US 20230017662A1

a2y Patent Application Publication (o) Pub. No.: US 2023/0017662 A1l

a9y United States

Kadri et al.

43) Pub. Date: Jan. 19, 2023

(54) DEEP NEURAL NETWORK (DNN)
ACCELERATORS WITH WEIGHT LAYOUT
REARRANGEMENT

(71) Applicants:Sudheendra Kadri, Folsom, CA (US);
Darren Crews, Portland, OR (US);
Deepak Abraham Mathaikutty,
Chandler, AZ (US); Andrea Deidda,
Celbridge (IE); Arnab Raha, San Jose,
CA (US); Kevin Brady, Newry (GB);
David Thomas Bernard, Kilcullen (IE)

(72) Inventors: Sudheendra Kadri, Folsom, CA (US);
Darren Crews, Portland, OR (US);
Deepak Abraham Mathaikutty,
Chandler, AZ (US); Andrea Deidda,
Celbridge (IE); Arnab Raha, San Jose,
CA (US); Kevin Brady, Newry (GB);
David Thomas Bernard, Kilcullen (IE)

(21) Appl. No.: 17/946,231

(22) Filed: Sep. 16, 2022

Publication Classification

(51) Int. CL
GOG6N 3/063 (2006.01)
GOGF 13/28 (2006.01)
(52) US.CL
CPC oo GOG6N 3/063 (2013.01); GOGF 13/28
(2013.01)
(57) ABSTRACT

An DNN accelerator includes a DMA engine that can
rearrange weight data layout. The DMA engine may read a
weight tensor from a memory (e.g., DRAM). The weight
tensor includes weights arranged in a 3D matrix. The DMA
engine may partition the weight tensor into a plurality of
virtual banks based on a structure of a PE array, e.g., based
on the number of activated PE columns in the PE array. Then
the DMA engine may partition a virtual bank into a plurality
of virtual sub-banks. The DMA engine may also identify
data blocks from different ones of the plurality of virtual
sub-banks. A data block may include a plurality of input
channels and may have a predetermined spatial size and
storage size. The DMA engine form a linear data structure by
interleaving the data blocks. The DMA engine can write the
linear data structure into another memory (e.g., SRAM).

Weight Tensor
620
Cin
filter Output Tensor
625A 630
input Tensor Fx
610 RS
Cin A A v i filter
6258
* =
L J
*
L J
Lo L
filter

625N

1 .

< T 'Ol

o

o

o

o~

Yo

S

= — 501
= . >omﬁ aSew) ndu;
Q aAe pasuu

0ct 49Aeq Buijood

1T

4 ¥

walqo

T4

NN

Jan. 19,2023 Sheet 1 of 14

oot
NNG

Patent Application Publication

Patent Application Publication

Jan. 19,2023 Sheet 2 of 14

US 2023/0017662 Al

DNN Accelerator
200
Memory
210

()]

& >
c o -0
R~ I Rl g
< N u.:N
§ o
[m]

Memory
240
FIG. 2

US 2023/0017662 Al

Jan. 19,2023 Sheet 3 of 14

Patent Application Publication

€ 'Oid
0S€ 0SE
IINPON SIIM 3NPON IuBWaBuelieay
ove 0ge
9|NPON uoissaidwo) ainpoin Buisodsued)
143 0T€
9INPOA uoliled 9[NPO peay
0ce
aufdul YiNG

US 2023/0017662 Al

¥ 'Oid

ovy OEv ovy OtV ovv Oev
uleiq peoi uesqg peol uleiq peol

Jan. 19,2023 Sheet 4 of 14

Patent Application Publication

(1747 Y47 [0Y4%
Jo4ng Japyng iajng
uwnjo) uwnjoD uwnjo)
A A N
0TV |le— 0TV e o1V
Ad eoe ¢ — id & + — b~ + — — Ad
v v v
318 15 slslls ¢ [gge
. |58 1g . [BIElE « Blg s
L [.
OT7 fe— 0Ty [e— 017 e
id [¢ id [¢ d [«
oo o o T R s e
v v
55 e — 05 e
Oty y v oty vy v y.Yy
id ceea— 3 - __—__._ id
SOV 1510174 110174
oov

US 2023/0017662 Al

Jan. 19,2023 Sheet 5 of 14

Patent Application Publication

S ‘D
059 089
wun Hun
1B{NUINIOY Ajdinin
0LS
HuN JVIN
099 0SS ovs
3l olid SIE
12318189y 1nding 1315139y 1Yo 1915189y nduyy
oty
id

US 2023/0017662 Al

Jan. 19,2023 Sheet 6 of 14

Patent Application Publication

0€9
Josual indinp

* N

’?/’O L.
9

9 'Old

NGC9
Joll

X4

ul

029
Josuaj 1y3iom

8529
SEM

VvSe9
J94Y

019
Josua) induy

ul

Patent Application Publication Jan. 19, 2023 Sheet 7 of 14 US 2023/0017662 A1

FIG. 7B

710
F

Cm
FIG. 7A

700

Patent Application Publication Jan. 19, 2023 Sheet 8 of 14 US 2023/0017662 A1

FIG. 8

800
[
[

820D

s
S LSS
W

o8 YUIRIP S
S Al e

820C

(AP

s REET Ry

o WIS
s R

J;éi

&Y
1

1
8208

=

N7
A

Cin

820A

N
Ly
\\

Y

F

US 2023/0017662 Al

Jan. 19,2023 Sheet 9 of 14

Patent Application Publication

6 'Old

YOcCs8

006

US 2023/0017662 Al

Jan. 19,2023 Sheet 10 of 14

Patent Application Publication

§ o - -

Q/Z0T OL70T g/70T VicO1

ov0o1

Q4107 JLT10T 494101 VLIOL

01 'Sid

aseort

28201

45201

V5201 |

astot

JST0T

49101

vSsiot

~ 0¢01

—0101

US 2023/0017662 Al

Jan. 19,2023 Sheet 11 of 14

Patent Application Publication

11 'Old

0911
‘Aetie 9yl Jo 1ied € UM PaleInOosse AJOWSUI PUOIIS B 03U 24NIaNAS BIRD JBBUI 34 S1LIM

X

0stt
2auanbas Jeaul) e ul psueise SO0 B3RP Y}
Suisduwiod 2Jn10N41S BIEP 1B3UY 34 ‘SYD0|q B1ep Y3 SUINeI|IaIUL AG jueq jeNlHIA Jedul B W04

A

it
SHURQ-GNS [ENIIA JO A3einid BU3 JO SBUO JUIIBHUP WOy $HO0|q BIep AJiIuspi

A

Ottt
Sjueg-gns [eniia jo Aljesnid e 01Ul syueg [enuia o Aljeinid ayl Jo jueq {BnlA B uoied

»

ocit
Aesie sy uy
S3d 8Y3 JO Juswadueile Ue YO paseq Hueq [eniia Jo Ajjeanid e ojul Josudy IYSiIsm a4y uoiiped

f 3

Ottt
UOIINOAUO) £ DINJ9XD 01 S3d 4O Aesie ue Ag pasn aq 01 ale
pUE XuIeW [RUOISUSWIP-31Y3 & Ut paduesie aie s3ySiom syl pue ‘sialjl jRUOIINJOAUGCD 40Ut JO
23U U1 sIyB1am sasdwiod JosUa) IYSIaM By} uIaIayM AIOWAUL IS © LWI0L) J0Sud] JySiam e peay

0011

US 2023/0017662 Al

Jan. 19,2023 Sheet 12 of 14

Patent Application Publication

¢1'Oid
0t
IASQ LD S
oct 0¢cl
NAB(Q B 20IAa(] JUBID

\ d

0971 0%zt % H,Mm
J2INqIASIQ aseqele
qeed NNG
B5T7T

JBAlag 8usuieal dasq

00Z1
uswuosAug Suluiest dosq

US 2023/0017662 Al

Jan. 19,2023 Sheet 13 of 14

Patent Application Publication

€T '9Old

orel
3INPON
BOUBIBLIBIY

OFET
3|NPOIN uogepi|eA

0c¢et
BINPOIN Bujuied]

01¢tT
BINPON BoBLIBIYY

00¢T
wa1sAS NNG

US 2023/0017662 Al

Jan. 19,2023 Sheet 14 of 14

Patent Application Publication

v1 'S

(447"

CZ b+~ wZ 2

0yl
30IA30 LNdNI 43H10

0Tyl
30IA3A 1Nd1NO ¥3H10

8TVl
32IA3A LNdNI O1anV

80v1
3OIA3A LNd1NO OIany

gT¥l 90vT
IDIA3A $dO IDINIA AVI4SIA
vivl YOVT
YIMOd/AY3L1vE AHOWIN
Faxan 0Vt

diHD NOLLVIINNNINGD

3DIA3A DNISSIO0Yd

oovt
3DIA3A DNILNGNOD

US 2023/0017662 Al

DEEP NEURAL NETWORK (DNN)
ACCELERATORS WITH WEIGHT LAYOUT
REARRANGEMENT

TECHNICAL FIELD

[0001] This disclosure relates generally to neural net-
works, and more specifically, to DNN accelerators with
weight layout rearrangement.

BACKGROUND

[0002] DNNs are used extensively for a variety of artificial
intelligence applications ranging from computer vision to
speech recognition and natural language processing due to
their ability to achieve high accuracy. However, the high
accuracy comes at the expense of significant computation
cost. DNNs have extremely high computing demands as
each inference can require hundreds of millions of MAC
(multiply-accumulate) operations as well as hundreds of
millions of weights to be stored for classification or detec-
tion. Therefore, techniques to improve efficiency of DNNs
are needed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Embodiments will be readily understood by the
following detailed description in conjunction with the
accompanying drawings. To facilitate this description, like
reference numerals designate like structural elements.
Embodiments are illustrated by way of example, and not by
way of limitation, in the figures of the accompanying
drawings.

[0004] FIG. 1 illustrates an example DNN, in accordance
with various embodiments.

[0005] FIG. 2 is a block diagram of an example DNN
accelerator, in accordance with various embodiments.
[0006] FIG. 3 is a block diagram of a DMA (direct
memory access) module, in accordance with various
embodiments.

[0007] FIG. 4 illustrates a processing element (PE) array,
in accordance with various embodiments.

[0008] FIG. 5 is a block diagram of a PE, in accordance
with various embodiments.

[0009] FIG. 6 illustrates an example convolution, in accor-
dance with various embodiments.

[0010] FIG. 7A illustrates an example weight tensor, in
accordance with various embodiments.

[0011] FIG. 7B illustrates virtual banks generated from the
weight tensor, in accordance with various embodiments.
[0012] FIG. 8 illustrates partitioning a virtual bank into
virtual sub-banks, in accordance with various embodiments.
[0013] FIG. 9 illustrates an example linear data structure,
in accordance with various embodiments.

[0014] FIG. 10 illustrate formation of linear data struc-
tures through parallel data processing, in accordance with
various embodiments.

[0015] FIG. 11 is a flowchart showing a method of deep
learning, in accordance with various embodiments.

[0016] FIG. 12 illustrates a deep learning environment, in
accordance with various embodiments.

[0017] FIG. 13 is a block diagram of an example DNN
system, in accordance with various embodiments.

[0018] FIG. 14 is a block diagram of an example comput-
ing device, in accordance with various embodiments.

Jan. 19, 2023

DETAILED DESCRIPTION

[0019]

[0020] The last decade has witnessed a rapid rise in Al
(artificial intelligence) based data processing, particularly
based on DNN. DNNs are widely used in the domains of
computer vision, speech recognition, image, and video pro-
cessing mainly due to their ability to achieve beyond human-
level accuracy. The significant improvements in DNN model
size and accuracy coupled with the rapid increase in com-
puting power of execution platforms have led to the adop-
tion of DNN applications even within resource constrained
mobile and edge devices that have limited energy availabil-
ity. DNN applications are usually run on DNN accelerators.
Peak TOPS (Tera Operations Per Second) has been a metric
to measure performance of DNN accelerators. For energy-
constrained edge devices, two other metrics, TOPS/mm?>
(which indicates performance per area) and TOPS/W (which
indicates performance per power) are also used.

[0021] DNN accelerators usually process a large amount
of data for inference tasks, which have been a bottleneck for
energy efficiency. Energy efficiency can be improved by
reducing data transfer and memory access, maximizing data
reuse and resource utilization, and reducing the total number
of computations for the same amount of work done. How-
ever, it can be challenging to improve energy efficiency in
certain computation architectures, such as heterogeneous
computation architectures where various processing units
are used for running a DNN application. The processing
units may be XPUs (X processing units), which are hetero-
geneous computation architectures that can be mapped to
CPU (central processing unit), GPU (graphical processing
unit), VPU (versatile processing unit), or other types of
processing units. Different XPUs may be dynamically
selected to run inference, e.g., based on availability of the
XPUs, etc. Different from activation tensors (e.g., input
feature maps) that can be transmitted between DNN layers
and can be produced and consumed in an optimal manner,
weight tensors are external inputs to processing units for
convolutional layers. In such cases, it can be beneficial to
have a single copy of the trained weights that all the XPUs
may use. Each XPU can pull weights from this single source
when they are activated to infer the DNN model. The
compiler of the XPU can often create a weight layout, which
is optimal for the XPU, in compilation. This compilation
process would create a unique copy of a weight tensor that
is optimized for the XPU.

[0022] However, a sparsity aware XPU would need a
sparse weight layout, while other XPUs (e.g., CPU, GPU,
etc.) would work off a dense weight layout. If a common
storage format is desired for all DNN accelerators, a dense
weight layout will result in the sparsity aware DNN accel-
erator achieving suboptimal performance boost due to spar-
sity. Also, the weight layout rearrangement function in the
compiler can be time consuming. Weight layout rearrange-
ment usually requires the compiler to understand the optimal
schedule of the DNN layers and perform the weight layout
rearrangement task. The weight layout rearrangement during
compilation can increase the compilation time, which
increases the inference latency of the DNN. To minimize
such inference latency, weight layout rearrangement is often
avoided. A consequence of avoiding weight layout rear-
rangement is that weight data transfer cannot be optimized

Overview

US 2023/0017662 Al

for improving energy efficiency. Therefore, improved tech-
nology for weight data transfer in DNN accelerators is
needed.

