
US 20230008622A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2023/0008622 A1

Boyd et al . (43) Pub . Date : Jan. 12 , 2023

(54) KERNEL DECOMPOSITION AND
ACTIVATION BROADCASTING IN DEEP
NEURAL NETWORKS (DNNS)

(52) U.S. CI .
CPC G06F 9/5027 (2013.01) ; G06F 7/5443

(2013.01) ; G06F 7/50 (2013.01)

(57) ABSTRACT

(71) Applicants : Richard Boyd , Ballynahinch (GB) ;
David Thomas Bernard , Kilcullen
(IE) ; Deepak Abraham Mathaikutty ,
Chandler , AZ (US) ; Martin Power ,
Dublin (IE) ; Niall Hanrahan , Galway
(IE)

(72) Inventors : Richard Boyd , Ballynahinch (GB) ;
David Thomas Bernard , Kilcullen
(IE) ; Deepak Abraham Mathaikutty ,
Chandler , AZ (US) ; Martin Power ,
Dublin (IE) ; Niall Hanrahan , Galway
(IE)

(21) Appl . No .: 17 / 934,265

An DNN accelerator may perform 1xN kernel decomposi
tion to decompose a convolutional kernel into kernel vec
tors , each of which includes multiple weights . Through the
kernel decomposition , a weight operand may be generated
from a filter . The DNN accelerator converts an input tensor
into input operands . An input operand includes activations
and has the same size as the weight operand . The DNN
accelerator may read a first activation in the input operand
from memory to an internal memory of a first PE and read
a second activation in the input operand from the memory to
an internal memory of a second PE . The first PE may receive
the second activation from the second PE through activation
broadcasting between the two PEs and perform MAC opera
tions on the input operand and weight operand . The second
PE may perform MAC operations on another input operand
in the input tensor and the weight operand .

(22) Filed : Sep. 22 , 2022

Publication Classification

(51) Int . Ci .
G06F 9/50
GO6F 7/544
G06F 7/50

(2006.01)
(2006.01)
(2006.01)

DNN
100

150 160
163

183 193 Object
115
Object
125

190

180

Object
135

Convolutional Layer 110

Pooling layer 120

C Fully Connected Layer 130
Input Image

105

NNG 100

140

150

Patent Application Publication

160

163
er

D

1111

183

Object 115

193

190

Object 125

180

Jan. 12 , 2023 Sheet 1 of 14

Object 135

Convolutional Layer 110 Pooling Layer 120 Fully Connected Layer 130

Input Image 105

US 2023/0008622 A1

FIG . 1

Y

X
X +

Filters 220

Patent Application Publication

Output Tensor 230

Z
Input Tensor 210

Vector 235

__

Subtensor 215

*

Il

Jan. 12 , 2023 Sheet 2 of 14 US 2023/0008622 A1

FIG . 2

DNN Accelerator 300

Patent Application Publication

Memory 310

Kernel Decomposing Module 320 PE Array 340

Tensor Decomposing Module 330

Jan. 12 , 2023 Sheet 3 of 14

Internal Memories 350

Data Read Module 360

US 2023/0008622 A1

FIG . 3

Y

Patent Application Publication

X

Filter 410

Weight Operand 420

7

int BORDE

2

TES THE

Weight Segment 425C

Weight Segment 425B

Jan. 12. 2023 Sheet 4 of 14

Weight Segment 425A

FIG . 4

US 2023/0008622 A1

Weight operand 530

Filter 510

Expanded Filter 520

Patent Application Publication

: ???

Dummy Array 525

ente M2

5351 535)

535H

????

535G
535F

5350 535E

Jan. 12 , 2023 Sheet 5 of 14

535C
535B

535A

US 2023/0008622 A1

FIG . 5

Input Operand 615A

Patent Application Publication

...

Input Operand 615B

Tensor 610

Input Operand 6150

??

X1 X2

N

XO) X1 X2 X3

Input Operand 615D

M

Jan. 12 , 2023 Sheet 6 of 14

X1 X2 X3 X2 X3
X3

FIG . 6

US 2023/0008622 A1

Input Register File 713

Multiplier 715

Weight Register File 717

X

X2

1 X1

??

FXO

FX1

FX2

Patent Application Publication

Input Register File 723

Multiplier 725

Weight Register File 727

X3

1 X2

X1

X

FXO

FX1

FX2

Input Register File 733

Multiplier 735

Weight Register File

7

E

Jan. 12 , 2023 Sheet 7 of 14

I

1 X3

X2

X

FXO

FX1

FX2

be

Input Register File 743

Multiplier 745

Weight Register File 747

1 1

X3

X

FXO

FX1

1 1
L

FX2

US 2023/0008622 A1

FIG . 7

Patent Application Publication

TO

T1

T2

T3

T4

T5

T6

17

T8

T9

T10 T11 T12T13 T14 115 116 117

|

PEO

XO

X1

X2

X4

X5

X6

X8

X9

X10

X12X13X14

PE1

X1

X2

X3

X5

X6

X7

X9

X10 X11

X13X14 X15

PE2

X2

X3

X4

X6

X7

X8

X10 X11 X12

X14 X15X16

PE3

X3

X4

X5

X7

X8

X9

X11 X12 | X13

X15 | X16 X17

?

Jan. 12 , 2023 Sheet 8 of 14

Re - use

1

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

2

1

Rate

FIG . 8

US 2023/0008622 A1

900

905

905

905

PE

PE 910

PE 910

Patent Application Publication

910

PE 910

PE 910

PE 910

950
960
970

...

PE 910

PE 910

PE 910

Jan. 12 , 2023 Sheet 9 of 14

Column Buffer 920

Column Buffer 920

Column Buffer 920

Load Drain 930 940

Load 930
Drain 940

Load Drain 930 940

US 2023/0008622 A1

FIG.9

PE 910

Patent Application Publication

Input Register File 1040

Weight Register File 1050

Output Register File 1060

Jan. 12 , 2023 Sheet 10 of 14

Multiplier 1070

Accumulator 1080 FIG . 10

US 2023/0008622 A1

1100

a

Convert at least a portion of a filter for a convolution into a weight operand by decomposing a kernel of the convolution to form a plurality of kernel vectors , wherein the kernel comprises
weights arranged in rows and columns , the kernel has a width determined by a number of weights in a row and a height determined by a number of weights in a column , and a kernel vector corresponds to a respective row in the kernel and comprises weights in the respective row 1110

Patent Application Publication

Convert an input tensor of the convolution into a plurality of input operands , wherein an input
operand comprises activations , and a spatial size of the input operand is the same as a spatial size

of the weight operand 1120 Read a first activation in the input operand from a memory into an internal memory of a first processing element 1130

Jan. 12 , 2023 Sheet 11 of 14

Transmit a second activation in the input operand from an internal memory of a second processing element into the internal memory of the first processing element , wherein the first processing element is to perform MAC operations with the input operand and the weight operand 1140

US 2023/0008622 A1

FIG . 11

Deep Learning Environment 1200 Deep Learning Server 1210

Patent Application Publication

DNN System 1240

Database 1250

Distributer 1260

Network 1230

Jan. 12 , 2023 Sheet 12 of 14

Client Device 1220

Client Device 1220

Client Device 1220

US 2023/0008622 A1

FIG . 12

DNN System 1300

Patent Application Publication

Interface Module 1310

Training Module 1320

Validation Module 1330

Interference Module 1340

Jan. 12 , 2023 Sheet 13 of 14

Memory 1350

US 2023/0008622 A1

FIG . 13

COMPUTING DEVICE 1400

PROCESSING DEVICE 1402

COMMUNICATION CHIP 1412

Patent Application Publication

A

MEMORY 1404

BATTERY / POWER 1414

T E Z v Z Z N N

DISPLAY DEVICE 1406

GPS DEVICE 1416

A

Jan. 12 , 2023 Sheet 14 of 14

1422

AUDIO OUTPUT DEVICE 1408

AUDIO INPUT DEVICE 1418

OTHER OUTPUT DEVICE 1410

OTHER INPUT DEVICE 1420

US 2023/0008622 A1

FIG . 14

US 2023/0008622 A1 Jan. 12 , 2023
1

DETAILED DESCRIPTION KERNEL DECOMPOSITION AND
ACTIVATION BROADCASTING IN DEEP

NEURAL NETWORKS (DNNS)

TECHNICAL FIELD

[0001] This disclosure relates generally to neural net
works , and more specifically , to kernel decomposition and
activation broadcasting in DNNs .

BACKGROUND
[0002] DNNs are used extensively for a variety of artificial
intelligence applications ranging from computer vision to
speech recognition and natural language processing due to
their ability to achieve high accuracy . However , the high
accuracy comes at the expense of significant computation
cost . DNNs have extremely high computing demands as
each inference can require hundreds of millions of MAC
(multiple - accumulate) operations as well as hundreds of
millions of weight operand weights to be stored for classi
fication or detection . Therefore , techniques to improve effi
ciency of DNNs are needed .

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Embodiments will be readily understood by the
following detailed description in conjunction with the
accompanying drawings . To facilitate this description , like
reference numerals designate like structural elements .
Embodiments are illustrated by way of example , and not by
way of limitation , in the figures of the accompanying
drawings .
[0004] FIG . 1 illustrates an example layer structure of a
DNN , in accordance with various embodiments .
[0005] FIG . 2 illustrates an example convolution , in accor
dance with various embodiments .
[0006] FIG . 3 is a block diagram of an example DNN
accelerator , in accordance with various embodiments .
[0007] FIG . 4 illustrates an example process of decom
posing a filter , in accordance with various embodiments .
[0008] FIG . 5 illustrates another example process of
decomposing a filter , in accordance with various embodi
ments .
[0009] FIG . 6 illustrates an example process of decom
posing an input tensor , in accordance with various embodi
ments .
[0010] FIG . 7 illustrates an example process of broadcast
ing activations between processing elements (PEs) , in accor
dance with various embodiments .
[0011] FIG . 8 illustrates another example process of
broadcasting activations between PEs , in accordance with
various embodiments .
[0012] FIG . 9 illustrates an example PE array , in accor
dance with various embodiments .
[0013] FIG . 10 is a block diagram of an example PE , in
accordance with various embodiments .
[0014] FIG . 11 is a flowchart showing a method of deep
learning , in accordance with various embodiments .
[0015] FIG . 12 illustrates a deep learning (DL) environ
ment , in accordance with various embodiments .
[0016] FIG . 13 is a block diagram of an example DNN
system , accordance with various embodiments .
[0017] FIG . 14 is a block diagram of an example comput
ing device , in accordance with various embodiments .

[0018] Overview
[0019] DNNs are widely used in the domains of computer
vision , speech recognition , image , and video processing
mainly due to their ability to achieve beyond human - level
accuracy . However , the improvements in accuracy come at
the expense of significant computation cost . The underlying
DNNs have extremely high computing demands as each
input requires at least hundreds of millions of MAC opera
tions as well as hundreds of millions of weight operand
weights to be processed for classification or detection .
Energy constrained mobile systems and embedded systems ,
where energy and area budgets are extremely limited , often
use area and energy efficient DNN accelerators as the
underlying hardware for executing machine learning appli
cations .
[0020] Sparsity can be leveraged in DNN accelerators that
perform convolutions , such as depthwise convolution , in
which existing convolution hardware may be reused . How
ever , the depthwise convolution by sparsity method can limit
the amount of processing performed by each MAC unit (also
referred to as PE) . In many cases , 116 of the PEs in the DNN
accelerator are utilized . In other words , the utilization or
efficiency of the DNN accelerator is limited to a maximum
of 6.25 % in theory but even lower in practice . The efficiency
of the DNN accelerator can be even lower due to an increase
in bandwidth demands . Currently available DL technologies
can make effective reuse of sparse convolution hardware but
has no activation reuse and therefore , fails to effectively
enhance efficiency of DNN accelerators . Thus , improved
technology for enhancing efficiency of DNN accelerators is
needed .
[0021] Embodiments of the present disclosure may
improve on at least some of the challenges and issues
described above by providing DNN accelerators that facili
tate 1xN kernel decomposition and activation broadcasting .
An example DNN accelerator can convert a HxW kernel of
a convolution into 1xN kernel vectors , where H is the height
of the kernel and may equal the number of weights in a
column in the kernel , and W is the width of the kernel and
may equal the number of weights in a row in the kernel . A
kernel vector includes N weights . N is an integer that is
larger than 1 but not larger than W. In embodiments where
N is not an integral divisor of W , the DNN accelerator may
add dummy weights to the kernel . The dummy weights may
be arranged in one or more columns to increase W so that N
can be an integral divisor of W.
[0022] With the 1xN kernel decomposition , the DNN
accelerator converts an input tensor of the convolution into
input operands , and an input operand may include N acti
vations . The DNN accelerator may not need to go through
the kernel - X loop as it effectively folds the kernel - X loop
into the spatial X loop that steps across the input tensor .
Also , as the kernel slides across the input tensor during the
convolution , different input operands , which is to be pro
cessed by different PEs , may include a same activation . The
activation can be read into the internal memory of one of the
PEs and broadcasted from the PE to the other PE (s) . This
way , the number of read operations needed for the convo
lution can be reduced .
[0023] In an example convolution where an input tensor
has a width of 18 activations and the kernel is a 3x3 kernel ,
the kernel may be decomposed into 1x3 kernel vectors . The
input tensor may be decomposed into 16 input operands , and

