VM. Then, the image decomposition unit 64 records the
deleted RPM package in the restoration information 45 cor-
responding to the specified VM.

[0048] FIG. 5 is a diagram illustrating an example of a data
structure of restoration information. The restoration informa-
tion 45 illustrated in the example in FIG. 5 includes the name
“Disklmagel” of the specified VM image, and the name
“DiskImagel File.targz” of the file group 4c¢ corresponding to
the specified VM. Also, the restoration information 44 illus-
trated in the example in FIG. 5 includes various RPM pack-
ages, such as “MAKEDEV-3.23-1.2.x86_ 64, “PyXML-0.
8.4-4.e15_4.2.x86__64”, and the like. Here, the name of the
RPM package included in the restoration information 45 is
the name of the RPM package stored in the external reposi-
tory server 11.

[0049] FIG. 6 and FIG. 7 are explanatory diagrams of
examples of processing executed by the image decomposition
unit. As illustrated in the example in FIG. 6, if the common
part extraction unit 6¢ determines that there is the same pack-
age as the selected RPM package “apache” in the list of the
open source software, the image decomposition unit 64 per-
forms the following processing. That is to say, the image
decomposition unit 64 deletes the RPM package “apache”,
selected by the common part extraction unit 6¢, from the disk
image file 4a corresponding to the specified VM. Then, the
image decomposition unit 6d records the deleted RPM pack-
age “apache” in the restoration information 45 corresponding
to the specified VM.

[0050] Then, as illustrated by the example in FIG. 7, if the
common part extraction unit 6¢ has determined that there is
the same package as the selected RPM package “tomcat” in
the list of the open source software, the image decomposition
unit 64 performs the following processing. That is to say, the
image decomposition unit 64 deletes the RPM package “tom-
cat” selected by the common part extraction unit 6¢ from the
disk image file 4a corresponding to the specified VM. Then,
the image decomposition unit 64 records the deleted RPM
package “tomcat” in the restoration information 45 corre-
sponding to the specified VM.

[0051] Referring back to description of FIG. 2, as described
in the following, the monitor unit 55 monitors whether the
software stored in the external repository server 11 has been
updated or not. If the software has been updated, the monitor
unit 55 obtains the software before the update from the exter-
nal repository server 11. The monitor unit 54 is an example of
the detection unit. FIG. 8 is a diagram illustrating an example
of'a functional configuration of the monitor unit according to
the embodiment. As illustrated by the example in FIG. 8, the
monitor unit 55 includes a restoration information analysis
unit 7a, an external repository acquisition unit 75, and a
restoration information update unit 7c.

[0052] A description will be given of one mode of the
restoration information analysis unit 7a. For example, the
restoration information analysis unit 7a obtains a list of RPM
packages included in the restoration information 45 corre-
sponding to a VM at predetermined time intervals for all the
VMs, and records the list of obtained RPM packages in the
restoration data list so as to generate a restoration data list. For
example, the restoration information analysis unit 7a records
various RPM packages, suchas “MAKEDEV-3.23-1.2.x86__

US 2015/0254243 Al

647, “PyXML-0.8.4-4.e15_4.2.x86_ 647, and the like in the
restoration data list, thereby generating the restoration data
list.

[0053] A description will be given of one mode of the
external repository acquisition unit 7b. The external reposi-
tory acquisition unit 75 downloads a RPM package recorded
in the restoration data list from the external repository server
11 each time the restoration information analysis unit 7a
generates a restoration data list. In this regard, the external
repository acquisition unit 75 does not specify a version when
downloading a RPM package.

[0054] A description will be given of one mode of the
restoration information update unit 7¢. The restoration infor-
mation update unit 7¢ compares the version of the down-
loaded RPM package, and the version of the RPM package
recorded in the restoration data list each time the external
repository acquisition unit 76 downloads a RPM package. For
example, the package name of the RPM package includes a
numeric value representing a version of the package, and thus
the restoration information update unit 7¢ compares the
numeric values representing the versions. The higher this
numeric value, the later version the package represents, for
example. Then, as a result of the comparison, if the version of
the downloaded RPM package is newer than the version of the
RPM package recorded in the restoration data list, the resto-
ration information update unit 7¢ performs the following
processing. That is to say, the restoration information update
unit 7¢ downloads the RPM package of the version (the
version before the update) recorded in the restoration data list
from the external repository server 11. Then, the restoration
information update unit 7¢ adds the file of the downloaded
RPM package to the file group 4c.

[0055] Then, the restoration information update unit 7¢
deletes the RPM package that has been newly added to the file
group 4c from the restoration information 4a.

