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DETAILED DESCRIPTION KERNEL DECOMPOSITION AND 
ACTIVATION BROADCASTING IN DEEP 

NEURAL NETWORKS ( DNNS ) 

TECHNICAL FIELD 

[ 0001 ] This disclosure relates generally to neural net 
works , and more specifically , to kernel decomposition and 
activation broadcasting in DNNs . 

BACKGROUND 
[ 0002 ] DNNs are used extensively for a variety of artificial 
intelligence applications ranging from computer vision to 
speech recognition and natural language processing due to 
their ability to achieve high accuracy . However , the high 
accuracy comes at the expense of significant computation 
cost . DNNs have extremely high computing demands as 
each inference can require hundreds of millions of MAC 
( multiple - accumulate ) operations as well as hundreds of 
millions of weight operand weights to be stored for classi 
fication or detection . Therefore , techniques to improve effi 
ciency of DNNs are needed . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0003 ] Embodiments will be readily understood by the 
following detailed description in conjunction with the 
accompanying drawings . To facilitate this description , like 
reference numerals designate like structural elements . 
Embodiments are illustrated by way of example , and not by 
way of limitation , in the figures of the accompanying 
drawings . 
[ 0004 ] FIG . 1 illustrates an example layer structure of a 
DNN , in accordance with various embodiments . 
[ 0005 ] FIG . 2 illustrates an example convolution , in accor 
dance with various embodiments . 
[ 0006 ] FIG . 3 is a block diagram of an example DNN 
accelerator , in accordance with various embodiments . 
[ 0007 ] FIG . 4 illustrates an example process of decom 
posing a filter , in accordance with various embodiments . 
[ 0008 ] FIG . 5 illustrates another example process of 
decomposing a filter , in accordance with various embodi 
ments . 
[ 0009 ] FIG . 6 illustrates an example process of decom 
posing an input tensor , in accordance with various embodi 
ments . 
[ 0010 ] FIG . 7 illustrates an example process of broadcast 
ing activations between processing elements ( PEs ) , in accor 
dance with various embodiments . 
[ 0011 ] FIG . 8 illustrates another example process of 
broadcasting activations between PEs , in accordance with 
various embodiments . 
[ 0012 ] FIG . 9 illustrates an example PE array , in accor 
dance with various embodiments . 
[ 0013 ] FIG . 10 is a block diagram of an example PE , in 
accordance with various embodiments . 
[ 0014 ] FIG . 11 is a flowchart showing a method of deep 
learning , in accordance with various embodiments . 
[ 0015 ] FIG . 12 illustrates a deep learning ( DL ) environ 
ment , in accordance with various embodiments . 
[ 0016 ] FIG . 13 is a block diagram of an example DNN 
system , accordance with various embodiments . 
[ 0017 ] FIG . 14 is a block diagram of an example comput 
ing device , in accordance with various embodiments . 

[ 0018 ] Overview 
[ 0019 ] DNNs are widely used in the domains of computer 
vision , speech recognition , image , and video processing 
mainly due to their ability to achieve beyond human - level 
accuracy . However , the improvements in accuracy come at 
the expense of significant computation cost . The underlying 
DNNs have extremely high computing demands as each 
input requires at least hundreds of millions of MAC opera 
tions as well as hundreds of millions of weight operand 
weights to be processed for classification or detection . 
Energy constrained mobile systems and embedded systems , 
where energy and area budgets are extremely limited , often 
use area and energy efficient DNN accelerators as the 
underlying hardware for executing machine learning appli 
cations . 
[ 0020 ] Sparsity can be leveraged in DNN accelerators that 
perform convolutions , such as depthwise convolution , in 
which existing convolution hardware may be reused . How 
ever , the depthwise convolution by sparsity method can limit 
the amount of processing performed by each MAC unit ( also 
referred to as PE ) . In many cases , 116 of the PEs in the DNN 
accelerator are utilized . In other words , the utilization or 
efficiency of the DNN accelerator is limited to a maximum 
of 6.25 % in theory but even lower in practice . The efficiency 
of the DNN accelerator can be even lower due to an increase 
in bandwidth demands . Currently available DL technologies 
can make effective reuse of sparse convolution hardware but 
has no activation reuse and therefore , fails to effectively 
enhance efficiency of DNN accelerators . Thus , improved 
technology for enhancing efficiency of DNN accelerators is 
needed . 
[ 0021 ] Embodiments of the present disclosure may 
improve on at least some of the challenges and issues 
described above by providing DNN accelerators that facili 
tate 1xN kernel decomposition and activation broadcasting . 
An example DNN accelerator can convert a HxW kernel of 
a convolution into 1xN kernel vectors , where H is the height 
of the kernel and may equal the number of weights in a 
column in the kernel , and W is the width of the kernel and 
may equal the number of weights in a row in the kernel . A 
kernel vector includes N weights . N is an integer that is 
larger than 1 but not larger than W. In embodiments where 
N is not an integral divisor of W , the DNN accelerator may 
add dummy weights to the kernel . The dummy weights may 
be arranged in one or more columns to increase W so that N 
can be an integral divisor of W. 
[ 0022 ] With the 1xN kernel decomposition , the DNN 
accelerator converts an input tensor of the convolution into 
input operands , and an input operand may include N acti 
vations . The DNN accelerator may not need to go through 
the kernel - X loop as it effectively folds the kernel - X loop 
into the spatial X loop that steps across the input tensor . 
Also , as the kernel slides across the input tensor during the 
convolution , different input operands , which is to be pro 
cessed by different PEs , may include a same activation . The 
activation can be read into the internal memory of one of the 
PEs and broadcasted from the PE to the other PE ( s ) . This 
way , the number of read operations needed for the convo 
lution can be reduced . 
[ 0023 ] In an example convolution where an input tensor 
has a width of 18 activations and the kernel is a 3x3 kernel , 
the kernel may be decomposed into 1x3 kernel vectors . The 
input tensor may be decomposed into 16 input operands , and 
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an input operand may include 3 activations . The 18 activa 
tions can be loaded into a PE array through 18 read opera 
tions . Then the activations can be broadcasted between PEs 
in the PE array . In contrast , a DNN accelerator , which does 
not facilitate activation broadcasting , needs to perform 48 
( which equals 16 times 3 ) read operations . Also , for a DNN 
accelerator that performs the conventional 1x1 kernel 
decomposition , the DNN accelerator would decompose the 
input tensor into 18x18 = 324 ( assuming the height of the 
input tensor is the same as its width ) input operands , which 
can require 324 read operations . 
[ 0024 ] Thus , the 1xN kernel decomposition and activation 
broadcasting in the present disclosure can significantly 
reduce the number of read operations and therefore , reduces 
the number of memory accesses and bandwidth demands in 
convolutions . This can be beneficial for depthwise convo 
lution , which is typically limited by memory bandwidth . 
Also , the activation broadcasting between PEs can also 
increase the utilization of PEs . Compared with currently 
available DNN accelerators , the DNN accelerator in the 
present disclosure can have much better efficiency and 
performance . 
[ 0025 ] For purposes of explanation , specific numbers , 
materials and configurations are set forth in order to provide 
a thorough understanding of the illustrative implementa 
tions . However , it will be apparent to one skilled in the art 
that the present disclosure may be practiced without the 
specific details or / and that the present disclosure may be 
practiced with only some of the described aspects . In other 
instances , well known features are omitted or simplified in 
order not to obscure the illustrative implementations . 
[ 0026 ] Further , references are made to the accompanying 
drawings that form a part hereof , and in which is shown , by 
way of illustration , embodiments that may be practiced . It is 
to be understood that other embodiments may be utilized 
and structural or logical changes may be made without 
departing from the scope of the present disclosure . There 
fore , the following detailed description is not to be taken in 
a limiting sense . 
[ 0027 ] Various operations may be described as multiple 
discrete actions or operations in turn , in a manner that is 
most helpful in understanding the claimed subject matter . 
However , the order of description should not be construed as 
to imply that these operations are necessarily order depen 
dent . In particular , these operations may not be performed in 
the order of presentation . Operations described may be 
performed in a different order from the described embodi 
ment . Various additional operations may be performed , or 
described operations may be omitted in additional embodi 
ments . 
[ 0028 ] For the purposes of the present disclosure , the 
phrase “ A and / or B ” means ( A ) , ( B ) , or ( A and B ) . For the 
purposes of the present disclosure , the phrase “ A , B , and / or 
C ” means ( A ) , ( B ) , ( C ) , ( A and B ) , ( A and C ) , ( B and C ) , or 
( A , B , and C ) . The term “ between , ” when used with refer 
ence to measurement ranges , is inclusive of the ends of the 
measurement ranges . 
[ 0029 ] The description uses the phrases “ in an embodi 
ment ” or “ in embodiments , ” which may each refer to one or 
more of the same or different embodiments . The terms 
" comprising , " " including , " " having , " and the like , as used 
with respect to embodiments of the present disclosure , are 
synonymous . The disclosure may use perspective - based 
descriptions such as “ above , " “ below , ” “ top , " “ bottom , " and 

“ side ” to explain various features of the drawings , but these 
terms are simply for ease of discussion , and do not imply a 
desired or required orientation . The accompanying drawings 
are not necessarily drawn to scale . Unless otherwise speci 
fied , the use of the ordinal adjectives " first , ” “ second , ” and 
“ third , ” etc. , to describe a common object , merely indicate 
that different instances of like objects are being referred to , 
and are not intended to imply that the objects so described 
must be in a given sequence , either temporally , spatially , in 
ranking or in any other manner . 
[ 0030 ] In the following detailed description , various 
aspects of the illustrative implementations will be described 
using terms commonly employed by those skilled in the art 
to convey the substance of their work to others skilled in the 
art . 
[ 0031 ] The terms “ substantially , " " close , " " approxi 
mately , ” “ near , ” and “ about , ” generally refer to being within 
+/- 20 % of a target value based on the input operand of a 
particular value as described herein or as known in the art . 
Similarly , terms indicating orientation of various elements , 
e.g. , " coplanar , ” “ perpendicular , ” “ orthogonal , ” “ parallel , ” 
or any other angle between the elements , generally refer to 
being within +/- 5-20 % of a target value based on the input 
operand of a particular value as described herein or as 
known in the art . 
[ 0032 ] In addition , the terms “ comprise , " " comprising , " 
“ include , ” “ including , ” “ have , ” “ having ” or any other varia 
tion thereof , are intended to cover a non - exclusive inclusion . 
For example , a method , process , device , or DNN accelerator 
that comprises a list of elements is not necessarily limited to 
only those elements but may include other elements not 
expressly listed or inherent to such method , process , device , 
or DNN accelerators . Also , the term “ or ” refers to an 
inclusive “ or ” and not to an exclusive “ or . ” 
[ 0033 ] The DNN systems , methods and devices of this 
disclosure each have several innovative aspects , no single 
one of which is solely responsible for all desirable attributes 
disclosed herein . Details of one or more implementations of 
the subject matter described in this specification are set forth in the description below and the accompanying drawings . 
[ 0034 ] Example DNN Layer Structure 
[ 0035 ] FIG . 1 illustrates an example layer structure of a 
DNN 100 , in accordance with various embodiments . The 
DNN 100 is trained to receive images and output classifi 
cations of objects in the images . In the embodiments of FIG . 
1 , the DNN 100 receives an input image 105 that includes 
objects 115 , 125 , and 135. The DNN 100 includes a 
sequence of layers comprising a plurality of convolutional 
layers 110 ( individually referred to as " convolutional layer 
110 ” ) , a plurality of pooling layers 120 ( individually 
referred to as “ pooling layer 120 ” ) , and a plurality of fully 
connected layers 130 ( individually referred to as “ fully 
connected layer 130 ” ) . In other embodiments , the DNN 100 
may include fewer , more , or different layers . 
[ 0036 ] The convolutional layers 110 summarize the pres 
ence of features in the input image 105. The convolutional 
layers 110 function as feature extractors . The first layer of 
the DNN 100 is a convolutional layer 110. In an example , a 
convolutional layer 110 performs a convolution on an input 
tensor 140 ( also referred to as IFM ( input feature map ) 140 ) 
and a filter 150. As shown in FIG . 1 , the IFM 140 is 
represented by a 7x7x3 3D matrix . The IFM 140 includes 3 
input channels , each of which is represented by a 7x7 2D 
array . The 7x7 2D array includes 7 input elements ( also 
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referred to as input points ) in each row and 7 input elements 
in each column . The filter 150 is represented by a 3x3x3 3D 
matrix . The filter 150 includes 3 kernels , each of which may 
correspond to a different input channel of the IFM 140. A 
kernel is a 2D array of weights , where the weights are 
arranged in columns and rows . A kernel can be smaller than 
the IFM . In the embodiments of FIG . 1 , each kernel is 
represented by a 3x3 2D array . The 3x3 kernel includes 3 
weights in each row and 3 weights in each column . Weights 
can be initialized and updated by backpropagation using 
gradient descent . The magnitudes ( i.e. , values ) of the 
weights can indicate importance of the filter 150 in extract 
ing features from the IFM 140 . 
[ 0037 ] The convolution includes MAC operations with the 
input elements in the IFM 140 and the weights in the filter 
150. The convolution may be a standard convolution 163 or 
a depthwise convolution 183. In the standard convolution 
163 , the whole filter 150 slides across the IFM 140. All the 
input channels are combined to produce an output tensor 160 
( also referred to as OFM ( output feature map ) 160 ) . The 
OFM 160 is represented by a 5x5 2D array . The 5x5 2D 
array includes 5 output elements ( also referred to as output 
points ) in each row and 5 output elements in each column . 
For purpose of illustration , the standard convolution 
includes one filter in the embodiments of FIG . 1. In embodi 
ments where there are multiple filters , the standard convo 
lution may produce multiple output channels in the OFM 
160 . 
[ 0038 ] The multiplication applied between a kernel - sized 
patch of the IFM 140 and a kernel may be a dot product . A 
dot product is the elementwise multiplication between the 
kernel - sized patch of the IFM 140 and the corresponding 
kernel , which is then summed , always resulting in a single 
value . Because it results in a single value , the operation is 
often referred to as the “ scalar product . ” Using a kernel 
smaller than the IFM 140 is intentional as it allows the same 
kernel ( set of weights ) to be multiplied by the IFM 140 
multiple times at different points on the IFM 140. Specifi 
cally , the kernel is applied systematically to each overlap 
ping part or kernel - sized patch of the IFM 140 , left to right , 
top to bottom . The result from multiplying the kernel with 
the IFM 140 one time is a single value . As the kernel is 
applied multiple times to the IFM 140 , the multiplication 
result is a 2D array of output elements . As such , the 2D 
output array ( i.e. , the OFM 160 ) from the standard convo 
lution 163 is referred to an OFM . 
[ 0039 ] In the depthwise convolution 183 , the input chan 
nels are not combined . Rather , MAC operations are per 
formed on an individual input channel and an individual 
kernel and produce an output channel . As shown in FIG . 1 , 
the depthwise convolution 183 produces a depthwise output 
tensor 180. The depthwise output tensor 180 is represented 
by a 5x5x3 3D matrix . The depthwise output tensor 180 
includes 3 output channels , each of which is represented by 
a 5x5 2D array . The 5x5 2D array includes 5 output elements 
in each row and 5 output elements in each column . Each 
output channel is a result of MAC operations of an input 
channel of the IFM 140 and a kernel of the filter 150. For 
instance , the first output channel ( patterned with dots ) is a 
result of MAC operations of the first input channel ( pat 
terned with dots ) and the first kernel ( patterned with dots ) , 
the second output channel ( patterned with horizontal strips ) 
is a result of MAC operations of the second input channel 
( patterned with horizontal strips ) and the second kernel 