[0023] Embodiments of the present disclosure may
improve on at least some of the challenges and issues
described above by providing DNN accelerators that include
an DMA engine capable of rearranging weight layout for
convolutional operations (also referred to as “convolu-
tions”). A convolution can be run on an input tensor and a
weight tensor to produce an output tensor. By rearranging
weight layout, the DMA engine can convert a weight tensor
having a layout of a 3D matrix into a linear layout and write
the weight data in the linear layout into a PE array in the
DNN accelerator for running the convolution.

[0024] In some embodiments, the DMA engine reads a
weight tensor for a memory, e.g., a main memory of a DNN
accelerator and partitions the weight tensor into virtual
banks. The weight tensor may have a spatial size of FxC,, x
C,,» where F is the spatial size of the convolutional kernel
(s) for the convolution, C,, is the number of input channels
in the input tensor of the convolution, C_,, is the number of
output channels in the output tensor of the convolution. The
DMA engine may partition the weight tensor in the output
channel dimension. Each virtual bank may include a portion
of the C_,, output channels. In some embodiments, the
number of virtual banks of the weight tensor may equal the
number of activated PE columns in a PE array that will
perform a convolution. An activated PE column is a PE
column that includes one or more activated PEs, i.e., PEs
that will perform MAC operations in the convolution. The
DMA engine can perform the layout rearrangement at a
virtual bank level, e.g., by generating a linear data structure
for each virtual bank of the weight tensor.

[0025] To generate the linear data structure of a virtual
bank, the DMA engine can split the virtual bank into virtual
sub-banks, e.g., in the output dimension. The DMA engine
may further identify data blocks from the virtual sub-banks.
A data block may correspond to a single row and a single
output channel in the corresponding virtual sub-bank. The
data block may include a portion of the C,, input channels.
The DMA engine can interleave data blocks from different
virtual sub-banks within the virtual bank to form the linear
data structure, where the data blocks (e.g., all the data
blocks) within the virtual bank are arrange linearly. Two
adjacent data blocks in the linear data structure may from
two different virtual sub-banks. In some embodiments, the
DMA engine may process some or all the virtual sub-banks
within the virtual bank before the interleaving process. For
instance, the DM A engine may transpose weights in a virtual
sub-bank, may reduce sparsity in a virtual sub-bank, or may
rearrange the layout of the data blocks in a virtual sub-bank.
[0026] After the linear data structures of the virtual banks
are generated, the DMA engine may write the linear data
structures into a memory that is local to the PE array. For
instance, the DMA engine may write the linear data struc-
tures into register files of PEs in the PE column correspond-
ing to the virtual bank.

[0027] The DMA engine in the present disclosure may be
implemented at least partially in hardware. By using the
DMA engine for weight layout rearrangement, the DNN
accelerator can avoid weight layout rearrangement during
compilation. The weight layout rearrangement function may
be activated by additional parameters in the DMA descrip-
tors as part of the network execution graph. Weight tensors

Jan. 19, 2023

having 3D layout can be shared by various DNN accelera-
tors. During the execution of a DNN model by the DNN
accelerator, the DMA engine can perform the weight layout
rearrangement in a way that is optimized for the DNN
accelerator. Compared to a currently available solution
which keeps the weight layout fixed for all DNN accelera-
tors, the weight layout rearrangement in the present disclo-
sure can better improve the performance of the DNN accel-
erator. Also, performance overhead for implementing the
weight layout rearrangement feature in the present disclo-
sure is minimal or even none. There may be area overhead,
but as the DMA engine typically occupies a small portion of
the overall area of the DNN accelerator, the area overhead,
if any, is small.

[0028] For purposes of explanation, specific numbers,
materials and configurations are set forth in order to provide
a thorough understanding of the illustrative implementa-
tions. However, it will be apparent to one skilled in the art
that the present disclosure may be practiced without the
specific details or/and that the present disclosure may be
practiced with only some of the described aspects. In other
instances, well known features are omitted or simplified in
order not to obscure the illustrative implementations.
[0029] Further, references are made to the accompanying
drawings that form a part hereof, and in which is shown, by
way of illustration, embodiments that may be practiced. It is
to be understood that other embodiments may be utilized,
and structural or logical changes may be made without
departing from the scope of the present disclosure. There-
fore, the following detailed description is not to be taken in
a limiting sense.

[0030] Various operations may be described as multiple
discrete actions or operations in turn, in a manner that is
most helpful in understanding the claimed subject matter.
However, the order of description should not be construed as
to imply that these operations are necessarily order depen-
dent. In particular, these operations may not be performed in
the order of presentation. Operations described may be
performed in a different order from the described embodi-
ment. Various additional operations may be performed or
described operations may be omitted in additional embodi-
ments.

[0031] For the purposes of the present disclosure, the
phrase “A and/or B” means (A), (B), or (A and B). For the
purposes of the present disclosure, the phrase “A, B, and/or
C” means (A), (B), (C), (A and B), (A and C), (B and C), or
(A, B, and C). The term “between,” when used with refer-
ence to measurement ranges, is inclusive of the ends of the
measurement ranges.

[0032] The description uses the phrases “in an embodi-
ment” or “in embodiments,” which may each refer to one or
more of the same or different embodiments. The terms
“comprising,” “including,” “having,” and the like, as used
with respect to embodiments of the present disclosure, are
synonymous. The disclosure may use perspective-based
descriptions such as “above,” “below,” “top,” “bottom,” and
“side” to explain various features of the drawings, but these
terms are simply for ease of discussion, and do not imply a
desired or required orientation. The accompanying drawings
are not necessarily drawn to scale. Unless otherwise speci-
fied, the use of the ordinal adjectives “first,” “second,” and
“third,” etc., to describe a common object, merely indicate
that different instances of like objects are being referred to
and are not intended to imply that the objects so described

US 2023/0017662 Al

must be in a given sequence, either temporally, spatially, in
ranking or in any other manner.

[0033] In the following detailed description, various
aspects of the illustrative implementations will be described
using terms commonly employed by those skilled in the art
to convey the substance of their work to others skilled in the
art.

[0034] The terms “substantially,” “close,” “approxi-
mately,” “near,” and “about,” generally refer to being within
+/-20% of a target value based on the input operand of a
particular value as described herein or as known in the art.
Similarly, terms indicating orientation of various elements,
e.g., “coplanar,” “perpendicular,” “orthogonal,” “parallel,”
or any other angle between the elements, generally refer to
being within +/-5-20% of a target value based on the input
operand of a particular value as described herein or as
known in the art.

[0035] In addition, the terms “comprise,” “comprising,”
“include,” “including,” “have,” “having” or any other varia-
tion thereof, are intended to cover a non-exclusive inclusion.
For example, a method, process, device, or DNN accelerator
that comprises a list of elements is not necessarily limited to
only those elements but may include other elements not
expressly listed or inherent to such method, process, device,
or DNN accelerators. Also, the term “or” refers to an
inclusive “or” and not to an exclusive “or.”

[0036] The DNN systems, methods and devices of this
disclosure each have several innovative aspects, no single
one of which is solely responsible for all desirable attributes
disclosed herein. Details of one or more implementations of
the subject matter described in this specification are set forth
in the description below and the accompanying drawings.
[0037] Example DNN

[0038] FIG. 1 illustrates an example DNN 100, in accor-
dance with various embodiments. For purpose of illustra-
tion, the DNN 100 in FIG. 1 is a convolutional neural
network (CNN). In other embodiments, the DNN 100 may
be other types of DNNs. The DNN 100 is trained to receive
images and output classifications of objects in the images. In
the embodiments of FIG. 1, the DNN 100 receives an input
image 105 that includes objects 115, 125, and 135. The DNN
100 includes a sequence of layers comprising a plurality of
convolutional layers 110 (individually referred to as “con-
volutional layer 110”), a plurality of pooling layers 120
(individually referred to as “pooling layer 1207), and a
plurality of fully connected layers 130 (individually referred
to as “fully connected layer 130”). In other embodiments,
the DNN 100 may include fewer, more, or different layers.
In an inference of the DNN 100, the layers of the DNN 100
execute tensor computation that includes many tensor opera-
tions, such as convolution (e.g., multiply-accumulate
(MAC) operations, etc.), pooling operations, elementwise
operations (e.g., elementwise addition, elementwise multi-
plication, etc.), other types of tensor operations, or some
combination thereof.

[0039] The convolutional layers 110 summarize the pres-
ence of features in the input image 105. The convolutional
layers 110 function as feature extractors. The first layer of
the DNN 100 is a convolutional layer 110. In an example, a
convolutional layer 110 performs a convolution on an input
tensor 140 (also referred to as input feature map (IFM) 140)
and a filter 150. As shown in FIG. 1, the IFM 140 is
represented by a 7x7x3 three-dimensional (3D) matrix. The
IFM 140 includes 3 input channels, each of which is

2 <

2 <

Jan. 19, 2023

represented by a 7x7 two-dimensional (2D) matrix. The 7x7
2D matrix includes 7 input elements (also referred to as
input points) in each row and 7 input elements in each
column. The filter 150 is represented by a 3x3x3 3D matrix.
The filter 150 includes 3 kernels, each of which may
correspond to a different input channel of the IFM 140. A
kernel a 2D matrix of weights, where the weights are
arranged in columns and rows. A kernel can be smaller than
the IFM. In the embodiments of FIG. 1, each kernel is
represented by a 3x3 2D matrix. The 3x3 kernel includes 3
weights in each row and 3 weights in each column. Weights
can be initialized and updated by backpropagation using
gradient descent. The magnitudes of the weights can indicate
importance of the filter 150 in extracting features from the
IFM 140.

[0040] The convolution includes MAC operations with the
input elements in the IFM 140 and the weights in the filter
150. The convolution may be a standard convolution 163 or
a depthwise convolution 183. In the standard convolution
163, the whole filter 150 slides across the IFM 140. All the
input channels are combined to produce an output tensor 160
(also referred to as output feature map (OFM) 160). The
OFM 160 is represented by a 5x5 2D matrix. The 5x5 2D
matrix includes 5 output elements (also referred to as output
points) in each row and 5 output elements in each column.
For purpose of illustration, the standard convolution
includes one filter in the embodiments of FIG. 1. In embodi-
ments where there are multiple filters, the standard convo-
Iution may produce multiple output channels in the OFM
160.

[0041] The multiplication applied between a kernel-sized
patch of the IFM 140 and a kernel may be a dot product. A
dot product is the elementwise multiplication between the
kernel-sized patch of the IFM 140 and the corresponding
kernel, which is then summed, always resulting in a single
value. Because it results in a single value, the operation is
often referred to as the “scalar product.” Using a kernel
smaller than the IFM 140 is intentional as it allows the same
kernel (set of weights) to be multiplied by the IFM 140
multiple times at different points on the IFM 140. Specifi-
cally, the kernel is applied systematically to each overlap-
ping part or kernel-sized patch of the IFM 140, left to right,
top to bottom. The result from multiplying the kernel with
the IFM 140 one time is a single value. As the kernel is
applied multiple times to the IFM 140, the multiplication
result is a 2D matrix of output elements. As such, the 2D
output matrix (i.e., the OFM 160) from the standard con-
volution 163 is referred to an OFM.

[0042] In the depthwise convolution 183, the input chan-
nels are not combined. Rather, MAC operations are per-
formed on an individual input channel and an individual
kernel and produce an output channel. As shown in FIG. 1,
the depthwise convolution 183 produces a depthwise output
tensor 180. The depthwise output tensor 180 is represented
by a 5x5x3 3D matrix. The depthwise output tensor 180
includes 3 output channels, each of which is represented by
a 5x5 2D matrix. The 5x5 2D matrix includes 5 output
elements in each row and 5 output elements in each column.
Each output channel is a result of MAC operations of an
input channel of the IFM 140 and a kernel of the filter 150.
For instance, the first output channel (patterned with dots) is
a result of MAC operations of the first input channel
(patterned with dots) and the first kernel (patterned with
dots), the second output channel (patterned with horizontal

US 2023/0017662 Al

strips) is a result of MAC operations of the second input
channel (patterned with horizontal strips) and the second
kernel (patterned with horizontal strips), and the third output
channel (patterned with diagonal stripes) is a result of MAC
operations of the third input channel (patterned with diago-
nal stripes) and the third kernel (patterned with diagonal
stripes). In such a depthwise convolution, the number of
input channels equals the number of output channels, and
each output channel corresponds to a different input channel.
The input channels and output channels are referred to
collectively as depthwise channels. After the depthwise
convolution, a pointwise convolution 193 is then performed
on the depthwise output tensor 180 and a 1x1x3 tensor 190
to produce the OFM 160.

[0043] The OFM 160 is then passed to the next layer in the
sequence. In some embodiments, the OFM 160 is passed
through an activation function. An example activation func-
tion is the rectified linear activation function (ReLLU). ReLLU
is a calculation that returns the value provided as input
directly, or the value zero if the input is zero or less. The
convolutional layer 110 may receive several images as input
and calculates the convolution of each of them with each of
the kernels. This process can be repeated several times. For
instance, the OFM 160 is passed to the subsequent convo-
Iutional layer 110 (i.e., the convolutional layer 110 following
the convolutional layer 110 generating the OFM 160 in the
sequence). The subsequent convolutional layers 110 per-
forms a convolution on the OFM 160 with new kernels and
generates a new feature map. The new feature map may also
be normalized and resized. The new feature map can be
kernelled again by a further subsequent convolutional layer
110, and so on.

[0044] In some embodiments, a convolutional layer 110
has 4 hyperparameters: the number of kernels, the size F
kernels (e.g., a kernel is of dimensions FxFxD pixels), the
S step with which the window corresponding to the kernel
is dragged on the image (e.g., a step of one means moving
the window one pixel at a time), and the zero-padding P
(e.g., adding a black contour of P pixels thickness to the
input image of the convolutional layer 110). The convolu-
tional layers 110 may perform various types of convolutions,
such as 2-dimensional convolution, dilated or atrous con-
volution, spatial separable convolution, depthwise separable
convolution, transposed convolution, and so on. The DNN
100 includes 16 convolutional layers 110. In other embodi-
ments, the DNN 100 may include a different number of
convolutional layers.

[0045] The pooling layers 120 down-sample feature maps
generated by the convolutional layers, e.g., by summarizing
the presents of features in the patches of the feature maps.
A pooling layer 120 is placed between 2 convolution layers
110: a preceding convolutional layer 110 (the convolution
layer 110 preceding the pooling layer 120 in the sequence of
layers) and a subsequent convolutional layer 110 (the con-
volution layer 110 subsequent to the pooling layer 120 in the
sequence of layers). In some embodiments, a pooling layer
120 is added after a convolutional layer 110, e.g., after an
activation function (e.g., ReLLU) has been applied to the
OFM 160.