[0056] Referring back to FIG. 2, the restoration unit 5¢
restores the disk image file 4a as described below. The resto-
ration unit 5c¢ is an example of the generation unit. FIG.9is a
diagram illustrating an example of a functional configuration
of a restoration unit according to the embodiment. As illus-
trated by the example in FIG. 9, the restoration unit 5¢
includes a restoration information analysis unit 8a, an exter-
nal repository acquisition unit 85, and an image restoration
unit 8c.

[0057] A description will be given of one mode of the
restoration information analysis unit 8a. For example, when
an instruction of restoring the disk image file 4a of which VM
is input from the input unit 2, the restoration information
analysis unit 8« identifies the restoration information 456 cor-
responding to the VM to which the disk image file 4a is
restored. Then, the restoration information analysis unit 8a
obtains a list of RPM packages included in the identified
restoration information 45. Then, the restoration information
analysis unit 8a records the list of obtained RPM packages in
the restoration data list so as to generate a restoration data list.
For example, the restoration information analysis unit 8a
records various RPM packages, such as “MAKEDEV-3.23-
1.2.x86__64", “PyXML-0.8.4-4.e15_4.2.x86_ 64", and the
like in the restoration data list to generate the restoration data
list.

[0058] A description will be given of one mode of the
external repository acquisition unit 85. Each time the resto-
ration information analysis unit 8¢ generates a restoration
data list, the external repository acquisition unit 85 down-

Sep. 10, 2015

loads a RPM package recorded in the restoration data list
from the external repository server 11. In this regard, the
external repository acquisition unit 85 specifies a version at a
time when downloading a RPM package.

[0059] A description will be given of one mode of the
image restoration unit 8¢. The image restoration unit 8¢
installs the downloaded RPM package in the disk image file
4a each time the external repository acquisition unit 85 down-
loads a RPM package for each VM. Further, the image resto-
ration unit 8¢ copies the file group 4c to the disk image file 4a
for each VM. Thereby, a disk image file 4a from whicha VM
is allowed to be restored is generated.

[0060] The control unit 5 is a circuit, such as an application
specific integrated circuit (ASIC), a field programmable gate
array (FPGA), a central processing unit (CPU), a micro pro-
cessing unit (MPU), or the like.

[0061] Processing Flow

[0062] Next, a description will be given of various process-
ing flows executed by the management apparatus 1 according
to the embodiment. FIG. 10 is a flowchart illustrating a pro-
cedure of decomposition processing according to the embodi-
ment. The decomposition processing according to the
embodiment is executed by the control unit 5 in the case
where the input unit 2 inputs a specification ofa VM on which
the decomposition processing is executed to the control unit
5, for example.

[0063] As illustrated in FIG. 10, the disk image file acqui-
sition unit 6a obtains the disk image file 4a corresponding to
the specified VM. Then, the disk image file acquisition unit 6a
obtains a list of RPM packages included in the obtained disk
image file 4a, and records the list of obtained RPM packages
in the data list so as to generate the data list (S101).

[0064] The external repository acquisition unit 65 obtains a
list of open source software from the external repository 11
(S102).

[0065] The common part extraction unit 6c determines
whether there are any unselected RPM packages in the RPM
package recorded in the data list generated by the disk image
file acquisition unit 6a or not (S103). If there are unselected
RPM packages (S103; Yes), the common part extraction unit
6¢ selects one unselected RPM package (S104).

[0066] Then, the common part extraction unit 6¢ deter-
mines whether there are the same package as the selected
RPM package in the list of the open source software obtained
by the external repository acquisition unit 65 or not (S105).

[0067] If there are the same package in the list of the open
source software (S105; Yes), the image decomposition unit 64
deletes the RPM package selected by the common part extrac-
tion unit 6¢ from the disk image file 4a corresponding to the
specified VM (S106). Then, the image decomposition unit 64
records the deleted RPM package in the restoration informa-
tion 4b corresponding to the specified VM (S107).

[0068] Then, the common part extraction unit 6¢ deter-
mines whether there are unselected files in the files included
in the selected RPM package (S108). If there are unselected
files (S108; Yes), the common part extraction unit 6¢ selects
one unselected file (S109). Then, the common part extraction
unit 6¢ determines whether the contents of the selected file of
the same package, and the contents of the file included in the
open source software having the same name completely
match for each binary (S110). If the contents completely
match (S110; Yes), the common part extraction unit 6¢ returns
to S108.

US 2015/0254243 Al

[0069] On the other hand, if the contents do not completely
match (S110; No), the common part extraction unit 6c¢
extracts a file included in the selected RPM package out of the
two files determined not to completely match. Then, the
image decomposition unit 64 adds the extracted file to the file
group 4c¢ corresponding to the specified VM (S111), and
returns to S108.