( patterned with horizontal strips ) , and the third output chan 
nel ( patterned with diagonal stripes ) is a result of MAC 
operations of the third input channel ( patterned with diago 
nal stripes ) and the third kernel ( patterned with diagonal 
stripes ) . In such a depthwise convolution , the number of 
input channels equals the number of output channels , and 
each output channel corresponds to a different input channel . 
The input channels and output channels are referred to 
collectively as depthwise channels . After the depthwise 
convolution , a pointwise convolution 193 is then performed 
on the depthwise output tensor 180 and a 1x1x3 tensor 190 
to produce the OFM 160 . 
[ 0040 ] The OFM 160 is then passed to the next layer in the 
sequence . In some embodiments , the OFM 160 is passed 
through an activation function . An example activation func 
tion is the rectified linear activation function ( ReLU ) . ReLU 
is a calculation that returns the value provided as input 
directly , or the value zero if the input is zero or less . The 
convolutional layer 110 may receive several images as input 
and calculates the convolution of each of them with each of 
the kernels . This process can be repeated several times . For 
instance , the OFM 160 is passed to the subsequent convo 
lutional layer 110 ( i.e. , the convolutional layer 110 following 
the convolutional layer 110 generating the OFM 160 in the 
sequence ) . The subsequent convolutional layers 110 per 
forms a convolution on the OFM 160 with new kernels and 
generates a new feature map . The new feature map may also 
be normalized and resized . The new feature map can be 
kerneled again by a further subsequent convolutional layer 
110 , and so on . 
[ 0041 ] In some embodiments , a convolutional layer 110 
has 4 hyperparameters : the number of kernels , the size F 
kernels ( e.g. , a kernel is of dimensions FxFxD pixels ) , the 
S step with which the window corresponding to the kernel 
is dragged on the image ( e.g. , a step of one means moving 
the window one pixel at a time ) , and the zero - padding P 
( e.g. , adding a black contour of P pixels thickness to the 
input image of the convolutional layer 110 ) . The convolu 
tional layers 110 may perform various types of convolutions , 
such as 2 - dimensional convolution , dilated or atrous con 
volution , spatial separable convolution , depthwise separable 
convolution , transposed convolution , and so on . The DNN 
100 includes 16 convolutional layers 110. In other embodi 
ments , the DNN 100 may include a different number of 
convolutional layers . 
[ 0042 ] The pooling layers 120 down - sample feature maps 
generated by the convolutional layers , e.g. , by summarizing 
the presents of features in the patches of the feature maps . 
A pooling layer 120 is placed between 2 convolution layers 
110 : a preceding convolutional layer 110 ( the convolution 
layer 110 preceding the pooling layer 120 in the sequence of 
layers ) and a subsequent convolutional layer 110 ( the con 
volution layer 110 subsequent to the pooling layer 120 in the 
sequence of layers ) . In some embodiments , a pooling layer 
120 is added after a convolutional layer 110 , e.g. , after an 
activation function ( e.g. , ReLU ) has been applied to the 
OFM 160 . 
[ 0043 ] A pooling layer 120 receives feature maps gener 
ated by the preceding convolution layer 110 and applies a 
pooling operation to the feature maps . The pooling operation 
reduces the size of the feature maps while preserving their 
important characteristics . Accordingly , the pooling opera 
tion improves the efficiency of the DNN and avoids over 
learning . The pooling layers 120 may perform the pooling 

2 



US 2023/0008622 A1 Jan. 12 , 2023 
4 

a 

a 2 

> 

operation through average pooling ( calculating the average 
value for each patch on the feature map ) , max pooling 
( calculating the maximum value for each patch of the feature 
map ) , or a combination of both . The size of the pooling 
operation is smaller than the size of the feature maps . In 
various embodiments , the pooling operation is 2x2 pixels 
applied with a stride of 2 pixels , so that the pooling operation 
reduces the size of a feature map by a factor of 2 , e.g. , the 
number of pixels or values in the feature map is reduced to 
one quarter the size . In an example , a pooling layer 120 
applied to a feature map of 6x6 results in an output pooled 
feature map of 3x3 . The output of the pooling layer 120 is 
inputted into the subsequent convolution layer 110 for 
further feature extraction . In some embodiments , the pooling 
layer 120 operates upon each feature map separately to 
create a new set of the same number of pooled feature maps . 
[ 0044 ] The fully connected layers 130 are the last layers of 
the DNN . The fully connected layers 130 may be convolu 
tional or not . The fully connected layers 130 receives an 
input operand . The input operand defines the output of the 
convolutional layers 110 and pooling layers 120 and 
includes the values of the last feature map generated by the 
last pooling layer 120 in the sequence . The fully connected 
layers 130 applies a linear combination and an activation 
function to the input operand and generates an individual 
partial sum . The individual partial sum may contain as many 
elements as there are classes : element i represents the 
probability that the image belongs to class i . Each element 
is therefore between 0 and 1 , and the sum of all is worth one . 
These probabilities are calculated by the last fully connected 
layer 130 by using a logistic function ( binary classification ) 
or a softmax function ( multi - class classification ) as an 
activation function . 
[ 0045 ] In some embodiments , the fully connected layers 
130 classify the input image 105 and returns an operand of 
size N , where N is the number of classes in the image 
classification problem . In the embodiments of FIG . 1 , N 
equals 3 , as there are 3 objects 115 , 125 , and 135 in the input 
image . Each element of the operand indicates the probability 
for the input image 105 to belong to a class . To calculate the 
probabilities , the fully connected layers 130 multiply each 
input element by weight , makes the sum , and then applies an 
activation function ( e.g. , logistic if N = 2 , softmax if N > 2 ) . 
This is equivalent to multiplying the input operand by the 
matrix containing the weights . In an example , the individual 
partial sum includes 3 probabilities : a first probability indi 
cating the object 115 being a tree , a second probability 
indicating the object 125 being a car , and a third probability 
indicating the object 135 being a person . In other embodi 
ments where the input image 105 includes different objects 
or a different number of objects , the individual partial sum 
can be different . 
[ 0046 ] Example Convolution 
[ 0047 ] FIG . 2 illustrates an example convolution , in accor 
dance with various embodiments . The convolution may be a 
convolution in a convolutional layer of a DNN , e.g. , a 
convolutional layer 110 in FIG . 1. The convolution can be 
executed on an input tensor 210 and filters 220 ( individually 
referred to as “ filter 220 ” ) . A result of the convolution is an 
output tensor 230. In some embodiments , the convolution is 
performed by a PE array , such as the PE array 340 in FIG . 
3 . 
[ 0048 ] In the embodiments of FIG . 2 , the input tensor 210 
includes input elements ( also referred to as “ elements ” ) 

arranged in a 3D matrix . Each input element in the input 
tensor may be represented by a ( X , Y , Z ) coordinate that 
indicates a position of the input elements in the 3D matrix . 
In some embodiments a ( X , Y ) coordinate may represent an 
activation in the input tensor 210 ( “ input activation ” ) . The 
input activation may include a sequence of input elements 
that have the same ( X , Y ) coordinate but different Z coor 
dinates . The length of an input activation may equal the 
depth of the input tensor 210 along the Z axis . 
[ 0049 ] The input tensor 210 has a spatial size Hin * Winx 
Cin , where Hin is the height of the 3D matrix ( i.e. , the length 
along the Y - axis , which indicates the number of activations 
in a column in the 2D matrix of each input channel ) , Win is 
the width of the 3D matrix ( i.e. , the length along the X - axis , 
which indicates the number of activations in a row in the 2D 
matrix of each input channel ) , and Cin is the depth of the 3D 
matrix ( i.e. , the length along the Z axis , which indicates the 
number of input channels ) . For purpose of simplicity and 
illustration , the input tensor 210 has a spatial size of 7x7x3 , 
i.e. , the input tensor 210 includes three input channels and 
each input channel has a 7x7 2D matrix . 
[ 0050 ] Each filter 220 includes weights arranged in a 3D 
matrix . The values of the weights may be determined 
through training the DNN . A filter 220 has a spatial size 
HxWxXC where H is the height of the filter ( i.e. , the length 
along the Y - axis , which indicates the number of weight in a 
column in each kernel ) , W is the width of the filter ( i.e. , the 
length along the X - axis , which indicates the number of 
weights in a row in each kernel ) , and C is the depth of the 
filter ( i.e. , the length along the Z axis , which indicates the 
number of channels ) . In some embodiments , Cf equals Cin : 
For purpose of simplicity and illustration , each filter 220 in 
FIG . 2 has a spatial size of 3x3x3 , i.e. , the filter 220 includes 
3 convolutional kernels with a spatial size of 3x3 . The 
spatial size of the convolutional kernels is smaller than the 
spatial size of the 2D matrix of each input channel in the 
input tensor 210 . 
[ 0051 ] In the convolution , each filter 220 slides across the 
input tensor 210 and generates a 2D matrix for an output 
channel in the output tensor 230. In the embodiments of FIG . 
2 , the 2D matrix has a spatial size of 5x5 . The output tensor 
230 includes output elements ( also referred to as “ ele 
ments ” ) arranged in a 3D matrix . Each output element in the 
output tensor may be represented by a ( X , Y , Z ) coordinate 
that indicates a position of the input elements in the 3D 
matrix . In some embodiments a ( X , Y ) coordinate may 
represent an activation in the output tensor 230 ( “ output 
activation ” ) . The output activation may include a sequence 
of output elements that have the same ( X , Y ) coordinate but 
different Z coordinates . The length of an output activation 
may equal the depth of the input tensor 210 along the Z axis . 
[ 0052 ] The output tensor 230 has a spatial size Hour 
WouxCout , where Hout is the height of the 3D matrix ( i.e. , 
the length along the Y - axis , which indicates the number of 
activations in a column in the 2D matrix of each output 
channel ) , Wout is the width of the 3D matrix ( i.e. , the length 
along the X - axis , which indicates the number of activations 
in a row in the 2D matrix of each output channel ) , and Cout 
is the depth of the 3D matrix ( i.e. , the length along the Z 
axis , which indicates the number of output channels ) . Cout 
may equal the number of filters 220 in the convolution . Hout 
and W out may depend on the heights and weights of the input 
tensor 210 and each filter 220 . 
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tensor 210 in FIG . 2. The output tensor may be a 3D matrix 
and include Cou output channels . Examples of the output 
tensor include the output tensor 160 in FIG . 1 or the output 
tensor 220 in FIG . 2 . 
[ 0060 ] The kernel decomposing module 320 decomposes 
kernels for convolutions . In some embodiments , the kernel 
decomposing module 320 may decompose a kernel into 
kernel vectors . For an example kernel having a spatial size 
of HXW , ( i.e. , the number of weights in a column in the 
kernel is H , and the number of weights in a row in the kernel 
is W ) , the kernel decomposing module 320 may decompose 
the kernel into kernel vectors , each of which has a spatial 
size of 1xN , where N is an integer that is larger than 1 but 
not larger than W. In embodiments where N is an integral 
divisor of Wf meaning W / N is an integer , the kernel 
decomposing module 320 may divide each row of the kernel 
into W / N kernel vectors . 
[ 0061 ] The kernel vectors may be rearranged to form a 
weight operand . For instance , a kernel vector may corre 
spond to a weight segment . The weight segment may include 
all the channels in the filter of the convolution . A spatial size 
of a weight segment may be 1xNxC . The weight segments 
may be arranged linearly along the channel axis to form a 2D 
array having a spatial size of 