a a

a

US 2023/0008622 A1 Jan. 12 , 2023
2

a

an input operand may include 3 activations . The 18 activa
tions can be loaded into a PE array through 18 read opera
tions . Then the activations can be broadcasted between PEs
in the PE array . In contrast , a DNN accelerator , which does
not facilitate activation broadcasting , needs to perform 48
(which equals 16 times 3) read operations . Also , for a DNN
accelerator that performs the conventional 1x1 kernel
decomposition , the DNN accelerator would decompose the
input tensor into 18x18 = 324 (assuming the height of the
input tensor is the same as its width) input operands , which
can require 324 read operations .
[0024] Thus , the 1xN kernel decomposition and activation
broadcasting in the present disclosure can significantly
reduce the number of read operations and therefore , reduces
the number of memory accesses and bandwidth demands in
convolutions . This can be beneficial for depthwise convo
lution , which is typically limited by memory bandwidth .
Also , the activation broadcasting between PEs can also
increase the utilization of PEs . Compared with currently
available DNN accelerators , the DNN accelerator in the
present disclosure can have much better efficiency and
performance .
[0025] For purposes of explanation , specific numbers ,
materials and configurations are set forth in order to provide
a thorough understanding of the illustrative implementa
tions . However , it will be apparent to one skilled in the art
that the present disclosure may be practiced without the
specific details or / and that the present disclosure may be
practiced with only some of the described aspects . In other
instances , well known features are omitted or simplified in
order not to obscure the illustrative implementations .
[0026] Further , references are made to the accompanying
drawings that form a part hereof , and in which is shown , by
way of illustration , embodiments that may be practiced . It is
to be understood that other embodiments may be utilized
and structural or logical changes may be made without
departing from the scope of the present disclosure . There
fore , the following detailed description is not to be taken in
a limiting sense .
[0027] Various operations may be described as multiple
discrete actions or operations in turn , in a manner that is
most helpful in understanding the claimed subject matter .
However , the order of description should not be construed as
to imply that these operations are necessarily order depen
dent . In particular , these operations may not be performed in
the order of presentation . Operations described may be
performed in a different order from the described embodi
ment . Various additional operations may be performed , or
described operations may be omitted in additional embodi
ments .
[0028] For the purposes of the present disclosure , the
phrase “ A and / or B ” means (A) , (B) , or (A and B) . For the
purposes of the present disclosure , the phrase “ A , B , and / or
C ” means (A) , (B) , (C) , (A and B) , (A and C) , (B and C) , or
(A , B , and C) . The term “ between , ” when used with refer
ence to measurement ranges , is inclusive of the ends of the
measurement ranges .
[0029] The description uses the phrases “ in an embodi
ment ” or “ in embodiments , ” which may each refer to one or
more of the same or different embodiments . The terms
" comprising , " " including , " " having , " and the like , as used
with respect to embodiments of the present disclosure , are
synonymous . The disclosure may use perspective - based
descriptions such as “ above , " “ below , ” “ top , " “ bottom , " and

“ side ” to explain various features of the drawings , but these
terms are simply for ease of discussion , and do not imply a
desired or required orientation . The accompanying drawings
are not necessarily drawn to scale . Unless otherwise speci
fied , the use of the ordinal adjectives " first , ” “ second , ” and
“ third , ” etc. , to describe a common object , merely indicate
that different instances of like objects are being referred to ,
and are not intended to imply that the objects so described
must be in a given sequence , either temporally , spatially , in
ranking or in any other manner .
[0030] In the following detailed description , various
aspects of the illustrative implementations will be described
using terms commonly employed by those skilled in the art
to convey the substance of their work to others skilled in the
art .
[0031] The terms “ substantially , " " close , " " approxi
mately , ” “ near , ” and “ about , ” generally refer to being within
+/- 20 % of a target value based on the input operand of a
particular value as described herein or as known in the art .
Similarly , terms indicating orientation of various elements ,
e.g. , " coplanar , ” “ perpendicular , ” “ orthogonal , ” “ parallel , ”
or any other angle between the elements , generally refer to
being within +/- 5-20 % of a target value based on the input
operand of a particular value as described herein or as
known in the art .
[0032] In addition , the terms “ comprise , " " comprising , "
“ include , ” “ including , ” “ have , ” “ having ” or any other varia
tion thereof , are intended to cover a non - exclusive inclusion .
For example , a method , process , device , or DNN accelerator
that comprises a list of elements is not necessarily limited to
only those elements but may include other elements not
expressly listed or inherent to such method , process , device ,
or DNN accelerators . Also , the term “ or ” refers to an
inclusive “ or ” and not to an exclusive “ or . ”
[0033] The DNN systems , methods and devices of this
disclosure each have several innovative aspects , no single
one of which is solely responsible for all desirable attributes
disclosed herein . Details of one or more implementations of
the subject matter described in this specification are set forth in the description below and the accompanying drawings .
[0034] Example DNN Layer Structure
[0035] FIG . 1 illustrates an example layer structure of a
DNN 100 , in accordance with various embodiments . The
DNN 100 is trained to receive images and output classifi
cations of objects in the images . In the embodiments of FIG .
1 , the DNN 100 receives an input image 105 that includes
objects 115 , 125 , and 135. The DNN 100 includes a
sequence of layers comprising a plurality of convolutional
layers 110 (individually referred to as " convolutional layer
110 ”) , a plurality of pooling layers 120 (individually
referred to as “ pooling layer 120 ”) , and a plurality of fully
connected layers 130 (individually referred to as “ fully
connected layer 130 ”) . In other embodiments , the DNN 100
may include fewer , more , or different layers .
[0036] The convolutional layers 110 summarize the pres
ence of features in the input image 105. The convolutional
layers 110 function as feature extractors . The first layer of
the DNN 100 is a convolutional layer 110. In an example , a
convolutional layer 110 performs a convolution on an input
tensor 140 (also referred to as IFM (input feature map) 140)
and a filter 150. As shown in FIG . 1 , the IFM 140 is
represented by a 7x7x3 3D matrix . The IFM 140 includes 3
input channels , each of which is represented by a 7x7 2D
array . The 7x7 2D array includes 7 input elements (also

2

a

>

US 2023/0008622 A1 Jan. 12 , 2023
3

a

a
a

referred to as input points) in each row and 7 input elements
in each column . The filter 150 is represented by a 3x3x3 3D
matrix . The filter 150 includes 3 kernels , each of which may
correspond to a different input channel of the IFM 140. A
kernel is a 2D array of weights , where the weights are
arranged in columns and rows . A kernel can be smaller than
the IFM . In the embodiments of FIG . 1 , each kernel is
represented by a 3x3 2D array . The 3x3 kernel includes 3
weights in each row and 3 weights in each column . Weights
can be initialized and updated by backpropagation using
gradient descent . The magnitudes (i.e. , values) of the
weights can indicate importance of the filter 150 in extract
ing features from the IFM 140 .
[0037] The convolution includes MAC operations with the
input elements in the IFM 140 and the weights in the filter
150. The convolution may be a standard convolution 163 or
a depthwise convolution 183. In the standard convolution
163 , the whole filter 150 slides across the IFM 140. All the
input channels are combined to produce an output tensor 160
(also referred to as OFM (output feature map) 160) . The
OFM 160 is represented by a 5x5 2D array . The 5x5 2D
array includes 5 output elements (also referred to as output
points) in each row and 5 output elements in each column .
For purpose of illustration , the standard convolution
includes one filter in the embodiments of FIG . 1. In embodi
ments where there are multiple filters , the standard convo
lution may produce multiple output channels in the OFM
160 .
[0038] The multiplication applied between a kernel - sized
patch of the IFM 140 and a kernel may be a dot product . A
dot product is the elementwise multiplication between the
kernel - sized patch of the IFM 140 and the corresponding
kernel , which is then summed , always resulting in a single
value . Because it results in a single value , the operation is
often referred to as the “ scalar product . ” Using a kernel
smaller than the IFM 140 is intentional as it allows the same
kernel (set of weights) to be multiplied by the IFM 140
multiple times at different points on the IFM 140. Specifi
cally , the kernel is applied systematically to each overlap
ping part or kernel - sized patch of the IFM 140 , left to right ,
top to bottom . The result from multiplying the kernel with
the IFM 140 one time is a single value . As the kernel is
applied multiple times to the IFM 140 , the multiplication
result is a 2D array of output elements . As such , the 2D
output array (i.e. , the OFM 160) from the standard convo
lution 163 is referred to an OFM .
[0039] In the depthwise convolution 183 , the input chan
nels are not combined . Rather , MAC operations are per
formed on an individual input channel and an individual
kernel and produce an output channel . As shown in FIG . 1 ,
the depthwise convolution 183 produces a depthwise output
tensor 180. The depthwise output tensor 180 is represented
by a 5x5x3 3D matrix . The depthwise output tensor 180
includes 3 output channels , each of which is represented by
a 5x5 2D array . The 5x5 2D array includes 5 output elements
in each row and 5 output elements in each column . Each
output channel is a result of MAC operations of an input
channel of the IFM 140 and a kernel of the filter 150. For
instance , the first output channel (patterned with dots) is a
result of MAC operations of the first input channel (pat
terned with dots) and the first kernel (patterned with dots) ,
the second output channel (patterned with horizontal strips)
is a result of MAC operations of the second input channel
(patterned with horizontal strips) and the second kernel

(patterned with horizontal strips) , and the third output chan
nel (patterned with diagonal stripes) is a result of MAC
operations of the third input channel (patterned with diago
nal stripes) and the third kernel (patterned with diagonal
stripes) . In such a depthwise convolution , the number of
input channels equals the number of output channels , and
each output channel corresponds to a different input channel .
The input channels and output channels are referred to
collectively as depthwise channels . After the depthwise
convolution , a pointwise convolution 193 is then performed
on the depthwise output tensor 180 and a 1x1x3 tensor 190
to produce the OFM 160 .
[0040] The OFM 160 is then passed to the next layer in the
sequence . In some embodiments , the OFM 160 is passed
through an activation function . An example activation func
tion is the rectified linear activation function (ReLU) . ReLU
is a calculation that returns the value provided as input
directly , or the value zero if the input is zero or less . The
convolutional layer 110 may receive several images as input
and calculates the convolution of each of them with each of
the kernels . This process can be repeated several times . For
instance , the OFM 160 is passed to the subsequent convo
lutional layer 110 (i.e. , the convolutional layer 110 following
the convolutional layer 110 generating the OFM 160 in the
sequence) . The subsequent convolutional layers 110 per
forms a convolution on the OFM 160 with new kernels and
generates a new feature map . The new feature map may also
be normalized and resized . The new feature map can be
kerneled again by a further subsequent convolutional layer
110 , and so on .
[0041] In some embodiments , a convolutional layer 110
has 4 hyperparameters : the number of kernels , the size F
kernels (e.g. , a kernel is of dimensions FxFxD pixels) , the
S step with which the window corresponding to the kernel
is dragged on the image (e.g. , a step of one means moving
the window one pixel at a time) , and the zero - padding P
(e.g. , adding a black contour of P pixels thickness to the
input image of the convolutional layer 110) . The convolu
tional layers 110 may perform various types of convolutions ,
such as 2 - dimensional convolution , dilated or atrous con
volution , spatial separable convolution , depthwise separable
convolution , transposed convolution , and so on . The DNN
100 includes 16 convolutional layers 110. In other embodi
ments , the DNN 100 may include a different number of
convolutional layers .
[0042] The pooling layers 120 down - sample feature maps
generated by the convolutional layers , e.g. , by summarizing
the presents of features in the patches of the feature maps .
A pooling layer 120 is placed between 2 convolution layers
110 : a preceding convolutional layer 110 (the convolution
layer 110 preceding the pooling layer 120 in the sequence of
layers) and a subsequent convolutional layer 110 (the con
volution layer 110 subsequent to the pooling layer 120 in the
sequence of layers) . In some embodiments , a pooling layer
120 is added after a convolutional layer 110 , e.g. , after an
activation function (e.g. , ReLU) has been applied to the
OFM 160 .
[0043] A pooling layer 120 receives feature maps gener
ated by the preceding convolution layer 110 and applies a
pooling operation to the feature maps . The pooling operation
reduces the size of the feature maps while preserving their
important characteristics . Accordingly , the pooling opera
tion improves the efficiency of the DNN and avoids over
learning . The pooling layers 120 may perform the pooling