[0070] On the other hand, if there are no unselected files
(S8108; No), or if there are no same packages in the list of the
open source software (S105; No), the processing returns to
S103.

[0071] Then, if there are no unselected RPM package
(8103; No), the common part extraction unit 6¢ terminates the
processing.

[0072] FIG.11 is a flowchart illustrating a procedure of the
monitor processing according to the embodiment. The moni-
tor processing according to the embodiment is executed by
the control unit 5 at predetermined time intervals, for
example.

[0073] Asillustratedin FIG. 11, the restoration information
analysis unit 7a obtains a list of the RPM packages included
in the restoration information 45 corresponding to a VM at
predetermined time intervals for all the VMs. Then, the res-
toration information analysis unit 7a records the list of
obtained RPM packages in the restoration data list so as to
generate a restoration data list (S201).

[0074] Each time the restoration information analysis unit
7a generates a restoration data list, the external repository
acquisition unit 76 downloads a RPM package recorded in the
restoration data list from the external repository server 11
(8202). In this regard, the external repository acquisition unit
7b does not specify a version when downloading a RPM
package.

[0075] Then, the restoration information update unit 7¢
compares the version of the downloaded RPM package, and
the version of the RPM packages recorded in the restoration
data list. Then, the restoration information update unit 7¢
determines whether the version of the downloaded RPM
package is newer than the version of the RPM package
recorded in the restoration data list or not as a result of the
comparison (S203).

[0076] If the downloaded RPM package is newer (S203;
Yes), the restoration information update unit 7¢ performs the
following processing. That is to say, the restoration informa-
tion update unit 7¢ downloads the RPM package of the ver-
sion (version before the update) recorded in the restoration
data list from the external repository server 11 (S204). Then,
the restoration information update unit 7¢ adds the file of the
downloaded RPM package to the file group 4¢ (S205).
[0077] Then, the restoration information update unit 7¢
deletes the RPM package that has been newly added to the file
group 4¢ from the restoration information 4a (S206), and
terminates the processing. Also, if the downloaded RPM
package is not newer (S203; No), the restoration information
update unit 7¢ terminates the processing.

[0078] FIG.12 is a flowchart illustrating a procedure of the
restoration processing according to the embodiment. The res-
toration processing according to the embodiment is executed
by the control unit 5 when an instruction of restoring the disk
image file 4a of which VM is restored is input from the input
unit 2, for example.

[0079] Asillustratedin FIG. 12, the restoration information
analysis unit 8« identifies the restoration information 456 cor-
responding to the VM whose disk image file 4a is to be

Sep. 10, 2015

restored. Then, the restoration information analysis unit 8a
obtains the list of RPM packages included in the identified
restoration information 45. Then, the restoration information
analysis unit 8a records the list of obtained RPM packages in
the restoration data list so as to generate a restoration data list
(S301).

[0080] The external repository acquisition unit 85 down-
loads the RPM package recorded in the restoration data list
from the external repository server 11 (S302). In this regard,
the external repository acquisition unit 85 specifies a version
at a time when downloading the RPM package.

[0081] The image restoration unit 8¢ installs the down-
loaded RPM package in the disk image file 4a for each VM.
Further, the image restoration unit 8¢ copies the disk image
file 4a to the file group 4c¢ for each VM, generates the disk
image file 4a capable of restoring the VM (S303), and termi-
nates the processing.

[0082] As described above, the management apparatus 1
determines whether the software stored in the external reposi-
tory server 11, which was associated with the disk image file
4a stored in the storage unit 4, has been updated. Then, if
determined that the software has been updated, the manage-
ment apparatus 1 obtains the software before the update from
the external repository server 11, and stores the software into
the storage unit 4. Then, if there is software before the update
in the storage unit 4, the management apparatus 1 obtains the
software before the update from the storage unit 4, and gen-
erates the disk image file 4a capable of restoring the VM using
the software before the update, and the disk image file 4a.
Accordingly, with the management apparatus 1, it becomes
possible to restore a VM even if the data stored in the external
repository server 11 is updated.

[0083] Also, the management apparatus 1 determines
whether part of data of a VM image file has been updated or
not. Then, the management apparatus 1 generates the image
file capable of restoring a VM using the part of data of the VM
image file held by the management apparatus 1, and part of
data of the image file of the downloaded VM before the
update.

[0084] Now, a description has been given of the embodi-
ments on the apparatus disclosed so far. However, the present
disclosure may be carried out in various modes other than the
embodiment described above.