2 

1XNX Wf * Hf * N \ / + C ; ) 
2 

[ 0053 ] In an example step of the convolution , MAC opera 
tions can be performed on a 3x3x3 subtensor 215 ( which is 
highlighted with a dotted pattern in FIG . 2 ) in the input 
tensor and all the filters 220. The subtensor 215 has the same 
spatial size as each filter 220. The result of the MAC 
operations on the subtensor 215 and one filter 220 is an 
activation in the output tensor 230. The result of the MAC 
operations on the subtensor 215 and all the filters 220 is a 
vector 235 in the output tensor 230. The vector 235 has a 
spatial size of 1x1xCout . The vector 235 includes a sequence 
of output elements , which corresponds to different output 
channels in the output tensor 230 . 
[ 0054 ] The convolution on the input tensor 210 and filters 
220 may be performed by a DNN accelerator , such as the 
DNN accelerator 300 in FIG . 3. The DNN accelerator 
includes PEs that perform MAC operations . The input tensor 
210 and filters 220 may be decomposed to facilitate distri 
bution of the workload of the convolution to the PEs in the 
DNN accelerator . Example processes of decomposing filter 
is shown in FIGS . 4 and 5. An example process of decom 
posing an input tensor is shown in FIG . 6 . 
[ 0055 ] Example DNN Accelerator 
[ 0056 ] FIG . 3 is a block diagram of an example DNN 
accelerator , in accordance with various embodiments . 
[ 0057 ] FIG . 3 is a block diagram of an example DNN 
accelerator 300 , in accordance with various embodiments . 
The DNN accelerator 300 can run DNNs , e.g. , the DNN 100 
in FIG . 1. The DNN accelerator 300 includes a memory 310 , 
a kernel decomposing module 320 , a tensor decomposing 
module 330 , a data read module 360 , and an PE array 340 
including internal memories 350 ( individually referred to as 
“ internal memory 350 ” ) . In other embodiments , alternative 
configurations , different or additional components may be 
included in the DNN accelerator 300. For instance , the DNN 
accelerator 300 may include more than one memory 310 , 
more than one data read module 360 , or more than one PE 
array 340. Further , functionality attributed to a component of 
the DNN accelerator 300 may be accomplished by a differ 
ent component included in the DNN accelerator 300 or by a 
different system . 
[ 0058 ] The memory 310 stores data to be used by the PE 
array 340 to perform DL operations in DNN models . 
Example DL operations include convolutions ( also referred 
to as " convolutional operations ” ) , pooling operations , 
elementwise operations , other types of DL operations , or 
some combination thereof . The memory 310 may be a main 
memory of the DNN accelerator 300. In some embodiments , 
the memory 310 includes one or more DRAMs ( dynamic 
random - access memory ) . For instance , 310 may 
store the input tensor , convolutional kernels , or output tensor 
of a convolution in a convolutional layer of a DNN , e.g. , the 
convolutional layer 110. The output tensor can be transmit 
ted from the internal memories 350 to the memory 310 
through the data read module 360 . 
[ 0059 ] In other embodiments , the input tensor or output 
tensor is not stored in the memory 310. For instance , the 
input tensor may be directly transmitted from one or more 
internal memories of another PE array to one or more 
internal memories 350 of the PE array 340. The output 
tensor may be directly transmitted from one or more internal 
memories 350 in the PE array 340 into one or more internal 
memories of another PE array . The input tensor may be a 3D 
matrix and include Cin input channels . Examples of the input 
tensor include the input tensor 140 in FIG . 1 or the input 

The 2D array is the weight operand . Even though the spatial 
size of the weight operand is different from the spatial size 
of the filter , the weight operand has the same number of 
weights as the filter . 
[ 0062 ] In embodiments where N is not an integral divisor 
of W7 , meaning W , / N is not an integer , the kernel decom 
posing module 320 may add dummy weights into the kernel 
to expand the width of the kernel . For instance , the kernel 
decomposing module 320 may added one or more columns 
of dummy weights to an edge of the kernel , e.g. , to the right 
edge of the kernel . The expanded kernel has a spatial size of 

where Wer is larger than W , and N is an integral 
divisor of Wef . The kernel decomposing module 320 can 
further convert each row of the expanded kernel into one or 
more kernel vectors . Some of the kernel vectors include one 
or more dummy weights . The weight operand has a spatial 
size of 

HXWer 

a 

Wef the memory 1XNX ( ) * H ** N 

[ 0063 ] To ensure that the addition of the dummy weight 
will not influence the result of the convolution , the kernel 
decomposing module 320 may set the values of the dummy 
weights to zero or provide information to the PE array 340 
so that the PE array 340 skips the dummy weights in the 
execution of the convolution . In embodiment , the kernel 
decomposing module 320 may manipulate a sparsity bitmap 
for the kernel or for the input tensor of the convolution . For 
instance , the kernel decomposing module 320 may set 
values of bits in the sparsity bitmap that correspond to the 
dummy weight to zero , so that when the PE array 340 
performs the convolution based on the sparsity bitmap , the 
dummy weights will be skipped . In another embodiments , 
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the kernel decomposing module 320 may use programed 
configuration registers , such as workload type , tension 
dimension , kernel dimension , etc. , to instruct the PE array 
340 to skip the dummy weights . 
[ 0064 ] Alternative or in addition to adding dummy 
weights , the kernel decomposing module 320 may transpose 
the kernel . For instance , the kernel decomposing module 
320 may determine that N is not an integral divisor of W , but 
N is an integral divisor of He . Then the kernel decomposing 
module 320 may transpose columns of the kernel to rows . H , 
becomes the width of the transposed kernel . The kernel 
decomposing module 320 may decompose the transposed 
kernel into 1xN kernel vectors . In embodiments where the 
kernel is transposed , the kernel decomposing module 320 
may instruct the tensor decomposing module 330 to trans 
pose the input tensor of the convolution accordingly , so that 
the transposing of the kernel would not influence the result 
of the convolution . Also , the output of the convolution , 
which is performed on the transposed kernel and the trans 
posed input tensor , may need to be further process before the 
output is to be used for further DL operation . 
[ 0065 ] The tensor decomposing module 330 decomposes 
an input tensor of a convolution based on the decomposing 
of the kernel of the convolution done by the kernel decom 
posing module 320. The tensor decomposing module 330 
may decompose the input tensor into a plurality of input 
operands . An input operand may have a same layout and 
spatial size as the corresponding weight operand generated 
by the kernel decomposing module 320. In the example 
where the spatial size of a weight operand is 

enables the DNN accelerator 300 to have better performance 
than currently available DNN accelerators . 
[ 0067 ] Currently available DNN accelerators typically 
performs 1x1 kernel decomposition , which requires that an 
input tensor is decomposed into 1x1 activations . As a result , 
a PE in such a DNN accelerator processes a single activation 
and does not share any activation with other PEs . Each PE 
must receive its activation through reading the activation 
from the memory 310. Thus , the number of read operations 
required in currently available DNN accelerators can be 
significantly more than the number of read operations 
required in the DNN accelerator 300 for performing the 
same convolution . 
[ 0068 ] The PE array 340 performs computation for DL 
operations . The PE array 340 may run the operations in a 
DNN layer , or a portion of the operations in the DNN layer . 
In some embodiments , the operations of the DNN layers 
may be run by one or more other compute tiles in parallel 
with the PE array 340. The PE array 340 may perform 
convolutions , e.g. , standard convolution or depthwise con 
volution . In some embodiments , the PE array 340 receive an 
input tensor and a kernel and performs a convolution based 
on the input tensor and kernel . The result of the convolution 
may be an output tensor , which can be further computed , 
e.g. , by the PE array 340 or one or more other PE arrays . 
[ 0069 ] The PE arrays 340 includes PEs arranged in col 
umns , or columns and rows . Some or all of the PES may be 
activated for a convolution . An activated PE is a PE that 
performs MAC operations in the convolution . The workload 
of a convolution may be partitioned and distributed to the 
activated PEs . In some embodiments , an activated PE may 
perform MAC operations on an input operand and a weight 
operand , which are generated from decomposing the input 
tensor and kernel , respectively , of the convolution . An 
activated PE may receive multiple input operands and 
multiple weight operands and perform multiple rounds of 
MAC operations in the convolution . Results of MAC opera 
tions of the PEs may be aggregated to produce the output 
tensor ( or a portion of the output tensor ) of the convolution . 
[ 0070 ] The internal memories 350 store data used for and 
generated from MAC operations by the PE array 340. In the 
embodiments of FIG . 3 , the internal memories 350 are inside 
the PE array 340. In other embodiments , the internal memo 
ries 350 may be outside the PE array 340. The internal 
memories 350 and the PE array 340 can be implemented on 
the same chip . In some embodiments , the internal memories 
350 includes one or more SRAMs ( static random - access 
memories ) . The internal memories 350 may be register files . 
[ 0071 ] Each PE in the PE array 340 may be associated 
with one or more internal memories 350. For instance , a PE 
may have an activation memory for storing activations , a 
weight memory for storing weights , and an output memory 
for storing output elements . An input operand for the PE 
may be stored in the activation memory , a weight operand 
for the PE may be stored in the weight memory , and results 
of MAC operations of the PE may be stored in the output 
memory . In some embodiments , such as embodiments where 
the internal memories 350 are register files , the activation 
memory may be referred to as an input register file ( e.g. , the 
input register file 1040 in FIG . 10 ) , the weight memory may 
be referred to as a weight register file ( e.g. , the weight 
register file 1050 in FIG . 10 ) , and the output memory may 
be referred to as an output register file ( e.g. , the output 
register file 1060 in FIG . 10 ) . 

W 1xNx .. ; ) ** C * H * 

the spatial size of an input operand is 

W 
1xNx nx ( " Hy scu ) * Cin * * 

where Cin equals CA 
[ 0066 ] Different input operands may be provided to dif 
ferent PEs in the PE array 340. These PEs may receive the 
same weight operand . In some embodiments , a PE performs 
MAC operations on an input operand and the weight opera 
tion to produce an output activation in the output tensor of 
the convolution . In embodiments where the weight opera 
tion is generated through 1xN kernel decomposition , the 
input operand may include 1xN activations so that the 
spatial size of the input operand can match the spatial size 
of the weight operand . Some of the 1xN activations may be 
included in one or more other input operands processed by 
one or more other PEs . These PEs can share activations . For 
instance , an input activation read into a PE can be transmit 
ted from this PE to other PEs so that the other PEs can use 
the same input activation to perform MAC operations , 
which can avoid reading the same input activation into all 
the PEs through multiple read operations . The transmission 
of activations among different PEs inside the PE array 340 
is referred to as activation broadcasting . The 1xN kernel 
decomposition performed by the kernel decomposing mod 
ule 320 makes activation broadcasting possible , which 
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[ 0072 ] Input activations may be broadcasted between 
internal memories 350 of different PEs . For instance , an 
activation stored in the activation memory of a PE may be 
transmitted from the activation memory to one or more other 
activation memories for one or more other PEs . The acti 
vation memory of the PE may also receive one or more 
activations from one or more other PEs . With activation 
broadcasting , an activation can be read into one activation 
memory of one PE and then broadcasted to other activation 
memories , as opposed to being read into the activation 
memories of all the PEs that need the activation . This way , 
the number of read operations by the data read module 360 
can be significantly reduced , and the efficiency of the DNN 
accelerator 300 can be improved . 
[ 0073 ] The data read module 360 facilitates data transfer 
between the memory 310 and the internal memories 350. For 
example , the data read module 360 can read data from the 
memory 310 and write data into the internal memories 350 . 
As another example , the data read module 360 can read data 
from the internal memories 350 and write data into the 
memory 310. The data read module 360 provides a direct 
memory access feature that allows the PE array 340 to 
initiate data transfer between the memory 310 and the 
internal memories 350 and to perform other operations while 
the data transfer is in being conducted . 
[ 0074 ] In some embodiments , the data read module 360 
may be associated with a number of data loading lanes for 
loading data into the PE array 340 , e.g. , into a PE column in 
the PE array 340. The loading bandwidth of the PE column 
is an aggregation of the loading bandwidths of all the data 
loading lanes associated with the PE column . With a certain 
number of data loading lanes , data can be fed into the same 
number of independent MAC units simultaneously . These 
independent MAC units may be in the same PE . In some 
embodiments where a PE column has four data loading lanes 
for feeding activations or weights into the PE column and 
each data loading lane may have a bandwidth of 16 bytes , 
the four data loading lanes can have a total loading band 
width of 64 bytes . In an embodiment , four PEs in the PE 
array 340 may data through the four data loading lanes in the 
same read operation by the data read module 360 . 
[ 0075 ] In some embodiments ( such as embodiments 
where activation broadcasting occurs ) , the data read module 
360 may read different activations in an input operand into 
the activation memories of different PEs . For instance , the 
data read module 360 may read a first activation in the input 
operand into a first PE , read a second activation in the input 
operand into a second PE , and read a third activation in the 
input operand into a third PE . The first PE can receive the 
second activation and third activation from the second PE 
and the third PE , respectively , to complete the MAC opera 
tions for the input operand . The second activation may be 
included in a second input operand , with which the second 
PE performs MAC operations . The second PE may receive 
other activations in the second input operand from one or 
more other PEs , such as the third PE . Similarly , the third 
activation may be included in a third input operand , with 
which the third PE performs MAC operations . The third PE 
may receive other activations in the third input operand from 
one or more other PEs . In an embodiment where an input 
operand includes N activations , the data read module 360 
may perform N read operations , in each of which the data 
read module 360 reads one activation into an activation 
memory . 