2

US 2023/0008622 A1 Jan. 12 , 2023
4

a

a 2

>

operation through average pooling (calculating the average
value for each patch on the feature map) , max pooling
(calculating the maximum value for each patch of the feature
map) , or a combination of both . The size of the pooling
operation is smaller than the size of the feature maps . In
various embodiments , the pooling operation is 2x2 pixels
applied with a stride of 2 pixels , so that the pooling operation
reduces the size of a feature map by a factor of 2 , e.g. , the
number of pixels or values in the feature map is reduced to
one quarter the size . In an example , a pooling layer 120
applied to a feature map of 6x6 results in an output pooled
feature map of 3x3 . The output of the pooling layer 120 is
inputted into the subsequent convolution layer 110 for
further feature extraction . In some embodiments , the pooling
layer 120 operates upon each feature map separately to
create a new set of the same number of pooled feature maps .
[0044] The fully connected layers 130 are the last layers of
the DNN . The fully connected layers 130 may be convolu
tional or not . The fully connected layers 130 receives an
input operand . The input operand defines the output of the
convolutional layers 110 and pooling layers 120 and
includes the values of the last feature map generated by the
last pooling layer 120 in the sequence . The fully connected
layers 130 applies a linear combination and an activation
function to the input operand and generates an individual
partial sum . The individual partial sum may contain as many
elements as there are classes : element i represents the
probability that the image belongs to class i . Each element
is therefore between 0 and 1 , and the sum of all is worth one .
These probabilities are calculated by the last fully connected
layer 130 by using a logistic function (binary classification)
or a softmax function (multi - class classification) as an
activation function .
[0045] In some embodiments , the fully connected layers
130 classify the input image 105 and returns an operand of
size N , where N is the number of classes in the image
classification problem . In the embodiments of FIG . 1 , N
equals 3 , as there are 3 objects 115 , 125 , and 135 in the input
image . Each element of the operand indicates the probability
for the input image 105 to belong to a class . To calculate the
probabilities , the fully connected layers 130 multiply each
input element by weight , makes the sum , and then applies an
activation function (e.g. , logistic if N = 2 , softmax if N > 2) .
This is equivalent to multiplying the input operand by the
matrix containing the weights . In an example , the individual
partial sum includes 3 probabilities : a first probability indi
cating the object 115 being a tree , a second probability
indicating the object 125 being a car , and a third probability
indicating the object 135 being a person . In other embodi
ments where the input image 105 includes different objects
or a different number of objects , the individual partial sum
can be different .
[0046] Example Convolution
[0047] FIG . 2 illustrates an example convolution , in accor
dance with various embodiments . The convolution may be a
convolution in a convolutional layer of a DNN , e.g. , a
convolutional layer 110 in FIG . 1. The convolution can be
executed on an input tensor 210 and filters 220 (individually
referred to as “ filter 220 ”) . A result of the convolution is an
output tensor 230. In some embodiments , the convolution is
performed by a PE array , such as the PE array 340 in FIG .
3 .
[0048] In the embodiments of FIG . 2 , the input tensor 210
includes input elements (also referred to as “ elements ”)

arranged in a 3D matrix . Each input element in the input
tensor may be represented by a (X , Y , Z) coordinate that
indicates a position of the input elements in the 3D matrix .
In some embodiments a (X , Y) coordinate may represent an
activation in the input tensor 210 (“ input activation ”) . The
input activation may include a sequence of input elements
that have the same (X , Y) coordinate but different Z coor
dinates . The length of an input activation may equal the
depth of the input tensor 210 along the Z axis .
[0049] The input tensor 210 has a spatial size Hin * Winx
Cin , where Hin is the height of the 3D matrix (i.e. , the length
along the Y - axis , which indicates the number of activations
in a column in the 2D matrix of each input channel) , Win is
the width of the 3D matrix (i.e. , the length along the X - axis ,
which indicates the number of activations in a row in the 2D
matrix of each input channel) , and Cin is the depth of the 3D
matrix (i.e. , the length along the Z axis , which indicates the
number of input channels) . For purpose of simplicity and
illustration , the input tensor 210 has a spatial size of 7x7x3 ,
i.e. , the input tensor 210 includes three input channels and
each input channel has a 7x7 2D matrix .
[0050] Each filter 220 includes weights arranged in a 3D
matrix . The values of the weights may be determined
through training the DNN . A filter 220 has a spatial size
HxWxXC where H is the height of the filter (i.e. , the length
along the Y - axis , which indicates the number of weight in a
column in each kernel) , W is the width of the filter (i.e. , the
length along the X - axis , which indicates the number of
weights in a row in each kernel) , and C is the depth of the
filter (i.e. , the length along the Z axis , which indicates the
number of channels) . In some embodiments , Cf equals Cin :
For purpose of simplicity and illustration , each filter 220 in
FIG . 2 has a spatial size of 3x3x3 , i.e. , the filter 220 includes
3 convolutional kernels with a spatial size of 3x3 . The
spatial size of the convolutional kernels is smaller than the
spatial size of the 2D matrix of each input channel in the
input tensor 210 .
[0051] In the convolution , each filter 220 slides across the
input tensor 210 and generates a 2D matrix for an output
channel in the output tensor 230. In the embodiments of FIG .
2 , the 2D matrix has a spatial size of 5x5 . The output tensor
230 includes output elements (also referred to as “ ele
ments ”) arranged in a 3D matrix . Each output element in the
output tensor may be represented by a (X , Y , Z) coordinate
that indicates a position of the input elements in the 3D
matrix . In some embodiments a (X , Y) coordinate may
represent an activation in the output tensor 230 (“ output
activation ”) . The output activation may include a sequence
of output elements that have the same (X , Y) coordinate but
different Z coordinates . The length of an output activation
may equal the depth of the input tensor 210 along the Z axis .
[0052] The output tensor 230 has a spatial size Hour
WouxCout , where Hout is the height of the 3D matrix (i.e. ,
the length along the Y - axis , which indicates the number of
activations in a column in the 2D matrix of each output
channel) , Wout is the width of the 3D matrix (i.e. , the length
along the X - axis , which indicates the number of activations
in a row in the 2D matrix of each output channel) , and Cout
is the depth of the 3D matrix (i.e. , the length along the Z
axis , which indicates the number of output channels) . Cout
may equal the number of filters 220 in the convolution . Hout
and W out may depend on the heights and weights of the input
tensor 210 and each filter 220 .

US 2023/0008622 A1 Jan. 12. 2023
5

f

tensor 210 in FIG . 2. The output tensor may be a 3D matrix
and include Cou output channels . Examples of the output
tensor include the output tensor 160 in FIG . 1 or the output
tensor 220 in FIG . 2 .
[0060] The kernel decomposing module 320 decomposes
kernels for convolutions . In some embodiments , the kernel
decomposing module 320 may decompose a kernel into
kernel vectors . For an example kernel having a spatial size
of HXW , (i.e. , the number of weights in a column in the
kernel is H , and the number of weights in a row in the kernel
is W) , the kernel decomposing module 320 may decompose
the kernel into kernel vectors , each of which has a spatial
size of 1xN , where N is an integer that is larger than 1 but
not larger than W. In embodiments where N is an integral
divisor of Wf meaning W / N is an integer , the kernel
decomposing module 320 may divide each row of the kernel
into W / N kernel vectors .
[0061] The kernel vectors may be rearranged to form a
weight operand . For instance , a kernel vector may corre
spond to a weight segment . The weight segment may include
all the channels in the filter of the convolution . A spatial size
of a weight segment may be 1xNxC . The weight segments
may be arranged linearly along the channel axis to form a 2D
array having a spatial size of

2

1XNX Wf * Hf * N \ / + C ;)
2

[0053] In an example step of the convolution , MAC opera
tions can be performed on a 3x3x3 subtensor 215 (which is
highlighted with a dotted pattern in FIG . 2) in the input
tensor and all the filters 220. The subtensor 215 has the same
spatial size as each filter 220. The result of the MAC
operations on the subtensor 215 and one filter 220 is an
activation in the output tensor 230. The result of the MAC
operations on the subtensor 215 and all the filters 220 is a
vector 235 in the output tensor 230. The vector 235 has a
spatial size of 1x1xCout . The vector 235 includes a sequence
of output elements , which corresponds to different output
channels in the output tensor 230 .
[0054] The convolution on the input tensor 210 and filters
220 may be performed by a DNN accelerator , such as the
DNN accelerator 300 in FIG . 3. The DNN accelerator
includes PEs that perform MAC operations . The input tensor
210 and filters 220 may be decomposed to facilitate distri
bution of the workload of the convolution to the PEs in the
DNN accelerator . Example processes of decomposing filter
is shown in FIGS . 4 and 5. An example process of decom
posing an input tensor is shown in FIG . 6 .
[0055] Example DNN Accelerator
[0056] FIG . 3 is a block diagram of an example DNN
accelerator , in accordance with various embodiments .
[0057] FIG . 3 is a block diagram of an example DNN
accelerator 300 , in accordance with various embodiments .
The DNN accelerator 300 can run DNNs , e.g. , the DNN 100
in FIG . 1. The DNN accelerator 300 includes a memory 310 ,
a kernel decomposing module 320 , a tensor decomposing
module 330 , a data read module 360 , and an PE array 340
including internal memories 350 (individually referred to as
“ internal memory 350 ”) . In other embodiments , alternative
configurations , different or additional components may be
included in the DNN accelerator 300. For instance , the DNN
accelerator 300 may include more than one memory 310 ,
more than one data read module 360 , or more than one PE
array 340. Further , functionality attributed to a component of
the DNN accelerator 300 may be accomplished by a differ
ent component included in the DNN accelerator 300 or by a
different system .
[0058] The memory 310 stores data to be used by the PE
array 340 to perform DL operations in DNN models .
Example DL operations include convolutions (also referred
to as " convolutional operations ”) , pooling operations ,
elementwise operations , other types of DL operations , or
some combination thereof . The memory 310 may be a main
memory of the DNN accelerator 300. In some embodiments ,
the memory 310 includes one or more DRAMs (dynamic
random - access memory) . For instance , 310 may
store the input tensor , convolutional kernels , or output tensor
of a convolution in a convolutional layer of a DNN , e.g. , the
convolutional layer 110. The output tensor can be transmit
ted from the internal memories 350 to the memory 310
through the data read module 360 .
[0059] In other embodiments , the input tensor or output
tensor is not stored in the memory 310. For instance , the
input tensor may be directly transmitted from one or more
internal memories of another PE array to one or more
internal memories 350 of the PE array 340. The output
tensor may be directly transmitted from one or more internal
memories 350 in the PE array 340 into one or more internal
memories of another PE array . The input tensor may be a 3D
matrix and include Cin input channels . Examples of the input
tensor include the input tensor 140 in FIG . 1 or the input

The 2D array is the weight operand . Even though the spatial
size of the weight operand is different from the spatial size
of the filter , the weight operand has the same number of
weights as the filter .
[0062] In embodiments where N is not an integral divisor
of W7 , meaning W , / N is not an integer , the kernel decom
posing module 320 may add dummy weights into the kernel
to expand the width of the kernel . For instance , the kernel
decomposing module 320 may added one or more columns
of dummy weights to an edge of the kernel , e.g. , to the right
edge of the kernel . The expanded kernel has a spatial size of

where Wer is larger than W , and N is an integral
divisor of Wef . The kernel decomposing module 320 can
further convert each row of the expanded kernel into one or
more kernel vectors . Some of the kernel vectors include one
or more dummy weights . The weight operand has a spatial
size of

HXWer

a

Wef the memory 1XNX () * H ** N

[0063] To ensure that the addition of the dummy weight
will not influence the result of the convolution , the kernel
decomposing module 320 may set the values of the dummy
weights to zero or provide information to the PE array 340
so that the PE array 340 skips the dummy weights in the
execution of the convolution . In embodiment , the kernel
decomposing module 320 may manipulate a sparsity bitmap
for the kernel or for the input tensor of the convolution . For
instance , the kernel decomposing module 320 may set
values of bits in the sparsity bitmap that correspond to the
dummy weight to zero , so that when the PE array 340
performs the convolution based on the sparsity bitmap , the
dummy weights will be skipped . In another embodiments ,

a

US 2023/0008622 A1 Jan. 12. 2023
6

f

the kernel decomposing module 320 may use programed
configuration registers , such as workload type , tension
dimension , kernel dimension , etc. , to instruct the PE array
340 to skip the dummy weights .
[0064] Alternative or in addition to adding dummy
weights , the kernel decomposing module 320 may transpose
the kernel . For instance , the kernel decomposing module
320 may determine that N is not an integral divisor of W , but
N is an integral divisor of He . Then the kernel decomposing
module 320 may transpose columns of the kernel to rows . H ,
becomes the width of the transposed kernel . The kernel
decomposing module 320 may decompose the transposed
kernel into 1xN kernel vectors . In embodiments where the
kernel is transposed , the kernel decomposing module 320
may instruct the tensor decomposing module 330 to trans
pose the input tensor of the convolution accordingly , so that
the transposing of the kernel would not influence the result
of the convolution . Also , the output of the convolution ,
which is performed on the transposed kernel and the trans
posed input tensor , may need to be further process before the
output is to be used for further DL operation .
[0065] The tensor decomposing module 330 decomposes
an input tensor of a convolution based on the decomposing
of the kernel of the convolution done by the kernel decom
posing module 320. The tensor decomposing module 330
may decompose the input tensor into a plurality of input
operands . An input operand may have a same layout and
spatial size as the corresponding weight operand generated
by the kernel decomposing module 320. In the example
where the spatial size of a weight operand is