[0085] For example, it is possible for the disclosed appara-
tus to receive an update of the recorded contents of the resto-
ration information 45 by a user through the inputunit 2. In this
case, it is possible for the disclosed apparatus to download the
RPM package recorded the restoration information 45 using
the restoration information 45 whose record contents have
been updated from the external repository server 11, and to
restore the disk image file 4a. Thereby, it is possible to update
the version, and the like of the RPM package of the VM at
restoration time to a new version by simple operation of
updating the restoration information 44. FIG. 13 is an
explanatory diagram of an example of processing executed by
a management apparatus according to a variation. The
example in FIG. 13 illustrates the case where the management
apparatus has received an update from the RPM packages of
“apache v1” and “tomcat v1”, which are recorded in the
restoration information 4b, to the RPM packages of “apache
v2”, and “tomcat v2” through the input unit 2. In the case of
the example in FIG. 13, the management apparatus down-
loads the RPM packages of “apache v2” and “tomcat v2”,
recorded in the restoration information 45, from the external

US 2015/0254243 Al

repository server 11, and restores the disk image file 4a.
Accordingly, it is possible to update the versions of “apache”,
and “tomcat” of the VM at restoration time to new versions by
simple operation of updating the restoration information 45.
[0086] Also, it is possible for the disclosed apparatus to
control not to download the RPM package when detecting an
update of a RPM package stored in the external repository
server 11 if the update is minor. Here, as an example of the
case where the update is minor, for example, a case where the
update of the RPM package is simple bug fixes is given. FIG.
14 is an explanatory diagram of an example of processing
executed by the management apparatus according to a varia-
tion. As illustrated in FIG. 14, it is possible for the manage-
ment apparatus to control not to download “apache v1.0.0”
before the update if a minor update of the bug fixes from
“apache v1.0.0” to “apache v1.0.1” is detected. Thereby, in
the case of a minor update, or the like, it is possible to suppress
downloading the RPM package that is not so different func-
tionally, and thus to reduce processing load of the manage-
ment apparatus.

[0087] In this regard, if there is an update, the disclosed
apparatus downloads the RPM package before the update.
Then, it is possible for the disclosed apparatus to control as to
whether to restore the image, or not to restore the image based
on the information on the update, which is added to the
downloaded RPM package by the external repository server
11. For example, if the RPM package is updated in order to
cope with vulnerability, the downloaded RPM package has
vulnerability. If a VM is restored using the RPM package
downloaded at this time, the restored VM has vulnerability.
Thus, if the information on the added update indicates an
update coping with vulnerability, it is possible for the man-
agement apparatus to control not to restore the image using
the downloaded RPM package.

[0088] Also, among each processing described in each
embodiment, it is possible to manually perform all of or part
of the processing that is described as being performed auto-
matically. Also, among each processing described in each
embodiment, it is possible to automatically perform, by a
publicly known method, all of or part of the processing that is
described as being performed manually.

[0089] Also, it is possible to divide each step of each pro-
cessing described in each embodiment into any detailed parts,
or to put together each step in accordance with various loads,
a use state, or the like. Also, it is possible to omit a step.
[0090] Also, it is possible to change an order of processing
in each step of each processing described in each embodiment
in accordance with various loads, a use state, or the like.
[0091] Also, each component of each device illustrated in
the figures is conceptual and functional element, and not has
to be physically configured as illustrated in the figures. That is
to say, a specific state of distribution and integration of each
device is not limited to that illustrated in the figures, and it is
possible to configure all of or part of each device by function-
ally or physically distributing or integrating the device in any
units in accordance with various loads, a use state, and the
like.

[0092] Data Processing Program

[0093] Also, it is possible to achieve various kinds of pro-
cessing of the management apparatus 1, described in the
above-described embodiment, by executing a program pro-
vided in advance on a computer system, such as a personal
computer, a workstation, or the like. Thus, in the following, a
description will be given of an example of a computer execut-

Sep. 10, 2015

ing a data processing program having the same functions as
those of the management apparatus 1 described in the above-
described embodiment with reference to FIG. 15. FIG. 15is a
diagram illustrating a computer that executes the data pro-
cessing program.

[0094] Asillustrated in FIG. 15, a computer 300 includes a
CPU 310, a ROM 320, a hard disk drive (HDD) 330, and a
RAM 340. The individual devices 310 to 340 are connected
through a bus 350.

[0095] The ROM 320 stores a basic program, such as an
operating system (OS), and the like. Also, the HDD 330 stores
a data processing program 330a that performs the same func-
tions as those of the decomposition unit Sa, the monitor unit
5b, and the restoration unit 5S¢, which are illustrated in the
above-described embodiments, in advance.