[ 0076 ] FIG . 4 illustrates an example process of decom 
posing a filter 410 , in accordance with various embodiments . 
For purpose of simplicity and illustration , the filter 410 has 
a 3x3 kernel . The depth of the filter 410 in the Z axis is the 
number of channels in the filter 410 , which is denoted as Cro 
The filter 410 is converted to a weight operand 420 through 
decomposing , e.g. , by the kernel decomposing module 320 
in FIG . 3. The weight operand 420 includes all the weights 
in the filter 410 , but the weights are arranged in a different 
layout . As shown in FIG . 4 , the filter 410 is a 3D matrix 
having a spatial size of 3x3xC , but the weight operand 420 
is a 2D array having a spatial size of 1x3x3CA 
[ 0077 ] The weight operand 420 includes three weight 
segments 425A - 415C ( collectively referred to as “ weight 
segments 425 ” or “ weight segment 425 % ) . Each weight 
segment 425 has a spatial size of 1x3xCp As shown in FIG . 
4 , the weight segment 425A is includes the three weights in 
the top row of the kernel , the weight segment 425B is 
includes the three weights in the middle row of the kernel , 
and weight segment 425A is includes the three weights in the 
bottom row of the kernel . The weight segments 425 are 
arranged one after another along the Z axis based on the Y 
coordinates of the weights , e.g. , the weight segment 425B is 
arranged between the weight segment 425A and the weight 
segment 425C . 
[ 0078 ] In some embodiments , the weight operand 420 
may be provided to a PE , e.g. , stored in a weight memory of 
the PE , and be used by the PE to perform MAC operations 
and produce an output element in the output tensor of the 
convolution . The weights in the weight operand 420 may be 
provided to the PE sequentially , e.g. , based on the ( X , Y ) 
coordinates of the weights . In an example where the weight 
segment 425A includes weights at ( 0 , 0 ) , ( 1 , 0 ) , and ( 2,0 ) , 
the weights at ( 0 , 0 ) in the weight segment 425A are sent to 
the PE first for a first round of MAC operation . After that , 
the ( 1 , 0 ) weights can be sent to the PE for a second round 
of MAC operation , followed by the ( 2 , 0 ) weights for a 
second round of MAC operation . After the weight segment 
425A is done , the weights in the weight segment 425B can 
be sent to the PE for more MAC operations , followed by the 
weight segment 425C . In other embodiments , the weight 
operand 420 may be provided to multiple PEs . For instance , 
the weight segments 425 may be provided to three different 
PES . A PE can process one weight segment 425. The output 
of the three different PEs may be accumulated by an 
accumulated associated with the three PEs to produce the 
output element . 
[ 0079 ] FIG . 5 illustrates another example process of 
decomposing a filter , in accordance with various embodi 
ments . For purpose of simplicity and illustration , the filter 
510 has a 5x5 kernel . The depth of the filter 510 in the Z axis 
is the number of channels in the filter 510 , which is denoted 
as Cf The filter 510 is converted to a weight operand 530 through decomposing , e.g. , by the kernel decomposing 
module 320 in FIG . 3. The weight operand 530 includes all 
the weights in the filter 510 , but the weights are arranged in 
a different layout . As shown in FIG . 5 , the filter 510 is a 3D 
matrix having a spatial size of 5x5xCq but the weight 
operand 530 is a 2D array having a spatial size of 1x3x10C , 
[ 0080 ] In the embodiments of FIG . 5 , the kernel decom 
posing module 320 decomposes the 5x5 into 1x3 kernel 
vectors . As 3 is not an integral divisor of 5 , the kernel 
decomposing module 320 adds a dummy array 525 to the 
filter 510 to generate an expanded filter 520. The dummy 
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array 525 is an array of dummy weights and has a spatial size 
of 5x1xC The dummy array 525 is added to the right edge 
of the filter 510 and becomes the most right column of the 
expanded filter 520. The expanded filter 520 has a spatial 
size of 5x6xCp i.e. , the expanded filter 530 has a 5x6 
expanded kernel . As 3 is an integral divisor of 6 , the kernel 
decomposing module 320 can divide the expanded kernel 
into 1x3 kernel vectors . 
[ 0081 ] As shown in FIG . 5 , the kernel decomposing 
module 320 divides each row in the expanded filter 520 into 
two 1x3 kernel vectors . The second 1x3 kernel vector from 
each row has a dummy weight . The 1x3 kernel vectors 
correspond to the weight segments 535A - 535J ( collectively 
referred to as " weight segments 535 " or " weight segment 
535 " ) . Each weight segment 535 has a spatial size of 
1x3xC . The weight segments 535 are arranged one after 
another along the Z axis based on the X and Y coordinates 
of the weights . 
[ 0082 ] In some embodiments , the weight operand 530 
may be provided to a PE , e.g. , stored in a weight memory of 
the PE , and be used by the PE to perform MAC operations 
and produce an output element in the output tensor of the 
convolution . In other embodiments , the weight operand 530 
may be provided to multiple PEs . For instance , the weight 
segments 535 may be provided to three different PEs . A PE 
can process one weight segment 535 . 
[ 0083 ] FIG . 6 illustrates an example process of decom 
posing a tensor 610 , in accordance with various embodi 
ments . The tensor 610 may be an input tensor of a convo 
lution , or a portion of the input tensor . For purpose of 
illustration , the tensor 610 has a spatial size of 4x4xCin . 
Each row in the tensor 610 has four activations , shown as 
X0 , X1 , X2 , and X3 in FIG . 6. For purpose of simplicity and 
illustration , FIG . 6 does not show Y coordinates of the 
activations . The tensor 610 is decomposed into four input 
operands 615A - 615D ( collectively referred to as “ input 
operands 615 " or " input operand 615 " ) . 
[ 0084 ] The tensor 610 may be decomposed by the tensor 
decomposing module 330 based on a kernel decomposition 
performed by the kernel decomposing module 320. In the 
embodiments of FIG . 6 , the kernel decomposition is a 1x3 
kernel decomposition , and each input operand includes 1x3 
activations . As shown in FIG . 6 , the input operand 615A 
includes activations XO , X1 , and X2 . The input operand 
615B includes activations X1 , X2 , and X3 . The input 
operand 615C includes activations X2 and X3 . The input 
operand 615D includes activation X3 . The input operands 
615 may be provided to four PEs for performing MAC 
operations . The input operands 615 share same activations . 
For instance , activation X1 is in the input operands 615A 
and 615B , activation X2 is in the input operands 615A 
615C , and activation X3 is in the input operands 615B 
615D . These activations can be broadcasted between the 
input operands . 
[ 0085 ] FIG . 7 illustrates an example process of broadcast 
ing activations between PEs , in accordance with various 
embodiments . For purpose of illustration , activations in FIG . 
7 are the activations X0 , X1 , X2 , and X3 in FIG . 6. FIG . 7 
includes four PEs . The first PE includes an input register file 
713 for storing an input operand , a weight register file 717 
for storing the weight operand , and a multiplier 715. The 
second PE includes an input register file 723 for storing an 
input operand , a weight register file 727 for storing the 
weight operand , and a multiplier 725. The third PE includes 

an input register file 733 for storing an input operand , a 
weight register file 737 for storing the weight operand , and 
a multiplier 735. The fourth PE includes an input register file 
743 for storing an input operand , a weight register file 747 
for storing the weight operand , and a multiplier 745. Even 
though not shown in FIG . 7 , the PEs may include one or 
more accumulators . 
[ 0086 ] The first PE performs MAC operations on the input 
operand 615A , which includes activations X0 , X1 , and X2 . 
The second PE performs MAC operations on the input 
operand 615B , which includes activations X1 , X2 , and X3 . 
The third PE performs MAC operations on the input operand 
615C , which includes activations X2 and X3 . The fourth PE 
performs MAC operations on the input operand 615A , 
which includes activations X3 . In the embodiments of FIG . 
7 , the four activations are read from a memory , e.g. , the 
memory 310 , into the PEs through four read operations . In 
the first read operation , activation X0 is read into the input 
register file 713. In the second read operation , activation X1 
is read into the input register file 723. In the third read 
operation , activation X2 is read into the input register file 
723. In the fourth read operation , activation X3 is read into 
the input register file 743. The four read operations may 
occur at different times . 
[ 0087 ] Each activation can be populated into up to 3 other 
input register files . For instance , activations X1 and X2 in 
the input operand 615A are broadcasted from the input 
register files 723 and 733 , respectively , into the input register 
file 713 , as shown by the dashed arrows in FIG . 7. Similarly , 
activations X2 and X3 in the input operand 615B are 
broadcasted from the input register files 733 and 743 , 
respectively , into the input register file 723. Activation X3 in 
the input operand 615C is broadcasted from the input 
register file 743 into the input register file 733. With the 
activation broadcasting , no additional read operations are 
needed . The total number of read operations for this round 
of MAC operations by the four PEs is four . 
[ 0088 ] In contrast , in a DNN accelerator that performs 1x1 
kernel decomposition , the tensor 610 may be divided into 16 
input operands , each of which includes one activation . 16 
PEs will be needed to perform the MAC operations . As the 
16 PEs do not share any activations , 16 read operations are 
needed . In a DNN accelerator that performs 1x3 kernel 
decomposition but does not perform activation broadcasting , 
the DNN accelerator needs to read in 9 activations , i.e. , 3 
activations for the first PE , 3 activations for the second PE , 
two activations for the third PE , and one activation for the 
fourth PE . Compared with both DNN accelerators , the DNN 
accelerator 300 reads in less activations and can be more 
efficient . The advantage of activation broadcasting can be 
more significant in cases where the input tensor has a larger 
width . 
[ 0089 ] FIG . 8 illustrates another example process of 
broadcasting activations between PEs , in accordance with 
various embodiments . In the embodiments of FIG . 8 , four 
PES ( PEO - PE3 ) performs MAC operations with a tensor , 
which may be an input tensor or a portion of an input tensor 
of a convolution . The tensor has a width of 18 and includes 
18 activations : X0 - X17 . For purpose of simplicity and 
illustration , the Y coordinates of the activations are not 
shown in FIG . 8. In an embodiment where 1x3 kernel 
decomposition is performed , the 18 activations constitute 16 
input operands , each input operand includes three activa 
tions . In other embodiments , the kernel decomposition may 
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be 1xN kernel decomposition , where N is not 3. For 
instance , N may be 2 , 4 , 5 , etc. Also , for purpose of 
simplicity and illustration , FIG . 8 shows four PEs . In other 
embodiments , there can be a different number of PEs . 
[ 0090 ) FIG . 8 shows a table that illustrates the activation 
broadcasting process . The top row of the table shows 18 time 
slots ( also referred to as clocks ) : TO to T17 . The first column 
of the table lists the four PEs . The main body of the table 
identifies which activation is being loaded into the internal 
memory of a particular PE at a particular time slot . For 
instance , at TO , which is the first time slot , the internal 
memory of PEO receives activation X0 through a read 
operation . No other PEs receive activations . At T1 , both PEO 
and PE1 receive activation X1 . The PE1 may receive 
activation X1 through a read operation , but PEO may receive 
activation X1 through broadcasting the activation from PE1 . 
At T2 , PEO , PE1 , and PE2 all receive action X2 . The PE2 
may receive activation X2 through a read operation , but PEO 
and PE1 may receive the activation through broadcasting 
from PE2 . As T2 finishes , the internal memory of PEO has 
three activations X0 - X2 , which may constitute an input 
operand for PEO . PEO can perform MAC operations on the 
input operand and the corresponding weight operand , a 
result of the MAC operations may be a data point in the 
output tensor of the convolution . 
[ 0091 ] At T3 , PE1 , PE2 , and PE3 all receive action X3 . 
The PE3 may receive activation X3 through a read opera 
tion , but PE1 and PE2 may receive the activation through 
broadcasting from PE3 . As T3 finishes , the internal memory 
of PE1 has three activations X1 - X3 , which constitutes 
another input operand , and the PE1 can perform MAC 
operations on the input operand and the corresponding 
weight operand . A result of the MAC operations may be 
another data point in the output tensor of the convolution . 
This process continues until all the input operands are 
loaded into the PEs . 