[0046] A pooling layer 120 receives feature maps gener-
ated by the preceding convolution layer 110 and applies a
pooling operation to the feature maps. The pooling operation
reduces the size of the feature maps while preserving their
important characteristics. Accordingly, the pooling opera-

Jan. 19, 2023

tion improves the efficiency of the DNN and avoids over-
learning. The pooling layers 120 may perform the pooling
operation through average pooling (calculating the average
value for each patch on the feature map), max pooling
(calculating the maximum value for each patch of the feature
map), or a combination of both. The size of the pooling
operation is smaller than the size of the feature maps. In
various embodiments, the pooling operation is 2x2 pixels
applied with a stride of 2 pixels, so that the pooling operation
reduces the size of a feature map by a factor of 2, e.g., the
number of pixels or values in the feature map is reduced to
one quarter the size. In an example, a pooling layer 120
applied to a feature map of 6x6 results in an output pooled
feature map of 3x3. The output of the pooling layer 120 is
inputted into the subsequent convolution layer 110 for
further feature extraction. In some embodiments, the pooling
layer 120 operates upon each feature map separately to
create a new set of the same number of pooled feature maps.
[0047] The fully connected layers 130 are the last layers of
the DNN. The fully connected layers 130 may be convolu-
tional or not. The fully connected layers 130 receives an
input operand. The input operand defines the output of the
convolutional layers 110 and pooling layers 120 and
includes the values of the last feature map generated by the
last pooling layer 120 in the sequence. The fully connected
layers 130 applies a linear combination and an activation
function to the input operand and generates an individual
partial sum. The individual partial sum may contain as many
elements as there are classes: element i represents the
probability that the image belongs to class i. Each element
is therefore between 0 and 1, and the sum of all is worth one.
These probabilities are calculated by the last fully connected
layer 130 by using a logistic function (binary classification)
or a softmax function (multi-class classification) as an
activation function.

[0048] In some embodiments, the fully connected layers
130 classify the input image 105 and returns an operand of
size N, where N is the number of classes in the image
classification problem. In the embodiments of FIG. 1, N
equals 3, as there are 3 objects 115, 125, and 135 in the input
image. Each element of the operand indicates the probability
for the input image 105 to belong to a class. To calculate the
probabilities, the fully connected layers 130 multiply each
input element by weight, makes the sum, and then applies an
activation function (e.g., logistic if N=2, softmax if N>2).
This is equivalent to multiplying the input operand by the
matrix containing the weights. In an example, the individual
partial sum includes 3 probabilities: a first probability indi-
cating the object 115 being a tree, a second probability
indicating the object 125 being a car, and a third probability
indicating the object 135 being a person. In other embodi-
ments where the input image 105 includes different objects
or a different number of objects, the individual partial sum
can be different.

[0049] Example DNN Accelerator

[0050] FIG. 2 is a block diagram of an example DNN
accelerator 200, in accordance with various embodiments.
The DNN accelerator 200 can run DNN models, e.g., the
DNN 100 in FIG. 1. The DNN accelerator 200 includes a
memory 210, a DMA engine 220, a PE array 230, and a
memory 240 inside the PE array 230. In other embodiments,
alternative configurations, different or additional compo-
nents may be included in the DNN accelerator 200. For
instance, the DNN accelerator 200 may include more than

US 2023/0017662 Al

one memory 210 or 240, more than one DMA engine 220,
or more than one PE array 230. As another example, the
memory 240 may be partially or wholly outside the PE array
230. Further, functionality attributed to a component of the
DNN accelerator 200 may be accomplished by a different
component included in the DNN accelerator 200 or by a
different system.

[0051] The memory 210 stores data to be used by the PE
array 230 to perform deep learning operations in DNN
models. Example deep learning operations include convo-
Iutions (also referred to as “convolutional operations”),
pooling operations, elementwise operations, other types of
deep learning operations, or some combination thereof. The
memory 210 may be a main memory of the DNN accelerator
200. In some embodiments, the memory 210 includes one or
more DRAMs (dynamic random-access memory).

[0052] Inembodiments where the memory 210 stores data
for a convolution, the memory 210 stores a weight tensor for
the convolution. The weight tensor can be read from the
memory 210 and written into the memory 240 through the
DMA engine 220. The weight tensor includes weights in one
or more convolutional kernels based on which the convo-
Iution is to be executed. The values of the weights can be
determined by training the DNN, e.g., by the training
module 1320 in FIG. 13. The weight tensor may have a 3D
layout. For instance, the weights in the weight tensor are
arranged in a 3D matrix. The weight tensor may be denoted
as:

WER CimpFxCout

F=Fx*Fy

where W is the weight tensor, F is a spatial size of the
convolutional kernel, Fx is the row length of the convolution
kernel, Fy is the column length of the convolutional kernel,
C,,, is the number of input channels in an input tensor of the
convolution, C_,, is the number of output channels in an
output tensor of the convolution. In some embodiments, C,,
is the row length of the weight tensor, and F is the column
length of the weight tensor. F, C,,, and C_,,, may be integers.
[0053] In some embodiments, the layout of the weight
tensor can be changed, e.g., by the DMA engine 220, in a
way optimized for the PE array 230. The layout of the
weight tensor can be changed in different ways that are
optimized for different PE arrays. Examples of the weight
tensor include the filter 150 in FIG. 1, the weight tensor 620
in FIG. 6, and the weight tensor 700 in FIG. 7.

[0054] In some embodiments, the memory 210 may also
store the input tensor and output tensor of the convolution.
The output tensor can be transmitted from the memory 240
to the memory 210 through the DMA engine 220. In other
embodiments, the input tensor or output tensor is not stored
in the memory 210. For instance, the input tensor may be
directly transmitted from an internal memory of another PE
array to the memory 240 in the PE array 230. The output
tensor may be directly transmitted from the memory 240 in
the PE array 230 into an internal memory of another PE
array. The input tensor may be a 3D matrix and include C,,
input channels. Examples of the input tensor include the
input tensor 140 in FIG. 1 and the input tensor 610 in FIG.
6. The output tensor may be a 3D matrix and include C,,,
output channels. Examples of the output tensor include the
output tensor 160 in FIG. 1 and the output 630 in FIG. 6.
[0055] The DMA engine 220 facilitates data transfer
between the memory 210 and the memory 240. For example,

Jan. 19, 2023

the DMA engine 220 can read data from the memory 210
and write data into the memory 240. As another example, the
DMA engine 220 can read data from the memory 240 and
write data into the memory 210. The DMA engine 220
provides a DMA feature that allows the PE array 230 to
initiate data transfer between the memory 210 and the
memory 240 and to perform other operations while the data
transfer is in program. The DM A engine 220 can read weight
tensors from the memory 210, rearrange the layouts of the
weight tensors in a way that is optimized for the PE array
230 before it writes the weight tensor into the memory 240.
For instance, the DMA engine 220 can change the 3D layout
of a weight tensor to a linear layout.

[0056] In some embodiments, the DMA engine 220 par-
titions a weight tensor for a convolution into a plurality of
virtual banks based on a structure of the PE array 230. The
DMA engine 220 can further partition each virtual bank into
virtual sub-banks. The DMA engine 220 may perform the
partition in the output channel dimension of the weight
tensor. The DMA engine 220 further identifies data blocks in
each virtual sub-bank and reshuffle all the data blocks of a
virtual bank to form a linear data structure for the virtual
bank. Through the reshuffling by the DMA engine 220, the
data blocks are arranged linearly in the linear data structure.
The data blocks in the linear data structure may be organized
sequentially in the linear data structure, where the data
blocks are linked to one after the other. Data blocks from
different virtual sub-banks are interleaved in the linear data
structure. For instance, two (or more) adjacent data blocks in
the linear data structure may come from two (or more)
different virtual sub-banks. Examples of the linear data
structure include the linear data structure 900 in FIG. 9 and
the linear data structures 1030 and 1040 in FIG. 10.

[0057] In some embodiments, before identifying and
reshuffling data blocks, the DMA engine 220 may compress
data in some or all of the virtual sub-banks by reducing
sparsity in these virtual sub-banks. For instance, the DMA
engine 220 may remove weights that have zero values from
the virtual sub-bank. The weights in the compressed virtual
sub-bank may all have non-zero values. The DMA engine
220 may also transpose the weight tensor after determining
that the row length of the weight tensor is not C,,, or that the
column length of the weight tensor is not F. Taking a virtual
sub-bank denoted as VSBERT*“"*¥ for example, the DMA
engine 220 can transpose the virtual sub-bank into a new
virtual sub-bank VSB'ER % where K denotes the num-
ber of output channels in the virtual sub-bank.

[0058] In some embodiments, the DMA engine 220 per-
forms the reshufiling at a bank size graduality. For instance,
the data blocks have a predetermined size. The predeter-
mined size may be a bank size, i.e., the size of a memory
bank. The memory bank may be a bank in the memory 240.
In an example, the bank size is 32 bytes. As a weight tensor
includes multiple virtual banks, the DMA engine 220 can
form multiple linear data structures. After the linear data
structures of a weight tensor is formed, the DMA engine 220
may write the linear data structures into the memory 240.
More details regarding the DMA engine 220 are described
below in conjunction with FIG. 3.

[0059] The PE array 230 includes a plurality of PEs. The
PEs may be arranged in columns, or columns and rows. The
PE array 230 may be a tile, or a portion of a tile, of a DNN
layer having a tile architecture. The DNN layer may include
one or more other PE arrays that may operate in parallel with

US 2023/0017662 Al

the PE array 230. The PE array may perform convolutions,
e.g., standard convolution or depthwise convolution. In
some embodiments, the PE array 230 receive an input tensor
and a weight tensor and performs MAC operations with the
input tensor and weight tensor. The weight tensor may be in
a linear form. For instance, the weight tensor has been
rearranged to a group of linear data structure. The result of
the MAC operations may be an output tensor, which can be
further computed, e.g., by another PE array. The input
tensor, weight tensor, and output tensor may be stored in the
memory 240.

[0060] The memory 240 is local to the PE array 230. In the
embodiments of FIG. 2, the memory 240 is inside the PE
array 230. In other embodiments, the memory 240 may be
outside the PE array 230. The memory 240 and the PE array
230 can be implemented on the same chip. In some embodi-
ments, the memory 240 includes one or more SRAMs (static
random-access memories). The memory 240 may be register
files, e.g., register files 540, 550, and 560 in FIG. 5. In some
embodiments, the memory 240 may also include one or
more cache memories. The memory 240 stores data used for
or generated from convolutions, e.g., input tensors, weight
tensors, and output tensors. An input tensor or weight tensor
may be written into the memory 240 by the DMA engine
220. A weight tensor stored in the memory 240 may have
been rearranged by the DMA engine 220 into one or more
linear data structures. An output tensor may be loaded into
the memory 240 by the PEs in the PE array 230.

[0061] FIG. 3 is a block diagram of the DMA engine 220,
in accordance with various embodiments. The DMA engine
220 includes a read module 310, a partition module 320, a
transposing module 330, a compression module 340, a
rearrangement module 350, and a write module 360. In other
embodiments, alternative configurations, different or addi-
tional components may be included in the DM A engine 220.
For instance, the DMA engine 220 may include no com-
pression module 340. Further, functionality attributed to a
component of the DNN accelerator 200 may be accom-
plished by a different component included in the DMA
engine 220 or by a different system.

[0062] The read module 310 read data from the memory
210 or the memory 240. For instance, the read module 310
may read weight tensors from the memory 210. The read
module 310 may read data at a predetermined rate, examples
of' which include 32 bytes/cycle or 64 bytes/cycle, and so on.
A weight tensor read by the read module 310 may include
weights arranged in a 3D matrix. The spatial size of the 3D
matrix may be defined by three dimensions along three axes,
respectively. For instance, the weight tensor may have a first
dimension determined based on the number of input chan-
nels in an input tensor of a convolution in which the weight
tensor is to be used, a second dimension determined based
on based on the size of a kernel for the convolution, and a
third dimension determined based on the number of output
channels in an output tensor of the convolution. For an
example weight tensor W E R“"*7*“e« the first dimension is
C,,. the second dimension is F, and the third dimension is
C,, The read module 310 may provide the weight tensor to
the partition module 320 for further processing.

[0063] The partition module 320 partitions the weight
tensor into a sequence of virtual banks. The partition module
320 may partition the weight tensor based on the structure of
the PE array 230. For instance, the partition module 320
determines how many PE columns in the PE array 230 will

Jan. 19, 2023

need weight data for MAC operations. A PE column, which
includes one or more PEs that will perform MAC operations
with part of the weight tensor, is considered an activated PE
column. The partition module 320 may obtain the number of
activated PE columns in the PE array 230. The number of
activated PE columns may vary for different convolutions.
In some embodiments, the partition module 320 determines
a first partition factor P that equals the number of activated
PE columns and use the first partition factor P to divide the
weight tensor. The partition module 320 may evenly split the
weight tensor into P virtual banks. A virtual bank corre-
sponds to the volume of weight data to be fed into one
activated PE column. The weight data in different virtual
banks can used by different PE columns for MAC opera-
tions.

[0064] In some embodiments, the partition module 320
splits the weight tensor in the output channel dimension. In
embodiments where the weight tensor is denoted as
WER“»*eu each virtual bank of the weight tensor can be
denoted as VBER ™57 where K, ,~C,_,/P. The virtual
banks have the same kernel size (i.e., column length) F and
the same number of input channels (i.e., row length) C,, as
the weight tensor. In an example, where the total number of
output channels in the weight tensor is 256 and the first
partition factor is 16, the partition module 320 partitions the
weight tensor into 16 virtual banks. More details regarding
partitioning weight tensor are described below in conjunc-
tion with FIG. 7.