enables the DNN accelerator 300 to have better performance
than currently available DNN accelerators .
[0067] Currently available DNN accelerators typically
performs 1x1 kernel decomposition , which requires that an
input tensor is decomposed into 1x1 activations . As a result ,
a PE in such a DNN accelerator processes a single activation
and does not share any activation with other PEs . Each PE
must receive its activation through reading the activation
from the memory 310. Thus , the number of read operations
required in currently available DNN accelerators can be
significantly more than the number of read operations
required in the DNN accelerator 300 for performing the
same convolution .
[0068] The PE array 340 performs computation for DL
operations . The PE array 340 may run the operations in a
DNN layer , or a portion of the operations in the DNN layer .
In some embodiments , the operations of the DNN layers
may be run by one or more other compute tiles in parallel
with the PE array 340. The PE array 340 may perform
convolutions , e.g. , standard convolution or depthwise con
volution . In some embodiments , the PE array 340 receive an
input tensor and a kernel and performs a convolution based
on the input tensor and kernel . The result of the convolution
may be an output tensor , which can be further computed ,
e.g. , by the PE array 340 or one or more other PE arrays .
[0069] The PE arrays 340 includes PEs arranged in col
umns , or columns and rows . Some or all of the PES may be
activated for a convolution . An activated PE is a PE that
performs MAC operations in the convolution . The workload
of a convolution may be partitioned and distributed to the
activated PEs . In some embodiments , an activated PE may
perform MAC operations on an input operand and a weight
operand , which are generated from decomposing the input
tensor and kernel , respectively , of the convolution . An
activated PE may receive multiple input operands and
multiple weight operands and perform multiple rounds of
MAC operations in the convolution . Results of MAC opera
tions of the PEs may be aggregated to produce the output
tensor (or a portion of the output tensor) of the convolution .
[0070] The internal memories 350 store data used for and
generated from MAC operations by the PE array 340. In the
embodiments of FIG . 3 , the internal memories 350 are inside
the PE array 340. In other embodiments , the internal memo
ries 350 may be outside the PE array 340. The internal
memories 350 and the PE array 340 can be implemented on
the same chip . In some embodiments , the internal memories
350 includes one or more SRAMs (static random - access
memories) . The internal memories 350 may be register files .
[0071] Each PE in the PE array 340 may be associated
with one or more internal memories 350. For instance , a PE
may have an activation memory for storing activations , a
weight memory for storing weights , and an output memory
for storing output elements . An input operand for the PE
may be stored in the activation memory , a weight operand
for the PE may be stored in the weight memory , and results
of MAC operations of the PE may be stored in the output
memory . In some embodiments , such as embodiments where
the internal memories 350 are register files , the activation
memory may be referred to as an input register file (e.g. , the
input register file 1040 in FIG . 10) , the weight memory may
be referred to as a weight register file (e.g. , the weight
register file 1050 in FIG . 10) , and the output memory may
be referred to as an output register file (e.g. , the output
register file 1060 in FIG . 10) .

W 1xNx .. ;) ** C * H *

the spatial size of an input operand is

W
1xNx nx (" Hy scu) * Cin * *

where Cin equals CA
[0066] Different input operands may be provided to dif
ferent PEs in the PE array 340. These PEs may receive the
same weight operand . In some embodiments , a PE performs
MAC operations on an input operand and the weight opera
tion to produce an output activation in the output tensor of
the convolution . In embodiments where the weight opera
tion is generated through 1xN kernel decomposition , the
input operand may include 1xN activations so that the
spatial size of the input operand can match the spatial size
of the weight operand . Some of the 1xN activations may be
included in one or more other input operands processed by
one or more other PEs . These PEs can share activations . For
instance , an input activation read into a PE can be transmit
ted from this PE to other PEs so that the other PEs can use
the same input activation to perform MAC operations ,
which can avoid reading the same input activation into all
the PEs through multiple read operations . The transmission
of activations among different PEs inside the PE array 340
is referred to as activation broadcasting . The 1xN kernel
decomposition performed by the kernel decomposing mod
ule 320 makes activation broadcasting possible , which

a

US 2023/0008622 A1 Jan. 12 , 2023
7

[0072] Input activations may be broadcasted between
internal memories 350 of different PEs . For instance , an
activation stored in the activation memory of a PE may be
transmitted from the activation memory to one or more other
activation memories for one or more other PEs . The acti
vation memory of the PE may also receive one or more
activations from one or more other PEs . With activation
broadcasting , an activation can be read into one activation
memory of one PE and then broadcasted to other activation
memories , as opposed to being read into the activation
memories of all the PEs that need the activation . This way ,
the number of read operations by the data read module 360
can be significantly reduced , and the efficiency of the DNN
accelerator 300 can be improved .
[0073] The data read module 360 facilitates data transfer
between the memory 310 and the internal memories 350. For
example , the data read module 360 can read data from the
memory 310 and write data into the internal memories 350 .
As another example , the data read module 360 can read data
from the internal memories 350 and write data into the
memory 310. The data read module 360 provides a direct
memory access feature that allows the PE array 340 to
initiate data transfer between the memory 310 and the
internal memories 350 and to perform other operations while
the data transfer is in being conducted .
[0074] In some embodiments , the data read module 360
may be associated with a number of data loading lanes for
loading data into the PE array 340 , e.g. , into a PE column in
the PE array 340. The loading bandwidth of the PE column
is an aggregation of the loading bandwidths of all the data
loading lanes associated with the PE column . With a certain
number of data loading lanes , data can be fed into the same
number of independent MAC units simultaneously . These
independent MAC units may be in the same PE . In some
embodiments where a PE column has four data loading lanes
for feeding activations or weights into the PE column and
each data loading lane may have a bandwidth of 16 bytes ,
the four data loading lanes can have a total loading band
width of 64 bytes . In an embodiment , four PEs in the PE
array 340 may data through the four data loading lanes in the
same read operation by the data read module 360 .
[0075] In some embodiments (such as embodiments
where activation broadcasting occurs) , the data read module
360 may read different activations in an input operand into
the activation memories of different PEs . For instance , the
data read module 360 may read a first activation in the input
operand into a first PE , read a second activation in the input
operand into a second PE , and read a third activation in the
input operand into a third PE . The first PE can receive the
second activation and third activation from the second PE
and the third PE , respectively , to complete the MAC opera
tions for the input operand . The second activation may be
included in a second input operand , with which the second
PE performs MAC operations . The second PE may receive
other activations in the second input operand from one or
more other PEs , such as the third PE . Similarly , the third
activation may be included in a third input operand , with
which the third PE performs MAC operations . The third PE
may receive other activations in the third input operand from
one or more other PEs . In an embodiment where an input
operand includes N activations , the data read module 360
may perform N read operations , in each of which the data
read module 360 reads one activation into an activation
memory .

[0076] FIG . 4 illustrates an example process of decom
posing a filter 410 , in accordance with various embodiments .
For purpose of simplicity and illustration , the filter 410 has
a 3x3 kernel . The depth of the filter 410 in the Z axis is the
number of channels in the filter 410 , which is denoted as Cro
The filter 410 is converted to a weight operand 420 through
decomposing , e.g. , by the kernel decomposing module 320
in FIG . 3. The weight operand 420 includes all the weights
in the filter 410 , but the weights are arranged in a different
layout . As shown in FIG . 4 , the filter 410 is a 3D matrix
having a spatial size of 3x3xC , but the weight operand 420
is a 2D array having a spatial size of 1x3x3CA
[0077] The weight operand 420 includes three weight
segments 425A - 415C (collectively referred to as “ weight
segments 425 ” or “ weight segment 425 %) . Each weight
segment 425 has a spatial size of 1x3xCp As shown in FIG .
4 , the weight segment 425A is includes the three weights in
the top row of the kernel , the weight segment 425B is
includes the three weights in the middle row of the kernel ,
and weight segment 425A is includes the three weights in the
bottom row of the kernel . The weight segments 425 are
arranged one after another along the Z axis based on the Y
coordinates of the weights , e.g. , the weight segment 425B is
arranged between the weight segment 425A and the weight
segment 425C .
[0078] In some embodiments , the weight operand 420
may be provided to a PE , e.g. , stored in a weight memory of
the PE , and be used by the PE to perform MAC operations
and produce an output element in the output tensor of the
convolution . The weights in the weight operand 420 may be
provided to the PE sequentially , e.g. , based on the (X , Y)
coordinates of the weights . In an example where the weight
segment 425A includes weights at (0 , 0) , (1 , 0) , and (2,0) ,
the weights at (0 , 0) in the weight segment 425A are sent to
the PE first for a first round of MAC operation . After that ,
the (1 , 0) weights can be sent to the PE for a second round
of MAC operation , followed by the (2 , 0) weights for a
second round of MAC operation . After the weight segment
425A is done , the weights in the weight segment 425B can
be sent to the PE for more MAC operations , followed by the
weight segment 425C . In other embodiments , the weight
operand 420 may be provided to multiple PEs . For instance ,
the weight segments 425 may be provided to three different
PES . A PE can process one weight segment 425. The output
of the three different PEs may be accumulated by an
accumulated associated with the three PEs to produce the
output element .
[0079] FIG . 5 illustrates another example process of
decomposing a filter , in accordance with various embodi
ments . For purpose of simplicity and illustration , the filter
510 has a 5x5 kernel . The depth of the filter 510 in the Z axis
is the number of channels in the filter 510 , which is denoted
as Cf The filter 510 is converted to a weight operand 530 through decomposing , e.g. , by the kernel decomposing
module 320 in FIG . 3. The weight operand 530 includes all
the weights in the filter 510 , but the weights are arranged in
a different layout . As shown in FIG . 5 , the filter 510 is a 3D
matrix having a spatial size of 5x5xCq but the weight
operand 530 is a 2D array having a spatial size of 1x3x10C ,
[0080] In the embodiments of FIG . 5 , the kernel decom
posing module 320 decomposes the 5x5 into 1x3 kernel
vectors . As 3 is not an integral divisor of 5 , the kernel
decomposing module 320 adds a dummy array 525 to the
filter 510 to generate an expanded filter 520. The dummy

a

US 2023/0008622 A1 Jan. 12. 2023
8

array 525 is an array of dummy weights and has a spatial size
of 5x1xC The dummy array 525 is added to the right edge
of the filter 510 and becomes the most right column of the
expanded filter 520. The expanded filter 520 has a spatial
size of 5x6xCp i.e. , the expanded filter 530 has a 5x6
expanded kernel . As 3 is an integral divisor of 6 , the kernel
decomposing module 320 can divide the expanded kernel
into 1x3 kernel vectors .
[0081] As shown in FIG . 5 , the kernel decomposing
module 320 divides each row in the expanded filter 520 into
two 1x3 kernel vectors . The second 1x3 kernel vector from
each row has a dummy weight . The 1x3 kernel vectors
correspond to the weight segments 535A - 535J (collectively
referred to as " weight segments 535 " or " weight segment
535 ") . Each weight segment 535 has a spatial size of
1x3xC . The weight segments 535 are arranged one after
another along the Z axis based on the X and Y coordinates
of the weights .
[0082] In some embodiments , the weight operand 530
may be provided to a PE , e.g. , stored in a weight memory of
the PE , and be used by the PE to perform MAC operations
and produce an output element in the output tensor of the
convolution . In other embodiments , the weight operand 530
may be provided to multiple PEs . For instance , the weight
segments 535 may be provided to three different PEs . A PE
can process one weight segment 535 .
[0083] FIG . 6 illustrates an example process of decom
posing a tensor 610 , in accordance with various embodi
ments . The tensor 610 may be an input tensor of a convo
lution , or a portion of the input tensor . For purpose of
illustration , the tensor 610 has a spatial size of 4x4xCin .
Each row in the tensor 610 has four activations , shown as
X0 , X1 , X2 , and X3 in FIG . 6. For purpose of simplicity and
illustration , FIG . 6 does not show Y coordinates of the
activations . The tensor 610 is decomposed into four input
operands 615A - 615D (collectively referred to as “ input
operands 615 " or " input operand 615 ") .
[0084] The tensor 610 may be decomposed by the tensor
decomposing module 330 based on a kernel decomposition
performed by the kernel decomposing module 320. In the
embodiments of FIG . 6 , the kernel decomposition is a 1x3
kernel decomposition , and each input operand includes 1x3
activations . As shown in FIG . 6 , the input operand 615A
includes activations XO , X1 , and X2 . The input operand
615B includes activations X1 , X2 , and X3 . The input
operand 615C includes activations X2 and X3 . The input
operand 615D includes activation X3 . The input operands
615 may be provided to four PEs for performing MAC
operations . The input operands 615 share same activations .
For instance , activation X1 is in the input operands 615A
and 615B , activation X2 is in the input operands 615A
615C , and activation X3 is in the input operands 615B
615D . These activations can be broadcasted between the
input operands .
[0085] FIG . 7 illustrates an example process of broadcast
ing activations between PEs , in accordance with various
embodiments . For purpose of illustration , activations in FIG .
7 are the activations X0 , X1 , X2 , and X3 in FIG . 6. FIG . 7
includes four PEs . The first PE includes an input register file
713 for storing an input operand , a weight register file 717
for storing the weight operand , and a multiplier 715. The
second PE includes an input register file 723 for storing an
input operand , a weight register file 727 for storing the
weight operand , and a multiplier 725. The third PE includes