[ 0092 ] FIG . 8 also shows reuse rates of the 18 activations 
in the last row of the table . The reuse rates of activations X0 
and X17 are 1 , meaning these activations are used by one 
PE . The reuse rates of activations X1 and X16 are 2 , 
meaning these activations are used by two PEs , despite that 
each of them requires a single read operation . The reuse rates 
of the other activations X2 - X15 are 3 , meaning these acti 
vations are used by three PEs . 
[ 0093 ] With the activation broadcasting , 18 read opera 
tions are needed for loading all the input operands . Without 
the activation broadcasting , 48 ( 16 * 3 ) read operations are 
needed for loading all the input operands . Thus , the activa 
tion broadcasting significantly reduces the number of read 
operations . As the loading of the internal memories 
increases , the utilization of the PEs can be improved . 
Additionally , even though some currently available DNN 
accelerators can use one data read module to feed multiple 
PE internal memories , the activation broadcasting still 
improves efficiency of writing data into the internal memo 
ries . The currently available DNN accelerators usually use 
one data read module to feed two internal memories and 
therefore , there can be two writes from one read operation . 
In contrast , with the activation broadcasting , there are 48 
writes from 18 read operations , so the average number of 
writes is 48 / 18 = 2.667 , which is better than two . Thus , the 
DNN accelerator 300 has better performance than the cur 
rently available DNN accelerators . 

[ 0094 ] Example PE Array 
[ 0095 ] FIG . 9 illustrates a PE array 900 , in accordance 
with various embodiments . The PE array 900 may be an 
embodiment of one or more of the PE array 340 in FIG . 3 . 
The PE array 900 includes a plurality of PEs 910 ( individu 
ally referred to as “ PE 910 ” ) . The PEs 910 perform MAC 
operations , such as integer MAC operations , floating - point 
MAC operations , and so on . The PEs 910 may also be 
referred to as neurons or nodes in the DNN . Each PE 910 has 
2 input signals 950 and 960 and an output signal 970. The 
input signal 950 is a portion of an input tensor of a 
convolution , e.g. , an input operand in the input tensor . The 
input signal 960 is at least a portion of a filter of the 
convolution , e.g. , a weight operand generated from the filter . 
In some embodiments , the input signal 950 of a PE 910 
includes one or more input operands , and the input signal 
960 includes one or more weight operands . 
[ 0096 ] Each PE 910 performs an MAC operation on the 
input signals 950 and 960 and outputs the output signal 970 , 
which is a result of the MAC operation . Some or all of the 
input signals 950 and 960 and the output signal 970 may be 
in an integer format , such as INT8 , or FP ( floating - point ) 
format , such as FP16 or BF16 . For purpose of simplicity and 
illustration , the input signals and output signal of all the PES 
910 have the same reference numbers , but the PES 910 may 
receive different input signals and output different output 
signals from each other . Also , a PE 910 may be different 
from another PE 910 , e.g. , including more , fewer , or differ 
ent components . 
[ 0097 ] As shown in FIG . 9 , the PES 910 are connected to 
each other , as indicated by the dash arrows in FIG . 9. The 
PEs 910 may share activations with each other . For instance , 
an activation can be broadcasted from a PE 910 to one or 
more other PES 910. Also , the output signal 970 of an PE 
910 may be sent to many other PES 910 ( and possibly back 
to itself ) as input signals via the interconnections between 
PES 910. In some embodiments , the output signal 970 of an 
PE 910 may incorporate the output signals of one or more 
other PEs 910 through an accumulate operation of the PE 
910 and generates an internal partial sum of the PE array . 
[ 0098 ] In the embodiments of FIG . 9 , the PEs 910 are 
arranged into columns 905 ( individually referred to as 
“ column 905 ” ) . The input and weights of the layer may be 
distributed to the PES 910 based on the columns 905. Each 
column 905 has a column buffer 920. The column buffer 920 
stores data provided to the PEs 910 in the column 905 for a 
short amount of time . The column buffer 920 may also store 
data output by the last PE 910 in the column 905. The output 
of the last PE 910 may be a sum of the MAC operations of 
all the PES 910 in the column 905 , which is a column - level 
internal partial sum of the PE array 900. In other embodi 
ments , input and weights may be distributed to the PEs 910 
based on rows in the PE array 900. The PE array 900 may 
include row buffers in lieu of column buffers 920. A row 
buffer may store input signals of the PEs in the correspond 
ing row and may also store a row - level internal partial sum 
of the PE array 900 . 
[ 0099 ] As shown in FIG . 9 , each column buffer 920 is 
associated with a load 930 and a drain 940. The data 
provided to the column 905 is transmitted to the column 
buffer 920 through the load 930 , e.g. , through upper memory 
hierarchies , e.g. , the memory 310 in FIG . 3. The data 
generated by the column 905 is extracted from the column 
buffers 920 through the drain 940. In some embodiments , 
data extracted from a column buffer 920 is sent to upper 
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memory hierarchies , e.g. , the memory 310 in FIG . 3 , 
through the drain operation . In some embodiments , the drain 
operation does not start until all the PEs 910 in the column 
905 has finished their MAC operations . In some embodi 
ments , the load 930 or drain 940 may be controlled by the 
data read module 360 in FIG . 3 . 
[ 0100 ] FIG . 10 is a block diagram of a PE 910 , in 
accordance with various embodiments . The PE 910 in FIG . 
9 includes an input register file 1040 , a weight register file 
1050 , an output register file 1060 , a multiplier 1070 , and an 
accumulator 1080. In other embodiments , the PE 910 may 
include fewer , more , or different components . 
[ 0101 ] The input register file 1040 temporarily stores input 
signals received by the PE 910. The input signals may 
include an input operand , e.g. , an input operand 615 in FIG . 
6. The input signals may also include output signals from 
other PES 1010. The weight register file 1050 temporarily 
stores weights received by the PE 910. The output register 
file 1060 temporarily stores output signals generated by the 
PE 910. For purpose of illustration and simplicity , the PE 
910 in FIG . 10B includes one input register file 1040 , one 
weight register file 1050 , one output register file 1060. In 
other embodiments , a PE 910 may include multiple register 
files for each type of data . 
[ 0102 ] The multiplier 1070 performs multiply operations 
on activations in the input register file 1040 and weights in 
the weight register file 1050. The amount of time needed by 
the multiplier 1070 for a multiple operation depends on the 
sparsity level of the weights used in the multiple operation . 
If the weights are denser ( i.e. , the sparsity level is lower ) , the 
multiplier 1070 needs more time to perform the multiple 
operation . 
[ 0103 ] The accumulator 1080 performs accumulate opera 
tions on the output of the multiplier 1070 and outputs signals 
from other PEs . The output of the accumulator 1080 is the 
output signal of the PE 910 , which can be stored in the 
output register file 560. The output signal may be provided 
to another PE in the same PE array 900 or provided to 
another PE array . 
[ 0104 ] Example Method of DL 
[ 0105 ] FIG . 11 is a flowchart showing a method of DL , in 
accordance with various embodiments . The method 1100 
may be performed by the DNN accelerator 300 in FIG . 3 . 
Although the method 1100 is described with reference to the 
flowchart illustrated in FIG . 11 , many other methods for DL 
may alternatively be used . For example , the order of execu 
tion of the steps in FIG . 11 may be changed . As another 
example , some of the steps may be changed , eliminated , or 
combined . 
[ 0106 ] The DNN accelerator 300 converts at least a por 
tion of a filter for a convolution into a weight operand by 
decomposing a kernel of the convolution to form a plurality 
of kernel vectors . The kernel comprises weights arranged in 
rows and columns . The kernel has a width determined by a 
number of weights in a row and a height determined by a 
number of weights in a column . A kernel vector corresponds 
to a respective row in the kernel and comprises weights in 
the respective row . A kernel vector may have a spatial size 
of 1xN , where is N an integer that is larger than one and not 
larger than the width of the kernel . 
[ 0107 ] In some embodiments , the number of the weights 
in the kernel vector is not an integral divisor of the width of 
the kernel . The DNN accelerator 300 may decompose the 
kernel to form the plurality of kernel vectors by generating 

an expanded kernel by adding one or more columns of new 
weights into the kernel . The one or more columns of new 
weights may be added to an edge of the kernel . The number 
of the weights in the kernel vector is an integral divisor of 
a width of the expanded kernel . The DNN accelerator 300 
may decompose the expanded kernel into the plurality of 
kernel vectors . Some of the kernel vectors include the new 
weights . The new weights may have a value of zero . 
[ 0108 ] The DNN accelerator 300 also converts 1120 an 
input tensor of the convolution to form a plurality of input 
operands . The input operand comprises activations . A spatial 
size of the input operand is the same as a spatial size of the 
weight operand . In some embodiments , a number of the 
activations in the input operand equals the number of the 
weights in the kernel vector . 
[ 0109 ] The DNN accelerator 300 reads 1130 a first acti 
vation in the output operand from a memory into an internal 
memory of a first PE . The read of the first activation may be 
done through one read operation . The DNN accelerator 300 
may also read the weight operand from the memory into 
another internal memory of the first PEs . The memory may 
be a memory associated with a PE array that includes the 
first PE . 
[ 0110 ] The DNN accelerator 300 transmits 1140 a second 
activation in the input operand from a second PE into the 
internal memory of the first PE . The PE is to perform MAC 
operations based on the input operand and the weight 
operand . In some embodiments , a result of the MAC opera 
tions is an output element in the output tensor of the 
convolution . In some embodiments , the first activation is 
read into the internal memory of the first PE at a first time . 
The second activation is transmitted into the internal 
memory of the first PE at a second time . The first time is 
different from the second time . The DNN accelerator 300 
may read second activation from the memory into the 
internal memory of the second PE 
[ 0111 ] The DNN accelerator 300 may transmit a third 
activation in the input operand from an internal memory of 
a third PE into the internal memory of the first PE . In some 
embodiments , the second activation is transmitted into the 
internal memory of the first PE at a first time . The third 
activation is transmitted into the internal memory of the first 
PE at a second time . The first time is earlier than the second 
time . The second activation is arranged between the first 
activation and the third activation in the input operand . 
[ 0112 ] In some embodiments , the second PE receives a 
third activation from an internal memory of a third PE . The 
second PE performs MAC operations with another input 
operand that includes the second activation and the third 
activation . 
[ 0113 ] Example DL Environment 
[ 0114 ] FIG . 12 illustrates a DL environment 1200 , in 
accordance with various embodiments . The DL environment 
1200 includes a DL server 1210 and a plurality of client 
devices 1220 ( individually referred to as client device 1220 ) . 
The DL server 1210 is connected to the client devices 1220 
through a network 1230. In other embodiments , the DL 
environment 1200 may include fewer , more , or different 
components . 
[ 0115 ] The DL server 1210 trains DL models using neural 
networks . A neural network is structured like the human 
brain and consists of artificial neurons , also known as nodes . 
These nodes are stacked next to each other in 3 types of 
layers : input layer , hidden layer ( s ) , and output layer . Data 
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provides each node with information in the form of inputs . 
The node multiplies the inputs with random weights , cal 
culates them , and adds a bias . Finally , nonlinear functions , 
also known as activation functions , are applied to determine 
which neuron to fire . The DL server 1210 can use various 
types of neural networks , such as DNN , recurrent neural 
network ( RNN ) , generative adversarial network ( GAN ) , 
long short - term memory network ( LSTMN ) , and so on . 
During the process of training the DL models , the neural 
networks use unknown elements in the input distribution to 
extract features , group objects , and discover useful data 
patterns . The DL models can be used to solve various 
problems , e.g. , making predictions , classifying images , and 
so on . The DL server 1210 may build DL models specific to 
particular types of problems that need to be solved . A DL 
model is trained to receive an input and outputs the solution 
to the particular problem . 
[ 0116 ] In FIG . 12 , the DL server 1210 includes a DNN 
system 1240 , a database 1250 , and a distributer 1260. The 
DNN system 1240 trains DNNs . The DNNs can be used to 
process images , e.g. , images captured by autonomous 
vehicles , medical devices , satellites , and so on . In an 
embodiment , a DNN receives an input image and outputs 
classifications of objects in the input image . An example of 
the DNNs is the DNN 100 described above in conjunction 
with FIG . 1. In some embodiments , the DNN system 1240 
trains DNNs through knowledge distillation , e.g. , dense 
connection based knowledge distillation . The trained DNNS 
may be used on low memory systems , like mobile phones , 
IOT edge devices , and so on . An embodiment of the DNN 
system 1240 is the DNN accelerator 200 described above in 
conjunction with FIG . 2 . 
[ 0117 ] The database 1250 stores data received , used , gen 
erated , or otherwise associated with the DL server 1210. For 
example , the database 1250 stores a training dataset that the 
DNN system 1240 uses to train DNNs . In an embodiment , 
the training dataset is an image gallery that can be used to 
train a DNN for classifying images . The training dataset may 
include data received from the client devices 1220. As 
another example , the database 1250 stores hyperparameters 
of the neural networks built by the DL server 1210 . 
[ 0118 ] The distributer 1260 distributes DL models gener 
ated by the DL server 1210 to the client devices 1220. In 
some embodiments , the distributer 1260 receives a request 
for a DNN from a client device 1220 through the network 
1230. The request may include a description of a problem 
that the client device 1220 needs to solve . The request may 
also include information of the client device 1220 , such as 
information describing available computing resource on the 
client device . The information scribing available comput 
ing resource on the client device 1220 can be information 
indicating network bandwidth , information indicating avail 
able memory size , information indicating processing power 
of the client device 1220 , and so on . In an embodiment , the 
distributer may instruct the DNN system 1240 to generate a 
DNN in accordance with the request . The DNN system 1240 
may generate a DNN based on the information in the 
request . For instance , the DNN system 1240 can determine 
the structure of the DNN and / or train the DNN in accordance 
with the request . 
[ 0119 ] In another embodiment , the distributer 1260 may 
select the DNN from a group of pre - existing DNNs based on 
the request . The distributer 1260 may select a DNN for a 
particular client device 1220 based on the size of the DNN 