[0065] The partition module 320 may further partition
each virtual bank into virtual sub-banks. A virtual sub-bank
may correspond to the volume of weight data to be fed to one
MAC lane of a PE column. In some embodiments, the
partition module 320 may determine a second partition
factor p. The second partition factor p may equal the number
of MAC lanes of a PE column, which may depend on the
number of activated PEs in the PE column. An activated PE
is a PE that performs one or more MAC operations for the
convolution. A MAC lane is a path for loading data into a PE
column. A MAC lane may be also referred to as a data
transmission lane or data loading lane. A PE column may
have multiple MAC lanes. The loading bandwidth of the PE
column is an aggregation of the loading bandwidths of all
the MAC lanes associated with the PE column. With a
certain number of MAC lanes, data can be fed into the same
number of independent MAC units simultaneously. These
independent MAC units may be in the same PE. In some
embodiments where a PE column has four MAC lanes for
feeding activations or weights into the PE column and each
MAC lane may have a bandwidth of 16 bytes, the four MAC
lanes can have a total loading bandwidth of 64 bytes. In an
embodiment where the activation or weight data was uni-
casted, four MAC units in one PE may receive the data. In
another embodiment where the activation or weight data was
multicoated, up to eight PEs and four MAC units in these
PEs may receive the data. In some embodiments, the data
reuse pattern of the DNN accelerator may determine how
many PEs with four MAC units can receive the data.

[0066] The partition module 320 may split a virtual bank
in the output channel dimension based on the second parti-
tion factor. The virtual sub-banks may have the same kernel
size and the same number of input channels as the virtual
bank, but the number of output channels in a virtual sub-
bank may be an integral divisor of the number of output
channels in the virtual bank. For instance, the number of

US 2023/0017662 Al

output channels in a virtual sub-bank may equal the number
of output channels in the virtual bank divided by the second
partition factor.

[0067] In embodiments where the virtual bank is denoted
as VBER 7 each virtual sub-bank of the virtual bank
can be denoted as VSBER“ 575 where K o=K,5/p.
The virtual sub-banks have the same kernel size (i.e.,
column length) F and the same number of input channels
(i.e., row length) C,, as the virtual bank and the weight
tensor. In an example, where the total number of output
channels in the weight tensor is 256 and the first partition
factor is 16, the partition module 320 partitions the weight
tensor into 16 virtual banks. More details regarding parti-
tioning virtual bank are described below in conjunction with
FIG. 8.

[0068] The transposing module 330 may transpose virtual
sub-banks generated by the partition module 320. The
transposing module 330 may determine whether the 3D
structure of a virtual sub-bank meets a predetermined
requirement. For instance, the transposing module 330
determines whether the row length of the virtual sub-bank is
the number of input channels or whether the column length
of the virtual sub-bank is the kernel size. In embodiments
where the transposing module 330 determines that the row
length is not the number of input channels or that the column
length is not the kernel size, the transposing module 330
switches the rows and columns in the virtual sub-bank. For
a virtual sub-bank VSBER =575 for example, the DMA
engine 220 can transpose the virtual sub-bank into a new
virtual sub-bank VSB'ER “wF=Kvss,

[0069] The transposing module 330 may use a transposing
filter to identify a row or column and then convert the row
or column into a column or row. The transposing filter may
be a 1x1 filter, 5x5 filter, 11x11 filter, or a filter of a different
size. In embodiments where the transposing filter is a 1x1
filter, the transposing module 330 may function as a buffer.
In embodiments where the transposing module 330 deter-
mines that the row length is the number of input channels or
that the column length is the kernel size, the transposing
module 330 does not transpose the virtual sub-bank and may
provide the virtual sub-bank to the compression module 340
or the rearrangement module 350 as is.

[0070] The compression module 340 compresses weight
data in virtual sub-banks generated by the partition module
320. In some embodiments, the compression module 340
may compress a virtual sub-bank by reducing sparsity in the
virtual sub-bank. Sparsity is a measurement of the amount of
zero values in data. The compression module 340 may
identify, in the virtual sub-bank, weights that have zero
values and remove these weights from the virtual sub-bank
to generate a compressed virtual sub-bank. As zero values
are removed, the compressed virtual sub-bank has a reduced
sparsity. The weights in the compressed virtual sub-bank
may all have non-zero values. By compressing the virtual
sub-bank, the size of the virtual sub-bank is reduced. Also,
less memory storage and less computation power would be
needed for MAC operations performed with the virtual
sub-bank. The efficiency of the MAC operations can be
improved, while the energy consumption can be reduced.
[0071] The compression module 340 may further generate
a sparsity bitmap (also referred to as “bitmap”) for the
virtual sub-bank. The bitmap includes a plurality of bitmap
elements, each of which may correspond to a different
weight in the virtual sub-bank. A value of a bitmap element

Jan. 19, 2023

is determined based at least on a value of the corresponding
weight. For instance, for each weight having a non-zero
value, the compression module 340 generates a one valued
bitmap element. For each weight having a zero value, the
compression module 340 generates a zero valued bitmap
element. In some embodiments, the bitmap may be a 3D
matrix that has the same spatial size as the virtual sub-bank.
A position of a bitmap element in the bitmap may match the
position of the corresponding weight in the virtual sub-bank.

[0072] The rearrangement module 350 identifies data
blocks in virtual sub-banks generated from a virtual bank
and interleaves the data blocks to form a linear data structure
of the virtual bank. In some embodiments, the virtual
sub-banks processed by the rearrangement module 350 are
compressed virtual sub-banks provided by the compression
module 340. In some embodiments, the rearrangement mod-
ule 350 may interleave data blocks in the input channel
dimension of the virtual sub-banks. For instance, for a given
row in a virtual sub-bank, the rearrangement module 350
may identify a plurality of data blocks. The rearrangement
module 350 may determining the number of input channels
in one data block. The number of input channels in one data
block may be an integral divisor of the total number of input
channels in the virtual sub-bank. The number of data blocks
in one row may equal the total number of input channels in
the virtual sub-bank divided by the number of input channels
in one data block. In an example where the total number of
input channels in the virtual sub-bank is 64 and the number
of input channels in one data block is 16, the number of data
blocks at the given F is 4. A data block may include all the
output channels in the virtual sub-bank. The rearrangement
module 350 can identify data blocks from all the rows in the
virtual sub-bank.

[0073] The rearrangement module 350 can reshuffle posi-
tions of the data blocks in a virtual bank to generate a linear
data structure. The linear data structure may include all the
data blocks from all the virtual sub-banks of the virtual bank.
The rearrangement module 350 may determine an interleav-
ing factor that specifies the number of output channels to be
interleaved at a data block level to finish a given column,
ie., a given input channel. In some embodiments, the
interleaving factor is an integer that is smaller than the
number of virtual sub-banks in a virtual bank. In an embodi-
ment where the virtual bank is split into 4 virtual sub-banks
and the interleaving factor is 2, the rearrangement module
350 may interleave data blocks (“first data blocks”) in the
first row in a first virtual sub-bank with data blocks (second
data blocks) in the first row in a second virtual sub-bank so
that the first data blocks and the second data blocks alter-
native in the linear data structure. A first data block and a
second data block immediately subsequent to the first data
block in the linear data structure correspond to the same
input channel.

[0074] After that, the rearrangement module 350 may then
interleave data blocks (“third data blocks™) in the first row
in a third virtual sub-bank with data blocks (fourth data
blocks) in the first row in a fourth virtual sub-bank so that
the third data blocks and the fourth data blocks alternative in
the linear data structure. A third data block and a fourth data
block immediately subsequent to the third data block in the
linear data structure correspond to the same input channel.
The third data blocks and the fourth data blocks are arranged
after the first data blocks and the third data blocks.

US 2023/0017662 Al

[0075] After the first rows in the 4 virtual sub-banks are
finished, the rearrangement module 350 may interleave data
blocks in the second rows in the 4 virtual sub-banks in the
same ways as how the data blocks in the first rows are
interleaved. The rearrangement module 350 can repeat this
interleaving process till all the rows are finished. The
rearrangement module 350 can obtain a linear data structure
that includes all the data blocks in the virtual bank. The data
blocks may be organized sequentially in the linear data
structure. The rearrangement module 350 may form a linear
data structure for an individual virtual bank. For a weight
tensor partitioned into N virtual banks, the rearrangement
module 350 can form N linear data structures so that the
weight tensor having the 3D shape is converted to the linear
data structure having a linear shape, which can be stored
with single-level storage. Also, traversal of the weight data
can be achieved through a single run.

[0076] In some embodiments (such as embodiments
where the virtual sub-banks are compressed by reducing
sparsity), the rearrangement module 350 may reshuffle data
blocks in bitmaps of the virtual sub-banks, e.g., in a similar
way as how the virtual sub-banks are interleaved, to form a
linear data structure for the bitmaps. The rearrangement
module 350 may reshuffle data blocks in bitmaps at a
different granularity from the granularity at which the rear-
rangement module 350 may reshuffle data blocks in virtual
sub-banks. In an embodiment, the rearrangement module
350 may reshuffle data blocks in bitmaps at a granularity of
2 bytes. The linear data structure for the bitmaps has a
smaller size than the linear data structure of the virtual bank.
More details regarding interleaving data blocks from differ-
ent virtual sub-banks are provided below in conjunction with
FIGS. 8-10.

[0077] The write module 360 write input tensors and
linear data structures of weight tensors into the memory 240.
In embodiments where the memory 240 includes input
register files and weight register files. The write module 360
may write input data into the input register files and weight
data into the weight register files. In embodiments where the
weight data is in a linear data structure, the write module 360
may write the weight data in a single run. In some embodi-
ments, the write module 360 writes the weight data in an
individual linear data structure into weight register files in
PEs arranged in one column of the PE array 230. The write
module 360 may write data in a predetermined rate, such as
32 bytes/cycle, 64 bytes/cycle, and so on.

[0078] FIG. 4 illustrates a PE array 400, in accordance
with various embodiments. The PE array 400 is an embodi-
ment of the PE array 230 in FIG. 2. The PE array 400
includes a plurality of PEs 410 (individually referred to as
“PE 410”). The PEs 410 perform MAC operations, such as
integer MAC operations, floating-point MAC operations,
and so on. The PEs 410 may also be referred to as neurons
or nodes in the DNN. Each PE 410 has 2 input signals 450
and 460 and an output signal 470. The input signal 450 is at
least a portion of an input tensor of a convolution. The input
signal 460 is at least a portion of a weight tensor of the
convolution. In some embodiments, the input signal 450 of
a PE 410 includes one or more input operands, and the input
signal 460 includes one or more weight operands.

[0079] Each PE 410 performs an MAC operation on the
input signals 450 and 460 and outputs the output signal 470,
which is a result of the MAC operation. Some or all of the
input signals 450 and 460 and the output signal 470 may be

Jan. 19, 2023

in an integer format, such as INTS, or floating-point format,
such as FP16 or BF16. For purpose of simplicity and
illustration, the input signals and output signal of all the PEs
410 have the same reference numbers, but the PEs 410 may
receive different input signals and output different output
signals from each other. Also, a PE 410 may be different
from another PE 410, e.g., including more, fewer, or differ-
ent components.

[0080] As shown in FIG. 4, the PEs 410 are connected to
each other, as indicated by the dash arrows in FIG. 4. The
output signal 470 of an PE 410 may be sent to many other
PEs 410 (and possibly back to itself) as input signals via the
interconnections between PEs 410. In some embodiments,
the output signal 470 of an PE 410 may incorporate the
output signals of one or more other PEs 410 through an
accumulate operation of the PE 410 and generates an
internal partial sum of the PE array. Certain aspects of the
PEs 410 are described below in conjunction with FIG. 5.
[0081] In the embodiments of FIG. 4, the PEs 410 are
arranged into columns 405 (individually referred to as
“column 405” or “PE column 405”). The input and weights
of the layer may be distributed to the PEs 410 based on the
columns 405. Each column 405 has a column buffer 420.
The column buffer 420 stores data provided to the PEs 410
in the column 405 for a short amount of time. The column
buffer 420 may also store data output by the last PE 410 in
the column 405. The output of the last PE 410 may be a sum
of'the MAC operations of all the PEs 410 in the column 405,
which is a column-level internal partial sum of the PE array
400. In other embodiments, input and weights may be
distributed to the PEs 410 based on rows in the PE array 400.
The PE array 400 may include row buffers in lieu of column
buffers 420. A row buffer may store input signals of the PEs
in the corresponding row and may also store a row-level
internal partial sum of the PE array 400.

[0082] As shown in FIG. 4, each column buffer 420 is
associated with a load 430 and a drain 440. The data
provided to the column 405 is transmitted to the column
buffer 420 through the load 430, e.g., through upper memory
hierarchies, e.g., the memory 210 in FIG. 2. The data
generated by the column 405 is extracted from the column
buffers 420 through the drain 440. In some embodiments,
data extracted from a column buffer 420 is sent to upper
memory hierarchies, e.g., the memory 210 in FIG. 2,
through the drain operation. In some embodiments, the drain
operation does not start until all the PEs 410 in the column
405 has finished their MAC operations. In some embodi-
ments, the load 430 or drain 440 may be controlled by the
DMA engine 220 in FIG. 2.

[0083] FIG. 5 is a block diagram of a PE 410, in accor-
dance with various embodiments. The PE 410 in FIG. 4
includes an input register file 540, a weight register file 550,
an output register file 560, and a MAC unit 570. In other
embodiments, the PE 410 may include fewer, more, or
different components. For instance, the PE 410 may include
multiple MAC units 570.

[0084] The input register file 540 temporarily stores input
signals (e.g., contexts) received by the PE 410. The input
feature data may include input feature data and output
signals from other PEs 510. The weight register file 550
temporarily stores weights received by the PE 410. The
output register file 560 temporarily stores output signals
generated by the PE 410. For purpose of illustration and
simplicity, the PE 410 in FIG. 5B includes one input register

US 2023/0017662 Al

file 540, one weight register file 550, one output register file
560. In other embodiments, a PE 410 may include multiple
register files for each type of data. In some embodiments, the
input register file 540, weight register file 550, and output
register file 560 are part of the memory 240.

[0085] The MAC unit 570 performs MAC operations on
data in the input register file 540 and weight register file 550.
The MAC unit 570 includes a multiply unit 580 and an
accumulate unit 590. The multiply unit 580 performs mul-
tiply operations on input feature data in the input register file
540 and weights in the weight register file 550. The amount
of time needed by the multiply unit 580 for a multiple
operation depends on the sparsity level of the weights used
in the multiple operation. If the weights are denser (i.c., the
sparsity level is lower), the multiply unit 580 needs more
time to perform the multiple operation. The accumulate unit
590 performs accumulate operations on the output of the
multiply unit 580 and outputs signals from other PEs. The
output of the accumulate unit 590 is the output signal of the
PE 410. More details regarding MAC operations in PE are
described below in conjunction with FIGS. 6 and 7.
[0086] Example Convolution

[0087] FIG. 6 illustrates an example convolution, in accor-
dance with various embodiments. The convolution may be a
convolution in a convolutional layer of a DNN, e.g., a
convolutional layer 110 in FIG. 1. The convolution can be
executed on an input tensor 610 and a weight tensor 620. In
some embodiments, the convolution is performed by a PE
array, such as the PE array 230 in FIG. 2 or the PE array 400
in FIG. 4.