[0096] Then, the CPU 310 reads a data processing program
330a from the HDD 330 to execute the program.

[0097] In this regard, the above-described data processing
program 330a does not have to be stored in the HDD 330 from
the beginning.

[0098] For example, the data processing program 330a is
stored in a “portable physical medium”, such as a flexible disk
(FD), a CD-ROM, a DVD disc, a magneto-optical disc, an IC
card, or the like, which is to be inserted into the computer 300.
Then, the computer 300 may read the data processing pro-
gram 330a from one of these, and execute the program.

[0099] Further, the data processing program 330a may be
stored in “another computer (or a server)”, or the like, which
is connected to the computer 300 through a public network,
the Internet, a LAN, a WAN, or the like. Then, the computer
300 may read the data processing program 330a from one of
these, and execute the program.

[0100] AIl examples and conditional language recited
herein are intended for pedagogical purposes to aid the reader
in understanding the invention and the concepts contributed
by the inventor to furthering the art, and are to be construed as
being without limitation to such specifically recited examples
and conditions, nor does the organization of such examples in
the specification relate to a showing of the superiority and
inferiority of the invention. Although the embodiments ofthe
present invention have been described in detail, it should be
understood that the various changes, substitutions, and alter-
ations could be made hereto without departing from the spirit
and scope of the invention.

What is claimed is:

1. A non-transitory, computer-readable recording medium
having stored therein a program for causing a computer to
execute a process, the process comprising:

detecting whether second data, stored in a second storage
device, updated from first data stored in a first storage
device has been updated,

upon detecting that the second data has been updated,
obtaining the second data before update from the second
storage device, and storing the second data into the first
storage device, and

when the second data is contained in the first storage
device, obtaining the second data from the first storage
device, and generating third data using the second data,
and the first data.

2. The non-transitory, computer-readable recording
medium according to claim 1,

US 2015/0254243 Al

wherein the detecting whether second data has been
updated includes detecting whether the second data
being data of part of a device image file has been
updated, and

the generating third data includes generating the device

image file using data of part of the device image file held
by the computer, and the second data.

3. The non-transitory, computer-readable recording
medium according to claim 1,

wherein the detecting whether second data has been

updated includes detecting whether the second data
recorded in predetermined information has been
updated, and if record contents of the predetermined
information has been updated, detecting whether data
recorded in the updated predetermined information has
been updated.

4. The non-transitory, computer-readable recording
medium according to claim 1,

wherein the obtaining the second data before update, and

the storing the second data into the first storage device
includes performing control as to whether to obtain the
second data before the update, or not to obtain the sec-
ond data before the update in accordance with a detected
update state.

5. The non-transitory, computer-readable recording
medium according to claim 1,

wherein the generating third data includes performing con-

trol as to whether to generate the third data or not in
accordance with a detected update type.

6. The non-transitory, computer-readable recording
medium according to claim 1, wherein each of the first data
and the second data is system backup image data over the
Internet.

7. A data processing apparatus, comprising:

a memory; and

a processor coupled to the memory, and configured to
execute a process including,

detecting whether second data updated from first data,
stored in a second storage device, associated with the
first data stored in a first storage device has been
updated,

Sep. 10, 2015

upon detecting that the second data has been updated,
obtaining the second data before update from the second
storage device, and storing the second data into the first
storage device, and

when the second data is contained in the first storage
device, obtaining the second data from the first storage
device, and generating third data using the second data,
and the first data.

8. The data processing apparatus according to claim 7,

wherein the detecting whether second data has been
updated includes detecting whether the second data
being data of part of a device image file has been
updated, and

the generating third data includes generating the device
image file using data of part of the device image file held
by the processor.

9. The data processing apparatus, according to claim 7,

wherein each of the first data and the second data is system
backup image data over the Internet.

10. A method of processing data for a computer to execute

a process, comprising:

detecting whether second data, stored in a second storage
device, associated with first data stored in a first storage
device has been updated or not,

upon detecting that the second data has been updated,
obtaining the second data before update from the second
storage device, and storing the second data into the first
storage device, and

when the second data is contained in the first storage
device, obtaining the second data from the first storage
device, and generating third data using the second data,
and the first data.

11. The method of processing data, according to claim 10,

wherein the detecting whether second data has been
updated includes detecting whether the second data
being data of part of a device image file has been
updated, and

the generating third data includes generating the device
image file using data of part of the device image file held
by the computer, and the second data.

12. The method of processing data, according to claim 10,

wherein each of the first data and the second data is system
backup image data over the Internet.

#* #* #* #* #*