and available resources of the client device 1220. In embodi 
ments where the distributer 1260 determines that the client 
device 1220 has limited memory or processing power , the 
distributer 1260 may select a compressed DNN for the client 
device 1220 , as opposed to an uncompressed DNN that has 
a larger size . The distributer 1260 then transmits the DNN 
generated or selected for the client device 1220 to the client 
device 1220 . 
[ 0120 ] In some embodiments , the distributer 1260 may 
receive feedback from the client device 1220. For example , 
the distributer 1260 receives new training data from the 
client device 1220 and may send the new training data to the 
DNN system 1240 for further training the DNN . As another 
example , the feedback includes an update of the available 
computer resource on the client device 1220. The distributer 
1260 may send a different DNN to the client device 1220 
based on the update . For instance , after receiving the feed 
back indicating that the computing resources of the client 
device 1220 have been reduced , the distributer 1260 sends 
a DNN of a smaller size to the client device 1220 . 
[ 0121 ] The client devices 1220 receive DNNs from the 
distributer 1260 and applies the DNNs to perform machine 
learning tasks , e.g. , to solve problems or answer questions . 
In various embodiments , the client devices 1220 input 
images into the DNNs and uses the output of the DNNs for 
various applications , e.g. , visual reconstruction , augmented 
reality , robot localization and navigation , medical diagnosis , 
weather prediction , and so on . A client device 1220 may be 
one or more computing devices capable of receiving user 
input as well as transmitting and / or receiving data via the 
network 1230. In one embodiment , a client device 1220 is a 
conventional computer system , such as a desktop or a laptop 
computer . Alternatively , a client device 1220 may be a 
device having computer functionality , such as a personal 
digital assistant ( PDA ) , a mobile telephone , a smartphone , 
an autonomous vehicle , or another suitable device . A client 
device 1220 is configured to communicate via the network 
1230. In one embodiment , a client device 1220 executes an 
application allowing a user of the client device 1220 to 
interact with the DL server 1210 ( e.g. , the distributer 1260 
of the DL server 1210 ) . The client device 1220 may request 
DNNs or send feedback to the distributer 1260 through the 
application . For example , a client device 1220 executes a 
browser application to enable interaction between the client 
device 1220 and the DL server 1210 via the network 1230 . 
In another embodiment , a client device 1220 interacts with 
the DL server 1210 through an application programming 
interface ( API ) running on a native operating system of the 
client device 1220 , such as IOS® or ANDROIDTM . 
[ 0122 ] In an embodiment , a client device 1220 is an 
integrated computing device that operates as a standalone 
network - enabled device . For example , the client device 
1220 includes display , speakers , microphone , camera , and 
input device . In another embodiment , a client device 1220 is 
a computing device for coupling to an external media device 
such as a television or other external display and / or audio 
output system . In this embodiment , the client device 1220 
may couple to the external media device via a wireless 
interface or wired interface ( e.g. , an HDMI ( High - Definition 
Multimedia Interface ) cable ) and may utilize various func 
tions of the external media device such as its display , 
speakers , microphone , camera , and input devices . Here , the 
client device 1220 may be configured to be compatible with 
a generic external media device that does not have special 
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ized software , firmware , or hardware specifically for inter 
acting with the client device 1220 . 
[ 0123 ] The network 1230 supports communications 
between the DL server 1210 and client devices 1220. The 
network 1230 may comprise any combination of local area 
and / or wide area networks , using both wired and / or wireless 
communication systems . In one embodiment , the network 
1230 may use standard communications technologies and / or 
protocols . For example , the network 1230 may include 
communication links using technologies such as Ethernet , 
12010.11 , worldwide interoperability for microwave access 
( WiMAX ) , 3G , 4G , code division multiple access ( CDMA ) , 
digital subscriber line ( DSL ) , etc. Examples of networking 
protocols used for communicating via the network 1230 may 
include multiprotocol label switching ( MPLS ) , transmission 
control protocol / Internet protocol ( TCP / IP ) , hypertext trans 
port protocol ( HTTP ) , simple mail transfer protocol 
( SMTP ) , and file transfer protocol ( FTP ) . Data exchanged 
over the network 1230 may be represented using any suit 
able format , such as hypertext markup language ( HTML ) or 
extensible markup language ( XML ) . In some embodiments , 
all or some of the communication links of the network 1230 
may be encrypted using any suitable technique or tech 
niques . 
[ 0124 ] Example DNN System 
[ 0125 ) FIG . 13 is a block diagram of an example DNN 
system 1300 , in accordance with various embodiments . The 
whole DNN system 1300 or a part of the DNN system 1300 
may be implemented in the computing device 1400 in FIG . 
14. The DNN system 1300 trains DNNs for various tasks , 
such as image classification , learning relationships between 
biological cells ( e.g. , DNA , proteins , etc. ) , control behaviors 
for devices ( e.g. , robots , machines , etc. ) , and so on . The 
DNN system 1300 includes an interface module 1310 , a 
training module 1320 , a validation module 1330 , an infer 
ence module 1340 , and a memory 1350. In other embodi 
ments , alternative configurations , different or additional 
components may be included in the DNN system 1300 . 
Further , functionality attributed to a component of the DNN 
system 1300 may be accomplished by a different component 
included in the DNN system 1300 or a different system . The 
DNN system 1300 or a component of the DNN system 1300 
( e.g. , the training module 1320 or inference module 1340 ) 
may include the computing device 1400 . 
[ 0126 ] The interface module 1310 facilitates communica 
tions of the DNN system 1300 with other systems . For 
example , the interface module 1310 establishes communi 
cations between the DNN system 1300 with an external 
database to receive data that can be used to train DNNs or 
input into DNNs to perform tasks . As another example , the 
interface module 1310 supports the DNN system 1300 to 
distribute DNNs to other systems , e.g. , computing devices 
configured to apply DNNs to perform tasks . 
[ 0127 ] The training module 1320 trains DNNs by using a 
training dataset . The training module 1320 forms the train 
ing dataset . In an embodiment where the training module 
1320 trains an DNN to recognize objects in images , the 
training dataset includes training images and training labels . 
The training labels describe ground - truth classifications of 
objects in the training images . In some embodiments , each 
label in the training dataset corresponds to an object in a 
training image . In some embodiments , a part of the training 
dataset may be used to initially train the DNN , and the rest 
of the training dataset may be held back as a validation 

subset used by the validation module 1330 to validate 
performance of a trained DNN . The portion of the training 
dataset not including the tuning subset and the validation 
subset may be used to train the DNN . 
[ 0128 ] The training module 1320 also determines hyper 
parameters for training the DNN . Hyperparameters are vari 
ables specifying the DNN training process . Hyperparam 
eters are different from parameters inside the DNN ( e.g. , 
weights of filters ) . In some embodiments , hyperparameters 
include variables determining the architecture of the DNN , 
such as number of hidden layers , etc. Hyperparameters also 
include variables which determine how the DNN is trained , 
such as batch size , number of epochs , etc. A batch size 
defines the number of training samples to work through 
before updating the parameters of the DNN . The batch size 
is the same as or smaller than the number of samples in the 
training dataset . The training dataset can be divided into one 
or more batches . The number of epochs defines how many 
times the entire training dataset is passed forward and 
backwards through the entire network . The number of 
epochs defines the number of times that the DL algorithm 
works through the entire training dataset . One epoch means 
that each training sample in the training dataset has had an 
opportunity to update the parameters inside the DNN . An 
epoch may include one or more batches . The number of 
epochs may be 13 , 130 , 500 , 1300 , or even larger . 
[ 0129 ] The training module 1320 defines the architecture 
of the DNN , e.g. , based on some of the hyperparameters . 
The architecture of the DNN includes an input layer , an 
output layer , and a plurality of hidden layers . The input layer 
of an DNN may include tensors ( e.g. , a multidimensional 
array ) specifying attributes of the input image , such as the 
height of the input image , the width of the input image , and 
the depth of the input image ( e.g. , the number of bits 
specifying the color of a pixel in the input image ) . The 
output layer includes labels of objects in the input layer . The 
hidden layers are layers between the input layer and output 
layer . The hidden layers include one or more convolutional 
layers and one or more other types of layers , such as pooling 
layers , fully connected layers , normalization layers , softmax 
or logistic layers , and so on . The convolutional layers of the 
DNN abstract the input image to a feature map that is 
represented by a tensor specifying the feature map height , 
the feature map width , and the feature map channels ( e.g. , 
red , green , blue images include 3 channels ) . A pooling layer 
is used to reduce the spatial volume of input image after 
convolution . It is used between 2 convolution layers . A fully 
connected layer involves weights , biases , and neurons . It 
connects neurons in one layer to neurons in another layer . It 
is used to classify images between different category by 
training . 
[ 0130 ] In the process of defining the architecture of the 
DNN , the training module 1320 also adds an activation 
function to a hidden layer or the output layer . An activation 
function of a layer transforms the weighted sum of the input 
of the layer to an output of the layer . The activation function 
may be , for example , a rectified linear unit activation 
function , a tangent activation function , or other types of 
activation functions . 
[ 0131 ] After the training module 1320 defines the archi 
tecture of the DNN , the training module 1320 inputs a 
training dataset into the DNN . The training dataset includes 
a plurality of training samples . An example of a training 
sample includes an object in an image and a ground - truth 
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label of the object . The training module 1320 modifies the 
parameters inside the DNN ( “ internal parameters of the 
DNN ” ) to minimize the error between labels of the training 
objects that are generated by the DNN and the ground - truth 
labels of the objects . The internal parameters include 
weights of filters in the convolutional layers of the DNN . In 
some embodiments , the training module 1320 uses a cost 
function to minimize the error . 
[ 0132 ] The training module 1320 may train the DNN for 
a predetermined number of epochs . The number of epochs is 
a hyperparameter that defines the number of times that the 
DL algorithm will work through the entire training dataset . 
One epoch means that each sample in the training dataset has 
had an opportunity to update internal parameters of the 
DNN . After the training module 1320 finishes the predeter 
mined number of epochs , the training module 1320 may stop 
updating the parameters in the DNN . The DNN having the 
updated parameters is referred to as a trained DNN . 
[ 0133 ] The validation module 1330 verifies accuracy of 
trained DNNs . In some embodiments , the validation module 
1330 inputs samples in a validation dataset into a trained 
DNN and uses the outputs of the DNN to determine the 
model accuracy . In some embodiments , a validation dataset 
may be formed of some or all the samples in the training 
dataset . Additionally or alternatively , the validation dataset 
includes additional samples , other than those in the training 
sets . In some embodiments , the validation module 1330 
determines may determine an accuracy score measuring the 
precision , recall , or a combination of precision and recall of 
the DNN . The validation module 1330 may use the follow 
ing metrics to determine the accuracy score : Precision = TP / 
( TP + FP ) and Recall = TP / ( TP + FN ) , where precision may be 
how many the reference classification model correctly pre 
dicted ( TP or true positives ) out of the total it predicted 
( TP + FP or false positives ) , and recall may be how many the 
reference classification model correctly predicted ( TP ) out 
of the total number of objects that did have the property in 
question ( TP + FN or false negatives ) . The F - score 
( F - score = 2 * PR / ( P + R ) ) unifies precision and recall into a 
single measure . 
[ 0134 ] The validation module 1330 may compare the 
accuracy score with a threshold score . In an example where 
the validation module 1330 determines that the accuracy 
score of the augmented model is lower than the threshold 
score , the validation module 1330 instructs the training 
module 1320 to re - train the DNN . In one embodiment , the 
training module 1320 may iteratively re - train the DNN until 
the occurrence of a stopping condition , such as the accuracy 
measurement indication that the DNN may be sufficiently 
accurate , or a number of training rounds having tak place . 
[ 0135 ] The inference module 1340 applies the trained or 
validated DNN to perform tasks . For instance , the inference 
module 1340 inputs images into the DNN . The DNN outputs 
classifications of objects in the images . As an example , the 
DNN may be provisioned in a security setting to detect 
malicious or hazardous objects in images captured by secu 
rity cameras . As another example , the DNN may be provi 
sioned to detect objects ( e.g. , road signs , hazards , humans , 
pets , etc. ) in images captured by cameras of an autonomous 
vehicle . The input to the DNN may be formatted according 
to a predefined input structure mirroring the way that the 
training dataset was provided to the DNN . The DNN may 
generate an output structure which may be , for example , a 
classification of the image , a listing of detected objects , a 