[0088] In the embodiments of FIG. 6, the input tensor 610
is a 3D matrix in which input elements are arranged. For
purpose of simplicity and illustration, the input tensor 610
includes C,,=3 input channels. Each input channel includes
a 7x7 2D matrix. The input tensor 610 has a spatial size of
7x7x3. The weight tensor 620 includes N filters 625A-N
(collectively referred to as “filters 625 or “filter 625”). A
filter 625 has a spatial size of 3x3x3, i.e., the filter 625
includes 3 convolutional kernels with a spatial size of 3x3.
The number of channels in a filter 625 may equal the number
of input channels in the input tensor 610. The spatial size of
the convolutional kernels (i.e., Fx*Fy) is smaller than the
corresponding spatial size of the 2D matrix in the input
tensor 610.

[0089] In the convolution, each filter 625 slides across the
input tensor 610 and generates a 2D matrix for an output
channel in the output tensor 630. In the embodiments of FIG.
6, the 2-D matrix has a spatial size of 5x5. As there are N
filters 625, the number of output channels C_,, equals N. The
result of the convolution is a 3D matrix having a spatial size
of 5x5xN. The weight tensor 620 may be represented as one
3D matrix, an example of which is shown in FIG. 7.
[0090] Example Weight Layout Rearrangement

[0091] FIG. 7A illustrates an example weight tensor 700,
in accordance with various embodiments. FIG. 7B illustrates
virtual banks 720 generated from the weight tensor 700, in
accordance with various embodiments. The virtual banks
710 can be individually referred to as “virtual bank 710.”
The weight tenor 700 may be an embodiment of the weight
tensor 620 in FIG. 6. The weight tensor 700 includes weights
(e.g., all the weights) needed for a convolutional operation
on an input tensor by a PE array, e.g., the PE array 230 in
FIG. 2 or the PE array 400 in FIG. 4, for producing an output
tensor.

Jan. 19, 2023

[0092] Asshown in FIG. 7A, the weight tensor 700 is a 3D
matrix. The weight tensor 700 has three dimensions. The
first dimension C,, is the number of input channels in the
input tensor. The second dimension F is the spatial size of a
kernel of the convolution. The third dimension C_,, is the
number of output channels in the output channel. For
purpose of simplicity and illustration, the weight tensor 700
has the same spatial size as the weight tensor 620 in FIG. 6,
so tC,,,=3, F=9, and C_,=N.

out

[0093] The weights in the weight tensor 700 are to be fed
into the PE array for the convolution. Before the weights are
sent to the PE array, the layout of the weight tensor 700 is
changed in a way for optimizing performance and efficiency
of'the PE array. The change of the layout starts with partition
of the weight tensor into the virtual banks 710. As shown in
FIG. 7B, the weight tensor 700 is divided in the C_,
dimension. Each virtual bank 710 is a portion of the weight
tensor 700 and includes a subset of the output channels in the
weight tensor 700. The first dimension (row length) and the
second dimension (column length) of each virtual bank 710
is the same as the first dimension and the second dimension,
respectively, of the weight tensor 700. The third dimension
of each virtual bank 710 is denoted as K, in FIG. 7. As
there are 8 virtual banks 710 in total, K, ,=C,_,, /8.

[0094] For purpose of simplicity and illustration, the
weight tensor 700 is divided into eight virtual banks 710 in
FIG. 7B. In other embodiments, the weight tensor 700 can
be divided into a different number of virtual banks 710. The
number of virtual banks 710 of the weight tensor 700 may
be determined based on the number of activated PE columns
in the PE array during the convolution. Each virtual bank
710 may be provided to a different PE column and used by
one or more PEs in the PE column for MAC operations.
Also, the rearrangement of the layout of the weight tensor
700 is performed at a virtual bank level. For instance, every
individual virtual bank is rearranged to form a linear data
structure. As the weight tensor 700 has 8 virtual banks 710,
8 linear data structures will be formed and fed into the
corresponding PE columns. Certain aspects of rearranging
weight layout are described below in conjunction with
FIGS. 8-10.

[0095] FIG. 8 illustrates partitioning a virtual bank 800
into virtual sub-banks 810A-D, in accordance with various
embodiments. The virtual bank 800 may be a virtual bank
710 in FIG. 7. In FIG. 8, the virtual bank 800 is divided into
4 virtual sub-banks 810A-D (collectively referred to as
“virtual sub-banks 810” or “virtual sub-bank 810”), e.g.,
based on a partition factor p=4. In other embodiments, the
virtual bank 800 can be divided into a different number of
virtual sub-banks. In some embodiments, the number of
virtual sub-banks in a virtual bank 800 is determined based
on the number of MAC lanes associated with a PE column
to which the virtual bank 800 is to be transmitted. In an
example where there are four MAC lanes, the virtual bank
800 can be divided into four virtual sub-banks.

[0096] As shown in FIG. 8, the virtual bank 800 is divided
in the K, dimension. Each virtual sub-bank 810 is a portion
of the virtual bank 800 and includes a subset of the output
channels in the virtual bank 800. The first dimension (row
length) and the second dimension (column length) of each
virtual sub-bank 810 is the same as the first dimension and
the second dimension, respectively, of the virtual bank 800.

US 2023/0017662 Al

The third dimension of each virtual sub-bank 810 is denoted
as Ky in FIG. 8. As there are 4 virtual sub-banks 810 in
total, K=K, z/4.

[0097] Data blocks are identified in each virtual sub-bank
810. For purpose of simplicity and illustration, FIG. 8 shows
data blocks in the first row of each virtual sub-bank 810. In
embodiments where the spatial size of the convolutional
kernel is 1x1, a virtual sub-bank 810 has one row. In other
embodiments, a virtual sub-bank 810 has multiple rows and
data blocks can be identified from each of the rows. FIG. 8
shows four data blocks 820A (individually referred to as
“data block 820A”) in the virtual sub-bank 810A, four data
blocks 820B (individually referred to as “data block 820B”)
in the virtual sub-bank 810B, four data blocks 820C (indi-
vidually referred to as “data block 820C”) in the virtual
sub-bank 810C, and four data blocks 820D (individually
referred to as “data block 820A”) in the virtual sub-bank
810D. In some embodiments, the data blocks have a prede-
termined storage size. An example storage size of the data
blocks is the size of a memory bank for storing an individual
data block. The bank size may be 32 bytes.

[0098] Each data block can include a predetermined num-
ber of input channels C,, 5. C,, pz may be an integral
divisor of the total number of input channels C,, in the input
tensor. The number of data blocks in an individual row in
each virtual sub-bank 810 would be C,/C,, 5. In an
example where C,, is 64 and C,, p5 is 16 (i.e., each data
block includes 16 input channels), there are 4 data blocks in
an individual row for an individual output channel of the
virtual sub-bank 810. Each data block may have a spatial
size of C,, p,px1x1. In an embodiment where a virtual
sub-bank 810 has F rows and K ,; output channels, the total
number of data blocks in virtual sub-bank 810 is (C,,/C,,
p5)*F*K o The total number of data blocks in the virtual
bank 800 is (C,/C,, pp)*F*K,5 All the (C,/C,, pg)
#*F*K ., data blocks will be interleaved to form a linear data
structure.

[0099] FIG. 9 illustrates an example linear data structure
900, in accordance with various embodiments. The linear
data structure 900 is converted from the virtual bank 800 in
FIG. 8 through rearranging the layout of weight data in the
virtual bank 800. The linear data structure 900 includes data
blocks 820A, 820B, 820C, and 820D that are arranged
linearly in a sequence. The data blocks 820A, 820B, 820C,
and 820D are linked to one another. For purpose of sim-
plicity of illustration, FIG. 9 shows the data blocks 820A,
820B, 820C, and 820D in the first row for the first output
channel in each of the virtual sub-banks 810. The linear data
structure 900 can include additional data blocks from other
rows and other output channels of the virtual sub-banks 810.

[0100] The linear data structure 900 can be formed by
interleaving the data blocks 820A, 820B, 820C, and 820D.
The formation of the linear data structure 900 may be based
on an interleaving factor. The interleaving factor specifies
the number of output channels to be interleaved at a data
block level to finish a given column, i.e., a given input
channel. For purpose of simplicity and illustration, the
interleaving factor in FIG. 9 is 2, i.e., two of the four virtual
sub-banks 810 are interleaved to finish a given input chan-
nel. As there are four virtual sub-banks 810, the interleaving
process starts with interleaving the data blocks 820A from
the virtual sub-bank 810A with the data blocks 820B from
the virtual sub-bank 810B. As shown in FIG. 9, the data
blocks 820A alternate with the data blocks 820B. After the

Jan. 19, 2023

interleaving of the data blocks 820A and the data blocks
820B is done, the data blocks 820C from the virtual sub-
bank 810C are interleaved with the data blocks 820D from
the virtual sub-bank 810D, which leads to that the data
blocks 820C alternate with the data blocks 820D.

[0101] In some embodiments (e.g., embodiments where
the convolutional filter is a 1x1 filter), the linear data
structure 900 ends with the data block 820D. In other
embodiments (e.g., embodiments where the convolutional
filter is a larger filter), the linear data structure 900 includes
other data blocks, which are illustrated by the dashed shape
in FIG. 9. For instance, after the interleaving of all these 16
data blocks 820A, 820B, 820C, and 820D are finished, the
data blocks corresponding to the next input channel within
the virtual sub-banks 810 can be interleaved and added to the
linear data structure 900 till all the data blocks in the four
virtual sub-banks 810 are included in the linear data struc-
ture 900. The linear data structure 900 can be fed into a PE
column, e.g., be written into register files in the activated
PEs in the PE column.

[0102] FIG. 10 illustrate formation of linear data struc-
tures 1030 and 1040 through parallel data processing, in
accordance with various embodiments. The linear data
structures 1030 and 1040 are formed by parallelly process-
ing virtual sub-banks in virtual banks. For purpose of
simplicity and illustration, FIG. 10 shows two virtual banks
1010 and 1020, which can be produced by partitioning a
weight tensor. The weight tensor may include additional
virtual banks. The virtual bank 1010 include four virtual
sub-banks. In the embodiments of FIG. 10, the virtual
sub-banks are converted to linear data structures 1015A-
1015D (collectively referred to as “linear data structures
1015” or “linear data structure 1015”). Each linear data
structure 1015 corresponds to a different virtual sub-bank.
Similarly, the virtual bank 1020 include four virtual sub-
banks that are converted to linear data structures 1025A-
1025D (collectively referred to as “linear data structures
1025” or “linear data structure 1025”). The conversion of the
virtual sub-banks to the linear data structures 1015 and 1025
can be done in parallel to expedite the formation of the linear
data structures 1030 and 1040.

[0103] Taking the linear data structures 1015 for example,
each of the linear data structures 1015 can be formed
through reshuffling data blocks in the corresponding virtual
sub-bank. Taking the linear data structure 1015A for
example, it includes a plurality of data blocks 1017A (indi-
vidually referred to as “data block 1017A”) that are arranged
linearly. In some embodiments, the linear data structure
1015A may start with the data blocks 1017A from the first
row and the first output channel in the 3D structure of the
virtual sub-bank, followed by the data blocks 1017A from
the second row and the first output channel in the 3D
structure of the virtual sub-bank, till all the rows for the first
output channel is processed. The last data block for the first
output channel would be followed by the data blocks 1017A
from all the rows of the second output channel in the 3D
structure of the virtual sub-bank. This continues till all the
output channels in the virtual sub-bank are processed.
[0104] In an example where the virtual sub-bank has C,,
columns, F rows, and K, output channels, and each data
block 1017A has C,,, ,,5 input channels, the first (C,,/C,,, ,5)
data blocks 1017A in the linear data structure 1015A are the
data blocks corresponding to the first row and the first output
channel. The first (C,/C,, ;5)*F data blocks 1017A in the

US 2023/0017662 Al

linear data structure are the data blocks corresponding to the
first output channel. The next (C,,/C,, ,5)*F data blocks
1017 A in the linear data structure 1015A are the data blocks
corresponding to the second output channel. The total num-
ber of data blocks 1017A in the linear data structure 1015A
i8 (C,/Cyrs_pa)* F*Kysp-

[0105] The other virtual sub-banks in the virtual bank
1010 are also converted to linear data structures 1015B-
1015D, which are shown in FIG. 10. The number of data
blocks in each linear data structure 1015 may be (C,,/C,,
pB)*F*K ., Similarly, the virtual sub-banks in the virtual
bank 1020 are also converted to the linear data structures
1025. The number of data blocks in each linear data structure
1025 may also be (C,,/C,, pz)*F*Kpgs.

[0106] The linear data structure 1030 for the virtual bank
1010 can be formed by interleaving data blocks in the linear
data structures 1015. In the embodiments of FIG. 10, the
interleaving factor is 4, so the first group of data blocks in
the linear data structure 1030 includes the first data block
1017 A in the linear data structure 1015A, the first data block
10178 in the linear data structure 1015B, the first data block
1017C in the linear data structure 1015C, the first data block
1017D in the linear data structure 1015D, which are
arranged sequentially. The linear data structure 1030 can
include additional data blocks, which are represented by the
dashed box in FIG. 10.

[0107] Similarly, the linear data structure 1040 for the
virtual bank 1020 can be formed by interleaving data blocks
in the linear data structures 1025. In the embodiments of
FIG. 10, the interleaving factor is 4, so the first group of data
blocks in the linear data structure 1030 includes the first data
block 1027 A in the linear data structure 1025A, the first data
block 10278 in the linear data structure 1025B, the first data
block 1027C in the linear data structure 1025C, the first data
block 1027D in the linear data structure 1025D, which are
arranged sequentially. The linear data structure 1030 can
include additional data blocks, which are represented by the
dashed box in FIG. 10.