an input register file 733 for storing an input operand , a
weight register file 737 for storing the weight operand , and
a multiplier 735. The fourth PE includes an input register file
743 for storing an input operand , a weight register file 747
for storing the weight operand , and a multiplier 745. Even
though not shown in FIG . 7 , the PEs may include one or
more accumulators .
[0086] The first PE performs MAC operations on the input
operand 615A , which includes activations X0 , X1 , and X2 .
The second PE performs MAC operations on the input
operand 615B , which includes activations X1 , X2 , and X3 .
The third PE performs MAC operations on the input operand
615C , which includes activations X2 and X3 . The fourth PE
performs MAC operations on the input operand 615A ,
which includes activations X3 . In the embodiments of FIG .
7 , the four activations are read from a memory , e.g. , the
memory 310 , into the PEs through four read operations . In
the first read operation , activation X0 is read into the input
register file 713. In the second read operation , activation X1
is read into the input register file 723. In the third read
operation , activation X2 is read into the input register file
723. In the fourth read operation , activation X3 is read into
the input register file 743. The four read operations may
occur at different times .
[0087] Each activation can be populated into up to 3 other
input register files . For instance , activations X1 and X2 in
the input operand 615A are broadcasted from the input
register files 723 and 733 , respectively , into the input register
file 713 , as shown by the dashed arrows in FIG . 7. Similarly ,
activations X2 and X3 in the input operand 615B are
broadcasted from the input register files 733 and 743 ,
respectively , into the input register file 723. Activation X3 in
the input operand 615C is broadcasted from the input
register file 743 into the input register file 733. With the
activation broadcasting , no additional read operations are
needed . The total number of read operations for this round
of MAC operations by the four PEs is four .
[0088] In contrast , in a DNN accelerator that performs 1x1
kernel decomposition , the tensor 610 may be divided into 16
input operands , each of which includes one activation . 16
PEs will be needed to perform the MAC operations . As the
16 PEs do not share any activations , 16 read operations are
needed . In a DNN accelerator that performs 1x3 kernel
decomposition but does not perform activation broadcasting ,
the DNN accelerator needs to read in 9 activations , i.e. , 3
activations for the first PE , 3 activations for the second PE ,
two activations for the third PE , and one activation for the
fourth PE . Compared with both DNN accelerators , the DNN
accelerator 300 reads in less activations and can be more
efficient . The advantage of activation broadcasting can be
more significant in cases where the input tensor has a larger
width .
[0089] FIG . 8 illustrates another example process of
broadcasting activations between PEs , in accordance with
various embodiments . In the embodiments of FIG . 8 , four
PES (PEO - PE3) performs MAC operations with a tensor ,
which may be an input tensor or a portion of an input tensor
of a convolution . The tensor has a width of 18 and includes
18 activations : X0 - X17 . For purpose of simplicity and
illustration , the Y coordinates of the activations are not
shown in FIG . 8. In an embodiment where 1x3 kernel
decomposition is performed , the 18 activations constitute 16
input operands , each input operand includes three activa
tions . In other embodiments , the kernel decomposition may

>

a

US 2023/0008622 A1 Jan. 12 , 2023
9

9

be 1xN kernel decomposition , where N is not 3. For
instance , N may be 2 , 4 , 5 , etc. Also , for purpose of
simplicity and illustration , FIG . 8 shows four PEs . In other
embodiments , there can be a different number of PEs .
[0090) FIG . 8 shows a table that illustrates the activation
broadcasting process . The top row of the table shows 18 time
slots (also referred to as clocks) : TO to T17 . The first column
of the table lists the four PEs . The main body of the table
identifies which activation is being loaded into the internal
memory of a particular PE at a particular time slot . For
instance , at TO , which is the first time slot , the internal
memory of PEO receives activation X0 through a read
operation . No other PEs receive activations . At T1 , both PEO
and PE1 receive activation X1 . The PE1 may receive
activation X1 through a read operation , but PEO may receive
activation X1 through broadcasting the activation from PE1 .
At T2 , PEO , PE1 , and PE2 all receive action X2 . The PE2
may receive activation X2 through a read operation , but PEO
and PE1 may receive the activation through broadcasting
from PE2 . As T2 finishes , the internal memory of PEO has
three activations X0 - X2 , which may constitute an input
operand for PEO . PEO can perform MAC operations on the
input operand and the corresponding weight operand , a
result of the MAC operations may be a data point in the
output tensor of the convolution .
[0091] At T3 , PE1 , PE2 , and PE3 all receive action X3 .
The PE3 may receive activation X3 through a read opera
tion , but PE1 and PE2 may receive the activation through
broadcasting from PE3 . As T3 finishes , the internal memory
of PE1 has three activations X1 - X3 , which constitutes
another input operand , and the PE1 can perform MAC
operations on the input operand and the corresponding
weight operand . A result of the MAC operations may be
another data point in the output tensor of the convolution .
This process continues until all the input operands are
loaded into the PEs .

[0092] FIG . 8 also shows reuse rates of the 18 activations
in the last row of the table . The reuse rates of activations X0
and X17 are 1 , meaning these activations are used by one
PE . The reuse rates of activations X1 and X16 are 2 ,
meaning these activations are used by two PEs , despite that
each of them requires a single read operation . The reuse rates
of the other activations X2 - X15 are 3 , meaning these acti
vations are used by three PEs .
[0093] With the activation broadcasting , 18 read opera
tions are needed for loading all the input operands . Without
the activation broadcasting , 48 (16 * 3) read operations are
needed for loading all the input operands . Thus , the activa
tion broadcasting significantly reduces the number of read
operations . As the loading of the internal memories
increases , the utilization of the PEs can be improved .
Additionally , even though some currently available DNN
accelerators can use one data read module to feed multiple
PE internal memories , the activation broadcasting still
improves efficiency of writing data into the internal memo
ries . The currently available DNN accelerators usually use
one data read module to feed two internal memories and
therefore , there can be two writes from one read operation .
In contrast , with the activation broadcasting , there are 48
writes from 18 read operations , so the average number of
writes is 48 / 18 = 2.667 , which is better than two . Thus , the
DNN accelerator 300 has better performance than the cur
rently available DNN accelerators .

[0094] Example PE Array
[0095] FIG . 9 illustrates a PE array 900 , in accordance
with various embodiments . The PE array 900 may be an
embodiment of one or more of the PE array 340 in FIG . 3 .
The PE array 900 includes a plurality of PEs 910 (individu
ally referred to as “ PE 910 ”) . The PEs 910 perform MAC
operations , such as integer MAC operations , floating - point
MAC operations , and so on . The PEs 910 may also be
referred to as neurons or nodes in the DNN . Each PE 910 has
2 input signals 950 and 960 and an output signal 970. The
input signal 950 is a portion of an input tensor of a
convolution , e.g. , an input operand in the input tensor . The
input signal 960 is at least a portion of a filter of the
convolution , e.g. , a weight operand generated from the filter .
In some embodiments , the input signal 950 of a PE 910
includes one or more input operands , and the input signal
960 includes one or more weight operands .
[0096] Each PE 910 performs an MAC operation on the
input signals 950 and 960 and outputs the output signal 970 ,
which is a result of the MAC operation . Some or all of the
input signals 950 and 960 and the output signal 970 may be
in an integer format , such as INT8 , or FP (floating - point)
format , such as FP16 or BF16 . For purpose of simplicity and
illustration , the input signals and output signal of all the PES
910 have the same reference numbers , but the PES 910 may
receive different input signals and output different output
signals from each other . Also , a PE 910 may be different
from another PE 910 , e.g. , including more , fewer , or differ
ent components .
[0097] As shown in FIG . 9 , the PES 910 are connected to
each other , as indicated by the dash arrows in FIG . 9. The
PEs 910 may share activations with each other . For instance ,
an activation can be broadcasted from a PE 910 to one or
more other PES 910. Also , the output signal 970 of an PE
910 may be sent to many other PES 910 (and possibly back
to itself) as input signals via the interconnections between
PES 910. In some embodiments , the output signal 970 of an
PE 910 may incorporate the output signals of one or more
other PEs 910 through an accumulate operation of the PE
910 and generates an internal partial sum of the PE array .
[0098] In the embodiments of FIG . 9 , the PEs 910 are
arranged into columns 905 (individually referred to as
“ column 905 ”) . The input and weights of the layer may be
distributed to the PES 910 based on the columns 905. Each
column 905 has a column buffer 920. The column buffer 920
stores data provided to the PEs 910 in the column 905 for a
short amount of time . The column buffer 920 may also store
data output by the last PE 910 in the column 905. The output
of the last PE 910 may be a sum of the MAC operations of
all the PES 910 in the column 905 , which is a column - level
internal partial sum of the PE array 900. In other embodi
ments , input and weights may be distributed to the PEs 910
based on rows in the PE array 900. The PE array 900 may
include row buffers in lieu of column buffers 920. A row
buffer may store input signals of the PEs in the correspond
ing row and may also store a row - level internal partial sum
of the PE array 900 .
[0099] As shown in FIG . 9 , each column buffer 920 is
associated with a load 930 and a drain 940. The data
provided to the column 905 is transmitted to the column
buffer 920 through the load 930 , e.g. , through upper memory
hierarchies , e.g. , the memory 310 in FIG . 3. The data
generated by the column 905 is extracted from the column
buffers 920 through the drain 940. In some embodiments ,
data extracted from a column buffer 920 is sent to upper

US 2023/0008622 A1 Jan. 12 , 2023
10

memory hierarchies , e.g. , the memory 310 in FIG . 3 ,
through the drain operation . In some embodiments , the drain
operation does not start until all the PEs 910 in the column
905 has finished their MAC operations . In some embodi
ments , the load 930 or drain 940 may be controlled by the
data read module 360 in FIG . 3 .
[0100] FIG . 10 is a block diagram of a PE 910 , in
accordance with various embodiments . The PE 910 in FIG .
9 includes an input register file 1040 , a weight register file
1050 , an output register file 1060 , a multiplier 1070 , and an
accumulator 1080. In other embodiments , the PE 910 may
include fewer , more , or different components .
[0101] The input register file 1040 temporarily stores input
signals received by the PE 910. The input signals may
include an input operand , e.g. , an input operand 615 in FIG .
6. The input signals may also include output signals from
other PES 1010. The weight register file 1050 temporarily
stores weights received by the PE 910. The output register
file 1060 temporarily stores output signals generated by the
PE 910. For purpose of illustration and simplicity , the PE
910 in FIG . 10B includes one input register file 1040 , one
weight register file 1050 , one output register file 1060. In
other embodiments , a PE 910 may include multiple register
files for each type of data .
[0102] The multiplier 1070 performs multiply operations
on activations in the input register file 1040 and weights in
the weight register file 1050. The amount of time needed by
the multiplier 1070 for a multiple operation depends on the
sparsity level of the weights used in the multiple operation .
If the weights are denser (i.e. , the sparsity level is lower) , the
multiplier 1070 needs more time to perform the multiple
operation .
[0103] The accumulator 1080 performs accumulate opera
tions on the output of the multiplier 1070 and outputs signals
from other PEs . The output of the accumulator 1080 is the
output signal of the PE 910 , which can be stored in the
output register file 560. The output signal may be provided
to another PE in the same PE array 900 or provided to
another PE array .
[0104] Example Method of DL
[0105] FIG . 11 is a flowchart showing a method of DL , in
accordance with various embodiments . The method 1100
may be performed by the DNN accelerator 300 in FIG . 3 .
Although the method 1100 is described with reference to the
flowchart illustrated in FIG . 11 , many other methods for DL
may alternatively be used . For example , the order of execu
tion of the steps in FIG . 11 may be changed . As another
example , some of the steps may be changed , eliminated , or
combined .
[0106] The DNN accelerator 300 converts at least a por
tion of a filter for a convolution into a weight operand by
decomposing a kernel of the convolution to form a plurality
of kernel vectors . The kernel comprises weights arranged in
rows and columns . The kernel has a width determined by a
number of weights in a row and a height determined by a
number of weights in a column . A kernel vector corresponds
to a respective row in the kernel and comprises weights in
the respective row . A kernel vector may have a spatial size
of 1xN , where is N an integer that is larger than one and not
larger than the width of the kernel .
[0107] In some embodiments , the number of the weights
in the kernel vector is not an integral divisor of the width of
the kernel . The DNN accelerator 300 may decompose the
kernel to form the plurality of kernel vectors by generating

an expanded kernel by adding one or more columns of new
weights into the kernel . The one or more columns of new
weights may be added to an edge of the kernel . The number
of the weights in the kernel vector is an integral divisor of
a width of the expanded kernel . The DNN accelerator 300
may decompose the expanded kernel into the plurality of
kernel vectors . Some of the kernel vectors include the new
weights . The new weights may have a value of zero .
[0108] The DNN accelerator 300 also converts 1120 an
input tensor of the convolution to form a plurality of input
operands . The input operand comprises activations . A spatial
size of the input operand is the same as a spatial size of the
weight operand . In some embodiments , a number of the
activations in the input operand equals the number of the
weights in the kernel vector .
[0109] The DNN accelerator 300 reads 1130 a first acti
vation in the output operand from a memory into an internal
memory of a first PE . The read of the first activation may be
done through one read operation . The DNN accelerator 300
may also read the weight operand from the memory into
another internal memory of the first PEs . The memory may
be a memory associated with a PE array that includes the
first PE .
[0110] The DNN accelerator 300 transmits 1140 a second
activation in the input operand from a second PE into the
internal memory of the first PE . The PE is to perform MAC
operations based on the input operand and the weight
operand . In some embodiments , a result of the MAC opera
tions is an output element in the output tensor of the
convolution . In some embodiments , the first activation is
read into the internal memory of the first PE at a first time .
The second activation is transmitted into the internal
memory of the first PE at a second time . The first time is
different from the second time . The DNN accelerator 300
may read second activation from the memory into the
internal memory of the second PE
[0111] The DNN accelerator 300 may transmit a third
activation in the input operand from an internal memory of
a third PE into the internal memory of the first PE . In some
embodiments , the second activation is transmitted into the
internal memory of the first PE at a first time . The third
activation is transmitted into the internal memory of the first
PE at a second time . The first time is earlier than the second
time . The second activation is arranged between the first
activation and the third activation in the input operand .
[0112] In some embodiments , the second PE receives a
third activation from an internal memory of a third PE . The
second PE performs MAC operations with another input
operand that includes the second activation and the third
activation .
[0113] Example DL Environment
[0114] FIG . 12 illustrates a DL environment 1200 , in
accordance with various embodiments . The DL environment
1200 includes a DL server 1210 and a plurality of client
devices 1220 (individually referred to as client device 1220) .
The DL server 1210 is connected to the client devices 1220
through a network 1230. In other embodiments , the DL
environment 1200 may include fewer , more , or different
components .
[0115] The DL server 1210 trains DL models using neural
networks . A neural network is structured like the human
brain and consists of artificial neurons , also known as nodes .
These nodes are stacked next to each other in 3 types of
layers : input layer , hidden layer (s) , and output layer . Data