boundary of detected objects , or the like . In some embodi 
ments , the inference module 1340 distributes the DNN to 
other systems , e.g. , computing devices in communication 
with the DNN system 1300 , for the other systems to apply 
the DNN to perform the tasks . 
[ 0136 ] The memory 1350 stores data received , generated , 
used , or otherwise associated with the DNN system 1300 . 
For example , the memory 1350 stores the datasets used by 
the training module 1320 and validation module 1330. The 
memory 1350 may also store data generated by the training 
module 1320 and validation module 1330 , such as the 
hyperparameters for training DNNs , internal parameters of 
trained DNNs ( e.g. , values of tunable parameters of 
FALUs ) , etc. In the embodiment of FIG . 13 , the memory 
1350 is a component of the DNN system 1300. In other 
embodiments , the memory 1350 may be external to the 
DNN system 1300 and communicate with the DNN system 
1300 through a network . 
[ 0137 ] Example Computing Device 
[ 0138 ] FIG . 14 is a block diagram of an example comput 
ing device 1400 , in accordance with various embodiments . 
In some embodiments , the computing device 1400 can be 
used as the DNN system 1300 in FIG . 13. A number of 
components are illustrated in FIG . 14 as included in the 
computing device 1400 , but any one or more of these 
components may be omitted or duplicated , as suitable for the 
application . In some embodiments , some or all of the 
components included in the computing device 1400 may be 
attached to one or more motherboards . In some embodi 
ments , some or all of these components are fabricated onto 
a single system on a chip ( SoC ) die . Additionally , in various 
embodiments , the computing device 1400 may not include 
one or more of the components illustrated in FIG . 14 , but the 
computing device 1400 may include interface circuitry for 
coupling to the one or more components . For example , the 
computing device 1400 may not include a display device 
1406 , but may include display device interface circuitry 
( e.g. , a connector and driver circuitry ) to which a display 
device 1406 may be coupled . In another set of examples , the 
computing device 1400 may not include an audio input 
device 1418 or an audio output device 1408 , but may include 
audio input or output device interface circuitry ( e.g. , con 
nectors and supporting circuitry ) to which an audio input 
device 1418 or audio output device 1408 may be coupled . 
[ 0139 ] The computing device 1400 may include a pro 
cessing device 1402 ( e.g. , one or more processing devices ) . 
The processing device 1402 processes electronic data from 
registers and / or memory to transform that electronic data 
into other electronic data that may be stored in registers 
and / or memory . The computing device 1400 may include a 
memory 1404 , which may itself include one or more 
memory devices such as volatile memory ( e.g. , DRAM ) , 
nonvolatile memory ( e.g. , read - only memory ( ROM ) ) , high 
bandwidth memory ( HBM ) , flash memory , solid state 
memory , and / or a hard drive . In some embodiments , the 
memory 1404 may include memory that shares a die with the 
processing device 1402. In some embodiments , the memory 
1404 includes one or more non - transitory computer - readable 
media storing instructions executable to perform operations 
for DL , e.g. , the method 1100 described above in conjunc 
tion with FIG . 11 or some operations performed by the DNN 
accelerator 300 described above in conjunction with FIG . 3 . 
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The instructions stored in the one or more non - transitory 
computer - readable media may be executed by the process 
ing device 2402 . 
[ 0140 ] In some embodiments , the computing device 1400 
may include a communication chip 1412 ( e.g. , one or more 
communication chips ) . For example , the communication 
chip 1412 may be configured for managing wireless com 
munications for the transfer of data to and from the com 
puting device 1400. The term “ wireless ” and its derivatives 
may be used to describe circuits , devices , systems , methods , 
techniques , communications channels , etc. , that may com 
municate data through the use of modulated electromagnetic 
radiation through a nonsolid medium . The term does not 
imply that the associated devices do not contain any wires , 
although in some embodiments they might not . 
[ 0141 ] The communication chip 1412 may implement any 
of a number of wireless standards or protocols , including but 
not limited to Institute for Electrical and Electronic Engi 
neers ( IEEE ) standards including Wi - Fi ( IEEE 802.10 fam 
ily ) , IEEE 802.16 standards ( e.g. , IEEE 802.16-2005 
Amendment ) , Long - Term Evolution ( LTE ) project along 
with any amendments , updates , and / or revisions ( e.g. , 
advanced LTE project , ultramobile broadband ( UMB ) proj 
ect ( also referred to as “ 3GPP2 ” ) , etc. ) . IEEE 802.16 com 
patible Broadband Wireless Access ( BWA ) networks are 
generally referred to as WiMAX networks , an acronym that 
stands for worldwide interoperability for microwave access , 
which is a certification mark for products that pass confor 
mity and interoperability tests for the IEEE 802.16 stan 
dards . The communication chip 1412 may operate in accor 
dance with a Global System for Mobile Communication 
( GSM ) , General Packet Radio Service ( GPRS ) , Universal 
Mobile Telecommunications System ( UMTS ) , High Speed 
Packet Access ( HSPA ) , Evolved HSPA ( E - HSPA ) , or LTE 
network . The communication chip 1412 may operate in 
accordance with Enhanced Data for GSM Evolution 
( EDGE ) , GSM EDGE Radio Access Network ( GERAN ) , 
Universal Terrestrial Radio Access Network ( UTRAN ) , or 
Evolved UTRAN ( E - UTRAN ) . The communication chip 

erate in accordance with CDMA , Time Divi 
sion Multiple Access ( TDMA ) , Digital Enhanced Cordless 
Telecommunications ( DECT ) , Evolution - Data Optimized 
( EV - DO ) , and derivatives thereof , as well as any other 
wireless protocols that are designated as 3G , 4G , 5G , and 
beyond . The communication chip 1412 may operate in 
accordance with other wireless protocols in other embodi 
ments . The computing device 1400 may include an antenna 
1422 to facilitate wireless communications and / or to receive 
other wireless communications ( such as AM or FM radio 
transmissions ) . 
[ 0142 ] In some embodiments , the communication chip 
1412 may manage wired communications , such as electrical , 
optical , or any other suitable communication protocols ( e.g. , 
the Ethernet ) . As noted above , the communication chip 1412 
may include multiple communication chips . For instance , a 
first communication chip 1412 may be dedicated to shorter 
range wireless communications such as Wi - Fi or Bluetooth , 
and a second communication chip 1412 may be dedicated to 
longer - range wireless communications such as global posi 
tioning system ( GPS ) , EDGE , GPRS , CDMA , WiMAX , 
LTE , EV - DO , or others . In some embodiments , a first 
communication chip 1412 may be dedicated to wireless 
communications , and a second communication chip 1412 
may be dedicated to wired communications . 

[ 0143 ] The computing device 1400 may include battery / 
power circuitry 1414. The battery / power circuitry 1414 may 
include one or more energy storage devices ( e.g. , batteries or 
capacitors ) and / or circuitry for coupling components of the 
computing device 1400 to an energy source separate from 
the computing device 1400 ( e.g. , AC line power ) . 
[ 0144 ] The computing device 1400 may include a display 
device 1406 ( or corresponding interface circuitry , as dis 
cussed above ) . The display device 1406 may include any 
visual indicators , such as a heads - up display , a computer 
monitor , a projector , a touchscreen display , a liquid crystal 
display ( LCD ) , a light - emitting diode display , or a flat panel 
display , for example . 
[ 0145 ] The computing device 1400 may include an audio 
output device 1408 ( or corresponding interface circuitry , as 
discussed above ) . The audio output device 1408 may include 
any device that generates an audible indicator , such as 
speakers , headsets , or earbuds , for example . 
[ 0146 ] The computing device 1400 may include an audio 
input device 1418 ( or corresponding interface circuitry , as 
discussed above ) . The audio input device 1418 may include 
any device that generates a signal representative of a sound , 
such as microphones , microphone arrays , or digital instru 
ments ( e.g. , instruments having a musical instrument digital 
interface ( MIDI ) output ) . 
[ 0147 ] The computing device 1400 may include a GPS 
device 1416 ( or corresponding interface circuitry , as dis 
cussed above ) . The GPS device 1416 may be in communi 
cation with a satellite - based system and may receive a 
location of the computing device 1400 , as known in the art . 
[ 0148 ] The computing device 1400 may include another 
output device 1410 ( or corresponding interface circuitry , as 
discussed above ) . Examples of the other output device 1410 
may include an audio codec , a video codec , a printer , a wired 
or wireless transmitter for providing information to other 
devices , or an additional storage device . 
[ 0149 ] The computing device 1400 may include another 
input device 1420 ( or corresponding interface circuitry , as 
discussed above ) . Examples of the other input device 1420 
may include an accelerometer , a gyroscope , a compass , an 
image capture device , a keyboard , a cursor control device 
such as a mouse , a stylus , a touchpad , a bar code reader , a 
Quick Response ( QR ) code reader , any sensor , or a radio 
frequency identification ( register fileID ) reader . 
[ 0150 ] The computing device 1400 may have any desired 
form factor , such as a handheld or mobile computer system 
( e.g. , a cell phone , a smart phone , a mobile internet device , 
a music player , a tablet computer , a laptop computer , a 
netbook computer , an ultrabook computer , a PDA , an ultra 
mobile personal computer , etc. ) , a desktop computer system , 
a server or other networked computing component , a printer , 
a scanner , a monitor , a set - top box , an entertainment control 
unit , a vehicle control unit , a digital camera , a digital video 
recorder , or a wearable computer system . In some embodi 
ments , the computing device 1400 may be any other elec 
tronic device that processes data . 

a 1412 may 
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[ 0151 ] The following paragraphs provide various 
examples of the embodiments disclosed herein . 
[ 0152 ] Example 1 provides a method of DL , the method 
including converting at least a portion of a filter for a 
convolution into a weight operand by decomposing a kernel 
of the convolution to form a plurality of kernel vectors , 
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where the kernel includes weights arranged in rows and 
columns , the kernel has a width determined by a number of 
weights in a row and a height determined by a number of 
weights in a column , and a kernel vector corresponds to a 
respective row in the kernel and includes weights in the 
respective row ; converting an input tensor of the convolu 
tion into a plurality of input operands , where an input 
operand includes activations , and a spatial size of the input 
operand is the same as a spatial size of the weight operand ; 
reading a first activation in the input operand from a memory 
into an internal memory of a first PE ; and transmitting a 
second activation in the input operand from an internal 
memory of a second PE into the internal memory of the first 
PE , where the first PE is to perform MAC operations with 
the input operand and the weight operand . 
[ 0153 ] Example 2 provides the method of example 1 , 
where the number of the weights in the kernel vector is not 
an integral divisor of the width of the kernel , decomposing 
the kernel to form the plurality of kernel vectors includes 
generating an expanded kernel by adding one or more 
columns of new weights into the kernel , and the number of 
the weights in the kernel vector is an integral divisor of a 
width of the expanded kernel . 
[ 0154 ] Example 3 provides the method of example 2 , 
where the new weights have a value of zero . 
[ 0155 ] Example 4 provides the method of any of the 
preceding claims , further including reading the weight oper 
and from the memory into another internal memory of the 
PE . 
( 0156 ] Example 5 provides the method of any of the 
preceding claims , where a result of the MAC operation is a 
data point in an output tensor of the convolution . 
[ 0157 ] Example 6 provides the method of any of the 
preceding claims , further including transmitting a third 
activation in the input operand from an internal memory of 
a third PE into the internal memory of the first PE . 
[ 0158 ] Example 7 provides the method of example 6 , 
where the second activation is transmitted into the internal 
memory of the first PE at a first time , the third activation is 
transmitted into the internal memory of the first PE at a 
second time , the first time is earlier than the second time , and 
the second activation is arranged between the first activation 
and the third activation in the input operand . 
[ 0159 ] Example 8 provides the method of any of the 
preceding claims , where the first activation is read into the 
internal memory of the first PE at a first time , and the second 
activation is transmitted into the internal memory of the first 
PE at a second time , and the first time is different from the 
second time . 
( 0160 ] Example 9 provides the method of any of the 
preceding claims , further includes reading the second acti 
vation from the memory into the internal memory of the 
second PE . 
[ 0161 ] Example 10 provides the method of any of the 
preceding claims , where the second PE receives a third 
activation from an internal memory of a third PE , and the 
second PE performs MAC operations with another input 
operand that includes the second activation and the third 
activation . 
[ 0162 ] Example 11 provides one or more non - transitory 
computer - readable media storing instructions executable to 
perform operations for DL , the operations including con 
verting at least a portion of a filter for a convolution into a 
weight operand by decomposing a kernel of the convolution 