[0108] As the virtual sub-banks in the virtual banks 1010
and 1020 are processed in parallel to form the linear data
structures 1015 and 1025, the efficiency in forming the linear
data structures 1030 and 1040 can be improved. In embodi-
ments where the weight tensor includes more virtual banks
or each virtual bank includes more virtual sub-banks, the
DMA engine 220 may support parallel processing of more
virtual sub-banks.

[0109] Example Method of Deep Learning

[0110] FIG. 11 is a flowchart showing a method 1100 of
deep learning, in accordance with various embodiments. The
method 1100 may be performed by the DMA engine 220 in
FIG. 2. Although the method 1100 is described with refer-
ence to the flowchart illustrated in FIG. 11, many other
methods for deep learning may alternatively be used. For
example, the order of execution of the steps in FIG. 11 may
be changed. As another example, some of the steps may be
changed, eliminated, or combined.

[0111] The DMA engine 220 read 1110 a weight tensor
from a first memory. The weight tensor comprises weights in
one or more convolutional filters. The weights are arranged
in a 3D matrix. The weights are to be used by an array of PEs
to execute a convolution. The 3D matrix has a first dimen-
sion determined based on a number of input channels in the
input tensor, a second dimension determined based on a size
of the one or more convolutional filters, and a third dimen-

Jan. 19, 2023

sion determined based on a number of output channels in the
output tensor. The array of PEs may be the PE array 230 in
FIG. 2 or the PE array 400 in FIG. 4.

[0112] The DMA engine 220 partitions 1120 the weight
tensor into a plurality of virtual banks based on an arrange-
ment of the PEs in the array. In some embodiments, the array
of PEs comprises PEs arranged in columns. Each respective
virtual bank of the plurality of virtual banks may correspond
to a different one of the columns. The array of PEs consti-
tutes at least part of a convolutional layer in a DNN and is
to perform the convolution on the weights and an input
tensor to generate an output tensor. The DMA engine 220
may partition the weight tensor based on the number of
active PE columns in the PE array. An active PE column
includes one or more PEs that perform MAC operations for
the convolution. In some embodiments, the DMA engine
220 partitions the weight tensor in the output dimension of
the weight tensor. In some embodiments, the DMA engine
220 partitions the weight tensor into P number of virtual
banks, and P is an integer that is not larger than the total
number of PE columns in the array.

[0113] The DMA engine 220 partitions 1130 a virtual bank
of the plurality of virtual banks into a plurality of virtual
sub-banks. In some embodiments, the DMA engine 220
partitions the virtual bank in the output dimension of the
virtual bank. A dimension of a virtual sub-bank may equal
an integral divisor of the number of output channels in the
output tensor. The DM A engine 220 may partition the virtual
bank based on the number of active PEs in the PE column
corresponding the virtual bank. In some embodiments, the
DMA engine 220 partitions the virtual bank into p number
of virtual sub-banks, and p is an integer that is not larger than
4.

[0114] The DMA engine 220 identifies 1140 data blocks
from different ones of the plurality of virtual sub-banks. A
data block has a dimension that equals a predetermined
number of input channels. In some embodiments, the data
blocks have a predetermined size, e.g., a size of a memory
bank. In some embodiments, before identifying data blocks
from different ones of the plurality of virtual sub-banks, the
DMA engine 220 may remove weights having zero values
from at least some of the plurality of virtual sub-banks to
compress virtual sub-banks. The compression of virtual
sub-banks can reduce the sparsity in the virtual sub-banks
and increase efficiency in the execution of the convolution
by the array of PEs. The DMA engine 220 may also generate
a sparsity bitmap for a virtual sub-bank that is compressed.
[0115] In some embodiments, the DMA engine 220 may
also transpose at least some of the plurality of virtual
sub-banks to get the virtual sub-banks ready for interleaving.
For instance, the DMA engine 220 may transpose rows in a
virtual sub-bank into columns in the virtual sub-bank. The
transposing process may ensure that the length of rows in the
virtual sub-bank correspond to the number of input channels
in the input tensor, and the length of columns in the virtual
sub-bank correspond to the size of the convolutional kernel.
[0116] The DMA engine 220 forms 1150 a linear data
structure by interleaving the data blocks. The linear data
structure includes the data blocks arranged in a linear
sequence. In some embodiments, the data blocks comprise
first data blocks from a first virtual sub-bank of the plurality
of virtual sub-banks and second data blocks from a second
virtual sub-bank of the plurality of virtual sub-banks. The
first data blocks alternate with the second data blocks in the

US 2023/0017662 Al

linear data structure. Two adjacent data blocks in the linear
data structure come from different virtual sub-banks. The
interleaving is done at a data block level. In embodiments
where the data blocks have a size of a memory bank, the
interleaving is done at a bank size level. In embodiments
where any of the virtual sub-banks are compressed, the
DMA engine 220 may also interleave the bitmaps of the
virtual sub-banks. The interleaving of the bitmaps may be
done at a level of a predetermined number of bytes.
[0117] The DMA engine 220 writes 1160 the linear data
structure into a second memory associated with a part of the
array. The part of the array may be a PE column in the array,
e.g., a PE column that is activated in the convolution. The
second memory may be local to the array. In some embodi-
ments, the second memory is inside the array, versus the first
memory is outside the array. The second memory may
include one or more register files. In an example, the second
memory includes a SRAM, and the first memory includes a
DRAM.

[0118] Example Deep Learning Environment

[0119] FIG. 12 illustrates a deep learning environment
1200, in accordance with various embodiments. The deep
learning environment 1200 includes a deep learning server
1210 and a plurality of client devices 1220 (individually
referred to as client device 1220). The deep learning server
1210 is connected to the client devices 1220 through a
network 1230. In other embodiments, the deep learning
environment 1200 may include fewer, more, or different
components.

[0120] The deep learning server 1210 trains deep learning
models using neural networks. A neural network is struc-
tured like the human brain and consists of artificial neurons,
also known as nodes. These nodes are stacked next to each
other in 3 types of layers: input layer, hidden layer(s), and
output layer. Data provides each node with information in
the form of inputs. The node multiplies the inputs with
random weights, calculates them, and adds a bias. Finally,
nonlinear functions, also known as activation functions, are
applied to determine which neuron to fire. The deep learning
server 1210 can use various types of neural networks, such
as DNN, recurrent neural network (RNN), generative adver-
sarial network (GAN), long short-term memory network
(LSTMN), and so on. During the process of training the deep
learning models, the neural networks use unknown elements
in the input distribution to extract features, group objects,
and discover useful data patterns. The deep learning models
can be used to solve various problems, e.g., making predic-
tions, classifying images, and so on. The deep learning
server 1210 may build deep learning models specific to
particular types of problems that need to be solved. A deep
learning model is trained to receive an input and outputs the
solution to the particular problem.

[0121] In FIG. 12, the deep learning server 1210 includes
a DNN system 1240, a database 1250, and a distributer
1260. The DNN system 1240 trains DNNs. The DNNs can
be used to process images, e.g., images captured by autono-
mous vehicles, medical devices, satellites, and so on. In an
embodiment, a DNN receives an input image and outputs
classifications of objects in the input image. An example of
the DNNGs is the DNN 100 described above in conjunction
with FIG. 1. In some embodiments, the DNN system 1240
trains DNNs through knowledge distillation, e.g., dense-
connection based knowledge distillation. The trained DNNs
may be used on low memory systems, like mobile phones,

Jan. 19, 2023

IOT edge devices, and so on. An embodiment of the DNN
system 1240 is the DNN accelerator 200 described above in
conjunction with FIG. 2.

[0122] The database 1250 stores data received, used, gen-
erated, or otherwise associated with the deep learning server
1210. For example, the database 1250 stores a training
dataset that the DNN system 1240 uses to train DNNs. In an
embodiment, the training dataset is an image gallery that can
be used to train a DNN for classifying images. The training
dataset may include data received from the client devices
1220. As another example, the database 1250 stores hyper-
parameters of the neural networks built by the deep learning
server 1210.

[0123] The distributer 1260 distributes deep learning mod-
els generated by the deep learning server 1210 to the client
devices 1220. In some embodiments, the distributer 1260
receives a request for a DNN from a client device 1220
through the network 1230. The request may include a
description of a problem that the client device 1220 needs to
solve. The request may also include information of the client
device 1220, such as information describing available com-
puting resource on the client device. The information
describing available computing resource on the client device
1220 can be information indicating network bandwidth,
information indicating available memory size, information
indicating processing power of the client device 1220, and
so on. In an embodiment, the distributer may instruct the
DNN system 1240 to generate a DNN in accordance with the
request. The DNN system 1240 may generate a DNN based
on the information in the request. For instance, the DNN
system 1240 can determine the structure of the DNN and/or
train the DNN in accordance with the request.

[0124] In another embodiment, the distributer 1260 may
select the DNN from a group of pre-existing DNNs based on
the request. The distributer 1260 may select a DNN for a
particular client device 1220 based on the size of the DNN
and available resources of the client device 1220. In embodi-
ments where the distributer 1260 determines that the client
device 1220 has limited memory or processing power, the
distributer 1260 may select a compressed DNN for the client
device 1220, as opposed to an uncompressed DNN that has
a larger size. The distributer 1260 then transmits the DNN
generated or selected for the client device 1220 to the client
device 1220.

[0125] In some embodiments, the distributer 1260 may
receive feedback from the client device 1220. For example,
the distributer 1260 receives new training data from the
client device 1220 and may send the new training data to the
DNN system 1240 for further training the DNN. As another
example, the feedback includes an update of the available
computer resource on the client device 1220. The distributer
1260 may send a different DNN to the client device 1220
based on the update. For instance, after receiving the feed-
back indicating that the computing resources of the client
device 1220 have been reduced, the distributer 1260 sends
a DNN of a smaller size to the client device 1220.

[0126] The client devices 1220 receive DNNs from the
distributer 1260 and applies the DNNs to perform machine
learning tasks, e.g., to solve problems or answer questions.
In various embodiments, the client devices 1220 input
images into the DNNs and uses the output of the DNNs for
various applications, e.g., visual reconstruction, augmented
reality, robot localization and navigation, medical diagnosis,
weather prediction, and so on. A client device 1220 may be

US 2023/0017662 Al

one or more computing devices capable of receiving user
input as well as transmitting and/or receiving data via the
network 1230. In one embodiment, a client device 1220 is a
conventional computer system, such as a desktop or a laptop
computer. Alternatively, a client device 1220 may be a
device having computer functionality, such as a personal
digital assistant (PDA), a mobile telephone, a smartphone,
an autonomous vehicle, or another suitable device. A client
device 1220 is configured to communicate via the network
1230. In one embodiment, a client device 1220 executes an
application allowing a user of the client device 1220 to
interact with the deep learning server 1210 (e.g., the dis-
tributer 1260 of the deep learning server 1210). The client
device 1220 may request DNNs or send feedback to the
distributer 1260 through the application. For example, a
client device 1220 executes a browser application to enable
interaction between the client device 1220 and the deep
learning server 1210 via the network 1230. In another
embodiment, a client device 1220 interacts with the deep
learning server 1210 through an application programming
interface (API) running on a native operating system of the
client device 1220, such as IOS® or ANDROID™,

[0127] In an embodiment, a client device 1220 is an
integrated computing device that operates as a standalone
network-enabled device. For example, the client device
1220 includes display, speakers, microphone, camera, and
input device. In another embodiment, a client device 1220 is
a computing device for coupling to an external media device
such as a television or other external display and/or audio
output system. In this embodiment, the client device 1220
may couple to the external media device via a wireless
interface or wired interface (e.g., an HDMI (High-Definition
Multimedia Interface) cable) and may utilize various func-
tions of the external media device such as its display,
speakers, microphone, camera, and input devices. Here, the
client device 1220 may be configured to be compatible with
a generic external media device that does not have special-
ized software, firmware, or hardware specifically for inter-
acting with the client device 1220.

[0128] The network 1230 supports communications
between the deep learning server 1210 and client devices
1220. The network 1230 may comprise any combination of
local area and/or wide area networks, using both wired
and/or wireless communication systems. In one embodi-
ment, the network 1230 may use standard communications
technologies and/or protocols. For example, the network
1230 may include communication links using technologies
such as Ethernet, 12010.11, worldwide interoperability for
microwave access (WiMAX), 3G, 4G, code division mul-
tiple access (CDMA), digital subscriber line (DSL), etc.
Examples of networking protocols used for communicating
via the network 1230 may include multiprotocol label
switching (MPLS), transmission control protocol/Internet
protocol (TCP/IP), hypertext transport protocol (HTTP),
simple mail transfer protocol (SMTP), and file transfer
protocol (FTP). Data exchanged over the network 1230 may
be represented using any suitable format, such as hypertext
markup language (HTML) or extensible markup language
(XML). In some embodiments, all or some of the commu-
nication links of the network 1230 may be encrypted using
any suitable technique or techniques.

[0129] Example DNN System

[0130] FIG. 13 is a block diagram of an example DNN
system 1300, in accordance with various embodiments. The

Jan. 19, 2023

whole DNN system 1300 or a part of the DNN system 1300
may be implemented in the computing device 1400 in FIG.
14. The DNN system 1300 trains DNNs for various tasks,
such as image classification, learning relationships between
biological cells (e.g., DNA, proteins, etc.), control behaviors
for devices (e.g., robots, machines, etc.), and so on. The
DNN system 1300 includes an interface module 1310, a
training module 1320, a validation module 1330, an infer-
ence module 1340, and a memory 1350. In other embodi-
ments, alternative configurations, different or additional
components may be included in the DNN system 1300.
Further, functionality attributed to a component of the DNN
system 1300 may be accomplished by a different component
included in the DNN system 1300 or a different system. The
DNN system 1300 or a component of the DNN system 1300
(e.g., the training module 1320 or inference module 1340)
may include the computing device 1400.

[0131] The interface module 1310 facilitates communica-
tions of the DNN system 1300 with other systems. For
example, the interface module 1310 establishes communi-
cations between the DNN system 1300 with an external
database to receive data that can be used to train DNNs or
input into DNNs to perform tasks. As another example, the
interface module 1310 supports the DNN system 1300 to
distribute DNNs to other systems, e.g., computing devices
configured to apply DNNs to perform tasks.

[0132] The training module 1320 trains DNNs by using a
training dataset. The training module 1320 forms the train-
ing dataset. In an embodiment where the training module
1320 trains an DNN to recognize objects in images, the
training dataset includes training images and training labels.
The training labels describe ground-truth classifications of
objects in the training images. In some embodiments, each
label in the training dataset corresponds to an object in a
training image. In some embodiments, a part of the training
dataset may be used to initially train the DNN, and the rest
of the training dataset may be held back as a validation
subset used by the validation module 1330 to validate
performance of a trained DNN. The portion of the training
dataset not including the tuning subset and the validation
subset may be used to train the DNN.