a

US 2023/0008622 A1 Jan. 12 , 2023
11

a

2

a

provides each node with information in the form of inputs .
The node multiplies the inputs with random weights , cal
culates them , and adds a bias . Finally , nonlinear functions ,
also known as activation functions , are applied to determine
which neuron to fire . The DL server 1210 can use various
types of neural networks , such as DNN , recurrent neural
network (RNN) , generative adversarial network (GAN) ,
long short - term memory network (LSTMN) , and so on .
During the process of training the DL models , the neural
networks use unknown elements in the input distribution to
extract features , group objects , and discover useful data
patterns . The DL models can be used to solve various
problems , e.g. , making predictions , classifying images , and
so on . The DL server 1210 may build DL models specific to
particular types of problems that need to be solved . A DL
model is trained to receive an input and outputs the solution
to the particular problem .
[0116] In FIG . 12 , the DL server 1210 includes a DNN
system 1240 , a database 1250 , and a distributer 1260. The
DNN system 1240 trains DNNs . The DNNs can be used to
process images , e.g. , images captured by autonomous
vehicles , medical devices , satellites , and so on . In an
embodiment , a DNN receives an input image and outputs
classifications of objects in the input image . An example of
the DNNs is the DNN 100 described above in conjunction
with FIG . 1. In some embodiments , the DNN system 1240
trains DNNs through knowledge distillation , e.g. , dense
connection based knowledge distillation . The trained DNNS
may be used on low memory systems , like mobile phones ,
IOT edge devices , and so on . An embodiment of the DNN
system 1240 is the DNN accelerator 200 described above in
conjunction with FIG . 2 .
[0117] The database 1250 stores data received , used , gen
erated , or otherwise associated with the DL server 1210. For
example , the database 1250 stores a training dataset that the
DNN system 1240 uses to train DNNs . In an embodiment ,
the training dataset is an image gallery that can be used to
train a DNN for classifying images . The training dataset may
include data received from the client devices 1220. As
another example , the database 1250 stores hyperparameters
of the neural networks built by the DL server 1210 .
[0118] The distributer 1260 distributes DL models gener
ated by the DL server 1210 to the client devices 1220. In
some embodiments , the distributer 1260 receives a request
for a DNN from a client device 1220 through the network
1230. The request may include a description of a problem
that the client device 1220 needs to solve . The request may
also include information of the client device 1220 , such as
information describing available computing resource on the
client device . The information scribing available comput
ing resource on the client device 1220 can be information
indicating network bandwidth , information indicating avail
able memory size , information indicating processing power
of the client device 1220 , and so on . In an embodiment , the
distributer may instruct the DNN system 1240 to generate a
DNN in accordance with the request . The DNN system 1240
may generate a DNN based on the information in the
request . For instance , the DNN system 1240 can determine
the structure of the DNN and / or train the DNN in accordance
with the request .
[0119] In another embodiment , the distributer 1260 may
select the DNN from a group of pre - existing DNNs based on
the request . The distributer 1260 may select a DNN for a
particular client device 1220 based on the size of the DNN

and available resources of the client device 1220. In embodi
ments where the distributer 1260 determines that the client
device 1220 has limited memory or processing power , the
distributer 1260 may select a compressed DNN for the client
device 1220 , as opposed to an uncompressed DNN that has
a larger size . The distributer 1260 then transmits the DNN
generated or selected for the client device 1220 to the client
device 1220 .
[0120] In some embodiments , the distributer 1260 may
receive feedback from the client device 1220. For example ,
the distributer 1260 receives new training data from the
client device 1220 and may send the new training data to the
DNN system 1240 for further training the DNN . As another
example , the feedback includes an update of the available
computer resource on the client device 1220. The distributer
1260 may send a different DNN to the client device 1220
based on the update . For instance , after receiving the feed
back indicating that the computing resources of the client
device 1220 have been reduced , the distributer 1260 sends
a DNN of a smaller size to the client device 1220 .
[0121] The client devices 1220 receive DNNs from the
distributer 1260 and applies the DNNs to perform machine
learning tasks , e.g. , to solve problems or answer questions .
In various embodiments , the client devices 1220 input
images into the DNNs and uses the output of the DNNs for
various applications , e.g. , visual reconstruction , augmented
reality , robot localization and navigation , medical diagnosis ,
weather prediction , and so on . A client device 1220 may be
one or more computing devices capable of receiving user
input as well as transmitting and / or receiving data via the
network 1230. In one embodiment , a client device 1220 is a
conventional computer system , such as a desktop or a laptop
computer . Alternatively , a client device 1220 may be a
device having computer functionality , such as a personal
digital assistant (PDA) , a mobile telephone , a smartphone ,
an autonomous vehicle , or another suitable device . A client
device 1220 is configured to communicate via the network
1230. In one embodiment , a client device 1220 executes an
application allowing a user of the client device 1220 to
interact with the DL server 1210 (e.g. , the distributer 1260
of the DL server 1210) . The client device 1220 may request
DNNs or send feedback to the distributer 1260 through the
application . For example , a client device 1220 executes a
browser application to enable interaction between the client
device 1220 and the DL server 1210 via the network 1230 .
In another embodiment , a client device 1220 interacts with
the DL server 1210 through an application programming
interface (API) running on a native operating system of the
client device 1220 , such as IOS® or ANDROIDTM .
[0122] In an embodiment , a client device 1220 is an
integrated computing device that operates as a standalone
network - enabled device . For example , the client device
1220 includes display , speakers , microphone , camera , and
input device . In another embodiment , a client device 1220 is
a computing device for coupling to an external media device
such as a television or other external display and / or audio
output system . In this embodiment , the client device 1220
may couple to the external media device via a wireless
interface or wired interface (e.g. , an HDMI (High - Definition
Multimedia Interface) cable) and may utilize various func
tions of the external media device such as its display ,
speakers , microphone , camera , and input devices . Here , the
client device 1220 may be configured to be compatible with
a generic external media device that does not have special

a

a

)

US 2023/0008622 A1 Jan. 12. 2023
12

a

.

ized software , firmware , or hardware specifically for inter
acting with the client device 1220 .
[0123] The network 1230 supports communications
between the DL server 1210 and client devices 1220. The
network 1230 may comprise any combination of local area
and / or wide area networks , using both wired and / or wireless
communication systems . In one embodiment , the network
1230 may use standard communications technologies and / or
protocols . For example , the network 1230 may include
communication links using technologies such as Ethernet ,
12010.11 , worldwide interoperability for microwave access
(WiMAX) , 3G , 4G , code division multiple access (CDMA) ,
digital subscriber line (DSL) , etc. Examples of networking
protocols used for communicating via the network 1230 may
include multiprotocol label switching (MPLS) , transmission
control protocol / Internet protocol (TCP / IP) , hypertext trans
port protocol (HTTP) , simple mail transfer protocol
(SMTP) , and file transfer protocol (FTP) . Data exchanged
over the network 1230 may be represented using any suit
able format , such as hypertext markup language (HTML) or
extensible markup language (XML) . In some embodiments ,
all or some of the communication links of the network 1230
may be encrypted using any suitable technique or tech
niques .
[0124] Example DNN System
[0125) FIG . 13 is a block diagram of an example DNN
system 1300 , in accordance with various embodiments . The
whole DNN system 1300 or a part of the DNN system 1300
may be implemented in the computing device 1400 in FIG .
14. The DNN system 1300 trains DNNs for various tasks ,
such as image classification , learning relationships between
biological cells (e.g. , DNA , proteins , etc.) , control behaviors
for devices (e.g. , robots , machines , etc.) , and so on . The
DNN system 1300 includes an interface module 1310 , a
training module 1320 , a validation module 1330 , an infer
ence module 1340 , and a memory 1350. In other embodi
ments , alternative configurations , different or additional
components may be included in the DNN system 1300 .
Further , functionality attributed to a component of the DNN
system 1300 may be accomplished by a different component
included in the DNN system 1300 or a different system . The
DNN system 1300 or a component of the DNN system 1300
(e.g. , the training module 1320 or inference module 1340)
may include the computing device 1400 .
[0126] The interface module 1310 facilitates communica
tions of the DNN system 1300 with other systems . For
example , the interface module 1310 establishes communi
cations between the DNN system 1300 with an external
database to receive data that can be used to train DNNs or
input into DNNs to perform tasks . As another example , the
interface module 1310 supports the DNN system 1300 to
distribute DNNs to other systems , e.g. , computing devices
configured to apply DNNs to perform tasks .
[0127] The training module 1320 trains DNNs by using a
training dataset . The training module 1320 forms the train
ing dataset . In an embodiment where the training module
1320 trains an DNN to recognize objects in images , the
training dataset includes training images and training labels .
The training labels describe ground - truth classifications of
objects in the training images . In some embodiments , each
label in the training dataset corresponds to an object in a
training image . In some embodiments , a part of the training
dataset may be used to initially train the DNN , and the rest
of the training dataset may be held back as a validation

subset used by the validation module 1330 to validate
performance of a trained DNN . The portion of the training
dataset not including the tuning subset and the validation
subset may be used to train the DNN .
[0128] The training module 1320 also determines hyper
parameters for training the DNN . Hyperparameters are vari
ables specifying the DNN training process . Hyperparam
eters are different from parameters inside the DNN (e.g. ,
weights of filters) . In some embodiments , hyperparameters
include variables determining the architecture of the DNN ,
such as number of hidden layers , etc. Hyperparameters also
include variables which determine how the DNN is trained ,
such as batch size , number of epochs , etc. A batch size
defines the number of training samples to work through
before updating the parameters of the DNN . The batch size
is the same as or smaller than the number of samples in the
training dataset . The training dataset can be divided into one
or more batches . The number of epochs defines how many
times the entire training dataset is passed forward and
backwards through the entire network . The number of
epochs defines the number of times that the DL algorithm
works through the entire training dataset . One epoch means
that each training sample in the training dataset has had an
opportunity to update the parameters inside the DNN . An
epoch may include one or more batches . The number of
epochs may be 13 , 130 , 500 , 1300 , or even larger .
[0129] The training module 1320 defines the architecture
of the DNN , e.g. , based on some of the hyperparameters .
The architecture of the DNN includes an input layer , an
output layer , and a plurality of hidden layers . The input layer
of an DNN may include tensors (e.g. , a multidimensional
array) specifying attributes of the input image , such as the
height of the input image , the width of the input image , and
the depth of the input image (e.g. , the number of bits
specifying the color of a pixel in the input image) . The
output layer includes labels of objects in the input layer . The
hidden layers are layers between the input layer and output
layer . The hidden layers include one or more convolutional
layers and one or more other types of layers , such as pooling
layers , fully connected layers , normalization layers , softmax
or logistic layers , and so on . The convolutional layers of the
DNN abstract the input image to a feature map that is
represented by a tensor specifying the feature map height ,
the feature map width , and the feature map channels (e.g. ,
red , green , blue images include 3 channels) . A pooling layer
is used to reduce the spatial volume of input image after
convolution . It is used between 2 convolution layers . A fully
connected layer involves weights , biases , and neurons . It
connects neurons in one layer to neurons in another layer . It
is used to classify images between different category by
training .
[0130] In the process of defining the architecture of the
DNN , the training module 1320 also adds an activation
function to a hidden layer or the output layer . An activation
function of a layer transforms the weighted sum of the input
of the layer to an output of the layer . The activation function
may be , for example , a rectified linear unit activation
function , a tangent activation function , or other types of
activation functions .
[0131] After the training module 1320 defines the archi
tecture of the DNN , the training module 1320 inputs a
training dataset into the DNN . The training dataset includes
a plurality of training samples . An example of a training
sample includes an object in an image and a ground - truth