to form a plurality of kernel vectors , where the kernel 
includes weights arranged in rows and columns , the kernel 
has a width determined by a number of weights in a row and 
a height determined by a number of weights in a column , and 
a kernel vector corresponds to a respective row in the kernel 
and includes weights in the respective row ; converting an 
input tensor of the convolution into a plurality of input 
operands , where an input operand includes activations , and 
a spatial size of the input operand is the same as a spatial size 
of the weight operand ; reading a first activation in the input 
operand from a memory into an internal memory of a first 
PE ; and transmitting a second activation in the input operand 
from an internal memory of a second PE into the internal 
memory of the first PE , where the first PE is to perform 
MAC operations with the input operand and the weight 
operand . 
[ 0163 ] Example 12 provides the one or more non - transi 
tory computer - readable media of example 11 , where the 
number of the weights in the kernel vector is not an integral 
divisor of the width of the kernel , decomposing the kernel to 
form the plurality of kernel vectors includes generating an 
expanded kernel by adding one or more columns of new 
weights into the kernel , and the number of the weights in the 
kernel vector is an integral divisor of a width of the 
expanded kernel . 
[ 0164 ] Example 13 provides the one or more non - transi 
tory computer - readable media of example 12 , where the new 
weights have a value of zero . 
[ 0165 ] Example 14 provides the one or more non - transi 
tory computer - readable media of any one of examples 11-13 , 
where the operations further include reading the weight 
operand from the memory into another internal memory of 
the PE . 
[ 0166 ] Example 15 provides the one or more non - transi 
tory computer - readable media of any one of examples 11-14 , 
where a result of the MAC operation is a data point in an 
output tensor of the convolution . 
[ 0167 ] Example 16 provides the one or more non - transi 
tory computer - readable media of any one of examples 11-16 , 
where the operations further include transmitting a third 
activation in the input operand from an internal memory of 
a third PE into the internal memory of the first PE . 
[ 0168 ] Example 17 provides the one or more non - transi 
tory computer - readable media of example 16 , where the 
second activation is transmitted into the internal memory of 
the first PE at a first time , the third activation is transmitted 
into the internal memory of the first PE at a second time , the 
first time is earlier than the second time , and the second 
activation is arranged between the first activation and the 
third activation in the input operand 
[ 0169 ] Example 18 provides the one or more non - transi 
tory computer - readable media of any one of examples 11-17 , 
where the first activation is read into the internal memory of 
the first PE at a first time , and the second activation is 
transmitted into the internal memory of the first PE at a 
second time , and the first time is different from the second 
time . 
[ 0170 ] Example 19 provides the one or more non - transi 
tory computer - readable media of any one of examples 11-18 , 
where the operations further include reading the second 
activation from the memory into the internal memory of the 
second PE 
[ 0171 ] Example 20 provides the one or more non - transi 
tory computer - readable media of any one of examples 11-19 , 
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where the second PE receives a third activation from an 
internal memory of a third PE , and the second PE performs 
MAC operations with another input operand that includes 
the second activation and the third activation . 
[ 0172 ] Example 21 provides a DNN accelerator , the DNN 
accelerator including a kernel decomposing module config 
ured to convert at least a portion of a filter for a convolution 
into a weight operand by decomposing a kernel of the 
convolution to form a plurality of kernel vectors , where the 
kernel includes weights arranged in rows and columns , the 
kernel has a width determined by a number of weights in a 
row and a height determined by a number of weights in a 
column , and a kernel vector corresponds to a respective row 
in the kernel and includes weights in the respective row ; a 
tensor decomposing module configured to convert an input 
tensor of the convolution into a plurality of input operands , 
where an input operand includes activations , and a spatial 
size of the input operand is the same as a spatial size of the 
weight operand ; a data read module configured to a first 
activation in the input operand from a memory into an 
internal memory of a first PE , and a PE array , the PE array 
including the first PE and a second PE , where the first PE 
receives a second activation from the input operand from an 
internal memory of the second PEs and performs MAC 
operations based on the input operand and the weight 
operand . 
[ 0173 ] Example 22 provides the DNN accelerator of 
example 21 , where the number of the weights in the kernel 
vector is not an integral divisor of the width of the kernel , 
the tensor decomposing module is configured to decompose 
the kernel to form the plurality of kernel vectors by gener 
ating an expanded kernel by adding one or more columns of 
new weights into the kernel , and the number of the weights 
in the kernel vector is an integral divisor of a width of the 
expanded kernel . 
[ 0174 ] Example 23 provides the DNN accelerator of 
example 21 or 22 , where the data read module is further 
configured to read the weight operand from the memory into 
another internal memory of the PE . 
[ 0175 ] Example 24 provides the DNN accelerator of any 
one of examples 21-23 , where the first PE receives a third 
activation in the input operand from an internal memory of 
a third PE in the PE array . 
[ 0176 ] Example 25 provides the DNN accelerator of any 
one of examples 21-24 , where the first activation is read into 
the internal memory of the first PE at a first time , and the first 
PE receives the second activation at a second time , and the 
first time is different from the second time . 
[ 0177 ] The above description of illustrated implementa 
tions of the disclosure , including what is described in the 
Abstract , is not intended to be exhaustive or to limit the 
disclosure to the precise forms disclosed . While specific 
implementations of , and examples for , the disclosure are 
described herein for illustrative purposes , various equivalent 
modifications are possible within the scope of the disclosure , 
as those skilled in the relevant art will recognize . These 
modifications may be made to the disclosure in light of the 
above detailed description . 

1. A method of deep learning , the method comprising : 
converting at least a portion of a filter for a convolution 

into a weight operand by decomposing a kernel of the 
convolution to form a plurality of kernel vectors , 
wherein the kernel comprises weights arranged in rows 
and columns , the kernel has a width determined by a 

number of weights in a row and a height determined by 
a number of weights in a column , and a kernel vector 
corresponds to a respective row in the kernel and 
comprises weights in the respective row ; 

converting an input tensor of the convolution into a 
plurality of input operands , wherein an input operand 
comprises activations , and a spatial size of the input 
operand is the same as a spatial size of the weight 
operand ; 

reading a first activation in the input operand from a 
memory into an internal memory of a first processing 
element ; and 

transmitting a second activation in the input operand from 
an internal memory of a second processing element into 
the internal memory of the first processing element , 
wherein the first processing element is to perform 
multiply - accumulate ( MAC ) operations with the input 
operand and the weight operand . 

2. The method of claim 1 , wherein : 
the number of the weights in the kernel vector is not an 

integral divisor of the width of the kernel , 
decomposing the kernel to form the plurality of kernel 

vectors comprises generating an expanded kernel by 
adding one or more columns of new weights into the 
kernel , and 

the number of the weights in the kernel vector is an 
integral divisor of a width of the expanded kernel . 

3. The method of claim 2 , wherein the new weights have 
a value of zero . 

4. The method of claim 1 , further comprising : 
reading the weight operand from the memory into another 

internal memory of the processing element . 
5. The method of claim 1 , wherein a result of the MAC 

operation is a data point in an output tensor of the convo 
lution . 

6. The method of claim 1 , further comprising : 
transmitting a third activation in the input operand from 

an internal memory of a third processing element into 
the internal memory of the first processing element . 

7. The method of claim 6 , wherein : 
the second activation is transmitted into the internal 
memory of the first processing element at a first time , 

the third activation is transmitted into the internal memory 
of the first processing element at a second time , 

the first time is earlier than the second time , and 
the second activation is arranged between the first acti 

vation and the third activation in the input operand . 
8. The method of claim 1 , wherein the first activation is 

read into the internal memory of the first processing element 
at a first time , and the second activation is transmitted into 
the internal memory of the first processing element at a 
second time , and the first time is different from the second 
time . 

9. The method of claim 1 , further comprises : 
reading the second activation from the memory into the 

internal memory of the second processing element . 
10. The method of claim 1 , wherein the second processing 

element receives a third activation from an internal memory 
of a third processing element , and the second processing 
element performs MAC operations with another input oper 
and that includes the second activation and the third acti 
vation . 

a 

a 



US 2023/0008622 A1 Jan. 12 , 2023 
17 

a 

a 

11. One or more non - transitory computer - readable media 
storing instructions executable to perform operations for 
deep learning , the operations comprising : 

converting at least a portion of a filter for a convolution 
into a weight operand by decomposing a kernel of the 
convolution to form a plurality of kernel vectors , 
wherein the kernel comprises weights arranged in rows 
and columns , the kernel has a width determined by a 
number of weights in a row and a height determined by 
a number of weights in a column , and a kernel vector 
corresponds to a respective row in the kernel and 
comprises weights in the respective row ; 

converting an input tensor of the convolution into a 
plurality of input operands , wherein an input operand 
comprises activations , and a spatial size of the input 
operand is the same as a spatial size of the weight 
operand ; 

reading a first activation in the input operand from a 
memory into an internal memory of a first processing 
element ; and 

transmitting a second activation in the input operand from 
an internal memory of a second processing element into 
the internal memory of the first processing element , 
wherein the first processing element is to perform 
multiply - accumulate ( MAC ) operations with the input 
operand and the weight operand . 

12. The one or more non - transitory computer - readable 
media of claim 11 , wherein : 

the number of the weights in the kernel vector is not an 
integral divisor of the width of the kernel , 

decomposing the kernel to form the plurality of kernel 
vectors comprises generating an expanded kernel by 
adding one or more columns of new weights into the 
kernel , and 

the number of the weights in the kernel vector is an 
integral divisor of a width of the expanded kernel . 

13. The one or more non - transitory computer - readable 
media of claim 12 , wherein the new weights have a value of 

a 

a 

internal memory of the first processing element at a second 
time , and the first time is different from the second time . 

19. The one or more non - transitory computer - readable 
media of claim 11 , wherein the operations further comprise : 

reading the second activation from the memory into the 
internal memory of the second processing element . 

20. The one or more non - transitory computer - readable 
media of claim 11 , wherein the second processing element 
receives a third activation from an internal memory of a third 
processing element , and the second processing element 
performs MAC operations with another input operand that 
includes the second activation and the third activation . 

21. A deep neural network ( DNN ) accelerator , the DNN 
accelerator comprising : 

a kernel decomposing module configured to convert at 
least a portion of a filter for a convolution into a weight 
operand by decomposing a kernel of the convolution to 
form a plurality of kernel vectors , wherein the kernel 
comprises weights arranged in rows and columns , the 
kernel has a width determined by a number of weights 
in a row and a height determined by a number of 
weights in a column , and a kernel vector corresponds to 
a respective row in the kernel and comprises weights in 
the respective row ; 

a tensor decomposing module configured to convert an 
input tensor of the convolution into a plurality of input 
operands , wherein an input operand comprises activa 
tions , and a spatial size of the input operand is the same 
as a spatial size of the weight operand ; 

a data read module configured to a first activation in the 
input operand from a memory into an internal memory 
of a first processing element ; and 

a processing element array , the processing element array 
comprising the first processing element and a second 
processing element , wherein the first processing ele 
ment receives a second activation from the input oper 
and from an internal memory of the second processing 
elements and performs multiply - accumulate ( MAC ) 
operations based on the input operand and the weight 
operand . 

22. The DNN accelerator of claim 21 , wherein : 
the number of the weights in the kernel vector is not an 

integral divisor of the width of the kernel , 
the tensor decomposing module is configured to decom 

pose the kernel to form the plurality of kernel vectors 
by generating an expanded kernel by adding one or 
more columns of new weights into the kernel , and 

the number of the weights in the kernel vector is an 
integral divisor of a width of the expanded kernel . 

23. The DNN accelerator of claim 21 , wherein the data 
read module is further configured to read the weight operand 
from the memory into another internal memory of the 
processing element . 

24. The DNN accelerator of claim 21 , wherein the first 
processing element receives a third activation in the input 
operand from an internal memory of a third processing 
element in the processing element array . 

25. The DNN accelerator of claim 21 , wherein the first 
activation is read into the internal memory of the first 
processing element at a first time , and the first processing 
element receives the second activation at a second time , and 
the first time is different from the second time . 
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14. The one or more non - transitory computer - readable 
media of claim 11 , wherein the operations further comprise : 

reading the weight operand from the memory into another 
internal memory of the processing element . 

15. The one or more non - transitory computer - readable 
media of claim 11 , wherein a result of the MAC operation 
is a data point in an output tensor of the convolution . 

16. The one or more non - transitory computer - readable 
media of claim 11 , wherein the operations further comprise : 

transmitting a third activation in the input operand from 
an internal memory of a third processing element into 
the internal memory of the first processing element . 

17. The one or more non - transitory computer - readable 
media of claim 16 , wherein : 

the second activation is transmitted into the internal 
memory of the first processing element at a first time , 

the third activation is transmitted into the internal memory 
of the first processing element at a second time , 

the first time is earlier than the second time , and 
the second activation is arranged between the first acti 

vation and the third activation in the input operand . 
18. The one or more non - transitory computer - readable 

media of claim 11 , wherein the first activation is read into the 
internal memory of the first processing element at a first 
time , and the second activation is transmitted into the 