[0133] The training module 1320 also determines hyper-
parameters for training the DNN. Hyperparameters are vari-
ables specifying the DNN training process. Hyperparam-
eters are different from parameters inside the DNN (e.g.,
weights of filters). In some embodiments, hyperparameters
include variables determining the architecture of the DNN,
such as number of hidden layers, etc. Hyperparameters also
include variables which determine how the DNN is trained,
such as batch size, number of epochs, etc. A batch size
defines the number of training samples to work through
before updating the parameters of the DNN. The batch size
is the same as or smaller than the number of samples in the
training dataset. The training dataset can be divided into one
or more batches. The number of epochs defines how many
times the entire training dataset is passed forward and
backwards through the entire network. The number of
epochs defines the number of times that the deep learning
algorithm works through the entire training dataset. One
epoch means that each training sample in the training dataset
has had an opportunity to update the parameters inside the
DNN. An epoch may include one or more batches. The
number of epochs may be 13, 130, 500, 1300, or even larger.

US 2023/0017662 Al

[0134] The training module 1320 defines the architecture
of the DNN, e.g., based on some of the hyperparameters.
The architecture of the DNN includes an input layer, an
output layer, and a plurality of hidden layers. The input layer
of an DNN may include tensors (e.g., a multidimensional
array) specifying attributes of the input image, such as the
height of the input image, the width of the input image, and
the depth of the input image (e.g., the number of bits
specifying the color of a pixel in the input image). The
output layer includes labels of objects in the input layer. The
hidden layers are layers between the input layer and output
layer. The hidden layers include one or more convolutional
layers and one or more other types of layers, such as pooling
layers, fully connected layers, normalization layers, softmax
or logistic layers, and so on. The convolutional layers of the
DNN abstract the input image to a feature map that is
represented by a tensor specifying the feature map height,
the feature map width, and the feature map channels (e.g.,
red, green, blue images include 3 channels). A pooling layer
is used to reduce the spatial volume of input image after
convolution. It is used between 2 convolution layers. A fully
connected layer involves weights, biases, and neurons. It
connects neurons in one layer to neurons in another layer. It
is used to classify images between different category by
training.

[0135] In the process of defining the architecture of the
DNN, the training module 1320 also adds an activation
function to a hidden layer or the output layer. An activation
function of a layer transforms the weighted sum of the input
of the layer to an output of the layer. The activation function
may be, for example, a rectified linear unit activation
function, a tangent activation function, or other types of
activation functions.

[0136] After the training module 1320 defines the archi-
tecture of the DNN, the training module 1320 inputs a
training dataset into the DNN. The training dataset includes
a plurality of training samples. An example of a training
sample includes an object in an image and a ground-truth
label of the object. The training module 1320 modifies the
parameters inside the DNN (“internal parameters of the
DNN”) to minimize the error between labels of the training
objects that are generated by the DNN and the ground-truth
labels of the objects. The internal parameters include
weights of filters in the convolutional layers of the DNN. In
some embodiments, the training module 1320 uses a cost
function to minimize the error.

[0137] The training module 1320 may train the DNN for
a predetermined number of epochs. The number of epochs is
a hyperparameter that defines the number of times that the
deep learning algorithm will work through the entire training
dataset. One epoch means that each sample in the training
dataset has had an opportunity to update internal parameters
of the DNN. After the training module 1320 finishes the
predetermined number of epochs, the training module 1320
may stop updating the parameters in the DNN. The DNN
having the updated parameters is referred to as a trained
DNN.

[0138] The validation module 1330 verifies accuracy of
trained DNNs. In some embodiments, the validation module
1330 inputs samples in a validation dataset into a trained
DNN and uses the outputs of the DNN to determine the
model accuracy. In some embodiments, a validation dataset
may be formed of some or all the samples in the training
dataset. Additionally or alternatively, the validation dataset

Jan. 19, 2023

includes additional samples, other than those in the training
sets. In some embodiments, the validation module 1330
determines may determine an accuracy score measuring the
precision, recall, or a combination of precision and recall of
the DNN. The validation module 1330 may use the follow-
ing metrics to determine the accuracy score: Precision=TP/
(TP+FP) and Recall=TP/(TP+FN), where precision may be
how many the reference classification model correctly pre-
dicted (TP or true positives) out of the total it predicted
(TP+FP or false positives), and recall may be how many the
reference classification model correctly predicted (TP) out
of the total number of objects that did have the property in
question (TP+FN or false negatives). The F-score
(F-score=2*PR/(P+R)) unifies precision and recall into a
single measure.

[0139] The validation module 1330 may compare the
accuracy score with a threshold score. In an example where
the validation module 1330 determines that the accuracy
score of the augmented model is lower than the threshold
score, the validation module 1330 instructs the training
module 1320 to re-train the DNN. In one embodiment, the
training module 1320 may iteratively re-train the DNN until
the occurrence of a stopping condition, such as the accuracy
measurement indication that the DNN may be sufficiently
accurate, or a number of training rounds having taken place.
[0140] The inference module 1340 applies the trained or
validated DNN to perform tasks. For instance, the inference
module 1340 inputs images into the DNN. The DNN outputs
classifications of objects in the images. As an example, the
DNN may be provisioned in a security setting to detect
malicious or hazardous objects in images captured by secu-
rity cameras. As another example, the DNN may be provi-
sioned to detect objects (e.g., road signs, hazards, humans,
pets, etc.) in images captured by cameras of an autonomous
vehicle. The input to the DNN may be formatted according
to a predefined input structure mirroring the way that the
training dataset was provided to the DNN. The DNN may
generate an output structure which may be, for example, a
classification of the image, a listing of detected objects, a
boundary of detected objects, or the like. In some embodi-
ments, the inference module 1340 distributes the DNN to
other systems, e.g., computing devices in communication
with the DNN system 1300, for the other systems to apply
the DNN to perform the tasks.

[0141] The memory 1350 stores data received, generated,
used, or otherwise associated with the DNN system 1300.
For example, the memory 1350 stores the datasets used by
the training module 1320 and validation module 1330. The
memory 1350 may also store data generated by the training
module 1320 and validation module 1330, such as the
hyperparameters for training DNNs, internal parameters of
trained DNNs (e.g., values of tunable parameters of
FALUs), etc. In the embodiment of FIG. 13, the memory
1350 is a component of the DNN system 1300. In other
embodiments, the memory 1350 may be external to the
DNN system 1300 and communicate with the DNN system
1300 through a network.

[0142] Example Computing Device

[0143] FIG. 14 is a block diagram of an example comput-
ing device 1400, in accordance with various embodiments.
In some embodiments, the computing device 1400 can be
used as the DNN system 1300 in FIG. 13. A number of
components are illustrated in FIG. 14 as included in the
computing device 1400, but any one or more of these

US 2023/0017662 Al

components may be omitted or duplicated, as suitable for the
application. In some embodiments, some or all of the
components included in the computing device 1400 may be
attached to one or more motherboards. In some embodi-
ments, some or all of these components are fabricated onto
a single system on a chip (SoC) die. Additionally, in various
embodiments, the computing device 1400 may not include
one or more of the components illustrated in FIG. 14, but the
computing device 1400 may include interface circuitry for
coupling to the one or more components. For example, the
computing device 1400 may not include a display device
1406, but may include display device interface circuitry
(e.g., a connector and driver circuitry) to which a display
device 1406 may be coupled. In another set of examples, the
computing device 1400 may not include an audio input
device 1418 or an audio output device 1408, but may include
audio input or output device interface circuitry (e.g., con-
nectors and supporting circuitry) to which an audio input
device 1418 or audio output device 1408 may be coupled.

[0144] The computing device 1400 may include a pro-
cessing device 1402 (e.g., one or more processing devices).
The processing device 1402 processes electronic data from
registers and/or memory to transform that electronic data
into other electronic data that may be stored in registers
and/or memory. The computing device 1400 may include a
memory 1404, which may itself include one or more
memory devices such as volatile memory (e.g., DRAM),
nonvolatile memory (e.g., read-only memory (ROM)), high
bandwidth memory (HBM), flash memory, solid state
memory, and/or a hard drive. In some embodiments, the
memory 1404 may include memory that shares a die with the
processing device 1402. In some embodiments, the memory
1404 includes one or more non-transitory computer-readable
media storing instructions executable to perform operations
for deep learning, e.g., the method 1100 described above in
conjunction with FIG. 11 or some operations performed by
the DNN accelerator described above in conjunction with
FIG. 2 (e.g., operations performed by the DMA engine 220).
The instructions stored in the one or more non-transitory
computer-readable media may be executed by the process-
ing device 2402.

[0145] In some embodiments, the computing device 1400
may include a communication chip 1412 (e.g., one or more
communication chips). For example, the communication
chip 1412 may be configured for managing wireless com-
munications for the transfer of data to and from the com-
puting device 1400. The term “wireless” and its derivatives
may be used to describe circuits, devices, systems, methods,
techniques, communications channels, etc., that may com-
municate data through the use of modulated electromagnetic
radiation through a nonsolid medium. The term does not
imply that the associated devices do not contain any wires,
although in some embodiments they might not.

[0146] The communication chip 1412 may implement any
of'a number of wireless standards or protocols, including but
not limited to Institute for Electrical and Electronic Engi-
neers (IEEE) standards including Wi-Fi (IEEE 802.10 fam-
ily), IEEE 802.16 standards (e.g., IEEE 802.16-2005
Amendment), Long-Term Evolution (LTE) project along
with any amendments, updates, and/or revisions (e.g.,
advanced LTE project, ultramobile broadband (UMB) proj-
ect (also referred to as “3GPP2”), etc.). IEEE 802.16 com-
patible Broadband Wireless Access (BWA) networks are
generally referred to as WiMAX networks, an acronym that

Jan. 19, 2023

stands for worldwide interoperability for microwave access,
which is a certification mark for products that pass confor-
mity and interoperability tests for the IEEE 802.16 stan-
dards. The communication chip 1412 may operate in accor-
dance with a Global System for Mobile Communication
(GSM), General Packet Radio Service (GPRS), Universal
Mobile Telecommunications System (UMTS), High Speed
Packet Access (HSPA), Evolved HSPA (E-HSPA), or LTE
network. The communication chip 1412 may operate in
accordance with Enhanced Data for GSM Evolution
(EDGE), GSM EDGE Radio Access Network (GERAN),
Universal Terrestrial Radio Access Network (UTRAN), or
Evolved UTRAN (E-UTRAN). The communication chip
1412 may operate in accordance with CDMA, Time Divi-
sion Multiple Access (TDMA), Digital Enhanced Cordless
Telecommunications (DECT), Evolution-Data Optimized
(EV-DO), and derivatives thereof, as well as any other
wireless protocols that are designated as 3G, 4G, 5G, and
beyond. The communication chip 1412 may operate in
accordance with other wireless protocols in other embodi-
ments. The computing device 1400 may include an antenna
1422 to facilitate wireless communications and/or to receive
other wireless communications (such as AM or FM radio
transmissions).

[0147] In some embodiments, the communication chip
1412 may manage wired communications, such as electrical,
optical, or any other suitable communication protocols (e.g.,
the Ethernet). As noted above, the communication chip 1412
may include multiple communication chips. For instance, a
first communication chip 1412 may be dedicated to shorter-
range wireless communications such as Wi-Fi or Bluetooth,
and a second communication chip 1412 may be dedicated to
longer-range wireless communications such as global posi-
tioning system (GPS), EDGE, GPRS, CDMA, WiMAX,
LTE, EV-DO, or others. In some embodiments, a first
communication chip 1412 may be dedicated to wireless
communications, and a second communication chip 1412
may be dedicated to wired communications.

[0148] The computing device 1400 may include battery/
power circuitry 1414. The battery/power circuitry 1414 may
include one or more energy storage devices (e.g., batteries or
capacitors) and/or circuitry for coupling components of the
computing device 1400 to an energy source separate from
the computing device 1400 (e.g., AC line power).

[0149] The computing device 1400 may include a display
device 1406 (or corresponding interface circuitry, as dis-
cussed above). The display device 1406 may include any
visual indicators, such as a heads-up display, a computer
monitor, a projector, a touchscreen display, a liquid crystal
display (LCD), a light-emitting diode display, or a flat panel
display, for example.

[0150] The computing device 1400 may include an audio
output device 1408 (or corresponding interface circuitry, as
discussed above). The audio output device 1408 may include
any device that generates an audible indicator, such as
speakers, headsets, or earbuds, for example.

[0151] The computing device 1400 may include an audio
input device 1418 (or corresponding interface circuitry, as
discussed above). The audio input device 1418 may include
any device that generates a signal representative of a sound,
such as microphones, microphone arrays, or digital instru-
ments (e.g., instruments having a musical instrument digital
interface (MIDI) output).

US 2023/0017662 Al

[0152] The computing device 1400 may include a GPS
device 1416 (or corresponding interface circuitry, as dis-
cussed above). The GPS device 1416 may be in communi-
cation with a satellite-based system and may receive a
location of the computing device 1400, as known in the art.
[0153] The computing device 1400 may include an other
output device 1410 (or corresponding interface circuitry, as
discussed above). Examples of the other output device 1410
may include an audio codec, a video codec, a printer, a wired
or wireless transmitter for providing information to other
devices, or an additional storage device.

[0154] The computing device 1400 may include an other
input device 1420 (or corresponding interface circuitry, as
discussed above). Examples of the other input device 1420
may include an accelerometer, a gyroscope, a compass, an
image capture device, a keyboard, a cursor control device
such as a mouse, a stylus, a touchpad, a bar code reader, a
Quick Response (QR) code reader, any sensor, or a radio
frequency identification (register fileID) reader.

[0155] The computing device 1400 may have any desired
form factor, such as a handheld or mobile computer system
(e.g., a cell phone, a smart phone, a mobile internet device,
a music player, a tablet computer, a laptop computer, a
netbook computer, an ultrabook computer, a PDA, an ultra-
mobile personal computer, etc.), a desktop computer system,
a server or other networked computing component, a printer,
a scanner, a monitor, a set-top box, an entertainment control
unit, a vehicle control unit, a digital camera, a digital video
recorder, or a wearable computer system. In some embodi-
ments, the computing device 1400 may be any other elec-
tronic device that processes data.