2

US 2023/0008622 A1 Jan. 12 , 2023
13

a

2

label of the object . The training module 1320 modifies the
parameters inside the DNN (“ internal parameters of the
DNN ”) to minimize the error between labels of the training
objects that are generated by the DNN and the ground - truth
labels of the objects . The internal parameters include
weights of filters in the convolutional layers of the DNN . In
some embodiments , the training module 1320 uses a cost
function to minimize the error .
[0132] The training module 1320 may train the DNN for
a predetermined number of epochs . The number of epochs is
a hyperparameter that defines the number of times that the
DL algorithm will work through the entire training dataset .
One epoch means that each sample in the training dataset has
had an opportunity to update internal parameters of the
DNN . After the training module 1320 finishes the predeter
mined number of epochs , the training module 1320 may stop
updating the parameters in the DNN . The DNN having the
updated parameters is referred to as a trained DNN .
[0133] The validation module 1330 verifies accuracy of
trained DNNs . In some embodiments , the validation module
1330 inputs samples in a validation dataset into a trained
DNN and uses the outputs of the DNN to determine the
model accuracy . In some embodiments , a validation dataset
may be formed of some or all the samples in the training
dataset . Additionally or alternatively , the validation dataset
includes additional samples , other than those in the training
sets . In some embodiments , the validation module 1330
determines may determine an accuracy score measuring the
precision , recall , or a combination of precision and recall of
the DNN . The validation module 1330 may use the follow
ing metrics to determine the accuracy score : Precision = TP /
(TP + FP) and Recall = TP / (TP + FN) , where precision may be
how many the reference classification model correctly pre
dicted (TP or true positives) out of the total it predicted
(TP + FP or false positives) , and recall may be how many the
reference classification model correctly predicted (TP) out
of the total number of objects that did have the property in
question (TP + FN or false negatives) . The F - score
(F - score = 2 * PR / (P + R)) unifies precision and recall into a
single measure .
[0134] The validation module 1330 may compare the
accuracy score with a threshold score . In an example where
the validation module 1330 determines that the accuracy
score of the augmented model is lower than the threshold
score , the validation module 1330 instructs the training
module 1320 to re - train the DNN . In one embodiment , the
training module 1320 may iteratively re - train the DNN until
the occurrence of a stopping condition , such as the accuracy
measurement indication that the DNN may be sufficiently
accurate , or a number of training rounds having tak place .
[0135] The inference module 1340 applies the trained or
validated DNN to perform tasks . For instance , the inference
module 1340 inputs images into the DNN . The DNN outputs
classifications of objects in the images . As an example , the
DNN may be provisioned in a security setting to detect
malicious or hazardous objects in images captured by secu
rity cameras . As another example , the DNN may be provi
sioned to detect objects (e.g. , road signs , hazards , humans ,
pets , etc.) in images captured by cameras of an autonomous
vehicle . The input to the DNN may be formatted according
to a predefined input structure mirroring the way that the
training dataset was provided to the DNN . The DNN may
generate an output structure which may be , for example , a
classification of the image , a listing of detected objects , a

boundary of detected objects , or the like . In some embodi
ments , the inference module 1340 distributes the DNN to
other systems , e.g. , computing devices in communication
with the DNN system 1300 , for the other systems to apply
the DNN to perform the tasks .
[0136] The memory 1350 stores data received , generated ,
used , or otherwise associated with the DNN system 1300 .
For example , the memory 1350 stores the datasets used by
the training module 1320 and validation module 1330. The
memory 1350 may also store data generated by the training
module 1320 and validation module 1330 , such as the
hyperparameters for training DNNs , internal parameters of
trained DNNs (e.g. , values of tunable parameters of
FALUs) , etc. In the embodiment of FIG . 13 , the memory
1350 is a component of the DNN system 1300. In other
embodiments , the memory 1350 may be external to the
DNN system 1300 and communicate with the DNN system
1300 through a network .
[0137] Example Computing Device
[0138] FIG . 14 is a block diagram of an example comput
ing device 1400 , in accordance with various embodiments .
In some embodiments , the computing device 1400 can be
used as the DNN system 1300 in FIG . 13. A number of
components are illustrated in FIG . 14 as included in the
computing device 1400 , but any one or more of these
components may be omitted or duplicated , as suitable for the
application . In some embodiments , some or all of the
components included in the computing device 1400 may be
attached to one or more motherboards . In some embodi
ments , some or all of these components are fabricated onto
a single system on a chip (SoC) die . Additionally , in various
embodiments , the computing device 1400 may not include
one or more of the components illustrated in FIG . 14 , but the
computing device 1400 may include interface circuitry for
coupling to the one or more components . For example , the
computing device 1400 may not include a display device
1406 , but may include display device interface circuitry
(e.g. , a connector and driver circuitry) to which a display
device 1406 may be coupled . In another set of examples , the
computing device 1400 may not include an audio input
device 1418 or an audio output device 1408 , but may include
audio input or output device interface circuitry (e.g. , con
nectors and supporting circuitry) to which an audio input
device 1418 or audio output device 1408 may be coupled .
[0139] The computing device 1400 may include a pro
cessing device 1402 (e.g. , one or more processing devices) .
The processing device 1402 processes electronic data from
registers and / or memory to transform that electronic data
into other electronic data that may be stored in registers
and / or memory . The computing device 1400 may include a
memory 1404 , which may itself include one or more
memory devices such as volatile memory (e.g. , DRAM) ,
nonvolatile memory (e.g. , read - only memory (ROM)) , high
bandwidth memory (HBM) , flash memory , solid state
memory , and / or a hard drive . In some embodiments , the
memory 1404 may include memory that shares a die with the
processing device 1402. In some embodiments , the memory
1404 includes one or more non - transitory computer - readable
media storing instructions executable to perform operations
for DL , e.g. , the method 1100 described above in conjunc
tion with FIG . 11 or some operations performed by the DNN
accelerator 300 described above in conjunction with FIG . 3 .

US 2023/0008622 A1 Jan. 12 , 2023
14

a

The instructions stored in the one or more non - transitory
computer - readable media may be executed by the process
ing device 2402 .
[0140] In some embodiments , the computing device 1400
may include a communication chip 1412 (e.g. , one or more
communication chips) . For example , the communication
chip 1412 may be configured for managing wireless com
munications for the transfer of data to and from the com
puting device 1400. The term “ wireless ” and its derivatives
may be used to describe circuits , devices , systems , methods ,
techniques , communications channels , etc. , that may com
municate data through the use of modulated electromagnetic
radiation through a nonsolid medium . The term does not
imply that the associated devices do not contain any wires ,
although in some embodiments they might not .
[0141] The communication chip 1412 may implement any
of a number of wireless standards or protocols , including but
not limited to Institute for Electrical and Electronic Engi
neers (IEEE) standards including Wi - Fi (IEEE 802.10 fam
ily) , IEEE 802.16 standards (e.g. , IEEE 802.16-2005
Amendment) , Long - Term Evolution (LTE) project along
with any amendments , updates , and / or revisions (e.g. ,
advanced LTE project , ultramobile broadband (UMB) proj
ect (also referred to as “ 3GPP2 ”) , etc.) . IEEE 802.16 com
patible Broadband Wireless Access (BWA) networks are
generally referred to as WiMAX networks , an acronym that
stands for worldwide interoperability for microwave access ,
which is a certification mark for products that pass confor
mity and interoperability tests for the IEEE 802.16 stan
dards . The communication chip 1412 may operate in accor
dance with a Global System for Mobile Communication
(GSM) , General Packet Radio Service (GPRS) , Universal
Mobile Telecommunications System (UMTS) , High Speed
Packet Access (HSPA) , Evolved HSPA (E - HSPA) , or LTE
network . The communication chip 1412 may operate in
accordance with Enhanced Data for GSM Evolution
(EDGE) , GSM EDGE Radio Access Network (GERAN) ,
Universal Terrestrial Radio Access Network (UTRAN) , or
Evolved UTRAN (E - UTRAN) . The communication chip

erate in accordance with CDMA , Time Divi
sion Multiple Access (TDMA) , Digital Enhanced Cordless
Telecommunications (DECT) , Evolution - Data Optimized
(EV - DO) , and derivatives thereof , as well as any other
wireless protocols that are designated as 3G , 4G , 5G , and
beyond . The communication chip 1412 may operate in
accordance with other wireless protocols in other embodi
ments . The computing device 1400 may include an antenna
1422 to facilitate wireless communications and / or to receive
other wireless communications (such as AM or FM radio
transmissions) .
[0142] In some embodiments , the communication chip
1412 may manage wired communications , such as electrical ,
optical , or any other suitable communication protocols (e.g. ,
the Ethernet) . As noted above , the communication chip 1412
may include multiple communication chips . For instance , a
first communication chip 1412 may be dedicated to shorter
range wireless communications such as Wi - Fi or Bluetooth ,
and a second communication chip 1412 may be dedicated to
longer - range wireless communications such as global posi
tioning system (GPS) , EDGE , GPRS , CDMA , WiMAX ,
LTE , EV - DO , or others . In some embodiments , a first
communication chip 1412 may be dedicated to wireless
communications , and a second communication chip 1412
may be dedicated to wired communications .

[0143] The computing device 1400 may include battery /
power circuitry 1414. The battery / power circuitry 1414 may
include one or more energy storage devices (e.g. , batteries or
capacitors) and / or circuitry for coupling components of the
computing device 1400 to an energy source separate from
the computing device 1400 (e.g. , AC line power) .
[0144] The computing device 1400 may include a display
device 1406 (or corresponding interface circuitry , as dis
cussed above) . The display device 1406 may include any
visual indicators , such as a heads - up display , a computer
monitor , a projector , a touchscreen display , a liquid crystal
display (LCD) , a light - emitting diode display , or a flat panel
display , for example .
[0145] The computing device 1400 may include an audio
output device 1408 (or corresponding interface circuitry , as
discussed above) . The audio output device 1408 may include
any device that generates an audible indicator , such as
speakers , headsets , or earbuds , for example .
[0146] The computing device 1400 may include an audio
input device 1418 (or corresponding interface circuitry , as
discussed above) . The audio input device 1418 may include
any device that generates a signal representative of a sound ,
such as microphones , microphone arrays , or digital instru
ments (e.g. , instruments having a musical instrument digital
interface (MIDI) output) .
[0147] The computing device 1400 may include a GPS
device 1416 (or corresponding interface circuitry , as dis
cussed above) . The GPS device 1416 may be in communi
cation with a satellite - based system and may receive a
location of the computing device 1400 , as known in the art .
[0148] The computing device 1400 may include another
output device 1410 (or corresponding interface circuitry , as
discussed above) . Examples of the other output device 1410
may include an audio codec , a video codec , a printer , a wired
or wireless transmitter for providing information to other
devices , or an additional storage device .
[0149] The computing device 1400 may include another
input device 1420 (or corresponding interface circuitry , as
discussed above) . Examples of the other input device 1420
may include an accelerometer , a gyroscope , a compass , an
image capture device , a keyboard , a cursor control device
such as a mouse , a stylus , a touchpad , a bar code reader , a
Quick Response (QR) code reader , any sensor , or a radio
frequency identification (register fileID) reader .
[0150] The computing device 1400 may have any desired
form factor , such as a handheld or mobile computer system
(e.g. , a cell phone , a smart phone , a mobile internet device ,
a music player , a tablet computer , a laptop computer , a
netbook computer , an ultrabook computer , a PDA , an ultra
mobile personal computer , etc.) , a desktop computer system ,
a server or other networked computing component , a printer ,
a scanner , a monitor , a set - top box , an entertainment control
unit , a vehicle control unit , a digital camera , a digital video
recorder , or a wearable computer system . In some embodi
ments , the computing device 1400 may be any other elec
tronic device that processes data .

a 1412 may

a

SELECT EXAMPLES
a

[0151] The following paragraphs provide various
examples of the embodiments disclosed herein .
[0152] Example 1 provides a method of DL , the method
including converting at least a portion of a filter for a
convolution into a weight operand by decomposing a kernel
of the convolution to form a plurality of kernel vectors ,