SELECT EXAMPLES

[0156] The following paragraphs provide various
examples of the embodiments disclosed herein.

[0157] Example 1 provides a method of deep learning, the
method including reading a weight tensor from a first
memory, where the weight tensor includes weights in one or
more convolutional kernels, and the weights are arranged in
a three-dimensional matrix and are to be used by an array of
PEs to execute a convolution; partitioning the weight tensor
into a plurality of virtual banks based on an arrangement of
the PEs in the array; partitioning a virtual bank of the
plurality of virtual banks into a plurality of virtual sub-
banks; identifying data blocks from different ones of the
plurality of virtual sub-banks; forming a linear data structure
by interleaving the data blocks, the linear data structure
including the data blocks arranged in a linear sequence; and
writing the linear data structure into a second memory
associated with a part of the array.

[0158] Example 2 provides the method of example 1,
where the array of PEs includes PEs arranged in columns,
and the part of the array is one of the columns.

[0159] Example 3 provides the method of example 2,
where each respective virtual bank of the plurality of virtual
banks corresponds to a different one of the columns.
[0160] Example 4 provides the method of any of the
preceding examples, where the array of PEs constitutes at
least part of a convolutional layer in a DNN and is to
perform the convolution on the weights and an input tensor
to generate an output tensor.

[0161] Example 5 provides the method of example 4,
where the three-dimensional matrix has a first dimension
determined based on a number of input channels in the input

Jan. 19, 2023

tensor, a second dimension determined based on a size of the
one or more convolutional kernels, and a third dimension
determined based on a number of output channels in the
output tensor.

[0162] Example 6 provides the method of example 5,
where partitioning the virtual bank into a plurality of virtual
sub-banks includes partitioning the virtual bank in the third
dimension, where a dimension of a virtual sub-bank equals
an integral divisor of the number of output channels in the
output tensor.

[0163] Example 7 provides the method of example 5 or 6,
where a data block has a dimension that equals a predeter-
mined number of input channels.

[0164] Example 8 provides the method of any of the
preceding examples, where the data blocks include first data
blocks from a first virtual sub-bank of the plurality of virtual
sub-banks and second data blocks from a second virtual
sub-bank of the plurality of virtual sub-banks, and the first
data blocks alternate with the second data blocks in the
linear data structure.

[0165] Example 9 provides the method of any of the
preceding examples, further includes before identifying data
blocks from different ones of the plurality of virtual sub-
banks, removing weights having zero values from at least
some of the plurality of virtual sub-banks.

[0166] Example 10 provides the method of any of the
preceding examples, where the first memory is outside the
array of PEs, and the second memory is inside the array of
PEs.

[0167] Example 11 provides a DNN accelerator, the DNN
accelerator including an array of PEs configured to execute
a convolution on an input tensor with the weight tensor to
produce an output tensor, where the weight tensor includes
weights in one or more convolutional kernels, and the
weights are arranged in a three-dimensional matrix; a first
memory for storing the weight tensor; a second memory
associated with a part of the array; and a DMA engine that
is configured to read the weight tensor from the first
memory, partitioning the weight tensor into a plurality of
virtual banks based on an arrangement of the PEs in the
array, partitioning a virtual bank of the plurality of virtual
banks into a plurality of virtual sub-banks, identify data
blocks from different ones of the plurality of virtual sub-
banks, form a linear data structure by interleaving the data
blocks, the linear data structure including the data blocks
arranged in a linear sequence, and write the linear data
structure into the second memory.

[0168] Example 12 provides the DNN accelerator of
example 11, where the array of PEs includes PEs arranged
in columns, and the part of the array is one of the columns.
[0169] Example 13 provides the DNN accelerator of
example 12, where each respective virtual bank of the
plurality of virtual banks corresponds to a different one of
the columns.

[0170] Example 14 provides the DNN accelerator of any
one of examples 11-13, where the array of PEs constitutes at
least part of a convolutional layer in the DNN and is to
perform the convolution on the weight tensor and an input
tensor to generate an output tensor.

[0171] Example 15 provides the DNN accelerator of
example 14, where the three-dimensional matrix has a first
dimension determined based on a number of input channels
in the input tensor, a second dimension determined based on

US 2023/0017662 Al

a size of the one or more convolutional kernels, and a third
dimension determined based on a number of output channels
in the output tensor.

[0172] Example 16 provides the DNN accelerator of
example 15, where the DMA engine is configured to parti-
tion the virtual bank into a plurality of virtual sub-banks by
partitioning the virtual bank in the third dimension, where a
dimension of a virtual sub-bank equals an integral divisor of
the number of output channels in the output tensor.

[0173] Example 17 provides the DNN accelerator of
example 15 or 16, where a data block has a dimension that
equals a predetermined number of input channels.

[0174] Example 18 provides the DNN accelerator of any
one of examples 11-17, where the data blocks include first
data blocks from a first virtual sub-bank of the plurality of
virtual sub-banks and second data blocks from a second
virtual sub-bank of the plurality of virtual sub-banks, and the
first data blocks alternate with the second data blocks in the
linear data structure.

[0175] Example 19 provides the DNN accelerator of any
one of examples 11-18, where the DMA engine is further
configured to before identifying data blocks from different
ones of the plurality of virtual sub-banks, remove weights
having zero values from at least some of the plurality of
virtual sub-banks.

[0176] Example 20 provides the DNN accelerator of any
one of examples 11-19, where the first memory is outside the
array of PEs, and the second memory is inside the array of
PEs.

[0177] Example 21 provides one or more non-transitory
computer-readable media storing instructions executable to
perform operations for training a target neural network, the
operations including reading a weight tensor from a first
memory, where the weight tensor includes weights in one or
more convolutional kernels, and the weights are arranged in
a three-dimensional matrix and are to be used by an array of
PEs to execute a convolution; partitioning the weight tensor
into a plurality of virtual banks based on an arrangement of
the PEs in the array; partitioning a virtual bank of the
plurality of virtual banks into a plurality of virtual sub-
banks; identifying data blocks from different ones of the
plurality of virtual sub-banks; forming a linear data structure
by interleaving the data blocks, the linear data structure
including the data blocks arranged in a linear sequence; and
writing the linear data structure into a second memory
associated with a part of the array.

[0178] Example 22 provides the one or more non-transi-
tory computer-readable media of example 21, where the
array of PEs includes PEs arranged in columns, and the part
of the array is one of the columns.

[0179] Example 23 provides the one or more non-transi-
tory computer-readable media of example 21 or 22, where
the array of PEs constitutes at least part of a convolutional
layer in a DNN and is to perform the convolution on the
weight tensor and an input tensor to generate an output
tensor.

[0180] Example 24 provides the one or more non-transi-
tory computer-readable media of any one of examples
21-23, where the data blocks include first data blocks from
a first virtual sub-bank of the plurality of virtual sub-banks
and second data blocks from a second virtual sub-bank of the
plurality of virtual sub-banks, and the first data blocks
alternate with the second data blocks in the linear data
structure.

Jan. 19, 2023

[0181] Example 25 provides the one or more non-transi-
tory computer-readable media of any one of examples
21-24, where the operations further include before identify-
ing data blocks from different ones of the plurality of virtual
sub-banks, removing weights having zero values from at
least some of the plurality of virtual sub-banks.
[0182] The above description of illustrated implementa-
tions of the disclosure, including what is described in the
Abstract, is not intended to be exhaustive or to limit the
disclosure to the precise forms disclosed. While specific
implementations of, and examples for, the disclosure are
described herein for illustrative purposes, various equivalent
modifications are possible within the scope of the disclosure,
as those skilled in the relevant art will recognize. These
modifications may be made to the disclosure in light of the
above detailed description.
1. A method of deep learning, the method comprising:
reading a weight tensor from a first memory, wherein the
weight tensor comprises weights in one or more con-
volutional kernels, and the weights are arranged in a
three-dimensional matrix and are to be used by an array
of processing elements (PEs) to execute a convolution;

partitioning the weight tensor into a plurality of virtual
banks based on an arrangement of the PEs in the array;

partitioning a virtual bank of the plurality of virtual banks
into a plurality of virtual sub-banks;

identifying data blocks from different ones of the plurality

of virtual sub-banks;

forming a linear data structure by interleaving the data

blocks, the linear data structure comprising the data
blocks arranged in a linear sequence; and

writing the linear data structure into a second memory

associated with a part of the array.

2. The method of claim 1, wherein the array of PEs
comprises PEs arranged in columns, and the part of the array
is one of the columns.

3. The method of claim 2, wherein each respective virtual
bank of the plurality of virtual banks corresponds to a
different one of the columns.

4. The method of claim 1, wherein the array of PEs
constitutes at least part of a convolutional layer in a deep
neural network (DNN) and is to perform the convolution on
the weights and an input tensor to generate an output tensor.

5. The method of claim 4, wherein the three-dimensional
matrix has a first dimension determined based on a number
of input channels in the input tensor, a second dimension
determined based on a size of the one or more convolutional
kernels, and a third dimension determined based on a
number of output channels in the output tensor.

6. The method of claim 5, wherein partitioning the virtual
bank into a plurality of virtual sub-banks comprises:

partitioning the virtual bank in the third dimension,

wherein a dimension of a virtual sub-bank equals an
integral divisor of the number of output channels in the
output tensor.

7. The method of claim 5, wherein a data block has a
dimension that equals a predetermined number of input
channels.

8. The method of claim 1, wherein:

the data blocks comprise first data blocks from a first

virtual sub-bank of the plurality of virtual sub-banks
and second data blocks from a second virtual sub-bank
of the plurality of virtual sub-banks, and

US 2023/0017662 Al

the first data blocks alternate with the second data blocks

in the linear data structure.

9. The method of claim 1, further comprises:

before identifying data blocks from different ones of the

plurality of virtual sub-banks, removing weights having
zero values from at least some of the plurality of virtual
sub-banks.

10. The method of claim 1, wherein the first memory is
outside the array of PEs, and the second memory is inside
the array of PEs.

11. A deep neural network (DNN) accelerator, the DNN
accelerator comprising:

an array of processing elements (PEs) configured to

execute a convolution on an input tensor with a weight
tensor to produce an output tensor, wherein the weight
tensor comprises weights in one or more convolutional
kernels, and the weights are arranged in a three-dimen-
sional matrix;

a first memory for storing the weight tensor;

a second memory associated with a part of the array; and

a direct memory access (DMA) engine that is configured

to:

read the weight tensor from the first memory,

partitioning the weight tensor into a plurality of virtual
banks based on an arrangement of the PEs in the
array,

partitioning a virtual bank of the plurality of virtual
banks into a plurality of virtual sub-banks,

identify data blocks from different ones of the plurality
of virtual sub-banks,

form a linear data structure by interleaving the data
blocks, the linear data structure comprising the data
blocks arranged in a linear sequence, and

write the linear data structure into the second memory.

12. The DNN accelerator of claim 11, wherein the array
of PEs comprises PEs arranged in columns, and the part of
the array is one of the columns.

13. The DNN accelerator of claim 12, wherein each
respective virtual bank of the plurality of virtual banks
corresponds to a different one of the columns.

14. The DNN accelerator of claim 11, wherein the array
of PEs constitutes at least part of a convolutional layer in the
DNN and is to perform the convolution on the weight tensor
and an input tensor to generate an output tensor.

15. The DNN accelerator of claim 14, wherein the three-
dimensional matrix has a first dimension determined based
on a number of input channels in the input tensor, a second
dimension determined based on a size of the one or more
convolutional kernels, and a third dimension determined
based on a number of output channels in the output tensor.

16. The DNN accelerator of claim 15, wherein the DMA
engine is configured to partition the virtual bank into a
plurality of virtual sub-banks by:

partitioning the virtual bank in the third dimension,

wherein a dimension of a virtual sub-bank equals an

integral divisor of the number of output channels in the
output tensor.

17. The DNN accelerator of claim 15, wherein a data
block has a dimension that equals a predetermined number
of input channels.

Jan. 19, 2023

18. The DNN accelerator of claim 11, wherein:

the data blocks comprise first data blocks from a first
virtual sub-bank of the plurality of virtual sub-banks
and second data blocks from a second virtual sub-bank
of the plurality of virtual sub-banks, and

the first data blocks alternate with the second data blocks

in the linear data structure.

19. The DNN accelerator of claim 11, wherein the DMA
engine is further configured to:

before identitying data blocks from different ones of the

plurality of virtual sub-banks, remove weights having
zero values from at least some of the plurality of virtual
sub-banks.
20. The DNN accelerator of claim 11, wherein the first
memory is outside the array of PEs, and the second memory
is inside the array of PEs.
21. One or more non-transitory computer-readable media
storing instructions executable to perform operations for
training a target neural network, the operations comprising:
reading a weight tensor from a first memory, wherein the
weight tensor comprises weights in one or more con-
volutional kernels, and the weights are arranged in a
three-dimensional matrix and are to be used by an array
of processing elements (PEs) to execute a convolution;

partitioning the weight tensor into a plurality of virtual
banks based on an arrangement of the PEs in the array;

partitioning a virtual bank of the plurality of virtual banks
into a plurality of virtual sub-banks;

identifying data blocks from different ones of the plurality

of virtual sub-banks;

forming a linear data structure by interleaving the data

blocks, the linear data structure comprising the data
blocks arranged in a linear sequence; and

writing the linear data structure into a second memory

associated with a part of the array.

22. The one or more non-transitory computer-readable
media of claim 21, wherein the array of PEs comprises PEs
arranged in columns, and the part of the array is one of the
columns.

23. The one or more non-transitory computer-readable
media of claim 21, wherein the array of PEs constitutes at
least part of a convolutional layer in a deep neural network
(DNN) and is to perform the convolution on the weight
tensor and an input tensor to generate an output tensor.

24. The one or more non-transitory computer-readable
media of claim 21, wherein:

the data blocks comprise first data blocks from a first

virtual sub-bank of the plurality of virtual sub-banks
and second data blocks from a second virtual sub-bank
of the plurality of virtual sub-banks, and

the first data blocks alternate with the second data blocks

in the linear data structure.

25. The one or more non-transitory computer-readable
media of claim 21, wherein the operations further comprise:

before identitying data blocks from different ones of the

plurality of virtual sub-banks, removing weights having
zero values from at least some of the plurality of virtual
sub-banks.