US 2023/0008622 A1 Jan. 12 , 2023
15

> >

a

a

a

a

a

where the kernel includes weights arranged in rows and
columns , the kernel has a width determined by a number of
weights in a row and a height determined by a number of
weights in a column , and a kernel vector corresponds to a
respective row in the kernel and includes weights in the
respective row ; converting an input tensor of the convolu
tion into a plurality of input operands , where an input
operand includes activations , and a spatial size of the input
operand is the same as a spatial size of the weight operand ;
reading a first activation in the input operand from a memory
into an internal memory of a first PE ; and transmitting a
second activation in the input operand from an internal
memory of a second PE into the internal memory of the first
PE , where the first PE is to perform MAC operations with
the input operand and the weight operand .
[0153] Example 2 provides the method of example 1 ,
where the number of the weights in the kernel vector is not
an integral divisor of the width of the kernel , decomposing
the kernel to form the plurality of kernel vectors includes
generating an expanded kernel by adding one or more
columns of new weights into the kernel , and the number of
the weights in the kernel vector is an integral divisor of a
width of the expanded kernel .
[0154] Example 3 provides the method of example 2 ,
where the new weights have a value of zero .
[0155] Example 4 provides the method of any of the
preceding claims , further including reading the weight oper
and from the memory into another internal memory of the
PE .
(0156] Example 5 provides the method of any of the
preceding claims , where a result of the MAC operation is a
data point in an output tensor of the convolution .
[0157] Example 6 provides the method of any of the
preceding claims , further including transmitting a third
activation in the input operand from an internal memory of
a third PE into the internal memory of the first PE .
[0158] Example 7 provides the method of example 6 ,
where the second activation is transmitted into the internal
memory of the first PE at a first time , the third activation is
transmitted into the internal memory of the first PE at a
second time , the first time is earlier than the second time , and
the second activation is arranged between the first activation
and the third activation in the input operand .
[0159] Example 8 provides the method of any of the
preceding claims , where the first activation is read into the
internal memory of the first PE at a first time , and the second
activation is transmitted into the internal memory of the first
PE at a second time , and the first time is different from the
second time .
(0160] Example 9 provides the method of any of the
preceding claims , further includes reading the second acti
vation from the memory into the internal memory of the
second PE .
[0161] Example 10 provides the method of any of the
preceding claims , where the second PE receives a third
activation from an internal memory of a third PE , and the
second PE performs MAC operations with another input
operand that includes the second activation and the third
activation .
[0162] Example 11 provides one or more non - transitory
computer - readable media storing instructions executable to
perform operations for DL , the operations including con
verting at least a portion of a filter for a convolution into a
weight operand by decomposing a kernel of the convolution

to form a plurality of kernel vectors , where the kernel
includes weights arranged in rows and columns , the kernel
has a width determined by a number of weights in a row and
a height determined by a number of weights in a column , and
a kernel vector corresponds to a respective row in the kernel
and includes weights in the respective row ; converting an
input tensor of the convolution into a plurality of input
operands , where an input operand includes activations , and
a spatial size of the input operand is the same as a spatial size
of the weight operand ; reading a first activation in the input
operand from a memory into an internal memory of a first
PE ; and transmitting a second activation in the input operand
from an internal memory of a second PE into the internal
memory of the first PE , where the first PE is to perform
MAC operations with the input operand and the weight
operand .
[0163] Example 12 provides the one or more non - transi
tory computer - readable media of example 11 , where the
number of the weights in the kernel vector is not an integral
divisor of the width of the kernel , decomposing the kernel to
form the plurality of kernel vectors includes generating an
expanded kernel by adding one or more columns of new
weights into the kernel , and the number of the weights in the
kernel vector is an integral divisor of a width of the
expanded kernel .
[0164] Example 13 provides the one or more non - transi
tory computer - readable media of example 12 , where the new
weights have a value of zero .
[0165] Example 14 provides the one or more non - transi
tory computer - readable media of any one of examples 11-13 ,
where the operations further include reading the weight
operand from the memory into another internal memory of
the PE .
[0166] Example 15 provides the one or more non - transi
tory computer - readable media of any one of examples 11-14 ,
where a result of the MAC operation is a data point in an
output tensor of the convolution .
[0167] Example 16 provides the one or more non - transi
tory computer - readable media of any one of examples 11-16 ,
where the operations further include transmitting a third
activation in the input operand from an internal memory of
a third PE into the internal memory of the first PE .
[0168] Example 17 provides the one or more non - transi
tory computer - readable media of example 16 , where the
second activation is transmitted into the internal memory of
the first PE at a first time , the third activation is transmitted
into the internal memory of the first PE at a second time , the
first time is earlier than the second time , and the second
activation is arranged between the first activation and the
third activation in the input operand
[0169] Example 18 provides the one or more non - transi
tory computer - readable media of any one of examples 11-17 ,
where the first activation is read into the internal memory of
the first PE at a first time , and the second activation is
transmitted into the internal memory of the first PE at a
second time , and the first time is different from the second
time .
[0170] Example 19 provides the one or more non - transi
tory computer - readable media of any one of examples 11-18 ,
where the operations further include reading the second
activation from the memory into the internal memory of the
second PE
[0171] Example 20 provides the one or more non - transi
tory computer - readable media of any one of examples 11-19 ,

9

US 2023/0008622 A1 Jan. 12 , 2023
16

a

a

where the second PE receives a third activation from an
internal memory of a third PE , and the second PE performs
MAC operations with another input operand that includes
the second activation and the third activation .
[0172] Example 21 provides a DNN accelerator , the DNN
accelerator including a kernel decomposing module config
ured to convert at least a portion of a filter for a convolution
into a weight operand by decomposing a kernel of the
convolution to form a plurality of kernel vectors , where the
kernel includes weights arranged in rows and columns , the
kernel has a width determined by a number of weights in a
row and a height determined by a number of weights in a
column , and a kernel vector corresponds to a respective row
in the kernel and includes weights in the respective row ; a
tensor decomposing module configured to convert an input
tensor of the convolution into a plurality of input operands ,
where an input operand includes activations , and a spatial
size of the input operand is the same as a spatial size of the
weight operand ; a data read module configured to a first
activation in the input operand from a memory into an
internal memory of a first PE , and a PE array , the PE array
including the first PE and a second PE , where the first PE
receives a second activation from the input operand from an
internal memory of the second PEs and performs MAC
operations based on the input operand and the weight
operand .
[0173] Example 22 provides the DNN accelerator of
example 21 , where the number of the weights in the kernel
vector is not an integral divisor of the width of the kernel ,
the tensor decomposing module is configured to decompose
the kernel to form the plurality of kernel vectors by gener
ating an expanded kernel by adding one or more columns of
new weights into the kernel , and the number of the weights
in the kernel vector is an integral divisor of a width of the
expanded kernel .
[0174] Example 23 provides the DNN accelerator of
example 21 or 22 , where the data read module is further
configured to read the weight operand from the memory into
another internal memory of the PE .
[0175] Example 24 provides the DNN accelerator of any
one of examples 21-23 , where the first PE receives a third
activation in the input operand from an internal memory of
a third PE in the PE array .
[0176] Example 25 provides the DNN accelerator of any
one of examples 21-24 , where the first activation is read into
the internal memory of the first PE at a first time , and the first
PE receives the second activation at a second time , and the
first time is different from the second time .
[0177] The above description of illustrated implementa
tions of the disclosure , including what is described in the
Abstract , is not intended to be exhaustive or to limit the
disclosure to the precise forms disclosed . While specific
implementations of , and examples for , the disclosure are
described herein for illustrative purposes , various equivalent
modifications are possible within the scope of the disclosure ,
as those skilled in the relevant art will recognize . These
modifications may be made to the disclosure in light of the
above detailed description .

1. A method of deep learning , the method comprising :
converting at least a portion of a filter for a convolution

into a weight operand by decomposing a kernel of the
convolution to form a plurality of kernel vectors ,
wherein the kernel comprises weights arranged in rows
and columns , the kernel has a width determined by a

number of weights in a row and a height determined by
a number of weights in a column , and a kernel vector
corresponds to a respective row in the kernel and
comprises weights in the respective row ;

converting an input tensor of the convolution into a
plurality of input operands , wherein an input operand
comprises activations , and a spatial size of the input
operand is the same as a spatial size of the weight
operand ;

reading a first activation in the input operand from a
memory into an internal memory of a first processing
element ; and

transmitting a second activation in the input operand from
an internal memory of a second processing element into
the internal memory of the first processing element ,
wherein the first processing element is to perform
multiply - accumulate (MAC) operations with the input
operand and the weight operand .

2. The method of claim 1 , wherein :
the number of the weights in the kernel vector is not an

integral divisor of the width of the kernel ,
decomposing the kernel to form the plurality of kernel

vectors comprises generating an expanded kernel by
adding one or more columns of new weights into the
kernel , and

the number of the weights in the kernel vector is an
integral divisor of a width of the expanded kernel .

3. The method of claim 2 , wherein the new weights have
a value of zero .

4. The method of claim 1 , further comprising :
reading the weight operand from the memory into another

internal memory of the processing element .
5. The method of claim 1 , wherein a result of the MAC

operation is a data point in an output tensor of the convo
lution .

6. The method of claim 1 , further comprising :
transmitting a third activation in the input operand from

an internal memory of a third processing element into
the internal memory of the first processing element .

7. The method of claim 6 , wherein :
the second activation is transmitted into the internal
memory of the first processing element at a first time ,

the third activation is transmitted into the internal memory
of the first processing element at a second time ,

the first time is earlier than the second time , and
the second activation is arranged between the first acti

vation and the third activation in the input operand .
8. The method of claim 1 , wherein the first activation is

read into the internal memory of the first processing element
at a first time , and the second activation is transmitted into
the internal memory of the first processing element at a
second time , and the first time is different from the second
time .

9. The method of claim 1 , further comprises :
reading the second activation from the memory into the

internal memory of the second processing element .
10. The method of claim 1 , wherein the second processing

element receives a third activation from an internal memory
of a third processing element , and the second processing
element performs MAC operations with another input oper
and that includes the second activation and the third acti
vation .

a

a

US 2023/0008622 A1 Jan. 12 , 2023
17

a

a

11. One or more non - transitory computer - readable media
storing instructions executable to perform operations for
deep learning , the operations comprising :

converting at least a portion of a filter for a convolution
into a weight operand by decomposing a kernel of the
convolution to form a plurality of kernel vectors ,
wherein the kernel comprises weights arranged in rows
and columns , the kernel has a width determined by a
number of weights in a row and a height determined by
a number of weights in a column , and a kernel vector
corresponds to a respective row in the kernel and
comprises weights in the respective row ;

converting an input tensor of the convolution into a
plurality of input operands , wherein an input operand
comprises activations , and a spatial size of the input
operand is the same as a spatial size of the weight
operand ;

reading a first activation in the input operand from a
memory into an internal memory of a first processing
element ; and

transmitting a second activation in the input operand from
an internal memory of a second processing element into
the internal memory of the first processing element ,
wherein the first processing element is to perform
multiply - accumulate (MAC) operations with the input
operand and the weight operand .

12. The one or more non - transitory computer - readable
media of claim 11 , wherein :

the number of the weights in the kernel vector is not an
integral divisor of the width of the kernel ,

decomposing the kernel to form the plurality of kernel
vectors comprises generating an expanded kernel by
adding one or more columns of new weights into the
kernel , and

the number of the weights in the kernel vector is an
integral divisor of a width of the expanded kernel .

13. The one or more non - transitory computer - readable
media of claim 12 , wherein the new weights have a value of

a

a

internal memory of the first processing element at a second
time , and the first time is different from the second time .

19. The one or more non - transitory computer - readable
media of claim 11 , wherein the operations further comprise :

reading the second activation from the memory into the
internal memory of the second processing element .

20. The one or more non - transitory computer - readable
media of claim 11 , wherein the second processing element
receives a third activation from an internal memory of a third
processing element , and the second processing element
performs MAC operations with another input operand that
includes the second activation and the third activation .

21. A deep neural network (DNN) accelerator , the DNN
accelerator comprising :

a kernel decomposing module configured to convert at
least a portion of a filter for a convolution into a weight
operand by decomposing a kernel of the convolution to
form a plurality of kernel vectors , wherein the kernel
comprises weights arranged in rows and columns , the
kernel has a width determined by a number of weights
in a row and a height determined by a number of
weights in a column , and a kernel vector corresponds to
a respective row in the kernel and comprises weights in
the respective row ;

a tensor decomposing module configured to convert an
input tensor of the convolution into a plurality of input
operands , wherein an input operand comprises activa
tions , and a spatial size of the input operand is the same
as a spatial size of the weight operand ;

a data read module configured to a first activation in the
input operand from a memory into an internal memory
of a first processing element ; and

a processing element array , the processing element array
comprising the first processing element and a second
processing element , wherein the first processing ele
ment receives a second activation from the input oper
and from an internal memory of the second processing
elements and performs multiply - accumulate (MAC)
operations based on the input operand and the weight
operand .

22. The DNN accelerator of claim 21 , wherein :
the number of the weights in the kernel vector is not an

integral divisor of the width of the kernel ,
the tensor decomposing module is configured to decom

pose the kernel to form the plurality of kernel vectors
by generating an expanded kernel by adding one or
more columns of new weights into the kernel , and

the number of the weights in the kernel vector is an
integral divisor of a width of the expanded kernel .

23. The DNN accelerator of claim 21 , wherein the data
read module is further configured to read the weight operand
from the memory into another internal memory of the
processing element .

24. The DNN accelerator of claim 21 , wherein the first
processing element receives a third activation in the input
operand from an internal memory of a third processing
element in the processing element array .

25. The DNN accelerator of claim 21 , wherein the first
activation is read into the internal memory of the first
processing element at a first time , and the first processing
element receives the second activation at a second time , and
the first time is different from the second time .

a

zero .

a

14. The one or more non - transitory computer - readable
media of claim 11 , wherein the operations further comprise :

reading the weight operand from the memory into another
internal memory of the processing element .

15. The one or more non - transitory computer - readable
media of claim 11 , wherein a result of the MAC operation
is a data point in an output tensor of the convolution .

16. The one or more non - transitory computer - readable
media of claim 11 , wherein the operations further comprise :

transmitting a third activation in the input operand from
an internal memory of a third processing element into
the internal memory of the first processing element .

17. The one or more non - transitory computer - readable
media of claim 16 , wherein :

the second activation is transmitted into the internal
memory of the first processing element at a first time ,

the third activation is transmitted into the internal memory
of the first processing element at a second time ,

the first time is earlier than the second time , and
the second activation is arranged between the first acti

vation and the third activation in the input operand .
18. The one or more non - transitory computer - readable

media of claim 11 , wherein the first activation is read into the
internal memory of the first processing element at a first
time , and the second activation is transmitted into the

